
SESSION

PARALLEL AND DISTRIBUTED ALGORITHMS
AND APPLICATIONS + GRID COMPUTING

Chair(s)

TBA

Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 | 1

2 Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 |

VM Migration Approach for Autonomic Fault Tolerance

in Cloud Computing

Anju Bala
1
 Inderveer Chana

2

1
CSED, Thapar University, Patiala, Punjab, India

2
CSED, Thapar University, Patiala, Punjab, India

Abstract - VM Migration for Autonomic Fault Tolerance

provides the continuous availability for applications in the

event of virtual machine failures along with the benefits of

improved performance and manageability. Multipath

correlation coefficient approach for VM migration has been

proposed, which takes into account the overutilization of

CPU without performance degradation based on work
variability. The proposed approach has been validated

through CloudSim toolkit. The experimental results

demonstrate that the proposed approach is effective for

handling VM migration or VM Reallocation. Further the

proposed algorithm considerably reduces the VM

Reallocation execution time, VM Reallocation time standard

deviation and number of VM migrations.

Keywords—VM Migration, autonomic, fault tolerance,

cloud computing, overutilization.

1 Introduction

Cloud computing has revolutionized the ICT industry by

enabling on-demand provisioning of computing resources

based on a pay-as-you-go model. An organization can either

outsource its computational needs to the Cloud avoiding high

up-front investments in a private computing infrastructure

and consequent maintenance costs, or implement a private

Cloud data center to improve the resource management and

provisioning processes [1]. Many computing service

providers including Google, Microsoft, Yahoo, facebook and

IBM are rapidly deploying their data centers in various

locations around the world to deliver cloud computing

services [2].

Autonomic fault tolerance has become very popular,
especially in scenarios of Cloud Computing. The goal of

autonomic fault tolerance is to overcome the management

complexity and improves the performance of today’s cloud

services. As cloud provides various services to the user like

software as service, platform as service, hardware as a

service and infrastructure as a service. Therefore, Cloud

requires security, reliability, robustness and high

performance. The reliability models for software or hardware

failures cannot be simply applied to increase the cloud

reliability [19].To handle the failures proactively; autonomic

tolerance policies can be used. Virtual machine migration

policy can be used to proactively move the computation

away from faulty or suspicious machines. Memory, storage,

and network connectivity of the virtual machine are

transferred from the original host machine to the destination.

In virtualization community, live migration of virtual

machines is pretty much considered a ―default‖ mature

feature [3].

In order to predict a failure due to an overutilization of

CPU it is usually sufficient to simply employ a threshold on

CPU utilization, whereas the prediction of overloaded host
requires more sophisticated algorithms. One way to such

issues is to design algorithms that can detect over utilization

of resources and predict any adversity in datacenter. After

the detection of overutilization of virtual machines, fault

tolerance mechanism or fallback virtual machine policy is

required that may be reactive or proactive in nature.

Therefore there is a need to build VM migration policy that

works as fault tolerance algorithm to migrate and consolidate

the virtual machines dynamically and efficiently based on

non-linear nature of distribution of workflow jobs in tasks.

VMs utilize fewer resources according to the workload data,

creating opportunities for dynamic consolidation but if there
is overloading or adversity it again forms another type of

challenge in terms of defining the VM reallocation or

migration policy after the overloading and adversity has been

detected.

The main objective of the research work is to implement

VM migration policy for handling faults autonomically.The

local regression technique used for identifying overloading

or over subscription of VMs. In this research work,

improvement in Maximum Correlation Policy is improvised

as correlation cannot explain the cause of two random

variable’s association. There might be two or more machines

working together and therefore there may be higher

correlation among them. So, there is a need to find the

intercorrelation among overloaded machines. To address this
issue, this research proposes a VM migration policy namely

multipath correlation coefficient approach is proposed which

is an extension of multiple correlation coefficient approach

[4]. The proposed approach reduces the VM reallocation

time, number of VM migrations.

The remainder of the paper is organized as follows.

Section 2 discussed the related work. A section 3 presents a

thorough analysis of the VM migration policies. Section 4

discussed the proposed VM migration policy to handle fault

Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 | 3

tolerance. Section 5 demonstrates the experimental results.

Section 6 discusses the future research directions and

concludes the paper.

2 Related Work

Power consumption is one of the most important design

constraints for high-density servers. Charles Lefurgy [15]

presented a control-theoretic peak power management

system for servers by implementing feedback controller.

Further the datacenter operators may use power control to

match server power consumption to the available rack

cooling capacity.Nathuji et al. [12] have proposed
architecture of a data center’s resource management system

where resource management is divided into local and global

policies. At the local level the system leverages the guest

OS’s power management strategies. The global manager gets

the information on the current resource allocation from the

local managers and applies its policy to decide whether the

VM placement needs to be adapted. However, the authors

have not proposed a specific policy for automatic resource

management at the global level.

Beloglazov et al. [2] proposed a heuristic for deciding the

time to migrate VMs from a host based on utilization

thresholds. It is based on the idea of setting upper and lower

utilization thresholds for hosts and keeping the total

utilization of the CPU by all the VMs between these
thresholds. But, fixed values of utilization thresholds are

unsuitable there can be dynamic threshold values. Anton

Beloglazov et al. [4] proposed various heuristics to detect the

overload. An Adaptive Utilization Threshold Median

Absolute Deviation which is a measure of statistical

dispersion. It is a more robust estimator of scale than the

sample variance or standard deviation, as it behaves better

with distributions without a mean or variance. In the MAD,

the magnitude of the distances of a small number of outliers

is irrelevant. They proposed second method An Adaptive

Utilization Threshold: Interquartile Range is a measure of

statistical dispersion, being equal to the difference between
the third and first quartiles [12][13]. The main idea of the

method of local regression is fitting simple models to

localized subsets of data to build up a curve that

approximates the original data [5]. Cleveland [5] has

proposed the addition of the robust estimation method bisque

to the least-squares method for fitting a parametric family

.This modification transforms Loess into an iterative method.

The initial fit is carried out with weights defined using the

tricube weight function. This overloading detection

algorithm is called Local Regression Robust (LRR).After

detecting the overload, VM Selection policy is used to select

which VM can be migrated.

Beloglazov et al. [4] proposed VM selection policies like

minimum migration time policy, random choice policy, the
maximum Correlation Policy. The Minimum Migration

Time (MMT) policy migrates a VM that requires the

minimum time to complete a migration relatively to the other

VMs allocated to the host. The Random Choice (RC) policy

selects a VM to be migrated according to a uniformly

distributed discrete random variable. Maximum correlation

policy finds if the correlation is higher between the resource

usages by applications running on an oversubscribed server,

the higher the probability of the server overloading.

According to this idea, VMs is to be selected to migrate that
have the highest correlation of the CPU utilization with other

VMs. It is used in multiple regression analysis to assess the

quality of the prediction of the dependent variable. The

multiple correlation coefficients [16] generalize the standard

coefficient of correlation. It is used in multiple regression

analysis to assess the quality of the prediction of the

dependent variable. It corresponds to the squared correlation

between the predicted and the actual values of the dependent

variable.Maximun correlation policy cannot explain the

cause of two random variables association, why these

variables are negatively or positively correlated. This policy

only shows the association between same levels of virtual
machines. Anton Beloglazov [2] proposed a Highest

Potential Growth Policy migrates VMs that have lowest CPU

utilization relative to the CPU capacity defined by VM

parameters in order to the potential increase of the host’s

utilization and prevent an SLA violation. Jing Tai et al. [10]

introduced Network Aware VM migration approach that

places the VMs on physical machines with consideration of

the network conditions between the physical machines and

the data storage. This approach could improve the task

execution time. But this approach does not guarantee the

enforcement of SLA [10].

Red Hat’s System Scheduler [17], and Platform’s VM

Orchestrator [18] provide placement policies with the aim of

load balancing and energy consumption saving. They
continuously monitor the utilization of available hosts and, if

necessary, perform a re-mapping using live migration [14],

which guarantees the fulfillment of policies during runtime.

Priorities and other parameters for the placement can be

defined by the user, but it is not possible to change the

policies.

3 VM Migration Policies

VM Migration policies are implemented first by applying

the overloading detection algorithm to check whether a host

is overloaded or not. The general flow of VM Migration

policies as shown in Figure 1.VM overloaded detection

algorithm is used, if the host is overloaded, then VM

selection policy is used to select VMs that need to be

migrated from the host. Once the list of VMs to be migrated

from the overloaded hosts is built, the VM placement

algorithm is invoked to find a new placement for the VMs to

be migrated.

4 Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 |

 Figure 1: Flow of VM Migration

3.1 Overload Detection Algorithms

Overload detection is based on the idea of setting upper

and lower utilization thresholds for hosts and keeping the
total utilization of the CPU by all the VMs between these

thresholds. Therefore, novel techniques are used for the auto-

adjustment of the utilization thresholds based on a statistical

analysis of historical data collected during the lifetime of

VMs.An Adaptive Utilization Threshold Median Absolute

Deviation is a measure of statistical dispersion. An Adaptive

Utilization Threshold: Interquartile Range method is used for

setting an adaptive upper utilization threshold based on

another robust statistician descriptive statistics [12].Local

regression is used for fitting simple models to localized

subsets of data to build up a curve that approximates the

original data.

3.2 VM Selection Policies

After selecting the host which is overloaded, the next

step is to select particular VMs to migrate from the host.

After the selection of a VM to migrate, the host is checked

again for being overloaded. If it is still considered being

overloaded, the VM selection policy is applied iteratively.
This is repeated until the host is considered as being not

overloaded. There are various VM Migration Policies which

can be used for detecting overloading like minimization of

migrations policy [2],Highest Potential Growth

Policy[2],Minimum Migration Time Policy[5],Random

Choice Policy, Maximum Correlation Policy , Network

Aware VM migration approach [6][7][8].

3.3 VM Placement

VM Placement guarantees the SLA enforcement for

migrated machines [10].

4 Problem Description and

Proposed Approach

Our propose approach is an extension of the multiple

correlation coefficient approach [4]. It is a method of

describing complex sequential relationship between

measurements. These measurements are assigned to different

levels in a sequence or cascade of influence, where the

earlier levels affect the subsequent ones, but the reverse does
not happen. In this sequence, all measurements in prior

levels affect all subsequent levels, and the scale of the

influence is described by the path coefficient, and partial

correlation between measurements in the same level assumes

that there are as yet unexplained common preceding

influences. Since, for experiment it is considered Planet Lab

work flow, but at the same time, the assumption is that some

machines are working together or are dependent on each

other completing the complete tasks, so therefore, we need to
find which is machine which has least influence on others in

terms of work load, second which VM located on a host has

maximum utilization, so that it is not considered for

migration and the one which has least expected work is

considered for migration.

For example the table 1 shows the Correlation matrix

which has the data of CPU utilization with respect to VMs in

datacenter; this forms the data to be processed for taking VM

migration decision when over utilization occurs. Because the

CPU consumes the main part of energy, and the CPU

utilization is typically proportional to the overall system

load. Therefore the relationship between the CPU usage and

VMs has been considered.
Table 1: Correlation Matrix

 VM1 VM2 VM3 VM4 VM5 VM6 VM7

VM1 1 0.5 0.2 0.2 0.3 0.6 0.4

VM2 0.5 1 0.1 0.1 0.3 0.7 0.5

VM3 0.2 0.1 1 0.4 0.5 0.1 0.5

VM4 0.2 0.1 0.4 1 0.6 0.1 0.4

VM5 0.3 0.3 0.5 0.6 1 0.3 0.7

VM6 0.6 0.7 0.1 0.1 0.3 1 0.8

VM7 0.4 0.5 0.5 0.4 0.7 0.8 1

Virtual machine VM7 represents one of the VMs which

can be currently considered for being avoided for

migration.CPU utilization of VM1, VM2 may be correlated

with those of VM3 and VM4 as also have similar pattern of

CPU utilization and VM5 and VM6 also may have similar

CPU utilization pattern to VM1 and VM2. Figure 2 depicts

that the CPU utilization of VM1, VM2 may be correlated
with those of VM3 and VM4 as also have similar pattern of

CPU utilization, we need a multiple correlation analysis to

correct for all the inter-correlations, and identify the direct

influence on other machines. If the CPU utilization pattern is

same as with other machines, then these machines might be

working together.

Figure 2: Association of Virtual Machines

Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 | 5

4.1 Optimization of Virtual Machines

To optimize the performance of virtual machines, we

have implemented the correlation between occupied and

standby machines and intercorrelation between occupied

machines which is shown in Figure 3. First it will check the

correlation between V1 and VM1, if the correlation factor is

one then intercorrelation factor is calculated between VM1

and VM2, If the inter-correlation factor is one then it means

there is a perfect correlation and these machines are working

together. These machines are not migratable, because it may

degrade the overall performance. In the similar way the

intercorrelation can be found between VM1 and other VM’s.

Figure 3: Intercorrelation between occupied and standby machines

4.2 VM Migration from Overloaded Host

Figure 4 shows the migration of virtual machine from

overloaded host to another host. If the CPU utilization

exceed than the demand then host is overloaded. Then

overloaded virtual machines from the host need to be

migrated to another host by finding the correlation and

intercorrelation between virtual machines. If inter-correlation

factor between overloaded virtual machines is zero, then that

machines can be migratable.

Figure 4: VM migration using Multipath correlation coefficient

approach

4.3 General Flow Chart for VM Migration

Approach

 The general flow chart of VM Migration for fault

tolerance mechanism as demonstrated in shown in Figure 5.

First, the algorithm checks through the list of hosts and by

applying the overloading detection algorithm checks whether

a host is overloaded. If the fault occurs due to overloaded

host, then proposed approach used to select VMs that need to

be migrated from the host. The previous algorithm was

working on Max Correlation strategy to find which VMs

have some high association with CPU utilization. To

improve the performance of VMs, we have found the
intercorrelation factor between the machines VM (i) and VM

(i+1), if the inter-correlation between overloaded machines is

one then there is a strong association between occupied

machines and these machines are in group, and put these

machines into ignore list, then there is no need to find out the

association of VM (i+1) with other standby macines.So it

will reduce the VM reallocation time, number of migrations.

If the intercorrelation factor is one then put these machines

into migration list.

Figure 5: Flowchart for the proposed approach

5 Experimental Results of the Proposed

Approach

It is essential to evaluate the proposed approach on a

large-scale virtualized data center infrastructure. However, it

is extremely difficult to conduct repeatable large-scale

experiments on a real infrastructure, which is required to

evaluate and compare the proposed algorithms. The

usefulness of proposed VM Migration approach is

implemented and tested using Cloudsim 4.0 which supports

modeling and stimulating one or more VMs on a stimulated

data centers [9][2]. In the experiment, we focused on to
reduce the VM Reallocation time and no. of migrations. The

comparative analysis of proposed approach is implemented

with the multiple correlation coefficient approach.

5.1 Simulation Results

We have simulated the data center that comprises 25

heterogeneous nodes and 25 virtual machines. Half of the

6 Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 |

nodes are HP ProLiant ML110 G4 servers, and the other half

consists of HP ProLiant ML110 G5 servers. We have

evaluated our results by using 14 experiments with safety

parameter as threshold value from 0.1 to 1.1.Results are

evaluated by using overload detection algorithm local

regression and proposed approach. The simulation results in
cloudsim 4.0 is shown in Table 2.The results shows that

proposed VM migration approach can bring better results in

comparison to the Multiple coefficient approach(MC).

Table 2: Simulation results of the proposed algorithm with MC

E

x

p.

N

o.

Safety

Param

eter(T

hresho

ld

value)

Algo

rith

m

Energy No.

of

Mig

rati

ons

Executio

n Time

VM

Reallocat

ion Mean

Executio

n Time

VM

Reallocat

ion

Standard

Deviation

1 0.1 MC 6.06534 101 0.00089 0.00089

2. 0.2 MC 7.57247 114 0.00011 0.00133

3 0.3 MC 9.03644 121 0.00005 0.00089

4 0.5 MC 10.0037

5

128 0 0

5 0.7 MC 12.6422

1

287 0.00016 0.0016

6 0.9 MC 14.0562

6

780 0.0006 0.00299

7 1.1 MC 16.3394

3

1199 0.00157 0.0047

8 0.1 Prop

osed 6.02803

92 0.00011 0.00129

9 0.2 Prop

osed 7.49453

98 0.00006 0.00094

10 0.3 Prop

osed

8.51442 108 0 0

11 0.5 Prop

osed

9.98966 130 0 0

12 0.7 Prop

osed

12.5581

4

242 0.00006 0.00094

13 0.9 Prop

osed

13.9554

7

626 0.00043 0.00144

14 1.1 Prop

osed

16.3182

3

1037 0.00108 0.00397

5.2 Performance Metrics

Several metrics are used to evaluate the performance and

efficiency of proposed approach. The selection of

performance parameters should be done in such a manner

that it is able to find the efficiency of the algorithm in terms

of reallocation time and must be able to reduce failures and

help in running of datacenters smoothly without any loss of

energy. These parameters give an overall picture of the

nature of the fault tolerance mechanism for each step it

performs. For example, it helps us to understand how much

average time it takes for the algorithm to give response for
reallocating or migrating the workload to a new VM and if

there is some variation in doing this process we also get how

much is the variation by calculating standard deviation and

variance. Another metric is the number of VM Migrations.

Case 1: VM Migration places the virtual machine into a

saved state during the migration from faulty or overloaded

host to other host. Figure 6 shows that no. of VM Migrations

is less in proposed approach as compared to previous one.

However, it can optimize the performance during live

migration.

Figure 6: Number of VM Migrations

Case 2: This is the graph [Figure 7] showing how much

time it takes on average for the fault tolerance algorithm to

finally get the migration or the reallocation of VMs, it can be

seen the average time has improved due to new algorithm as

it is working for reselecting the machines based on

intercorrelation factor affecting the VM migration decision

making process.

.

 Figure 7: Execution Time VM Reallocation Mean

Case 3: Standard deviation is a measure of how much the
data is distributed around both sides of the mean. The wider

the difference between the maximum and minimum values in

a distribution, the bigger the standard deviation. In this case

for safety parameter 0.1, the standard deviation is around

0.0129 of the mean which is analyzed in Figure 8. But for

other safety parameters the standard deviation is small for

the proposed algorithm, which means that this the proposed

algorithm will not be much erratic in nature and will not

disturb the overall process of migration during reallocation

of VMs due to some over load utilization or some adversity

issue.

Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 | 7

Figure 8: Execution Time VM Reallocation Standard Deviation

6 Conclusion and Future Directions
To handle the faults autonomicaly, VM migration

approach has been proposed and implemented. The proposed

policy automatically moves computation away from faulty or

overloaded machines to other machines. Because the CPU

consumes the main part of energy and the CPU utilization is

typically proportional to the overall system load. So,

overloading detection has been implemented using local

regression by considering the CPU utilization parameter. The

proposed multipath correlation coefficient approach has been

implemented to select the virtual machine which needs to be

migrating. Performance evaluation has been done using

cloudsim 4.0 by considering various statistical parameters

like mean, standard deviation. The experimental results
shows that our proposed approach perform better in terms of

number of VM Migrations, Reallocation Mean time,

Reallocation standard deviation time. Further, it can be used

to optimize multiple parameters. Decision tree can be used to

find the dependency between Virtual Machines. More

efficient Energy models can be used with VM migration

techniques and can be tested under real testbed like

Openstack, Aneka etc.

7 References
[1] Anton Beloglazov, Rajkumar Buyya, "Managing

Overloaded Hosts for Dynamic Consolidation of Virtual

Machines in Cloud Data Centers Under Quality of Service

Constraints," IEEE Transactions on Parallel and Distributed

Systems, 15 Aug. 2012.

[2] Anton Beloglazov , Jemal Abawajy, Rajkumar Buyya,‖

Energy-aware resource allocation heuristics for efficient

management of data centers for Cloud computing,‖ in
Future Generation Computer Systems 28 (2012) 755–768.

[3] Understanding Live Migration at

http://ppadala.net/blog/2010/06/understanding-live-

migration-of-virtual-machines.

[4] Anton Beloglazov_ and Rajkumar Buyya,‖ Optimal

Online Deterministic Algorithms and Adaptive Heuristics

for Energy and Performance Efficient Dynamic

Consolidation of Virtual Machines in Cloud Data Centers‖

in concurrency Computat.: Pract. Exper. 2012; 24:1397–

1420.

[5] Cleveland WS.,‖ Robust locally weighted regression and

smoothing scatterplots.‖ Journal of the American statistical

association 1979; 74(368):829–836.

[6] Verma A, Dasgupta G, Nayak TK, De P, Kothari R.,‖

Server workload analysis for power minimization using

consolidation‖ in Proceedings of the 2009 USENIX Annual

Technical Conference, San Diego, CA, USA, 2009; 28–28.

[7] Abdi H. ,‖ Multiple correlation coefficient.

Encyclopedia of Measurement and Statistics (edited by Neil

J. Salkind) ―,Sage, Thousand Oaks, CA, USA, 2007; 648–

651.

[8] Kendall MG, Ord JK.,‖ Time-series. Oxford University
Press ―, Oxford, 1973.

[9] Calheiros RN, Ranjan R, Beloglazov A, Rose CAFD,

Buyya R. ,‖CloudSim: a toolkit for modeling and simulation

of Cloud computing environments and evaluation of

resource provisioning algorithms ― in Software: Practice and

Experience 2011; 41(1):23–50.

[10] Jing Tai Piao, Jun Yan,‖ A Network-aware Virtual

Machine Placement and Migration Approach in Cloud

Computing‖ in 2010 Ninth International Conference on
Grid and Cloud Computing IEEE.

[11] Franco Travostinoa,Paul Daspitb,‖ Seamless live

migration of virtual machines over the MAN/WAN‖ in

Future Generation Computer Systems 22 (2006) 901–907.

[12] Feitelson,‖ DG.Workload modeling for performance

evaluation‖ in Lecture notes, computer science 2002;

2459:114–141.

[13] Barford P, Crovella M.Generating representative web

workloads for network and server performance evaluation.

[14] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,C.

Limpach, I. Pratt, and A. Warfield, ―Live migration

ofVirtual machines,‖ in Proceedings of the 2nd Symposium

on Networked Systems Design & Implementation

(NSDIS).Berkeley, CA, USA: USENIX Association, 2005.

[15] C. Lefurgy, X. Wang, and M. Ware. Server-level power

control. In Proceedings of the IEEE International

Conference on Autonomic Computing (ICAC), June 2007.

[16] Abdi H. Multiple correlation coefficient. Encyclopedia

of Measurement and Statistics (edited by Neil J. Salkind).

8 Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 |

http://ppadala.net/blog/2010/06/understanding-live-migration-of-virtual-machines
http://ppadala.net/blog/2010/06/understanding-live-migration-of-virtual-machines

[17] .RedHat, ―RedHat Enterprise Virtualization: System

Scheduler. Data sheet‖ [Online]. Available:

http://www.redhat.com/f/pdf/rhev/doc060-

[18] Platform, ―Platform VM Orchestrator. [Online].

available:.
http://www.platform.com/resources/datasheets/vmov4-

ds.pdf

[19] M. Xie, Y.S. Dai, K.L. Poh.,‖ Computing System

Reliability: Models and Analysis‖, NewYork, Kluwer

:Academic Publishers, (2004).

Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 | 9

http://www.platform.com/resources/datasheets/vmov4-ds.pdf
http://www.platform.com/resources/datasheets/vmov4-ds.pdf

Adaptive Data Replication Scheme Based on Access
Count Prediction in Hadoop

Jungha Lee, JongBeom Lim,
Daeyong Jung, HeonchangYu§

Dept. of Computer Science Education
Korea University

Seoul, Korea
{jungha07, jblim, karat, yuhc}@korea.ac.kr

KwangSik Chung
Dept. of Computer Science

Korea National Open University
Seoul, Korea

kchung0825@knou.ac.kr

JoonMin Gil§
School of Information Technology

Engineering
Catholic University of Daegu

Daegu, Korea
jmgil@cu.ac.kr

Abstract— Hadoop, an open source implementation of the
MapReduce framework, has been widely used for processing
massive-scale data in parallel. Since Hadoop uses a distributed
file system, called HDFS, the data locality problem often happens
(i.e., a data block should be copied to the processing node when a
processing node does not possess the data block in its local
storage), and this problem leads to the decrease in performance.
In this paper, we present an Adaptive Data Replication scheme
based on Access count Prediction (ADRAP) in a Hadoop
framework to address the data locality problem. The proposed
data replication scheme predicts the next access count of data
files using Lagrange’s interpolation with the previous data access
count. With the predicted data access count, our adaptive data
replication scheme determines whether it generates a new replica
or it uses the loaded data as cache selectively, optimizing the
replication factor. Furthermore, we provide a replica placement
algorithm to improve data locality effectively. Performance
evaluations show that our adaptive data replication scheme
reduces the task completion time in the map phase by 9.6% on
average, compared to the default data replication setting in
Hadoop. With regard to data locality, our scheme offers the
increase of node locality by 6.1% and the decrease of rack and
rack-off locality by 45.6% and 56.5%, respectively.

Hadoop, Data locality, Access prediction, Data replication, Data
placement

I. INTRODUCTION
Due to the increasing demands for processing massive-

scale data with the use of Internet-based services (e.g., search
engines, e-commerce, social networks, and web maps), the
concept of "big data" has emerged. To process big data, an
efficient programming model is required. MapReduce is a
simple and flexible parallel programming model proposed by
Google to process large scale data in a distributed computing
environment [1].

Hadoop is an open source implementation of the
MapReduce and includes a distributed file system (HDFS),
where application data can be stored with replication. With
replication, Hadoop provides high degrees of availability and
fault-tolerance. Hadoop is also increasingly gaining popularity
and has proved to be scalable and of production quality by
Facebook, Amazon, Last.fm, etc. In HDFS, data are split in a

fixed size (e.g., 32MB, 64MB, and 128MB) and the split data
blocks (chunks) are distributed and stored in multiple data
nodes with replication. Hadoop divides each MapReduce job
into a set of tasks according to the number of data blocks.
Basically, the Hadoop scheduler assigns a task to a node
storing the data block preferentially, but it may assigns a task
to a node not storing the data occasionally according to the
Hadoop scheduling policy.

In the latter case, the data locality problem occurs; that is,
the assigned node should load the data block from a different
node storing the data block. An informal description of data
locality in Hadoop refers to the degree of distance between
data and the processing node for the data, and there are three
types of data locality in Hadoop: node, rack, and rack-off
locality. We describe the data locality problem and the three
types of data locality in more detail in Section 3.B.

In this paper, we propose an Adaptive Data Replication
scheme based on Access count Prediction (ADRAP) to reduce
the data transfer overhead associated with the data locality
problem in a Hadoop framework. Our adaptive data replication
scheme aims at improving the data locality in the map task
phase, and reducing the total processing time. The proposed
data replication scheme adaptively determines whether
increasing the replication factor is required for a particular data
file, avoiding the unnecessary data replication by analyzing
data access patterns and the current replication factor.

The contributions of this paper are as follows.

· It optimizes and maintains the replication factor
effectively. Thus, unnecessary overhead caused by data
replication can be avoided because it dynamically
determines whether the data replication is required or
not during runtime.

· It minimizes the data transfer load between racks. If
data replication is required, it replicates the data block
in the rack that does not have the data block, or
distributes it to nodes evenly. Hence, it tries to increase
a probability that a data block is located in the rack in
which the node reside, for the case when concurrent
MapReduce jobs are running in a Hadoop environment.

§ Corresponding authors

10 Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 |

· It reduces the processing time of MapReduce jobs.
By improving the data locality, it results in the decrease
of the frequency of data loading due to the poor data
locality, which causes low throughput.

The rest of this paper is organized as follows. In Section II,
we discuss related studies on data locality in a MapReduce
framework. Section III provides the system model of a Hadoop
cluster and the description of the data locality problem. The
proposed adaptive data replication scheme based on access
count prediction is presented in Section IV. In Section V, we
evaluate the performance of our scheme, comparing it with the
default data replication setting. Finally, Section 6 gives our
conclusions.

II. RELATED WORK
There are several purposes of data replication in HDFS. In

[3, 4, 5, 6], data replication in HDFS is used mainly for
availability of data. These research efforts have focused on
improving fault tolerance of data in the presence of failures.
Recently, a few studies attempted to improve data locality with
data replication in Hadoop.

In DARE[7], the authors proposed a dynamic data
replication scheme based on access patterns of data blocks
during runtime to improve data locality. Note that the default
Hadoop distribution provides the fixed data replication in the
phase of data storing. DARE allows to increase the data
replication factor automatically by replicating the data to the
fetched node. However, removing the replicated data is
performed when only the available data storage is insufficient.
Thus, it has a limit to provide the optimized replication factor
with data access patterns.

In PHFS[8], the authors proposed a data placement scheme
that balances the data load, considering the processing speed of
nodes. PHFS provides the initial data placement and data
redistribution algorithms to improve data locality in
heterogeneous cluster environments. In PHFS, however, the
performance is dependent on applications because it considered
data locality on scientific applications only. As far as data
locality is concerned, it is more important to consider
applications that share data across the nodes in the system.

In HPMR[9], the authors proposed a data prefetching
scheme based on the predictor that copies the predicted data
block to the local rack. HPMR collects and analyzes data
access logs of the system. By using the logs, it uses a data
mining method to predict the access patterns of data files. On
the other hand, HPMR cannot be used at the initial stage, at
which no log information is available. Hence, HPMR is also
particularly suited for scientific applications, which require a
long processing time.

As well as data replication, some scheduling methods are
proposed to improve data locality. In [10], authors proposed a
data locality aware of scheduling method in heterogeneous
environments. It uses the waiting time estimation and the data
transfer time to schedule tasks. It dynamically determines
whether to reserve the task for the node storing the data or to
schedule the task to the requesting node by transferring the
data to the requesting node.

In [11], the authors proposed a delay scheduling method for
both data locality and fairness. If the job cannot launch a local
task due to the data locality reason, it waits for a while to allow
other jobs to launch tasks. Although the delay scheduling
method is designed to improve data locality, it let the jobs wait
for a small amount of time, resulting in violating the fairness
for jobs.

III. SYSTEM MODEL AND PROBLEM DESCRIPTION

A. System model of Hadoop cluster
Hadoop is an open source software framework that

supports data intensive distributed applications. Hadoop was
derived from Google's MapReduce and Google File System
papers and was originally created by Yahoo.

Figure 1 Architecture of Hadoop-based Cluster

The architecture of a Hadoop cluster can be divided into
two layers as shown in Figure 1: MapReduce and HDFS
(Hadoop Distributed File System). The MapReduce layer
maintains MapReduce jobs and their tasks, and the HDFS layer
is responsible for storing and managing data blocks and their
metadata.

A job tracker in the master node splits a MapReduce job
into several tasks and the split tasks are scheduled to task
trackers by the job tracker. For the purpose of monitoring the
state of task trackers, the job tracker aggregates the heartbeat
messages from the task trackers. When storing input data into
the HDFS, the data are split in fixed sized data blocks with
replication (the default replication factor is 3) and the split data
blocks (chunks) are stored in slave nodes. The name node
maintains and keeps track of information about locations
associated with data blocks.

A task tracker of a slave node is in charge of scheduling
tasks in the node. A task tracker requests a task from a job
tracker by sending a heartbeat message when it has an empty
task slot. While a task is in progress, it also sends a heartbeat
message periodically and the message includes information
about the state of the node and the status of tasks that the node
executes. A data node maintains data blocks stored in the local
storage, and local disk information associated with HDFS.

The basic flow of a Hadoop application is as follows. When
storing input data from a client, the data are divided into

Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 | 11

chunks and the chunks are stored to nodes. The job tracker
deals with a MapReduce job request from a client. Upon
reception of a job request, the job tracker divides a job into
tasks, and then, the tasks are assigned to task trackers. At this
stage, it schedules tasks by considering data locality with
metadata of the job. Next, each task tracker assigns a task to a
node, and then, the node performs the task by loading the data
block from HDFS when needed. A task tracker keeps track of
the state of the node about the task. When a task is completed,
this information is sent to the job tracker and the result of the
map task is stored at the local storage temporarily. After all
tasks of the job are completed, the job tracker informs the
client of the completion of the job and the client can check the
result of the job, which is stored in HDFS.

B. Data Locality Problem
In this subsection, we describe the data locality problem

and types of data locality in a Hadoop framework. Data locality
refers to the degree of distance between data and the
processing node for the data and we can say that the closer
distance between them, the better data locality. There are three
types of data locality in Hadoop: (1) node locality: when data
for processing are stored in the local storage, (2) rack locality:
when data for processing are not stored in the local storage, but
another node within the same rack, and (3) rack-off locality:
when data for processing are not stored in the local storage and
nodes within the same rack, but another node in a different
rack.

Since Hadoop uses a distributed file system (HDFS), the
data blocks should also be stored in a distributed way. We
define the data locality problem as follows. The data locality
problem is a situation where a task is scheduled with rack or
rack-off locality; that is, a node should load data from another
node, causing poor throughput [13]. With regard to data
locality, the overhead of rack-off locality is greater than that of
rack locality.

More precisely, when it comes to rack locality, the node
receives the data block from another node using a high
speed/bandwidth interconnection network. On the other hand,
in rack-off locality, the data block should be passed from a
rack to another, and this may incur the latency of data
processing due to data transfer time. To alleviate the data
locality problem, we propose an adaptive data replication
scheme, which predicts the access count of data files using
Lagrange’s interpolation and uses a data replication placement
algorithm to reduce an extent of rack and rack-off locality
effectively.

IV. ADAPTIVE DATA REPLICATION SCHEME BASED ON
ACCESS COUNT PREDICTION

Individual nodes are supposed to perform the fixed number
of tasks in accordance with task slots configured in Hadoop.
When a task tracker notices that there are one or more empty
task slots, it sends request messages for tasks to job trackers. A
job tracker preferentially assigns a task to the node that holds
the data block. If there is no such node with node locality, it
assigns the task to a node with rack or rack-off locality.

When the data locality problem arises, for such a reason,
some data blocks should be transferred to nodes with overhead.

This problem can be alleviated by using a data replication
scheme. The proposed data replication scheme adaptively
determines whether it replicates a data file or not, according to
the current replication factor value and the predicted access
count for the data file.

To this end, it is necessary to maintain and analyze
metadata for data blocks. HDFS supports write-once-read-
many semantics on files and files are divided into fixed sized
data blocks with replication. A typical size of a block and a
replication factor used by HDFS are 64MB and 3, respectively.
However, the default replication factor in HDFS is fixed at an
initial stage and the replication factor does not be changed
during runtime, regardless of the current access count and data
locality of data files.

Figure 2 shows the flow diagram of a MapReduce job. The
modules proposed in this paper for data replication are marked
with the dotted rectangle box. A job submitted by a client is
assigned to task trackers by the job tracker. Task trackers make
use of HDFS for data blocks and their metadata. Each time
access is made to data blocks then the access predictor
calculates the predicted access count and the threshold value.
With this threshold value, the replica creator determines
whether it replicates a data file or not. As it turns out, it will
improve data locality and optimize the replication factor.

A. Access Prediction
The basic idea of deciding replication is to maintain the

different replication factor per data file. Roughly speaking,
maintaining the larger replication factor than the current access
count for a data file does not always guarantee the better data
locality for all data blocks. However, if the replication factor is
greater than the current access count, the probability of being
processed with node locality is higher than that of the opposite
case.

To determine the replication factor, a method that predicts
the next access count for a data file is required. To accomplish
this work, the amount of changes of access counts with time
can be expressed as a mathematical formula. However, because

Figure 2 Flow Diagram of Adaptive Data Replication

12 Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 |

the access for a data file can be made at random, a constant
function is inappropriate. Therefore, we adopt Lagrange’s
interpolation using a polynomial expression to obtain a
predicted access count for a data file.

 (1)

Equation (1) shows the Lagrange’s interpolating
polynomial. In the equation, N is the number of points, ix is
the i -th point, and if is the function of ix . To calculate the
predicted access count, we substitute x by time t at which the
access is made and y by an access count at t .

Figure 3 Access Prediction Algorithm

Figure 3 shows our access prediction algorithm. In the
algorithm, it is the time at which i -th access is made, avg is
the average time interval between accesses, and i

AccessNUM is

the access count at it . After initializing the variables (Step 1),
it calculates the average time interval between access of data
files (Step 2). Afterwards, it calculates the predicted access
count for the next predicted access time using Lagrange’s
interpolation (Step 3 and Step 4).

B. Adaptive Data Replication and Replica Placement
 In this subsection, we describe the adaptive data

replication algorithm based on access count prediction. The
proposed algorithm compares the predicted access count with
the current replication factor, and then determines the
replication factor. In addition, to effectively reduce the number
of nodes with rack or rack-off locality, we also introduce the
replica placement algorithm that chooses the nodes where the
replica will be placed.

Figure 4 Adaptive Data Replication Algorithm

Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 | 13

Figure 5 Replica Placement Algorithm

As discussed, when a task is assigned without node locality,
an input data block should be loaded from a different node. At
this stage, the adaptive data replication scheme considers the
loaded data block as cache when the replication factor is
greater than the predicted access count. In such a situation, the
cache and the replicated data are similar from the perspective
that the data block is loaded from another node. However, the
loaded data block is abandoned after its use when the data
block is used as cache, whereas if the data block is used as
replica, the data block is stored in HDFS and that can be used
many times afterwards. If a data block is replicated like in the
latter case, the information about the location and the data
block is maintained by the name node, and thenceforth the data
block can be used by nodes.

Figure 4 shows the adaptive data replication algorithm
based on access count prediction. In the algorithm, iF means
the i -th file, iAccess means the access count of the i -th file,
and ireplica means the replication factor of the i -th file. Each
time access is made for a data file, the algorithm determines
whether the data file will be replicated or it will be used as
cache, by comparing the predicted access count with the
replication factor. Determining of replication is made when the
first task is assigned from a job tracker because all data blocks
of a job file may be accessed equally as the job is being
processed. For this reason, the replication is also made by a
data file for a job.

Of types of data locality in Hadoop, the rack-off locality
introduces the largest overhead as discussed. To improve data
locality especially for the rack-off locality, the adaptive data
replication scheme uses the replica placement algorithm as
shown in Figure 5. In the algorithm, iRack means the i -th rack
in the circular linked list of racks, selectedRack means the current

rack selected by the algorithm, inturnnode means the current
node selected by the algorithm in the circular linked list of
nodes, and nReplica means the n -th replica.

When replicating a data block, in turn, it traverses the
circular linked list of racks to check whether the rack has the
data block or not. If the rack has the data block, it traverses the
next rack in the circular linked list of racks until it finds the
rack that does not have the data block. If it cannot find a
satisfied rack after traversing all the elements in the circular
linked list of racks, it replicates the data block to the rack
which it selected first.

Conversely, if the rack does not possess the data block, it
selects a node whose number of data blocks is minimal, and
then replicates the data block to the node. With the replica
placement algorithm, the data blocks to be replicated will be
distributed evenly throughout the nodes. In addition to this, the
algorithm will reduce the number of tasks with rack-off locality
effectively.

V. EVALUATION

A. Experiment Evironment
 To evaluate our adaptive data replication scheme based on

access count prediction(ADRAP), we generated the real job
traces of MapReduce jobs for the WordCount application and
the logs are used in our event-driven simulator. The physical
Hadoop cluster comprises one master node and four slave
nodes and the version of a Hadoop distribution is 0.20.2. Each
node is equipped with Intel Core i5 (3.30GHz, quad core) CPU
and 8GM RAM. Nodes within a rack is connected by giga-bit
ethernet switches, and fast ethernet routers are used between
racks.

We run the WordCount application for varying sizes of
input data: 1.3GB, 1.9GB, 2.5GB, 3.2GB, and 4.4GB. Based
on the real job trace logs, we evaluate our adaptive data
replication scheme compared with the default Hadoop
replication setting. The simulation environment is configured
to have three racks, and 100 slave nodes if it is not noted. Note
that if there are only one or two racks in the Hadoop system,
the rack-off locality does not happen. As such, at least three
racks are required in Hadoop environments to figure out node,
rack, and rack-off locality comprehensively.

As a baseline, the replication factor and the size of data
block are set to 3 and 64MB, respectively. Since we consider
the shared MapReduce computation environment, the FIFO
scheduler is not used in our experiments. Instead, we
configured the experimental environment to be more concerned
with realistic operations using the fair scheduler. Specifically, 6
jobs are configured to be processed concurrently, resulting that
about 5 data files are shared among the jobs.

In addition, because data locality in Hadoop is associated
with map tasks, we show the results of the map phase only.
The experimental results are about the completion time and
data locality (node, rack, and rack-off) of the map phase and
those are averaged over 10 runs. As mentioned, in terms of
throughput, the greater number of tasks with node locality is
better, while the greater number of tasks with rack or rack-off
locality is worse.

14 Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 |

B. Results
In the first experiment, we evaluate the map phase

completion time according to completion rates for our adaptive
data replication scheme and the default setting, as shown in
Figure 6. For 6 jobs, 216 map tasks are spawned. The average
completion time of the map phase in the default setting is about
137 seconds, while that of our adaptive data replication scheme
is about 124 seconds, which offers 9.6% of performance
improvement. Figure 7 shows the number of map tasks with
node, rack, and rack-off locality. Our scheme provides the
increase of node locality by about 6.1% and the decrease of
rack and rack-off locality by about 45.6% and 56.5%,
respectively, in comparison with the default setting.

0 25 50 75 100
0

20000

40000

60000

80000

100000

120000

140000

C
om

pl
et

io
n

Ti
m

e
of

 M
ap

 P
ha

se
(m

s)

Completion Rate of Map Phase(%)

 Default ADRAP

Figure 6 Comparison of the completion time of map phase between ADRAP
and default

Node Locality Rack Locality Rack-off Locality
0

5

10

160

180

200

220

N
um

be
r o

f M
ap

 T
as

ks

 Default ADRAP

Figure 7 Comparison of data locality between ADRAP and default

In the second experiment, we varied the size of data blocks,
retaining the rest of experimental settings. In other words, we
compared the completion time and data locality of the map
phase between adaptive data replication scheme and the default
setting, by varying sizes of data blocks: 32MB, 64MB, and
128MB. In these cases, the numbers of map tasks generated are
432, 216, and 109 for 32MB-, 64MB-, and 128MB-sized data
blocks, respectively.

32MB 64MB 128MB
0

20

40

60

80

100

120

140

160

C
om

pl
et

io
n

Ti
m

e
of

 M
ap

 P
ha

se
(s

)

File Block Size

 Default ADRAP

Figure 8 Comparison of the completion time of map phase with varying sizes
of data blocks

32MB 64MB 128MB
0

50

100

150

200

250

300

350

400

450

Th
e

nu
m

be
r o

f M
ap

 T
as

ks

File Block Size

 Default Node
 ADRAP Node

32MB 64MB 128MB
0

5

10

15

Th
e

nu
m

be
r o

f M
ap

 T
as

ks

File Block Size

 Default Rack ADRAP Rack
 Default Rack-off ADRAP Rack-off

(a) Node locality(higher is better) (b)Rack and Rack-off locality(lower is better)

Figure 9 Comparison of data locality with varying sizes of data blocks

Figure 8 shows the completion time of the map phase when
sizes of data blocks are 32MB, 64MB, and 128MB in both our
proposed scheme and the default setting. In the result, the
completion time of our scheme is less than that of the default
setting by about 5.9%, 9.6%, and 10.8% when the sizes of data
blocks are 32MB, 64MB, and 128MB, respectively. Note that
the performance gain of our scheme increases as the size of
data blocks grows. Since the greater size of data blocks leads to
the fewer number of data blocks, the probability of node
locality becomes lower as the size of data blocks grows.

Figure 9 shows the result of data locality with varying sizes
data blocks. The largest performance difference in percentage
can be found in the case that the size of data blocks is 128MB.
Comparing with the default setting, the performance
improvement of node, rack, and rack-off locality in our scheme
is approximately equal to 7.5%, 24,4%, and 62%, respectively.

Besides the size of data blocks, we varied the number of
slave nodes in the third experiment. In this experiment, the
experimental settings are same as the first experiment except
for the number of slave nodes. Like in the first experiment, the
number of map tasks is 216, regardless of the number of slave
nodes.

Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 | 15

50 nodes 100 nodes 200 nodes
0

50

100

150

200

250

C
om

pl
et

io
n

Ti
m

e
of

 M
ap

 P
ha

se
(s

)

Number of Nodes

 Default ADRAP

Figure 10 Comparison of the completion time of map phase with varying
numbers of nodes

5 0 1 0 0 2 0 0
0

50

100

150

200

250

Th
e

nu
m

be
r o

f M
ap

 T
as

ks

The Number of Nodes

 Default Node
 ADRAP Node

5 0 1 0 0 2 0 0
0

5

10

15

20

25

Th
e

nu
m

be
r o

f M
ap

 T
as

ks

The Number of Nodes

 Default Rack ADRAP Rack
 Default Rack-off ADRAP Rack-off

(a) Node locality(higher is better) (b)Rack and Rack-off locality(lower is better)
Figure 11 Comparison of data locality with varying numbers of nodes

Figure 10 shows the completion time of the map phase with
varying numbers of slave nodes. It is worth noting that the
reduction of the completion time of the map phase increases as
the number of slave nodes increases. The percentages of
reduction of completion time compared with the default setting
are 4.5%, 9.6%, and 19.8% when the numbers of slave nodes
are 50, 100, and 200, respectively. Thus, our scheme can help
us to address the scalability issue well in terms of the number
of nodes over the existing Hadoop environment.

Finally, Figure 11 shows the number of map tasks in regard
to data locality with varying numbers of slave nodes. As
expected, the largest enlargement of node locality takes place
when the number of slave nodes is 200, in comparison with the
default setting. In this case, node locality is increased by about
9.7% and rack and rack-off locality is decreased by about
31.5% and 58.3%, respectively.

VI. CONCLUSIONS
In this paper, we proposed an Adaptive Data Replication

scheme based on Access count Prediction (ADRAP) in a
Hadoop framework to address the data locality problem.
Through prediction of access counts of data files using
Lagrange’s interpolation, it optimizes the replication factor per

data file. Our adaptive data replication scheme determines
whether it generates a new replica or it uses the loaded data as
cache dynamically during runtime. Furthermore, we provide a
replica placement algorithm to improve data locality
effectively. Performance evaluations show that our scheme
reduces the completion time of the map phase by 9.6% on
average, compared with the default data replication setting in
Hadoop. In terms of data locality, the number of map tasks
with node locality is increased by 6.1%, while the number of
map tasks with rack and rack-off locality is decreased by
45.6% and 56.5%, respectively.

ACKNOWLEDGMENT
This work was supported by the National Research

Foundation of Korea(NRF) grant funded by the Korea
government(MEST) (No. 2012R1A2A2A02046684 &
No. 2012R1A1A4A01015777).

REFERENCES
[1] J. Dean and S. Ghemawat, “MapReduce: simplified data processing on

large clusters”, Communications of the ACM, Vol.51, No.1, pp.107-113,
2008.

[2] Hadoop : http://hadoop.apache.org/
[3] K. Shvachko, H. Huang, S. Radia, and R. Chansler, “The hadoop

distributed file system”, 26th IEEE Symposium on Massive Storage
Systems and Technologies (MSST2010), 2010.

[4] M. Satyanarayanan, “A survey of distributed file systems”, Annu. Rev.
of Comput. Sci., Vol.4, pp. 73–104, 1990.

[5] Q. Wei, B. Veeravalli, B. Gong, L. Zeng, and D. Feng, “CDRM: A cost-
effective dynamic replication management scheme for cloud storage
cluster”, IEEE International Conference on Cluster Computing
(CLUSTER 2010), pp.188–196, 2010.

[6] J. Xiong, J. Li, R. Tang, and Y. Hu, “Improving data availability for a
cluster file system through replication,” In Proceeding of IEEE Int’l
Symp. Parallel and Distributed Processing (IPDPS), 2008.

[7] C.L. Abad, Yi Lu, R.H. Campbell, “DARE: Adaptive Data Replication
for Efficient Cluster Scheduling”, IEEE International Conference on
Cluster Computing (CLUSTER 2011), pp.159-168, 2011.

[8] L.M. Khanli, A. Isazadeh, T.N. Shishavanc, “PHFS: A dynamic
replication method, to decrease access latency in multi-tier data grid”,
Future Generation Computer Systems, 2010.

[9] Sangwon Seo, Ingook Jang, Kyungchang Woo, Inkyo Kim, Jin-Soo Kim,
Seungryoul Maeng, "HPMR: Prefetching and pre-shuffling in shared
MapReduce computation environment", IEEE International Conference
on Cluster Computing (CLUSTER 2009), pp.1-8, 2009

[10] Xiaohong Zhang, Yuhong Feng, Shengzhong Feng, Jianping Fan, Zhong
Ming, "An effective data locality aware task scheduling method for
MapReduce framework in heterogeneous environments”, International
Conference on Cloud and Service Computing (CSC), Dec. 2011

[11] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, and
I. Stoica, “Delay scheduling: A simple technique for achieving locality
and fairness in cluster scheduling”, In Proceeding of European
Conference Computer System (EuroSys), 2010.

[12] T. White, Hadoop: The Definitive Guide. O'Reilly Media, Yahoo! Press,
2009.

[13] JungHa Lee, HeonChang Yu, Eunyoung Lee, “Data Replication
Technique for Improving Data Locality of MapReduce”, Proceedings of
The Korea Computer Congress 2012, Vol.39, No.1(A), pp.218-220
2012.

16 Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 |

Elastic Integration of a Dedicated Grid Site with an Opportunistic Cloud

Infrastructure

Harold Castro, Nathalia Garcés, Mario Villamizar

Department of Systems and Computing Engineering

Universidad de los Andes

Bogotá, Colombia

{hcastro, n.garces26, mj.villamizar24}@uniandes.edu.co

Abstract— this work aims to extend and integrate a dedicated

grid infrastructure based on the middleware gLite with

opportunistic IaaS resources provided by the UnaCloud

project. The extension takes place during the periods of time

when the current demand exceeds the base resources capacity.

The integration is done elastically, allowing the grid site to

dynamically change the processing capabilities according to

the current workload, using opportunistic resources when

needed. To manage the elastic integration different

implementation strategies are proposed and different testing

scenarios are analyzed to validate a good reactiveness to

workload spikes.

Keywords- Elastic Integration; Opportunistic Cloud;

Infrastructure as a Service; Grid Computing; gLite; Cloud

Computing

I. INTRODUCTION

Computing tasks delivered by scientific communities
have regularly been executed on grids based on dedicated
servers, gathering resources from multiple important sites
across the world. EGI, OSG, Pragma, etc. are examples of
such infrastructures and as impressive as their number of
servers can be, each individual site may be in short of
resources when a peak of load arrive to a site. Of course,
small sites are more prone to suffer this problem.

On the other hand levering computing power from the
unused computing capabilities of desktops present in
organizations has become a common area of research. The
reasons to exploit opportunistic resources (i.e. desktops
being used by regular students in a campus) encompass
reducing infrastructural and administrative costs, optimal use
of desktop resources and the possibility of executing jobs
with higher computing requirements.

Even though one institution may have both kind of
infrastructures (dedicated and non-dedicated), the tight SLAs
and configuration requirements present on grid
collaborations have kept both worlds apart. Resources
available to jobs arriving to a grid site are limited to the
available dedicated servers on that site, no matter how many
free nodes may have their opportunistic environment.

This work presents a successful integration of a gLite [1]
grid site with an open source opportunistic infrastructure. We
take advantage of the IaaS model to recreate the particular
configuration requirements of grid solutions on desktop
servers, allowing those desktops to be dynamically

aggregated to the grid site. Our validation results show that
the elastic integration provides to the grid site a good
reactiveness to unexpected spikes in the workload, being
able to satisfy the demands of the associated scientific
organizations with a minimum delay.

This paper is organized as follows: section II discusses
the related work for integration of infrastructures and the
mechanisms used to provide elastic features; section III
briefly describes the architecture and characteristics of both
the grid site and the opportunistic solution; section IV
describes three different strategies to manage the elastic
integration with IaaS resources, followed by the
implementation of the most suited in the next section; section
VI presents testing scenarios and issues observed; finally
section VII concludes and presents future work.

II. RELATED WORK

The classic approach to overcome the shortage of
resources of a site is to overprovide computing resources,
trying to satisfy researchers demand during peak periods but
remaining underutilized most of the time. Of course, this
approach is expensive from the economic and administrative
point of view. In this section we focus on solutions
integrating different kinds of infrastructures as well as those
solutions implementing elastic features to adapt resource
provisioning to load requirements. We are particularly
interested in solutions integrating with an open production
infrastructure where changes on configuration must be kept
as limited as possible. In the case of grid computing, a grid
site must comply with strict tests in order to be part of
international collaborations.

We identify three categories of solutions aimed to
integrate different infrastructures: the first one covers
integration of physical and virtualized resources [2], the
second group covers integration of different dedicated
resources [3] [4] and the last category covers integration of
dedicated and opportunistic resources [5] [6] [7].

