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Abstract— This paper proposes a parallel GZIP decoder
architecture that includes a multiple context manager for
decompressing network streams directly on a router. On the
Internet, some HTTP packet streams are encoded by GZIP.
Moreover, Internet content is often divided into smaller
packets and transmitted without regard to the original order
of the packets. The previously proposed Service-oriented
Router for content-based packet stream processing needs
to decode GZIP data in order to analyze packet payloads.
The proposed GZIP decoder is implemented in hardware
in order to process the data of multiple network data
streams quickly and concurrently using context switching.
The GZIP decoding hardware logic is simulated by Verilog-
HDL. When one dictionary generation module and eight
decoding modules are designed using FPGA, the throughput
becomes 0.71 Gbps. When this architecture is synthesized in
ASIC, the throughput reaches 10.41 Gbps and the circuit
area of that architecture becomes 0.14mm2.

Keywords: GZIP, Decompression, Hardware, Parallel, Context
Switch, Service-oriented Router.

1. Introduction
Internet technology has made great progress in the last

decade. Since it is now used as a communication tool
throughout the world, the amount of the data transmitted
over the network has been increasing. People have come
to use the Internet not only for collecting information, but
also for transmitting it. Recently, people have begun to use
social networking services (SNSs) with their own devices,
such as a desktop computer or smartphone. They frequently
share knowledge and information for various purposes, and
the number of those who use Internet content has become
larger than ever.

In a network, content is transmitted using packets as a
unit of transmission; these packets are delivered to their
destinations by a router at the center of network. Since the
router is a key device for interconnecting networks, it can
acquire many kinds of information that are included in every
packet stream. In fact, any packet can be passively captured
by a router. A conventional router is a device that only
forwards data packets between computer networks. When a
data packet arrives, the router checks the address information
in the packet header to determine its ultimate destination and
directs the packet to the next network.

However, network traffic is growing year after year, and
users have come to want even richer content. For example,
at the Amazon online store, there is a recommendation
service that collects users’ purchase and browsing history
and recommends goods related to this history according to an
analysis. If we could analyze packet payloads on the routers,
then we could create new services, not as infrastructure but
as a service vendor.

We have proposed a new router, the Service-oriented
Router (SoR) [1]. This router analyzes packets and can
achieve content-based routing. SoR is not just routing hard-
ware that transmits data and coverts protocols; it can analyze
the semantic meaning of content, inspect traffic data streams
including packet payloads, and provide functionalities in the
application layer to servers, clients, and neighboring routers.

However, some packets in a network are encoded by the
GZIP algorithm. In addition, in the Ethernet devices of a
link layer, data that is larger than 1500 KB may be split
into smaller packets. Many Internet users send or receive
content to/from the network. These data are divided into
packets and sent regardless of the order of the packets. In
HTTP 1.1, which is generally used in Webpage access or
Web data transfer, the GZIP compression option is available,
and is used by some servers such as Amazon, Yahoo,
Twitter, and The New York Times. Therefore, the SoR
needs to decompress GZIP data for general packet analysis.
This paper proposes a hardware GZIP decoder that can
manage multiple data to adapt to content streams divided
into packets. Using design architecture based on context
switching, the proposed hardware can decode multiple users’
data concurrently and effectively.

The remainder of this paper is organized as follows.
Section II briefly introduces networks, SoR, and the GZIP
algorithm. Section III explains related work. In Section
IV, our proposed GZIP decoder hardware is explained. In
Sections V and VI, we evaluated the architecture. Finally,
Section VII concludes the paper.

2. Background
2.1 HTTP1.1, TCP/IP, ETHERNET

Most Internet throughput consists of HTTP packets, and
the most widely used set of basic communications protocols
is TCP/IP. The datagram is encapsulated by a TCP/IP header
where some frame headers and footers are added to the
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original divided contents using Internet Protocol (IP). Figure
1 shows a brief overview of an Internet connection. IP is the
principal communication protocol used for relaying packets
over the Internet. It is responsible for forwarding packets by
addressing hosts and routing datagrams from a source host
to the destination host over one or more IP networks. Packets
consist of two parts, IP headers and datagrams. The routing
information required to route and deliver the datagram is
included in the IP header.

Fig. 1: Data Format

In HTTP1.1, the datagram is often compressed by GZIP
[2],[3],[4], and then transmitted to a network. The need to
send data via the Internet is growing, and many services
are continuously provided to address this need. In order to
send as much data as possible, a compression algorithm,
generally GZIP, is used in HTTP1.1 protocols. The GZIP
algorithm compresses data by 30-40% on average, and the
size of data is reduced by more than half in most situations,
enabling effective network utilization. Since GZIP is a free
algorithm, anyone can use it, and it is widely used in the
UNIX community.

2.2 Service-oriented Router (SoR)
Recently, Internet networking technologies have been sig-

nificantly developed, and many individuals and commer-
cial services now use these technologies. The Internet has
become one of the most important infrastructures in our
lives. Nowadays, people share knowledge and information
for business and academic purposes over the Internet. It
is now common for most people to use the Internet since
it is very useful to send or receive information anytime,
anywhere.

A network router is a device that connects several inde-
pendent networks together and forwards data from source to
destination. In order to manage lots of content, a new type of
router is needed. Our laboratory has proposed a new router,
called SoR, which can serve content-based services. General
routers cannot provide these content-based services, and this
implicitly limits the user experience and limits the benefits of
a carrier. SoR provides services to end users from the router
itself using a special application programming interface
(API) based on SQL. It has many advantages because it
enables passive data correction, which is different from

active data correction. In active data correction, end hosts
can get required data only by accessing other hosts such
as the Web crawlers of search engines. Current end-to-end
systems have to correct data actively. This takes time, and the
coverage of data correction is limited. Frequent crawling to
obtain the real-time status of the Internet sometimes causes
network congestion. Passive data correction of SoR enables
real-time data acquisition and provides current Internet status
without any network accesses.