VioCluster [2] is a borrowing-lending implementation of
the University of Purdue that dynamically extend resources
between the university clusters. This implementation uses
virtual machines (VMs) as the extended resources while the
base are physical resources. Each cluster expands when
queue jobs overcome the cluster available resources and
there are available resources in other clusters; this is
achieved establishing some policies among them. The

Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 | 17

present work has a wider and scalable implementation and
uses available resources in campus-wide desktops. Oracle
Grid Engine [8] is a solution by itself. It enables the
automatic provision of additional resources from the
Amazon EC2 service to process peak application workloads.
Unfortunately, it represents a closed solution with no
applicability to international collaborations.

Zhang et al. [3] propose an implementation that
integrates a cluster infrastructure with cloud resources when
the current demand of the application reach a given
threshold. The elasticity is achieved by the cloud
infrastructure and the integration is application dependent.
The extended resources are dedicated and no opportunism is
allowed. SlapOS [9] is a proof of concept aimed at
developing a distributed cloud operating system allowing
different kinds of infrastructures to be integrated under a
cloud model. SlapOs allows turning any solution to its
correspondent cloud model but it does not offer integration
of already established infrastructures neither it supports
using opportunistic resources.

The EDGeS project [7] aims to close the gap between
service grids (based on gLite) and opportunistic grids. For
this objective the 3G-bridge was developed and three
implementations so far integrates gLite sites with BOINC,
ExtremeWeb and OurGrid infrastructures. This scheme
integrates the middleware gLite with specific opportunistic
middlewares, which differs from the present work because
the goal is to recreate a gLite cluster in the opportunistic
infrastructure making it middleware independent.

The second set of solutions presents two approaches to
manage an elastic feature. Elasticity is the ability to
dynamically adapt the computing resources according to the
current demand. The most well-known approach is Elastic
Compute Cloud (EC2) by Amazon [10]. EC2 is a product
that provides an elastic system based on rules and real time
monitoring to manage systems and applications. Each user
defines a group of rules that specifies how the infrastructure
must adapt to the current demand. These rules are condition-
action specified, where the condition is checked periodically
using real time metrics and actions are taken upon them.

On the other hand, Tirado et al. [11] use prediction
models based on historic data instead of real time
monitoring. The models anticipate and predict the demand,
adapting the infrastructure based on their results. The
solution does not react to events but anticipates them.

Workload spikes are characterized by being
unpredictable, becoming a common practice to combine both
mechanisms [12] [13]. In the present paper it was decided to
use the first technique, in particular monitoring IT
infrastructure metrics.

III. SITE UNIANDES AND UNACLOUD

This work is aimed at integrating two infrastructures
currently on production: site Uniandes and Unacloud. Site
Uniandes [14] is a resource provider of EGI, an international
grid infrastructure based on gLite, sharing its resources with
other grid sites all around the world. In production since
2009, site Uniandes provides dedicated computing

capabilities to different scientific communities, mainly High
Energy Physics and biology.

Site Uniandes integrates clusters from different academic
units: the administrative middleware components are located
in a central cluster while the worker nodes (WNs) are
distributed among the rest of the clusters. Because the
number of WNs accounts for less than 200 processing cores,
it is considered a small site within EGI. As any site in the
EGI collaboration, site uniandes uses dedicated servers to
run the jobs sent by its communities. These resources are
however static and limited and cannot handle efficiently its
demand during peak loads.

On the other hand UnaCloud [5] is an implementation of
the IaaS cloud computing model that provides computational
resources such as CPU, RAM, storage and network using the
idle capabilities of desktop computer labs present in a
university campus. The main concept in UnaCloud is that
resources are shared by applications of different research
groups through the creation, deployment and execution of
customized virtual clusters (CVCs). A CVC is a set of
interconnected virtual machines (VMs) that are deployed in a
non-dedicated distributed infrastructure. The idea of a CVC
is to allow the customization of computing resources
according to the needs of each research group at the
university. Each VM within a CVC can be configured with
the operating system, libraries and applications that each
research project requires.

UnaCloud bases its functionality through the use of VMs.
These VMs may be dedicated or opportunistic. Mainly, they
are opportunistic resources obtained by taking advantage of
the unused capabilities of desktop computer rooms at a
university campus. Although most of the resources in
UnaCloud are based on desktop systems, UnaCloud requires
the use of some dedicated resources in order to guarantee
stability and availability when needed. The goal of the
project is to expand the gathering of opportunistic resources
around the campus. It currently has access to three computer
rooms with 105 desktop computers, whose aggregate
capacity can deliver 572 processing cores, 572 GB of RAM,
8 TB of storage and a shared storage system of 1TB in a
Network Attached Storage (NAS).

Resources are shared by applications from different
research groups at the university through the use and
deployment of Customized Virtual Clusters (CVCs). A CVC
is a collection of interconnected physical desktop computers,
each one executing a single VM in low priority and as a
background process. Each VM can take advantage of the
unused capabilities while students do their daily activities on
the computers. Additionally, the VM is a template created by
each research group, specifying the operating system,
libraries and applications they require, forming customized
execution environments. The deployment of a CVC is done
on-demand by researchers through the UnaCloud web portal
or through the connection to its web services (WS). When a
CVC is deployed UnaCloud is in charge of copying and
configuring the set of VMs on a group of specified resources.

18 Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 |

A. CPU consumption

To estimate the processing capabilities that UnaCloud
can provide to the gLite site through an elastic integration, it
is necessary to measure the average CPU consumption of the
desktop computers available in computer labs while students
do their daily activities.

In [15], the author collected the CPU consumption of
every desktop machine used by UnaCloud. Metrics were
collected during a one-month period, during which every
physical machine reported their CPU status to a central
database with a periodicity of a minute. The collected data
are plotted in Fig. 1, showing the average CPU usage only
when the laboratories are opened to students. As expected,
CPU consumption remains low most of the time (i.e. at
around 6%), making these computer labs a suitable
environment to run an opportunistic infrastructure.

B. Services

Since the project implements a cloud model, this research
can leverage services such as usability, access through the
network, on-demand service personalization, self-service,
automation and scalability. In spite of this, current
implementation of UnaCloud does not provide an elastic
feature and users have to specify the number of VMs to be
deployed as well as the duration of the deployment.

In order to limit the number and duration of resources
allocated to a single user, in this work we modified the
UnaCloud Web Service (WS) API to allow gathering
information about the physical resources available in
UnaCloud. Thanks to this update, we are now able to
implement allocation policies from an external component.

CVCs facilitate the integration of site Uniandes with
UnaCloud because they allow recreating the same execution
environments. As a result, the integration can be done with a
CVC composed of gLite components, turning on VMs (IaaS
resources) when needed to balance the workload of the site.
The CVC can be deployed from an external program with a
connection to UnaCloud WS.

IV. STRATEGIES

Although Uniandes site participates on different
international collaborations, exposing services from different
middleware, in this work we focus on extending only
resources from the gLite middleware, so new capabilities
will be only available to EGI communities.

Figure 1. CPU usage of the computer labs

In order to accomplish an elastic integration of site
Uniandes with IaaS resources, this section presents two
different strategies we identified to achieve the integration of
the infrastructures as well as three different approaches to
carry out the monitoring needed to achieve elasticity.

A. Integration model

The first idea was to recreate a full gLite site using

UnaCloud. We created site Sistemas, a gLite site with

services running on a dedicated infrastructure, and WNs

running on the opportunistic infrastructure. This model

allows each site to handle independent information of its

resources so it avoids overloading the scheduler component

of the original site.

Although we have now a new site to process jobs, jobs

sent directly to the Uniandes CreamCE (Computer Element)

will not benefit of this new site. Only jobs sent to the WMS

(Workload Management System) may be assigned to either

two sites. As our primary goal is to unload site Uniandes of

jobs no matter where these jobs come from, we added a

connection between the schedulers on both systems (Fig. 2).

This connection puts the opportunistic site as a subset of site

Uniandes, allowing site Uniandes to consume resources

from site Sistemas when needed. Fig. 2 shows the WN

cluster of site Sistemas as a white dotted oval because of its

opportunistic nature.

Besides being a complex configuration, management in

this scenario becomes difficult because opportunistic nodes

must be turned on to provide resources to both sites. Also

administration costs of gLite environments are known to be

high; having a whole new site to be managed leads us to

look for a simpler solution.

Figure 2. Two gLite sites integration

Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 | 19

We decided then not to build a new site but a new Worker

Node cluster. We created a complete cluster of WNs by

building a CVC of gLite WNs. The stack of software

running on this new cluster is an exact replica of the

software running in any other cluster of site Uniandes. The

only difference is that instead of running these new VMs on

dedicated servers, they are running on desktops managed by

UnaCloud. The CVC adds up to the site’s infrastructure as a

new WN cluster. These new WNs appear to the scheduler as

available resources to assign jobs. This new cluster appears

to the infrastructure as a normal cluster but we configure it

in such a way, dedicated clusters are always preferred as

WNs. These new IaaS resources are turned on only during

peak loads, when the based infrastructure becomes

saturated.

As Fig. 3 shows, this unified model minimizes the

components in the CVC and reduces the complexity of the

integration. The only modification on the production site is

to declare the availability of a new WN cluster. Besides

simplicity, to integrate opportunistic nodes to site Uniandes

as any other cluster across the campus is a more scalable

approach, due to new clusters (opportunistic or dedicated)

will be added following the same schema and there is only

one server to invest in to keep the scheduler capacity up to

date.

B. Monitoring tools

Currently UnaCloud does not have an elastic component
to provide its services. Users must specify the static number
of instances to be allocated to their jobs. As a consequence,
we need to implement an external component in charge of
monitoring the site’s infrastructure to achieve elasticity. This
component must monitor in real time infrastructure metrics
such as queue jobs, CPUs needed per queue job and idle
WNs. Three different components can provide these metrics
and the viability of each one is analyzed below.

1) Industry standard IT monitoring tools

IT monitoring tools like Nagios [16] can be programmed

to monitor infrastructure and services, keep history and

notify users when an anomaly occurs. Consequently, they

can be programmed to monitor the metrics mentioned and

activate alarms when IaaS resources need to be modified.

Figure 3. Integration of a site and an opportunistic cluster

These systems are normally available to monitor clusters

on any grid site so they can be easily deployed on the new

WN cluster.

2) Information systems for Grid Infrastructures

Site BDII is a gLite component managing all the

information of a grid infrastructure, including the proposed

metrics. However, as BDII must offer a view of the whole

infrastructure, it obtains the information through reports

from other components which adds important delays to the

information gathering (3 to 5 minutes latency).

3) Internal site scheduler

A simpler solution is to use the same component that is

currently providing some infrastructure metrics: the

scheduler of the site, in this case a Torque PBS

implementation. Using this component the elastic system

can obtain the metrics in real time without intermediary

components and without extra configurations.

We decided then to collect the necessary metrics from the

scheduler to determine and adjust the IaaS resources of site

Uniandes when needed. The elasticity is achieved through

the definition of a set of elastic rules.

V. IMPLEMENTATION

Currently site Uniandes does not have an environment to

carry out experiments with the infrastructure; therefore a

new site was implemented to play the role of a development

site. Again, we built a UnaCloud CVC using a simplified

version of Uniandes site, deploying only gLite components.
The previous section established an elastic integration of

a dedicated site known as site Uniandes with an
opportunistic cloud infrastructure known as UnaCloud
through a unified model using an elastic system. This system
communicates to UnaCloud Web Services (WS) when the
elastic rules react to the metrics obtained by the site
scheduler. This section presents the elastic system that
automatically allows scaling up/down IaaS resources. An
analysis of site Uniandes workload is presented to
understand and implement an appropriate elastic
composition, later we present the system architecture and
finally its workflow execution.

In addition, since the integration is going to be made by

gLite components, the integration is secure due to the

strictly secure policies of gLite. In particular, most of the

CVC components use X509 digital certificates.

A. Site Uniandes’ Workload

These analyses are based on the accounting logs

generated by the site PBS scheduler in 2012. Fig. 4

elucidates the number of jobs sent to the site and their

execution (wall) time. These results expose no relation

between both variables and reveal a dynamic and inconstant

workload demand. This inconstant demand supports the

need for the elastic integration proposed in this work.

Moreover, Table I presents the average queue time of the

jobs executed by the site. These results also support the need

for the elastic integration, which primary objective focus on

dropping the waiting time to zero.

20 Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 |

Current queue times are useful to determine a limit on the

frequency to monitor the workload of the site, as we need to

be able to react while jobs are waiting to be dispatched.

Finally, jobs were analyzed in clusters, each cluster

representing a scientific community. We wanted to find time

patterns that would help predicting the kind of demand to be

received by the site. Result patterns were not conclusive,

reinforcing the need to monitor the infrastructure in order to

undertake elastic actions.

Due to our decision of using the internal scheduler to

monitor the infrastructure, we achieved a minimum

overhead monitoring, allowing us to trigger the monitoring

with a frequency of 5 minutes. This high frequency balances

the workload of the site without filtering any type of jobs in

the queue, and also allows us to turn off opportunistic

resources when their idle time exceeds 10 minutes.

Returning idle resources to the opportunistic pool is

important because these resources may be needed for

projects directly running on UnaCloud (or may generate a

cost if integrating with public infrastructures).

Figure 4. Workload distribution of site Uniandes during 2011

TABLE I. AVERAGE QUEUE TIME OF JOBS SENT TO SITE UNIANDES

DURING 2011

Month Queue Time (hours)

January 3.12

February 0.96

March 1.44

April 9,84

May 2.16

June 5.76

July 0.48

August 5.52

September 1.2

October 2.4

November 0.96

December 1.44

B. Architecture

The elastic system is a Java program that connects to site

Uniandes scheduler (Torque PBS) every 5 minutes to gather

real time data. When these metrics activate the elastic rules,

the program connects to UnaCloud WS to adjust IaaS

resources (WNs) necessary to balance the site’s demand.

The opportunistic IaaS resources forms a CVC composed of

gLite components. The program runs onto the scheduler

server to avoid communication delay.

The program components are illustrated in Fig. 5, where

Monitoring is the component in charge of monitoring the

infrastructure metrics to define the current demand. This

component communicates with the scheduler consuming

CommandExec services. ElasticComponent applies the

elastic rules using Monitoring information in order to

determine if the site’s workload is above or below a

threshold, and if so, it communicates with UnaCloudWS to

adjust the number of IaaS opportunistic resources. In other

words, the elastic system calculates, based on the current

demand and certain policies, the number of opportunistic

instances needed to lighten the load.

As UnaCloud opportunistic resources are also to be

shared among several researchers, this system implements

the “80 Percent” policy which avoids UnaCloud to deliver

WNs if its own utilization ratio is above 80 percent. This

rule guarantees a minimum of available resources to

UnaCloud’s users during massive spikes in site Uniandes’

workload.

Since UnaCloud current limitation does not support the

execution of more than one VM on a desktop computer, the

“Fully Optimize Resources” strategy tries to optimize the

use of the desktop capacities. For this reason the elastic

system only turns on resources to extend the site capacity

when they can be fully utilized. In other words, when the

number of queue jobs trespass a given threshold related to

the desktop physical capabilities.

Figure 5. Component diagram of the elastic system

0

50.000

100.000

150.000

En
e

Fe
b

M
ar

A
b

r

M
ay Ju
n

Ju
l

A
go Se

p

O
ct

N
o

v

D
ic

#Jobs Wall(h)

Ja
n

Fe
b

M
ar

A
p

r

M
ay

Ju
n

Ju
l

A
u

g

Se
p

O
ct

N
o

v

D
ec

Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 | 21

Finally, to guarantee that the extension of opportunistic

resources will only take place when site Uniandes is fully

loaded, the policy “Offline/Online” is intended for dedicated

resources to take precedence over opportunistic resources

when available. The strategy consists in changing the

opportunistic WNs state to offline when fully loaded. An

offline state implies a WN continuing to process their assign

tasks but not accepting any more. Eventually the WN will

become idle and shut down after 10 minutes (or just before

complete an hour in case of using a public IaaS [17], due to

in most public IaaS CPU costs are based in an hour period).

This translates into a quick increase and a slow decrease in

IaaS resources. In addition, the system always checks

offline resources before turning on new WNs.

C. Workflow

The elastic workflow can be divided into three major
activities. The first is in charge of monitoring metrics
required to turn on (or online) IaaS resources. This activity
applies the “80Percent”, “Offline/Online” and “Fully
Optimize Resources” strategies. The second major activity is
in charge of monitoring the opportunistic infrastructure. Due
to its volatility, the elastic system checks for failures and if
detected, redirects the jobs that were being executed on
failed WNs. Also it applies “Offline/Online” to WNs when
fully loaded. Finally the third activity monitors the metrics
needed to shut-down opportunistic resources, looking for
current WNs in idle state for more than 10 minutes.

VI. VALIDATION

The evaluation of the elastic integration is divided in two

parts. The first aims to evaluate the performance and

reactiveness of the integration while the second analyses the

behavior of the elastic system workflow.

A. Performance of test site

Three evaluation groups were designed to analyze the

reactiveness and performance of the system, the viability for

using the opportunistic resources and the strategies and

policies used. As the dedicated part of the solution is static

and its performance is known, we focus our observations on

the opportunistic cluster. The configuration scenarios are

executed in the development site, composed of one

dedicated and 20 opportunistic WNs, with 4 cores each.

Each scenario is initialized during day-time and the

workload is executed while infrastructural and timescale

metrics are obtained.

Because they are based on highly distributed and

heterogeneous environments, grid infrastructures are

prepared to deal with hardware or software failures. The

problem with opportunistic infrastructures is that these

failures have a much higher probability of occurrence. In

our tests we took into account the possibility of such

failures.

1) Short jobs workload

This evaluation group validates the reactiveness,

performance and behavior of the proposed strategies. It is

composed of two tests, each one with a workload of

approximately 10 minutes jobs. The first test executes 22

jobs at once (1 core each) and these are the only jobs

executed in 3 scenarios. The first scenario does not utilize

the elastic integration, the second utilizes it during the night,

reproducing a dedicated environment and the third one,

utilized in all the tests, is executed during day-time. Table II

presents the evaluation metrics measured in the different

scenarios and Fig. 6 shows the reactiveness of the site

during the last scenario.

Table II shows no failures during the tests, making short

jobs suitable for opportunistic infrastructures. The workload

time and the average queue waiting time decreases

drastically with the elastic feature, showing a good

performance of the site. This can also be seen graphically in

Fig. 6, where the opportunistic resources are turned on to

balance the workload of the site and are turned off once the

spike is over.

TABLE II. EVALUATION METRICS OF THE SCENARIOS OF TEST 1

Metrics Scenarios
Dedicated

scenario

Night-time

scenario

Day-time

scenario

No. Failures N.A 0 0

Workload time 3h 12min 54sec 17min 25sec 17min 34sec

Average queue

time of jobs
1h 32min 18sec 4min 16sec 2min 32sec

Figure 6. Elastic behavior of the site during day-time scenario in test 1

Figure 7. Elastic behavior of the site in test 2

0

5

10

15

20

25

30

8
:0

0

8
:2

7

8
:5

4

9
:2

1

9
:4

8

1
0

:1
5

1
0

:4
2

1
1

:0
9

1
1

:3
6

N
o

. C
P

U
s

re
q

u
ie

re
d

Demanda
actual CPU

Capacidad
siteSistemas

Elasticidad

0

2

4

6

8

10

12

14

8
:0

0
8

:2
7

8
:5

4
9

:2
1

9
:4

8
1
0
:…

1
0
:…

1
1
:…

1
1
:…

N
o

. C
P

U
s

re
q

u
ir

e
d

Demanda
actual CPU

Capacidad
siteSistemas

Elasticidad

22 Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 |

The second test executes 12 jobs (1 core each), waits 13

minutes and executes 7 jobs (1 core each). The idea of this

test is to evaluate “Offline/Online” and the strategy to

increase rapidly and decrease slowly. The 13 minutes are

broken down in 10 minutes short job execution plus 3

minutes where the resources remain idle but active. Fig. 7

clarifies the execution test and shows a good reaction to the

workloads. From this it can be concluded that the strategies

are a good practice. In addition, no failures where presented

during this test.

2) Medium jobs workload

This group of medium jobs has the goal of examining the

viability for using opportunistic resources in grid

infrastructures. It executes a workload of 5 jobs (4 cores

each, one job per WN) of approximately 3 hours. Table III

shows the metric wall time in order to compare the

computing capability of a dedicated versus opportunistic

resources. When the workload is launched, 4 opportunistic

WNs are turned on to balance the site. The execution time

varies in the IaaS resources due to its opportunistic feature.

Moreover the worst execution time belongs to the dedicated

WN, which implies that opportunistic resources are better,

mainly because they are more frequently updated. Table IV

exposes the processor features of the WNs of both sites

(Uniandes and test). These tests confirm the statement that

in some grid environments opportunistic resources can be

faster. Opportunistic resources may be volatile but the better

capacity makes them a good choice to help balance the site.

Lastly, no failures where executed during this test.

3) Extended jobs workload

The last experiment was built to analyze the site behavior

during IaaS resources failures. A workload of 10 jobs (4

cores each) with an execution time of 8 hours was carried

out. Although no natural failure occurred, we induced one

for the purpose of this work. Results showed that elastic

system has also a good reactiveness to detect failures. A job

executed by a down WN is re-launched to the queue so it

can be processed again by an active resource. The major

drawback is the loss of all the previous processing data.

TABLE III. EVALUATION METRICS OF TEST 3

Resources Wall Time No. Failures

Dedicated 3h 27min 16sec N.A

Opportunistic 1 2h 50min 34sec 0

Opportunistic 2 2h 55min 25sec 0

Opportunistic 3 3h 04min 36sec 0

Opportunistic 4 3h 00min 12seg 0

TABLE IV. CHARACTERISTICS OF THE WN PROCESSORS

Resources Processor

Opportunistic Intel core i5@ 3.33 GHz

Dedicated site test Intel Xeon @ 2.27 GHz

Dedicated1 site Uniandes Intel Xeon @ 1.6 GHz

Dedicated 2 site Uniandes Intel Xeon @ 2.93 GHz

Dedicated 3 site Uniandes Intel Xeon @ 3.00 GHz

B. Behaviour of the elastic workflow

This section analyzes the time spent by the three major

activities of the elastic workflow presented early. The time

of each activity was taken in all the evaluation tests. Three

common scenarios were identified and are shown in Table

V. The first is the execution of a normal cycle where

nothing happens to the IaaS resources; the second is when

the site is fully loaded and needs to turn on WNs; the third

scenario is when the workload spike ends and opportunistic

resources need to be turned off.

Results show that turning on IaaS resources is a costly

activity compared to monitor or even to turn them off. This

increase is proportional to the IaaS resources needed but an

average measure indicates it is in the order of a few minutes.

In contrast, the order to turn down IaaS resources is in the

order of seconds. The results also support the strategy to

decrease slowly the resources, because it prevents incurring

in initialization costs when IaaS resources are available.

The resource consumption of the elastic system where

also monitored to see if it incurred in extra costs to the host

machine. Results show that CPU and RAM consumption are

really low.

VII. CONCLUSION AND FUTURE WORK

In this work we implemented a secure elastic integration
of a production gLite based grid site with an opportunistic
infrastructure implementing the IaaS model. In this way, the
grid site may dynamically extend its processing capabilities
with opportunistic IaaS resources, according to its current
workload and utilizing only extra resources when needed.
The integration is achieved by configuring the IaaS resources
as a replica of a WN cluster of the production site. The size
of this virtual opportunistic cluster varies according to the
dynamic needs of the grid site. This elastic integration
address to enlarge the collaboration between research groups
at a local, national and international arena without incurring
in infrastructural extra costs and utilizing the minimum
number of resources. It also shows that organizations with
low budget to provision grid initiatives with dedicated
resources can also support them with opportunistic resources.

Our validation results show that the elastic integration
provided site Uniandes a good reactiveness to unexpected
spikes in the workload, being able to satisfy the demands of
the associated scientific organizations with a minimum
delay. This integration is transparent to the users, has a low
computational cost and is scalable by itself allowing the
integration of new clusters with minimum intrusion on the
grid site.

TABLE V. EVALUATION OF THE ELASTIC WORKFLOW

Scenarios

First Activity

 Monitoring

Dedicated gLite

Resources to

Scale Them

Second Activity

Monitoring

Opportunistic

UnaCloud

Resources

Third Activity

Turning off

UnaCloud

Resources non-

used by gLite Site

Normal 29 sec 35 sec 1 sec

Overload site 3min 20sec 35 sec 1 sec

Weigh down site 30 sec 35 sec 10 sec

Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 | 23

The elasticity is achieved by elastic rules based on
infrastructure metrics obtained by the batch scheduler. The
site’s workload was analyzed to determine the parameters of
the elastic rules. An idle period of 10 minutes was
established in order to shutdown IaaS resources and a
frequency of 5 minutes was determined to monitor the
scheduler of the site. The validation showed that the elastic
integration provided the site a good reactiveness to
unexpected spikes in the workload, being able to satisfy the
demands of the users with a minimum delay. The scaling and
monitoring strategies turned out adequate.

For future work, UnaCloud must be extended to
overcome its limitation of deploying only 1 VM per desktop.
This will allow a more efficient sharing of its resources.
Also, the dedicated resources could be used in an
opportunistic approach to support UnaCloud’s jobs when
they require a special SLA. The workload analysis of the site
suggests that sometimes the site resources may be used in an
opportunistic way. In addition, the analysis of the site´s
workload must be done constantly to update the parameters
of the elastic system, as well to validate a good reactiveness
to the workload in all times. The elastic system may
implement other strategies, and could be evaluated in a non-
controlled workload environment. The integration can also
be tested with another IaaS provider, like Amazon Web
Services [18].

REFERENCES

[1] gLite. (2012, November) gLite - Lightweight Middleware for Grid

Computin. [Online]. http://glite.cern.ch/

[2] P. Ruth, P. McGachey, and Dongyan Xu, "VioCluster:

Virtualization for Dynamic Computational Domains," in Cluster

Computing, 2005. IEEE International , Burlington, MA , 2005, pp.

1-10.

[3] Hui Zhang, Guofei Jiang, Kenji Yoshihira, Haifeng Chen, and

Akhilesh Saxena, "Intelligent Workload Factoring for A Hybrid

Cloud Computing Model," SERVICES '09 Proceedings of the 2009
Congress on Services, 2009.

[4] Paul Marshall, Kate Keahey, and Tim Freeman, "Elastic Site: Using

clouds to elastically extend site resources," in Cluster, Cloud and
Grid Computing (CCGrid), 2010 10th IEEE/ACM International

Conference on , Melbourne, Australia , 2010, pp. 43-52.

[5] Eduardo Rosales, Mario Villamizar Harold Castro, "UnaCloud: A
Desktop Grid and Cloud Computing Solution," in The Second

International Conference on Parallel, Distributed, Grid and Cloud

Computing for Engineering, Ajaccio, France, 2011.

[6] Andrei Goldchleger, Fabio Kon, Alfredo Goldman, and Marcelo

Finger, "InteGrade: Object-Oriented Grid Middleware Leveraging

Idle Computing Power of Desktop Machines," Concurrency and
Computation: Practice & Experience - Middleware for Grid

Computing, vol. 16, no. 5, April 2004.

[7] EDGES. (2012, November) EDGES: Enabling Desktop grids for e-
science. [Online]. http://www.edges-grid.eu/

[8] Moreno-Vozmediano R., Montero R.S., and Llorente I.M.,

"Multicloud Deployment of Computing Clusters for Loosely
Coupled MTC Applications," IEEE Transactions on Parallel and

Distributed Systems, vol. 22, no. 6, pp. 924-930, June 2011.

[9] J.P. Smets-Solanes and R. Courteaud, "SlapOS: A Multi-Purpose
Distributed Cloud Operating System Based on an ERP Billing

Model," in 2011 IEEE International Conference on Services

Computing (SCC), 2011, pp. 765-766.

[10] Amazon Web Services. (2012, November) Amazon Elastic
Compute Cloud. [Online]. http://aws.amazon.com/es/ec2//190-

2014314-7227319/

[11] J.M. Tirado, D. Higuero, F. Isaila, and J. Carretero, "Predictive Data

Grouping and Placement for Cloud-Based Elastic Server

Infrastructures," 2011 11th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing, pp. 285-294, May 2011.

[12] David Meisner, Brian T. Gold, and Thomas F. Wenisch,

"PowerNap: eliminating server idle power," ACM SIGPLAN Notices
- ASPLOS 2009, vol. 44, March 2009.

[13] Peter Bodík et al., "Statistical machine learning makes automatic

control practical for internet datacenters," HotCloud'09 Proceedings
of the 2009 conference on Hot topics in cloud computing, p. 12,

June 2009.

[14] Universidad de los Andes. (2012, November) Grid Universidad de
los Andes. [Online].

http://tibana.uniandes.edu.co/wikigrid/doku.php?id=infraestructura_

sitio

[15] Arthur Alejandro Oviedo, Plataforma basada en UNACLOUD para

la generación y análisis de alineamientos múltiples de secuencias,

2011, Tesis de Maestría de Ingeniería de Sistemas y Computación.

[16] Nagios Enterprises. (2012, November) Nagios. [Online].

http://www.nagios.org/

[17] João Nuno Silva, Luís Veiga, and Paulo Ferreira, "A2HA—
automatic and adaptive host allocation in utility computing for bag-

of-tasks," Journal of Internet Services and Applications, vol. 2, no.

2, pp. 171-185, September 2011.

[18] amazon.com. (2012, November) Amazon Web Services. [Online].

http://aws.amazon.com/es/

24 Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 |

Instantaneous Availability-Aware Scheduling Method for

Parallel Task in Cloud Environment

Jie Cao ,Guosun Zeng

Department of Computer Science and Technology, Tongji University, Shanghai, China

Tongji Branch, National Engineering & Technology Center of High Performance Computer

Shanghai, China

Abstract - Cloud computing is a new emerging computing

paradigm that advocates supplying users everything as a

service. High availability is a key requirement in design and

development of cloud computing systems where processors

operate at different speeds and are not continuously

available for computation. This paper addresses the main

factors of availability requirement for parallel tasks based

on the graph structure of parallel task. We present the

formulas to quantify the availability requirements of parallel

tasks and availability support of computing resources.

Through being aware of availability, we realize the

availability matching between availability requirement and

availability support, and develop an availability aware

scheduling algorithms, that is Availability-DLS.

Keywords: cloud computing, availability requirement

availability support, task scheduling

1 Introduction

 Cloud computing is a new emerging computing

paradigm that advocates supplying users everything as a

service. Cloud computing becomes more and more popular

in large scale computing and data store recently due to it

enables the sharing of computing resources that are

distributed all over the world. Cloud computing may

become the dominant enterprise and business-to-consumer

computing paradigm within the next many years.

Large scale cloud computing infrastructure are unified

computing platform which tries to connect and shares all

resources in the Internet, including computation resource,

storage resource, information resource, knowledge resource

and equipment for scientific research. However, with the

characteristics of dynamic join and exit, hardware or

software failure, operating maintenance, system upgrade,

how to obtain available computing resource becomes a key

issue in large-scale cloud computing research.High

availability is a key requirement in the design and

development of cloud computing systems where processors

operate at different speeds and are not continuously

available for computation.Some work has been done to

investigate resource allocation schemes for tasks with

availability constraints. Smith introduced a mathematical

model for resource availability and then proposed a method

to maintain availability information as new reservations or

assignments are made [1]. Adiri et al. addressed the

scheduling issue in a single machine with availability

constraints [2].Qi et al. developed three heuristic algorithms

to tackle the problem of scheduling jobs while maintaining

machines simultaneously [3].Very recently, Kacem et al.

investigated a branch-and-bound method to solve the single-

machine scheduling problem with availability constraints

[4]. Lee studied the two-machine scheduling problem in

which an availability constraint is imposed on one machine

as well as on both machines[5].The problem was optimally

solved by Lee using pseudopolynomial dynamic

programming algorithms. Mosheiov addressed the

scheduling issue in the context of identical parallel

machines with availability constraints [6]. Qin et al. propose

a scheduling algorithm to improve the availability of

heterogeneous systems while maintaining good performance

in the response time of tasks[7].

Although the above schemes considered scheduling

problems with availability constraints, they are inadequate

for multiclass applications running in cloud computing

systems because they either focused on a single

machine[2],[3],[4], two machines[5], or a homogeneous

system [6].Besides, most of task types are most

independent tasks [7] and the availability of computing

resources is fixed. To remedy this issue, in this paper, we

address the problem of scheduling parallel tasks with

availability constraints in heterogeneous systems whose

computational resources are dynamic change in availability.

Specifically, we present the formulas to compute

availability requirement of parallel tasks and availability

support of computing resources. Through being aware of

availability, we develop an availability aware scheduling

algorithms, that is Availability-DLS. The simulation

experimental results show that such algorithm is significant

to improve the success rate of parallel task scheduling in

practice.

The rest of this paper is organized as follows. Section 2

introduces the parallel tasks and system modeling and

assumptions. Section 3 describes availability requirement

and availability support. Section 4 describes the details of

the proposed Availability-DLS. The evaluation of our

approach by simulations is given in Section 5. Finally we

conclude this paper with future works in Section 6.

Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 | 25

2 Task and system modeling and

assumptions

2.1 Parallel task modeling

In cloud computing environment, there may be
constraints priority between tasks, for instance, a node can
not start execution before it get all information from its
father nodes. Taking into account the precedence constraints
between tasks, we can use a directed acyclic graph DAG to
represents them.

Definition 1 (Parallel Tasks). Parallel tasks to be scheduled

are represented by a directed acyclic graph (DAG), called a

task graph G = (V, E,W, D). In general, the nodes represent

tasks partitioned from an application, and the edges

represent precedence constraints. An edge

ije E represents the communication from node iv to

node jv .In other words, the output of task iv has to be

transmitted to task jv in order for task jv to start its

execution. A task with no predecessors is called an

entry task, entryv , whereas an exit task, exitv , is one that

does not have any successors.

The weight on a task iv , denoted as iw , represents the

computation volume of the task. The weight on an edge,

denoted as ijd D , represents the communication volume

between two tasks, iv and jv . However, communication

volume is only required when two tasks are assigned to

different processors. In other words, the communication

volume when tasks are assigned to the same processor can

be ignored, i.e., 0.

A simple task graph is shown in Fig. 1 with eight nodes.

Without loss of generality, it is assumed that there is one

entry node to the DAG and one exit node from the DAG.

Fig. 1. A simple task graph.

2.2 Cloud environment modeling

The mode of computing nodes connection is complicated

in cloud computing, which may be regular such as bus, loop,

star and so on or irregular. This paper depicts cloud

resources system composition by the general map.

Definition 2 (Cloud Platform). A realistic cloud system is

modeled as a graph CT=(R,E,S,B),where R ={ 1r , 2r ,..., mr }

is a set of resource vertices, C ={ ijc | ir , jr R }is a set of

communication links, 1 2{ , ,..., }mS s s s is a set of

resource calculation speed, { | , , }ij i j ijB b r r R c C is

a set of communication bandwidth in C. A vertex r R is

referred to as a cloud computing resource. A edge ijc C

represents a communication link from network vertex ir to

network vertex jr , ir , jr R .The nonnegative weight

ijb B , associated with a link ijc C , represents its data

communication rate. The nonnegative weight is S ,

associated with a ir R , represents its computing speed,

that is the time needed of complete unit load.

2.3 The basic hypothesis of parallel task

scheduling

The task-scheduling problem in this study is the process

of allocating a set V of v tasks to a set P of p processors

to take into account the availability matching between

availability requirement and availability support, without

violating precedence constraints. Each task in this paper is

atomic and not subdivided, which is non-preemptive

execution. The task unified management by the center

scheduler is assigned to the appropriate computing resources

in accordance with a strategy for each subtask. Besides,

center scheduler is independent of computing resources.

3 Availability defintion

3.1 Availability concept

The availability of the computer system refers to the

proportion of normal service time in the total system run

time, which can be measured by a percentage or a

probability value. The popular resource availability means

resources in serviceable condition and resource management

system can access them. Quantitative value of resource

availability can be seen as a probability of resource

successful service delivery. From the perspective of the user

service, resource availability describes the possibility of a

resource over time in the available state.

Definition 3 (Availability). Let 1{ }i iF F

 be a set of

functionalities provided by the system. Let 1{ }i iI I

 be a

set of implementation of F , which can be used and got the

service function of the service effect collection by the user,

26 Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 |

namely, 1{ }i iI I

 , I F . System availability is defined

as
I

A
F

 .

In order to further discuss the availability concept, this

paper divides availability into “availability requirement” and

“availability support”.

Definition 4 (Availability Support).The availability

support is relative to the computing system, i.e., the system

can provide how much service function.

Definition 5 (Availability Requirement).The availability

requirement is relative to the parallel tasks, i.e., the

availability requirement specifying how much functional

requirement a task need.

3.2 DAG tasks availability requirement

Parallel tasks may have more than one subtask and each

subtask is different about the function, role and importance

in parallel tasks, so we must make a difference between

them to the service function demand. The degree of subtask

availability needs can be defined from subtask node

outdegree, the critical path and subtask execution sequence

priority, etc. according to the structure of the DAG.

3.2.1 Outdegree weight

The bigger node outdegree, the greater influence on the

subsequent nodes, the more it can increase the degree of

concurrent execution of subsequent subtasks if the subtask is

successfully completed, which has the greater availability

requirements. Intuitively, subtask whose outdegree is two

needs twice as much availability requirement as subtask

whose outdegree is one and subtask whose outdegree is

three needs triple as much availability requirement as

subtask whose outdegree is one. However, one node whose

outdegree is zero needs special treatment. Therefore, the

weight in outdegree is defined as follows:

1

1

1

()
() 0

max (())
()

min (())
() 0

max (())

i
in

j j

Od i n

j j

in

j j

Od v
Od v

Od v
W v

Od v
Od v

Od v

，

，

.

3.2.2 Critical Path Weight

The critical path, i.e. the path in the directed acyclic graph

(DAG) on which the sum of the edge and node weights is

maximal, denoted as Cp . Effective scheduling of critical

path nodes will largely reduce the completion time of the

task graph, therefore, the task node coefficient on the critical

path is designated as 1 and the task node coefficient on the

non-critical path is designated as 0.5. Therefore, the weight

in critical path is defined as follows:

1,
()

0.5

i

Cp i

i

v Cp
W v

v Cp

.

3.2.3 Task Execution Order Priority

DAG graph dependency exists in the execution sequence,

the task whose predecessor task are completed can begin

execution, therefore, we introduce task execution order

priority ()irank v to distinguish the different tasks in task

graph priority scheduling sequence. The exit task node

execution order priority is designated as 1, and task node

iv ’s successor is expressed as ()iSucc v . Therefore, task

iv execution order priority may be defined as follows:

()

1 ()
()

max { ()} 1 ()
i

i

i
i

v Succ v

Succ v
rank v

rank v Succ v

.

In this paper, task node iv ’s execution order priority weight

is designated as

1

1

() max (())
() exp()

max (()

n

i j j

rank i n

j j

rank v rank v
W v

rank v

 .

3.2.4 Availability requirements of task node unified

computing

In the DAG graph, the priority of a task indicates task

scheduling priority level. The greater the outdegree and

more the follow-up tasks of a task, which successful

execution can improve the degree of parallel execution of

multiple subsequent tasks.The critical path nodes effective

scheduling will largely reduce task execution time of the

task graph. Therefore, the availability requirements of the

task node can be seen as a combined result of these three

factors i.e., the greater the priority of the task node, the

greater the outdegree of the task node, the task on the

critical path, the greater the availability requirement of the

task node.Therefore, task iv availability requirement

()T iA v is designated as follows:

() () () ()T i od i cp i rank iA v W v W v W v ,

1 .

3.3 Cloud platform node availability support

In reality, the availability support of a computer system

can be improved by means of system maintenance. System

maintenance personnel repair the faulty system and the

repaired system can continue to perform its function. The

Markov-type repairable system is the most commonly used

repairable system in practice, so this paper assumes that

every computing resources is the Markov repairable.

Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 | 27

3.3.1 Markov process definition

This paper assumes that {X(t),t ≥0} is a time-

homogeneous Markov process to take values in

E={0,1,...,N}. For future reference, we summarize the

notation that is used throughout this paper in Table 1.

 TABLE 1 Definitions of notation

Notation Definition

()ijP t Transfer probability function.(,i j E)

()P T Matrix of transition probability.

()N t State transition frequency in (0,]t .

This paper assumes that Markov process {X(t),t ≥0}

transfer probability function satisfies

0

1,
lim ()

0,
ij ij

t

for i j
P t

for i j

. Transfer probability

function has the following properties: () 0ijP t ，

() 1ij

j E

P t

 ， () () ()ik kj ij

k E

P u P v P u v

 .Let

()jP t =P{X(t)=j} be the probability of computing resource

in state j at moment i , thus getting

() (0) ()j k kj

k E

P t P P t

 . Time-homogeneous Markov

process has the following properties 00:

1) The time-homogeneous Markov process with limited state

space has the following limit：

0

0

()
lim , , ,

1 ()
lim ,

ij

ij
t

ii
i

t

P t
q i j i j E

t

P t
q i E

t

 ...……… (2)

2) Process{X(t), t ≥0} state transition moment is expressed

as 1T , 2T ,..., nT . ()nX T is the state that the

process visits after the nth state transition is be completed. If

()nX T = x , 1n nT T is the sojourn time that process is in

state i . Have the following lemma established:

Lemma 1. For ,i j E , we have

1 1{ | () , ())} iq u

n n n nP T T u X T i X T j e

 (n =

0,1,…) which has nothing to do with n and state j .

Lemma 2. For sufficiently small 0t , we have

{ () () 2} ()P N t t N t t .

3.3.2 Markov repairable system general model

Assume that a repairable system has N + 1 state, where

the state 0,1, ..., K is the system's normal operating state; the

state K+1,...,N is the system's fault state. Let W={0,1,...,K}

be normal operating state set and F={K+1, K+1,...,N} be

fault state set. In sufficiently small time t , transfer

probability function meet:

() ()ij ijP t a t o t ，i, j E , i j ……..(3)

where { ija : ,i j E , } has be given prior and state

transfer probability is expressed as ija . Obviously, we have

() 1 () 1 () ()ii ij ij

j i j i
j E j E

P t P t P t o t

Let ii ij

j i
j E

a a

 , so we have

 () 1 ()ii iiP t a t o t ..………… (4).

we know
, , ,

, , ,

ij

ij

q i j i j E
a

q i j i j E

from (2).

3.3.3 Resource nodes instantaneous availability

support

Formally, instantaneous availability support of a system is

the probability that the system is not only performing

properly without failures, but also satisfying the specified

performance requirements 0. The instantaneous availability

support of so-called computing resource at the time t refers

to the probability that the computing resource is in a normal

state. The instantaneous availability support only relates to

the computing resource and is not concerned with whether

happened failure in the past.

Definition 6 (Instantaneous Availability Support). For a

given initial state distribution 0 (0)P , 1(0)P ,... , (0)NP ,

the computing resource ir instantaneous availability support

at the time t is designated as () ()
ir j

j W

A t P t

 , where

()jP t (j W) is the solution of following differential

equations

'

0 1

() () ,

initial condition: (0), (0), (0)

i k ki

k E

N

P t P t a i E

P P P

...,

Proof. By the total probability formula and the

formula (3), (4), we obtain

() () ()i k ki

k E

P t t P t P t

() () () ()i ii k ki

k E
k i

P t P t P t P t

 () () ()i k ki

k E

P t P t a t o t

 ,namely,

28 Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 |

() () ()
()i i

k ki

k E

P t t P t o t
P t a

t t

 whose

right-hand limit exists when t tends to zero, so left-

hand also limit exists. The proof is complete.

This paper assume that every computing resource only has

two states work and fault with 0 said normal state and 1 said

fault state. Computing resources lifetime X follows

exponential distribution { } 1 tP X t e

(0t , 0). The fault repair time Y follows

exponential distribution { } 1 tP Y t e (0t ,

0). Assumes that X and Y are independent, the

repaired fault computing resource’s is the same as the new

computing resource. For the process { (), 0}X t t , which

exists the following conclusion:

Conclusion: { (), 0}X t t is a continuous time time-

homogeneous Markov process with limited state space.

Proof. The distribution of computing resources lifetime

and repair time follow exponential distribution, so the law of

computing resources development after t is entirely decided

by computing resources being in work or fault at time t

which has nothing to do with how long time has repaired or

worked. Therefore, { (), 0}X t t is time-homogeneous

Markov process.

For above Markov process, we

obtain 00() 1 ()P t t o t ,

01() ()P t t o t , 10() ()P t t o t ,

11() 1 ()P t t o t . Therefore, transfer matrix

is A

.

If the computing resource ir is in work at time t=0,

we obtain ir ’s instantaneous availability

support
()

0() | () t

R i tA r P t e

f

rom definition 6 .

If the computing resource ir is in fault at time t=0,

we obtain ir ’s instantaneous availability

 support
()() | t

R i tA r e

 from

definition 6.

4 Instantaneous availability aware

dynamic level scheduling

The dynamic level scheduling (DLS) algorithm is a

compile time, static list scheduling heuristic which has been

developed to allocate a DAG-structure application to a set of

heterogeneous computing resources to minimize the

execution time of the application 0. At each scheduling step,

the DLS algorithm chooses the next task to schedule and the

computing resource on which that task is to be executed by

finding the ready task and computing resource pair that have
the highest dynamic level. The dynamic level of a task-

computing resource (,)i jv r is defined to be

,(,) () max{ , } (,)A R

i j i i j j i jDL v r SL v t t v r ,

where ()iSL v is called the static level of the

task, ,max{ , }A R

i j jt t is the time when task iv can begin

execution on computing resource jr , ,

A

i jt denotes the time

when the data will be available if task iv is scheduled on

computing resource jr , and
R

jt denotes the time when

computing resource jr will be available for the execution of

task iv . ,(,) E E

i j i i jv r t t reflects the computing

performance of the computing resource,
E

it denotes the

execution time of the task iv on all the free computing

resources, and ,

E

i jt denotes the execution time of task iv on

computing resource jr .

When making a decision of scheduling, DLS algorithm

considers the heterogeneous computing resources, which can

adapt the heterogeneous characteristics of resources in cloud

environment, but it neglects the availability support of

resource nodes in the cloud system. When a task is

scheduled to execute on a computing resource, the

availability support of the resource reflects the availability

of the service it supplies. To address this problem, the

availability-dynamic level scheduling algorithm

（Availability-DLS） in cloud environment is developed,

and the availability dynamic level can be defined as follows:

(,)i jADL v r =
1 ()

() T iA v

R jA r

(()iSL v ,max{ , }A R

i j jt t +

(,))i jv r .The formula indicates that larger availability

requirement task has larger availability dynamic level and

larger availability support computing resource has larger

availability dynamic level in the case of the same dynamic

level tasks. The formula takes into consideration the

dynamic level of the task, availability requirement of the

task and availability support of computing resource, which is

a comprehensive reflection of above three factors.

Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 | 29

5 Slmulated experiment analysis

The paper uses simulation to assess the effectiveness of

the job scheduling algorithm presented in this paper.

Simulation program is adapted from CloudSim platform 0.

Based on CloudSim simulation environment, the node

number and the link number between the nodes are given in

advance and transmission speed of link is generated between

1 and 10 Megabits /sec.The initial availability support of the

computing resource is randomly generated in [0,1].

5.1 Performance impact of tasks number

In this simulation experiment, CCR is set to 1, task graph

with 20 to 120 subtasks is generated from the benchmark

application library, and the number of computing nodes and

links are both set to 200. We compared Availability-DLS

with DLS and BSA in the scheduling length and the ratio of

successful execution. Figs.2 and 3 show the results.

Fig.2 Comparison of scheduling length under varying

number of tasks.

Fig.3 Comparison of successful execution ration

under varying number of tasks.

In Fig.2, with the number of tasks increased, the

scheduling length of the three algorithms all increased as

well. The scheduling length of Availability-DLS is shorter

than DLS’s and BSA’s. In Fig.3, with the number of tasks

increased, the average ration of successful execution of the

three algorithms all decreased as well. The average ration of

successful execution of Availability-DLS is much higher

than DLS’s and BSA’s. Scheduling algorithm based on the

availability mechanism fully considers the availability

requirement of tasks and availability support of resources,

which makes the availability requirement of tasks and

availability support of resources to get better matching and

can reduce the number of re-scheduling. Therefor, average

completion time is less and average ration of successful

execution is higher by Availability-DLS algorithm.

5.2 Performance impact of nodes number

In this simulation experiment, CCR is set to 1, the

number of nodes from 100 to 1500 is generated randomly,

the number of links is set to 300, and the number of tasks

is set to 400. We also compared DLS and BSA with

Availability-DLS in the scheduling length and ratio of

successful execution. The results are shown in Figs.4 and 5.

Fig.4. Comparison of scheduling length under varying

number of computing nodes.

Fig.5 Comparison of successful execution ration under

varying number of computing nodes.

Scheduling algorithm based on the availability mechanism

fully considers the availability requirements of tasks and

availability supports of resources with the increasing of

computing nodes, which makes the availability requirements

of tasks and availability supports of resources to get better

matching and can reduce the number of rescheduling.Therefor,

30 Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 |

average completion time is less and average successful

execution ration is higher by Availability-DLS algorithm.

6 Conclusions

According to the requirements of the tasks to availability,

we analyze the factors that affect the subtasks availability

requirements and give a measure method to compute the

subtasks availability requirements based on the structural

characteristics of the parallel tasks graph. According to the

availability supports of the cloud platform computing

resources to change over time, we give a measure method to

compute availability supports of resources based on

Markov-type repairable system. Quantification of the

availability requirements of the tasks and availability

supports of the resources provides an important reference to

avoid computing resources failure, which is important to the

applications that have rigid application completion time

requirements under cloud computing resources performance

dynamic varying. Next, we proposed Availability-DLS

scheduling algorithm to enhance the availability of

heterogeneous systems while maintaining good performance

in response time and successful execution ration of parallel

tasks.

Acknowledgments

This work was supported by the National High-Tech

Research and Development Plan of China under grant No.

2009AA012201; the National Natural Science Foundation of

China under grant No. 61103068 and No. 61272107; the joint

of NSFC and Microsoft Asia Research under grant No.

60970155; the Program of Shanghai Subject Chief Scientist

under grant No. 10XD1404400; the Ph.D. Programs

Foundation of Ministry of Education under grant No.

20090072110035; the special Fund for Fast Sharing of

Science Paper in Net Era by CSTD under grant No.

20110740001.

7 References

[1] S.P. Smith. An efficient method to maintain resource

availability information for scheduling applications.

Proceedings of the IEEE Intenational Conference on

Robotics and Automation. 1992, pp 1214-1219.

[2] I. Adiri, J. Bruno, E. Frostig, A.H.G. Rinnooy Kan.

Single machine flow-time scheduling with a single

breakdown. Acta Informatica, 1989, 26(7): 679-696.

[3] X.Qi, T.Chen, F.Tu. Scheduling the maintenance on a

single machine. Journal of the Operational Research Society,

1999, 50(10):1071-1078.

[4] I. Kacem, C. Sadfi, A. E. Kamel. Branch and bound and

dynamic programming to minimize the total completion

times on a single machine with availability constraints.

Proceedings of the IEEE Intenational Conference on

Systems, Man, and Cybernetics. 2005, pp 1657-1662.

[5] C.Y. Lee. Two-machine flowshop scheduling with

availability constraints. European Journal Operational

Research, 1999, 114(2): 420-429.

[6] G. Mosheiov. Minimizing the sum of job completion

times on capacitated parallel machines. Math and Computer

Modelling, 1994, 20(6): 91-99.

[7] X.Qin, T.Xie. An availability-aware task scheduling for

hetero-geneous systems. IEEE Transaction on Computers,

2008, 57(2):188-199.

[8] Chung,K.L.,Markov Chains with Stationary Transition

Probabilities, Springer, Berlin, 1960.

[9] Cinlar, E., Introduction to Stohastic Processes, Prentic-

Hall. Inc.,1975.

[10] A.M. Johnson and M. Malek, “Survey of Software

Tools for Evaluating Reliability, Availability, and

Serviceability,” ACM Computing Surveys, vol. 20, no. 4,

pp. 227-269, Dec. 1988.

[11] Dogan A, Ozguner F. Reliable matching and

scheduling of precedence-constrained tasks in Heterogeneo-

us distributed computing. In Proc. of the 29th International

Conference on Parallel Processing. Toronto, Canada: IEEE

Computer Society, 2000. 307—314.

[12] CLOUDS Lab．A Framework for Modeling and

Simulation of Cloud Computing Infrastructures and

Services Introduction[EB/OL].

Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 | 31

BLASTer: A hub-based tool for bioinformatics

B. Cotton1, C. Thompson1, and B. Raub1

1Purdue University, West Lafayette, IN, USA

Abstract— Basic Local Alignment Search Tool (BLAST) is

a widely used sequencing tool in the bioinformatics com-

munity. BLAST searches are highly-parallelizable, lending

themselves to computation on a high-throughput resource.