For the SoR to analyze and correct data, a GZIP decoder
is needed because packets may be encoded by an HTTP 1.1
GZIP algorithm at the end host server. In addition, there are
various kinds of data on the Internet. SoR cannot decode
perfectly without context management information, such as
the streaming ID. Moreover, the network throughput has
been increasing recently, and SoR will need to deal with
throughput that is 10 Gbps or higher. A hardware GZIP
decoder could be suitable for decoding multiple data quickly
and concurrently.

Fig. 2: Service-oriented Router

2.3 GZIP algorithm
In HTTP 1.1, transmitting compressed data is allowed,

and the GZIP compression algorithm is used mainly in
current network. GZIP is based on a deflate algorithm which
consists of the Huffman [5] and LZ77 [6] algorithms. The
header of compressed data has information such as the
dictionary of the decoding process, which contains the rules
to decode Huffman compressed binaries into ASCII codes.
The dictionary, which is created at compression, is also used
at decompression. Since LZ77 uses a sliding buffer up to
32 KB in size to compress and decompress iteration parts,
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a GZIP decoder must provide buffers of that size in the
architecture.

Since each stream has independent dictionary informa-
tion, the decoder hardware must create a dictionary table
whenever a new stream arrives at the decoder. In addition,
whenever a new packet arrives, the decoder needs to appro-
priately choose the dictionary information with the correct
decoding rule for the packet.

3. Related Works
Few researchers work on Hardware GZIP decompression,

probably because it has not been necessary to decompress
GZIP encoded texts at network wire-speed before. There
are three papers we are aware of that deal with hardware
GZIP decoders. [7] and [8] implemented a GZIP decoder on
FPGA and evaluated some values, such as the size of logic
cells. However, they did not evaluate throughput, which is
important for network analysis. Although [9] evaluates their
throughput, it did not show other results, such as circuit area
or number of logic cells used. This status makes it difficult
for us to precisely compare these methods with our proposed
method.

The research in [10] tackles the GZIP decoding prob-
lem with CPU and hardware collaboration. In this study,
they implemented various kinds of compression methods
in embedded systems. Though they implemented GZIP
compression and decompression using hardware, they used
the same Huffman dictionary generated during compression
when decoding. In other words, their decoding hardware
used the Huffman trees created by the compression process
beforehand.

In addition, the studies described above do not deal with
network traffic, in which data are separated into multi-
ple packets. Reconstruction of all network streams from
separated packets exhausts memory resources. This is the
reason why context-switching technology is indispensable.
The main papers that deal with compressed HTTP traf-
fic are [11], [12], and [13]. The authors of these papers
solve HTTP decompression using software implemented on
gateway servers. These approaches are similar to our ap-
proach, and many good features are proposed to solve GZIP
decompression. However, a software solution is limited in
both throughput and the resources needed when used in an
Internet router. Hence, these methods are not appropriate
for our purpose. The proposed architecture is different from
other studies in that it uses effective parallelizing architecture
and on-the-fly analysis of HTTP traffic.

4. Implementation
In order to attain the wire-speed throughput of a network,

we propose the following architecture for a hardware-based,
parallel GZIP decoder for HTTP traffic, as shown in Figure
3. The proposed architecture consists of two main modules

and various sub modules. One main module is a dictionary
module that generates the dictionary from the header part of
the GZIP encoded text. The other main module is the decod-
ing module. The sub modules consist of input buffer modules
and a switching module. The number of input buffers is the
same as the total number of dictionary generation modules
and decoding modules. These modules have a queue of
registers that stores several input packets.

The proposed architecture has two main contributions:
context switching and parallelizing. Context-switching tech-
nology enables the intermediate status of a GZIP decoding
stream to be exchanged between the decoding modules and
context buffers. The correct context, re-coded in a context
buffer RAM, is selected and used by the decoding modules.
Whenever a certain packet arrives and is buffered in a queue,
the control logic fetches the correct context of the stream
from the context buffer in which the packet belongs.

The proposed architecture decodes GZIP in two separate
phases: a process in a dictionary generation module and a
process in a decoding module. In this way, dictionary genera-
tion modules and decoding modules can work independently
and in a parallel manner. While the dictionary generation
module makes a dictionary for a certain stream, decoding
modules concurrently decode other packets. This improves
the throughput of the entire GZIP decoding process and this
architecture allows the number of modules to be flexibly
tuned according to the specifications of the target network
throughput.

Using this context-switching design paradigm, the pro-
posed hardware successfully continues decoding constantly,
switching the intermediate status of one process after another
according to the incoming network traffic. The number of
contexts that can be handled at one time is approximately
105 in captured network traffic (Table 1). In this case, the
size of the context memory needed is approximately 840
MB. This size is small enough to implement using an off-
chip SRAM.

Table 1: an Average number of GZIP Streams.
timeout(s) Number of GZIP streams
600 1.40 × 105

300 7.00 × 104

60 2.63 × 104

10 5.25 × 103

5. Evaluation
5.1 Environment

We evaluated the proposed GZIP decoding process using
both ASIC and FPGA designs from the viewpoints of
throughput and circuit area, or used slices. In this section,
we evaluate the scale of the circuit and the throughput
of the proposed decoding module. The decoding module
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Fig. 3: Whole GZIP Decoding Architecture.

was implemented in Verilog HDL and synthesized using
Xilinx ISE Design Suite 14.2 on an FPGA device (Vertex5
XC5VLX330T). For comparison, we used Synopsys Design
Compiler 2005.09 by FREEPDK 45-nm Technology as the
ASIC implementation.

First, we conducted an evaluation of real network traffic
data to investigate its characteristics. In this data, the average
size of one stream is 6,107 B, and it consists of 5 packets
on average. We used HTTP traffic captured in our laboratory
from 5 December 2011 to 13 December 2011. It includes
approximately 0.5% GZIP encoded data.

Table 2 shows the evaluation environment of the proposed
GZIP decoding module. Table 3 shows characteristics of the
traffic data captured in Nishi Laboratory, which was used in
this evaluation.