In this paper, we describe the BLASTer tool developed

by Purdue University to present an easy-to-use, web-based

interface for performing BLAST searches. BLASTer uses the

large HTCondor pool at Purdue University to dramatically

shorten run times compared to desktop usage. Using the

HUBzero platform, BLASTer can be made available for

research and instruction to users worldwide. This paper de-

scribes the platform, the development process, early success

stories, and efforts to grow the user community.

Keywords: BLAST, SaaS, bioinformatics

1. Introduction
Since its initial release in 1990 [1], the Basic Local

Alignment Search Tool (BLAST) has been a key part of

bioinformatics research. The various programs that compose

the BLAST package allow researchers to search for nu-

cleotides or proteins in a database of known strings. The tens

of thousands of citations indicate the popularity and broad

utility of BLAST. It has been used in genome sequencing in

a range of organisms, from e. coli [2] to humans [11].

Although the BLAST programs are freely available from

the National Center for Biotechnology Information web-

site [9], barriers to entry still exist. Long-running searches

require the dedication of computing resources, often the

desktop computer that a graduate student would otherwise

be using for other work. Dedicated scientific computing

resources alleviate this problem, but are expensive. Even

if such a resource is available, it might not be approach-

able. Not all researchers are familiar with command line

tools, presenting a challenging learning curve to those used

to point-and-click interfaces. Other web-based tools, such

as that offered by NCBI, alleviate this problem, but the

resource pool is potentially small, large searches are often

unsupported, and users generally do not have the ability to

search against custom databases.

Our goal in creating the BLASTer tool was to address

these issues. We wanted a tool that would easily handle

large searches, both in terms of computation and storage

requirements. Though powerful, the tool needed to be ap-

proachable by users. This is particularly important for use in

an educational setting, where the goal is to teach the science,

not the tool.

BLASTer combines existing components into a tool

unique in its capability and capacity. BLASTer is powered

by a large opportunistic computing resource that provides

thousands of available cores. Users receive 10 gigabytes of

storage, with 5 terabytes of centralized storage for NCBI

databases and other common files. Future versions will

incorporate visualization capabilities via Blast2Go.

Table 1: BLASTer compared to NCBI’s web-based offering
BLASTer NCBI

Computation time Unlimited 1 hour

Storage 10 GB default 10k characters

In addition to enabling single users, the BLASTer tool was

intended to enable collaboration. Collaborators on a project

should be able to share custom databases with each other.

Researchers who wish to make their data publicly available

should have the ability to easily publish files for use by

others. Developing the user community allows mutually-

beneficial knowledge sharing.

2. Computational Environment

2.1 Community Clusters

As part of its community cluster program [3], Purdue

University opportunistically harvests idle cycles [10]. With

millions of core hours per year available, a workflow that

can make use of a high-throughput computing paradigm

[6] is well-suited. Although work has been done to enable

the use of MPI with BLAST [4], inter-node communication

is not necessary to parallelize searches. BLAST queries

can be separated and sent to individual nodes [7]. This

enables BLAST searches to make ready use of opportunistic

resources.

In addition to the nearly 50,000 cores provided by the

community cluster program, this shared infrastructure brings

additional benefits. A common application suite across

the clusters ensures that the same version of the BLAST

programs is on any given compute node. Shared storage

allows the NCBI’s standard databases to be available to

all users without requiring file transfer. The BLASTer team

can update BLAST binaries and NCBI databases without

effecting currently-running jobs. These features mean that

users only need to upload their search queries, saving effort

and reducing the time to results.

32 Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 |

2.2 HUBzero

In order to provide an easy-to-use interface for users that

is accessible around the world, we decided to host BLASTer

on the HUBzero Platform for Scientific Collaboration [8].

HUBzero provides a Java-based web interface for applica-

tions. The back end is a Linux server, allowing develop-

ers to make use of existing shared libraries and toolkits.

The hub provides an interface to submit jobs directly into

computational resources, leaving developers free to focus on

application and workflow development.

The HUBzero platform also addresses other needs. Users

can self-register and begin using BLASTer immediately.

There is no application or allocation process that needs to

be followed. Built-in feedback mechanisms allow users to

quickly request help or register wishes for the application.

Wishes can be commented and voted on by other users,

giving developers a good way to gauge interest from the

user community. Papers, data sets, and other files can be

easily published by users. An in-hub user group allows the

creation of wiki pages and provides a forum tool to enhance

the community experience.

2.3 DiaGrid

DiaGrid is a HUBzero implementation dedicated to offer-

ing scientific applications to broad communities. Most Dia-

Grid applications, including BLASTer, are available for im-

mediate use to the general public. DiaGrid applications can

employ a high-throughput or high-performance paradigm

by virtue of access to Purdue’s HTCondor and community

cluster resources. Existing applications on DiaGrid include

SubmitR, a tool for submitting R jobs, and CryoEM, a

tool for cryogenic electron microscopy. Tools to support

molecular dynamics with GROMACS and climate modeling

with the Community Earth System Model are under active

development.

3. BLASTer Implementation

The HUBzero platform provides abstraction layers so

that application developers do not need to be familiar with

the target job scheduling system. A client-server system

called "submit" receives job characteristics and files from the

application and selects the appropriate venue. In the case of

BLASTer, submit uses the Pegasus workflow engine [5] to

submit jobs to the HTCondor resources. As jobs complete,

Pegasus provides the output to submit, which sends output

to the application in turn. This arrangement is presented in

Figure 1.

3.1 GUI and Engine Development

To understand the design of BLASTer, one must first

understand the requirements of the BLAST application suite.

Instead of a single overall program, BLAST comprises

a collection of independent executables, each of which

Fig. 1: The architecture of BLASTer and the HUBzero

infrastructure.

uses a different search algorithm. A large portion of the

BLAST community has also embraced analysis tools such as

Blast2Go in production workflows. Without these additional

tools, many of these users have told us they find no value in

a new BLAST environment. BLASTer was designed to ac-

count for this wide range of requirements by abstracting job

parameter entry, execution mechanics, and data inspection

within the GUI.

The requirement of running multiple independent exe-

cutables and various third-party tools makes it necessary

for BLASTer to support arbitrary job descriptions. This

is handled through a system of Job Profiles. Each Profile

is built from a collection of Parameters organized into

Parameter Groups as fits to the particular task at hand.

Individual Parameter represents a particular argument of the

job and has a value type. Simple value types such as integers

and booleans are mapped to standard GUI widgets like text

fields and checkboxes. Complex and novel value types can

be added and represented with custom GUI components.

At runtime, BLASTer will dynamically map a view of the

Parameter list in the Profile using these widgets. Through

this system any type of job can be represented to the user

for option entry. Regardless of the argument format of the

underlying programs, the user is presented with the same

experience of an intuitive entry form customized to each job

type.

To support the variety of execution needs of the many

BLAST applications, an API is defined in BLASTer for

common job control tasks. This abstracts all concrete details

of execution away from the GUI and the user. Each type

of job has a corresponding Job Engine following this API

to provide access to common operations like submission,

cancellation, and status retrieval. To add a new tool or even

just a new execution method of an existing tool, developers

only need to implement a new Engine which conforms to this

API (and define a matching Job Profile for it). This allows

BLASTer to hide from the user what is actually happening

within the job through a set of common controls . An overall

Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 | 33

Engine Manager tracks all available Engines in the system

and handles routing commands from the GUI to the correct

Engine for each job as well as funneling status updates back

to the GUI. This system gives BLASTer the flexibility it

will need to adapt to the changing and evolving BLAST

application suite.

Just as important as the parameterization and execution

of jobs is the effective communication of status and output.

BLASTer tackles these problems by creating a standardized

status reporting format in the Engine API as well as allowing

the definition of custom GUI Job Viewer panels for each type

of job performed. Just as each Profile lists which Engine

to use for a job, they also list which Viewer represents a

job. BLASTer uses this value at runtime to dynamically

load the appropriate view for jobs a user has selected for

closer inspection. With standardized status reports from the

various Engines, BLASTer can also quickly communicate

information to the user about any job they have created.

Together, status reports and dynamic Viewers give the user

both a bird’s eye and ground level view of their work.

The primary mission of BLASTer is to abstract away the

details of BLAST-related tools in an intuitive manner so

users can focus on the science of their tasks. The design

of BLASTer uses Job Profiles to dynamically support any

set of arguments a task may require, Job Engines to handle

any type of execution needs, and Job Viewer panels to

communicate any format of data to the user. Via these three

mechanisms, BLASTer can achieve its mission to execute

these tasks on behalf of the user for the wide variety of

BLAST applications.

3.2 Back end development

Back end development for BLASTer focused on making

the best use of the computing resources available. With help

from Rick Westerman, a Bioinformatics Specialist at Purdue

University, we were able to gauge what a "typical" BLAST

job would consist of and how the data could be parallelized.

Westerman’s Bioinformatics group pulls in gigabytes of raw

sequence data daily and run BLAST jobs on their own

servers. A typical job for this group consists of a ’fasta’

file that contains biological sequences. Files are typically

around 110,000 sequences, with each sequence containing

between 200 and 12,215 bases, totaling about 66 million

bases. A BLAST job of this size would take 8 or more hours

to complete with the servers that the Bioinformatics group

owns.

There are two methods of splitting data for execution.

The first method splits the input file into smaller files and

tests all files against a single database. The second method

splits the database into parts and tests a single input file

accordingly. The latter method requires MPI. With our intent

to use HTCondor to harvest idle cycles, splitting the input

file was clearly the most suitable option.

We assumed that a majority of the typical BLAST jobs

would be roughly the size of Westerman’s input file or

smaller, so that was used as a baseline for splitting files.

The goal was to achieve complete results within four hours

of submission in order to minimize job preemption. On

the community clusters, jobs arriving on a node from the

primary (PBS) scheduler evict all HTCondor jobs on the

node. Jobs that are evicted are automatically rescheduled

by HTCondor. Although BLAST jobs respond well to

rescheduling, because they must re-start from the beginning

it is desirable to minimize the number of preemptions.

Testing was first done on the cluster nodes themselves

to determine the optimal splits for the fastest completion

times. Initial tests created jobs of 100 splits, 500 splits

and 1,000 splits (1,100 sequences, 220 sequences and 110

sequences per split, respectively). With each test, the results

were obtained faster and faster yet still not below the four

hour threshold.

Beyond 2,000 splits, we observed a decay in completion

time, suggesting we had surpassed the upper limit of file

splits. This upper limit could have been for a few different

reasons. When a job is submitted, all submissions are

scheduled through one machine so the queue gets quite

lengthy. Once all of the jobs are queued and running, each

mini BLAST job compares its input file to the same database

creating a bottleneck in file reads. The optimal split for such

a job we determined to be about 85 sequences per file, thus

equating to about 1,300 total splits.

Selecting 1500 splits per search provided us with a

complete job that could run consistently within our allotted

four hours. This splitting technique was further confirmed

to be accurate with help from Professor Jianxin Ma and his

graduate student Meixia Zhao in the College of Agriculture

that had search times cut down from days to hours. Profes-

sor Andrew Dewoody and his graduate students from the

Department of Biology also had similar speedups with their

data analysis.

Table 2: BLAST job completion times
Sequences Bases Cluster wall time HTCondor wall time

40K 15M 5:30 2:30

43K 16M 5:20 2:40

105K 49M 7:15 3:30

145K 72M 8:20 3:20

More recently, some users have used BLASTer to search

against input files containing more than 700,000 sequences.

The time required for each individual split to complete

ran upwards of 15 hours, resulting in considerable delays

as splits were repeatedly evicted from nodes. In order to

accomodate these larger input files, BLASTer now splits files

based on the method described in Table 3. Optimizing the

balance between scheduler overhead and the node eviction

rate is the primary challenge, and is the subject of ongoing

testing.

34 Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 |

Fig. 2: BLASTer’s configuration window for new searches.

Table 3: BLASTer search splitting
Sequences Split size

<128k 85

128-750k 85 + (#sequences/750k)

>750k 160

4. Future Work

BLAST was selected as an early DiaGrid application

because of the immediately-available local user base. The

ability to have a core group of researchers that could help

us with testing during development that we could also help

by speeding up their research was key. One research group

found they could complete a search in three hours that took

three days on a desktop in their lab.

In BLASTer’s first year, nearly 100 users have completed

over a million BLAST runs. BLASTer clearly has technical

merit, but much work remains to be done. Additional user-

requested features are being implemented, including better

management of databases and the ability to send output to

the Blast2Go visualization tool. Improvements to the job

splitting methodology are being investigated as well, to avoid

over-splitting small jobs and ensure large jobs are not under-

split.

As the BLASTer application approaches a feature-

complete state, focus will shift toward engaging and growing

the user community. Currently, users make light use of

HUBzero’s community features. Almost all wishes have

been entered by DiaGrid developers in response to in-person

conversations with users and wishes are rarely voted on. We

expect that adding more non-Purdue users will help drive

use of the community tools.

We have already created a comprehensive User Guide that

focuses on walking a user through the basics of creating and

managing a search. With local users, conducting periodic

workshops with live demonstrations provides an easy way

to reinforce the documentation and provide customized help.

As the user community grows geographically, self-service

training will be necessary. We plan to create short tutorial

videos to provide a visual reference for the instructions in

Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 | 35

the User Guide.

To date, usage has been driven mostly by the faculty, staff,

and students at Purdue University. In order to have ongoing

success, BLASTer usage should expand beyond the borders

of a single campus. The development team will work to

engage with potential users by presenting BLASTer at rele-

vant conferences. Encouraging current users to recommend

BLASTer to their colleagues at other institutions will also be

a key part of the outreach strategy. Encouraging greater use

of the hub’s community tools should help make users more

engaged and serve to make the community self-reinforcing.

5. Acknowledgments
The authors would like to acknowledge Rick Westerman

for providing test cases, Professors Jianxin Ma and Andrew

Dewoody and their respective research groups for being

early testers, and Mike McLennan and the HUBzero team -

especially Steve Clark - for their help in running the DiaGrid

hub.

References
[1] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, D. J. Lipman, et al.

Basic local alignment search tool. Journal of molecular biology,
215(3):403–410, 1990.

[2] F. R. Blattner, G. Plunkett, C. A. Bloch, N. T. Perna, V. Burland,
M. Riley, J. Collado-Vides, J. D. Glasner, C. K. Rode, G. F. Mayhew,
et al. The complete genome sequence of Escherichia coli K-12.
science, 277(5331):1453–1462, 1997.

[3] A. G. Carlyle, S. L. Harrell, and P. M. Smith. Cost-effective HPC:
The community or the cloud? In Cloud Computing Technology and

Science (CloudCom), 2010 IEEE Second International Conference on,
pages 169–176. IEEE, 2010.

[4] A. Darling, L. Carey, and W.-c. Feng. The design, implementation,
and evaluation of mpiblast. Proceedings of ClusterWorld, 2003, 2003.

[5] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, S. Patil, M.-
H. Su, K. Vahi, and M. Livny. Pegasus: Mapping scientific workflows
onto the grid. In Grid Computing, pages 131–140. Springer, 2004.

[6] M. Livny, J. Basney, R. Raman, and T. Tannenbaum. Mechanisms for
high throughput computing. SPEEDUP journal, 11(1):36–40, 1997.

[7] D. R. Mathog. Parallel blast on split databases. Bioinformatics,
19(14):1865–1866, 2003.

[8] M. McLennan and R. Kennell. HUBzero: A platform for dissem-
ination and collaboration in computational science and engineering.
Computing in Science & Engineering, 12(2):48–53, 2010.

[9] National Center for Biotechnology Information. BLAST+ Download.
ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/.

[10] P. M. Smith, T. J. Hacker, and C. X. Song. Implementing an industrial-
strength academic cyberinfrastructure at purdue university. In Parallel

and Distributed Processing, 2008. IPDPS 2008. IEEE International

Symposium on, pages 1–7. IEEE, 2008.
[11] J. C. Venter, M. D. Adams, E. W. Myers, P. W. Li, R. J. Mural, G. G.

Sutton, H. O. Smith, M. Yandell, C. A. Evans, R. A. Holt, et al. The
sequence of the human genome. Science Signalling, 291(5507):1304,
2001.

36 Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 |

An Efficient Method by Using Prediction to Reduce

Times in Live Migration of Virtual Machine

Boseob Kim1, and Sungchun Kim1
1Computer Science and Engineering Dept, Sogang Univ, Seoul, South Korea

Abstract - Cloud system, especially IaaS has became hot

issue because of its low TCO. In the field of IaaS, server

virtualization has close connection due to benefits of resource

sharing, fault tolerance, portability and cost efficiency. Live

VM migration is one of technologies which manage virtualized

server. Although live VM migration just moves virtual

machine to another within few downtime, it can cause more

network traffic because of longer migration time. So we

suggest a method to reduce migration time through predicting

iterations of pre-copy phase. Our method determines number

of iterations using average dirty page rate and decides stop

condition. We apply this method to Xen and demonstrate our

method works efficiently.

Keywords: Virtual machine, VM migration, Cloud systems,

fault-tolerance system

1 Introduction

 Nowadays, cloud system now becomes popular in field

of computer science and engineering. Especially, IaaS

(Infrastructure-as-a-Service) cloud computing system allows

user to take resources over web platform. Subscribers can take

and launch virtual machines without lacking local devices and

they can lease virtual machines cheaply. In a case of data

centers, these have close connections with IaaS cloud

technologies because cloud system has strength of reducing

TCO (Total Cost of Ownership) and it has benefits of

resource sharing, fault tolerance, portability and cost

efficiency. In IaaS cloud, it is important to manage virtual

machine, so VMM (Virtual Machine Monitor) must provide

manage function like creating, copying, and deleting virtual

machine efficiently to owner. Many of VMMs like Xen[2], or

VMWare[3] provide these tools. VM migration is one of

managing tools that provides copying or moving virtual

machine. In particular, Live VM migration [1] is a reasonable

method for migrating virtual machine. The main advantage of

live VM migration is possibility of low downtime. While a

running source virtual machine executes its processes and

sends responses to user’s request, a state of destination virtual

machine becomes almost ready-to-use. Because of this

advantage, Live VM migration technology is used in VMMs

and supported by the form of platforms. XenMotion[10] and

VMotion[11] are example of platforms.

 Nevertheless when source virtual machine continues to

reply on user’s request, network traffic continues to takes

some portion of network resource because source VMM sends

packet which includes dirtied pages and destination host

receives those in live VM migration. If network traffic of

bringing pages takes up network resource continuously, it

would bring lack of response and that would cause complain

of users. One way to cut down the entire traffic is

guaranteeing low migration time of live VM migration. If we

save the migration time, stability of network resources would

be improved. Many papers try to reduce the time of migration

[5,6,7,8,12] or analyze cost of it [9]. Our goal is to guarantee

low migration time.

 In this paper we examine stages of VM migration and key

factor of reducing migration time. After that, our method

would be suggested, it is applied to the real-world case (Xen)

and Experimental evaluation is presented at next chapter and

finally we finish the paper with conclusion and future works

2 Related factor of Live VM migration

2.1 Stages of live VM migration

 Live VM migration method tries to lessen suspending

time of source virtual machine by pushing and pre- copying

dirty pages. The core idea of live VM migration is

convergence of pre-copy. While source virtual machine is

running, VMM sends dirty pages (in first round, entire

memory should be transferred) to destination VMM and

constructs new virtual machine. After multiple rounds of

constructing there must be few dirty pages enough to halt

virtual machine and bring (maybe small number of) remaining

pages. Then, start copied virtual machine on destination

VMM and reattach resources to it. That kind of design is

guaranteed to reduce downtime.

 In more details, live VM migration consists of 6 phases

[1]; those are as follow.

1) Initialization: source virtual machine is selected for

migration. Also destination host is initialized for migration.

2) Reservation: resources at the destination host are reserved

for destination virtual machine

Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 | 37

3) Iterative pre-copy: pages in source virtual machine are

modified during the previous iteration are transferred to the

destination. The entire RAM is sent in the first iteration.

4) Stop-and-copy: the source virtual machine would be

suspended for last transfer.

5) Commitment: the destination host indicates that it has

received successfully a consistent copy of virtual machine.

6) Activation: resources are re-attached to the VM on the

destination host.

 Each stage takes one step except stage 3, iterative pre-

copy stage. It would continue to execute unless there is stop

condition that is satisfied.

2.2 Key factors of migration time

 Iterative pre-copy phase effects execution of stop-and-

copy phase and time for copying pages is almost every portion

of migration time, although other stages do not require much

data transfer. So to achieve lower migration time, we should

reduce the time of iterative pre-copy phase. So it is important

to decide stop condition. Stop condition is a condition that

stops iterations. In normal case, stop condition of pre-copying

is ‘the number of dirty pages is low enough to stop copying’.

But a server environment which raises many I/O bounded

events cannot stop pre-copying unless there is other stop

condition in live VM migration. Because of that case, VMM

is designed to limit the number of iterations or transferred

capacity of memory.

 The limitation could be static value. Static limitation would

ensure stable migration time. At least, we can obtain

maximum migration time without much measuring of

scenarios. But, static limitation would have constraints of

efficient migration time. So if we decide number of iterations

dynamically or new stop condition ensures less number of

iterations than limitation, our method can reduce the time.

3 Proposal schemes for stop condition

 We propose new method which decides stop condition.

Using average and changes of dirty page rate, our method

decides whether to proceed next pre-copy phase. To give

explanation of our model easily, we will describe how the pre-

copy phase reduces downtime.

 When source virtual machine reaches first pre-copy phase,

entire memory is ready to copy and contents of memory

(pages) are sent to destination host. During the first iteration,

pages are dirtied and that might cause second iteration.

Suppose dirty page rate is stable. The number of dirtied pages

would be lower than that of whole entries of page. At second

iteration, because transfer time of dirty page is lower than that

of entire memory, transfer time is lower than earlier. Third

iteration is done faster than second iteration because dirtied

pages of second iteration is lower than those of first iteration.

Likewise, fourth iteration is done faster than third iteration.

As these iterations continue, the number of dirty pages goes to

zero-value gradually. So these iterations have guaranteed

satisfaction of simple stop condition, ‘The number of dirty

pages is little enough to go to stop-and-copy phase’. Number

of shrinked pages is lower than number of whole pages. So

downtime is reduced. On the other hands, if we know how

many iterations are required we can make a flexible limitation.

If source virtual machine requires too many rotations we can

stop pre-copy phase and go to stop-and-copy phase. It can

reduce migration time with small penalty of downtime.

 If dirty page rate has stability for that case, we can predict

limitation that satisfies stop condition. Suppose source virtual

machine has fixed dirty page rate. Then required number of

pages to send in (n+1)-th iteration is below.

 1
n

n

D
D R C

S
 (1)

 Dn+1 is dirtied pages while stages of live VM migration is

doing n-th iteration of pre-copy, R is Dirty page rate of

source virtual machine, S is transfer speed of network, and C

is capacity of one page, 4 kilobytes on 32-bit computer in

common case. By assumption, R is fixed value. If R is fixed,

we can get dirtied pages of n-th iteration from capacity of

memory by transferring recurrence relation into normal

expression.

1

1 ()n

n

R C
D D

S

 (2)

 D1 is entire number of page, which have to be transferred

in first iteration of pre-copy phase. D1 is easily obtained from

dividing memory size by C. At simple stop condition, Dn

must be lower than number of pages to stop. If source VMM

decides to start stop-and-copy phase, pages are transferred

after (n-1)-th iteration. Basis of that, we can obtain expected

number of iterations. .

1

1 ()NR C
T D

S

 (3)

1

1

()NT R C

D S

 (4)

1

log() (N 1) log()
T R C

D S

 (5)

38 Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 |

1

log()
1

1
log()

R C

S
TN

D

 (6)

()

1

1 log ()R C

S

T
N

D
 (7)

()

1

log () 1R C

S

T
N

D
 (8)

()

1

' log () 1R C

S

T
N

D

 (9)

T is a threshold that decides ‘little number of pages’. In

expression (5), N is minimum iterations to go to stop-and-

copy phase. To hold expression (6) from expression (5), it

must be satisfied that log(T/D1) is lower than 0. If T is greater

than D1, live VM migration acts like non-live because it

indicates that our condition is always true and source VMM

decides there is no needs for doing pre-copy iteration. So in

live VM migration expression (6) holds for that assumption.

Because the number of iterations is a natural value, it has to

be converted. So, N’ in expression (9) is actual number of

iterations.

 But practically, dirty page rate would not be fixed due to

characteristics of virtualized server. Sometimes the server is

in idle state or be in working state. Idle state would not make

many dirty pages but working state would make many dirty

pages. The problem is we cannot predict when the I/O event

occurs and is handled. So extracting stable value of dirty page

rate is too hard. Therefore, for predicting number of iterations

efficiently we have to guess rate from measured dirty pages

for each of iterations. In this paper, we predict dirty page rate

by average value of dirty pages and pre-copying times

collected on previous iterations. After first iteration is done,

we obtain number of dirty pages that is dirtied and pre-

copying time. Then we can obtain average dirty page rate

from that parameters. Number of dirtied pages and second

pre-copying time are measured after second iteration. Then

parameters of obtaining average dirty page rate would

increase and we can get expected value of dirty rate. In one

sentence we predict expected dirty page rate of next iteration

as following expression.

1

2

1

n

k

k
P n

k

k

DM

R

TM

 (10)

 DMk is the measured number of dirty pages and TMk is

measured pre-copying time from k-th iteration. In summary,

terms of expression are described in Table I.

Table I : Terms of Expression

Dn

D1

R

C

S

T

N

DMk

TMk

Number of dirtied pages that must be transferred

in n-th iteration.

Number of whole pages.(number of pages that

must be transferred in 1-st iteration.)

Dirty Page rate per unit time

Capacity per page(4KB in normal cases)

Network transfer speed per unit time

Threshold that is satisfying enough downtime

Expected number of iteration.

Measured dirtied pages in k-th iteration.

Measured transfer speed in k-th iteration.

 With expected dirty page rate Rp, we can get expected N’

(we call that NE). If NE is equal or lower than number of

iterations that is already done we have to stop pre-copy phase

because it must satisfy threshold of dirty pages. And when NE

is greater than previously obtained NE (from first iteration to

(n-1)-th iteration) we could expect there would be I/O events.

Then we should stop pre-copying phase and start stop-and-

copy phase because I/O events would write to pages and it

may need many iterations of pre-copying.

 On the other hand, NE can be negative value because of

many I/O events. In live VM migration, T/D1 is lower than

one. But when too many I/O events rise, base of logarithm is

greater than one because transfer speed would be lower than

dirty page rate in unit time. So, whole value of NE cannot be

positive value. We should consider that situation. When there

are too many I/O events so that exceeds more than transfer

speed, we would rather to stop pre-copying iteration and go to

stop-and-copy phase.

 Considering described situations, our algorithm is shown in

algorithm I. first we start it with first iteration of pre-copying,

which transfers whole pages. Transfer time and the number of

dirtied pages in first iteration would be measured and using

that value, we obtain average transfer speed, Rp and NE. if NE

is equals or lower than 0 or greater than limitation L (At first

it is pre-defined value), the source VMM decide to stop pre-

copy phase. If value of NE is between 0 and L, L is updated to

NE. When number of iterations is greater than L, there would

be small number of pages. Then it is also the stop condition.

Among all conditions, algorithm I is described below.

Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 | 39

Algorithm I : Algorithm which controls iteration

T=Threshold of going next phase; // threshold must be

defined

C=size of page;

D1=(memory size)/C;

TP=log(T/D1);

L=Limitation of iteration; // limitation must be defined

PRC=1; // PRC is number of iterations that is occurred.

transfer whole memory;

S=(memory size)/(transfer time in first iteration);

P[1]=(number of dirtied pages in first iteration);

T[1]=(transfer time in first iteration);

while(PRC < N)

{

RR=0;

TT=0;

for(i=1;i<=PRC;i++)

{

RR+=P[i];

TT+=T[i];

}

RR/=TT;

NE=TP/log((RR*C)/S)+1;

if(NE > L || NE<=0)

break;

else

{

L=NE;

PRC++;

 transfer dirtied pages; // do next iteration

P[PRC]=(number of dirtied pages for PRC-th iteration);

T[PRC]=(transfer time of PRC-th iteration);

S=(P[PRC-1] * C)/(transfer time in PRC-th iteration);

}

}

 Threshold and maximum number of iteration must be

defined beforehand. When we define high threshold of dirtied

pages, iterations would be lessened.

4 Experimental evaluation

 In this paper we applied our idea to open source VMM,

Xen. As we wrote it is important to define threshold and

maximum number of iteration. To define those factors, we

have to know stop condition of iteration applied to Xen.

 In environment of Xen, stop condition of pre-copy phase is

represented below.

1) Number of dirtied pages of previous iteration is less than

50.

2) Number of iterations is greater than 30.

3) Capacity of transferred page is greater than 3 times of

entire memory.

 First condition is considered because transfer of less pages

is satisfying low downtime of live VM migration. On the other

hand, second condition and third condition are considered for

environment with many I/O events. Too many I/O events

cause long migration time with long downtime so these

conditions are to reduce migration time unless there is a risk

of long downtime.

 With our idea we don’t want to increase downtime and

migration time when source virtual machine is in that state

because with that state migration time is almost equal as

transfer time of entire memory while it has low I/O events. At

least it ensures downtime. (Also in case of periodic I/O events

that causes fixed R) So we assign T=50. On the other hands

we have to consider second and third condition. We have to

reduce the migration time when server is in the state with

many I/O events. To prove our efficiency, we assign L=30

that is equal as static limitation of Xen.

 To simulate our idea, we constructed two situations of

virtual machine. First virtual machine is in idle state that few

pages are modified. Automatically dirty page rate of that

virtual machine is low. Second virtual machine is in

environment of doing kernel compile. Kernel compile causes

I/O events so that dirty page rate is higher than idle state. Both

machines are generated with 512MB and 1024MB memory

and set with 32-bit virtual machine. Storages are constructed

with NFS [4] so we don’t have to consider storage migration

time. We measured migration time and downtime. And

network card and router has maximum speed of 100Mbps.

The version of Xen is 4.1.0. We use default value of

parameters in formal Xen. We expect migration time is

improved when it is in kernel compile. When migration time

in idle with our method is similar to Xen.

 Result of evaluation is shown below. We have compared

Xen and our idea. Results of experiment when source virtual

machine is in idle state is shown in Figure 1. Upper result

shows memory size=512MB and lower shows case of

1024MB. There were not much significant changes of

migration time and downtime. Its environment has low I/O

events. So number of iterations is easily expected and that

number is equal as that of Xen. Change of migration time is a

little value so that is increased or decreased by changes of

network traffic.

40 Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 |

Figure 1. Results in idle state

Efficiency of our idea was evaluated when there is many I/O

bounded processes. In Figure 2, migration time is improved

by 17 percent in 512MB virtual machine (upper result) and 14

percent in 1024MB virtual machine. Iterations are expected

and reduced when I/O events are occurred. Many I/O bounded

events increases dirty page rate and once it causes increased

iteration, our machine stops pre-copy. After pre-copying is

stopped, VMM remains many dirtied pages. Therefore we

reduced number of iterations and got lower migration time.

But in trade-off, increased downtime is measured.

Figure 2. Results in kernel compile state

5 Conclusions

 As a result of our experiment, live migration time of

virtual machine is reduced by proposed scheme so that we can

expect that users could have a chance to get more network

resources. But as downtime is increased, response time is also

increased. So we have to find efficient value of threshold and

limitation. Also we did not consider network speed or other

I/O speed. To ensure efficient downtime, actual network

speed would be important factor of migration because more

transfer speed with stable downtime causes allowance for

more dirty pages. So we will add a method for threshold. This

would be reduce migration time with reasonable downtime.

And we had obtained average dirty page rate of source

machine. If we catch all I/O bounded event, we can predict

incoming event by making a model per process. It increases

accuracy of iterations. We will focus on those issues and

trade-off between migration time and downtime.

ACKNOWLEDGMENTS

This research was all-supported by Basic Science Research

Program through the National Research Foundation of

Korea(NRF) funded by the Ministry of Education, Science

and Technology(2012R1A1A2009558), and part - supported

by Technology Innovation Development Program funded by

Small & Medium Business Administration(S2057016)

6 References

[1] C. Clark, K. Fraser, S. Hand, J.G. Hansen, E. Jul, C.

Limpach, I. Pratt, and A. Warfield. “Live migration of

virtual machines”, in The 2nd conference on Symposium

on Networked Systems Design and Implementation -

Volume 2 (NSDI'05), Vol. 2. USENIX Association,

Berkeley, CA, USA, 2-5 May, 2005, pp. 273-286.

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A.

Ho, R. Neugebauer, I. Pratt, and A. Warfield, “Xen and

the art of virtualization”, in Proceedings of the Nineteenth

ACM Symposium on Operating Systems Principles. ACM

Press, 2003, pp. 164-177.

[3] VMWare, vmware inc, [Online]. Available :

http://www.vmware.com/

[4] Sun Microsystems, “NFS: Network file system protocol

specification”, RFC 1094, Internet Engineering Task

Force, Mar. 1989.

Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 | 41

http://www.vmware.com/

[5] W. Huang, Q. Gao, J. Liu, and D. K. Panda. “High

Performance Virtual Machine Migration with RDMA

over Modern Interconnects”, in Proceedings of IEEE

International Conference on Cluster Computing

(Cluster'07), September 17-20, 2007, Austin, Texas, USA

[6] Li Deng, Hai Jin, Song Wu, Xuanhua Shi, and Jiangfu

Zhou, “Fast Saving and Restoring Virtual Machines with

Page Compression” in 2011 International Conference on

Cloud and Service Computing, 2011, pp. 150-157

[7] Y. Luo, B. Zhang, X. Wang, Z. Wang, and Y. Sun, “Live

and incremental whole-system migration of virtual

machines using block-bitmap”, in Proceedings of Cluster

2008: IEEE International Conference on Cluster

Computing. IEEE Computer Society, 2008.

[8] Haikun Liu, Hai Jin, Xiaofei Liao, Liting Hu, and Chen

Yu, “Live Migration of Virtual Machine Based on Full

System Trace and Replay”, in Proceedings of the 18th

ACM international symposium on High performance

distributed computing (HPDC 09), 2009, New York, NY,

USA, pp.101-110

[9] Anja Strunk, “Costs of Virtual Machine Live Migration:

A Survey”, in 2012 IEEE 8th World Congress on

Services, 2012, pp. 323-329

[10] XenMotion. Citrix Systems, Inc. [Online]. Available:

http://www.citrix.com/products/xenserver/

[11] VMotion. VMware, Inc. [Online]. Available:

http://www.vmware.com/products/vmotion/

[12] P. Riteau, C. Morin and T. Priol. “Shrinker: Improving

Live Migration of Virtual Clusters over WANs with

Distributed Data Deduplication and Content-Based

Addressing”, in Euro-Par 2011 Parallel Processing

Lecture Notes in Computer Science, Volume 6852, 2011,

pp 431-442

42 Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 |

http://www.citrix.com/products/xenserver/
http://www.vmware.com/products/vmotion/

SESSION

CLOUD COMPUTING AND RELATED ISSUES

Chair(s)

TBA

Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 | 43

44 Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 |

Towards a User Deployable Service-oriented Autonomic
Multi-cloud Overlay Infrastructure for Sky Computing

Courtney Powell1, Masaharu Munetomo1, and Takashi Aizawa2
1Information Initiative Center, Hokkaido University, Sapporo, Japan

2Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan

Abstract—Cloud computing services at the SaaS level of the
cloud computing model are easy to access and utilize. In
contrast, the self-service approach taken at the IaaS level
results in difficulties for non-savvy users. Compounding these
difficulties is the fact that for resiliency, economic, and
scalability reasons, utilization of IaaS resources across
multiple cloud providers in a unified manner is deemed the
best strategy. In this paper, we outline our proposal for a
user-centric multi-cloud autonomic overlay infrastructure that
can be deployed across existing cloud systems without the
need for specialized hardware or action on the part of cloud
providers. We also present the results of a simple genome
sequencing experiment and bandwidth measurements
conducted on a crude prototype implementation of the system.

Keywords: virtual distributed ethernet (VDE), application
defined networking (ADN), virtual overlay infrastructure,
simple heterogeneous inter-cloud manager (SHINCLOM),
cloud federation, CloudStack.

1 Introduction
 Cloud computing has rapidly advanced into the public
consciousness, with software as a service (SaaS) becoming a
virtually indispensable part of everyday life due to easy
access and utility. In cloud computing, everything is delivered
as a service [1]. However, for users who require more than
the relatively simple applications offered at this uppermost
layer of the cloud computing model, things are not as simple
because the lower levels utilize a self-service approach, in
which users are expected to provision, manage, and maintain
what they need by themselves. Deploying applications at the
infrastructure as a service (IaaS) level is non-trivial as the
distributed applications being deployed often comprise
interdependent services that form a complex hierarchy across
virtual machines (VMs), and which must be configured in a
particular order [2]. Thus, simply accessing and utilizing IaaS
resources on any one cloud platform requires a variety of
technical know-how—such as knowledge of the relevant
APIs to use and how to install, launch, configure, and
maintain the desired applications and services.

 Adding to the difficulties outlined above is the fact that
mission critical business applications require that downtime
be minimized and optimum performance maintained; yet, it

has become patently clear that trusting essential applications
to one cloud platform or provider is not a wise strategy due to
the possibility of outages and scalability, flexibility, and
economic issues. Further, at present, the frightening
possibility of cloud lock-in [3] awaits unwary users as
dynamically migrating applications and services from one
cloud to another or launching and maintaining applications
across cloud systems in order to avail oneself of better prices,
levels of service, etc. is still very difficult.

 Cloud federation is an emerging paradigm in which
resources from multiple independent cloud providers are
leveraged to create a virtual cloud system that overcomes
some of the limitations of single-cloud systems (such as
provisioning and scalability constraints), is resilient to
failures, and provides high availability. As outlined by Petcu
[4], the actual clouds can be federated in a number of ways:
Horizontal federation, Inter-Clouds federation, Cross-Clouds
federation, and Sky Computing [5].

 In this paper, we outline our user-centric approach to
cloud-federation, with which we ultimately aim to spare users
the tedious, time-consuming, and error-prone process of
manually installing, configuring, and monitoring multi-cloud
applications and services at the IaaS level. Consequently, we
are currently developing a user deployable autonomic multi-
cloud overlay infrastructure comprising various applications,
utilities, and services that users can easily deploy and utilize.
In this sense, our objective is a form of Sky Computing as our
aim is to compose the existing user-level services offered by
cloud providers into a single virtual framework (in the form
of a “single-cloud like image”) that is independent of any one
type of cloud platform and offering new services other than
those provided by each individual cloud provider (i.e., greater
than the sum of its individual parts). The actual infrastructure
is being developed in a holistic way with the aid of a
proposed layered autonomic multi-cloud model on which
existing and future technologies can be integrated in such a
way that how the various elements in our framework function
and interoperate can be easily understood.

 The remainder of this paper is organized as follows: In
Section 2, we introduce and outline our proposed layered
autonomic multi-cloud model. In Section 3, we discuss our
preliminary implementation of a user deployable virtual
overlay infrastructure and MPI clusters. We also discuss the

Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 | 45

results of a simple genome sequencing experiment conducted
on the clusters and bandwidth measurements done on the
infrastructure. In Section 4, we outline future work to be
done. Finally, we conclude this paper in Section 5.

2 Autonomic Multi-cloud Model
 We propose that autonomic multi-cloud applications and
services be developed based on the conceptual model
depicted in Fig. 1. This conceptual model allows for the
design and development of applications and services in a
cloud-agnostic way. Our aim is to leverage the many
technologies and techniques currently available and map them
onto the relevant layers of our model in a transparent manner
by adapting, integrating, and (where necessary) modifying
and extending them in such a way that the links among the
technologies are easily analyzable and optimizable. The
layers and the functions they perform in the model are
discussed below.

Fig. 1: Proposed layered autonomic multi-cloud model

2.1 Layer 1: Cloud Platforms Specific Layer

(CPSL)
 There are currently a large number of public and private
cloud platforms, some better known than others. At present,
these cloud platforms do not use a common set of APIs. The
cloud platforms specific layer (CPSL) forms the foundation
of our model as it translates the various calls from the upper
layers into calls that can be initiated on the various platforms.
Utilities such as LibCloud [6] and DeltaCloud [7] can be
deployed at this layer to carry out these functions. Further,
tools such as CloudInit.d [8] and Wrangler [9] can be
extended and integrated to provide low-level autonomic
functions such as monitoring and repair of VMs at this layer.

2.2 Layer 2: Virtual Overlay Infrastructure
Layer (VOIL)

 The virtual overlay infrastructure layer (VOIL) is a
critical part of our proposed model. At this layer, the
following activities and services are provided:
1. A seamless virtual overlay infrastructure that abstracts

away the differences inherent in the various cloud
platforms.

2. A homogeneous context for VMs from disparate clouds.
3. Infrastructure automation tools and services such as

automated cluster and VPC deployment services; akin to
the tool execution environment envisioned by Afgan et al.
[10].

2.3 Layer 3: Application Defined Networking
Layer (ADNL)

 At the application defined networking layer (ADNL),
the focus is on optimization and orchestration of the
movement of data throughout the VOIL for each application.
Application defined networking (ADN) [11] takes center
stage at this layer. In contrast to software defined networking
(SDN), which deals with the forwarding of individual packets
throughout the network infrastructure, ADN works with data
and gives applications the ability to dynamically adapt to their
networking environment in order to optimize their
performance. ADN is based on a feedback loop principle,
which it leverages to monitor, analyze, and orchestrate
infrastructure capacity and configuration in order to
continuously adapt applications to facilitate optimum
performance [11]. Thus, in our proposed model, ADN
services monitor ADN-enabled applications in the cloud
applications specific layer (CASL) and dynamically
orchestrate (activate, deactivate, and tune) the services
provided at the VOIL as it endeavors to achieve and maintain
the performance targets of the associated application. For
example, if the capacity links in the infrastructure are over-
stretched and on the verge of causing imminent impairment to
services and applications, ADN tools in the ADNL will be
able to obviate this. At this layer, processes and agents such
as those proposed in the GerNU project [12] could be
modified and deployed to ensure optimum application
performance and compliance with predefined service level
agreements (SLAs).

2.4 Layer 4: Cloud Applications Specific
Layer (CASL)

 At the cloud applications specific layer (CASL), it is
envisioned that applications will be able to operate without
consideration for the disparate cloud platforms on which they
are running. Thus, in the CASL (pun intended), applications
should be able to operate with impunity in pursuit of their
various performance targets.

46 Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 |

3 Prototype Implementation and Results
 As a first step towards the realization of our user
deployable autonomic multi-cloud overlay infrastructure
based on the proposed autonomic multi-cloud model, we
developed both a user-deployable virtual multi-cloud overlay
infrastructure using virtual distributed Ethernet (VDE) [13]
and an automated cluster deployment tool. We discuss these
developments and our preliminary results below.

3.1 Overlay infrastructure implementation
 We implemented the virtual infrastructure depicted in
Fig. 2 using VDE as the virtual networking utility and Python
Fabric [14], which provides a basic suite of operations for
executing local and remote shell commands and
uploading/downloading files, for system configuration. VDE
has been used to implement virtual network laboratories such
as Marionnet [15] and to build private networks for clusters
of nodes in the Eucalyptus private cloud platform [16]. It is
an open-source OSI Layer 2 virtual network software tool that
can run on both virtual and physical machines and is able to
forward, dispatch, and route plain Ethernet packets. VDE has
the same structure as modern Ethernet networks and its main
components are managed switches, wires (any tool capable of
transferring a stream connection, e.g., SSH), and plugs
(programs connected to a switch to convert all the traffic to a
standard stream connection). A VDE cable comprises a wire
with a plug at either end and is used to interconnect two VDE
switches.

 To implement the virtual overlay infrastructure depicted
in Fig. 2, we deployed a VDE switch on the tap0 network
interface of each VM (and physical computer) and connected
the switches using SSH. As most cloud platforms use Class A
private addressing (i.e., 10.x.x.x) on their eth0 network
interfaces and small private networks use Class C private
addressing (i.e., 192.168.x.x), to avoid confusion, we opted to
use Class B private addressing (i.e., 172.16.x.x to 172.31.x.x)
in our overlay infrastructure.

Fig. 2: Implemented virtual overlay infrastructure

3.2 Automated MPI cluster deployment
 To enable automated cluster deployments on the
infrastructure, we created a tool in Python that deploys and
configures master and slave nodes using prebuilt CloudStack
[31] templates made from Ubuntu 12.10 64-bit servers, with
MPICH2 [32] installed.

3.2.1 Experimental cluster configurations
 To get an idea of the performance of our multi-cloud

cluster, we compared the performance of a small six-machine
cluster for the three configurations illustrated in Figs. 3 to 5.
For Configuration 1 (Fig. 3), the cluster was deployed on a
conventional single-site CloudStack network (i.e., without the
virtual overlay infrastructure). For Configuration 2 (Fig. 4),
the cluster was deployed on the virtual overlay infrastructure
across two CloudStack networks. For Configuration 3 (Fig.
5), the cluster was deployed on the virtual overlay
infrastructure, this time comprising two CloudStack networks,
two AWS [33] regions, and a physical machine.

Fig. 3: Conventional single-site CloudStack cluster—No VDE

(Configuration 1)

3.2.2 Simple genome sequencing experimental results
 Executing the ClustalW-MPI alignment sequence tool
[17] on three files across the cluster in each of the three
configurations gave us the results shown in Table 1. For the
largest file, the transfer time for Configuration 2 was almost
twice that of Configuration 1, while that of Configuration 3
was almost 30 times that of Configuration 1. For the smallest
file, however, Configurations 2 and 3 had very close transfer
times. Large time differences between Configuration 1 and
Configuration 3 were also evident in the sequence alignment
times. We believe that the large time differentials are due to
the fact that Configuration 3 comprised three nodes that were
connected to the master via slow interconnection (Internet)
links. To test the speed of the links, we conducted bandwidth
measurements, which we discuss in Section 3.3.

Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 | 47

Fig. 4: Cluster across two CloudStack networks—Using VDE

(Configuration 2)

Fig. 5: Cluster across two CloudStack networks, two AWS regions,
and one physical machine—Using VDE (Configuration 3)

Table 1: Simple genome sequencing experimental results

Cluster configuration File
number File size Number

of groups
Time to transfer to

slave nodes (s)

Time for
pairwise
sequence

alignments (s)

Time for multiple
sequence

alignments
(s)

Configuration 1 (Single
site—No VDE)

1 4 KB 4 1.19 x 10-4 0.011 0.077
2 37 KB 21 3.29 x 10-4 2.491 2.306
3 124.3 MB 1170 23.76 n/a n/a

Configuration 2 (Two
CS networks—VDE)

1 4 KB 4 24.59 x 10-4 0.023 0.335
2 37 KB 21 47.65 x 10-4 2.554 3.941
3 124.3 MB 1170 43.23 n/a n/a

Configuration 3 (Two
CS networks, 2 AWS

regions, 1 physical
machine—VDE)

1 4 KB 4 21.98 x 10-4 0.709 16.502

2 37 KB 21 81.29 x 10-4 4.046 71.507

3 124.3 MB 1170 642.20 n/a n/a

3.3 Bandwidth measurements
 Using Iperf [18] with its default TCP window size of 8
KB, we conducted bandwidth tests between sgemaster and
each of the slave nodes. The network configuration used is
depicted in Fig. 6. The resultant bandwidth determined for the
link between sgemaster and each slave node is shown in Fig.
7. Using the bandwidth obtained on eth0 as the standard (i.e.,
207 Mbps), we computed the loss in bandwidth across the
virtual infrastructure. The results obtained indicate the
following:
1. The use of the virtual infrastructure results in a 6%

decrease in bandwidth.

2. The second virtual router (Kitami Network) introduces an
additional 6% decrease in bandwidth, resulting in a total
bandwidth decrease of 12% from sgemaster to vde-switch.

3. Using node vde-switch as a proxy for the master to
communicate with the slaves across the second network
results in an overall loss in bandwidth of 43%. (This
implies that a direct connection from the switch on each
slave to the switch on the master is better.)

4. The links created across the Internet are (as expected)
much slower than those inside the data center. This fact is
reflected in the 99% and 92% bandwidth losses between
sgemaster and euca-slave (in the Eucalyptus Community

48 Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 |

Cloud (ECC) [34]) and sgemaster and aws-slave (AWS
Tokyo region), respectively.

Fig. 6: Configuration used in bandwidth tests

4 Discussions and Future Work
 It is obvious that in order to implement the kind of
infrastructure proposed above the bandwidth disparities
reported in this paper will have to be taken into account and
techniques implemented to lessen their impact on the
performance of the applications implemented on the virtual
overlay infrastructure. The implementation of point-to-point
dedicated links such as SINET [19] could be a solution for
some inter-cloud links. However, as the idea is to facilitate

connectivity across any available cloud system to which a
user has access, other means of optimizing the user-level
connections among cloud systems across the Internet are also
imperative. For some applications, establishment of a primary
link and the provision of a secondary link/route may be
necessary. This can easily be done with VDE, as any switch
on any node can be connected to a multiplicity of other nodes;
thereby, providing the ability for the creation of alternate
links/route. In fact, we plan to explore the performance
impact of various topologies, such as star-ring hybrid and
star-hypercube hybrid.

 Even though our preliminary investigation indicates
only a 6% fall in bandwidth due to the use of VDE, further
investigations need to be done to see how the actual overlay
infrastructure itself affects the performance of applications.
Further, we intend to evaluate various other networking
technologies to determine how well they cope with the rigors
of a system such as this, and whether they can be combined
and/or extended. Among these are ViNe [20], which uses
user-level virtual routers (VMs on which ViNe processing
software is installed and configured) to dictate overlay
network communication by acting as gateways for nodes that
do not run the ViNe software; VNET/U [21], which, in
addition to facilitating overlay networking, may be able to
provide ADN-related services such as monitoring of
application communication and computation behavior [22];
and N2N [35], which uses P2P principles and the concept of
edge nodes and super nodes (which relay packets across NAT
boundaries for edge nodes) to facilitate overlay networks.
Integration of the high-performance message passing protocol
Open-MX [23] and user mode Linux related technologies
such as VNX [24], Netkit [25], and Cloonix [26] also present
interesting possibilities.

Fig. 7: Bandwidth from sgemaster to each client for the configuration in Fig. 6

Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 | 49

 Smith [27] enumerated a number of problems that may
beset applications in single-site and federated clouds, such as
the possibility of traffic impairment when multiple providers
are utilized in order to reduce risks and difficulty avoiding
network latency and bottlenecks. Our ultimate aim is to
obviate such problems by applying the appropriate
technology (or optimized mix of technologies) at each layer
of our model. In [28], Friedman touched on the increasing
trend of applications integrating across clouds, and states that
“This presents an impedance mismatch where a highly
distributed and concurrent application must talk across a
narrow 1-1 link with another highly distributed and
concurrent application.” Some actual application challenges
in the scientific arena, including the fact that application
failures are prevalent in federated clouds, are also outlined by
Deelman et al. [2]. We believe that the creation of an overlay
infrastructure such as ours, in which applications are treated
as first-class entities (i.e., ADN) and thus have the ability to
autonomously act to fulfill specified requirements, can
obviate this impending impedance mismatch.

 The infrastructure proposed in this paper is being
developed as part of the Simple Heterogeneous INter-CLoud
Manager (SHINCLOM) project at Hokkaido University,
Japan. In this project, we have already implemented a web
interface that provides simple functions such as registration of
cloud credentials in the content management system Drupal
[29], which facilitates the development of the various sections
of a cloud management system as modules that can be easily
integrated [30].

5 Conclusion
 In this paper, we outlined our proposal for the
development of a user-centric multi-cloud overlay
infrastructure based on a proposed layered autonomic multi-
cloud model. Experimental measurements conducted on a
crude prototype implementation of the system indicate that
the system is feasible but more work needs to be done to
improve the bandwidth of the inter-cloud links across the
Internet.

6 Acknowledgements
 This work utilizes the Hokkaido University Academic
Cloud, Information Initiative Center, Hokkaido University,
Sapporo, Japan and is supported in part by the CSI fund,
National Institute of Informatics, JAPAN.

7 References
[1] P. Vicat-Blanc. “Harmony in the cloud.”
http://www.sdnzone.com/topics/software-defined-
network/articles/332443-harmony-the-cloud.htm, April 1,
2013. Last accessed: April 25, 2013.

[2] E. Deelman, G. Juve, and G.B. Berriman. “Using clouds
for science, is it just kicking the can down the road?”
CLOSER 2012, pp. 127-134.

[3] J. McKendrick. “Cloud computing’s vendor lock-in
problem: Why the industry is taking a step backward.”
http://www.forbes.com/sites/joemckendrick/2011/11/20/cloud
-computings-vendor-lock-in-problem-why-the-industry-is-
taking-a-step-backwards/, November 20, 2011. Last accessed:
April 25, 2013.

[4] D. Petcu. “Portability and interoperability between
clouds: Challenges and case study.” Towards a Service-Based
Internet, LNCS, Springer, vol. 6994, pp. 62–74, 2011.