Table 2: an Environment of Simulation and Synthesis.
Language Verilog-HDL
Logic Simulation Cadence NC-Verilog LDV5.7
Wave Form tool Cadence Simvision
ASIC synthesis tool Synopsys Design Compiler X-2005.09
Library for ASIC synthesis FreePDK OSU Library[14]

(NAND2 gate area: 0.798 µm2)

Table 3: Traffic Data in Nishi Laboratory for Evaluation.

Proportion of HTTP all bytes in the whole traffic 78%
Proportion of GZIP all bytes in the whole HTTP stream 7.05%
Proportion of GZIP all bytes in the whole stream 5.50%
Average packet size 1,221.54byte
Average GZIP compression rate 32.33%
Average size of GZIP decoded packet 3,778.43byte
Average # of packets contained in one GZIP stream 5packet
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We created test data from data that was captured from
www.kantei.go.jp, the Website of the Prime Minister of
Japan and his Cabinet. The data size is 6.5 KB, or 31.4
KB when decompressed. This size is almost the same as
the average size of a network stream. The data is captured
using 36 parallel accesses to the Website, and the sampled
dataset includes 36 streams. This data is stored into separate
buffers. The number of buffers is equal to the total number
of dictionary generation modules and decoding modules.

5.2 Performance
5.2.1 Waveforms in Simvision

In this research, we used the prepared test data from
www.kantei.go.jp as described above. We analyzed the cap-
tured data, compressed the data with GZIP for testing, and
conducted a simulation. Figure 4 shows the output waveform
of the proposed hardware decoder.

5.2.2 ASIC evaluation
Figure 5 shows that the processing throughput increases to

some extent as the number of decoding modules increases.
Though the increase of decoding modules improves the total
throughput, this is not always true if the number of modules
exceeds eight. The throughput of the proposed decoder is
10.41 Gbps in the ASIC implementation, and the circuit area
of the hardware is 0.14mm2. If we assume that there are
2.63× 104 streams in a network, then the system needs 840
MB memory for managing context.

When the ratio of dictionary generation modules to decod-
ing modules reaches 1:8, their throughput is almost equal.
For instance, if the number of dictionary generation modules
is 2, then 16 decoding modules achieves the best results for
throughput. In other words, the optimum number of decoding
module is influenced by the number of dictionary generation
modules.

Figure 6 describes the index of throughput per circuit area
for various numbers of modules. Using this index, we can
compare different hardware configurations simultaneously.
It reveals that the best performance is achieved when the
number of dictionary generation modules is one and the
number of decoding modules is eight. As the number of
dictionary generation modules is increased, the performance
decreases gradually because the dictionary module cannot
be used fully, causing this index to deteriorate. In this
evaluation, the result is almost the same as the evaluation
of total throughput described in Figure 5.

5.2.3 FPGA evaluation
Table IV shows the throughput when the proposed archi-

tecture is implemented in FPGA using one dictionary gen-
eration module and eight decoding modules. For this eval-
uation, we implemented the proposed hardware in Virtex-5.
The usage of register slices is approximately 13% whereas

the usage of look-up-table slices is 29%. The usage of
bock RAM is 40%. There are enough unused slices for
implementing additional functions in the future.

Table 4: FPGA Synthesis and Simulation Result.
Minimum period 21.14ns
Minimum Frequency 47.30MHz
Throughput 0.71Gbps
Number of Slice Registers 13%
Number of Slice LUTs 29%
Number of fully used LUT-FF pairs 14%
Number of bounded IOBs 0%
Number of Block RAM 40%
Number of BUFG 9%

6. Discussion
The proposed system attains the best performance when

GZIP decoding hardware is configured such that the ratio of
dictionary generation modules to decoding modules is 1:8.
This is because this ratio matches the existing ratio of GZIP
dictionary headers to GZIP data in network traffic. This
rate depends on the characteristics of the network traffic.
Given the conditions of the captured traffic, it is effective
to extend the hardware in keeping with the basic ratio, for
instance, using 2 dictionary modules to 16 decoder modules,
if the processing throughput needs to be improved in order
to decode higher-throughput network traffic.

From another viewpoint, the circuit area of a dictionary
generation module is approximately 3.5 times larger than
that of a decoding module. Thus, it can be said that using
fewer dictionary generation modules attains relatively better
performance. A dictionary generation module generates ap-
proximately eight dictionaries whereas a decoding module
decodes a single stream (five packets on average). In other
words, dictionary generation modules and decoding modules
constantly work together when their ratio is 1:8. Figure
7 shows the results when different ratios of modules are
implemented. For the ratio of 1:8, indicated by the sky-
blue waveforms of Figure 7, there are few blanks in both
the dictionary generation and decoding processes. In the
waveforms of ratios higher than 1:8, the dictionary genera-
tion module does not work constantly, though the decoding
modules work relatively constantly. In contrast, below a ratio
of 1:8, the decoding module waveform includes blank spaces
caused by the decoder module waiting for the dictionary
module. In these cases, the total latency of processing is
almost same even for different ratios. This is caused by the
waiting. Namely, there is a saturation point for the proposed
hardware that depends on the characteristics of the Internet
HTTP traffic.

7. Conclusions
This paper proposed hardware-based GZIP decoder mod-

ules for implementation in a SoR. In the evaluation, the
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Fig. 4: Waveform of the Decoding.

Fig. 5: Throughput and Circuit area of the Decoding in ASIC with the number of modules changed.

Fig. 6: Throughput per Circuit Area in ASIC with the number of modules changed.

number of decoding modules was varied, and the parallel
utilization of GZIP decoder was evaluated. Since the simu-
lation was conducted based on not software but hardware,
the decoder could quickly manage the significant amount
of GZIP data streaming on the Internet, and the use of
context switching enabled concurrent decoding of multiple
data streams. GZIP decoding hardware was evaluated using
Verilog-HDL. When one dictionary generation module and
eight decoding modules are used, the best throughput is
achieved, 10.41 Gbps for an ASIC design and 0.71 Gbps
for an FPGA design. The circuit area of that architecture is

0.14mm2.
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Fig. 7: Time Chart of the Simulation with Various Numbers of Modules. Each color line has a dictionary generation module
(the lines below), and various numbers of decoding modules (the lines above).
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Abstract—In this paper an easy microprocessor to NoC 

connection strategy, based in a hardware wrapper design is 

proposed. The implemented wrapper simplifies the connection 

between a network on chip infrastructure and several 

MicroBlaze softcore processors. Proposed strategy improves 

the design process of a parallel computing environment. 

Wrapper development process, synthesis results and 

functionality test are showed and analyzed.  

Key words: FPGA, Multicore, Hermes NoC, MicroBlaze, FSL 

bus, Embedded processors. 

1. INTRODUCTION 

Nowadays, computer applications need more than one 
processor to resolve complex tasks in short time. This 
particular fact has generated a new tendency in the design 
of high performance electronic systems. In an effort to 
improve the performance of a single processor scheme, 
multiprocessor architectures have been proposed. A 
multiprocessor (or multi-core) system takes advantage of 
the billion transistor era to achieve high performance by 
running multiple tasks simultaneously, on independent 
processors, decreasing applications execution time. 
However, parallel processing faces a lot of troubles, among 
which may be mentioned: Shared memory access and 
communication infrastructure. In a multi-core system, 
efficient communication among CPUs is a critical item to 
performance measurement. In reduced multi-core systems, 
a common bus is enough to connect the components. 
However with more than 8 cores a bus is not scalable 
because bus electrical load increases while its speed is 
reduced, and the bandwidth demand is not satisfied [1]. 

A scalable and efficient solution to connect on-chip 
components is a packet-switched on-chip network (NoC) 
[2]. Network-on-Chip (NoC) brings the techniques 
developed for macro-scale, multi-hop networks into a chip. 
Hermes [3], AET [4], Xpipes [5], are examples of NoC’s 
implementation. By means of NoC, systems 
communications improve by modularity support, cores 
reuse, and scalability increase. Those features enable a 

higher level of abstraction in multicore’s architectural 
modeling and allow heterogeneous systems building.  

Another big problem in multicore architectures is 
related to quick prototyping capability. Traditionally, it has 
been only possible put under test the system once the 
silicon is available. In last years, softcore implementation 
on FPGA has emerged as a solution to rapid prototyping, 
due to their reduced cost, flexibility, platform independence 
and greater immunity to obsolescence [6]. A soft-core 
processor is a hardware description language (HDL) model 
of a specific processor (CPU) which can be customized for 
specific application requirements and synthesized for an 
ASIC or FPGA target. Examples of softcore are OpenRisc 
1200 [7], LEON [8] and MicroBlaze [9]. Several 
architectures based in softcores can be found on internet 
sites as OpenCores [10] or Xilinx [11]. However typically 
softcore designs are limited to single processor or reduce 
multi-processors architectures connected by shared bus 
structure.  

In this paper a strategy based in a hardware wrapper to 
simplify the connection between the Hermes NoC and 
MicroBlaze processor in order to facilitate the multicore 
architecture prototyping and design is proposed.  

This paper starts with a background section in order to 
understand Hermes network on chip and MicroBlaze 
architecture. Then, wrapper design and internal architecture 
are explained. Wrapper implementation results, 
functionality test, conclusions and future work are showed 
and discussed at the end of this paper. 

2. PRELIMINARIES AND BACKGROUND 

INFORMATION 

2.1. NOC INFRASTRUCTURE 

We have employed as communication infrastructure the 
HERMES NoC, developed by Moraes et al. [3]. The NoC 
(Figure 1) is formed by IP blocks and routers which are 
connected on a mesh topology. In Moraes’ NoC each IP 
block represents a computational element; in our case an IP 
block means MicroBlaze (MB) CPU. A unique address is 
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associated to each router on the net. The IP blocks have the 
same router´s address to which they are connected. 

 
Figure 1. Router and a 33 HERMES NoC 

 

All IP blocks can communicate with each other by 

sending packets on a rate of 500Mbps by each router. A 

valid packet is formed by a set of flits (1flit=8bits) 

according the formats illustrate in the Figure 2. Hermes 

NoC uses the wormhole flow-control for packet 

transference and a bi-dimensional routing algorithm.  

 
Figure 2. HERMES NoC packet’s formats 

The router transfers packets among IP blocks by means 

of 4 bidirectional ports (North, South, East and West), and a 

local port (to connect an IP block). The Figure 3 shows 

physical connection between two consecutive ports. Each 

port has an output and input gates. Each one of them has a 

FIFO memory buffer to temporal information storage. In the 

output gate, the tx indicates that there is a flit in the 

data_out bus, the signal is cancelled when the ack_tx signal 

is received. In the input gate the rx signal indicates that 

there is a flit in the data_in bus, when it is taken and sent to 

other router (or to the IP block), the ack_rx signal is 

generated.  

 
Figure 3. Example of Router’s port 

Any IP block can be plugged into the network once it is 

equipped with the proper interface (wrapper). The wrapper 

adapts the IP block to router connection signals. The 

sections 3 explain how MicroBlaze processors were 

connected into the Hermes NoC. 

 

2.2. MICROBLAZE SOFTCORE 

The MicroBlaze core (Figure 5) is organized as Harvard 

architecture with separate bus interface units for data and 

instruction accesses. Each bus interface unit is further split 

into a Local Memory Bus (LMB) and IBM’s On-chip 

Peripheral Bus (OPB). Further, MicroBlaze core provides 8 

input and 8 output interfaces to Fast Simplex Link (FSL) 

buses. The FSL buses are unidirectional, non-arbitrated, 

dedicated and synchronized communication channels. The 

FSL bus transmits data directly from the MicroBlaze core 

to other peripherals or processors buses in master-slave 

scheme without using a shared bus. MicroBlaze contains 

several instructions to read from the input FSLs and write 

to the output FSLs. Each read and write operations 

consume two FPGA’s clock cycles.  