[5] K. Keahey, M. Tsugawa, A. Matsunaga, and J. A.
Fortes. “Sky computing.” IEEE Internet Computing, vol. 13,
no. 5, pp. 43–51, 2009.

[6] Apache LibCloud: A unified interface to the cloud.
http://libcloud.apache.org/. Last accessed: April 25, 2013.

[7] DeltaCloud. http://deltacloud.apache.org/. Last
accessed: April 25, 2013.

[8] J. Bresnahan, T. Freeman, D. LaBissoniere, and K.
Keahey. “Managing appliance launches in infrastructure
clouds.” Teragrid Conference, 2011.

[9] G. Juve and E. Deelman. “Automating application
deployment in infrastructure clouds.” CloudCom 2011.

[10] E. Afgan, K. Skala, D. Davidovic, T. Lipic, and I. Sovic.
“CloudMan as a tool execution framework for the cloud.”
MIPRO 2012, pp. 437–441, May 21–25, 2012.

[11] Lyatiss whitepaper. “Application defined networking:
The missing link for optimal cloud application performance
and agility.” www.becreative.ca/lyatiss/docs/Whitepaper-
ADN.pdf, 2013. Last accessed: April 25, 2013.

[12] H.P. Borges, B.R. Schulze, J.N. Souza, and A.R. Mury.
“Automatic services instantiation based on a process
specification.” Journal of network and computer applications,
2012

[13] R. Davoli. “VDE: Virtual distributed ethernet.”
TRIDENTCOM'05, pp. 213–220, 2005.

[14] Python Fabric. http://docs.fabfile.org/. Last accessed:
April 25, 2013.

[15] J.-V. Loddo and L. Saiu. “How to implement a virtual
network laboratory in six months and be happy.” In ACM
SIGPLAN Workshop on ML. ACM Press, 2007.

[16] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S.
Soman, L. Youseff, and D. Zagorodnov. “The Eucalyptus

50 Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 |

open-source cloud-computing system.” CCGRID’09,
Shanghai, China, pp.124-131, May 2009.

[17] K.-B. Li. “ClustalW-MPI: ClustalW analysis using
distributed and parallel computing.” Bioinformatics, pp. 585-
586, 2003.

[18] Iperf. http://openmaniak.com/iperf.php. Last accessed:
April 25, 2013.

[19] SINET.
http://www.sinet.ad.jp/index_en.html?lang=english. Last
accessed: April 25, 2013.

[20] M. Tsugawa, A. Matsunaga, and J. Fortes. “User-level
virtual network support for sky computing.” e-Science’09, pp.
72–79, 2009.

[21] A. Sundararaj and P. Dinda. “Towards virtual networks
for virtual machine grid computing.” Proc. 3rd USENIX
Virtual Machine Research And Technology Symposium (VM
2004), May 2004.

[22] A. Gupta and P.A. Dinda. “Inferring the topology and
traffic load of parallel programs running in a virtual machine
environment.” Proc. 10th Workshop on Job Scheduling
Strategies for Parallel Processing (JSSPP), June 2004.

[23] Open-MX: Myrinet express over generic ethernet
hardware. http://open-mx.gforge.inria.fr/. Last accessed: April
25, 2013.

[24] VNX: Virtual Networks over linuX.
http://web.dit.upm.es/vnxwiki/index.php/Main_Page. Last
accessed: April 25, 2013.

[25] Netkit: The poor man’s system to experiment computer
networking. http://wiki.netkit.org/index.php/Main_Page. Last
accessed: April 25, 2013.

[26] Cloonix: Dynamical topology virtual networks.
http://clownix.net/. Last accessed: April 25, 2013.

[27] M. Smith. “Network and application performance in
cloud.” http://erpcloudnews.com/2013/04/network-and-
application-performance-in-cloud/. Last accessed: April 25,
2013.

[28] J. Friedman. “Patterns for programming in the clouds.”
http://www.cs.york.ac.uk/library/proj_files/2010/EngDInd/jul
z/litreview-final-31may.pdf. Last accessed: April 25, 2013.

[29] Drupal. http://drupal.org/. Last accessed: April 25, 2013.

[30] Y. Naoi. “Clanavi: How to manage your cloud by
Drupal.” Bay Area Drupal Camp 2010, November 13, 2010.

[31] CloudStack open source computing.
http://cloudstack.apache.org/. Last accessed: May 31, 2013.

[32] MPICH: High-performance portable MPI.
http://www.mpich.org/. Last accessed: May 31, 2013.

[33] Amazon web services. http://aws.amazon.com/. Last
accessed: May 31, 2013.

[34] Eucalyptus community cloud (ECC).
http://www.eucalyptus.com/eucalyptus-cloud/community-
cloud. Last accessed: May 31, 2013.

[35] N2N: A layer two peer-to-peer VPN.
http://www.ntop.org/products/n2n/. Last accessed: May 31,
2013.

Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 | 51

for Virtualized Application Execution Environments

Seunghwan Yoo1, and Sungchun Kim1
1 Computer Science & Engineering Department, Sogang University, Seoul, South Korea

Abstract — Resource provisioning is a general technique for

handling the resource allocation in cloud environment.

Monitoring the system performance and the user request is

crucial for efficient cloud resource management. Also in cloud

environments, issues such as cost and resource provisioning

based on QoS constraints are yet to be addressed. In this paper,

we present a SLA(Service Level Agreement) - Aware Adaptive

(SAA) provisioning method for Virtualized Applications that

employ a flexible determining model. We present advanced

cloud infrastructure which maintain proper virtual machine

numbers by optimizing resources allocation. Our experiments

show that our adaptive model minimize the maintain cost of

virtual machines while satisfying user average response time

constraint and the request arrival rate constraint.

Keywords: Provisioning, Service Level Agreement, Adaptive,

Cloud Computing Platform

1 Introduction

Clouds computing redefine a new supplement, consumption,

and delivery service model for IT web services by providing

dynamically scalable and often virtualized resources as a

service over the Internet[1]. Cloud computing[2,3] are

provided as three kinds of services type. Such as

Infrastructure as a Service(IaaS), Platform as a Service(PaaS),

and Software as a Service(SaaS). We consider mainly IaaS,

which provide a range of attractive features such as resource

elasticity, cost efficiency, and ease of management. The main

purpose of management cloud computing infrastructure is to

ensure the quality and cost-effectiveness. Moreover, it also

leads the reestablishment of economic relationships between

the provider and the users based on cost and performance of

the services. The online users can get services by sending

their requests to service provider. Also, the cloud services

should satisfy Service Level Agreements (SLAs). SLA is

agreement about quality of cloud services signed between

cloud service providers and consumers. SLA specifies

concretely expected performance metric and charging model,

which include response time, throughput, availability, reward

and penalty, and so forth. Current cloud computing paradigms

are not easily to meet users’ purpose, especially facing the

requirement of diverse applications from different users.

In order to satisfy SLA and provisioning existing virtualized

resources optimally. Cloud computing service providers

make the profits by providing high-quality services through

efficiently allocating the resources on demand at the same

time. We present a SLA-based framework handling resource

allocation on a cloud computing platform. This would support

to accomplish two goals simultaneously: minimized user

response time and minimized resource usage cost.

The activities to accomplish both goals may conflict with

each other. For example, user response time can be reduced

by assigning more resources while the cost may be lowered

by allocating less resources. Since the workload of an

application service usually varies with time, this is a great

challenge for resource allocation optimally. So, proposed

provisioning method would need to achieve the goal.

 For this reason, this paper proposes a SLA-Aware Adaptive

resource provisioning method (SAA provisioning Method).

SAA provisioning method provides scalable processing

power with dynamic resource provisioning mechanisms,

where the number of virtual machine used is dynamically

adapted to the time-varying incoming request workload. To

evaluate our framework and method, we applied RUBIS [19]

to simulate the cloud environment. In the simulation, the

workload estimation for virtualized applications is

investigated comprehensively. Through, we compare it with

utilized method, a dynamic resource provisioning approach

proposed recently.

The remainder of the paper is organized as follows. Section

2 presents survey related to our work. Section 3 describes our

SAA provisioning method on the cloud computing platform.

Section 4 presents our adaptive resource provisioning

algorithm and its performance evaluation. Section 5

concludes the paper and points out some future research

directions.

2 Related Work

Dynamic resource provisioning [4], which has been

generally used in web hosting platforms, has proven to be

useful in handling multiple time-scale workloads(VMs).

However, dynamic provisioning in previous research has

been more focus on physical resource allocation, which is not

SLA-Aware Adaptive Provisioning Method

52 Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 |

flexible enough for the effective delivering of services.

Unlike other computing resources, VMs are flexibly deployed

on physical machines, which can be automatically generated

for different virtualized applications. Though existing

physical capacity provisioning has long been used,

overprovisioning or under-provisioning has been a common

difficulty for most resource IT vendors. To solve this problem

it is necessary to make full use of advantages of adaptive

resource provisioning. We propose the design of a virtualized

resource allocation framework using the cloud platform,

which allocates VMs on demand in order to provide services,

as well as minimizing the cost of using those virtual resources.

Nowadays, some researches have focused on the issue of

resource management and performance control in cloud

computing platform[5,6]. However, new challenges are

introduced while service providers benefit from the planning

flexibility in technical and economic aspects. Some

challenges and opportunities of automated control in cloud

computing is discussed in [7]. And other researchers work

to improve the resource utilization, such as resource

virtualization [8,16], on-demand resource provisioning

management based on virtual machines [9, 10], and QoS

management of virtual machine [11].

Also, many researchers [12, 13] focus on improving

resource utilization as well as guaranteeing quality of the

hosted services via on-demand local resource scheduling

models or algorithms within a physical server. However, most

of them could not be good solutions to tradeoff between

resource utilization and SLA. For example, [12] present a

novel system-level application resource demand phase

analysis and prediction prototype to support on-demand

resource provisioning. The process takes into consideration

application’s resource consumption patterns, pricing

schedules defined by the resource provider, and penalties

associated with SLA violations. The authors in [13] improve

resource utilization and performance of some services by

hugely reducing performance of others. How to improve

resource utilization, as well as guarantee SLA, is a challenge

in a VM-based cloud data center

In the context of the dynamic resource provisioning, the

author in [16] introduce three mechanisms for web clusters.

The first mechanism, QuID [14], optimizes the performance

within a cluster by dynamically allocating servers on-demand.

The second, WARD [15], is a request redirection mechanism

across the clusters. The third one is a cluster decision

algorithm that selects QuID or WARD under different

workload conditions.

For multi-tier internet applications, the modeling is

proposed that a provisioning technique which employs two

methods that operate at two different time scales : predictive

provisioning at the time-scale of hours or days, and reactive

provisioning at time scales of minutes to respond to a peak

load[17].

In this section, we first discuss the service level agreements

(SLAs) that we use in the paper. Then we give a highlevel

description of the test bed and three types of workload

generators for our experimental studies. Finally, we describe

the control system architecture that we use throughout the

paper.

2.1 Service Level Agreements

Service level agreements (SLAs) are firm contracts

between a service provider (IT Bender) and its clients

(Users). SLAs in general depend on certain chosen criteria,

such as latency, reliability, availability, throughput and

security, and so on. In this paper, we focus on end-to-end

latency, or maintain cost. Although SLA cost function may

have various forms, we believe that a staircase function is a

natural choice used in the real-world contracts as it is easy

to describe in natural language [18]. We use a single step

function for SLA in our paper as a reasonable

approximation. We assume that if response time is shorter

than arranged time, then the service provider will earn some

revenue. Otherwise, the service provider will pay a penalty

back to the client. As a result, in order to minimize the SLA

penalty cost, our method should keep the response time

right below arranged time

3 Proposed Scheme

3.1 SAA Framework

This section presents a scalable framework for virtualized

applications on the cloud computing platform. The

framework deals with the scenario that hosted on a cloud

computing platform, handle many virtual machines

simultaneously according to the incoming user requests.

Since the amount of incoming requests changes with time

and the cloud platform is a pay-per use service, the

application has to dynamically assign the resources it uses

to maintain guaranteed response time and reduce the total

owner cost under various workloads. In the framework,

server pool, combining a distinct computing server, is

capable of processing multiple hybrid workload requests.

To efficiently utilize resources, there are two main issues

considered in the cloud computing platforms. The first is

finding the least loaded resource for dispatching incoming

requests. The second issue deals with SAA provisioning for

adaptively handling dynamic user’s requests. With

resource state monitoring, each workflow enactment

request will be sent to the least loaded resource for service.

The effectiveness of least load dispatching largely depends

on how to accurately capture the computing load on each

resource.

Fig. 1 shows an overview of the framework in handling

user requests for virtualized application execution

environments (VAEEs). The architecture consists of four

main components that Monitor, Analyzer, Resource

scheduler, and Virtualized Application Executor (VAE)

control loops architecture. The goal is to meet the user

requirements while adapting cloud architecture to

workload variations. Usually, each request requires the

Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 | 53

execution of virtualized application allocated on the VM of

each physical server. A cloud computing resource amount

enables multiple virtualized applications may be increased

when request increases and reduced when request reduces.

This dynamic resource provisioning allows flexible

response time in a VAEE where peak workload is much

greater than the normal steady state.

Fig. 1 Proposed SAA-Provisioning Framework

Fig 1 provides a high-level dynamic resource provision

architecture for cloud computing platform, which shows

relationships between heterogeneous server resources pool

and self-management function. Server pool contains

physical resources and virtualized resources. A lot of VMs

hold several VAEEs sharing the capacity of physical

resources and can isolate multiple applications from the

underlying hardware. VMs of a virtualized application may

correspond to a physical machine.

Self-management function means mechanisms to automate

the VMs of configuring and tuning the virtualized

application so as to maintain the guaranteed response time

for requirements of the diverse users. As previously stated,

four main components more detail explanation are as

follows:

① Monitor: Collects the workload and the performance metric

of all running VAEEs, such as the response time, the request

arrival rate, the average service time, and the CPU utilization,

etc.

② Analyzer: Receives and analyzes the logged parameter from

the monitor to estimate next state workload. It also receives

the response times of different users

③ Resource Scheduler: Sets up updated configuration metric

for each VAEE, and uses its optimizer with the optimization

model to determine resource provisioning according to

these workload estimates and response time constrains of

different users such that the resource requirements of the

overall VAEE is minimized.

④ Virtualized Application Executor: Assigns the virtual

machine configuration, and then runs the VAEEs to satisfy

the resource requirements of the different customers

according to the optimized decision.

In conclusion, Fig. 1 is presented the dynamic resource

provisioning method. Our research is a great help of on the

improved design of resource scheduler for requested

workload. The goal is to minimize the using of resources

for request workload while satisfying different users for the

guaranteed response time.

3.2 Proposed SAA provisioning Algorithms

In this section, we propose an auto-control algorithm

denoted as SAA provisioning method (SLA Aware

Adaptive) to dynamically provide an adequate amount of

resources to virtualized application. To maintain

acceptable response time and cost efficiency, it would find

the configuration value which the Sum of each VAEEs

profits is maximized. Considering all of virtual machine

system parameters observed by monitor, especially

response time and usage cost, we compute the profit value

of each VAEEs. Through equation (1), our method

calculates the optimized next step setting value. Resource

scheduler receives the modified configuration parameter.

Then it reflects the value next schedule period.

Table.1 List of Notations

Symbol Definition

r(RA) Rate of Arrival Request

r(SLAS) Rate of SLA Satisfied

r(VMF) Rate of VM Failed

c(VMA) Active VM maintain Cost

c(VMI) Idle VM maintain Cost

α Created Value (per Application)

β Weight Value (per Application)

54 Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 |

Profit(𝑃𝑖) = 𝛼 × {𝑟(𝑅𝐴𝑖) × 𝑟(𝑆𝐿𝐴𝑆𝑖) − 𝑟(𝑉𝑀𝑓𝑖)} − 𝛽

× {𝑐(𝑉𝑀𝐴𝑖) + 𝑐(𝑉𝑀𝐼𝑖) } (1)

After each VAEE Profit(Pi) is calculated, Periodically it

is updated and check SLA-requirements. After the specific

point which variability is minimized, Our Scheme elect

optimized parameter for Global Profit.

Fig. 2 Flowchart Calculate Optimized Profit

max { 𝑃𝑟𝑜𝑓𝑖𝑡𝑔𝑙𝑜𝑏𝑎𝑙 = ∑ 𝑝𝑖
𝑛
𝑖=1 } (2)

After all, our mechanism collect local profit and calculate

Global profit as shown in (2). It would find the optimal value

for certain period. Also it is adaptively perform in the course

of time. Since it has sufficient information about virtualized

application. For example, there are a little difference between

current parameter and next-step parameter. It check prefixed

threshold. If it is not exceed, retain the system current

parameter. Finally, Our SAA provisioning algorithms would

find SLA- guaranteed response time and low maintenance

cost.

4 Performance Analysis

4.1 Experiment

In the following experiments, we evaluate our dynamic

resource provisioning technique for virtualized

applications. We establish a prototype system of cloud

environment such that each of the server nodes was run on

Intel Xeon 3.2GHz processors with 8GB RAM. Processing

capacity of each VM server is equal in cloud platform.

VAEE Host ran the open-source version of the Xen 3.0.3

to build the virtualization environment. All machines were

conducted on a Linux kernel 2.6.16.29.

The RUBiS online auction benchmark [19], running on

VMs hosted on different VM servers. RUBiS implements

the core functionality of an auction site similar to eBay, can

be performed from a client’s Web browser. We perform the

three-different kind of applications. The first kind of

application was based on the Apache 2.2 Web server. The

second was based on Java servlets that implement the

application logic with an embedded Tomcat 5.0.28. And

Third application was based on MySQL 4.0. Because our

tested application is CPU-intensive, the only computing

resource we currently regard is CPU resource allocation

and we assume that all VM resources are identical. Table 2

shows the values for various RUBiS parameters in our

simulation experiments.

Table.2 Workload Setting Parameter for RUBiS

Web

Service

App

Service

DB

Service

End–End

Response Time
0.15 sec 0.45 sec 0.40 sec

Service

Rate
350 req/s 200 req/s 150 req/s

Request

Probability
- 0.85 0.85

Guaranteed

Response time
1 sec

4.2 Experiment result

Existing method, focus on maximizing resource utilization

is approximately demonstrated 87% SLA-satisfied rate. We

give consideration to improve SLA-satisfied ratio. Our

mechanism indicate settlement for content better SLA-

satisfied rate and diminish maintain cost.

Our method conducts initiation and removal of VMs before

each interval while considering the utilization of the

previous interval. It is noticeably cost-aware. And the results

of response times and costs are shown in Fig. 3 and Fig. 4.

Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 | 55

Fig. 3 Comparative results of response times between

our method and utilization-based method

The benefit of our proposed method is appeared in Fig 3

and 4. Response time is faster 8.46% than existing method.

And on average, maintain cost is reduced 14.35%. Through

comparative results, we can notice that utilization-based

methods can also handle the workload variations. However,

it is not rapid enough to supply the proper number of VMs

in order to meet the response based on time restricted. In

respect of cost, this method occasionally uses fewer

resources than our proposed method, sometimes at the cost

of violating the SLA. In conclusion, the minimized number

of VMs as well as the maximized CPU resource utilization

can be achieved with our method by dynamic resource

provisioning mechanism, and then we can keep the high

global utility.

Fig. 4 Comparative results of costs between our

method and utilization based method

5 Conclusions

In this paper, it is argued that dynamic provisioning of

virtualized applications environment raises new challenges

not addressed by prior work on provisioning technique for

cloud computing platform. We presented an optimal

autonomic virtual machine provisioning architecture. We

proposed a novel dynamic provisioning technique, which

was algorithms for virtualized applications in cloud

computing platform. Hence the efficiency and flexibility for

resource provisioning were improved in cloud environment.

Currently many server applications adjust the amount of

resources at runtime manually. The framework in this paper

allows applications to automatically manage the amount of

resources according to the system workload. It offers

application providers the benefits of maintaining QoS-

satisfied response time under time-varying workload at the

minimum cost of resource usage. Also, we adopt Service

Level Agreement (SLA) based negotiation of prioritized

applications to determine the costs and penalties by the

achieved performance level. If the entire request cannot be

satisfied, some virtualized applications will be affected by

their increased execution time, increased waiting time, or

increased rejection rate.

The framework mainly deals with the issue: resource

provisioning. For dynamic resource provisioning, SAA

proposed method is as a feedback controller to automate

resource provision by taking information of the

characteristics of virtualized application workload.

Experimental results show that our method outperforms

existing provisioning method, which focus on the utilization

rate based approach in both average response time and

resource usage or maintain cost.

ACKNOWLEDGMENTS

This work was supported by the National Research

Foundation of Korea (NRF) grant funded by the Korea

government(MSIP) (No. 2012R1A1A2009558)

6 References

[1] R. Nathuji, A. Kansal, and A. Ghaffarkhah, “Q-clouds:

managing performance interference effects for qos-aware

clouds,” in Proc. of EuroSys, 2010.

[2] M. Armbrust, A. Fox, and R. Griffith, et al, “Above the

clouds: A Berkeley view of cloud computing”, Technical

Report No. UCB/EECS-2009-28, University of California

Berkley, USA, Feb. 10, 2009.

56 Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 |

[3] R. Buyya, C.S. Yeo, and S. Venugopal, et al, “Cloud

computing and emerging IT platforms: Vision, hype, and

reality for delivering computing as the 5th utility”, Future

generation computer systems, Elsevier science,

Amsterdam, the Netherlands, 2009, 25(6), pp. 599- 616.

[4] S. Li, and D. Tirupati. Technology choice with stochastic

demands and dynamic capacity allocation: A two-product

analysis. Journal of Operations Management, Vol. 12, no

3-4, pp. 239-258, 1995.

[5] E. Kalyvianaki, T. Charalambous, and S. Hand, “Self-

adaptive and self-configured CPU resource provisioning

for virtualized servers using kalman filters”, Proceedings

of the 6th international conference on Autonomic

computing, Barcelona, Spain, June 15-19, 2009.

[6] W. E. Walsh, G. Tesauro, and J. O. Kephart, “Utility

functions in autonomic systems”, Proceedings of the First

IEEE International Conference on Autonomic Computing,

New York, NY, USA, May 17-18, 2004

[7] E. H. Miller Lim, H., Babu, S., Chase, J., Parekh, S.:

Automated Control in Cloud Computing: Challenges and

Opportunities. In: 1st Workshop on Automated Control for

Datacenters and Clouds, 2009.

[8] P. Barham, B. Dragovic, and K. Fraser, et al, “Xen and the

art of virtualization”, Proceedings of the 19th ACM

Symposium on Operating Systems Principles, Bolton

Landing, NY, USA, 2003, pp. 164-177.

[9] Y. Song, Y. Li, and H. Wang, et al, “A service-oriented

priority based resource scheduling scheme for virtualized

utility computing”, Proceedings of the 9th IEEE

International Symposium on Cluster Computing and the

Grid, 2009, pp. 148-155.

[10] J. Zhang, M. Yousif, and R. Carpenter, et al, “Application

resource demand phase analysis and prediction in support

of dynamic resource provisioning”, Proceedings of the 4th

International Conference on Autonomic Computing, 2007.

[11] X.Y. Wang, Z.H. Du, and Y.N. Chen, et al, “Virtualization

based autonomic resource management for multi-tier Web

applications in shared data center”, The Journal of Systems

and Software, 2008, 81(9), pp. 1591-1608

[12] J. Zhang, M. Yousif, and R. Carpenter, et al, “Application

resource demand phase analysis and prediction in support

of dynamic resource provisioning”, Proceedings of the 4th

International Conference on Autonomic Computing, 2007,

pp. 12-12.

[13] P. Padala, X. Y. Zhu, M. Uysal, et al, “Adaptive control of

virtualized resources in utility computing environments”,

EuroSys, 2007, pp. 289-302.

[14] Ranjan, S., Rolia, J., Fu, H., Knightly, R.: QoS-Driven

Server Migration for Internet Data Centers. In: The Tenth

International Workshop on Quality of Service, Miami, FL,

2002

[15] Ranjan, S., Karrer, R., Knightly, E.: Wide Area

Redirection of Dynamic Content in Internet Data Centers.

In: The IEEE INFOCOM, HongKong, 2004

[16] Ranjan, S., Knightly, E.: High-Performance Resource

Allocation and Request Redirection Algorithms for Web

Clusters. IEEE Transactions on Parallel And Distributed

Systems 19(9), 2008.

[17] Urgaonkar, B., Shenoy, P., Chandra, A., Goyal, P., Agile,

T.W.: Dynamic Provisioning of Multi-Tier Internet

Applications. ACM Transactions on Autonomous and

Adaptive Systems 3(1), 2008.

[18] S. Malkowski, M. Hedwig, D. Jayasinghe, C. Pu, and D.

Neumann, “Cloudxplor: A tool for configuration planning

in clouds based on empirical data,” in Proc. of SAC, 2010.

[19] http://rubis.ow2.org/

Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 | 57

http://rubis.ow2.org/

Harnessing The Benefits Of Big Data In The Cloud

Felix Njeh and Dr. Bo Yang
Department of Computer Science

Bowie State University, Bowie, Maryland 20715

Abstract - In recent years, data has gained more visibility and

importance to organizations and governments worldwide.

Innovative technologies have emerged to more efficiently

collect, process and disseminate data or information, bringing

transformational value to these organizations. In the current

information age, the transformation of data to useful

information is playing a vital role in driving effectiveness and

efficiency. Innovation in social computing, the proliferation of

mobile devices, and the emergence of cloud computing have

magnified data availability and accessibility. These changes

have caused a shift from traditional data management systems

and processes to an emerging paradigm of Big Data. In this

paper we present a Cloud based Big Data platform for

collecting and transforming distributed data into knowledge

or insightful information.

Keywords: Big Data, Analytics, Cloud, Grid, Computing,

Distributed Computing

Submitted as a full paper for consideration to The 2013 International

Conference on Grid & Cloud Computing and Applications (GCA'13).

1 Introduction

 The definition of Big Data has yet to be formalized.

During a recent workshop at the National Institute of

Standards and Technology (NIST), there were discussions on

collaborating to define Big Data. So far, several definitions

are being used with no general consensus on the definition.

The most popular one defines Big Data as “a massive volume

of both structured and unstructured data that is complex and

of diverse data types that traditional database and software

techniques cannot be used for efficient processing.” Gartner

defines Big Data as “high volume, velocity and/or variety

information assets that demand cost-effective, innovative

forms of information processing that enable enhanced insight,

decision-making, and process automation.” This definition

uses the three Vs (Volume, Velocity, and Variety) to define

Big Data (see Figure 1). Other definitions include value or

veracity to make it the forth V.

Fig. 1.: Big Data in the Cloud

 Big Data sources include machine-to-machine (M2M),

web and social media, transaction data, biometrics, and

human-generated. Due to the increase in data sources and the

corresponding exponential increase in the amount of data

generated, the processing capacity of conventional database

systems has become inadequate. Data set sizes have become

too big, the data creation rates too high, and existing database

structures do not fit the varied data types. Without the right

tools, it becomes impossible to collect, store, and analyze this

data to reveal practical insights [9].

 Technologies such as Hadoop and Cloud Computing

offer a lot of promise to solve some of the problems

emanating from Big Data. When these technologies are

applied correctly, useful information, hidden patterns and

unknown correlations in the data, will be discovered.

2 Background

In this section we discuss Big Data standards efforts, trends

and platform.

2.1. Big Data Standards

Some of the challenges facing Big Data are invoked by its

distributed nature (multiple data sources and destinations),

data governance (reliability and integrity of data) and

interoperability (different data sources with various data

types).

Though there has been a broad and growing consensus on

the challenges posed by big data, there is however no

consensus on standardization. Many in the IT industry are

advocating the need for a standardization body, such as the

58 Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 |

NIST, to spearhead an effort towards standardizing Big Data.

Some suggested areas needing standardization include but are

not limited to interoperability, security, and privacy. These

standards will result in commonly accepted best practices for

Big Data solutions.

A few, however, reject the idea of standardization arguing

that standardization may stifle development. This is countered

by the majority that finds huge benefits in standardizing Big

Data.

2.2. Big Data Trends

Fig. 2. Search trends on Big Data, data analytics, Cloud Computing.

 Source: Google trends

 There confusion as to when the term Big Data

originated; some literature suggests that the term originated in

the 1990s during conversations at Silicon Graphics.

 From Fig. 2 above, we realize that the terms big data,

data analytics, cloud computing and Hadoop were all used on

a limited a limited basis before 2009. It was until after this

time that the search for information relating to these key

technologies became very popular. At this time the interest in

Cloud Computing had an exponential growth, seconded by

Hadoop and then big data. Data analytics is termed the “killer

app” of Big Data since it provides the resultant insight from

Big Data. The interest in data analytics started to peak after

2011 and we predict this trend to grow much faster in the near

future.

 Big Data, Hadoop, Cloud Computing and data analytics

are key components of our proposed Cloud based Big Data

platform.

2.3. Hadoop as a platform for Big Data

 Hadoop is a framework comprising of a parallel

computing system and a parallel database. It is highly scalable

and well suited for the distributed processing of large data sets

across clusters of computers. Hadoop is based on a simple

data model, in which any data (structured or unstructured) will

fit. This contrasts the relational data model in which there

must exist a schema for the data before any input .

 The Hadoop framework comprises of two key

components or systems: MapReduce implementation and

Hadoop Distributed File System (HDFS).

User 1

Job 1

Map

Map

Map

Map

Reduce
Job

Ends

User n

Job n

Map

Map

Map

Map

Reduce
Job

Ends

Results

 Fig. 3.: Hadoop MapReduce Model

During the execution of a Hadoop service each task is either a

map or reduce job.

2.3.1. MapReduce

 MapReduce is a framework introduced by Google for

processing parallelizable problems across large datasets in a

distributed computing environment. MapReduce is considered

the execution engine.

2.3.2. Hadoop Distributed File System

 HDFS is a scalable and distributed file system designed

to store large amounts of data. It is a block-structured file

system in which a file is broken into blocks of a fixed size and

stored across a cluster of one or more data storage systems. A

HDFS cluster primarily consists of a NameNode that manages

the file system metadata and DataNodes that store the actual

data. HDFS is a master-slave architecture with the master

being considered the namenode while the slaves are

considered datanodes.

2.4. NoSQL (Not Only SQL)

 A NoSQL database provides a simple, lightweight and

scalable mechanism for storing and retrieving data. In the Big

Data arena, it is preferred over traditional relational databases

especially when working with a huge quantity of data when

the data's nature does not require a relational model. NoSQL

systems allow the use of a SQL-like query language. Hbase,

for example is a NoSQL database and part of the Hadoop

ecosystem modeled from Google’s BigTable system [6].

2.5. Cloud Computing

 Cloud Computing is a model for enabling ubiquitous,

convenient, on-demand network access to a shared pool of

configurable computing resources (e.g., networks, servers,

storage, applications, and services) that can be rapidly

provisioned and released with minimal management effort or

service provider interaction. This cloud model promotes

Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 | 59

availability and is composed of five essential characteristics,

three service models, and four deployment models [19], [20],

[22].

 Cloud Computing consists of three service models,

Software as a Service (SaaS), Platform as a service (PaaS),

and Infrastructure as a Service (IaaS); and four deployment

models, Private cloud, Hybrid cloud, Public cloud and

Community cloud.

Service Models

 The three service models include Software as a Service

(SaaS), Platform as a Service (PaaS) and Infrastructure as a

Service (IaaS).

2.5.1. Software as a Service (SaaS)

 This is a software delivery model in which the provider

gives customers on-demand access to the applications hosted

in a cloud infrastructure. The infrastructure is managed by the

provider while the consumer has only limited user-specific

application configuration settings. SaaS is increasingly

becoming a common delivery model for most business

applications. The consumer usually pays a subscription fee

instead of a licensing fee.

2.5.2. Platform as a service (PaaS)

 This service delivery model allows the customer to rent

the cloud infrastructure (virtualized servers and associated

services) to run consumer-created or acquired applications or

to develop and test new ones. The infrastructure is managed

and controlled by the provider; the consumer has some control

over the deployed applications and possibly application

hosting environment configurations.

2.5.3. Infrastructure as a Service (IaaS)

 IaaS is a delivery capability in which the consumer

provisions processing, storage, networks, and other

fundamental computing resources. The consumer can deploy

and run arbitrary software (operating systems and

applications) but does not manage or control the underlying

cloud infrastructure.

Deployment Models

The deployment models include Private cloud, Hybrid cloud,

Public cloud and Community cloud.

2.5.4. Private Cloud

 With this model, the internal or corporate cloud

infrastructure (systems and services) is operated solely for an

organization. This gives the organization better management

and control over their data and systems. It is also considered a

proprietary network or a data center that supplies hosted

services to a limited number of people.

2.5.5. Hybrid Cloud

 A Hybrid Cloud is made up of at least one private cloud

and at least one public cloud. An example is when a vendor

has a private cloud and forms a partnership with a public

cloud provider, or a public cloud provider forms a partnership

with a vendor that provides private cloud platforms. In other

instances, the organization owns and manages some of the

cloud resources internally while others are made available

externally. A hybrid cloud provides the consumer the best of

both worlds.

2.5.6. Public Cloud

 A public cloud is a cloud model in which the cloud

provider makes the cloud infrastructure available to the

general public; and is owned by the cloud provider. This

model is also considered as external cloud. It has several

advantages to include: lower cost of deployment, scalability

and efficient use of resources (since you only pay for what

you use).

2.5.7. Community Cloud

 A Community Cloud allows the cloud infrastructure to

be shared by several organizations and supports a specific

community that has shared concerns. This model can be

managed by the organizations involved or a third party, and

may exist on premise or off premise.

3 Motivation

 With the multitude and ever increasing data sources

nowadays, we are challenged with a wealth of data coming

from scientific and medical instruments, geospatial sources,

and sensor data from other sources.

 In order to reap the benefits of Big Data, we have to be

capable of examining large amounts of data of various data

types to uncover hidden patterns, unknown correlations and

derive useful information.

 The rapid expansion and availability of data necessitates

a corresponding development of tools that will efficiently

collect, process, analyze and derive useful information from

this plethora of data.

Several tools have been developed and available on the

commercial market to solve some of the problems posed by

Big Data. Big Data analytics is of prime importance as it

provides users with tools needed to perform advanced

analytics [3]. We have attempted to identify some of these

tools and will examine how they can be used in combination.

60 Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 |

3.1. At the crossroads of Big Data and the

Cloud

Our objective is to define and study a combined platform to

leverage the beneficial features of the combination. Cloud

Computing has come a long way and has now attained a

reasonable level of maturity that makes it a viable platform for

multiple applications. In this work, we adopt a Cloud based

platform as the underlying technology on which Big Data tools

reside.

In Fig. 4, we depict the collage of Big Data, Hadoop, Cloud

Computing and NoSQL. This platform provides a very solid

infrastructure for collecting, storing, analyzing and producing

insightful information.

Fig. 4.: The integrated Big Data Cloud

3.1.1. Big Data Platform as a Service (PaaS)

The Big Data PaaS is a Cloud platform that leverages the

Cloud provider’s distributed capabilities, compute power,

analytical tools, storage capacity, elasticity and others.

Our experiment demonstrates how conventional systems are

insufficient to solve the Big Data problem. It further shows

some of the benefits of adopting a Cloud solution.

4 Experimental Setup

In this experiment, we use simulation to demonstrate

resource utilization in a traditional computing environment.

We define a resource request function f of a real variable t

(time) and an interval [a, b] of the real line. The definite

integral f(t) can be defined as follows:

The total amount of a given resource requested and/or

consumed by a user is defined by the area of the region in the

xy-plane bounded by the graph of f, the x-axis, and the vertical

lines x = a and x = b.

We examine different scenarios in the conventional computing

environments and assess the utilization of resources with

respect to a Cloud Computing platform. The example under

study considers that resources such as memory, storage,

bandwidth, CPU, etc. are provisioned and utilize over a

certain period of time.

Fig. 5a represents the use of a given resource over a period of

17 days. This scenario was provisioned for peak load which

leads to the underutilization of the resources. The shaded area

represents the quantity of excess wasted.

Fig. 5a.: Allocation of resources over user demands

In Fig. 5b, illustrates a situation where the resource allocated

does not accommodate spikes in user demands. The shortage

during the peak periods is represented by the shaded sections

of the chart. These shortages could result in applications

crashing or systems delays.

Fig. 5c.: Allocation of resources under user demands

Fig. 5c below demonstrates the dynamic allocation of

resources (pay-as-you-go or pay per use) in a Cloud

Computing environment. Compared to Fig. 5a and 5b, we

realize the benefits in Fig. 5c where the amount of resources

wasted is minimized.

Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 | 61

Fig. 5b.: Dynamic allocation of Cloud resources

4.1. Data Collection and Visualization

 Big Data analytics and visualization will soon become

readily available especially when offered as a Cloud service.

This platform will become the preferred vehicle that makes

big data commoditized and consumable for Corporations and

governments.

 Data for this experiment was generated using a

mathematical model and simulator. Table 1 below shows

some of the variables used by the model.

Demand – user demand for a specific resource over a given

time frame.

Resource Quantity – total amount of the datacenter resource

available.

Dynamic Allocation - the quantity of the of the specified

datacenter resource dynamically allocated by the Cloud.

Capacity – the maximum quantity of the datacenter resource

provisioned.

Time – the time duration over which the simulation will run.

In our example, the time was measured in days.

Demand
Resource

Quantity

Dynamic

Allocation
Capacity Demand

2 30 4 14 9

7 40 9 14 14

10 50 12 14 17

10 60 12 14 17

6 70 8 14 13

1 80 3 14 8

4 90 6 14 11

9 100 11 14 16

10 110 12 14 17

8 120 10 14 15

4 130 6 14 11

2 140 4 14 9

7 150 9 14 14

10 160 12 14 17

9 170 11 14 16

6 180 8 14 13

1 190 3 14 8
Table 1: Resource Allocation

 The input data generated by our model was processed by

the simulation system and the results displayed in Table 1

above. The data are displayed as graphs as shown in Fig 5a-c.

 Our experimental setup was limited to the Cloud layer of

our platform. This is still sufficient to illustrate the concept as

the Cloud is the underlying foundation of the platform.

5 Conclusions

 In this paper we discuss Big Data and propose a

platform which integrates the Cloud, Big Data, NoSQL,

Hadoop and analytic tools to efficiently capture, store and

analyze complex datasets.

 In future works, we will perform more experiments

especially with analytics tools to examine other capabilities of

the platform. Data analytics and security features require more

research to highlight issues affecting the platform. Further

work will include hosting a service-oriented decision support

system on our Cloud platform and testing for fault tolerance,

scalability, data availability and quality of service [8], [5], [8].

62 Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 |

6 References

[1] Abbadi, A. El. (2011). Big Data and Cloud

Computing : Current State and Future Opportunities, 530–533.

[2] Chaudhuri, S. (2012). What Next ? A Half-Dozen

Data Management Research Goals for Big Data and the

Cloud. Proceedings of the 31st symposium on Principles of

Database Systems, 1–4. doi:10.1145/2213556.2213558

[3] Cohen, J., Dolan, B., & Dunlap, M. (2009). MAD

skills: new analysis practices for big data. Proceedings of the

…. Retrieved from http://dl.acm.org/citation.cfm?id=1687576

[4] Dean, J., & Ghemawat, S. (2004). MapReduce:

Simplified Data Processing on Large Clusters. Operating

Systems Design and Implementation (OSDI ’, 04.

[5] Demirkan, H., & Delen, D. (2012). Leveraging the

capabilities of service-oriented decision support systems:

Putting analytics and big data in cloud. Decision Support

Systems, in press(0), 1–10. doi:10.1016/j.dss.2012.05.048

[6] Ghemawat, S., Gobioff, H., & Leung, S.-T. (2003).

The Google file system. ACM SIGOPS Operating Systems

Review, 37(5), 29. doi:10.1145/1165389.945450

[7] Greenberg, A., Hamilton, J., Maltz, D. A., & Patel, P.

(2009). The Cost of a Cloud : Research Problems in Data

Center Networks, 39(1), 68–73.

[8] Herodotou, H., Lim, H., Luo, G., Borisov, N., &

Dong, L. (2011). Starfish : A Self-tuning System for Big Data

Analytics. Systems Research, (1862), 261–272. Retrieved

from http://www.cs.duke.edu/~hero/files/cidr11_starfish.pdf

[9] LaValle, S., Lesser, E., & Shockley, R. (2011). Big

data, analytics and the path from insights to value. MIT sloan

management …, 52(2), 21–31. Retrieved from

http://sloanreview.mit.edu/the-magazine/2011-

winter/52205/big-data-analytics-and-the-path-from-insights-

to-value/

[10] Long, P., & Siemens, G. (2011). Penetrating the Fog:

Analytics in Learning and Education.

[11] Manyika, J., Chui, M., Brown, B., & Bughin, J.

(2011). Big data: The next frontier for innovation,

competition, and productivity. McKinsey Global Institute,

(June). Retrieved from

http://scholar.google.com/scholar?hl=en&btnG=Search&q=int

itle:Big+data+:+The+next+frontier+for+innovation+,+compet

ition+,+and+productivity#0

[12] McGuire, T., Chui, M., & Manyika, J. (2012). Why

Big Data Is The New Competitive Advantage. Ivey Business

Journal, 76(4), 1–4. Retrieved from

http://web.ebscohost.com/ehost/pdfviewer/pdfviewer?sid=370

d66cc-740c-4531-a268-

28955083c818@sessionmgr11&vid=2&hid=14

[13] Padhy, R. P. (2013). Big Data Processing with

Hadoop-MapReduce in Cloud Systems, 2(1), 16–27.

[14] Prekopcsk, Z., Makrai, G., & Henk, T. (2011).

Radoop : Analyzing Big Data with RapidMiner and Hadoop.

Technology. Retrieved from

http://www.prekopcsak.hu/papers/preko-2011-rcomm.pdf

[15] Rajaraman, A., & Ullman, J. D. (2010). Mining of

Massive Datasets.

[16] Russom, P. (2011). Big data analytics. October,

19(September) 2011, 40. Retrieved from

http://faculty.ucmerced.edu/frusu/Papers/Conference/2012-

sigmod-glade-demo.pdf

[17] Tsuchiya, S., & Lee, V. (n.d.). Big Data Processing

in Cloud Environments, 159–168.

[18] Begoli, E., & Horey, J. (2012). Design Principles for

Effective Knowledge Discovery from Big Data. 2012 Joint

Working IEEE/IFIP Conference on Software Architecture and

European Conference on Software Architecture, 215–218.

doi:10.1109/WICSA-ECSA.212.32

[19] Peter Mell, Tim Grance. “Effectively and Securely

Using the Cloud Computing Paradigm”, NIST, Information

Technology Laboratory.

[20] NIST Cloud Computing Standards Roadmap. “NIST

CCSRWG – 070 Eleventh Working Draft”. May 2, 2011

[21] Madoka Yuriyama, Takayuki Kushida, “Sensor-Cloud

Infrastructure - Physical Sensor Management with Virtualized

Sensors on Cloud Computing”, IBM Research - Tokyo,

March 17, 2010

[22] Peter Mell and Tim Grance. “The NIST Definition of

Cloud Computing”. 10-7-09

[23] Cloud Computing, 227-234. Ieee.

doi:10.1109/CLOUD.2011.20

[24] Benson, K., Dowsley, R., & Shacham, H. (2011). Do

you know where your cloud files are? Proceedings of the 3rd

ACM workshop on Cloud computing security workshop -

CCSW ’11, 73. New York, New York, USA: ACM Press.

doi:10.1145/2046660.2046677

[25] Hauswirth, M., & Decker, S. (2007). Semantic Reality –

Connecting the Real and the Virtual World Position Paper, 1-

4.

Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 | 63

A Stream Symmetric Homomorphic Encryption Scheme with Finite
Automata

Alejandro Llamas1 and Raúl González1
1Computer Sciences, CINVESTAV, Guadalajara, Jalisco, México

Abstract— This paper presents a new homomorphic en-
cryption scheme which uses sequential machines as a basis
to produce a stream-symmetric encryption, which can be
expanded to a homomorphic encryption with the help of the
operation over automata called serial composition, allowing
the application of any operation that can be represented by
means of a finite automaton, on the set which contains the
cipher-text. Unlike conventional cryptographic schemes this
is not aimed at sharing information securely, so key distri-
bution is not necessary and a symmetrical or asymmetrical
cryptosystem makes no difference. With regard to safety, the
intruder can only design cryptanalytic algorithms having as
input a set of encrypted text and a composite automaton,
constructed with the keys and an operation automaton. To
illustrate the correct operation of the cryptographic scheme,
we include the implementation of the greatest common
divisor of two numbers.

Keywords: Homomorphic Encryption, Finite Automata, Cloud
Computing.

1. Introduction
Stream-symmetric cryptography comes perhaps from the

old VigenÃĺre code, in which one character is exchanged
for another according to a key or pad, many studies and
developments have been made in this field, perhaps one of
the most important is shown by Shannon in his article [1],
where under certain conditions proved that the one time pad
can be perfectly safe, being the basis of stream-symmetric
encryption. One of these conditions is to generate a random
string, such that the cipher-text is calculated using as
parameters the plain-text and the random string, for this
reason the designers of stream-symmetric cryptosystems,
use sequential machines to generate pseudo-random strings
called key-streams, in order that these chains may be
repeated if it is introduced to the sequential machine, the
initialization vector (IV) and the key. However we use
sequential machines, for they have the characteristic of
being invertible and not due to the ability to generate
pseudo random repeatable chains. One of the first to talk
about invertible circuits and their inverses was James L.
Massey in [2].

Returning to symmetric encryption, an important feature
is that its keys must be kept secret. If we want to send

data securely, keys have to be transmitted through a secure
channel, this is the problem of key distribution, solved by
Rivest, Shamir and Adleman with RSA in 1978 [3] (note
that, in the scheme that we show here is not necessary key
distribution). Also Rivest et al. were the first to propose,
in [4], a homomorphic encryption, a problem that many
have tried to solve (e. g. [5], [6]), but for some time
could only design a partial homomorphic encryption,
until 2009 when C. Gentry showed, using lattice-based
cryptography, the first fully homomorphic encryption
scheme. His scheme supports evaluations of arbitrary depth
circuits by effectively refreshing the cipher-text, thereby
reducing its associated noise and hence solving the problem
of indecipherable cipher-text. However, this scheme is still
impractical. For this reason, we attack the open problem of
designing a cryptographic scheme which has an algebraic
homomorphic ring, i.e. the two basic operations (addition
and multiplication) can be performed on the cipher-text,
this calculation must be done in a practical time for the
implementation of more complex programs that use these
basic operations in the cipher-text.

The rest of the paper is organized as follows. In section
II we review elements of automata theory that requires the
cryptographic scheme. Section III shows the design of a
stream-symmetric encryption with the automata defined in
section II. In section IV we extend the encryption designed
in section III, to a full homomorphic encryption and we
show the operations that can be performed on the cipher-
text. Section V shows the implementation of the greatest
common divisor of two integers, that can be executed by a
third party without the data or the process is known by him.
Section VI provides a new safety factor (covert operations)
for homomorphic encryption schemes and the analysis of a
possible attack to the encryption scheme shown here. Finally,
in section VII we speak of work performed, current and
future on this research.

1.1 Working in a parallel world
It all starts with “Alex", a researcher who discovers

how to get access to parallel worlds, unfortunately send
a person by the wormhole was impossible, he can only
send data into a sequence of bits, Alex sends a string of
bits and then receives a different string of the same length,
seems that some kind of transformation is performed on

64 Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 |

the chain but is unknown. Days later he discovers that each
different world responds differently to the same strings,
definitely something amazing was happening. Eventually
Alex discovers a tool that helps to communicate with
these strange worlds, something called invertible finite
automata and inverse finite automata, encoder and decoder
respectively, one pair for each different world. He then
meets “Ragde" an entity that works in something like a
computer in that world. That gives Alex an idea: “What if I
send some data to be processed on his computer". Soon he
realized that the capacity of Ragde’s computer is somewhat
limited. Ragde can only perform operations that can be
represented by finite automata, so for really significant
computations Alex would have to intervene in some way,
but even this can take a long time running on Alex’s old
computer, so he needed someone with a lot of computing
power and that person was “Bugsy" a rich guy who was
known to sniff the data of people and make them known.
Due to this Alex needed to think of a way for Bugsy doing
the remaining process that Ragde’s computer could not
perform, keeping in secret most of the information. His
solution was to give Bugsy access to the wormhole and
instructions on how use it.

Without the encoder and decoder Bugsy could never com-
municate with Ragde to find out what calculation is done.
The tasks of Bugsy are: store data and feed the wormhole, in
this way the data and the calculation remain unknown. Once
that Bugsy has completed the sequence of instructions with
the “data" that was initially sent by Alex (data that were
transformed with the encoder used to communicate with
Ragde), he sends the results to Alex. Finally, Alex gets the
results generated with the decoder. Results that he wouldn’t
be able to obtain from his computer or that would simply
take a long time to be useful. Summarizing, Alex managed
to create a tool in order to use the services of supercomputers
(such as Ragde’s computer), without the data used and the
operations performed are known.

2. Finite Automata
Definition 1. A finite automaton is a quintuple M =

(Σ, A,Q, δ, λ), where Σ, A and Q are non empty finite sets,
δ is a function from Q × Σ to Q and λ is a function from
Q× Σ to A. Σ, A and Q are called the input alphabet, the
output alphabet and the state set of M , respectively. δ and λ
are called the next state function and the output function of
M , respectively. We can extend the domain of the function
δ to Q× Σ∗ as follows:

δδδ : Q× Σ∗ → Q
Let q ∈ Q, w ∈ Σn, ν ∈ Σn−1, a ∈ Σ and w = νa

δδδ(q, ε) := q
δδδ(q, w) := δ(δδδ(q, ν), a)

Similarly, we can extend the domain of the function λ

λλλ : Q× Σ∗ → Q
Let q ∈ Q, w ∈ Σn, ν ∈ Σn−1, a ∈ Σ and w = νa

λλλ(q, ε) := q
λλλ(q, w) := λλλ(q, ν)λ(δδδ(q, ν), a).

This kind of automata is also known as “Mealy machine" or
“finite automata with outputs" for this paper is just “finite
automata".

2.1 Finite automata with memory defined by a
function

Definition 2. Let fM : At × Σr+1 → A, be a function
and x0, x = x−1, . . . , x−r, x′ = x−1, . . . , x−r+1 ∈ Σ, y0,
y = y−1, . . . , y−t, y′ = y−1, . . . , y−t+1 ∈ A. The (r, t)-
order memory finite automaton defined by fM is formed as
follows:

M = (Σ, A,At × Σr, δ, λ)
λ(〈y, x〉, x0) = y0 = fM (y, x0, x)
δ(〈y, x〉, x0) = 〈y0, y′, x0, x′〉.

In the case of t = 0 then we have a r-order input memory
finite automaton, if r = 0 then we have a t-order output
memory finite automaton.

2.2 Linear finite automata
The study of linear automata has been carried out for

a long time and many advances have been made in their
understanding, the references [7], [8], [9], [10] contain
more information on this and other types of finite automata.
Here we show only the necessary concepts.

Definition 3. Let M be a finite automaton
defined by the function fM . If fM is a linear
transformation then M is a linear finite automaton.

Let us show the following as the canonical form of
the function of any linear finite automaton with memory:

fM (xi, . . . , xi−r, yi−1, . . . , yi−t) = yi =

j≤r∑
j=0

Ajxi−j +

h≤t∑
h=1

Bhyi−h (1)

where the Aj are matrices of m× l, the Bj are matrices of
m × m, the xj are vectors of dimension l and the yj are
vectors of dimension m, all over a Galois field of q elements
denoted by GF (q). We define the next as the transformation
matrix of the finite automaton M:

G = [A0A1 . . . ArB0B1 . . . Bt] (2)

where the matrices are accommodated horizontally to form
a matrix of m× [(l ∗ r + 1) + (m ∗ t)], we also define

E(i) = [xi . . . xi−ryi−1 . . . yi−t]
T (3)

Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 | 65

where vectors are vertically arranged to form a new vector
of dimension [(l ∗ r) + (m ∗ t)], with this we can define the
function fM as follows:

fM (xi, . . . , xi−r, yi−1, . . . , yi−t) = G ∗ E(i) = yi. (4)

2.3 Inverse of a linear finite automaton
Consequent to the study of linear automata, it was

found the property of this to be invertible, this implies
to calculate the input from the output and an initial
state, there are many ways to invert a finite automaton,
either from the definition function or the finite automaton
itself, each of these techniques requires the automaton
or definition function meets certain conditions, references
[8], [10] and [2] show some types. In this paper we will
show how to invert the linear automata that we have
defined. We will focus on finding the inverse from the
values of the matrix G. In the article [11] Shimon showed
how to get the inverse of a finite invertible automaton
through the states of the machine. We begin the process
of invert the given automata, verifying if it is invertible.

Proposition Let M be a finite automata and G its
transformation matrix. If A0 has left inverse then M is
invertible.