 
Figure 4. MicroBlaze Core Block Diagram 

We have employed the FSL bus to connect the 

MicroBlaze to designed wrapper due its high speed 

communication. The FLS signals are showed in the Figure 

4.  

 

 
Figure 4. MicroBlaze Core Block Diagram 

 A FIFO memory buffer is used as interface 

between the Microblaze and the other peripheral. Buffer 

allows using different clock sources for the FSL_M_Clk 

and FSL_S_Clk signals. In a master to slave writing process 

the master checks the FSL_M_Full signal to known the 

FIFO state. When the FIFO is available (FSL_M_Full=0) 

the master puts the data on the FSL_M_data bus and 

activates the FSL_M_Write signal. On the slave side the 

signal FSL_S_Exists indicates it that a data should be read. 

The peripheral takes the data by means the FSL_S_Data 

bus and activates the FSL_S_Read signal as acknowledge. 

 

 
1st flit 2nd flit 3rdflit 4thflit 5thflit 6thflit 7thflit 8thflit 

Read 
Target 

Address 

Payload 

Size 4 

Source 

Address 

Code 

0 

Address 

[15:8] 

Address 

[7:0] 
  

         

Write 
Target 

Address 

Payload 

Size 6 

Source 

Address 

Code 

1 

Address 

[15:8] 

Address 

[7:0] 

Data 

[15:8] 

Data 

[7:0] 

         

Start 

Stop 

Target 

Address 

Payload 

Size 2 

Source 

Address 

Code 

2 
    

         

Return 

Read 

Target 

Address 

Payload 

Size 4 

Source 

Address 

Code 

9 

Data 

[15:8] 

Data 

[7:0] 
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The optional FSL_M_Control and FSL_S_Control signals 

can be used to coordinate the communication. In a slave to 

master writing process the roles between the Microblaze 

and the peripheral are inverted. Also, the FIFO depth can 

be increased to raise the performance communication. 

 

3. FSL WRAPPER ARCHITECTURE 

 The designed wrapper allows to plug each processor 

with the NoC infrastructure [12]. The wrapper takes the 

signals from FSL and translates them to router´s properly 

signals. In this way, wrapper functionality can be 

interpreted how FSL to NoC and NoC to FSL 

communications abstraction layer. In the first case, flits 

arrive from FSL to be routed by the NoC. In the second 

case, flits arrive from NoC to be sent to the MicroBlaze.  

 

 
Figure 5. FSL to NoC wrapper 

 

The wrapper (Figure 5) is composed by a coprocessor, 

a register manager and Tx/Rx Module. 

 Coprocessor: It takes the FSL signals described in 

the section 2, and generates asynchronous signals 

to write or read in the register manager. 

 Register Manager: In the FSL to NoC 

communication process, it receives the frames sent 

by the coprocessor, decodes and saves them in the 

W-FSL register. In the NoC to FSL communication 

process, it takes the data from W-NoC register, 

encodes and sends them to coprocessor. 

 Tx/Rx Module: It fixes the connection with the 

router’s local port. Input and output gates, 

described at section 2, are its main components. 

This module takes flits from W-FSL register and 

puts them on the output gate. In the other way, it 

takes the data from the input gate and writes them 

on the W-NoC register in the manager register 

module. 
 

Packets’ integrity is guaranteed by NoC infrastructure. 
However it was necessary to implement a local protocol for 
wrapper in order to ensure the correct communication 
between MicroBlaze and router. In this local protocol, each 
packet is transmitted in three frames according the format 

shown in figure 6. The control field indicates which frame 
is been sending. The decode module in the register 
manager interpreters those frames. When one field is lost, 
the whole frame is rebroadcast. 

 Control 1st Flit 2nd Flit 3th flit 

1st 
Frame 

0x01 Target 
Address 

Payload 
Size 

Code 

2nd 
Frame 

0x02 Address 
[15:8] 

Address 
[7:0] 

0x02 

3th 
Frame 

0x03 Data  
[15:8] 

Data      
[7:0] 

0x03 

Figure 6. Wrapper protocol 

 

The wrapper also allows to see NoC like an extension of 

the FSL bus. Therefore, NoC’s writing and reading tasks 

can be managed using high level functions available for the 

FSL since a programming language. The example 1 shows 

the C function to send a packet from MicroBlaze to NoC.  

 
void writeNoc(char tg, char sz, char cm,  

      char adH, char adL, char daH,char daL) 

{ 

auxTx = 0x01<<24 | tg<<16 | sz<<8 | cm; 

putfsl(auxTx, FSL_MASTER); 

 

auxTx = 0x02<<24 | adH<<16 | adL<<8 |0x02; 

putfsl(auxTx, FSL_MASTER); 

 

auxTx = 0x03<<24 | daH<<16 | daL<<8 |0x03; 

putfsl(auxTx, FSL_MASTER); 

 

} 

Example 1. FSL to NoC writing process 

 

The example 2 shows the function to read a packet from 

NoC. 

 
void readNoc (char * frame) 

{ 

getfsl(auxRx,FSL_SLAVE); 

frame->tg=(char)(auxRx>>16); 

frame->sz=(char)(auxRx>>8); 

frame->cm=(char)auxRx; 

 

getfsl(auxRx,FSL_SLAVE); 

frame->adH=(char)(auxRx>>16); 

frame->adL=(char)(auxRx>>8); 

 

getfsl(auxRx,FSL_SLAVE); 

frame->daH=(char)(auxRx>>16); 

frame->daL=(char)(auxRx>>8); 

} 

Example 2. NoC to FSL reading process 
 

4. WRAPPER TEST 

To study the wrapper functionality, it was generated an 
architecture with three MicroBlaze CPUs connected 
through the designed wrapper to Hermes NoC. A serial port 
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was included for debug purposes. The whole system is 
illustrated in the figure 7.  

 

Figure 7. Study case architecture. 

 
EDK Xilinx tool was used to generate each MicroBlaze 

core. The SDK Xilinx’s tool was employed to generate the 
software. Individual programs were written by each 
processor. Stop y Start commands ensures the coordination 
of communication processes. Finally ISE tool was used to 
make the connection among MicroBlaze processors, 
designed wrappers and NoC infrastructure. The whole 
system was synthetized on the Virtex 4 FX20 FPGA. The 
synthesis report is illustrated on the table 1. 

MODULE 
Power(W) 

LUTs Signals 
Dynamic Quiescent 

MB 0,183 0,256 2610 3006 

WR 0.013 0.219 71 148 

MB+WR 0,189 0,256 2891 3374 

SERIAL 0.020 0.219 321 374 

NOC 0.038 0.220 1912 2178 

WHOLE  0.651 0.324 7490 10189 

Table 1. Synthesis report. 
 

The figure 8 shows application running results, data 
was taken from a serial port sniffer. It shows a token 
passing example, where each MicroBlaze takes a common 
variable, increases it and passes to the next MicroBlaze and 
a serial port.  

The string “Print from MicroBlaze 01, i=1”, is a 
message sent by processor 01 in the net. “Print from 
MicroBlaze 10, i=2”, is a message sent by 10 in the net and 
“Print from MicroBlaze 11, i=3”, is a message sent by 
processor 11 in the net. The serial interface has 00 
coordinate in the net.  

 

 
Figure 8. Application. 

 

5. CONCLUSIONS AND FUTURE IDEAS 

In this paper a hardware wrapper to simplify the 
multicore architecture design and prototyping, using the 
Hermes NoC and the MicroBlaze softcore was introduced. 
The wrapper test showed the low cell units occupied the 
functionality and the good performance of the proposed 
wrapper. 

FSL employment to connect the MicroBlaze with NoC 
allows to give to the developer a higher abstraction level, 
through simple software language functions calls hidden 
low level details. 

On the other hand, the network structure ensures the 
scalability and enables a multicore architecture can be built 
in a modular way. This scheme reduces design time because 
it allows a considerable components reusing strategy.  

The reconfigurable hardware environment allows 
architectural customization. This feature enables 
heterogeneous design, particularly in Virtex FPGA, 
PowerPC CPU can be employed in our multicore system 
using Hermes NoC due with developed wrapper, without 
the necessity of any change.  

Future ideas cover applications design using multicore 
platform. Those applications involve signal processing, 
simultaneous multisensory acquisitions, scientific 
computations, server clusters, hardware accelerators among 
others. 
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An Area-Efficient Asynchronous FPGA Architecture for
Handshake-Component-Based Design
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Abstract— This paper presents an area-efficient FPGA
architecture for handshake-component-based design. The
handshake-component-based design is suitable for large-
scale, complex asynchronous circuit because of its un-
derstandability. However, conventional FPGA architecture
for handshake-component-based design is not area-efficient
because of its complex logic blocks. This paper proposes
an area-efficient FPGA architecture that combines complex
logic blocks (LBs) and simple LBs. Complex LBs implement
handshake components that implement data path controller,
and simple LBs implement handshake component that imple-
ment data path. The FPGA based on the proposed architec-
ture is implemented in a 65nm process. Its evaluation results
show that the proposed FPGA can implement asynchronous
circuits efficiently.

Keywords: FPGA, Reconfigurable LSI, Self-timed circuit, Asyn-
chronous circuit

1. Introduction
Field-programmable gate arrays (FPGAs) are widely used

to implement special-purpose processors. FPGAs are cost-
effective for small-lot production because functions and
interconnections of logic resources can be directly pro-
grammed by end users. Despite their design cost advan-
tage, FPGAs impose large power consumption overhead
compared to custom silicon alternatives [1]. The overhead
increases packaging costs and limits integrations of FPGAs
into portable devices. In FPGAs, the power consumption of
clock distribution is a serious problem because it has an
enormously large number of registers than custom VLSIs.
To cut the clock distribution power, some asynchronous
FPGAs has been proposed [2], [3], [4], [5], [6]. How-
ever, the problem is that it is difficult to design asyn-
chronous circuits and few CAD tools or design flow for
asynchronous FPGAs have been introduced. To solve the
problem, we proposed an FPGA architecture for handshake-
component-based asynchronous circuit design (HCFPGA)
[7]. In handshake-component-based design, asynchronous
circuits are designed by connecting handshake components.
Since various handshake components such as for data pro-
cessing and data path control are defined, it is easy to design
asynchronous data path and its controller. Besides, there are
hardware description languages and circuit synthesis tools

for handshake-component-based design [8], [9]. Therefore,
handshake-component-based design is suitable for complex
large-scale asynchronous circuits. However, the problem of
the previous HCFPGA is its large transistor count because
each FPGA cell is complex to support various handshake
components.

This paper proposes an area-efficient HCFPGA architec-
ture that combines complex LBs and simple LBs. As the
proposed architecture implements handshake components
efficiently, CAD tools such as Balsa [9] are utilized to design
asynchronous applications. Data path and its controller are
implemented by simple LBs and complex LBs respectively.
Therefore, the proposed architecture can implement applica-
tions efficiently.

2. Architecture
2.1 Handshake-component-based design
methodology

In asynchronous circuits, the handshake protocol is used
for synchronization instead of using the clock. Figure 1
shows a four-phase handshake sequence. First, active port
sets the request wire to “1” as shown in Fig. 1(a). Second,
passive port sets the acknowledge wire to “1” as shown in
Fig. 1(b). Third, active port sets the request wire to “0” as
shown in Fig. 1(c). Finally, passive sets the acknowledge
wire to “0” as shown in Fig. 1(d) and wire values return to
initial state. Data signals are sent along with request signals
or acknowledge signals.