Definition 4. Let M be an invertible finite automaton
defined by fM . The inverse automaton of M is M’ and is
defined by:

fM ′(yi, . . . , yi−t, xi−1, . . . , xi−r) =

xi = A−10 yi −
h≤t∑
h=1

A−10 Bhyi−h −
j≤r∑
j=1

A−10 Ajxi−j (5)

2.4 Serial composition of finite automata
Definition 5. Let M=(Σ, A,Q1, δ1, λ1) and

M’=(A,Γ, Q2, δ2, λ2) be two finite automata. We define the
composite finite automaton as follows:

C(M1,M2) = (Σ,Γ, Q1 ×Q2, δ, λ)
δ(〈q1, q2〉, x) = 〈δ1(q1, x), δ2(q2, λ1(q1, x))〉

λ(〈q1, q2〉, x) = λ2(q2, λ1(q1, x))
q1 ∈ Q1, q2 ∈ Q2, x ∈ Σ.

This kind of composition produces a finite automaton
that output, the result of introducing the exit of the first
automaton into the second, however is only half the time it
would take execute separately, as shown in the figure 1 where
X = x0, . . . , xt, Y = y0, . . . , yt and Z = z0, . . . , zt, t ∈ N.

2.5 Operations with finite automata
Our scheme is limited to those operations that we

can represent by a finite automaton but even if is not as
powerful as a Turing machine it capacity is large, indeed

Fig. 1: Finite Automata Composition

any operation that we can design with a linear sequential
circuit can be represent by a finite automaton, Kohavi [8]
shows a method to transform any finite automaton in a
linear sequential circuit and biseversa. Now even if we have
an infinite number of operations that can be represented
with finite automata, we are only interested in two in order
to declare our scheme fully homomorphic encryption, these
are the addition and multiplication in binary. The addition
is simple, the problem is that a multiplication of two
undefined numbers can not be represented by an automaton,
however we can limit the size of the input, as it does with
digital circuits and generate finite automata that multiply
n-bit strings.

Definition 6. We call an operation automaton, to any
transformation that is represented by a finite automaton.

3. Stream-symmetric Encryption
The traditional stream-symmetric encryption is based on

the idea of the one time pads, an encryption scheme that
Shannon proved to be perfectly safe in [1], for this stream en-
cryption designers, focus on algorithms that generate pseudo
random strings called key-streams, these generators have the
property that the same seed (the key and initialization vector
IV) can repeat the key-stream, as with the one time pads,
perform a simple XOR between the plain-text and the key-
stream generates the cipher-text, for decoding is necessary to
repeat the key-stream with the generator and operate along
with the cipher-text to obtain the plain-text. The security of
these systems is mainly based on the following:
• The difficulty of estimating the initial state of the

sequential machine that generates the key-stream.
• The chain length of the repeating pattern e.g. the chain

132132 has a pattern of length 3, ideally it is a very
large number.

• The distribution of generated key-stream, ideally the
distribution is uniform.

For more information about the types of stream cipher see
[12], also are many stream-symmetric ciphers available, in
[13] shown the algorithms selected as the best.

3.1 Stream-symmetric encryption with finite
automata

The Stream-symmetric encryption with finite automata
requires, a key generator algorithm KeyGen, which in our
case is a generator of invertible finite automata and their

66 Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 |

inverses, an encryption algorithm Encrypt and one for
decryption Decrypt.

KeyGen. To generate the keys we have to define the
following: the value of q, i.e. the number of elements in
the field, normally we handle bit sequences to represent the
data so q is usually 2, the space vector of input elements l,
these depend on the size of the character being used as input,
normally 8 bit, the space vector of output elements m which
must be equal or greater that l because if is less, there is a
loss of information and retrieve the plain-text is impossible,
the larger the value m, more secure is the encryption
but beware because this value increases exponentially the
number of states in the finite automaton. Finally select the
values for the input memory r and output memory t, as
before higher safer but more states in the automaton. Just to
get an idea of how involved the selected memory are, the
number of states that have the finite automata is defined by
the following rule:

q(r∗l)+(t+m) (6)

while the key space of our encryption scheme is greater than:

j≤r∏
j=1

qm∗l ∗
h≤t∏
h=1

qm∗m. (7)

Once you choose those parameters, select random numbers
from the field GF (q) to form the transformation matrix
G, before continuing, we verified that the matrix A0

from G is invertible, if it is then G is the transformation
matrix for our invertible finite automaton, otherwise
select new values for A0 until find a matrix that has left
inverse. Once we have selected the matrix G, form fM
as shown in equation (1) and using the technique of the
section II, generate its corresponding finite automaton,
then generate its inverse. All that remains is to select
the corresponding initial states, to do this arbitrarily
select a state s0 = 〈xi−1, . . . , xi−r, yi−1, . . . , yi−t〉
from M as initial state, then the initial state of M ′ is
s∗0 = 〈yi−1, . . . , yi−t, xi−1, . . . , xi−r〉. Summarizing M is
our finite automaton for encryption with initial state s0 and
M ′ is our finite automaton for decryption with initial state
s∗0 i.e. the private keys for the stream-symmetric scheme.
Must take into account that the encryption key can be any
invertible finite automaton, need not be linear, the linear
automata is used to show a basic technique of inversion,
we can use nonlinear finite automata or invertible finite
automata with delay as shown Tao in [7].

Encrypt. Let p1, . . . , pn ∈ Σn be the plain-text and M =
(Σ, A,Q, δ, λ) our invertible automaton used to encrypt, we
calculate the cipher-text c1, . . . , c2∗n ∈ A2∗n as follows:

λ(s0, d1p1d2p2, . . . , dnpn) = c1, . . . , c2∗n (8)

where d1, . . . , dn ∈ Σn is a string se-
lected at random with a uniform distribution.

Decrypt. Let c1, . . . , c2∗n ∈ A2∗n be the cipher-text
and M ′ = (A,Σ, Q′, δ′, λ′) our inverse automaton used to
decrypt, we recover the plain-text by computing:

λ′(s∗0, c1, . . . , c2∗n) = d1p1d2p2, . . . , dnpn (9)

finally remove all dj , 1 ≤ j ≤ n and we get p1, . . . , pn i.e.
the plain-text.

4. Homomorphic Encryption
This form of encryption allows specific types of

calculations are conducted in the cipher-text and obtain
an encrypted result, which corresponds to the encryption
result of the operations performed on the plain-text. When
we speak of homomorphic encryption, we can refer to
partial homomorphic encryption or fully homomorphic
encryption, the first has the characteristic that we can find
over elements encrypted a binary operation resulting in
an algebraic group, homomorphic to the group we have
in the plain-text, these operations are called homomorphic
operations e.g. RSA is multiplicative homomorphic, we
can multiply two encrypted numbers and the result after
decoding, is the multiplication of the two corresponding
plain-texts.

If we have a fully homomorphic encryption, then we can
find over elements encrypted, two binary operation leading
to an algebraic ring, homomorphic to the ring we have in the
plain-text, such operations as in the previous case are called
homomorphic operations, in other words, let P be the set of
plain-texts, + and × binary operations over P and +c and
×c binary operation over the set of cipher-texts then for all
p1, p2 ∈ P :

Encrypt(p1 + p2) = Encrypt(p1) +c Encrypt(p2), (10)
Encrypt(p1 × p2) = Encrypt(p1)×c Encrypt(p2), (11)

normally + and × are modular addition and multiplica-
tion. In recent years this type of scheme has been largely
worked, however most of the schemes are based on the same
blueprint, using as basis an asymmetric cipher, then find
an adaptation that allows get operations over the cipher-text
that lead to a fully homomorphic scheme, some are RSA
and “El Gamal", this and other examples are described by
Fontaine in [14]. Gentry shows in his PhD thesis [15] the
generation of a homomorphic scheme with latices, however
its outline as many more, presents the noise problem i.e.
after a finite number of operations, plain-text can not be
obtained from the cipher-text, which Gentry resolves by
encrypting the cipher-text again, however this makes the
scheme impractical. Unlike regular schemes, ours is based
on stream-symmetric encryption with sequential machines,

Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 | 67

Fig. 2: Transform

which does not have the noise problem, as consequence
operations are unlimited.

4.1 Stream-Symmetric-Homomorphic Encryp-
tion (SSHE)

A symmetric-homomorphic encryption scheme has four
algorithms, KeyGen, Encrypt, Decrypt and an additional
algorithm that differs in the definition given by Gentry in
[16], for our case the algorithm Transform, that takes as
input the encryption key (the invertible finite automaton),
the decryption key (the inverse finite automaton) and an
operation C ∈ Ω = the set of finite automata, (i.e. the op-
eration can be represented by a finite automaton), it outputs
an automaton Cc that can process encrypted data. Cc take
as input a set of cipher-texts Ψ = 〈ψ1, . . . , ψt〉, it outputs a
cipher-text ψ. in other words, Let ψj = Encrypt(πj), 1 ≤
j ≤ t.

If ψ = Cc(Ψ) Then C(π1, . . . , πt) = Decrypt(ψ).

Transform. The other 3 algorithms needed for the ho-
momorphic encryption are the same that we show in section
III, we now describe the last. The algorithm Transform
has the function of composing three finite automata that
receives as input, these are the decryption, the operation and
the encryption automata, as shown in the figure 2. The result
is an automaton that can perform the operation realized by
the operation automaton, but receives as input a cipher-text
and outputs an encryption of the result given by the operation
automata.

4.2 SSHE operations
What operations can we apply on the cipher-text? As

discussed in section II, any operation performed by a sequen-
tial linear circuit can be represented by a finite automaton
and with the algorithm Transform we can convert any
operation automaton, to a SSHE operation, so unlike other
schemes here we can design an infinite number of SSHE
operations, even if we only need addition and multiplication
to declare our scheme fully homomorphic, the point of
this difference is that with an infinite number of possible
homomorphic operations (SSHE operations), we introduce
the new security parameter covert operations, if it is required
not only the host unknown the data but also the operations
performed in the cipher-text, more on this in the security
section.

5. A worked example
The following example shows an implementation that

calculates, the greatest common divisor of two encrypted
numbers.

Definition 7. Let x, y, c and c′ be positive integers, then
the greatest common divisor is c, if c|x and c|y also their
not exist c′ > c such that c′|x and c′|y. Where c|x means
that c exactly divides x.

For this we use the technique of successive subtraction
so we only need three basic operation automata, the “sub-
traction automaton", the “comparison automaton" and the
“equal automaton". Once these have been designed, we use
the algorithm Transform to operate on the cipher-text and
we get to host.

5.1 Basic operations
The following subsection shows the designed operation

automata, noting that all consecutive automata have
been composed, whereby the keys (here encryption and
decryption automata) remain safe, even we can make
that the host does not know which operation has being
performed. Furthermore the operation automata are designed
to ignore the values corresponding to the random input
embedded in the plain-text. The following three automata
form the basis of the implementation:

• SubC. This automaton subtracts two bit strings that
have been encrypted.

• CMC. This lets us know, given two encrypted strings
two things, if the output is 0, the first component is
greater than or equal to the second, if the output is 1,
the first component is less than the second. Basically
do a subtraction and observe the value of the most
significant bit, attempting to destroy the value of the
decoded data.

• EqualC. Here we have a finite automaton that checks
bitwise if the input data are equal, leaving the most
significant bit in 1 if they are, zero otherwise, again all
possible traces of data that could be used in cryptanal-
ysis is destroyed.

5.2 How the GCD works
Figure 3 shows how the host will use the basic opera-

tion automata to calculate the greatest common divisor, as
mentioned at the beginning of the section, SSHE operations
hide the operation actually applied on the plain-text, however
not all the process is performed with a finite automata,
storage and decisions on program flow are still taken by
the host freely, however the final goal remains unknown.
The host has a general structure of the software as shown

68 Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 |

Fig. 3: Flow diagram of the GCD

in figure 3, for the response of a user "A" the host use the
SSHE operations that corresponds to the user without modify
the software structure. Each one of the SSHE operations,
functions like a black box, responding after receiving inputs.
Once built the software on the host’s machine steps are:

1) The user A, which generated the SSHE operations
with their encryption and decryption keys, select any
two positive integers x, y, computes its binary repre-
sentation, separately encrypts and sends to the host.

2) The host introduces the two encrypted data into the
software and using the SSHE operations of the user
A, calculates the answer and sends it to the user.

3) Finally the user A, using its decryption key, calculates
the plain-text corresponding to the greatest common
divisor of x and y, not forgetting eliminate random
elements embedded in the string at the beginning.

5.3 How the software works
When we implement the software, the host was ignore,

however the calculation is performed as described in the
previous section, the software takes as input two integers
greater than 0 and when we press “Encrypt data", using an
invertible finite automaton, encrypts the data and once we
press “calculate" takes the encrypted data and calculates the
cipher-text that correspond to the greatest common divisor,
finally decrypts the value to verify that the algorithm works.
One program screen shown in figure 4.

6. Security
The safety analysis of an encryption scheme is very com-

plicated, because the actions that the intruder can perform
are vast, which is why to know how safe it is an encryption

Fig. 4: GCD software view

scheme, are designed some possible attacks and is observed
the complexity of implement them.

6.1 A new security approach (covert opera-
tions)

The idea can be implemented in two ways, one where
software is designed by the host and another where the user
designs, being designed by the host, security level covert
operations, can not be reached. In case that the software
is designed for the user, given that the SSHE operations
are the operation automata compounds with encryption and
decryption keys, it can achieve new security approach where
not only the host unknown the data but also the calculation
being made by the SSHE operations, to know the operations
performed on the plain-text, the intruder must decompose
the basic operation in its components automata and do this
is considered a complicated task, as shown in [17] and [8],
besides that the resulting automata from the decomposition
are not unique, there is a very large number of automatons
which can be the answer of the decomposition.

6.2 Algebraic attack
In most of the attacks, we has to suppose that parts

of the data that should be kept in secret have been
discovered, in the following we will analyze a case where
the functions defining the encryption and decryption
automata have been discovered by the intruder and also
is able to obtain the corresponding cipher-text from a
selected plain-text, the attack is carried out as follows:
let Σ be a l-dimensional vector space over GF (q), A be a
m-dimensional vector space over GF (q), xj ∈ Σ, yj ∈ A
where j ∈ Z and the equation (1) is the definition function
of the encryption automata.

Suppose we know Aj and Bh, 0 ≤ j ≤ r, 1 ≤
h ≤ t. The goal now is to get the initial state formed
by x−1, . . . , x−r, y−1, . . . , y−t. To achieve this we need to
create a system of (r+ t) equations with r+ t unknowns, to
generate them do the following, assume that P x

i corresponds
to a known value of xi and Cy

i corresponds to a known
value of yi. Introduced a sequence of length r to observe

Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 | 69

the following behavior of the function:

A0P
x
0 +A1x−1 + . . .+Arx−r +

B1y−1 +B2y−2 + . . .+Bty−t = Cy
0

A0P
x
1 +A1P

x
0 +A2x−1 + . . .+Arx1−r +

B1C
y
0 +B2y−1 + . . .+Bty1−t = Cy

1 (12)

...

A0P
x
r−1 +A1P

x
r−2 + . . .+Ar−1P

x
0 +Arx−1 +B1C

y
r−2

+ . . .+Br−1C
y
0 + . . .+Bt(y(r−1)−t||Cy

(r−1)−t) = Cy
r−1

where (y(r−1)−t||Cy
(r−1)−t) indicates that there may be a

known variable (Cy
i) or unknown (yi), to find out we have

to verify, if (r − 1) − t is negative then is y(r−1)−t, if it
is zero or positive then is Cy

(r−1)−t. After we introduce a
sequence of length t to observe the following behavior of
the function:

A0P
x
0 +A1x−1 + . . .+Arx−r+

B1y−1 +B2y−2 + . . .+Bty−t = Cy
0

A0P
x
1 +A1P

x
0 +A2x−1 + . . .+Arx1−r +

B1C
y
0 +B2y−1 + . . .+Bty1−t = Cy

1 (13)

...

A0P
x
t−1 + . . .+At−1P

x
0 + . . .+Ar(x(t−1)−r||P(t−1)−r)

+B1C
y
t−2 + . . .+Bt−1C

y
0 +Bty−1 = Cy

t−1

where (x(t−1)−r||P(t−1)−r) indicates that there may be a
known variable (P x

i) or unknown (xi), to find out we have
to verify, if (t − 1) − r is negative then is x(t−1)−r, if it
is zero or positive then is P x

(t−1)−r. Finally we solve the
system of equations for x−1, . . . , x−r, y−1, . . . , y−t. Note
that Solving systems of multivariate equations is known as
a complex task. The complexity of this attack is defined by
the memory of the automata.

7. Conclusion
In this paper, we create a new fully homomorphic encryp-

tion scheme, using as a base stream-symmetric encryption
and finite automata theory. We show that our cryptographic
scheme has the following characteristics:
• Is defined by the following algorithms: KeyGen,
Encrypt, Decrypt and Transform.

• By using finite automata to encrypt and decrypt, bitwise
or character by character, we have a stream cipher, so
is faster that any other know homomorphic encryption.

• We can define on the cipher-text, any operation that
can be represented with a finite automaton, not only
addition and multiplication.

• The ability to perform an infinite number of consec-
utive operations on the cipher-text, without losing the
connection with the plain-text that corresponds.

• Keys are private, so we do not have the problem of key
distribution.

• The security of the cryptosystem is based on the diffi-
culty of decomposing a finite automaton.

Finally, we show the performance of the Stream-
symmetric-homomorphic Encryption scheme,
generating a software that calculates the greatest
common divisor of two encrypted numbers.
Currently we are working on techniques to reduce the
size of the keys and consequently of SSHE operations, If
this line of research is successful, it could reduce the size
of SSHE operations, to a few kilobytes, remember, that by
the time these operations are automata and for define an
automaton M = (Σ, A,Q, δ, λ), we can use a matrix of
size Q×Σ, having as elements, pairs of the form: (Q,A).

References
[1] C. Shannon, “Communication theory of secrecy systems,” Bell System

Technical Journal, Vol 28, pp. 656âĂŞ715, Oktober 1949.
[2] J. L. Massey and M. K. Sain, “Inverses of linear sequential circuits,”

IEEE Trans. Comput., vol. 17, no. 4, pp. 330–337, Apr. 1968.
[3] R. Rivest, A. Shamir, and L. Adleman, “A method for obtaining

digital signatures and public-key cryptosystems,” Communications of
the ACM, vol. 21, pp. 120–126, 1978.

[4] R. L. Rivest, L. Adleman, and M. L. Dertouzos, “On data banks
and privacy homomorphisms,” Foundations of Secure Computation,
Academia Press, pp. 169–179, 1978.

[5] R. Cramer, R. Gennaro, and B. Schoenmakers, “A secure and op-
timally efficient multi-authority election scheme.” Springer-Verlag,
1997, pp. 103–118.

[6] M. Kuribayashi and H. Tanaka, “Fingerprinting protocol for images
based on additive homomorphic property,” IEEE Transactions on
Image Processing, vol. 14, p. 2005.

[7] R. Tao, Finite Automata and Application to Cryptography. Springer
Publishing Company, Incorporated, 2009.

[8] Z. Kohavi, Switching and Finite Automata Theory: Computer Science
Series, 2nd ed., R. W. Hamming and E. A. Feigenbaum, Eds.
McGraw-Hill Higher Education, 1990.

[9] A. Gill and C. U. B. E. R. LAB., Analysis of Linear Sequential
Circuits by Confluence Sets. Defense Technical Information Center,
1964.

[10] I. Amorim, A. Machiavelo, and R. Reis, On Linear Finite Automata
and Cryptography, 2011.

[11] S. Even, “On information lossless automata of finite order,” Electronic
Computers, IEEE Transactions on, vol. EC-14, no. 4, pp. 561–569,
Aug.

[12] A. Maximov, “Some words on cryptanalysis of stream ciphers,” Ph.D.
dissertation, Lund University, 2006.

[13] S. Babbage, C. De Canniere, A. Canteaut, C. Cid, H. Gilbert,
T. Johansson, M. Parker, B. Preneel, V. Rijmen, and M. Robshaw,
The eSTREAM Portfolio, 2008.

[14] C. Fontaine and F. Galand, “A survey of homomorphic encryption for
nonspecialists,” EURASIP J. Inf. Secur., vol. 2007, pp. 15:1–15:15,
Jan. 2007.

[15] C. Gentry, “A fully homomorphic encryption scheme,” Ph.D. disser-
tation, Stanford University, 2009.

[16] Gentry, “Fully homomorphic encryption using ideal lattices,” in Pro-
ceedings of the 41st annual ACM symposium on Theory of computing,
ser. STOC ’09. New York, NY, USA: ACM, 2009, pp. 169–178.

[17] C. Halatsis, M. Sigala, and G. Philokyprou, “Polylinear decomposition
of synchronous sequential machines,” IEEE Transactions on Comput-
ers, vol. 27, no. 12, pp. 1144–1152, 1978.

70 Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 |

Energy Efficiency Models Implemented in a Cloud Computing Environment.

Abstract: Cloud computing is a paradigm of computing

that shifts the way computing has been done in the past.

In cloud computing, recourses are rented. For example

cloud computing provides flexible services to cloud

users services such as software, platform and

infrastructure as services. The goal behind this is to

provide computing resources on-demand to cloud users

efficiently, through making data centers as green as

possible, by reducing data center energy consumption

and carbon emissions. To solve this problem, we came

up with a power model and an efficient energy usage

metric to calculate power consumption. We also

developed a Load Balancing Virtual Machine Aware

(LBVMA) model that conforms to reduction of energy

consumption and proposed a defragmentation algorithm

to help improve quality of service. The simulation tool

used is cloud analyst. The results show that the LBVMA

model and throttled load balancing algorithm consumed

less energy. Also, the quality of service in terms of

response time is much better for data centers that have

more physical machines, but memory configurations at

higher frequencies consume more energy. The results

show that using the LBVMA model together with the

throttled load balancing algorithm, less energy is used

meaning less carbon is produced by the data center.

Key words: Cloud Computing, Energy Efficiency,

Models, Algorithms, Data Center, Service Delivery.

1. Introduction and Background

People around the world today are using computers,

computer networks and applications to do most of their

business processes, communication and social

networking [1]. As a result, the popularity of web-

based applications is on the increase. Most of the

companies rendering these web based applications use

cloud computing services to host their applications. One

can only imagine how much data processing power is

needed to process this world wide work load. Well, this

work load is distributed across data centers within a

cloud computing environment [1] [2].

The goal of cloud computing is to provide computing

resources as utilities [3], just like today electricity, clean

water and telephoning services are rendered as utilities.

The services provided by cloud computing are software

as a service (SaaS), infrastructure as a sersice (IaaS) and

platform as a service [2]. The new aspects about cloud

computing are its acquisition model which is based on

purchasing of services; its business model which is

based on pay for use, its access model which is over the

Internet to any device and its technical model which is

scalable, elastic, dynamic, multi-tenant, and sharable

[4]. There are different types of cloud computing

environments and these are: Public cloud, where

services are available from a third party service

provider; Private cloud, which is very similar to public

cloud, the only difference is that in private cloud all the

services are managed within one organization;

Community cloud, which is controlled by a group of

organizations that have a common goal or concern, like

security; Hybrid cloud, which is a mix of any of the

other cloud environments [2]. Figure 1 shows the

relationship between some of the services in a cloud

computing environment.

Figure 1: Cloud Computing Environment

Global warming combined with more affordable

computing technologies are some of the main reasons

for coming up with cloud computing [4]. Paying for

services such as infrastructure, platform and

applications has been a big challenge for organizations

Thusoyaone Joseph Moemi and Obeten Obi Ekabua

(Department of Computer Science, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho, 2735, South Africa)

Email: 17071100@nwu.ac.za; obeten.ekabua@nwu.ac.za

Cloud

Database

Server

E-mail

Server
FTP

Server

Application

Server

E-Communication

Server

Cloud Computing Resources

IaaS PaaS SaaS/AaaS

Cloud

Application

University Gorvonment House Mobile

 Device
Laptop

Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 | 71

mailto:17071100@nwu.ac.za

in the past. Cloud computing with its new models helps

companies improve their business models,

communication and relationship with their customers.

The models and algorithms existing in cloud computing

have been implemented for one common goal of

improving efficiency and optimizing energy

consumption in cloud data centers [5] [6] [7]. Evidently

the cloud is growing and will continue to evolve. Hence,

there is a need to provide more efficient models and

algorithms to optimize quality of service and energy

consumption in a cloud computing environment [8].

2. Related Works

Li B. et al. [6] proposed EnaCloud, a novel approach

that enables dynamic application live placement with

the consideration of energy efficiency in a cloud

platform. They use a Virtual Machine to encapsulate the

application and since this application is abstracted as a

bin packing problem, they also proposed an energy-

aware heuristic algorithm to get better results.

Daim et al. [10] explored important issues on reasons

why energy savings in data centers are significant. Part

of their work examines twodata center metrics (PUE

and DCP) from the point of strength and weakness. The

authors also created a model that measures the

component of the data center and provide a framework

that supports metrics result organization and

communication in a data center.

Wo et al. [11] proposed a resource management system

for on-line virtual clusters provision, aiming to provide

immediately-available virtual clusters for academic

users.

Beloglazov et al. [3] proposed a novel technique for

dynamic consolidation of Virtual Machines based on

adaptive utilization thresholds. They validated their

technique across different kinds of workloads using

workload traces from more than a thousand PlanetLab

servers.

3. Algorithm Proposed

A server is a computer that manages centrally stored

data or network communication resources. A server also

provides and organizes access to these resources for

other computers linked to it. Storage devices in most

servers are a collection of hard drives or hard discs, and

as people or nodes connected to the server in the

network insert and delete into the server, the hard drives

get fragmented. This fragmentation causes processing

speed to be slow because the Central Processing Unit

(CPU) collects and stores its data and information in the

hard drive or Random Access Memory (RAM). The

reason for that is that the hard drive after fragmentation

has variable distance between data or information stored

in it in terms of space in bytes. Defragmentation is a

process of removing this distance and bringing

information in the hard drive closer together, and in so

doing making processing time faster because searching

time is reduced. Virtual machine migration is when

virtual machines are moved from one physical machine

to another. This migration also causes fragmentation. So

to solve this problem we propose a defragmentation

algorithm, figure 2, which should be active after virtual

machine migration, just before the server turns off, to

optimize processing time and energy consumption.

Figure 2: Defragmentation Algorithm

The algorithm is based on the assumption that the hard

drives found in servers of the data centers are designed

liked an array.

Input: HD fragmented array HD, a pivot element p and

a traversing element t.

Output: HD defragmented array HD.

4. The Power Model

A linear relationship between CPU utilization and

electrical power is assumed for our model. For example,

for a given job say j1, information of the processing

time and the processor utilization is enough to calculate

its power consumption. We define the consumption of a

resource 𝑟𝑖 at any given time as:

𝐶i = 𝑐i,j

n

𝑗=1
 (1)

1. Quicksort(HD,p,t) {

2. if (p < t) {

3. q <- Partition(HD,p,t)

4. Quicksort(HD,p,q)

5. Quicksort(HD,q+1,t)

 }

}

6. Partition(HD,p,t)

7. x <- HD [p]

8. i <- p-1

9. j <- r+1

10. while (True) {

11. repeat

12. j <- j-1

13. until (HD [j] <= x)

14. repeat

15. i <- i+1

16. until (HD [i] >= x)

17. if (i<-=""> A[j]

18. else

19. return(j)

 }

}

72 Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 |

Where n = number of task running at that time and 𝑐𝑖 ,𝑗

is the resource usage of job 𝑗𝑗 .

We also define energy usage, Pi, of a resource at any

time as:

𝑃i = 𝑃max − 𝑃min ∗ 𝐶i + 𝑃min (2)

Where 𝑃ma x refers to the peak load consumed and 𝑃min

refers to active mode minimum power consumption

usually as low as one (1%) percent.

5. Efficient Energy Usage (EEU)

The total energy consumed in cloud data center together

with other necessary resources needed for service in a

cloud data center are what we referred to as EEU.

𝐸𝐸𝑈 =
 Yearly Consumption ∞
𝑛=1

Yearly Consumption
 (3)

1 <= EEU <= ∞ (4)

EEU can be varied from 1 to ∞ as seen in (4). Meaning

that every data center with a EEU value of 2 or more

shows that for every kWh consumed by the server, one

kWh is consumed by the supplementary services like

the cooling system of the data center, the lighting

system, etc.

6. Load Balancing

Load balancing is the process of taking complex or

large work load that needs a lot of processing power to

be processed and dividing it into modules and

distributing it to different machines or notes for

processing. In so doing, the processing time and

processing power are reduced. For example, taking a

large mathematical equation and using a distributed

system to compute it just like in Grid computing. In

cloud computing the process is the same. The only

difference is that the process is done on a virtual plain,

which is at virtual machine management or hypervisor

level.

In this work we determine which load balancing

algorithm is more energy efficient in a virtual machine

management level. Virtual machine management level

is referd to as vitual machine queues in our designed

model as can be seen in Figure 3 (Load Balancing

Virtual Machine Aware) LBVMA Model.

Figure 3: LBVMA Model

7. Simulation Tool - Cloud Analyst

Cloud Analyst is a simulation tool designed to simulate

real cloud environments and scenarios. It is built on top

of CloudSim which is based on java programming

language and iText 2.1.5. On the other hand cloud

analyst has all the capabilities of CloudSim and it has a

user friendly Graphic User Interface (GUI). For the

purpose of our experiments as reported in this paper, we

use CloudAnalyst to simulate our data [9] [12].

8. Experimental Setup

The experiment was run on a machine having core i5

intel processor and 4Gig RAM. The simulation tool

used was Cloud Analyst. Six geographically located

user bases were created and two data centers as shown

in table 1 and table 2 respectfully.

Table 1: User Bases

Table 2: Data Centers

Also, for each data center, the physical machines uses

x86 architecture while running in a Linux operating

system and Xen virtual machine manager. Each physical

Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 | 73

machine has four processors and their speed is 10

000Hz.

Table 3 and table 4 show the characteristics for the

delay matrix and bandwidth matrix

Table 3: Delay Matrix

Table 4: Bandwidth Matrix

The following Internet characteristics were defined

between regions on the map. Figure 4 shows the regions

as created by the simulation tool.

Figure 4: Region Showing Map

9. Results and discussions

When the amount of data processed at user base level as

shown in table 1 is compared to the amount of user base

response time shown in table 5, it is evident that quality

of service in terms of response time is much better for

data centers that have more physical machines.

Figure 5 shows a correlation of user bases and their

corresponding response time, which is used to

determine the min, max and avg response time for the

two (DC1, DC2) data centers reported in table 6 with

the results obtained, it was possible to graphically show

the min, max and avg response time for the data centers

as shown in figure 6.

Table 5: User Base Response Time

 User Bases

 Min

(ms)

Max

(ms)

Avg

(ms)

Frank 172.83 1718.89 461.95

Ifeoma 401.4 7688.57 1526.57

Mike 254.16 7304.98 2464.76

Nnnenna 49.23 736.05 292.74

Nosipho 160.75 2453.54 848.1

Thuso 50.43 5461.83 370.14

74 Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 |

Figure 5: User Base Response Times

Table 6: Data Center Response Time

 Data Centers
 Min
(ms)

Max
(ms)

Avg

(ms)

DC1 0.11 7076.86 1831.7

DC2 8.71 3295.29 1106.04

Figure 6: Data Center Response Time

Figure 7 shows a comparison of energy consumed by a

data center facility using the LBVMA Model, where the

load balancing policy is throttled and service broker

policy is set to optimal time response. Therefore figure

7 shows a correlation between execution time and the

energy consumed. From LBVMA model and the chosen

parameters, it can be seen that energy consumption is

less.

Figure 7: Consumed Energy for Power Model

Figure 8 shows power consumption due to deferent

memory configurations. The memory configurations are

1000 MHz, 1200 MHz and 1500 MHz respectfully. The

x-axis shows time in mille seconds and the y-axis shows

the power in kilo Watts. From the figure it is clear to see

that memory configuration at higher frequencies

consume more power.

Figure 8: Power Consumed by Memory

Recall that, in section 6 we mentioned we were going to

determine which load balancing algorithm is more

energy efficient in a virtual machine management level.

This next experiment shows exactly that. We used the

same configuration in section 8 for all algorithms.

Table 7: Overall Time Response

Table 7 shows overall response time of requests

processed from user bases to data centers and vice

versa. Figure 9 shows a graphical representation of the

data in table 7 and represent a correlation of the load

balancing algorithm with respect to response time

represented in mille seconds. From figure 8 it is clear

that the throttled load balancing algorithm performs

better in terms of response time.

Round

Robin

Equally Spread

Current Execution

Load Throttled

Avg (ms) 3739.52 3613.4 1996.66

Min (ms) 75.28 72.77 49.23

Max (ms) 7673.36 7721.21 7688.57

Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 | 75

Figure 9: Overall Time Response

10. Conclusion

In conclusion, reported in this research paper is a

comparison of three load balancing algorithms (Round

Robin, Equally Spread Current Execution Load and

Throtled) to determine which load balancing algorithm

is more efficient in a virtual machine management level.

Therefore, we conclude that using the LBVMA model

and the throttled load balancing algorithm, less energy

is consumed. From obtained results, we conclude that in

terms of quality of service, the response time is much

better for data centers having more physical machines

than for those with less machines, but there was an

observable higher energy consumption for memory

configurations with higher frequencies.

More so, in this paper, we implemented a power model

to calculate the power consumption of a data center,

using a Load Balancing Virtual Machine Aware

(LBVMA) Model, an Efficient Energy Usage (EEU)

matric that determines whether or not the energy used in

a cloud data center is used effectively. We also

implemented a defragmentation algorithm to optimize

processing time in cloud data centers after virtual

machine migration.

References

[1] Y. Zhao, I. Raicu, L. Shiyong, I. Foster, "Cloud

Computing and Grid Computing 360-Degree Compared,"

, Chicago, IL, USA, 2008, pp. 1-10.

[2] J. Hermans and M. Chung. (2012, Mar.) KPMG’s 2010

Cloud Computing Survey. PDF.

[3] A. Beloglazov and J. Abawajy R. Buyya, "Energy-

Efficient Management of Data Center Resources for

Cloud Computing: Avision, Architectural Elements and

Open Challenges," Arxiv Preprint arXiv: 1006.0308,

2010.

[4] J. Lin. (2008, Sep.) What is Cloud Computing? Class

lecture Presentation.

[5] Y. Wang, X. Wang, "Energy-efficient Multi-task

Scheduling based on MapReduce for Cloud Computing,"

in Seventh International Conference on Computational

Intelligence and Security, 2011, pp. 57-62.

[6] J. Li, J. Huai, T. Wo, Q. Li and L. Zhong B. Li,

"Enacloud: An energy-saving application live placement

approach for cloud computing environments," in

CLOUD'09. IEEE International Conferenc, 2009, pp. 17-

24.

[7] A. Beloglazov and R. Buyya, "Adaptive Threshold-Based

Approach for Energy-Efficient Consolidation of Vertual

Machines in Cloud Data Centers," in 8th International

Workshop on Middleware for Grids, Cloud and e-

Science, 2010, p. 4.

[8] Y. Sato and Y. Inoguchi T. V. T. Duy, "Performance

evaluation of a green scheduling algorithm for energy

savings in cloud computing," in Parallel & Distributed

Processing, Workshops and Phd Forum (IPDPSW), 2010

IEEE International Symposium, 2010, pp. 1-8.

[9] R. N. Calheiros and R. Buyya B. Wickremasinghe,

"Cloud Analyst: A CloudSim-Based Visual Modeller For

Analysing Cloud Computing Environments and

Applications," in dvanced Information Networking and

Applications (AINA), 2010 24th IEEE International

Conference, 2010, pp. 446-452.

[10] J. Justice, M. Krampits, M. Letts, G. Subramanian and M.

Thirumalai T. Daim, "Data Center Metrics: An Energy

Efficiency Model for Information technology managers,"

Management of Environmental Quality: An International

Journal, vol. 20, pp. 712-731, 2009.

[11] T. Wo and J.Li Y. Chen, "An Efficient Resource

Management System for On-Line Virtual Cluster

Provision," in IEEE International Conference , 2009, pp.

72-79.

[12] University of Melbourne. (2012, May) Melbourne Clouds

Lab. [Online]. http://www.cloudbus.org/cloudsim/

Acknowledgments

We wish to acknowledge the support of our sponsors,

Telkom Center of excellence and Thrip for their support

and the North-West University for access to resources

needed to complete this work.

76 Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 |

http://www.cloudbus.org/cloudsim/

A system of Cloud Services and SOA to improve Health

Care Organizations

Katiuscia Mannaro
1
, Luisanna Cocco

1
, Manola D'Onofrio

2
, Marco Di Francesco

2

1
Department of Electrics and Electronics Engineering, University of Cagliari, Piazza d'Armi

Cagliari, Italy

2
 ExperTeam Srl, Viale Elmas 142, Cagliari, Italy

Abstract - The interoperability among different systems in

healthcare is an historical problem. The development of

interoperability standards, the interest for an approach based

on Personal Health Record (PHR) and Electronic Health

Record (HER) led a significant evolution in the field of the e-

health. In the meanwhile, Cloud Computing (CC) is a very

interesting solution for IT Applications. This paradigm

presents many advantages for management. CC is still in its

early stage; for this reason we think that it is very important to

study and assess its impact on e-health solutions. In this paper

we present a model which takes advantages of the features of

the software infrastructure, known as Enterprise Service Bus,

and of the Cloud services. This model makes interactions

possible among different and heterogeneous entities in a

generic health information system.

Keywords: Enterprise Service Bus, Cloud, SOA, Software

Engineering, Open Source

1 Introduction

 The Health Information Systems were already developed

at the beginning of Computer Science history. Hospitals have

always been equipped with Hospital Information Systems;

also, practitioners have often used instruments for supporting

their own activities and storing medical data on Information

Systems. Concepts such as Electronic Health Record (EHR)

were born to represent the semantic feature of electronic

health information about individual patients or populations.[1]

A particular focus has been put on information about

individual patients, which have been defined as Personal

Health Record (PHR) [2].

Meanwhile, the need to exchange medical data among

different subjects operating in this field grew. This brought to

the demand of defining specific standards to manage such

exchange of data. In the last years, this process has been

quickened by the development of communication

technologies. HL7 and its members provide a framework (and

related standards) for the exchange, integration, sharing and

retrieval of electronic health information. Many ot these

standards have been adopted by ISO. The HL7 Clinical

Document Architecture (CDA) - ISO/HL7 27932 - is an

XML-based markup standard intended to specify the

encoding, structure and semantics of clinical documents for

the exchange.

Nowadays, the recent, rapid development of a health

information policy to improve data complexity management,

the volumes of patients served and the common understanding

among workforce are the basis to have efficient health

information systems. The standardization of data and the

format and interchange protocols have been developed to

support these needs. All the benefits of Electronic Health

Records (EHRs), which focus on the total health of the

patient, stemmed to shared information among healthcare

organizations, such as laboratories, hospitals, general

practitioners and specialists. Service-Oriented Architecture

(SOA) is the model of choice for developing complex

information services within highly integrated systems, because

PHRs contain information from all the subjects involved in

patient’s care [3][4]. The evolution of all these concept is the

basis of e-health.

Cloud Computing is a new paradigm to manage services in the

world of services. This standard offers many opportunities for

the development of e-health. The new e-health is based on

data, infrastructure, services and things (in the sense of

Internet of Things).

Our research work is part of an industrial project in

conjunction with a private company to develop a Virtual

Organization (VO) to manage patients. The organization is

based on the role of general practitioners as reference points

for the patients as well as real coordinators of activities and

repositories of medical data on a Cloud infrastructure. This

Virtual Organization must consult laboratories, hospitals and

PHR's repositories to obtain the complete case of the patient.

The goal of our work is to ensure the manageability of this

interchange of data among all the organizations and

individuals involved in the process. Thus, we designed a

model for the management of data interchange based on

interoperability; we also developed a middleware subsystem

to manage interfaces among subjects and infrastructures.

The paper is organized as follows: in Section II we present a

brief description of some key concepts related to Cloud

Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 | 77

Computing and Service Oriented Architecture, and in Section

III we present the project. Section IV specifies our ESB

infrastructure, and we will focus on the ESB functional

specifications. Finally, Section V summarizes the conclusions

of our research and ends the study with recommendations for

future works.

2 Cloud Computing and Service

Oriented Architecture

 Cloud computing is an interesting way of delivering and

using services. It is an emerging technology of primary

importance to business competitiveness. There are many

definitions of cloud computing. According to the definition

developed in 2009 by the US National Institute of Standards

and Technology (NIST) Information Technology Laboratory,

Cloud computing is a model for enabling a convenient access

to a shared pool of configurable computing resources (e.g.,

networks, servers, storages, applications, and services). These

resources are accessible via the Internet, paying a subscription

based on a pay as you go model. In addition, they can be

rapidly provisioned and released with the lowest management

effort ant the minimal service provider interaction.

Cloud Computing contains three different paradigms, i)

Software as a Service (SaaS), ii) Platform as a Service (PaaS),

iii) Infrastructure as a Service (IaaS).

The first one is a cloud hosting model where providers offer a

complete end-user application. The second one is a model

which provides a full or partial application development

environment. The providers offer, apart from the hardware, a

platform including OS, middleware and runtime environment.

Finally the last, IaaS, is a model providing a full computer

infrastructure, server, router, storage, hardware and

virtualization software.

Therefore, a more service-oriented approach is often found in

SaaS – this delivery of applications over the internet offers

significant cost savings because resources in massive

warehouse-sized data centres are pooled at scale.

Services Oriented Architecture (SOA) is an architectural style

that supports the service-orientation. It is a way of thinking in

terms of services and service-based development and the

outcomes of services. SOA is an architecture pattern for

designing and managing a software portfolio made up from

loosely coupled, well-encapsulated, reusable services. [5]

In general, business services delivered in a Cloud form are

SOA services. What do these two things have in common?

The success of the Cloud is possible only with a proper

architecture, which applies the most relevant SOA principles

such as loose-coupling, governance and manageability.

3 Project description

 The purpose of the project is the creation of a VO based

on knowledge for Dermatological Telemedicine aiming at

giving a combined and synergic set of services for the clinical

management optimization of dermatological patient.

A VO is composed by a set of individuals and organizations

cooperating for a common interest and sharing a set of

resources, based on prearranged policites. The VO in this

project wants to make the relationship among general

practitioners and specialists in Dermatology more efficient

and effective, defining models, methodologies and techniques

for the management of a knowledge base related to

diagnostic-therapeutic guidelines which, as for therapies, has

to include complementary, alternative, non-conventional and

supplementary medicine, with a particular focus on the use of

phytotherapy products in dermatology, directed to: i) the

screening of subjects in need of specialist care, ii) the direct

management of subjects with minor pathologies by the general

practitioner.

Another purpose of Virtual Organization is the development

of advanced services for supporting diagnosis and

teleconsultation through the creation of many diagnostic

supports (online consulting of an “historical” dermatologic

atlas; an image analysis software for the semi-automatic

classification of dermatologic pathologies; a flow chart of

diagnostic procedures, etc.).

These cross-features are strongly interconnected: the final

result of the research will be the design of a VO model able to

gather different Competence Centres which, in turn, will offer

the aforementioned innovative services. In order to maximize

the effectiveness of the services offered, models and

methodologies will be studied and applied for the explicit

representation, the sharing, the retrieval and the connection of

spread knowledge in VO.

Therefore, the subject of the reaserch will not be the

recognition of already-existing solutions to re-adopt for the

problem we are examining, but the identification of a

substantially new system solution able to support

Telemedicine services. The quite low amount of time and the

development of the research activity on a modular basis will

allow for the portability of each single result of the research in

restricted time, with respect to the start of activities.

The final results of industrial research, fundamental research

and experimental development activities will be able to be

used at international level for the creation of a functioning and

useful Telemedicine system.

The project puts at its core the solution of the diagnostic

problem of patients, going through their paths, and taking

advantage of the potentialities of teleconsultation as main

instrument.

As for what has been declared in the guidelines by the

Ministry of Health (www.salute.gov.it), the 'path' is a pre-

defined, well-structured and coordinated sequence of health

78 Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 |

services involving the integrated participation of different

specialists and professionals, with the aim of achieving a

diagnosis and the most adequate therapy for a specific

pathology.

For some time, there has been a research for coordination

among different specialists and professionals, even belonging

to different structures, often using high-cost technologies.

This led to many difficulties in management, causing health

organizations' ability to react to be stretched to the limit. This

makes the optimization of the resources necessary to

guarantee efficiency, effectiveness, pertinence and

promptness. The system too has been developed with the

Global Software Development (GSD) paradigm on Cloud [7].

4 Managing information

 An Enterprise Service Bus (ESB), sometimes called

“messaging middleware”, is a platform for data exchange

among different and heterogeneous applications. Data is

carried to and from a series of endpoints which must be

defined for each application. The implementation of an ESB

includes routing mechanisms that drive specific data from

source point A to destination point B [12].

The ESB model is popular because it helps organizations to

manage multiple connections to services through a central bus

that provides the level of abstraction above the details of the

underlying messaging. Once a service is located on the bus,

any element on the bus can connect. In other words, ESB is a

logical channel that spans each endpoint and allows data to be

sent or received from various applications over the bus. Data

is transferred using a particular protocol, for instance HTTP.

However, the ESB is more than just protocols or

communication channels: it is a messaging framework.

The adopted ESB architectural solution has been designed as

a natural evolution of the Service Oriented Architecture, in

order to reduce the coupling among architectural elements

characterized by specific and heterogeneous technologies and

systems. A SOA architecture allows for a deep integration

among application components, reducing the adjustment

inside every single organization's information systems [13].

The Enterprise Service Bus (ESB) approach is based on a

Centralized approach and uses a Bus Architecture and Open

standards [14]. ESBs are represented as an abstract layer

based on a message driven architecture under the applications

that are integrated. The ESB tries to abstract the connections

between applications by using a neutral transportation layer

with respect to all nodes that have to be connected. ESBs are

based on open standards like HTTP, XML, XSLT [6]. and the

applications communicate using message-driven or event-

driven paradigms, allowing for the implementation of

complex systems with low efforts [15]. This model has a level

of communication in a roundabout way among the various

services on the bus and among composite applications and

services they use.

Thanks to the ESB software infrastructure, the different

organizations involved can easily communicate and when

possible and necessary they may use complete Cloud services

and applications on the Web, simply paying to use. The ESB

infrastructure helps companies to manage different service

connections without entering in detail of the underlying

messaging aspects. On the other hand, Cloud Computing

allows healthcare organizations to avoid costs and difficulties

associated with building or managing software applications

that would require high costs for their design, development

and maintenance. In this way, healthcare organizations can

remotely access software applications hosted by other

companies with experience for example in storage data, email

and so on.

The created model is similar to ESB in terms of functionality,

but it is more similar to the SaaS model in terms of the

standard and scalability. In this way it is easier to adopt ESB

infrastructure.

The integration between architectural elements are

implemented as a centralized strategy where the middleware is

the actor that links services, letting them talk properly,

helping them understand messages and eventually providing a

secure communication channel. The infrastructure can be

easily extended by adding new entry points that will enrich the

palette of services offered by the platform. In practice, the

complete architecture will be a complex system able to

provide a huge list of services to every single entry point of

the platform; in other words, the services will derive from

every single entry point of the User Plane, the Medical Plane

or the Statistical Plane.

5 Conclusions

 Cloud computing market in the health care sector has

been growing recently. Cloud services may offer new

opportunities for the storage and communication of patient

data to help physicians and clinicians make better their work.

Moreover, the healthcare organizations may save money

avoiding redundancy and high operational costs.

We designed and developed a middleware subsystem acting

as a communication interface among organizations, by

ensuring interoperability among heterogeneous data and

services, as well as a reliable and secure PHR.

In order to support these subjects, as further works we will

evaluate [17], [18] this model by using a simulation modeling

approach, useful to better understand the process and to

evaluate its effectiveness [8][9][10][11].

The proposed solution is an evolution of the Service Oriented

Architecture proposed. Indeed, our architecture takes

Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 | 79

advantage from the software infrastructure ESB, and from the

Cloud services. We offer a solution to the needs of health

industry that enables the interoperability among data and

applications from several and remote health organizations. In

our opinion, the model could enable more effective

collaboration, and facilitate the compliance with standards, in

order to manage different service connections.

Nowadays, healthcare data need to be shared among several

health organizations, even very distant ones; this burdens the

health industry and the patients, causing delay and loss of

time.

Cloud can help improve the sharing of the EHR data reducing

delay and loss of time. It offers the health industry an

incredible opportunity to improve services for their

customers, sharing information more easily with respect to the

traditional SOA architecture, and improving the efficiency of

the whole health care system. The main advantages that

Cloud offers to health's Virtual Organizations are

collaboration, speed, mobility, security and privacy, and

finally lower costs.

It has arrived the moment for health care organizations to

capitalize on the Cloud advantages; the Virtual Organization

will find significant benefits such as quick access to

computing and large storage facilities which are not provided

in traditional settings.

6 References

[1] Hoerbst, A., and E. Ammenwerth. "Electronic Health

Records." Methods Inf Med 49.4 (2010): 320-336.

[2] Tang, Paul C., et al. "Personal health records:

definitions, benefits, and strategies for overcoming barriers to

adoption."Journal of the American Medical Informatics

Association13.2 (2006): 121-126.

[3] Jan Walker, Eric Pan, Douglas Johnston, Julia Adler-

Milstein, David W. Bates, Blackford Middleton , The Value

Of Health Care Information Exchange And Interoperability,

Health Affairs, 2005.

[4] Arthur L. Kellermann, Spencer S. Jones, What It Will

Take to Achieve the As-Yet-Unfulfilled Promises of Health

Information Technology, Health Affairs, v. 32, no. 1, Jan.

2013, p. 63-68, 2013.

[5] Chi Po Cheong, C. Chatwin, R. Young, “An SOA-based

diseases notification system”, ICICS Information,

Communications and Signal Processing, 2009.

[6] M. Eichelberg, T. Aden, J. Riemsmeier, A. Dogac, G. B.

Laleci, “A Survey and Analysis of Electronic Healthcare

Record Standards”, Journal ACM Computing Surveys

(CSUR), Volume 37 Issue 4, December 2005

[7] Cocco L., Mannaro K., Concas G., “A Model for Global

Software Development with Cloud Platforms”.

EUROMICRO-SEAA 2012, pp. 446-452, 2012.

[8] Turnu, I., Concas, G., Marchesi, M., Tonelli, R.Entropy

of some CK metrics to assess object-oriented software quality,

2013 International Journal of Software Engineering and

Knowledge Engineering 23 (2) , pp. 173-188.

[9] Turnu, I., Concas, G., Marchesi, M., Pinna, S., &

Tonelli, R. A modified Yule process to model the evolution of

some object-oriented system properties. Information Sciences,

181(4), 883-902.2011.

[10] Concas, G., Marchesi, M., Murgia, A., Tonelli, R., &

Turnu, I.. On the distribution of bugs in the eclipse system.

Software Engineering, IEEE Transactions on, 37(6), 872-877.

2011.

[11] Turnu, I., Melis, M., Cau, A., Setzu, A., Concas, G.,

Mannaro, K., “Modeling and simulation of open source

development using an agile practice”, 2006, Journal of

Systems Architecture 52 (11), pp. 610-618

[12] Min Luo, B. Goldshlager, Liang-Jie Zhang, "Designing

and implementing Enterprise Service Bus (ESB) and SOA

solutions", IEEE International Conference on Services

Computing, 2005.

[13] The Open Source ESB for SOA & Integration, available

on :https://open-esb.dev.java.net, 2010

[14] Open-ESB: The Open Enterprise Service Bus,

http://Java.net, 2008.

[15] dM. Schmidt, B. Hutchison, P. Lambros. R. Phippen,

"The Enterprise Service Bus: Making service-oriented

architecture real", IBM Software Group, 2005.

[16] B. Van Den Bossche, S. Van Hoecke, C. Danneels, J.

Decruyenaere, B. Dhoedt, F. De Turck, "Design of a JAIN

SLEE/ESB-based platform for routing medical data in the

ICU", Computer Methods and Programs in Biomedicine

archive, 2008

[17] Turnu, I., Marchesi, M., Tonelli, R.,

Entropy of the degree distribution and object-oriented

software, quality

3rd International Workshop on Emerging Trends in Software

Metrics, WETSoM 2012 - Proceedings , art. no. 6226997 ,

pp. 77-82, 2012

[18] Turnu, I., Concas, G., Marchesi, M., Tonelli, R.,

The fractal dimension of software networks as a global quality

metric, 2013 Information Sciences,

http://dx.doi.org/10.1016/j.ins.2013.05.014, (Article in Press)

80 Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 |

http://dx.doi.org/10.1016/j.ins.2013.05.014

Essential Cloud Security Features in Windows Azure

Ramya Dharam
1
, and Sajjan G. Shiva

2

1
Department of Computer Science, University of Memphis, Memphis, TN, USA

2
Department of Computer Science, University of Memphis, Memphis, TN, USA

Abstract - Cloud computing technology is recently gaining

widespread popularity among business owners and

consumers/users for hosting and delivering services over the

Internet. This technology offers users on-demand access to

shared resources, services, and applications with the Internet

access by eliminating the need for tedious installation

procedures. Security and privacy issues in cloud computing is

one of the major barriers for the wide adoption of this

emerging technology. In this paper, we first discuss the

security and privacy guidelines pertinent to the public cloud

computing environment as described by NIST. We then

investigate different security features of the Microsoft Azure

cloud computing platform and analyze how the security and

privacy guidelines described by NIST are implemented in this

cloud platform.

Keywords: Cloud Computing; NIST; Cloud Security; Privacy

Issues; Microsoft Azure Cloud Platform; Public Cloud.

1 Introduction

 Over the last few years, cloud computing technology has

become an evolving paradigm with lots of benefits to its users

and providers. Cloud computing is an integration of different

traditional computing technologies and network technologies

such as distributed computing, parallel computing, grid

computing, virtualization, etc.

Various definitions exist explaining the concept of cloud

computing, but the most widely accepted comprehensive

definition about cloud computing was made by National

Institute of Standards and Technology (NSIT) [1] and in this

paper we adopt the same. It describes cloud computing as a

model for enabling ubiquitous, convenient, on-demand

network access to a shared pool of configurable computing

resources (e.g., networks, servers, storage, applications, and

services) that can be rapidly provisioned and released with

minimal management effort or service provider interaction.

The essential characteristics provided by cloud computing

makes it different from traditional service computing.

Following are the five essential characteristics of cloud

computing as discussed in [1] that has currently made an

impact on the Information Technology industry:

1) On-demand self-service: Services such as applications,

storage, etc., can be provisioned by users based on their

demand.

2) Broad network access: A variety of cloud services is

available over the network and heterogeneous thin or thick

client platforms (e.g., mobile phones, tablets, laptops, and

workstations) can be used to gain access to them.

3) Resource pooling: Computing resources such as storage,

processing, memory, and network bandwidth are pooled to

serve multiple consumers according to consumer demand.

4) Rapid elasticity: Capabilities can be elastically provisioned

and released to meet the rapidly increasing demand of users.

5) Measured service: Metering capabilities are employed to

automatically control and optimize resource usage and to

charge the users accordingly. Resource usage can be

monitored, controlled, and reported, providing transparency

for both the provider and consumer of the utilized service.

Service driven business models are employed by cloud

computing. In this model software, platform, and hardware

level resources are provided as services to users/consumers

from the cloud service providers. Three major cloud

computing models as discussed in [1] have evolved, which

include: 1) Software as a Service (SaaS), which provides

consumers the capability to use provider’s applications

running on cloud infrastructure. 2) Platform as a Service

(PaaS), which provides consumers the capability to deploy the

application developed by them onto the cloud infrastructure.

3) Infrastructure as a Service (IaaS), which provides

consumers the capability to provision processing, storage,

networks, and other computing resources.

Private, Public, Community, and Hybrid clouds are the four

cloud deployment models currently available. Private cloud is

used by a single organization. Community cloud is provisioned

for use by a specific community of users from different

organizations that have shared concerns. Public cloud can be

used by any general public. Hybrid cloud is formed by the

combination of two or more distinct cloud infrastructures

(private, public, or community).

Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 | 81

With cloud computing becoming more and more popular

because of its many benefits and characteristics it possesses as

discussed above, security and privacy issues in cloud

computing have also raised major concerns due to the unique

architectural features and characteristics of the cloud. Hence

security and privacy issues existing in cloud computing need

to be addressed for this technology to be more widely

adopted.

In this paper, we first discuss the different security and privacy

issues that exist in the cloud computing technology and also

the NIST guidelines to achieve security and privacy in public

cloud computing. We then study in detail security features of

one of the most popular cloud platforms i.e. the Microsoft

Windows Azure, and analyze how the NIST guidelines on

security and privacy in public cloud computing are

accomplished in this platform.

The rest of the paper is organized as follows. In Section 2, we

discuss the common security issues in cloud computing. In

Section 3, we discuss the NIST guidelines to accomplish

security and privacy in public cloud computing. Section 4

discusses about the features of Microsoft Windows Azure

cloud platform and Section 5 discusses security features

established in the Microsoft Windows Azure platform. Section

6 provides an analysis by helping us understand how the

security and privacy guidelines mentioned by NIST are

implemented in the Microsoft Windows Azure platform, and

Section 7 concludes the paper.

2 Security Issues in Cloud Computing

 In cloud computing, security is one of the prominent

concerns. Security issues in cloud computing hinder the

process of it being widely adopted. So in this section, we

discuss in detail the different security issues that exist at

different levels in this technology, which includes cloud data,

cloud access, and cloud platform.

2.1 Security Issues related to Cloud Data

 Data stored in cloud belongs to different users, enterprises,

etc., and is an important asset. Maintaining the confidentiality,

integrity, and availability of cloud data is currently the

foremost concern to be addressed for this new technology. The

inherent nature of cloud computing architecture itself raises

several questions about the security of the data stored in the

cloud. Some of the issues as discussed in [3] include the

following: 1) What ensures integrity and prevents loss of data

in cloud? 2) How is the confidentiality of the data maintained?

3) Is the data available to users in case the cloud services are

down? 4) Will the data be completely deleted from the cloud

storage if the user decides to withdraw the services from the

cloud? 5) How do we know that the updates to the data are

done periodically and the user gets access to the most updated

version? Addressing these issues about cloud data is essential.

2.2 Security Issues related to Cloud Access

 User authentication, authorization, and access control

(AAA) is one of the important security concern related to

cloud access. Multitenancy is one of the major features of the

cloud computing where a single instance of software running

on a server is utilized to serve multiple clients. This feature is

known to cause interoperability, authentication, and

identification problems because of the usage of distinct

negotiation protocols by different clients. A management

interface is essential so that the cloud services can be accessed

by users. The probability that unauthorized access to this

management interface could occur is much higher than for

traditional systems where the management functionality is

accessible only to a few administrators as discussed in [4].

Some of the issues related to cloud access as discussed in [3]

consist of the following: 1) Different users access their data

stored in the cloud and in such situations, how can it be

ensured that authentication is provided at different levels to

access cloud services? 2) How does one ensure that there is no

unauthorized access to the cloud by an employee who has left

the organization?

2.3 Security Issues related to Cloud Platform

 This comprises of the security issues related to the cloud

platform which include virtualization, networking, etc.

Virtualization is the key technology for the success of cloud

computing. It results in the creation of multiple VMs out a

single physical layer. Each VM is itself a virtual server

compromising a guest OS, middleware, application, and data.

A Hypervisor/Virtual Machine Manager is a piece of software

that allows multiple OSs to share a single hardware host and a

computer on which a hypervisor is running one or more virtual

machines is defined as a host machine. Each virtual machine is

called a guest machine and the hypervisor presents the guest

OSs with a virtual operating platform and manages the

execution of the guest operating systems. Some of the

virtualization induced cloud security issues as discussed in [5]

consist of the following: 1) VM hijacking: In case of

multitenancy, a single server would host several VMs on it and

thus would have respective configuration files of all VMs

stored on the host. Since each VM is separated by a virtual

boundary, an attacker gaining access to one such files could be

able to predict the actual hardware configuration of another

VM residing on the same host. The primary configuration files

contain all necessary information of a VM. Gaining access to

these files and breaking into a VM is termed as “VM

hijacking.” A malicious user having control of a VM can try to

gain control over the other VMs’ resources or utilize all

system resources leading to denial of service (DoS) attack

over other VM users. A malicious user can also try to steal the

data of other users located on the same server. 2) VM

hopping: This is the process of hopping from one VM to

another VM. An attacker on one VM can gain access over the

other VM. This can be achieved if both the VMs are running

82 Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 |

on the same host. Because there are several VMs running on

the same machine, there would be several victims of the VM

hopping attack. An attacker can falsify the SaaS user’s data

once he gains access to a target VM by VM hopping,

endangering the confidentiality and integrity of SaaS. 3) VM

mobility: This enables the moving or copying of VMs from

one host to another over the network or by using portable

storage devices without physically stealing or snatching a hard

drive. Although this makes the process of deployment easier,

it could lead to security problems such as spread of vulnerable

configurations. The severity of the attack ranges from leaking

sensitive information to completely compromising the OS. 4)

VM escape: This means gaining access over the hypervisor

and attacking the rest of the VMs. If an attacker gains access

to the host running multiple VMs, the attacker can access to

the resources shared by the other VMs. The host can monitor

the memory being allocated and the CPU utilization. If

necessary, an attacker can bring down these resources and

turn off the hypervisor. If the hypervisor fails, all the other

VMs turn off eventually.

Some of the issues related to the cloud platform as discussed

in [4] consist of the following: 1) Are the cloud data centers

physically secured against security breaches? 2) How are the

applications secured in a shared virtualized infrastructure

against malicious attacks? Can the APIs and interfaces

provided by cloud services be trusted?

3 NIST Guidelines on Security and

Privacy in public cloud computing

 In this section, we discuss in detail the guidelines

described by NIST in [2] to achieve security and privacy in

cloud computing.

1) Governance: It involves controlling and monitoring

deployed applications over standards, procedures, and

policies. It also involves the implementation, testing, design,

and monitoring of deployed cloud services. Cloud computing

services are widely used among employees and lack of control

over the employees’ access to the cloud services by the

organization can cause problems.

Roles and responsibilities involved in accessing the cloud

services need attention to ensure systems are secure and risks

are managed. To determine how data is stored, protected, and

used, to verify policy enforcement, and to validate services,

audit mechanism and tools should be in place. Risks in cloud

computing are continuously evolving and to deal with them a

risk management program should be in place.

2) Compliance: Conformance with an established standard,

specification, law, or regulation is involved. Compliance

becomes a complicated issue due to the existence of different

types of security laws at the national, state, and local levels

within different countries. Any data that is processed or stored

outside the bounded spaces of an organization inherently

brings a level of risk and it is important to carefully address

this issue. Data location is one of the most common

compliance issues faced by any organization.

Any organization will structure its computing environment

according to their needs and will know in detail where the data

is stored, what measures they have taken to protect

unauthorized access to the data, and if they use an in-house

computing/storage center. But, in case of the usage of cloud

computing technology this detailed information about the

exact location of an organization’s data is not known, then this

lack of detailed information leads to a situation and makes it

difficult to ascertain whether the specified compliance

requirements are met. Usage of external audits and security

certification could to some extent help in handling this issue.

3) Trust: In cloud computing an organization places an

unprecedented level of trust in the cloud provider by giving

away the direct control of many security aspects involved in

the cloud. To enable a basis of trust the ownership rights of

the organization over the data must be firmly established in the

service contract.

It is challenging to assess and manage risk in systems that use

cloud services. It is important for organizations to ensure that

security controls are implemented and operated correctly as

intended to manage risks. Based on the degree of control an

organization is able to achieve on the provider, to provision

the security controls which are necessary to secure the

organization’s data and gain assurance that those controls

have been placed, it is possible to establish a level of trust in a

cloud service. The organization must reject the service or be

ready to take a greater degree of risk, if the level of trust

provided by the service is below the specified and negotiated

expectations and is unable to employ other suitable controls.

4) Architecture: The hardware and software residing in the

cloud comprises the architecture used to deliver cloud

services. The implementation, scalability logic of the

framework, and the physical location of the infrastructure is

determined by the cloud provider. Virtual machines are loosely

coupled with cloud storage and is the basic unit of deployment

in cloud computing. Cloud components communicating with

each other using application programming interfaces are

typically used to build applications. Underneath the complexity

that affects security, many of the simplified interfaces and

service abstractions are involved.

5) Identity and Access Management: Unauthorized access to

data in the cloud is a major concern and the issues related to

data security and privacy are widely discussed for the wide

usage of cloud. The existing identification and authentication

framework used by organizations may not naturally extend

into the cloud and it will be difficult to modify the existing

framework to support cloud services.

Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 | 83

One possible solution could be to employ authentication

systems, one for the internal organizational systems and

another for external cloud-based systems.

To administer and authenticate the users so that they can

access applications and data, cloud providers support the

standard named Security Assertion Markup Language

(SAML) which is used to provide cloud based identity and

access management services. This alone is not sufficient to

maintain identity services, but the capability to adapt cloud to

the subscriber privileges and maintain control over access to

resources is also needed.

6) Software Isolation: High degrees of multi-tenancy over

large numbers of platforms are needed for cloud computing to

achieve the envisioned flexibility of on-demand provisioning of

reliable services and the cost benefits and efficiencies due to

economies of scale. To reach the high scales of consumption

desired, cloud providers have to ensure dynamic flexible

delivery of service and isolation of subscriber resources.

7) Data Protection: Since the cloud environment is shared, the

data stored in cloud co-exists with other customers’ data.

Before moving the data to the cloud it is very important that

organizations reassure the means and control measures that

have been established to keep the data secure and to establish

the controlled access to the data.

8) Availability: The extent to which an organization’s

computational resources are accessible and usable is termed as

availability. Different threats to availability consist of denial of

service attacks, natural disasters, etc. Availability can be

affected either temporarily or permanently, and a loss can be

partial or complete and can impact the mission of the

organization.

9) Incident Response: The security of a computer system is

compromised by attacks and incident response, which is an

organized method and is essential to deal with attack

consequences. Incident verification, attack analysis, problem

remediation, service restoration, etc., are some of the incident

response activities cloud providers need to perform.

4 Overview of Microsoft Windows

Azure Architecture

 As defined in [6], Windows Azure is a cloud services

operating system that serves as the development, service

hosting and service management for the Windows Azure

platform. This platform helps developers to host and manage

web application through Microsoft datacenters with on-

demand compute and storage options.

This section discusses the Microsoft Windows Azure

architecture and each of its components as described in [7].

This Windows Azure architecture mainly consists of four

components: 1) Windows Azure 2) SQL Azure 3) Windows

Azure AppFabric and 4) Windows Azure Marketplace.

1) Windows Azure: This is a Windows environment for

running applications and storing data on computers in

Microsoft data centers. It consists of five components namely:

a) Compute – Applications that are built using C#, Visual

Basic, C++, Java can be executed using the Compute service

on a Windows Server Foundation. b) Storage – Binary large

objects (blobs) can be stored using this service and also

provides tables with a query language. c) Fabric Controller –

It is responsible for creating VMs and starting the applications

that run on them. d) Content Delivery Network – It stores the

copies of the data that are frequently accessed by the users

closer to them which helps in speeding up access to the data.

e) Connect – This service helps the Windows Azure

applications to access database that is on the premise of the

organization.

2) SQL Azure: This can be used for storing data in the cloud

and is built on Microsoft SQL Server. It includes the following

three components: a) SQL Azure Database - It is a cloud-

based database management system (DBMS) and it allows

both the on-premise and cloud applications to store data on

Microsoft servers. b) SQL Azure Reporting - is used with

SQL Azure database and it is responsible for creating SQL

Server Reporting Services (SSRS) reports on the cloud data.

c) SQL Azure Data Sync - is used to synchronize data

between SQL Azure Database and on-premise SQL Server

databases. Different SQL Azure databases present in different

Microsoft data centers can be synchronized using Azure Data

Sync.

3) Windows Azure AppFabric: This provides infrastructure for

applications. It consists of the following three components: a)

Service Bus - it exposes applications endpoints in the cloud so

that other applications in the cloud or on-premise can access

them. b) Access Control - used to define rules that help to

control what services each user will be able to access. c)

Caching - it is used to cache frequently accessed data by users

so that performance is increased and reduces the need to query

the database by the application every time to retrieve the data.

4) Windows Azure Marketplace: It lets the customers find as

well as buy cloud applications and cloud-accessible data. It

consists of the following two components: a) DataMarket –

datasets are made available to content providers with the help

of this component. b) AppMarket – cloud applications

developed are exposed using this component so that other

customers can buy them.

84 Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 |

5 Security Features in Microsoft

Windows Azure

 Data and programs belonging to customers are hosted in

the cloud by Microsoft using the Windows Azure. So it is

essential to maintain the security and privacy of the data and

applications residing in the cloud. In this section, we discuss

in detail about the different features implemented by Microsoft

in the Windows Azure cloud platform to accomplish the

security of user’s data as described in [6].

1) Identity and Access Management: This feature ensures that

only authorized and authenticated users are allowed to access

the required cloud services. Following are the different

mechanisms used to accomplish the Identity and Access

Management security feature of the cloud: a) SMAPI

Authentication – The Service Management API provides web

services via the Representational State Transfer (REST)

protocol. High degree of assurance is accomplished with this

mechanism and that only the authorized representatives of the

customer can access the service. b) Least Privilege Customer

Software – This is a security best practice that is widely used

in which applications are executed with least privileges. Also,

customers are not granted administrative access to their VMs.

This helps in reducing the potential impact and protects from

attacks as an elevation in privileges is required to perform

attacks. c) SSL Mutual Authentication for Internal Control

Traffic – SSL is used to communicate between the internal

components of Windows Azure.

2) Isolation: This involves keeping different data segregated

from one another. Isolation can be accomplished at different

levels in the Windows Azure using the following: a) Isolation

of Hypervisor, Root OS and Guest VMs – The root OS and

the hypervisor manages the root VM and the guest VMs and

so isolation of the root VM from the guest VMs helps to

accomplish security to a certain extent. b) VLAN Isolation –

Fabric Controllers and other devices are isolated using

VLANs. A network is partitioned using VLANs and without

passing through a router no communication is possible. This

prevents a compromised node from faking traffic outside its

VLAN, and also it cannot eavesdrop on traffic that is not to or

from its VLANs. c) Isolation of Customer Access – Customer

access environments are separated from customer applications

and storage.

3) Encryption: Data in storage and in transit is encrypted to

accomplish data protection of user’s data. .NET libraries in

Windows Azure SDK are extended with .NET Cryptographic

Service Providers (CSPs) so that developers can implement

encryption, hashing and key management functionalities for

their data either in storage or in transit. Encryption algorithms

like AES, cryptographic hash functionality like MD5 and

SHA-2, etc. can be easily accessed by Windows Azure

developers.

4) Availability: Data is replicated to three separate nodes

within the Fabric in Windows Azure to minimize the impact of

hardware failures. Different levels of redundancy are provided

to accomplish greater availability of customer’s data.

6 Mapping of Microsoft Windows Azure Security Features to NIST Security &

Privacy Guidelines

 In this section, we map the different areas related to security and privacy as discussed by NIST in [2] to the security features

implemented in Microsoft Windows Azure Platform as described in [6].

NIST Areas Microsoft Windows Azure Security Features

Governance

* Multiple levels of monitoring, logging, and reporting are implemented.

* The monitoring and diagnostic log information are gathered by the Monitoring Agent (MA) from many places

including the FC (Fabric Controller) and the root OS and are written into the log files.

* Various monitoring and diagnostic log data are read and summarized by the Monitoring Data analysis Service.

Compliance * It is certified by one of the premier international information security management standards i.e. ISO27001.

Trust

* Customer’s data are made unavailable once the delete operations are called by the Windows Azure's Storage

subsystem.

* Execution of delete operation removes all references to the associated data item and it cannot be accessed via the

storage APIs. All copies of the deleted data item are then garbage collected.

* When the associated storage block is reused for storing other data the physical bits are overwritten.

Architecture

* Windows Azure fully integrates Microsoft’s Security Development Lifecycle (SDL) guidelines to provide

security assurance within Windows Azure’s development processes.

* Microsoft scrutinizes places where data from a less-trusted component is parsed by a more trusted component

like when Windows Azure portal and SMAPI processes requests coming over the network from sources controlled

by customers.

Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 | 85

Identity and

Access

Management

* Customers access the Windows Azure Portal through a web browser or access SMAPI through standalone

command line tools, either programmatically or using Visual Studio.

* Customers upload developed applications and manage their Hosted Services and Storage Accounts through the

Windows Azure Portal web site or programmatically through the Service Management API (SMAPI).

* Customers can monitor and manage their applications via the portal or programmatically through SMAPI using

the same authentication mechanism.

* SMAPI authentication is based on a user-generated public/private key pair and self-signed certificate registered

through the Windows Azure Portal. The certificate is then used to authenticate subsequent access to SMAPI.

* Access to Windows Azure storage is governed by a storage account key (SAK) that is associated with each

Storage Account. Storage account keys can be reset via the Windows Azure Portal or SMAPI.

Software

Isolation

* Microsoft’s Hyper-V is used to provide strong isolation of guest VMs.

* The hypervisor and the root OS provide network packet filters that assure that the untrusted VMs cannot

generate spoofed traffic, cannot receive traffic not addressed to them, cannot direct traffic to protected

infrastructure endpoints, and cannot send or receive inappropriate broadcast traffic.

* VLANs are used to isolate the FCs and other devices.

Data Protection

* Critical internal communications are protected using SSL encryption.

* Windows Azure SDK extends the core .NET libraries to allow developers to integrate the .NET Cryptographic

Service Providers (CSPs) within Windows Azure.

* Developers familiar with .NET CSPs can easily implement encryption, hashing, and key management functionality

for stored or transmitted data.

Availability

* Customers can create a second Storage Account to provide hot-failover capability.

* Customers can create custom roles to replicate and synchronize data between Microsoft facilities.

* Customers can also write customized roles to extract data from storage for offsite private backups.

* Data is replicated within Windows Azure to three separate nodes within the Fabric to minimize the impact of

hardware failures.

* Each datacenter facility has a minimum of two sources of electrical power, including a power generation

capability for extended off-grid operation.

Incident

Response

* Microsoft security vulnerabilities can be reported to the Microsoft Security Response Center or via email to

secure@microsoft.com.

* Microsoft follows a consistent process to assess and respond to vulnerabilities and incidents reported via the

standard facilities.

7 Conclusion

 Cloud computing technology is in constant development

and has recently emerged as a paradigm for delivering and

managing services over the Internet. With the wider adoption

of this technology, cloud security issues have also emerged. In

this paper, we first analyze the guidelines provided by NIST to

address security and privacy issues in public cloud computing.

Then we provide analysis of the Microsoft Windows Azure

cloud platform describing how the NIST guidelines have been

implemented in this platform.

The data and programs belonging to customers are hosted by

Microsoft using Windows Azure. It provides different security

features, controls and mechanisms for customers to choose so

that they can achieve their required level of security. The

analysis performed in this paper will provide customers a good

understanding of how the privacy and security-related issues

that are considered to have long-term significance on the

cloud computing technology have been addressed by

Microsoft Windows Azure, making it one of the most popular

cloud computing platforms to provide a better level of data

security.

8 References

[1] P. Mell and T. Grance, The NIST Definition of Cloud

Computing, National Institute of Standards and Technology,

Spetember 2011.

[2] W. Jansen and T. Grance, NIST Guidelines on Security

and Privacy in Public Cloud Computing, January 2011.

[3] S. Sengupta, V. Kaulgud, and V. S. Sharma, Cloud

Computing Security – Trends and Research Directions, IEEE

World Congress on Services, 2011.

[4] B. Grobauer, T. Walloschek, and E. Stocker,

Understanding Cloud Computing Vulnerabilities, IEEE

Security & Privacy, April 2011.

[5] Cloud Enterprise Architecture, Pethuru Raj, CRC

Taylor and Francis, 2012.

[6] C. Kaufman and R. Venkatapathy, Windows Azure

Security Overivew, Microsoft, August 2010.

86 Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 |

[7] D. Chappell, Introducing the Windows Azure Platform,

David Chappel and Associates, Sponsored by Microsoft

Corporation, Oct 2010.

[8] Q. Zhang, L. Cheng and R. Boutaba, Cloud computing:

state-of-the-art and research challenges, Journal of Internet

Services and Applications, May 2010, Volume 1, Issue 1, pp

7-18.

[9] G. Tajadod, L. Batten and K. Govinda, Microsoft and

Amazon A comparison of approaches to cloud security, Fourth

International Conference on Cloud Computing Technology

and Science, 2012.

[10] X. Jing and Z. Jian-jun, A Brief Survey on the Security

Model of Cloud Computing, Ninth International Symposium

on Distributed Computing and Applications to Business,

Engineering and Science, 2010.

[11] Z. Wang, Security and privacy issues within the Cloud

Computing, International Conference on Computational and

Information Science, 2011.

[12] T. Yu and Y. Zhu, Research On Cloud Computing And

Security, Eleventh International Symposium on Distributed

Computing and Applications to Business, Engineering &

Sciences, 2012.

[13] X. Ma, Security Concerns in Cloud Computing, Fourth

International Conference on Computational and Information

Science, 2012.

Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 | 87

An Approach for QoS-aware Cloud Service Selection
Based on Genetic Algorithm and Simplex Method

Chengwen Zhang1, Jian Kuang2, Zhitao Dai3, Bo Cheng 4, and Lei Zhang 5

1Beijing Key Laboratory of Intelligent Telecommunications Software and Multimedia, Beijing University of
Posts & Telecommunications, Beijing, China

2Beijing Key Laboratory of Intelligent Telecommunications Software and Multimedia, Beijing University of
Posts & Telecommunications, Beijing, China

3Beijing Key Laboratory of Intelligent Telecommunications Software and Multimedia, Beijing University of
Posts & Telecommunications, Beijing, China

4State Key Lab of Networking and Switching Technology, Beijing University of Posts &
Telecommunications, Beijing, China

5Key Laboratory of Trustworthy Distributed Computing and Service (BUPT), Ministry of Education,
Beijing, China

Abstract - For the problem of cloud service selection, this
paper gives a hybrid algorithm. The hybrid algorithm is
composed mainly by Simplex Method and Genetic Algorithm.
In this algorithm, a tree traversal sequence encoding scheme
and some Simplex Method operations are proposed. The
design of the tree traversal sequence encoding can support
various types of service combinations. In addition, the hybrid
algorithm uses Simplex Method operations to further improve
local convergence of Genetic Algorithm. The global
convergence ability and local convergence capacity of
Genetic Algorithm can be gotten better at the same time.
Passed tests and analyses show that the algorithm proposed in
this paper can be a good choice to solve QoS-based cloud
service selection problems.

Keywords: Genetic algorithm, QoS-aware, Simplex method,
Cloud service selection

1 Introduction
 In cloud computing [1-4] environment, there are
inevitably many service providers to provide services with
same functionalities and different QoS. These services can
combine tens of thousands composite services with same
functions and different QoS. That is, there are many different
combination plans. Therefore, in a service composition
process, we need to choose service components from massive
services with same functions and different QoS based on
user's QoS requirements. How to select the most suitable
composite service among many available candidate services
for consumers is an interesting practical issue [24, 25]. The
service selection with global QoS constraints possesses a
considerably big proportion in the problem of QoS-based
cloud service selection. QoS-based cloud service selection
plays an important role in the combination of cloud services.

Researches in this area have aroused widespread concern in
academic circles [5-11, 14-21, 23-27].

QoS-based cloud service selection problem is one of the
hot research areas. The calculation algorithms based on QoS
properties is a kind of QoS-based service selection algorithm.
Exhaustive methods and approximate algorithms are two
kinds of QoS properties calculation methods. To meet the
global constraints and to find the optimal combination are
under the scope of combinatorial optimization, and QoS-
based service selection is NP-hard problem [11], therefore,
approximate algorithm is more suitable to solve optimization
combinatorial problems. Genetic Algorithm is a kind of
approximate algorithm. It is a good method to solve
optimization combinatorial problems [12-13]. But, Genetic
Algorithm is not advantageous for the local convergence. To
compensate for local search capability of Genetic Algorithm
itself, the combination of Genetic Algorithm and some kind of
local search algorithms is needed to enhance the local search
capabilities of Genetic Algorithm.

Based on the above analyses, this paper presents an
improved Genetic Algorithm. Firstly, a tree traversal sequence
encoding of Genetic Algorithms is described. Secondly, to
compensate for the local search capabilities of Genetic
Algorithm itself, a hybrid algorithm of Genetic Algorithm and
Simplex Method is introduced.

The remaining sections of this paper are as follows.
Section two described researches of QoS-based cloud service
selection computing. The proposed hybrid GA was discussed
in detail in section three. Section four presented some
simulation works and discussed the simulation results. Section
five came to conclusions and noted that the next step in
research content.

88 Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 |

2 Quality-based cloud service selection
Based on all global QoS constraints, to select the best

plan from a large number of service composition plans is the
area of combinatorial optimization. To solve such problems,
the calculation methods based on QoS attributes are divided
into two categories. One category is exhaustive algorithm. In
this kind of algorithm, all of candidate plans are calculated
according to certain rules in order to choose the best plan. It
needs to figure out all possible solutions in order to obtain the
optimal solution. So the exhaustive combinatorial
optimization method is poor scalability and has large
calculation. The other is approximate algorithm. In this type
of algorithm, an ideal composition plan is infinitely close to
the best one. At last, a plan that meets all QoS requirements
but is not the best one will be gained. The methods in [10-11,
16-21] fall into this category.

In the field of combinatorial optimization, there is a
random search algorithm based on probability. Genetic
Algorithm is suitable for solving such problems [12], and it
can effectively prevent exhaustive algorithm limitations. The
solution based on Genetic Algorithm is a global optimization
one. [10-11, 17-21] used Genetic Algorithm for the
optimization of service composition.

Genetic Algorithm and some kind of local search
algorithms need to be combined to enhance its local search
capabilities and to achieve fairly good results in order to
compensate for the local search capability of Genetic
Algorithm itself.

3 Genetic algorithm with simplex method
In this section, we present a hybrid algorithm with

Simplex Method and GA in order to solve quality-driven
selection, mainly including the design of a tree traversal
sequence encoding scheme and some Simplex Method
operations.

3.1 Tree traversal sequence encoding scheme

 A chromosome encoding approach is the basis of the
running of Genetic Algorithm. All of subsequent genetic
operations should be based on coding design. Different issues
should use different coding techniques. The encoding method
for solving QoS-based service selection problem should not
only reflect every service in services combination but also
reflect the structure information of services combination itself.
Therefore, the chromosome coding scheme needs to be
improved.

This paper designed a tree traversal sequence encoding
scheme. The encoding is based on a tree combination
template of services combination. The following will in turn
introduce the establishment of the tree combination template
and how to create chromosomes of GA.

3.1.1 Building tree combination template

A service combination process can be recursively
decomposed into four kind of basic models (that is, series
model, parallel model, choice model and loop model). Here
are four abbreviations SM, PM, CM and LM that express
respectively series model, parallel model, choice model and
loop model. To describe complicated service combination
process, the service combination process can be expressed as
an equivalent tree structure that is called tree combination
template. In this tree combination template, root node, non-
leaf nodes and leaf nodes represent respectively composition
model of entire service combination process, logical
relationships among tasks and tasks themselves.

p1

p2

Fig. 1. An example about a service combination process

Figure 1 is an example of a service combination process.
In this example, all of four models are included. In figure 1,
T0 and T1, T2 and T3, T4 and T5 are all sequence type. The
relationship among tasks T1, T2, T3, T4, T5 and T6 is cycle
and its circulation number is m. The two branches of T2 and
T4 are selection relationship and their choice probabilities are
p1 and p2 respectively. The sum of p1 and p2 is 1. T7 and T8
are parallel type. Figure 2 is the tree combination template
that expresses the service combination process in figure 1.

ST-

root

T0
PT

ST

T1 T6
CT

LT

(m)

P1 P2

T7 T8

STST

T2 T5T4T3

Fig. 2. A tree combination template corresponding to the
service combination process in Figure 1

In Figure 2, all leaf nodes express all of tasks T0 ~ T8 in
the service combination process. Each task can have a number
of candidate services. The non-leaf nodes ST, PT, CT and LT
express respectively series type, parallel type, choice type and
loop type. They are four kinds of expression of their sub-tree
relationships. The non-leaf node CT contains the
implementation probability of its sub-trees. The non-leaf node
LT involves the number of loop of its sub-trees. During

Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 | 89

calculating an individual's fitness value, non-leaf nodes will
save values of all QoS attributes of its sub-trees.

Before the running of service selection algorithm, it is
necessary to express the process of service combination with a
unified description. In this paper, a tree-form combination
template is used to unify the different formats of services
combination processes. After the running of service selection
algorithm, the original expression of the services combination
processes will be restored.

3.1.2 Creating chromosomes of GA

It is very important to design adequate chromosome to
solve the problem of service selection. A tree-encoding is
designed in [17]. Each gene in chromosome carries the
information of parent nodes and child nodes. In this method,
the information of non-leaf nodes was included into
chromosome, so that chromosome could carry the logical
information of services combination. However, this approach
increased the length and complexity of chromosome. Each
chromosome must carry same logical information of services
combination. This method is a waste of space. And, non-leaf
nodes will not participate in follow-up genetic manipulations.

The combinational logic information needs to be kept in
tree template and does not need to be included in every
chromosome. Chromosome only need include leaf nodes of
tree template. The genes of a chromosome arrange in
accordance with the result of preorder traversal of tree
template. The length of chromosome is equal to the number of
tasks in a service combination path. Any additional
information does not need to be added into the chromosome.
Thus, space can not only be saved, but also the subsequent
genetic manipulations are simplified.

According to the characteristics of the four kinds of
combination models, it is choice branches to create many
service combinatorial paths. The service composition logics
until the start point of selection branches are same among
some service combinatorial paths. After the start point of
selection branches, different service composition logics
distribute in different service combinatorial paths. That is, the
start point of selection branches is the threshold of different
service combinatorial paths.

In the design of chromosome of the hybrid GA,
chromosome is established in the form of unidimensional
code. All of gene positions in chromosome correspond to
tasks in service composition logic. Each task executes in turn
successively based on gene position order from left to right. In
the relationship between chromosomes and combinatory logic,
different combinatorial path corresponds to different
chromosome. That is, the number of chromosomes and the
number of combinatorial paths are same.

The creation process of chromosome is as follows.

 Firstly, according to the definition of tree combination
template, a tree combination template is built based on service
composition logic.

Secondly, an unidimensional chromosome is initialized.
The leftmost gene locus in the chromosome is the starting
point to be treated. A pointer is initialized and points to the
leftmost gene locus in the chromosome.

Thirdly, from the root node of the tree combination
template, all of nodes are traversed from left to right
according to a preorder traversal way.

The tree combination template in Figure 2 can be
encoded into chromosomes shown below. In this example,
there are two chromosomes that express two composition
paths.

T0, T1, T2, T3, T6, T7, T8

T0, T1, T4, T5, T6, T7, T8

After the chromosome has been coded, it could then
generate a specific individual (ie, service combination
instance). The following is the specific method to build an
individual. Every gene in the chromosome expresses a task of
service composition. There are a lot of candidate services for
a task. A specific atomic service needs to be selected from
every set of candidate services. All of atomic services will
form a composite service instance that is an individual in
population. A certain number of generated individuals can
compose an initial population. Through main genetic
manipulations, new generations of population constantly are
gotten until a satisfactory solution is obtained.

3.2 SM operations

GA can not be restricted by restrictive assumptions
constraints in search space. It does not require continuity,
derivative existence and single peak assumptions. In addition,
Genetic Algorithm with global optimization capability uses
populations to organize optimization operations. It searches
multiple regions in the solution space at same time, so it has
the inherent parallelism. However, local convergence of
Genetic Algorithms is not an advantage. Therefore, in order to
compensate for Genetic Algorithm itself in lack of local
search capability, Genetic Algorithm needs to be integrated
with some kind of local search algorithms to enhance its local
search capabilities.

Simplex Method (SM) is a common approach to solve
mathematical programming problem. Genetic Algorithm and
Simplex Method also have their own advantages. Genetic
Algorithm has global optimization capability, and it can
search simultaneously multiple regions of solution space.
Simplex Method has local space search ability, fast

90 Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 |

convergence speed. It can change search direction according
to the trend of fitness values and the use of local information.

Existing researches primarily solve the problem of
combination service selection through local optimization or
global optimization algorithms. The running time of the local
optimization algorithm is less than the global optimization
algorithm, but it can not take into account the global QoS
constraints, and often can not meet non-functional
requirements that customers bring forward. The global
optimization algorithms can consider the global QoS
constraints, but the amount of calculation is larger than the
local optimization algorithm. Thus, these two algorithms both
have some limitations.

As described above, a combination of Genetic Algorithm
and Simplex Method can form a hybrid algorithm [22] that
includes the global optimization algorithm and the local
optimization algorithm. Genetic Algorithm ensures that the
hybrid algorithm has the global search capability and can find
the global optimal point. Simplex Method can add a number
of parallel searches in many local areas and it can use local
search methods to direct the search. It can not only speed up
the process of global optimization, but also solve the
"premature" problem of Genetic Algorithm to a certain extent.
Better convergence speed and search capability can be gotten
at the same time.

Based on the research about the combination of simplex
method and Genetic Algorithm, this paper presents a hybrid
algorithm that is the Combination of Genetic Algorithm and
Simplex Method. This hybrid algorithm will be used to solve
the service choice problem.

The following is the main idea of the hybrid algorithm.
After Genetic Algorithm produces a new generation of
population, some local initial simplexes are composed by
some randomly selected individuals in a certain probability.
Individuals with higher fitness values are introduced through
continuous reflection operations and they will replace the
individuals whose fitness values are lower. So, a number of
new better individuals will be included into the next
generation of population and will participate in genetic
manipulations in the next generation of population. In
addition, during the reflection operation, the decision variable
matrix will be used.

Some Simplex Method operations are joined between
two generations of population. After a series of reproduction,
crossover and mutation operators, a number of individuals are
randomly selected to form a certain number of initial
simplexes. Some local Simplex operations are run in parallel.
After all initial simplexes have completed their simplex
operations, more excellent individuals are obtained. We can
proceed with the next generation of genetic manipulations.

 ()
1is

task

Sp
N ceil

N
=

+ (1)

In the above equation, The number of generated initial

simplexes is isN . Sp is the population size of Genetic

Algorithm. taskN is the number of tasks.

The main steps of simplex operations of each initial
simplex are the following ones:

 1), Establishing an initial simplex

An initial simplex is formed in a n-dimensional space by
n+1 individuals that are selected randomly From the current
population.

2), Selecting the worst individual

The vertex with the smallest function value among n+1
vertices is found and its corresponding individual is denoted
by 1nI + . The individuals corresponding to the remaining
n vertices are indicated respectively by 1 2, , , nI I I⋯ .

3), Constructing decision variable matrix of every vertex

The decision variable matrixes
1 2 1, , , ,n nD D D D +⋯ are built respectively for

individuals 1 2 1, , , ,n nI I I I +⋯ . In the decision

variable matrix, each row represents the decision variable
vector of all candidate services of a task. As shown below is
the specific method to construct. Only when the jth candidate

service of the ith task is selected, the component i jd is 1 in

the decision variable matrix kD , otherwise the value of

i jd is 0.

4), Calculating decision variable matrix of reflection
center

The reflection center is cI that is about n individuals
except the worst individual 1nI + . The decision variable
matrix cD about cI can be built according to the
following equation.

n

i 1

c iD =(D) / n
=
∑ (2)

5), Computing decision variable matrix about the
reflection point

0I is the reflection point of the worst individual
1nI + on cI . Its decision variable matrix is 0D .

Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 | 91

0 c- n+1D 2D D= (3)
6), Boolean the decision variable matrix of the reflection

point

Boolean-oriented approach is to reassign 0 or 1 to each
component i jd in the decision variable matrix 0D .
The value 1 will be set to the largest component in each row
vector kD of 0D and the remaining components are
assigned the value of 0. Thereby, a boolean decision variables
matrix 0 'D will be generated. In the Boolean process, if
there are multiple components with the same and maximum
value in a row vector, the value 1 will be set to random
component among them. The remaining components in the
row vector are 0.

7), Generating a new individual corresponding to the
reflection point

A new individual 0I is generated on the basis of the
decision variable matrix 0 'I . For each row vector in

0 'D , the only component with the value of 1 is used to
select its atom service instance. The atom service instance will
is assigned to corresponding gene locus on a chromosome.
After all of gene loci are set atom service instances, the
formation of a new individual 0I will be done.

8), Determining whether new individuals meet user's
global constraints

Based on the search thinking of that the best point should
be almost the opposite of the worst one, the fitness value of a
new individual 0I always is greater than the worst
individual 1nI + in the initial simplex. Therefore, if the
new individual's fitness is greater than the worst individual
and the new individual meets the user’s global QoS
constraints, the new individual will replace the worst one in
population and joins the next generation population evolution.
Otherwise, if the new individual's fitness is less than the worst
individual or the new individual does not meet the user’s
global QoS constraints, the new individual will also replace
the worst one in population and form a new simplex to
continue with the next iteration of the simplex algorithm. We
can end the operation of the simplex until a new individual's
fitness is greater than the worst individual and the new
individual meets the user’s global QoS constraints.

Simplex operations are done in
i sN initial simplexes

in turn. After every simplex has gained a new individual
whose fitness value is better than the worst individual in the
simplex and that is able to meet the global user constraints,
these new individuals will be generated and added into the
population to participate in the next generation of population
genetic manipulations.

Because individuals are randomly selected to build an
initial simplex, the randomness of Genetic Algorithm can be
ensured. And the opportunities to generate new individuals
are increased. On the other hand, Simplex Method can control
the evolution direction of Genetic Algorithm to make better
solutions. It is parallel searches in a number of local solution
spaces not only that enhances the local search ability bus also
that accelerates the global convergence and solves the
"premature" problem of GA to a certain extent.

4 Tests and analyses of hybrid GA
The proposed service selecting algorithm in this paper

improves simple Genetic Algorithm in two ways. One is the
improvements of simple Genetic Algorithm including tree
traversal sequence encoding. The other hand is to build a
more powerful and efficient hybrid search algorithm that is
composed by Genetic Algorithm and Simplex Method.
Through the above two improvements, the hybrid GA has
better search ability. Here are the tests and test analyses
through which the capacity of the presented hybrid GA will be
validated.

4.1 Test data preparation

In order to verify the effect of services choice done by
the hybrid GA, some comparison tests between simple
Genetic Algorithm and the hybrid GA algorithm were made.

In order to fairly test the two algorithms, they would run
in the same hardware and software operating environment,
including CPU, memory, OS, development language and IDE,
etc.

The simple Genetic Algorithm and the hybrid GA used
initialization parameters as follows. The population size is
500. The crossover probability is 0.7 and the mutation
probability is 0.1.

Based on the above preparation of test data, simple
Genetic Algorithm and the hybrid GA were run respectively.
The test results were analyzed from search capability

4.2 Tests and analyses of search capability

Search capability is that the algorithm can find the
optimal solution in a solution space. It can be measured by the
quality of the solution that the algorithm searches. In Genetic
Algorithm, the algorithm search capability can be measured
through the fitness value of the final selected individual.

The hybrid GA took a tree traversal coding as well as the
combination of Simplex Method to improve global search
ability and local search capability from different aspects of
Genetic Algorithm. In order to verify these strategies, simple
Genetic Algorithm and the hybrid GA were run for 50 times at
different scale of problems (that is, the number of different

92 Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 |

tasks and different number of candidate services) respectively.
The average values of the final fitness values at all running
time were taken. A few set of test data are listed in Table I.

TABLE 1 Average value of maximum fitness
task
number

average
number
of candidate
services for
each task

average
fitness
value of
simple GA

average fitness
value of hybrid
GA

5 6 0.227 0.239
12 10 0.106 0.197
25 35 0.027 0.09

As shown in Table 1, when in the face of the selection
problem with the same size of combination services, the
hybrid GA can get higher average final fitness value than the
simple Genetic Algorithm. When the scale of the composition
problem is small, the advantage of the hybrid GA is not clear.
But, when there are a larger number of tasks in a combined
service flow, the hybrid GA can get much better solutions
than the simple Genetic Algorithm. In the test conditions of
this article, when the number of tasks is more than 12, the
hybrid GA clearly has stronger search capabilities. This shows
that the hybrid GA has better search capabilities, especially in
the larger scale of service selection, that the search
capabilities are more prominent.

The crossover operation of chromosomes and the
mutation operation of chromosomes can search optimal
results not only in same path but also in different composition
paths. The search areas of the crossover operation and the
mutation operation are broadened. This is one reason why the
hybrid GA can get more fitness than the simple GA. Another
reason is the use of Simplex Method operations. These
Simplex Method operations enhance the local search
capabilities of Genetic Algorithm.

5 Conclusions
As a kind of distributed computing model, academia and

industry have been greatly concerned about cloud services in
recent years. With the cloud services technologies have
become more sophisticated, more and more easily used cloud
services with the stability characteristics are shared on
network. But a single atomic cloud services can provide
limited functionalities. In order to more fully utilize the shared
cloud services, it is necessary to combine shared cloud
services to form a new combination of cloud services to
provide more powerful service functions.

With the progressive development of cloud services
technology and application, it is inevitable for a task to appear
a large number of candidate services with the same function
properties and different non-functional attributes (mainly
referring to QoS attributes). It has become an urgent problem
that how to fast and flexibly select a high-availability, high
reliability, high performance and the best services to meet

user’ needs from massive candidate services. Namely, it is
QoS-based service selection problem.

This paper presents a combination services selection
algorithm based on the hybrid GA. Based on the analyses of
the 0-1 integer programming model of composite service
selection problem, the simple Genetic Algorithm is improved
itself and combines a local optimization algorithm – Simplex
Method. The improvements of the simple Genetic Algorithm
itself includes that the design of a tree traversal sequence
encoding to support a variety of combination types. In
addition, in order to compensate the lack of the ability of local
search of Genetic Algorithm itself, Genetic Algorithm and
Simplex Method are applied to the formation of a new hybrid
algorithm. In the result, the search ability can be improved at
the same time.

Through the realization of the above-mentioned
algorithm, testing and analyses of test results, some strong
validations of the proposed algorithm in capacity effect were
done. The hybrid GA can be a good solution to QoS-driven
cloud services selection.

In the above experiments, the number of individuals in
populations is same in the face of different combination sizes.
If the populations with different sizes can be adopted for
different composition scales, the efficiency of algorithm will
be greatly improved. Therefore, the next study will examine
the dynamic adaptive mechanism of population size. The
other next step is to apply the proposed hybrid algorithm into
a number of practical large-scale services computing
environments, in order to improve the efficient and reliable
operations of the hybrid GA further.

Acknowledgments: This work was supported by NSFC under
Grant Nos. 60872042, the Fundamental Research Funds for
the Central Universities (2011RC0203) and the Co-
construction Special Funds of Beijing.

6 References
[1] B. Rochwerger, D. Breitgand and E. Levy, et al. “The
reservoir model and architecture for open federated cloud
computing”; IBM Journal of Research and Development, 53,
4, 1—17, 2009.

[2] B. Hayes. “Cloud computing”; Comm. ACM, 51, 7, 9—
11, 2008.

[3] A. A. Ahson and M. Ilyas. “Cloud computing and
software services”. CRC Press, 2010.

[4] M. Armburst, et al. “Above the clouds: a Berkeley view
of cloud computing”. Tech. report UCB/EECS-2009-28,
Electrical Eng. and Computer Science Dept., Univ. of
California, Berkeley, 2009.

Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 | 93

[5] Laiping Zhao, Yizhi Ren, Mingchu Li. “Flexible service
selection with user-specific QoS support in service-oriented
architecture”; Journal of Network and Computer Applications,
35, 3, 962—973, 2012.

[6] Z. ur Rehman, F. K. Hussain, O. K. Hussain. “Towards
multi-criteria cloud service selection”. 2011 Fifth
International Conference on Innovative Mobile and Internet
Services in Ubiquitous Computing (IMIS), 44—48, 2011.

[7] Y. Liu, A. H. Ngu and L. Zeng. “QoS computation and
policing in dynamic web service selection”. In Proceedings of
the 13th International Conference on World Wide Web
(WWW), ACM Press, New York, USA, 66—73, 2004.

[8] L. Zeng, B. Benatallah, M. Dumas and Q. Z. Sheng.
“Quality driven web services composition”. Proc. 12th Int’l
Conf. World Wide Web (WWW), ACM Press, Budapest,
Hungary, 411—421, 2003.

[9] Liang Zhao Zeng, Boualem Benatallah, etc. “QoS-aware
middleware for web services composition”; IEEE
Transactions on Software Engineering, 30, 5, 311—327, 2004.

[10] Liang Jie Zhang, Bing Li and Tian Chao, etc. “On
demand web services-based business process composition”.
IEEE International Conference on System, Man, and
Cybernetics (SMC'03), Washington, USA, 4057—4064, 2003.

[11] G. Canfora, M. Di Penta and R. Esposito, etc. “A
lightweight approach for QoS–aware service composition”. In
Proc. 2nd International Conference on Service Oriented
Computing (ICSOC'04), New York, USA, 36—47, 2004.

[12] M. Srinivas and L. M. Patnaik. “Genetic algorithm: a
survey”; IEEE Computer, 27, 6, 17—26, 1994.

[13] R. Ignacio, G. Jesús and P. Héctor, etc. “Statistical
analysis of the main parameters involved in the design of a
genetic algorithm”; IEEE Transactions on Systems, Man, and
Cybernetics—Part C: Applications and Reviews, 32, 1, 31—
37, 2002.

[14] Jun Huang, Yanbing Liu, Ruozhou Yu. “Modeling and
algorithms for QoS-aware service composition in
virtualization-based cloud computing”; IEICE Transactions
on Communications, E96B, 1, 10—19, 2013.

[15] A. Danilo and P. Barbara. “Adaptive service
composition in flexible processes”; IEEE Transactions on
Software Engineering, 33, 6, 369—384, 2007.

[16] T. Yu, Y. Zhang and K. J. Lin. “Efficient algorithms for
web services selection with end-to-end QoS constraints”;
ACM Transactions on the Web, 1, 1, 1—26, 2007.

[17] C. M. Gao, M. L. Cai and Chen Huowang. “QoS-aware
service composition based on tree-coded Genetic Algorithm”.
31st Annual International Computer Software and
Applications Conference (COMPSAC 2007), 1, 361—367,
2007.

[18] C. W. Zhang, S. Su and J. L. Chen. “DiGA: population
diversity handling Genetic Algorithm for QoS-aware web
services selection”; Computer Communications, Elsevier, 30,
5, 1082—1090, 2007.

[19] Y. H. Yan and Y. Liang. “Using genetic algorithms to
navigate partial enumerable problem space for web services
composition”. 3rd International Conference on Natural
Computation (ICNC 2007), China, 475—479, 2007.

[20] Y. Ma, C. W. Zhang. “Quick convergence of genetic
algorithm for QoS-driven web service selection”; Computer
Networks, 5, 1093—1104, 2008.

[21] G. Canfora, M. Dipenta and R. Esposito. “An approach
for QoS-aware service composition based on genetic
algorithms”. Proceedings of the 2005 Conference on Genetic
and Evolutionary Computation, Washington, 1069—1075,
2005.

[22] J. Yen, C. Liao, B. Lee, et al. “A hybrid approach to
modeling metabolic systems using a genetic algorithms and
simplex method”; IEEE Trans. on Systems, Man, and
Cybernetics-part B: Cybernetics, 28, 2, 173—191, 1998.

[23] Cang Hong Jin, Ming-hui Wu and Tao Jiang, etc.
“Combine automatic and manual process on web service
selection and composition to support QoS”. 12th International
Conference on Computer Supported Cooperative Work in
Design (CSCWD 2008), Xi’an, China, 459—464, 2008.

[24] Q. Liang, X. Wu, and H. C. Lau. “Optimizing service
systems based on application-level QoS”; IEEE Transactions
on Services Computing, 2, 108—121, 2009.

[25] Q. Z. Sheng, B. Benatallah, Z. Maamar, and A. H. H.
Ngu. “Configurable composition and adaptive provisioning of
web services”; IEEE Transactions on Services Computing, 2,
34—49, 2009.

[26] S. N. Huang and ATS. Chan. “Dynamic QoS adaptation
for mobile middleware”; IEEE Transactions on Software
Engineering, 34, 738—752, 2008.

[27] M. Alrifai and T. Risse. “Combining global optimization
with local selection for efficient QoS-aware service
composition”. 18th international conference on World Wide
Web (WWW 2009), 2009.

94 Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 |

Maximizing SLA and QoE in Heterogeneous Cloud

Computing Environment

Md Sabbir Hasan
1
, Eui-Nam Huh

2

1
Department of Computer Engineering, Kyung Hee University, Suwon, South Korea

2
Department of Computer Engineering, Kyung Hee University, Suwon, South Korea

Abstract - Cloud Computing delivers users a proficient way

to dynamically allocate computing resources to meet

demands. The use of Server virtualization techniques for

Cloud Computing platforms provide great elasticity with the

capability to consolidate several virtual machines on the same

physical server, to resize a virtual machine capacity and to

migrate virtual machine across physical servers. A key

challenge for Cloud Service providers is proper resource

management while taking into account of Service Level

Agreement and Quality of Experience of users. Reserving

resources would be beneficial to improve the quality of

service, if the actual demand of the user is known in advance.

However, in reality, the actual computing demand can be

pragmatic only at the point of actual usage. In this paper, we

propose a demand prediction method constructed on present

usage of resources, aiming better provisioning of resource

demand. Our proposed VM allocation is mapped into the

multidimensional bin-packing problem, which is NP-complete.

To solve this problem, we have designed heuristics for

quantitatively optimizing the VM allocation. The simulation

results show that our scheme performs better comparing to the

existing VM allocation schemes in cloud computing

environment, in terms of maintaining SLA and better QoE.