Handshake components were proposed for use in the
synthesis of the language Tangram [8] created by Philips Re-
search. An asynchronous functional element such as a binary
operator is denoted by a handshake component. There are 46
handshake components [10] and each handshake component
is used for data processing or data path control. Figure
2 shows handshake components. Handshake components
constitute a handshake circuit. Figure 3 shows an example
of a handshake circuit. Each handshake component has ports
and is connected to another handshake component through a
channel. Communication between handshake components is
done by sending request signal from the “active” port and ac-
knowledge signal from the “passive” port. Depending on the
kind of handshake components, data signals are sent along
with request signals or acknowledge signals. The number of
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Fig. 1: A four-phase handshake sequence.
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Fig. 2: Handshake components and channels.

ports of a handshake component and the width of data signal
can be varied. Each handshake components execute complex
handshake sequences through channels. However, handshake
circuits are easily understandable and manageable because
a function of each handshake component is clear and each
handshake is symbolized by a channel and ports. Also, there
are tools that translate high-level circuit description into
handshake circuit to synthesize asynchronous circuit. Thus,
handshake-component-based design is suitable for complex
and large-scale asynchronous circuits. Asynchronous circuit
synthesis is done by replacing each handshake component
with corresponding circuit.

2.2 Overall architecture
As mentioned in preceding section, circuit synthesis is

done by replacing each handshake component with corre-
sponding circuit. Thus, asynchronous circuits can be imple-
mented by replacing each handshake component with a com-
bination of LBs. Figure 4 shows the overall architecture of
the proposed FPGA. The FPGA consists of mesh-connected
cells like conventional FPGAs. Each cell includes an LB, two
Connection Blocks (CBs) and a Switch Block (SB). There
are two types of LBs. One is complex LB and the other is
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Fig. 3: A simple handshake circuit (4 bit counter).
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Fig. 4: Overall architecture.

simple LB. The upper CB connects SBs to N1, N2 and S
terminals of two LBs, and the bottom CB connects SBs to
E1, E2 and W terminals. In the proposed architecture, each
LB includes dedicated circuits for implementing handshake
components. Therefore, the proposed architecture can im-
plement handshake circuits efficiently. The proposed archi-
tecture can implement 39 out of 46 handshake components
defined in Balsa manual [10]. Handshake components that
have multiple ports or wide data path can be implemented
using several LBs. In the proposed FPGA architecture, the
Four-Phase Dual-Rail (FPDR) encoding is employed for
asynchronous data encoding. The FPDR encoding encodes
a bit and a request signal onto two wires. Table 1 shows
the code table of the FPDR encoding. The main feature is
that the sender sends a spacer and a valid data alternately
as shown in Fig. 5. FPDR circuits are robust to the delay
variation. Hence, the FPDR encoding is the ideal one for
FPGAs in which the data path is programmable. Because
the FPDR encoding is employed, three wires are required
for a data bit. Two wires are used for the data encoded in
FPDR encoding, and one wire for the acknowledge signal.
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Table 1: Code table of the FPDR encoding.

(0,0)Spacer

Code word
(T, F)

(1,0)

(0,1)

Data 1

Data 0

(0,0)Spacer

Code word
(T, F)

(1,0)

(0,1)

Data 1

Data 0

Time
(0,1) (0,0) (0,1) (0,0) (0,1)

Data 
Value

0

Data 
Value

0

Data 
Value

1Spacer Spacer

(0,0)

Spacer

Fig. 5: Example of the FPDR encoding.

2.3 Logic block structure
As mentioned in 2.2, there are complex LB and simple

LB. Figure 6 and 7 show the structures of a complex LB
and simple LB. Complex LB consists of a BinaryFunction
module, a Variable module, a Sequence module, a CallMUX
module, a Case module, an Encode module, an Input switch
box and an Output switch box. Simple LB consists of a
BinaryFunction module, a Variable module, a C-element, an
Input switch box and an Output switch box. An Input switch
box and an Output switch box connect modules to CBs. Each
module is used to implement a handshake component. Table
2 shows correspondence relation between modules and hand-
shake components. Complex LB can supports 39 handshake
components because it has all the modules. On the other
hand, simple cell can implement 22 handshake components
including Variable component and BinaryFunction compo-
nent. Therefore, complex LB is suitable for implementing
data path controller and simple LB can implement data path
efficiently.

3. Evaluation
The proposed FPGA is implemented in e-Shuttle 65nm

CMOS process with 1.2V supply. The circuits are evaluated
using HSPICE simulation. Table 3 shows the comparison

Table 2: Handshake components and its corresponding re-
sources.
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Fig. 6: Structure of a complex LB.
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Fig. 7: Structure of a simple LB.

result of cells of the conventional asynchronous FPGA,
the conventional HCFPGA and the proposed HCFPGA.
Compared to the conventional asynchronous FPGA cell, the
transistor count of the complex cell is increased by 63.0%
because the complex cell is the same as the conventional
HCFPGA cell. The transistor count of the simple cell is
reduced by 31.0% compared to the complex cell.

The next evaluation shows the implementation results of
a 4-bit counter. Table 4 shows the comparison of transistor
counts, energy consumptions per operation and through-
puts. Compared to the conventional asynchronous FPGA,
the number of transistors and the energy consumption per
operation are reduced by 4.4% and 19.8% respectively. This
is because handshake-component-based design method is
suitable for designing not only controllers but also area-

Int'l Conf. Reconfigurable Systems and Algorithms |  ERSA'13  | 17



efficient data paths. On the other hand, the throughput is
decreased by 47.6% because each handshake components
execute complex handshake sequence. Compared to the
conventional HCFPGA, the number of transistors and the
energy consumption per operation are reduced by 25.3% and
11.8% respectively and the throughput is increased by 7.9%.
This is because the data path is implemented using the cells
with simple LB.

Table 3: Transistor count of a cell and its breakdown.