Keywords: Quality of Experience, Service Level Agreement,

Cloud Computing, VM Resource Allocation.

1 Introduction

 Cloud Computing has received significant attention

recent times as the hype is created and responded largely by

the companies like Amazon, IBM, Google, Yahoo!,

Microsoft, Sun, NASA and RackSpace by making their own

cloud platforms for consumers and enterprises to access the

cloud resources through services. With the rapid development

of Virtualization technology including the advantage of

isolation, consolidation and multiplexing of resources,

became key role to deploy in modern data centers [1]. Due to

virtualization, numerous tasks are seen as a single entity in a

virtual machine. Since Infrastructure-as-a-Service (IaaS) is a

computational service model applied in the cloud computing

paradigm, Virtualization technologies are used these days to

support computing resource access by the users in this model.

Users can specify required software stack such as operating

systems, software libraries, and applications; then package

them all together into virtual machines (VMs). Finally, VMs

will be hosted in a computing environment operated by cloud

providers. [2].

QoS requirement can be formalized in Service Level

Agreement that serves as the foundation for the expected level

of service between the Cloud consumer and the Service or

Cloud provider. However, Infrastructure providers often end

up over provisioning of resources to maximize the Service

Level Agreement that results poor Resource Management and

Large Operational cost. Contrary to that, under provisioning

of resources will increase SLA violation and affect QoE of

Users. Quality of experience (QoE), sometimes also known as

Quality of Service, is a subjective measure of a user's

experiences with a service in Cloud Computing Environment.

The poor QoE will dissatisfy the User. A typical user-related

measure is the mean opinion score (MOS), which can be

determined from subjective analysis, usually used to measure

the Quality of Experience of the User’s. Nevertheless,

Subjective analysis is not enough while predicting the

resource demand of User that might require during execution

time. So we build an exponential relationship between SLA

violation and QoE, based on Subjective and Quantitative

analysis to maintain better Service Level Agreement.

However, the research in SLA and QoE in Cloud Computing

Environment is still in its infancy, and several technical issues

remain open. One important issue is to meet the QoS

requirements of Cloud services that require a different

quantity of VM resources at run-time [3]. Inappropriate VM

resource allocation in this environment may result in resource

waste and Service quality degradation.

Nevertheless, the VM resource allocation is challenging due

to the dynamic nature of the workload and cloud platform.

Specifically, this is demanding in terms of the VM resource

requirement, multimedia service heterogeneity and the

heterogeneous network conditions [3], [4], [5]. It is

cumbersome for a cloud provider to perform over

commitment of VM resources for processing media service

tasks, which may have different QoS requirements and

unpredictable resource consumption. Moreover, the irregular

Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 | 95

spikes and bursts of user activities in interactive cloud-based

applications complicates the over commitment estimation of

VM resources.

In this paper, we tackle the aforementioned challenges of VM

resource allocation in heterogeneous cloud environment. We

propose a VM resource allocation model that optimally

allocates VM resources to a set of physical machines/servers

by considering the dynamic VM resource requirements of

cloud multimedia services. It ensures the minimum SLA

Violation, while maintaining high system utilization by

avoiding over provisioning the VM resources to the services.

The proposed VM resource allocation model is designed to:

 Minimize the number of physical servers/machines

for energy savings;

 Reduce SLA violation to improve QoE;

 Achieve load balancing or overall utilization of

physical resources.

Several experiments are carried out to validate the efficiency

of our proposed VM resource allocation model in

heterogeneous cloud platform. These experiments are

conducted for different patterns of workload for various

environments. We also have compared our proposed

algorithm with three other existing algorithms in cloud

platform, which comprised of LR-MMT [6], BFD, FFD [7].

The results include the performance of SLA Violation

reduction and better QoE of Users.

The rest of the paper is organized as follows: Section 2

presents the related work. Section 3 describes our VM

resource allocation model and heuristics for the current

multidimensional bin packing problem. Section 4 presents

experimental results and performance comparisons. Finally,

Section 5 concludes the paper.

2 Related Works

 Our work is based on Dynamic Consolidation of Virtual

Machine’s retaining strict Service Level Agreement. There are

several research groups in both academia and industry,

working on Energy aware resource allocation and

management by performing static and dynamic consolidation

of VM’s and servers.

Cardosa et al. [8] proposed a solution for VM placement and

power-efficient consolidation of VMs in modern data centers

where it runs heterogeneous applications. They have adopted

min, max, share parameters of XEN and VMware that

represents the Utilization limit of upper and lower of CPU

allocation and sharing same resources by different VMs. They

also considered a priority based approach for peak load of

enterprise environment. As a result it does not support strict

SLA and VM allocation is static. Verma et al [9] described a

power aware application placement framework in which at

each time frame the placement of VMs is optimized to

minimize the power consumption and maximize the

performance at certain level. The main difference with his

work is that, our proposed algorithm doesn’t violate Strict

SLA requirement when workload is varied and unpredictable.

Stilwell et al [10] proposed a formulation of the resource

allocation problem in shared hosting platform for static

workloads with servers that provide multiple types of

resources. Their algorithm runs faster in large systems and

fulfill QoS requirement but it lack dynamicity when workload

in unpredictable and dynamic. Like him other researchers

[11], [12] also studied VM resource management techniques

to maintain QoS requirement when workload is static in Cloud

Computing. Wood et al [13] developed the Sandpiper System

that monitors and detects hotspots and reconfigure VMs when

is necessary. In order to choose which VMs to migrate , their

system sorts them using volume-size-ratio, which is a metric

based on CPU, network and memory loads where as we

considered both size of VM and the migration time required

to maintain strict SLA.

In contrast to above approaches, Our algorithms that includes

Host Utilization, power consumption increment of Hosts and

migration time of VMs and further modification from their

approach shows better result in terms of SLA Violation and

QoE of Users. Our Estimator for Host overload detection

provides better consolidation of VMs as it reduces the number

of unnecessary VM Migration.

3 Problem Statement

 As depicted in figure (1) the system model of Cloud

Computing environment consists of three components, i.e.,

user, Cloud Broker and Cloud Provider. Each Cloud Provider

supplies a pool of resources to the User. Cloud Broker works

as a Centralized Unit or 3rd party which interacts with both

Users and Cloud Providers having some core functionalities.

Our approach in this paper is to predict the resource demand

based on the current usage of resources by Cloud Providers

and their workload of the servers, later allocate VM based on

the actual demand to improve SLA and QoE of Users. So, we

ignore to describe other functionalities of Cloud Broker. We

propose the VM resource Allocation model as

Multidimensional Bin Packing Problem [14], which is NP

complete. The target is to find the minimum number of

Physical Host to place the VM’s, with respect to Physical

Host’s capacity. To solve this problem, we have designed a

linear Programming (LP) model, as well as heuristics to

quantitatively optimize the VM allocation. The VM resource

allocation process can be static or dynamic. In static VM

allocation, VM capacities are configured using peak load

demands of each workload. The utilization of the peak load

demand ensures that the VM does not overload and stay in the

same physical servers during their entire lifetime. However, it

leads to idleness due to the variable VM resource demand. In

dynamic VM allocation, VM capacities are configured

dynamically according to the current media workload

96 Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 |

demands. However, it may require migrating VMs between

physical servers in order to: (i) pull out physical servers from

an overloaded state when the sum of VMs capacities mapped

to a physical server becomes higher than its capacity; (ii) turn

off a physical server when the VMs mapped to it can be

moved to other physical servers. In our scenario, we allow the

virtual machine capacities to be varied on demand. We also

introduce a VM migration policy to overcome from

overloading the host, resulting better Quality of Service to

User’s.

Cloud Provider

Cloud Provider
Cloud Provider

Cloud Broker

Resource

Manager

Service Manager

and Monitoring

SLA Manager
Demand

Predictor

User

 Figure (1) Cloud Computing Environment

3.1 Resource Demand Prediction

 Predicting the actual VM demand greatly minimizes the

VM allocation problem that results less energy consumption

and service downtime. However, the demand cannot be

known in advance. Therefore, present usage pattern of all the

cloud providers is used to determine the future VM demand

and provide on demand resource addition if needed in our

approach. The Broker is responsible for accumulating the

information as a centralized entity. The usage history might

unravel some patterns that might help to predict the actual

usage amount. For our experiments, we use different pattern

of workload to create uncertainty predicting the actual

demand, but the functions we considered to measure the

resource demand, improves resource utilization and

performance. So we formulate, resource required to satisfy

present demand, { (), , }q avg vR Q n W SLA . We carefully choose

the functions to get better likelihood depending on the present

usage of resources.

Definition 1(Service Queue Length): ()mQ i denotes the

number of class- m requests arrive at the time instant t ,

{1,2,3... }t T and {1,2,3... }m k . Every class- m request has

deadline md . So if a class- m request arrives at t time that

must be served no later than{ }mt d . We consider the

arrival rate is Poisson process. So the arrival rate of incoming

request is and mean duration of served request is 1

. So

for class- m request, arrival service request will be m and

that should be
m . Using little’s law, average number of

request in the queue ()mQ t = Arrival rate time to serve

request. For Multimedia application (Instant Channel Change

in IPTV), where deadline 0d , each request must be served

at the instant time. So number of servers needed at time I will

be tQ . If we have number of servers at the Cloud provider

side as
1 2 3(, ,)TS S S S , then to satisfy the entire request at

time instant t , we have to have
i tS Q .

So for a time frame from 0t to 0 nt t :

0 0

0 0

()
n nt t t t

n

n t n t

S Q n

 ;
0 , nt t t (1)

For a strict condition:

0 0

0 0

()
n nt t t t d

n

n t n t

S Q n

 ;
0 , nt t t (2)

But that would miss some of the deadlines that have been

requested.

Definition 2 (Server Workload): In heterogeneous cloud

environment, servers workload fluctuates depending on the

behavior of different applications resource requirements. We

consider, the average arrival rate of lock to a data item is l

and locks the data item for ht . Then the contention to that

data item appears
l hC t . The probability of application

contention in the server can be formulated 1 .cont l hP t
d
 ,

where 0 1d . So average workload for Application on the

server:

0

1 1(.)avg l h

n

W t
dt t

; 0 1d (3)

For all the servers from different Cloud provider’s workload

can be statistically measured by using the formula for 0t to nt

timeframe.

Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 | 97

Definition 3 (SLA Violation rate): Maintaining Strong

Service Level Agreement (SLA) and meeting QoS

requirement is enormously important for Cloud Computing

Environment. Overprovisioning of resources to meet target

SLA can increase the power consumption whereas Energy-

aware resource management is highly important these days.

Basically QoS requirements can be governed by service

response time or throughput, and that can be varied for

different application. However for Cloud providers, workload

independent metrics should be considered to calculate SLA

percentage or violation. For measuring SLA violation in IaaS

environment, we considered two metrics: (1) the percentage

of time an active Host have experienced 100% CPU

Utilization. (2) Performance degradation due to VM migration

from one Host to another. Same metrics has been considered

by past researchers [6], but our result shows better

improvement in maintaining SLA considering these two

metrics. We considered SLAs are delivered when 100%

requirement of an application has been served by a VM.

However, when a Host experience CPU Utilization of 100%,

the performance of Application degrade due to leaping the

capacity.

SLA time per active Host

1

1 x
sP

P aP

H

x H

 (4)

Performance degradation due to migration

1

1 y

dM

M aM

V

y V

 (5)

Where and are the number of Hosts and VMs respectively;

is the total time when host has experienced 100% CPU

utilization caused SLA violation; is the total time host was

active; is the approximation of performance degradation due

to migration of VM and we consider it 10% ; is the total

CPU capacity requested by the VM during its epoch.

3.2 Heuristic for dynamic resource allocation

The multidimensional bin packing problem can also be solved

using heuristics. So, the problem of VM allocation can be

divided in two ways. Those can be mentioned as- admission of

new requirements for VM provisioning and enlisting the VMs

in the host, and optimization of current VM allocation. The

first part can be seen as a bin packing problem with variable

bin size and prices, whereas bins represent the physical hosts,

bin sizes are the available CPU capacity and bin process are

the energy consumption. Although Heuristic solution will not

guarantee an optimal solution, the required time to obtain a

feasible solution is much shorter than LP. We solved the first

problem by using Best Fit Decreasing Algorithm that is shown

to use no more than11 . 1
9

OPT bins [14]. However, for solving

the second problem, we consider power consumption of Hosts

and CPU utilization of Hosts. The pseudo-code of VM

selection and VM placement is presented in the Algorithm.

We calculate the other available host’s current CPU

Utilization and increase of Power consumption if the selected

VM had have migrated. By using 2 2x y , we get a point

where it indicates the tradeoff point between CPU Utilization

and incremental of Power Consumption of Hosts and find the

suitable Host for VM. Otherwise it will find a Host which

Utilization is higher calculating that the Host doesn’t get

overloaded if the VM migrated to that Host.

Algorithm 1: VM Allocation Algorithm

 Input: hostList vmList Output: Allocation of VM’s

foreach h in hostList do

 vmList ← h.getVmList ()

 vmList.sortDecreasingUtilization ()

 hUtil ← h.getUtil ()

 bestFitUtil ← MAX

 while hUtil > uT do

 foreach vm in vmList do

 if vm.getUtil () > hUtil – uT then

 t ← vm.getUtil () – hUtil + uT

 r ← vm.getRam ()

 c ← sqrt (sqr (t) + sqr (r))

 if c < bestFitUtil then

 bestFitUtil ← c

 bestFitVm ← vm

 end

 else

 if bestFitUtil = MAX then

 bestFitVm ← vm

 break

 end

 end

 end

 hUtill ← hUtil-bestFitVm.getUtil ()

 migrationList.add(bestFitVm)

 vmList.remove(bestFitVm)

foreach bestFitVm in vmList do

 minPower ← Max

 allocatedHost ← Null

 maxHost ← MIN

 mindiagonal ← MAX

 foreach host in hostList do

 if bestVmUtil() < THRESH_UP – hUtil()

then

powerdiff ← powerAfterAllocation – getPower (host)

hUtil ← getUtilizationOfCpu (host)

 A← sqrt (sqr (powerdiff) + sqr (hUtil))

 if A < mindiagonal then

 allocatedHost ← A

 end

 else

 if hUtil > maxHost

 allocatedHost ← host

 end

98 Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 |

 end

 end

 if allocatedHost ≠ NULL then

 allocate vm to allocatedHost

 end

end

return allocation

3.3 QoE and SLA Violation

 Addressing quality from the view points of the end

user’s communication experience and their perceived QoE is

relatively new approach to the Cloud Computing environment

while so many efforts have been made to improve QoS of

Networks to fulfill the targeted SLA. Although QoE is very

subjective in nature, it is very important that a strategy is

devised to measure it as realistically as possible (1). Based on

the method we discussed earlier we make a subjective and

quantitative formulation to get QoE, which is related to SLA

violation. We build a relationship between QoE and SLA

violation as our proposed approach that deals with dynamic

VM allocation technique for proper resource management

rather network parameter analysis. A typical user-related

measure is the mean opinion score (MOS), which can be

determined from subjective ratings by real users or predicted

from objective measurements of properties of the delivered

service [17], which is used as a part of our subjective analysis.

So, the numerical formula to get QoE is as follows:

()

1

()

SLAC Ci i

t
v

n
SLA

i i

i

QoE e W X

 (6)

where,
, ,i j kC C ;

i j kC C C and 0 ~1iW

0.18 0.21 0.24 0.27 0.30 0.33 0.36 0.39 0.42

1.0

1.5

2.0

2.5

3.0

Q
o
E

SLA Violation

 Bronze SLA
 SIlver SLA
 Gold SLA

Figure (2): Relationship between QoE and SLA Violation

In equation (6), v
SLA denotes the SLA violation rate during

the workload execution;
iC represents the subscribed SLA

class priority, if the subscribed service class is high, the

constant will have high priority value. It means the QoE level

of premium service subscriber’s will be lower comparing to

other subscriber’s at same SLA violation rate;
iCSLA

symbolizes the subscribed SLA Class (Gold, Silver, Bronze),

Different class will have different priority e.g.
iC ,

jC ,
kC ; we

define Mean Opinion Score (MOS) by

1

()
n

i i

i

W X

 ,

where
iW and

iX epitomizes thi criterion and positive weight

of thi criterion respectively;
and

are determined as

overestimation and underestimation error.

Figure (2) depicts that, for the same SLA violation how QoE

differs to different subscribed class. We set

priority
, , 1,2,3i j kC for gold, silver and bronze class SLA

having different subscriber value. QoE was measured at the

scale of 3 having SLA Violation ranging from 20%-40%.

4. Performance Evaluation

4.1 Test bed Setup:

 We evaluate our proposed algorithm in CloudSim

toolkit. CloudSim is an extensible simulation toolkit that

enables modeling and simulation of Cloud Computing systems

and application provisioning system created by CLOUDS

Lab, University of Melbourne [17]. We choose to do that as it

is enormously difficult to conduct large-scale experiments in

real infrastructure. 800 heterogeneous physical nodes is used

to do the experiment. Three types of VM was used as High-

CPU medium instance (2500 MIPS, 0.85 GB), Extra Large

instance (2000 MIPS, 3.75 GB) Small instance (2000, 3.75

GB) and Micro Instance (1000 MIPS, 1.7). We have

conducted experiment with real life data provided by the

CoMon project, a monitoring infrastructure for PlanetLab. We

have used CPU Utilization data of more than thousand VMs

from different geographic Places. We have traced random 10

days’ workload data from March and April, 2011 and the

average CPU load was below 70% and workload was

assigned to VMs randomly. We compared with LR-MMT

(Local Regression- Minimizing Migration Time) [6], BFD

(Best Fit Decreasing), FFD (First Fit Decreasing) [7] to show

the improvement of our result. LR-MMT method was so far

the best approach in this area (1).

 Table 1

Summary of Test Bed characteristics

Simulator CloudSim

Number of Host 800

Host features

Intel Xeon 3040, 2 cores 1860

MHz, 4 GB, Intel Xeon 3075,

2 cores 2660 MHz, 4 GB

Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 | 99

Number of VMs

1052,898,1061,1516,1078,

1463,1358,1233,1054,1033

VMs Feature Amazon EC2 instance type

Workload Data
CPU Utilization From PlanetLab

for 10 days

Control Time 5 minutes

4.2 Analysis

 In order to compare the efficiency, we have evaluated

SLA Violations with other researcher’s proposed algorithms.

Our proposed approach outperforms the algorithm provided

by Anton et al. [6] and solution proposed by [7]. From the

experiment we calculated the amount of time an Active Host

experienced 100% CPU Load that caused performance

degradation for the application in its epoch and number of

VM migration occurs due to VM consolidation. We haven’t

done aggressive consolidation otherwise it has been resulted

in other way, increasing the SLA violation. Due to

dynamically selecting the Upper threshold and efficiently

placing of VMs in the Hosts, lesser number of migrations and

higher rate of maintaining SLA occur. Fig: (4.a) shows 8.5%,

52.63%, and 59% less SLA Violation comparing to LR-MMT

algorithm, BFD and FFD algorithm while experimenting with

10 days’ workload with CloudSim. During the workload

execution, LR-MMT, BFD and FFD algorithm suffers from

100% Host overloading by 2.3%, 5.6% and 4.3% than our

proposed approach resulting more SLA Violation. Moreover,

SLA Violation reflects on measuring QoE and our approach

shows significant improvement. Fig: (4.c) indicates QoE

enhancement of 9.3%, 23% and 25.9% comparing with LR-

MMT, BFD and FFD respectively.

0 150 300 450 600 750 900 1050 1200 1350 1500

0

10

20

30

40

50

60

C
P

U
 L

o
a
d

(%
)

Time (Minutes)

 Unsteady CPU Load

 Low CPU Load

0 150 300 450 600 750 900 1050 1200 1350 1500

0

10

20

30

40

50

60

70

C
P

U
 L

o
ad

(%
)

Time (Minutes)

 Steady CPU Load

 High Variability CPU Load

0 150 300 450 600 750 900 1050 1200 1350 1500

0

20

40

60

80

C
P

U
 L

o
ad

 (
%

)
Time (Minutes)

 Medium Utilization Workload

 High Utilization Workload

 Low Utilization Workload

 Figure (3): Workload Variation

0 2 4 6 8 10

0.24

0.36

0.48

0.60

0.72

0.84

0.96

S
L

A

V
io

la
ti

o
n

 (
x

 .
0

0
1

)

Workload (Day)

 PROPOSED

 LR-MMT

 BFD

 FFD

0 2 4 6 8 10

5.25

5.50

5.75

6.00

6.25

H
o

st
 O

v
er

lo
ad

 (
%

)

Workload (Day)

 PROPOSED

 LR-MMT

 BFD

 FFD

 Figure (4.a): SLA Violation Comparison Figure (4.b): Host Overload Comparison while VM Allocation

0 2 4 6 8 10

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Q
oE

Workload (Days)

 PROPOSED

 LR-MMT

 BFD

 FFD

Figure (4.c): QoE Comparison with 10 days SLA Violation

100 Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 |

5 Conclusions

 In this paper we propose a demand prediction method

based on the current usage of resource. In addition to that we

also solved resource allocation problem heuristic solution.

Performance comparison shows that our resource

management/allocation approach performs very competitively

providing better QoE. This work does not include the cost

analysis model for different cloud providers, broker

intelligence and how resource can be distributed by different

types of Cloud Providers from different geographic sites. As

for the future works, we would incorporate some of the above

as a part of the future work.

6 Conclusions

This work was supported by a grant from the NIPA (National

IT Industry Promotion Agency) in 2012. (Global IT Talents

Program) . Professor Eui-Num Huh is corresponding Author.

7 References

[1] B. Sotomayor, R. Montero, I. Llorente, and I. Foster,

“Virtual infrastructure management in private and hybrid

clouds”, IEEE Internet Computing, pp. 14–22, 2009.

[2] S. Chaisiri, B.-S. Lee, and D. Niyato, “Optimal

virtual machine placement across multiple cloud

providers,” in Services Services Computing Conference

(APSCC), pp. 103-110, 2009.

[3] W. Zhu, C. Luo, J. Wang, and S. Li, “Multimedia

cloud computing,” Signal Processing Magazine, IEEE, vol.

28, no. 3, pp. 59 –69, may, 2011.

[4] N. Tolia, D. Andersen, and M. Satyanarayanan,

“Quantifying interactive user experience on thin clients,”

Computer, vol. 39, no. 3, pp. 46 – 52, march, 2006.

[5] M. Satyanarayanan, P. Bahl, R. Caceres, and N.

Davies, “The case for vm-based cloudlets in mobile

computing,” Pervasive Computing, IEEE,vol. 8, no. 4, pp.

14 –23, oct.-dec. 2009.

[6] A. Beloglazov, R. Buyya, “Optimal Online

Deterministic Algorithms and adaptive heuristics for

energy and performance efficient dynamic consolidation of

virtual machines in cloud data center s”. Concurrency and

Computation: Practice and Experience (CCPE), 2012.

[7] Tiago C. Ferreto, Maco A.S. Netto, Rodrigo N.

Calheiros, Cesar A.F De Rose, “Server Consolidation with

migration control for virtualized data centers”, Future

Generation Computer System, pp. 1027-1034, 2011.

[8] M. Cardosa, M. Korupolu, and A. Singh, “Share and

utilities based power consolidation in virtualized server

environments,” in Proc of IFIP/IEEE International

Symposium on Integrated Network Management IM’09,

2009.

[9] A. Verma, P. Ahuja, A. Neogi, pMapper: Power and

migration cost aware application placement in virtualized

systems, in Proc of the 9th ACM/IFIP/USENIX

International Conference on Middleware, Springer, pp.

243-264, 2008.

[10] M. Stilwell, D. Schanzenbach, F. Vivien, H.

Casanova, “Resource allocation algorithms for virtualized

service hosting’s platform,” Journal of Parallel and

distributed Computing, vol.70, no. 9 pp. 962-974, 2010.

[11] Jeffrey M. Galloway, Karl L. Smith, Susan S.

Vrbsky, “Power aware load balancing for Cloud

Computing,” in Proc of the World Congress on

Engineering and Computer Science 2011 Vol I October

19-21, WCECS 2011.

[12] Kuo-Qin Yan ; Wen-Pin Liao ; Shun-Sheng Wang ,

“Towards a Load Balancing in a three-level cloud

computing network ”, in Proc of 3rd IEEE International

Conference on Computer Science and Information

Technology (ICCSIT), 2010, Vol-1, pp.-108-113, 2010.

[13] T. Wood, P. Shenoy, A. Venkataramani, M. Yousif:

“Sandpiper: Black-box and gray-box resource management

for virtual machines.” Computer Networks 53(17), 2923-

2938, 2009.

[14] Yue M. “A simple proof of the inequality FFD (L) <

11/9 OPT (L) + 1, for all 1 for the FFD bin packing

algorithm.” Acta Mathematicae Applicatae Sinica (English

Series) ;7(4): 321-331, 1991.

[15] A. Beloglazov, J. Abwajy, R. Buyya, “Energy-aware

resource allocation heuristics for efficient management of

data centers for cloud computing” Future Generation

Computer Systems 755–768, 2012.

[16] M. Fiedler, T. Hoßfeld, and P. Tran-Gia, “A Generic

Quantitative Relationship between Quality of Experience

and Quality of Service,” IEEE Network Special Issue on

Improving QoE for Network Services, vol. 24, June. 2010.

[17] RN Calheiros, R. Ranjan, A. Beloglazov, CAFD

Rose, R. Buyya. “CloudSim: a toolkit for modeling and

simulation of cloud computing environments and

evaluation of resource provisioning algorithms.” Software:

Practice and Experience; 41(1): 23-50. 2011.

Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 | 101

Submitted to conference GCA 2013

Social Network Storage Allocation

Faruk Bagci

Department of Computer

Engineering

Kuwait University

Kuwait City, Kuwait

dr.faruk.bagci@gmail.com

Mohamed Esam
Department of Information

Engineering & Technology

German University in Cairo

Cairo, Egypt

mohamed.esameldin@guc.edu.eg

Aya Kamel, Iman Mansour,

Rimon Hanna, Seif El-Din

Allam, Taher Galal
Department of Media Engineering

and Technology

German University in Cairo

Cairo, Egypt

{aya.kamel, iman.mansour,

rimon.hanna, seif.allam,

taher.galal}@student.guc.edu.eg

Abstract

 Today, social networks present massive amounts of

data by the hour that need storage, therefore, along

with the aid of cloud computing, social networks users

can have their data stored in data centers anywhere

around the globe belonging to the cloud. This paper

will be focusing on how to allocate user data to the

appropriate global data centers from a social

networking point of view. The method is carried out

using the proposed algorithm where a number of

factors are involved such as; read-rate, write-rate, and

the number/location of friend connections are used to

calculate which data center would yield shorter latency

and therefore better results if the user data was to be

stored at that location. After validating which was done

via simulation, the algorithm proved to yield sufficiently

improved data-access latency scores in all test cases.

Keywords: social networks, storage allocation, cloud

computing

1. Introduction

In the present day, the use of social networks as

means of communication have almost become a part of

people’s everyday routine for generations both young

and old. The online social network industry has boomed

over the last decade due to the high demand of the

willing public. The modern internet-using public

currently depends on social networks to maintain

relations with friends, family, work related contacts,

and even business marketing while also keeping track

of events, meetings, etc. Social networks could be

divided into either purely social (e.g. Facebook) or

business driven (e.g. LinkedIn) each serving different

purposes. Social networks are made to support massive

amounts of data traffic, in which users post, upload

photos or videos, and connect with friends.

Furthermore, many businesses nowadays are turning to

social networks, such as Facebook or Twitter, as major

marketing tools, where they can create ‘fan’ pages and

monitor various aspects regarding the business such as;

keeping track of positive or negative comments

regarding the company or its products, and spotting

new product/service opportunities [1] [2]. Considering

all the services available in social networks from

uploading pictures on Flickr, videos on Youtube,

joining a project via LinkedIn or simply posting to your

friends on Facebook, all this data needs to be stored

‘somewhere’. That ‘somewhere’ is the cloud [3].

Cloud computing as a system is a complex

combination of hardware, software, storage and

processing distributed around the globe which work

together to form one major entity, i.e. the cloud. The

system allows a user connected to the cloud to

immediately access latter resources wherever their

location is [3]. Therefore, instead of using stand-alone

servers, each with its own individual resources and

storage, the cloud offers multiple units which hold

thousands of computers, storage devices, and networks

performing. These units are known as data centers. The

process of making these data centers, and the vast

numbers of machines of which they are comprised of,

able to be viewed as one single entity (cloud) to the

user is done by virtualization. With virtualization as a

tool, the cloud can provide users with virtual storage to

store user information, create virtual networks to

connect clients, as well as virtual servers to process the

vast amounts of data traffic being transmitted through

the cloud. As a result, the cloud offers storage,

processing and many other features to various users

without burdening the user on where and how her data

is to be handled and stored.

102 Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 |

Finally, putting in mind that clouds are currently the

main storage system for most social networks, where all

users are instantly able to share the pool of resources

which the cloud offers. This combination gave rise to

the question of which data (belonging to which user)

should be stored in which location (data center).

The aim of this paper is to improve data retrieval

latency i.e. the time taken to retrieve the data required

from the data center to the demanding user and vice

versa and therefore improve overall performance of the

storage system in the social networking context.

2. Related Work

As the social networking systems are growing more

and more popular, it becomes more and more important

to start looking at how the data is being stored [4].

Moreover as social networking started to give extra

features such as games, video sharing and storing all of

the users’ statuses, the need increases to have better

means of storing such enormous amounts of data.

New methods of data storage needed to be

implemented. Here arises the use of cloud computing

[5], allowing the ability to have more data centers

located over different parts of the world, while having

all these data centers connected together, and giving

rise to easier means of communication between the data

centers. This is mainly because different people’s data

will be stored over different data centers, but it could be

for some reason that someone needs access to data of

her friend which lives in a different country and has her

data stored on a different data center [6].

Here the cloud computing technology comes in

handy. As we can have all data centers connected

together in one large cloud therefore wherever the data

of the user lies it can be accessed by herself or any of

her friends. Also the use of social networking increases

the efficiency of data flow. Therefore the use of new

services should arise so that could add extra features to

the user.

Some research was first performed on the topic of

social networking and cloud computing. In [7] the main

research concentrates on how security issues can arise

and how to solve them when information is placed over

the cloud. Methods of how to overcome these issues are

taken into consideration and tested.

Also, in [8] authors regard the same aspects as

before but from a different perspective where practices

were analyzed that can be used to maintain a secure

system while using social network platforms.

Moreover, [9] elaborates how the use of cloud

computing would address the utilization of memory and

data flow from the perspective of the network

communication.

Other research projects elaborate how to increase

the usability of social networks and how the use of

these social networks would use cloud computing

technologies to better share resources between the

social network users [10] [11].

 In [12] authors specify which place a developer

should host her application regarding the geographical

position of the application users, and how the cloud

technology should handle peeks in the usage of this

application.

3. Problem Formulation

The problem this paper aims to solve is basically

that the optimum location i.e. data center, to store the

user’s data is not necessarily the actual location of the

user. However, this depends on the location of the

user’s friends with respect to the user’s current location

i.e. the users who send or receive data to/from the

targeted user.

Figure 1: A case where the optimum location to

store user’s data is not her actual location

 User 1 User 2 User 3 User 4 User 5
User 1 0 1 0 1 0

User 2 1 0 1 1 0

User 3 0 0 0 1 1

User 4 1 1 1 0 1

User 5 0 0 1 1 0

Table I: Friendship Matrix showing friendship

relations between 5 users

Figure 1 shows an example of the latter case where

the optimum location to store the user’s data is not the

actual user location. This example shows a user whose

data is stored in her actual location while on the other

hand most of this user’s friends are logged in from a

different location. In this case, every time this user

communicates with one of her friends, the data has to

propagate all the way from the user’s actual location to

the friend’s location which implies a very high delay

and cost. However, if the user’s data is stored in the

same location of the friend, the data will only propagate

within the same data center which is definitely lower in

cost.

Table I shown above represents the friendship

relationship f between users of the social network where

f(a, b) = 1 when users a and b are friends and n

Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 | 103

represents the number of users in the system. Therefore,

for a user ui, the number of friends can be calculated as

 ∑

The measure from which the optimum position will

be calculated is the time taken for data transmission

between users, called cost. Calculating cost depends on

various attributes including user’s post rate, read rate,

and location of both the user and her corresponding

friends.

Assuming that T(a, b) is the cost of data transfer

between data centers a and b, l is the location of ui, di is

the data center where user i’s data is stored, post(x) is

the post rate of user x and read(x) is the read rate of

user x, then the cost of user ui in the system can be

represented as

 ∑

The aim of the research presented in this paper is to

mitigate the total cost of the system which can be

represented by

 ∑

constrained by the facts that per data center:

∑

&&

∑

&&

∑

where num is the number of users whose data is stored

in the data center, Capacity(x) is amount of storage

needed for user x or available in data center x (in TB).

CPU(x) is the processing capabilities/requirements of

data center/user x and RAM(x) is the memory

capabilities/requirements of data center/user x. The

algorithm explained in the following section presents a

solution for the latter problem.

4. Algorithm

We are living in the world of Web 2.0, where

hundreds of millions of people are connected to the

Internet and millions of those people are connected on

social networking sites. Facebook for example has a

widespread all over the world as shown in Figure 2

which shows the distribution of Facebook users all over

the world in white color. Other means of social

networks like LinkedIn, MySpace, and Twitter are also

massively used as well as blogs, YouTube and Flickr.

The vast amount of ways in which people can be

connected online has sparked the interest of cloud

computing services. Cloud computing services have

been developing ways to tap into the Web 2.0 world

and establish means of turning the flow of information

and communication into business potential.

Figure 2: Distribution of Facebook Users around

the World [13]

In order to optimize locating the users’ data so as to

reduce the cost of retrieving it, the proposed algorithm

chooses the optimal data center to store the users’ data

according to some parameters. According to these

parameters, the cost of storing the users’ data in each

possible data center is calculated and the optimal

location is chosen accordingly i.e. the data center with

minimum cost.

There are multiple factors affecting this decision.

The first factor being the percentages of the user’s

friends in each country, these percentages is then

multiplied by the weight of their distance from the user.

The second of these factors is how often the user

interacts with her friends and what is the form of these

interactions, does she read posts by her friends more or

does she create her own posts?

Each of these interactions is assigned a different

weight; posting is assigned a bigger weight than reading

since the write penalty to a storage device is greater

making it essential to reduce this penalty by storing the

user’s data closer to her location. Last but not least we

had to put in consideration the performance differences

between the servers and data centers in each country in

terms of CPU, RAM, storage capacity, and storage

104 Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 |

performance; assigning better weights to servers with

higher performance.

Finally all of these factors were combined together

to form a performance evaluation algorithm of each of

the cases of the user’s data being stored in one of the

data centers and the data is then moved to the data

center with the best performance value. Figure 3 shows

the sequence of steps carried out in the algorithm in

order to reach the decision which location is the

optimum location for storing user’s data.

Figure 3: A flow chart showing the proposed

algorithm steps per user

The result of applying the algorithm on the

environment shown in Figure 1 will be moving the

users to the data centers in which most of their friends

exist as shown in Figure 4.

5. Implementation

The discussed algorithm needs to be tested on a

social network environment where users have friends

and can write data and read data of friends. A JAVA

model was built in order to simulate the environment on

which the algorithm will be applied. In this model,

three main objects were created: the user object, the

server object, and the data center object.

Figure 4: Moving the user data to the optimum

location according to the user’s friends (moves

shown by arrows from the initial location to the

destination)

The aim of the user object was to simulate the

presence of a real user in the simulation. Therefore, the

following properties were created for being able to

describe a user: a unique username, the location of the

stored user’s data, the current location of the user, the

rate at which the user reads data of her friends, the rate

at which the user writes new data, the required RAM

size, the required storage size, and the CPU capability.

As discussed earlier, there was an urge to simulate

servers in the environment since they are the ones

responsible for processing and overloading the servers

was not a valid option. For this purpose, a server object

was created. It was simply represented by only two

main parameters: The RAM and the CPU where the

RAM describes the RAM size of the server and the

CPU describes the CPU capability of the server.

The last and one of the most important objects in

this environment was the data center. The object was

created with the four main properties which describe a

data center. These properties are the location of the data

center, a list of the servers connected to that data center,

a list of the storage arrays of that data center, and a list

of users having their data stored in that data center.

After simulating the standalone nodes in the

environment, the simulation of the overall system

environment was created by creating different instances

of these nodes and creating links between them. This

was done by generating four instances of the data center

object. Each data center was located in a different

country: the first one is located in Egypt, the second in

USA, the third in Germany and the fourth in China. For

each data center, two server objects were attached.

Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 | 105

Table II shown below presents an overview of the

simulation settings that were used when setting up the

environment. Users were created randomly using the

uniform distribution function math.rand() and were also

randomly placed in different locations such that initially

their data is stored in the nearest data center. Finally, to

simulate the idea of a user having friends, a friendship

matrix is created indicating which user is friend with

which other users.

The last step here was to run the simulation and start

collecting results. The results were collected by

calculating the cost efficiency using the equations

presented in the Problem Formulation section before

and after applying the algorithm. To estimate the real

impact of the algorithm, the environment is simulated

more than once and each time the conditions of the

environment run were changed for example the number

of users on the system and the number of friends for

each user. For each simulation, the process of collecting

results was done. The results obtained from the

different simulations are presented in the next section.

 Data center

User
EG CH US DE

Storage 10TB 15TB 20TB 10TB
10-50

MB

RAM 2x8GB 2x8GB 2x8GB 2x8GB 10MB

CPU
2x22
GHz

2x22
GHz

2x22
GHz

2x22
GHz

10-50
MHz

Table II: The simulation settings

Figure 5: The cost values before and after running the algorithm with 500 users

Figure 6: The cost values before and after running the algorithm with 1000 users

106 Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 |

5. Experimental Results

After the simulation model was complete, some

tests were carried out to evaluate the performance of the

algorithm. These tests were carried out by calculating

the total usage cost for all of the users in the system as

shown in the problem formulation section twice; once

before running the algorithm when users were assigned

to random data centers according to their initial

location, and once after running the algorithm when the

users data location changed according to the friends

location. Dividing the first number by the latter gives

the speed up that resulted from the algorithm. These

tests were repeated for different number of users with

different numbers of friends.

Looking deeper into the simulation results of

running the system with 500 users where each user has

50 friends, these simulations yielded speed up results

with interesting speed up values ranging from 36% to

42% with an average of 39% and a standard deviation

of 1.8. Repeating the same test but with 200 friends per

user, the speed up results were also around the same

values. Figure 5 shows the cost values before and after

running the algorithm.

Increasing the number of users in the system to 1000

users where each user has 50 friends yielded speed up

results ranging from 37% to 41% with an average of

39.15% and standard deviation of 1.03. Increasing the

number of friends per user to 200 friends, the speed up

results were also almost the same. Figure 6 shows the

cost values before and after running the algorithm using

different numbers of friends per user.

It is of course very logical that the values of cost in

the simulation with 500 users as shown in Figure 5 is

significantly less than those shown in Figure 6 with

1000 users. The reason is that as mentioned previously,

the total cost of the system is the sum of costs of each

user in the system. This implies that the cost of the

system is directly proportional to the number of users in

the simulation.

Having a broad look on the speed up values in

Figure 7, it can be noticed that the different runs under

several different conditions resulted in speed up values

with high precision within the range of 36-42%. This

gives an indication that the algorithm is not affected by

increasing numbers of users and that applying this

algorithm on the huge numbers of social networks users

will give more or less 35-40% improvement in the

overall system performance.

Moreover, Figure 7 shows that although it was

expected that the increasing number of friends will

increase the probability of not having a lot of friends in

the same location, the algorithm showed a constant

response even with the presence of complex friendship

matrix between the users.

7. Conclusion

In this paper, the target was to present an algorithm

which optimizes the choice of data location for a certain

user according to the location of her friends in the

social network. To test the efficiency and speed up of

the suggested algorithm, a social network environment

was simulated and the performance before and after

applying the algorithm was calculated.

The results presented in the previous section led to

some interesting conclusions. The first and most

general conclusion was that locating the friends’ data

according to her friends’ location can be a good

approach to optimize the performance of the whole

social networking system. This was proved by the

Figure 7: The speed up values calculated from the 4 different system simulations

Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 | 107

approximately 40% speed up that was achieved after

applying the algorithm.

Another conclusion that is specific to the algorithm

proposed in this paper is that the performance gain

resulting from applying the algorithm is significantly

constant. This was proved by the low values of

deviation which indicate a high level of precision in the

resulting speed ups throughout the different runs and

under different simulation conditions e.g. different

numbers of users and different numbers of friends per

user.

Therefore, it can be concluded that applying the

presented algorithm may result in a significant increase

in performance which in turn leads to huge cost and

power savings as well as a more convenient level of

service for the social network users.

8. Limitations and Future Work

The research presented in this paper had some

limitations which can be targeted for future research.

For example, the maximum number of users used for

simulation in this research was 1000 users. Therefore,

more tests targeting a larger number of social networks

users which in reality exceed millions can be carried

out.

Another limitation was that the simulations were

carried out on only four data centers with two servers.

These numbers do not represent real simulation

parameters since in reality the number of servers per

data center are definitely more than two servers and

there may exists more than four data centers. Therefore,

a possible future research is to use an accurate number

of data centers and servers as well as using real

specification description, e.g. RAM and CPU

frequency.

In this research it was assumed that users belong to

the countries in which the data centers exist. This

assumption led to some location constraints thus some

common cases were not thoroughly tested in the

performed simulation. Therefore, a target for future

research may be extending the simulation model to

research more cases like allowing users from all

countries not just the ones in which a data center exists.

9. References

[1] Soumitra Dutta Matthew Fraser. The business

advantages of social networking. Finance and

Management, (168), July/August 2009.

[2] Jeff Bullas. 12 major business benefits of the social

media revolution, 2012.

http://www.jeffbullas.com/2011/02/14/12-major-

benefits-of-the-social-media-revolution/

[3] Rich Maggiani. Cloud computing intersects with

social media. The promise of cloud computing,

especially as it relates to social media,

is considerable, 2012.

http://www.solari.net/documents/position-

papers/Solari-Cloud-Computing-Intersects-Social-

Media.pdf.

[4] Zhong Chen Suke Li. Social services computing:

Concepts, research challenges, and directions.

IEEE/ACM Int’l Conference on & Int’l

Conference on Cyber, Physical and Social Computing

(CPSCom) Green Computing and Communications

(GreenCom), 2010, pages 840–845, December 2010.

[5] Jamie Syke Bianco. Social networking and cloud

computing: Precarious affordances for the ”prosumer”.

WSQ: Women’s Studies Quarterly, 37(1,2):303–309,

2009.

[6] EMC Education Services G. Somasundaram, Alok

Shrivastava, editor. Information Storage and

Management. Storing, Managing, and Protecting

Digital Information. Wiley Publishcing, Inc., 2009.

[7] N. Markatchev R. Simmonds Tan Tingxi M. Arlitt

B. Walker R. Curry, C. Kiddle. Facebook meets the

virtualized enterprise. EDOC ’08. 12
th

 International

IEEE Enterprise Distributed Object Computing

Conference, 2008, pages 286– 292, September 2008.

[8] Ashish S. Prasad. Cloud computing and social

media: Electronic discovery considerations and best

practices. The Metropolitan Corporate Counsel, pages

26–27, February 2012.

[9] M. Sato. Creating next generation cloud computing

based network services and the contributions of social

cloud operation support system (oss) to society.

WETICE ’09. 18th IEEE International Workshops on

Enabling Technologies: Infrastructures for

Collaborative Enterprises, 2009, July 2009.

[10] O. Rana K. Bubendorfer K. Chard, S. Caton.

Social cloud: Cloud computing in social networks.

IEEE 3rd International Conference on Cloud

Computing (CLOUD), 2010, pages 99–106, July 2010.

[11] K. Chard A. M. Thaufeeg, K. Bubendorfer.

Collaborative eresearch in a social cloud. IEEE 7th

International Conference on E-Science (e- Science),

2011, pages 224–231, 2011.

[12] Rajkumar Buyya, Rajiv Ranjan, and Rodrigo

Calheiros. Intercloud: Utility-oriented federation of

cloud computing environments for scaling of

application services. In Ching-Hsien Hsu, Laurence

Yang, Jong Park, and Sang-Soo Yeo, editors,

Algorithms and Architectures for Parallel

Processing, volume 6081 of Lecture Notes in Computer

Science, pages 13–31. Springer Berlin / Heidelberg,

2010.

[13] Paul Butler. Visualizing friendships, December

2010. http://www.facebook.com/note.php?note

id=469716398919.

108 Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 |

SESSION

VIRTUAL MACHINES AND CLOUD COMPUTING

Chair(s)

Prof. Hamid Arabnia
University of Georgia

Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 | 109

110 Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 |

A Fast Live Migration Algorithm of Virtual Machine with
CPU Scheduling

Jia Zhao1, Liang Hu1, Gaochao Xu1, Decheng Chang1, Yan Ding1, *, and Xiaodong Fu1

1Department of Computer Science and Technology, Jilin University, Changchun, Jilin, China
*Corresponding author

Abstract - Live migration of virtual machine (VM) is one of
the most important virtualization technologies to facilitate the
management and improve the performance of data centers. In
this paper, we propose a fast convergent live migration
approach called FMC. It is a self-adaptive method which
synchronizes the state of the VM migrated between the source
and target host by log tracing and replaying instead of dirty
memory pages transferring. First, the mechanisms of fine-
grained log files division, replay time units feedback and
dynamic variable step K are presented. Second, we introduce
the CPU scheduling mechanism into FMC to adjust the CPU
timeslices in order to reduce the log data size when the
network bandwidth is too low. Experimental results show that
FMC can significantly reduce migration overheads compared
with Pre-copy algorithm in a fast network bandwidth.
Identically, the migration downtime of FMC is less than that
of CR/TR-Motion in a low network bandwidth. The overheads
are also acceptable even in low network bandwidth.

Keywords: Virtual Machine, Live Migration, CPU
scheduling, Checkpoint, Replay, Virtualization

1 Introduction
 Virtualization is an abstraction of computer resources
which subdivides the ample resources of a modern computer
[1] or aggregates servers, storage, network, etc. as an entirely.
It has been employed as the basic management technology for
consolidation, automated management and isolation, etc. in
data centers or Cloud Computing environment. In addition,
Hardware assisted virtualization accelerates the development
of virtualization [2]. Live migration of VM is one of the most
important technologies of virtualization technology. Live
migration of VM migrates a running VM among distinct
physical hosts while making sure that applications running on
the VM not affected. It allows administrators to consolidate
system load, perform maintenance, and flexibly reallocate
cluster-wide resources on-the-fly [3]. To provide benefits for
administrators of data centers or clusters, a fast and
transparent live migration strategy is necessary. Our research
focuses on improving migration speed and reducing
migration overheads. A live migration algorithm can be
evaluated in these performance metrics: total migration time,
downtime, total data transmitted and application degradation

[4]. Total migration time is the time taken from the start of
migration to the time the migrated VM gets a consistent state
with the original one. Downtime is defined as the duration for
which a VM’s CPU execution is fully suspended during live
migration [4]. Total data transmitted is the data transferred
while synchronizing the VMs’ state. Application degradation
means the extent that the applications running within the
migrating VMs slow down because of the operation of live
migration.

To make further optimization on live migration, we
propose a fast convergent live migration approach with CPU
scheduling mechanism, namely, FMC. Our prototype is
implemented based on ReVirt [5] which is a full system trace
and replay system. Make a checkpoint first for rolling
forward via the log later. Non-deterministic events are
recorded in log files. The fine-grained log files division
mechanism is applied on the source host. A log file is
generated every time unit if non-deterministic events happen.
Log files are transferred from the source host to the target
host iteratively. The replay time units feedback mechanism is
applied on the target host. The number of log files transferred
each round is determined by the replaying time units of
previous round on the target host. By this way, we make more
use of the computing power of target host to speed up
replaying. Our strategy also introduces CPU scheduling
mechanism in the phase of iterative logs transferring to adjust
the log growth rate. When the log transfer rate is slower than
the log growth rate, the CPU timeslices allocated for the VM
are reduced to decrease the log growth rate.

The rest of this paper is organized as follows. In Section
2, we give a brief introduction of related work about current
live migration methods. In Section 3, a prerequisite that
should be satisfied is pointed out. The design and
implementation of FMC are presented in detail. We also
discuss its benefits. In Section 4, experiments undertaken and
results obtained are shown, demonstrating that it provides an
effective solution. Finally, in Section 5 we conclude the paper.

2 Related works
 Pre-copy is a predominantly used approach in the state
of the art for live migration. XenMotion [6] and VMotion [7]
which are the most influential methods for live migration
employ pre-copy algorithm. Pre-copy first copies the memory
state over multiple iterations followed by a final transfer of
the processor state [8]. Pre-copy mainly considers the

Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 | 111

migration of VM’s physical memory because it affects the
migration downtime as a main factor.

Many optimized solutions for pre-copy algorithm have
been proposed. First, some optimizations can be classified as
memory compression. H. Jin et al. proposed MECOM in [9].
MECOM compresses memory based on memory page
characteristics, memory pages of different characteristics
adopt corresponding different compression algorithm. Delta
Compression stores data in the form of changes between
versions instead of the full data sets [10]. It computes the
delta page by applying XOR on the current and previous
version of a page, and then compresses the delta page by
binary Run Length Encoding compression algorithm. Second,
some solutions try to change the order of transferring dirty
memory pages. Pages modified frequently should be
transferred at last to reduce re-transfers. Rapid Page Dirtying
transfers pages dirtied in the previous round that have not
been dirtied again at the time they are scanned [6]. Dynamic
page transfer reordering [11] is another method dynamically
adapts the transfer order of VM memory pages during live
migration. Third, some other solutions take advantage of the
HPC networks. A high performance VM migration with
RDMA over Modern Interconnects is proposed in [12]. It
significantly improves the efficiency of VM migration.
However, most of them mentioned above adapt to the
memory writing passively. There are also some other
solutions adjust memory writing speed in an active way.
Stunning Rogue Processes [6] limits each process to a certain
number of write faults and stun processes that make
migration difficult. But it is not fit for complex environment.
Optimized pre-copy by CPU scheduling is proposed in [13].
By introducing CPU scheduling mechanism, rate of dirty
memory pages can be reduced via adjusting the CPU
timeslices allocated to the VM being migrated. It is a
compatible method with other optimization methods, but it
may sacrifice the performance of application running in VM.

In contrast to the classic pre-copy algorithm, post-copy
first suspends the migrating VM at the source host, copies
minimal processor state to the target host, resumes the virtual
machine, and begins fetching memory pages over the network
from the source [3, 8]. Some technologies can also be
adopted in post-copy for optimization [3]: demand paging,
active push, pre-paging and dynamic self-ballooning.
Duplicate page transmissions may be eliminated via adaptive
pre-paging while the transfer of free memory pages can be
eliminated via dynamic self-ballooning.

Other live migration methods include opportunistic
replay [14] that replays user actions on a target site to recreate
VM state and minimizes the overhead of VM migration.
However, it is implemented only at the GUI level and not in a
live fashion. Another novel approach CR/TR-Motion is
proposed by H. Liu et al. in [15] to provide fast and
transparent live migration. It is based on
checkpointing/recovery [16] and trace/replay [5, 17, 18]
technology which transfers log files recording system events
instead of dirty memory pages. Obviously, dirty memory
pages consume more network bandwidth than log files.

In many cases, pre-copy needs to transfer a large amount
of data. As for post-copy, the latency of fetching pages from
the source host causes extended downtime. However, the
optimized methods for pre-copy and post-copy are worth
learning from. For example, CPU scheduling adopted in pre-
copy algorithm can be introduced to other live migration
methods to increase the adaptability. Furthermore, CR/TR-
Motion may greatly decrease the amount of the data
transferred while synchronizing the two VM’s running states,
so are the downtime and total migration time. But the
requirement that the log transfer rate is faster than the log
growth rate should be satisfied. Considering the
characteristics of these live migration methods, the proposed
method FMC employs the technologies similar to these
adopted in CR/TR-Motion and combines with CPU
scheduling to achieve better live migration.

3 The proposed algorithm
 Here we propose a fast convergent live VM migration
with CPU scheduling approach named FMC. It combines
checkpointing, logging, and roll-forward recovery with CPU
scheduling which can reduce migration overheads compared
with pre-copy algorithm. The main idea of our algorithm is
that VM to be migrated on the source host generates log files
continuously which record non-deterministic system events
like external input every time unit, these log files are
transferred to the target host in sequence while the target host
replays with the received log files. A log file will be
generated every time unit. Each round, after the received log
files have been consumed, the time units used for replaying
are counted as value K. Then a request is sent to the source
host for K log files which will be transferred in the next round.
We also come up with an interesting idea that adopts CPU
scheduling mechanism, aim to reduce the timeslices allocated
to the VM if the log grow rate is faster than the log transfer
rate. The VM’s CPU timeslices will be recovered if the log
grow rate is slowed down in order to balance application
performance and migration downtime.

3.1 Prerequisites
In this paper, we assume that the replay speed on target

host is fast enough. Generally, the log replay rate is higher
than the log growth rate. This rule has been explained in [15].
During replay the events that may cause a process block
waiting for them such as I/O events can be immediately
replayed. For instance, if the VM is running a daily use
workload, the log replay rate is 33 times larger than the log
growth rate according to the experiment in [5]. Replay skips
over periods of idle time such as that encountered during the
non-working hours of the daily use workload. In many cases,
the VM will be very likely migrated to a host providing better
performance which may speed up the replay speed. Another
limitation for FMC should also be satisfied. The log transfer
rate should be faster than the log growth rate, otherwise the
log files will accumulate on the source and our method will

112 Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 |

get no benefit. However, according to the characteristics of
our method such as the CPU scheduling mechanism, FMC is
a general method which can be applied even in low network
bandwidth. Hence, we need not consider the relationship
between the log transfer rate and the log growth rate.

3.2 Live migration process of FMC
In this section, we describe the specific process of FMC

as shown in Figure 1. Details are as follows:

Figure 1. Live VM migration process

(1) Make and transfer checkpoint When the preparation is
ready, make a checkpoint on host A. After checkpointing,
transfer the checkpoint file to host B. During the transferring,
log files will be generated.
(2) Overlapping iterative log files transfer To achieve fast
convergent live migration, the proposed algorithm adopts
fine-grained log files division and replay time units feedback
mechanisms in the iterative process. Furthermore, a novel
method dynamic variable step K is applied to the mechanism
of replay time units feedback in the iterative process, aim to
control the log files transferred number from the source host
to the target host.

The iterative process is conducted after the previous
three steps. During the first round of transferring, the log files
generated in the course of checkpoint file transferring are
copied from host A to B, while VM on host A is continuously
running and recording non-deterministic system events in log
files according to time unit. Simultaneously, the log files are
replayed on host B once it had recovered from the checkpoint
and received these log files. When the received log files are
consumed, the time units for replaying are counted. We make
a key decision that adopts replay time units feedback
mechanism and dynamic variable step K method right here.
Then a specific number of log files will be transferred to the

host B in the next round. Subsequent iterations repeat the
process similar to the first round.

Our algorithm employs the form [V1, V2 … VK] to
indicate the continuous log files to be transferred in each
round. Here, V represents a log file. Every log file is assigned
to a serial number according to its generated order. The
subscript i of Vi indicate the serial number of the current log
file. As shown in Figure 2, K1, K2 and K3 represent the sizes
of step from round 1 to round 3 respectively. We also use E1
and E2 to represent the serial numbers of the last log files
generated in round 1 and round 2.

Figure 2. Log files generated and transferred in each round

Let us introduce dynamic variable step K mentioned
above. We can obtain the replay time units each time after the
replay of the current round. The value of K is set equal to the
replay time units. Obviously, K is variable in each iteration
round. Then K is sent to the source host as a request that the
source should copy K log files to the target host in next round.
The source host transfers log files continuously according to
the log generated sequence. The first log file to be transferred
follows the last log file that had just been received. The next
K-1 log files will be transferred in the same round. In fact,
some of these K log files in previous may have been sent out
or even received by the target host. Therefore, a duplicate
period of time may exist in two adjacent rounds of the
iterative process. In the iteration rounds of our algorithm,
except for the first round, the continuous log files transferred
number is determined by K, just like a step whose size is
changeable. Here, we describe about the mechanisms adopted
in our algorithm.
(a) Fine-grained log files division mechanism. It is
noteworthy that the fine-grained log files division mechanism
is one of the key points of the proposed algorithm. The log
files are generated in fine granularity, which means non-
deterministic events happened in two time units are recorded
in two different log files. Figure 3 shows the relationship
between log files and time units. When the network
bandwidth is low, it is faster to transfer several small files
than to transfer a large file with the same size. For this reason,

Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 | 113

the proposed method can reduce the time consumed on the
network to some extent, and reduce the total time for
generating log files on the source host. From another
perspective, it is an improvement on the log transfer rate.

Figure 3. Relationships between log files and time units

(b) Replay time units feedback mechanism. Another key
point of the proposed algorithm is the replay time units
feedback mechanism. From the analysis that the replay speed
is faster than the original execution with logging, there may
be a lot of idle time units with no replaying on the target host.
The target host has to wait before the log files arrive if the log
files transferred during each round are of big size. In our
algorithm, log files are generated in fine-grained and the
target host asks for the log files in an active way. Log files are
transferred according to the replaying time units which is
convergent to take advantage of the target host’s computing
capability as much as possible. Some of the idle time units are
made use of by the target host to replay with the received log
files. The following log files are transferred in sequence as
soon as all the log files transferred in the previous round have
been received by the target host. At the same time, these
received log files are replayed on the target host. This means
that some of the log files that will be replayed in the next
round have been transferred in advance. If the log files
received by the target host in the current round are no less
than the replay time units, these received log files can be
replayed at once. Therefore, there will be little interval time
between the two replay processes. As a result, the time units
for the source host to generate log files are reduced. The
proposed algorithm can speed up the convergence of the
iterative process.
(c) CPU scheduling mechanism. In this part, we describe the
CPU scheduling mechanism employed in the iterative log
transferring stage in detail. When the network bandwidth is
too low, the log growth rate may be faster than the log
transfer rate. As a result, the downtime of migration and the
total log data transferred will increase. According to an
experiential rule that a certain VM’s execution speed of
system events increases when the CPU timeslices allocated to
the VM increase, the conclusion that the log growth rate
decreases with the decreasing VM’s CPU timeslices can be
drawn. Based on above conclusion, the CPU scheduling
mechanism is introduced into the iterative log transferring
stage to solve the problems that we have put forward. The log
growth rate and the log transfer rate are updated in every
round of transferring and the CPU timeslices that just may be
allocated to the VM is also computed. If the log growth rate is
faster than the log transfer rate, it can be slowed down by
reducing the CPU timeslices for the VM being migrated in the
next round of log transferring so that the iterative process is
convergent. For the reason that the allocated CPU timeslices
for VM determines the VM’s running speed and the log
generating speed, it should balance these two factors. If its

value is too small, the performance of application in the VM
will be unbearable even though we get a successful live
migration. Reduce the allocated CPU time only when it is
necessary in order to get a good performance of application.
So a constant S is saved all the time. In the case that the CPU
timeslices have been reduced, the CPU timelices allocated to
the VM in the next round are resumed to the original value S
if the log growth rate is slower than the log transfer rate. In
this way, our optimized live migration algorithm can be
applied in wide range. For the workloads which generate non-
deterministic events not too fast and the network bandwidth is
fast, we can get a successful migration obviously. For
workloads that generate non-deterministic events very fast or
the situation with low network transfer rate, the proposed
algorithm can make the iterative process convergent and
reduce the downtime to some degree, while trying to have less
efficiency loss of application.
(3) Wait and Ack & Stop and Copy After several rounds of
iteration, when the time units the target host consumes are
reduced to a specified value (we define this threshold value as
Kthd), host B inquires A whether the stop and copy stage can
be executed. If the remaining log files size is smaller than
another specified size (we define this threshold value as
Vthd), the source VM is suspended and the remaining log file
is transferred to host B. After these log files are replayed,
there is a consistent suspended copy of the VM at both A and
B. The VM at A is still considered to be primary and may be
resumed in case of failure. If the remaining log files size is
larger than the threshold value Vthd, the stop and copy stage
is postponed until the log files at host A is reduced to Vthd.
We call this stage as wait and ack. To limit the rounds of
iteration, a max round limit Rmax is set in our algorithm.
When the next round is the last one, the iteration will be
stopped.

From a direct perspective, the proposed method is an
iterative process. From another perspective, the proposed
method can be regarded as a Markov process. A Markov
process [19] is a stochastic process which satisfies the
Markov property and undergoes transitions from one state to
another, between a finite or countable number of possible
states. It is a discrete-time random process that the next state
depends only on the current state and not on the sequence of
events that preceded it. The proposed algorithm is in line with
the characteristics of Markov property. First, like the state
transitions of Markov process, the CPU timeslices allocated
for the VM may be altered to another value in each round to
adjust the log growth rate. Second, we calculate the CPU
timeslices for the next round only based on the current
round’s CPU timeslices, just the same as a Markov process
that the next state depends only on the current state. And the
value we get in our algorithm is discrete. Third, the CPU
timeslices of each round are equal or less than the initial
value and the combination of these values can be treated as a
countable set defined in Markov process. In summary, the
proposed algorithm is a Markov process indeed.

Starting from this intuition on the classic pre-copy and
CR/TR-Motion algorithms, we came up with the FMC

114 Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 |

algorithm. First, we also transfer log files smaller than dirty
memory pages, the total data transmitted may be reduced.
Second, log files are generated in fine-grained. According to
the characteristic of network bandwidth, we can get a faster
data transfer rate relatively and make more use of the target
host’s computation power. As a result, the total time for the
source host to generate log files is reduced which means we
get a virtuous cycle. Third, the replay time units decide the
number of log files to be transferred which is decreasing, we
may get a fast convergent speed of live migration. Finally,
CPU scheduling mechanism is introduced to the process of
live migration, which guarantees that the iterative process is
convergent in another way. Our algorithm can be applied in
wide range. Even though the application is memory writing
intensive which may cause the failure of pre-copy algorithm
or the network between the source host and the target has a
low bandwidth, our algorithm can achieve less downtime and
total migration time compared with pre-copy algorithm.

4 Evaluation
We conduct several experiments using different VM

workloads to study the performance of FMC. In our
experimental configuration, hosts with the same processor
type are selected. These hosts are configured with an AMD
Athlon 4000+ processor, 2GB DDR RAM and 1000Mbit/s
NIC. Storage is accessed via iSCSI protocol from a Thecus
N4200 network attached storage server. The guest OS is
RHEL AS3 Linux with kernel 2.4.18 ported to UMLinux [20,
21], and the host kernel for UMLinux is a modified version of
Linux 2.4.20. We configure all the VMs with 512MB RAM.
A VM is migrated five times from the source host to the
target host in each experiment. We take the average of the
five tests as the results. We use the following VM workloads
for the experiments.

Daily use: a Linux operating system which is idle for
day-to-day use. Kernel-build: kernel-build compiles the
complete Linux 2.4.18. It is compute intensive as there may
be a variety of system calls and it tests performance of CPU,
memory and disk. Unixbench: provides a basic indicator of
the performance of a Unix-like system, multiple tests are used
to test various aspects of the system’s performance such as
CPU, file I/O, process spawning and other workloads. Static
web application: measures performance of static content web
server using the Apache 2.0.63. We configure both clients
with 100 simultaneous connections. A 256KB file is
downloaded from the server repeatedly. SPECweb99: a
complex benchmark that measures performance of web server.
We also use the Apache 2.0.63 here. We use some clients
simulating a set of users concurrently accessing the web site
to generate the load for the server. We use the Linux traffic
shaping interface to limit network bandwidth for live
migration. First, we limit network bandwidth to 500Mbit/sec
which represents a fast LAN. Then we limit bandwidth to
400Mbit/sec, 300Mbit/sec, 200Mbit/sec, 100Mbit/sec and
50Mbit/sec. Last we limit bandwidth to 5Mbit/sec which
represents a low LAN. To exploit the capability of CPU

timeslices adjustment, we port Credit CPU scheduler [22] of
Xen to UMLinux. To compare FMC with pre-copy, we port
pre-copy algorithm implemented in XenMotion to UMLinux
and use workloads mentioned above to do the same
experiments. We mainly acquire and analyze the metrics of
migration downtime, total migration time and total data
transferred through the experiments.

4.1 Migration downtime
To achieve transparent live migration which means users

with no awareness of delay from the VM being migrated, the
migration downtime should be as short as possible. We
compare the downtime of FMC with pre-copy using the above
workloads in 500Mbit/sec network bandwidth. As shown in
Figure 4(a), the downtime of FMC is much shorter than pre-
copy. Our method reduces the average downtime of these
workloads by 72.5 percent. We also do the same experiments
in the network bandwidth from 400Mbit/sec to 5Mbit/sec
respectively. As the downtime of pre-copy may be very long
when the network bandwidth is low, even reach to several
minutes [23], so we compare the testing results of these
bandwidths with the results of 500Mbit/sec in Figure 4(b), all
using FMC. We can see that the downtime is increasing
reasonable with the decreasing bandwidth. In most cases, the
downtime is less than one second, except for the SPECweb99
workload in 5Mbit/sec bandwidth, because its log growth rate
is too fast. The results embody that the proposed method can
be applied even in low network bandwidth with an acceptable
downtime.

(a) FMC and Pre-copy in a fast LAN (b) FMC in different bandwidths

Figure 4. The downtime for different workloads

Figure 5. The downtime of FMC and CR/TR-Motion for

different workloads in a low bandwidth

Considering that both of the proposed approach and
CR/TR-Motion can greatly reduce the migration downtime in
a fast network bandwidth, we just compare our approach with
CR/TR-Motion in 5Mbit/sec network bandwidth. The results

Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 | 115

are shown in Figure 5. For most workloads, our approach
reduces the migration downtime by several milliseconds
compared with CR/TR-Motion. However, for SPECweb99
which has a high log growth rate, the downtime of FMC is
several seconds while that of CR/TR-Motion is several
minutes. Our approach has a significant downtime reduction
because of the capability of controlling the log growth rate.

4.2 Total Migration Time
The process of live migration consumes system resources

such as CPU and network bandwidth, etc. We should take the
total migration time as a consideration. Figure 6(a) shows that
total migration time of FMC is shorter than that of pre-copy in
500Mbit/sec bandwidth. The average total migration time of
these workloads is reduced by 31.8 percent compared with
pre-copy. Figure 6(b) shows the results of these workloads
using our method in bandwidths from 500Mbit/sec to
5Mbit/sec respectively. As the bandwidth decreases, more
time is consumed to transfer the checkpoint file and total
migration time increases correspondingly. The total migration
time of Linux kernel-build is relatively longer because the log
replay rate is lower. So the replay time units of each round are
larger which causes more rounds of iterations to reach the
threshold Kthd. The total migration time of SPECweb99 is
longer than that of other workloads in lower bandwidth,
especially 5Mbit/sec bandwidth, because the log transfer rate
is higher than the log growth rate. In this case, the CPU
scheduling mechanism that reducing the CPU timeslices for
the VM to lower the log growth rate will be adopted in our
method to make sure the convergence of live migration.

(a) FMC and Pre-copy in a fast LAN (b) FMC in different bandwidths

Figure 6. Total migration time for different workloads

The total migration time of FMC is almost the same with
CR/TR-Motion’s for most workloads. However, in [24],
CR/TR-Motion tests the total migration time of SPECweb99
in a low bandwidth via stop and copy strategy so that the
downtime is equal to the total migration time. It is obvious
that the total migration time of stop and copy is less than that
of live migration methods. Therefore, we don’t compare our
approach with CR/TR-Motion in 5Mbit/sec network
bandwidth here.

4.3 Total data transferred
We show the size of total data transferred of FMC and

pre-copy in Figure 7(a). It is obvious that the total data
transferred using FMC are much less than that using pre-copy.

For pre-copy, the total data transferred consist of 512MB
memory image which is the size we configure for RAM of all
the VMs and dirty memory pages generated during the
iterations to orchestrate the migrating VM state between the
source host and the target host. For FMC, the 512MB memory
image is also needed to be transferred first while the other
data are mainly the log files which are fine-grained and
generate less network traffic compared with pre-copy. We
also list the results tested in these seven bandwidths using
FMC in Figure 7(b). The total data transferred are increasing
reasonable with the decreasing bandwidth for most workloads.
Among these workloads, SPECweb99 generates more data to
be transferred than the other workloads in low network
bandwidth. When the bandwidth is 5Mbit/sec, a long time is
needed to transfer the checkpoint file, and a large amount of
log files are generated during this long period as its high log
growth rate, and many rounds of iterations will be conducted,
causing a variety of total data transferred.

(a) FMC and Pre-copy in a fast LAN (b) FMC in different bandwidths

Figure 7. Total data transferred for different workloads

5 Conclusion
In this paper, we presented the design, implementation,

and evaluation of a fast convergent and transparent live
migration approach. In order to eliminate the waiting time of
target VM caused by the difference of two sides’ computing
power and thus improve the efficiency of live migration, the
fine-grained log files division, replay time units feedback and
dynamic variable step K mechanisms which are derived from
the fact that computing power of target host is more than that
of source host are employed. Furthermore, we utilize the CPU
scheduling mechanism to weaken bandwidth constraint and
thus extend the available range of the proposed approach.
Essentially it trades the tolerated and limited loss of guest
applications’ performance for the improvement of live
migration’s efficiency. Our approach can achieve less
migration overheads with negligible migration downtime,
satisfying total migration time and reasonable network
bandwidth consumption. The overheads increase slowly
when the network bandwidth is decreasing. For most
workloads, the downtime is in the range of milliseconds even
in low network bandwidth environment. The experimental
results show that our approach is efficient for live migration.

To further improve the performance of live migration,
we plan to investigate an appropriate frequency to generate
log files. Furthermore, there are some other open issues to be
solved in the future. We will do more experiments to obtain a

116 Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 |

proper adjustment solution for K. In addition, we conduct the
experiments in a local area network in this paper. We will
extend our approach to a wide area network in the future.

6 References
[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt and A. Warfield. “Xen and the
Art of Virtualization”; Proc. of the 19th ACM Symposium on
Operating Systems Principles (SOSP’03), 164-177, 2003.
[2] J. Nakajima, Q. Lin, S. Yang, M. Zhu, S. Gao, M. Xia,
P. Yu, Y. Dong, Z. Qi, K. Chen and H. Guan. “Optimizing
Virtual Machines Using Hybrid Virtualization”; Proc. of the
2011 ACM Symposium on Applied Computing (SAC’11),
573-578, 2011.
[3] M. R. Hines, U. Deshpande and K. Gopalan. “Post-
Copy Live Migration of Virtual Machines”; Operating
Systems Review (ACM), vol.43, no.3, 14-26, 2009.
[4] U. Deshpande, X. Wang, and K. Gopalan. “Live Gang
Migration of Virtual Machines”; Proc. of the IEEE
International Symposium on High Performance Distributed
Computing, 135-146, 2011.
[5] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai and P.
M. Chen. “ReVirt: Enabling Intrusion Analysis through
Virtual-Machine Logging and Replay”; ACM SIGOPS
Operating Systems Review - OSDI '02: Proc. of the 5th
symposium on Operating systems design and implementation,
vol.36, no.SI, 211-224, 2002.
[6] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C.
Limpach, I. Pratt, and A. Warfield. “Live Migration of
Virtual Machines”; Proc. of the 2nd conf. on Symposium on
Networked Systems Design & Implementation, vol.2, 273-
286, 2005.
[7] M. Nelson, B. H. Lim, and G. Hutchins. “Fast
Transparent Migration for Virtual Machines”; Proc. of
USENIX Annual Technical Conference (USENIX’05), 391-
394, 2005.
[8] M. R. Hines and K. Gopalan. “Post-Copy Based Live
Virtual Machine Migration Using Adaptive Pre-Paging and
Dynamic Self-Ballooning”; Proc. of the 2009 ACM
SIGPLAN/SIGOPS International Conf. on Virtual Execution
Environments, 51-60, 2009.
[9] H. Jin, L. Deng, S. Wu, X. Shi and X. Pan. “Live
Virtual Machine Migration with Adaptive Memory
Compression”; Proc. of International Conf. on Cluster
Computing and Workshops(CLUSTER '09), 1-10, 2009.
[10] P. Svärd, B. Hudzia and J. Tordsson. “Evaluation of
Delta Compression Techniques for Efficient Live Migration
of Large Virtual Machine”; Proc. of the 2011 ACM
SIGPLAN/SIGOPS International Conf. on Virtual Execution
Environments, 111-120, 2011.
[11] P. Svärd, J. Tordsson, B. Hudzia and E. Elmroth. “High
performance live migration through dynamic page transfer
reordering and compression”; Proc. of the 3rd IEEE
International Conf. on Cloud Computing Technology and
Science, 542-548, 2011.

[12] W. Huang, Q. Gao, J. Liu and D. K. Panda. “High
Performance Virtual Machine Migration with RDMA over
Modern Interconnects”; Proc. of International Conf. on
Cluster Computing, 11-20, 2007.
[13] H. Jin, W. Gao, S. Wu, X. Shi, X. Wu and F. Zhou.
“Optimizing the live migration of virtual machine by CPU
scheduling”; Journal of Network and Computer Applications,
vol.34, no.4, 1088-1096, 2011.
[14] A. Surie, H. A. Lagar-Cavilla, E. de Lara and M.
Satyanarayanan. “Low-Bandwidth VM Migration via
Opportunistic Replay”; Proc. of the 9th Workshop on Mobile
Computing Systems and Applications (HotMobile’08), 74-79,
2008.
[15] H. Liu, H. Jin, X. Liao, L. Hu and C. Yu. “Live
Migration of Virtual Machine Based on Full System Trace
and Replay”; Proc. of the 18th ACM International
Symposium on High Performance Distributed Computing
(HPDC’09), 101-110, 2009.
[16] B. Cully, G. Lefebvre, D.T. Meyer, A. Karollil, M.J.
Feeley, N.C. Hutchinson and A. Warfield. “Remus: High
Availability via Asynchronous Virtual Machine Replication”;
Proc. of the 5th Symp. Networked Systems Design and
Implementation (NSDI ’08), 2008.
[17] M. Xu, V. Malyugin, J. Sheldon, G. Venkitachalam and
B. Weissman. “ReTrace: Collecting Execution Trace with
Virtual Machine Deterministic Replay”; Proc. of Third Ann.
Workshop Modeling, Benchmarking and Simulation, 2007.
[18] D.A.S. de Oliveira, J.R. Crandall, G. Wassermann, S.F.
Wu, Z. Su, and F.T. Chong. “ExecRecorder: VM-Based Full-
System Replay for Attack Analysis and System Recovery”;
Proc. of Workshop Architectural and System Support for
Improving Software Dependability (ASID ’06), 66-71, 2006.
[19] http://en.wikipedia.org/wiki/Markov_process. 2012.
[20] S. T. King. “Operating System Extensions to Support
Host Based Virtual Machines”. Technical Report CSE-TR-
465-02, University of Michigan, 2002.
[21] K. Buchacker and V. Sieh. “Framework for Testing the
Fault-Tolerance of Systems Including OS and Network
Aspects”; Proc. of the 6th IEEE International High Assurance
Systems Engineering Symposium (HASE’01), 95-105, 2001.
[22] L. Cherkasova, D. Gupta and A. Vahdat. “Comparison
of the Three CPU Schedulers in Xen”; ACM SIGMETRICS
Performance Evaluation Review, vol.35, no.2, 42-51, 2007.
[23] R. Bradford, E. Kotsovinos, A. Feldmann, and H.
Schioeberg. “Live Wide-Area Migration of Virtual Machines
Including Local Persistent State”; Proc. of the 3rd
International Conf. on Virtual Execution Environments, 169-
179, 2007.
[24] H. Liu, H. Jin, X. Liao, C. Yu and C.-Z. Xu. “Live
Virtual Machine Migration via Asynchronous Replication
and State Synchronization”; IEEE Transactions on Parallel
and Distributed Systems, vol.22, no.12, 1986-1999, 2011.

Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 | 117

A Fuzzy Predictable Load Balancing Approach in

Cloud Computing

Fahimeh Ramezani, Jie Lu, Farookh Hussain

Decision Systems & e-Service Intelligence Lab, Centre for QCIS

School of Software, Faculty of Engineering and IT, University of Technology, Sydney

PO Box 123, Broadway NSW 2007 Australia

 Fahimeh.Ramezani@student.uts.edu.au, {Jie.Lu, Farookh.Hussain}@uts.edu.au

Abstract— Cloud computing is a new paradigm for hosting

and delivering services on demand over the internet where

users access services. It is an example of an ultimately

virtualized system, and a natural evolution for data centers

that employ automated systems management, workload

balancing, and virtualization technologies. Live virtual

machine (VM) migration is a technique to achieve load

balancing in cloud environment by transferring an active

overload VM from one physical host to another one without

disrupting the VM. In this study, to eliminate whole VM

migration in load balancing process, we propose a Fuzzy

Predictable Load Balancing (FPLB) approach which confronts

with the problem of overload VM, by assigning the extra tasks

from overloaded VM to another similar VM instead of whole

VM migration. In addition, we propose a Fuzzy Prediction

Method (FPM) to predict VMs’ migration time. This approach

also contains a multi-objective optimization model to migrate

these tasks to a new VM host. In proposed FPLB approach

there is no need to pause VM during migration time.

Furthermore, considering this fact that VM live migration

contrast to tasks migration takes longer to complete and needs

more idle capacity in host physical machine (PM), the

proposed approach will significantly reduce time, idle memory

and cost consumption.

Keywords—cloud computing, load balancing, virtual

machine migration, workload prediction.

I. INTRODUCTION

Cloud computing is a style of computing where flexible
high-performance, pay-as-you-go, and on-demand offering
service are delivered to external customers using Internet
technologies. Cloud computing services are divided into
three classes, according to the abstraction level of the
capability provided and the service model of providers,
namely Infrastructure as a Service (IaaS), Platform as a
Service (PaaS) and Software as a Service (SaaS) [1]. The key
underlying technology in cloud infrastructures is
virtualization. Virtualization is a technique for hiding the
physical characteristics of computing resources and allows
servers and storage devices to be shared and utilization be
increased. This simulated environment is called a virtual
machine (VM) that is a software abstraction with the looks of
a computer system's hardware (real machine) [2].

Cloud computing platform achieves dynamic balance
between the servers applying virtualization technology for
resource management. In virtualized cloud environment,
applying online VM migration technology can achieve
online remapping of VMs and physical resources, and
dynamic whole system load balancing [3]. In particular, VM
migration has been applied for flexible resource allocation or
reallocation, by moving VM from one physical machine to
another for stronger computation power, larger memory, fast
communication capability, or energy savings [4].

Although a significant amount of research has been done
to achieve system load balancing [4, 5], more improvement
is still needed as most of these approaches tried to migrate
VMs, when they became overload. In addition, in most of
them predicting VMs’ migration time is missed. Considering
this fact that the whole VM migration takes much more
times and cost in comparison with tasks migration, we
propose a fuzzy load balancing method which migrates tasks
from overloaded VMs instead of migration VMs to achieve
load balancing in cloud environment. We also propose an
algorithm to solve the problem of migrating these tasks to
new VMs host which is a multi-objective problem subject to
minimizing cost, minimizing execution and transferring
time. To solve this problem we apply multi-objective genetic
algorithm (MOGA). Furthermore, to accelerate load
balancing process and reduce response time, we develop a
fuzzy prediction method to predict VM workload situation
and its migration time.

The rest of this paper is organized as follows. Section II
presents the related works about VM migration techniques
and VM workload prediction methods. Section III explains
the basic concept of expert systems and neural networks, and
genetic algorithm. In Section IV, we develop a Fuzzy
Prediction Method (FPM) to predict VM migration time. In
Section V, we propose a conceptual model and the algorithm
of Fuzzy Predictable Load Balancing (FPLB) approach for
solving the problem of overloaded VMs by optimal tasks
migration from overloaded VMs. Our developed algorithm
for solving multi-objective tasks scheduling problem and
completing FPLB algorithm, is described in Section VI. The
proposed approach is evaluated in Section VII. Finally we
present the conclusion and future works in Section VIII.

118 Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 |

http://en.wikipedia.org/wiki/Virtual_machine
http://en.wikipedia.org/wiki/Virtual_machine

II. RELATED WORKS

A. VM Migration Thechniques

Virtualization technique has improved utilization and
system load balancing by enabling VM migration, and
provided significant benefits for cloud computing [6].
Several methods have been developed to migrate a running
instance of a VM from one physical host to another to
optimize cloud utilization. Primary migration relies on
process suspend and resume. Many systems [7, 8] just pause
the VM and copy the state data, then resume the VM on the
destination host. This forces the migrated application to stop
until all the memory states have been transferred to the
migration destination where it is resumed. These methods
cause the application to become unavailable during the
migration process. ZAP [9] could achieve lower downtime of
the service by just transferring a process group, but it still
uses stop-and-copy strategy. To reduce the migration
downtime and move the VM between hosts in local area
network without disrupting it, VMotion [10] and Xen [11]
utilize pre-copy migration technique to perform live
migration and support seamless process transfer. In pre-copy
migration technique, VMs migrate by pre-copying the
generated run-time memory state files from the original host
to the migration destination host. If the rate for such a dirty
memory generation is high, it may take a long time to
accomplish live migration because a large amount of data
needs to be transferred. In extreme cases, when dirty
memory generation rate is faster than pre-copy speed, live
migration will fail. Considering this fact, Jin et al. presented
the basic pre-copy model of VM live migration and proposed
an optimized algorithm to improve the performance of live
migration by limiting the speed of changing memory through
controlling the CPU scheduler of the VM monitor [4]. Lin et
al. believe that most of the proposed methods for on-demand
resource provisioning and allocation, focused on the
optimization of allocating physical resources to their
associated virtual resources and migrating VMs to achieve
load balance and increase resource utilization. Unfortunately,
these methods require the suspension of the executing cloud
computing applications due to the mandatory shutdown of
the associated VMs [12]. To overcome this drawback, they
proposed a threshold-based dynamic resource allocation
scheme for cloud computing that dynamically allocate the
VMs among the cloud computing applications based on their
load changes. In their proposed method, they determined
when migration should be done but they did not specify the
details of how the reallocation will occur.

A fundamental drawback of the most existing researches
is that they consider complete VM migration to overcome
overload VM and achieve system load balance. In addition,
predicting VMs’ workload situation and their migration time,
are not considered in most of traditional load balancing
approaches. In this paper, we propose a new Fuzzy
Predictable Load Balancing (FPLB) approach which predicts
VMs’ workload situation, and transfers tasks from overloads
VMs instead of whole VM migration to achieve system load
balancing. The proposed approach not only eliminates the

suspend and resume process during VM migration, but also
omits pre-copy mechanism and producing dirty memory in
live VM migration.

B. Workload Prediction Methods

Resource provisioning in compute clouds often requires
an estimate of the required capacity for VMs. The estimated
VM size is essential for allocating resources commensurate
with demand [13]. Meng et al. proposed an algorithm for
estimating the aggregate size of multiplexed VMs. They
decoupled VM workload into regular and irregular
fluctuating components. To forecast regular workload, they
simply assumed that the regular patterns will preserve in the
future, e.g., a steadily increasing trend keeps increasing at
the same rate. On the other hand, for forecasting irregular
workload, they performed a time series forecasting technique
based on historic workload patterns [13]. Nagothu et al.
proposed a new method for load prediction. They separated
load prediction into linear and non-linear prediction
algorithms categories. They believed a linear prediction
algorithm can either involve 1-Dim observation sequences or
d-Dim observation space signals [14].

Most of the existing researches in this area have applied
prediction methods such as neural networks and linear
regression to forecast VMs workload in cloud environment.
These prediction methods predict future workload applying
previous workload patterns in time slot t. In IaaS where VMs
are assigned to customers; VMs’ workload is affected by
customers’ behavior and decisions, and significantly changes
in seconds. Therefore, upcoming VMs’ workload in cloud
environment could be independent from their previous
workload pattern. To overcome this problem we propose a
workload prediction method applying a neural network and
an expert system with the specific parameters that control
and monitor recent changes in VMs’ workload pattern.

III. BACKGROUND

A. Expert Systems

The basic idea behind expert systems (ES) is simply that
expertise, which is the vast body of task-specific knowledge,
is transferred from a human to a computer. This knowledge
is then stored in the computer and users call upon the
computer for specific advice as needed. The computer can
make inferences and arrive at a specific conclusion. Then
like a human consultant, it gives advices and explains, if
necessary, the logic behind the advice. A rule-based ES is
defined as one, which contains information obtained from a
human expert, and represents that information in the form of
rules, such as IF–THEN. The rule can then be used to
perform operations on data to inference in order to reach
appropriate conclusion. These inferences are essentially a
computer program that provides a methodology for
reasoning about information in the rule base or knowledge
base, and for formulating conclusions [15, 16].

B. Neural Networks

A neural network (NN) consists of a number of layers:
the input layer has a number of input neurons

Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 | 119

 ; the output layer has one or more output neurons
 and several hidden layers with hidden
neurons in between. In a fully-connected
NN, the neurons at each layer are connected to the neurons
of the next layer; these connections are known as synapses.
Each synapse is associated with a weight, which is to be
determined during training. During the training phase, the
NN is fed with input vectors and random weights are
assigned to the synapses. After presentation of each input
vector, the network generates a predicted output . The
generated output is then compared with the actual output y;
the difference between the two is known as the error term
which is then used as a feedback to correct the synaptic
weights of the network. The training of the NN continues
until a specific criterion is met, e.g. the sum of squared errors
falls below a certain threshold [17].

C. A Multi Objective Genetic Algorithm

A multi-objective genetic algorithm (MOGA) is
concerned with the minimization of multiple objective
functions that are subject to a set of constraints. In MOGA
for solving multi-objective optimization problems, first
initial population whose scale is N is generated randomly.
The first generation child population is gained through non-
dominated sorting [18] and basic operations such as
selection, crossover and mutation. Then, from the second
generation on, the parent population and the child population
will be merged and sorted based on fast non-dominated.
Calculate crowding distance among individuals on each non-
dominated layer. According to non-dominant relationship
and crowding distance among individuals, select the
appropriate individuals to form a new parent population.
Finally, new child population is generated through basic
operations of genetic algorithm and so on, until the
conditions of the process end can be met [19].

IV. A FUZZY PREDICTION METHOD FOR DETERMINING

THE VM MIGRATION TIME

Considering this fact that future VMs’ workload could be
independent from their previous workload pattern, we
propose a Fuzzy Prediction Method (FPM) that not only
applies neural network to predict workload patterns in VMs,
but also applies an expert system to control near future
changes in workload patterns for every VM, and determine
the time that VMs will be overloaded and need to be
migrated. To design the FPM, we first determine the
conditions which lead to a VM to be overloaded. Then the
ES rules are extracted from determined conditions. We run
FPM every 5 minutes and control VM workload situation for
the past 2 minutes.

A. VM Migration Conditions

If be the VM workload capacity and be
the number of executing tasks in the VM as a time series in
time slot T, then the VM will be overloaded at the time x
when:

and Equation 1 could have an answer for variable x during
next 2 minutes, if following conditions be satisfied where ct
is current time, and :

Condition 1: Time series rises one or more times
during T. It means:

 (2)

It means:

Condition 2: There would be overloading time for the VM

if: (3)

Condition 3: Rao (2011) proposed a metric of Productivity
Index (PI) and use it to measure the system processing
capability. He defined PI as:

 (4)

where is the amount of completed work and is
the amount of resource (CPU) consumed during the time slot
t. An overloaded system means that its cost keeps increasing
but with stagnated or compromised yield. Virtual machine
will be overloaded if PI begins to drop. Although Rao
believes that for online identification, the single PI metric is
not enough to identify system state because any change of PI
can be either due to the system capacity or the input load

change [20]. Considering this fact, to control VM’s
workload situation during T, We determine following
conditions that show PI drops during T:

It means:

In addition, the time series has a decreasing trend:

Condition 4: Time series has a raising trend:

B. The Variables of Fuzzy Prediction Method

The input variables of proposed FPM are defined as
follows: the number of executing tasks in the VM at current
time as , the maximum number of executing tasks

in VM during T as , the change in number

of executing tasks in the VM at random time
as , the
 that shows raised during T, the
amount of completed tasks in the VM till current time as
 , the amount of CPU consumed till current time as
 , the change in productivity index at random time
 as , the
 that shows decreased during T. In addition, in
this approach a neural network model is trained, given the
previous historic workload patterns (training data set) to
predict VM workload pattern. The neural network prediction
results (desired output of neural network) will be
applied by proposed FPM as an input variable. The FPM’s

120 Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 |

output variable is defined as that denotes the
predicted VM workload situation in near future. The FPM’s
variables membership functions are defined as follow:

TABLE I. FUZZIFICATION OF AND : INPUT

Set Linguistic term α level cuts

 1-level cut 0-level cut

VL Very Low 0

L Low 0,

M Medium ,

H High ,

VH Very High

Universe of discourse: (0,)

TABLE II. FUZZIFICATION OF
 AND

 : INPUT

Set Linguistic term α level cuts

 1-level cut 0-level cut
VL Very Low -1 -0.5

L Low -0.5 -1,0

M Medium 0 -0.5,0.5

H High 0.5 0,1

VH Very High 1 0.5

Universe of discourse: (-1,1)

TABLE III. FUZZIFICATION OF : INPUT

Set Linguistic term α level cuts

 1-level cut 0-level cut

VL Very Low 0

L Low 0,

M Medium ,

H High ,

VH Very High

Universe of discourse: (0, 100% Virtual CPUs utilization=CU)

Note: Virtual CPUs determines how many physical CPUs can be used by a VM. The
number of virtual CPUs together with the scheduler credit determine the total CPU
resource allocated to a VM [20].

TABLE IV. FUZZIFICATION OF : INPUT

Set Linguistic term α level cuts

 1-level cut 0-level cut

VL Very Low 0

L Low 0,

M Medium ,

H High ,

VH Very High

Universe of discourse: (0, Total number of executed tasks during T=N)

TABLE V. FUZZIFICATION OF
 AND

 : INPUT

Set Linguistic term α level cuts

 1-level cut 0-level cut
VL Very Low -1 -0.5

L Low -0.5 -1,0

M Medium 0 -0.5,0.5

H High 0.5 0,1

VH Very High 1 0.5

Universe of discourse: (-1, 1)

TABLE VI. FUZZIFICATION OF : INPUT

Set Linguistic term α level cuts

 1-level cut 0-level cut
U Underload 0,0.3 0.7

O Overload 0.7,1 0.3

Universe of discourse: (0,1)

TABLE VII. FUZZIFICATION OF : OUTPUT

Set Linguistic term α level cuts

 1-level cut 0-level cut
U Underload 0,0.3 0.7

O Overload 0.7,1 0.3

Universe of discourse: (0,1)

C. The Expert System Rules

We determine the ES rules base on aforementioned
conditions to control VM’s workload changes and predict the
time of VM migration. The two main rules are described as
follows. For random and and ct as current
time:

 If and and

or and and
 or and
 and then

 If and and

or and and
 or and
 and then

V. A FUZZY PREDICTABLE LOAD BALANCING

APPROACH

In this section, we propose a FPLB approach. This
approach contains a conceptual model and an algorithm
which are designed to achieve system load balancing by
migrating tasks from overloaded VMs. In addition, in this
approach to decrease energy consumption and costs, we
avoid choosing idle PMs as a new PM host, because if we
transfer tasks to an idle PM, we have to turn it on and this
action will increase energy consumption and costs [5].

The complex applications in cloud environment are
classified into two groups: (1) computing intensive, and (2)
data intensive applications. To transfer data intensive
applications, the scheduling strategy should decrease the data

Fig. 1. The Membership Function of Input Variables of Tables 2 and 5

Fig. 3. The Membership Function of Output Variable and

Fig. 2. The Membership Function of Input Variables of Tables 1, 3 and 4

Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 | 121

movement to reduce the transferring time; but for
transferring computing intensive tasks, the scheduling
strategy should schedule the data to the high performance
computer [21]. In this paper, we consider bandwidth as a
variable to minimize the tasks transferring time for data
intensive applications. In addition we consider new host
PM’s properties (memory, hard disk, etc) to enhance
performance utilization for computing intensive applications.

In cloud environment, there are some tasks schedulers
that consider task types, priorities and their dependencies to
schedule tasks in optimal way and transfer them to the
specific VM’s resources. In our proposed approach, we
design a blackboard, where all cloud schedulers which
manage VMs on clouds, share their information about VMs,
their features and their tasks. Furthermore, the criteria of
QoS as SLA information are mentioned in this blackboard.
In proposed FPLB approach, there is a central scheduler that
transfers tasks from an overhead VM to a new similar and
appropriate VM. This scheduler applies the information of
the blackboard to find an appropriate host VM for the task.
In addition, the proposed FPM is used in FPLB approach to
predict VM migration time to accelerate load balancing
process and reduce response time. The proposed FPLB
approach is illustrated in Figure 4 and its algorithm is
described as follows:

Step1- Gathering data and information about virtual
machine managers (VMMs), VMs, PMs and SLA
information, in the global blackboard as inputs:

1. VMs tasks information:
1.1. The number of executing tasks
1.2. Tasks’ execution time and locations
1.3. Tasks’ required resources (number of

required processors)

2. PMs’ Criteria (total/current)
2.1. CPU (number and speed of the processors)

2.2. Free Memory and Free Hard disk
2.3. Bandwidth
2.4. PM situation: Idle or active
2.5. Its host VMM

3. SLA information
4. The objectives of the tasks migration

optimization model and their information:
4.1. Minimizing cost

4.1.1. Cost policy information
4.2. Minimizing execution time and

transferring time
4.1.2. Execution information
4.1.3. Bandwidth information

Step2- Monitoring data and information to determine VMs’
workflow information

Step3- Predicting VM migration time applying proposed
FPM:

1. Determining

 when

2. Determining when

3. Determining

4. Determining NN results about VMs’ workload
situation (Input for FPM)

5. Calculating other FPM input variables
6. Determining overloaded VMs and their migration

time applying proposed FPM
Step4- Determining the list of tasks which should be

migrated from overloaded VM’s, and the list of
candidate VMs to be the new host

Step5- Finding optimal homogeneous VMs as a new host
for executing the tasks of the overloaded VMs,
which is a multi-objective task migration problem,
applying MOGA (this step will be described in
Section VI).

Step6- Considering obtained optimal tasks migration
schema, determining following information as the
outputs:
1. New optimal cost and optimal execution time
2. Current VMs properties (Executing tasks, CPU, etc.)

Step7- Transferring tasks and their corresponding data to the
determined optimal host VMs

Step8- Updating blackboards and schedulers’ information
according to the outputs of Step 4.

Step9- End.

VI. AN ALGORITHM FOR SOLVING MULTI-OBJECTIVE

TASKS MIGRATION PROBLEM USING MOGA

In this section, we describe a sub-algorithm to complete
the Step 5 of FPLB algorithm and solve the multi-objective
tasks migration problem. This sub-algorithm determines an
optimal tasks scheduling model to assign tasks from
overloaded VMs to the new host VMs applying MOGA.
Among different MOGA methods, we apply Deb's NSGAII
[19]. NSGAII not only has good convergence and
distribution mechanism, but also has higher convergence
speed. This sub-algorithm applies data and information
which are determined in Steps 1 to 4 of the FPLB algorithm
as its inputs, then finds the optimal schema to assign arrival
tasks from overloaded VMs to host VMs, conducting
following steps:

Step5.1. Determining candidate host VMs set by choosing
the set of VMs which satisfy the constraints about
host VMs’ properties as

Step5.2. Eliminating the list of overloaded VMs (which are
determined in Step 2 applying proposed FPM) from
candidate host VMs set.

Step5.3. Determining the set of tasks which should migrate
from overloaded VMs as immigrating tasks set:

Step5.4. Applying MOGA to solve the multi-objective
problem and assign the immigrating tasks to the
optimal host VMs to minimize execution and
transferring time and processing cost, conducting
following steps:
Step5.4.1. Initializing population P0 which is

generated randomly
Step5.4.2. Assigning rank to each individual based

on non-dominated sort

122 Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 |

Step5.4.3. Implementing binary tournament
selection, crossover and mutation on the
initial population and creating a new
population Q0 and set t=0.

Step5.4.4. Merging the parent Pt and the child Qt to

form a new population Rt = Pt Qt.
Step5.4.5. Adopting non-dominated relationship to

sort population and calculate the
crowding distance among population on
each layer.

Step5.4.6. Selecting the former N individuals as the
parent population, namely

Pt+1= Pt+1 1: N (Elite strategy).
Step5.4.7. Implementing reproduction, crossover

and mutation on population Pt+1 to form
population Qt+1.

Step5.4.8. If the termination conditions are met,
output results as optimal tasks migration
schema; otherwise, update the
evolutionary algebra counter t=t+1 and
go to step 5.4.4.

VII. EVALUATION

A system prototype is being developed based on the
proposed FPLB and will be evaluated against the determined
features. However, in this paper, the evaluation is presented

by comparison of the proposed FPLB approach with
traditional whole VM migration methods applying three
parameters:

(1) Power Consumption: considering this fact that the less
number of active PM means the less power consumption [5],
we applied following ratio to compare power consumption
after load balancing applying FPLB approach:

In proposed approach, to transfer extra tasks from
overloaded VM, we just need to find a new similar VM on
an active PM as a new host and there will be no need to turn
a new PM on. In contrast, for whole VM migration, more
hardware capacity is needed and it is impossible for every
case to avoid choosing idle PM. Therefore, in FPLB

approach compare to VM migration technique has lower
value. Therefore, we have less “power consumption” after
load balancing using FPLB approach and:

(2) Idle Memory: to compare the efficiency of FPLB
approach, we apply idle memory that is prepared during the
load balancing process as:

Step 1: Data gathering and updating (Blackboard)

1. Minimizing cost

 Cost information

2. Minimizing execution time

 Execution information

PMs’ Criteria (total/current)

Objectives

Step 5, 6, 7 & 8: Central task scheduler

(Solving tasks scheduling multi-objective problem)

Determine:

 VMs workload information

 Overloaded VMs

 Time of migration

 The tasks which should be migrated

 List of candidate VMs to be new host

Step 2 & 4: Monitoring VMs’ workflow situation

 CPU

 Memory

 Hard disk

 Bandwidth

 Idle or active

 Its host VMM

 …

Computer

node

 The number of tasks

 Tasks’ execution time

 Tasks’ performance model

 Tasks’ locations

 Tasks’ required resources

VMs tasks information

 CPU

 Memory

 …

SLA information

Scheduler m

VMM

Guest VMs

1. Determine:

 Tasks migration destinations (new host VM)

 New optimal cost

 New optimal execution time

 Current VMs properties (CPU, …)

2. Transfer tasks and their corresponding data to

the host VMs

Scheduler m Scheduler m

VMM

Guest VMs

VMM

Guest VMs

Fig. 4. The Conceptual Model of FPLB Approach

Step 3: Prediction VMs’ migration time applying proposed FPM

Determine:

 when

 when

 Neural network results about VMs’ workload situation

 FPM input variables’ values

 Overloaded VMs and their migration time applying proposed FPM

Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 | 123

where OriginalVMm and HostVMm are the amount of
original VM memory and host VM respectively.

In offline VMs migration, the original VM should be
suspend during VM migration time, and its memory and the
amount of memory in the new host PM which is determined
for host VM will be idle. In online VMs migration, although
VM will not be suspended during migration process, the
amount of memory in the new host PM will be idle in this
time. In contrast, there is no VM migration in FPLB
approach and the process of suspend and resume for original
VM is eliminated. In conclusion, there will be no downtime
for VMs and no idle memory in FPLB approach. As the
results:

(3) Load Balancing Time Consumption: A part of load
balancing time consumption is equal to VM migration time
and preparation time for determining new PM host. In offline
and online VM migration the total migration time is equal to
migration one whole VM. This time in our approach is
reduced to the time for transferring some extra tasks from
overloaded VM. In addition, as in FPLB approach VMs’
workload situation and the time of VM migration is
predicted applying proposed FPM, the process of
determining new VM host will start before VM overloading
happen and load balancing system will be ready to transfer
extra tasks when VM become overloaded without wasting
time for preparation, in conclusion if is the value of
load balancing time:

VIII. CONCLUSION AND FUTURE WORK

VM migration technique has been applied for elastic
resource allocation, by migrating overload VM from one PM
to another to achieve stronger computation power, larger
memory, fast communication capability, or energy savings.

This paper proposed a new FPLB approach to achieve
system load balancing by migrating arrival tasks from
overloaded VM to another homogeneous VM instead of
whole VM migration. The proposed approach has ability to
determine overloaded VMs and predict their migration time.
This approach also contains a multi-objective tasks migration
model subject to minimizing cost, execution time and
transferring time. In proposed approach there is no need to
pause VM during migration time. In addition, the proposed
approach will significantly reduce time, memory and cost
consumption, because unlike tasks migration, VM live
migration takes longer to complete and needs more idle
capacity in host PM. Furthermore, proposed approach
decreases energy consumption by avoiding choosing idle
PMs as a new host PM. This approach also accelerates load
balancing process and reduces response time applying
proposed FPM.

In our future work we will improve our proposed method
for predicting VM migration time considering SLA
parameters.

REFERENCES

[1] R. Buyya, J. Broberg, and A. Goscinski, "Cloud computing, Principles

and Paradigms," 2011.
[2] M. Rosenblum, "The reincarnation of virtual machines," Queue, vol. 2,

p. 34, 2004.

[3] C. Jun and C. xiaowei, "IPv6 virtual machine live migration framework
for cloud computing," Energy Procedia, vol. 13, pp. 5753-5757, 2011.

[4] H. Jin, W. Gao, S. Wu, X. Shi, X. Wu, and F. Zhou, "Optimizing the

live migration of virtual machine by CPU scheduling," Journal of
Network and Computer Applications, vol. 34, pp. 1088-1096, 2011.

[5] X. Liao, H. Jin, and H. Liu, "Towards a green cluster through dynamic

remapping of virtual machines," Future Generation Computer Systems,

vol. 28, pp. 469-477, 2012.

[6] N. Jain, I. Menache, J. Naor, and F. Shepherd, "Topology-Aware VM

Migration in Bandwidth Oversubscribed Datacenter Networks,"
Automata, Languages, and Programming, pp. 586-597, 2012.

[7] C. P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. S. Lam, and M.
Rosenblum, "Optimizing the migration of virtual computers," ACM

SIGOPS Operating Systems Review, vol. 36, pp. 377-390, 2002.

[8] A. Whitaker, R. S. Cox, M. Shaw, and S. D. Gribble, "Constructing
Services with Interposable Virtual Hardware," in Proceedings of the

1st symposium on networked systems design and implementation

(NSDI), 2004, pp. 169-82
[9] S. Osman, D. Subhraveti, G. Su, and J. Nieh, "The design and

implementation of Zap: A system for migrating computing

environments," ACM SIGOPS Operating Systems Review, vol. 36, pp.
361-376, 2002.

[10] M. Nelson, B. H. Lim, and G. Hutchins, "Fast transparent migration for

virtual machines," 2005, pp. 25-25.
[11] C. Clark, K. Fraser, S. Hand, and G. H. Jacob, "Live migration of

virtual machines," in In Proceedings of 2nd ACM/USENIX Symposium

on Network Systems, Design and Implementation (NSDI), 2005.
[12] W. Lin, J. Z. Wang, C. Liang, and D. Qi, "A Threshold-based Dynamic

Resource Allocation Scheme for Cloud Computing," Procedia

Engineering, vol. 23, pp. 695 – 703, 2011.
[13] X. Meng, C. Isci, J. Kephart, L. Zhang, E. Bouillet, and D. Pendarakis,

"Efficient resource provisioning in compute clouds via vm

multiplexing," in Proceeding of the 7th international conference on
Autonomic computing, 2010, pp. 11-20.

[14] K. M. Nagothu, B. Kelley, J. Prevost, and M. Jamshidi, "Ultra low

energy cloud computing using adaptive load prediction," in World
Automation Congress (WAC), 2010, 2010, pp. 1-7.

[15] M. Naderpour and J. Lu, "Supporting situation awareness using neural

network and expert system," in International Conference on
uncertainty Modeling in Knowledge Engineering and Decision Making

(FLINS 2012) Turkey, Istanbul, 2012, pp. 993-998.

[16] M. Naderpour and J. Lu, "A fuzzy dual expert system for managing

situation awareness in a safety supervisory system," in 2012 IEEE

International Conference on Fuzzy Systems (FUZZ-IEEE), Australia,

Brisbane, 2012, pp. 1-7.
[17] S. Islam, J. Keung, K. Lee, and A. Liu, "Empirical prediction models

for adaptive resource provisioning in the cloud," Future Generation

Computer Systems, vol. 28, pp. 155–162, 2012.
[18] N. Srinivas and K. Deb, "Muiltiobjective optimization using

nondominated sorting in genetic algorithms," Evolutionary

computation, vol. 2, pp. 221-248, 1994.
[19] Y. Zhang, C. Lu, H. Zhang, and J. Han, "Active vibration isolation

system integrated optimization based on multi-objective genetic

algorithm," in Computing, Control and Industrial Engineering (CCIE),
2011 IEEE 2nd International Conference on, 2011, pp. 258-261.

[20] J. Rao, "Autonomic management of virtualized resources in cloud

computing," 2011.
[21] L. Guo, S. Zhao, S. Shen, and C. Jiang, "Task Scheduling Optimization

in Cloud Computing Based on Heuristic Algorithm," Journal of

Networks, vol. 7, pp. 547-553, 2012.

124 Int'l Conf. Grid & Cloud Computing and Applications | GCA'13 |