�����������	


���
�������

���


�����������	

�����


��������

�����


����	���
�		 ����	��
�		

��		 ���� ���� ���� ��� 

!"  ## #�## #�##  ##

�"������"� #$#� � �$ � �$ �##%

Table 4: Evaluation results of 4-bit counter.
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4. Conclusions
This paper presented an area-efficient asynchronous

FPGA architecture for handshake-component-based design.
In the proposed HCFPGA architecture, simple LB and
complex LB are used to implement a data path and its
controller respectively. Therefore, the proposed architecture
implements applications efficiently. As a future work, we
are evaluating the proposed FPGA architecture on some
practical benchmarks.
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Abstract— The premise of this project is to provide a proof of 
concept of Alamouti’s remarkably celebrated 2x1 transmit 
diversity scheme with the aid of Software Defined Radios. We 
aim at producing the same results as Alamouti, in an 
environment that behaves as a frequency selective and slow 
fading channel. The software-defined radios provide a 
remote RF front-end to conduct this experiment however; the 
real encoding and combining are done through Simulink 
natively on external host machines. 

Index Terms—Alamouti, DBPSK, Mathworks Simulink,Matched 
Filter, PN sequences,Space Time Encoding, Software Defined Radios, 
USRP2.  

I. INTRODUCTION 

 
hroughout the development of wireless communication 
systems, the environment poses an insurmountable 
challenge as our demands for mobility increase. With 

increased mobility, wireless channels become riddled with 
multipath and fading effects. Typically a communication system 
is highly susceptible to effects of multipath and fading unless it is 
compensated for additionally. Diversity is an elegant solution to 
this problem. Diversity is defined as the availability of more than 
one channel to transmit multiple copies of the same information. 
This kind of redundancy in a communication system is 
welcomed, since, it promises a better performance as opposed to 
a traditional setup that does not adopt diversity. Conventionally, 
diversity on the receiver side was observed for harvesting 
information with the help of more than one antenna. This kind of 
simultaneous reception of the same data through different 
antenna provides us with resourceful, redundant information. In 
an influential environment, data often loses its integrity and thus 
the redundant information helps us compensate for the channel 
influences and recover the data more precisely. Receiver 
diversity calls for increasing the RF circuitry such as low noise 
amplifiers (LNA) by two fold. In 1998, Siavash M. Alamouti 
proposed, that his novel idea of transmitting using two antenna 
and receiving with one provides a similar performance as 
described by the maximal-ratio receiver combing (MRRC)- a 
type of complex receiver diversity. With his scheme, we can reap 
the benefits of receiver diversity in a multipath time varying 
channel at the same cost of complexity. However, there is an 
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added advantage of reduced receiver infrastructure. Alamouti 
proposed that transmit diversity provides the same trend in bit 
error rate performance with an expenditure of an additional 3dB 
signal to noise ratio (SNR) than MRRC. In-spite of this added 
expenditure of 3dB in signal-to-noise ratio requirement, transmit 
diversity scheme is more lucrative and practical. Alamouti’s 
scheme calls for enhancing the base-stations with more antennae 
than providing more receive antennae at the remote units, which 
are large in number. [1]  

II. THEORY 

A. Equivalence between MRRC and Transmit Diversity 
Although Maximal-Ratio Receiver combing and Transmit 
Diversity bear huge differences in the computation regarding 
retrieval of a bit and infrastructure i.e. orientation of the multiple 
antenna, they bear remarkably similar results due to a pivotal 
concept known as Space-Time Encoding. This can be observed 
in Figure II.1.It shows the Monte Carlo Simulation of a Binary 
Phase Shift Keying (BPSK) transmission system with no 
diversity, MRRC and Transmit diversity. In order to observe the 
manipulation required that makes transmit diversity work, we 
need to delve in to the requirements of maximal-ratio combining. 
In Addition, it is necessary that we familiarize ourselves with 
what space-time coding channel estimation and channel impulse 
response are 

 
Figure II.1Monte Carlo Simulation of MRRC v/s Transmit Diversity 

[2] 

B. Space Time Coding  
Space-time encoding helps spread our data in space and time. 
This concept of spatial distribution helps us retrieve symbols 
after combining. The available data is first distributed in space. 
As a result, we establish multiple channels to transmit on. 
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Subsequently, we reproduce conjugates of the same data as 
described in Figure II.2 and switch them up on the two 
available channels. [1]. The available symbols S0 and S1 are 
served for encoding at time intervals t and t+T respectively, 
where T is the time period of each complete symbol. The 
symbols are then sent separately over two channels during 
time interval t. In our example, S0 will be sent over channel1 
and S1 over channel2. In the next interval t+T, we need to send 
conjugates of the previous symbols, S0

* and -S1
*. However, the 

negative conjugate of S1 i.e. -S1
* is sent over channel1 and 

S0
*is sent over channel2 

 

 
Figure II.2 Space Time Distribution of the symbols  

C. Channel Estimation 
Channel Sounding is a process that is commonly employed to 
obtain the channel impulse response. This process is heavily 
dependent on using Pseudo Random Noise (PN) Sequences. PN 
sequences are binary sequences that have peculiar properties and 
are produced using Linear Feedback Shift Registers (LFSR). In 
brief, to serve the purpose of channel sounding, a PN sequence is 
transmitted over a channel. This is received and correlated with 
the same PN sequence. This process is employed because 
autocorrelation between the same PN sequences gives very 
evincing results. Since, PN sequences are binary in nature, their 
autocorrelation behavior can be deducted by studying how an 
example 

1) PN sequence example  
For example, lets consider a PN sequence of the degree N=2 
degrees and polynomial x2 + x +1.We get a sequence of length 
L=2N – 1=3. This means that the sequence itself is periodic over 
𝐿=3. The shift register array that provides this code and its initial 
state is described in Figure II.5. The process of generation of a 
PN sequence is described in Table I.  
 

 
Figure II.3 LFSR to produce a PN sequence of order 2 

Hence the transmitted pseudo random sequence is given by a 
sequence of random pulses described by the following equation 
(8). Where cn correspond to the bits associated with the PN 
sequence, Tc is the chip time of the PN sequences. Chip Time is 
defined as the time interval of every bit within a PN sequence.  
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Evidently, the sequence c(t) is periodic with period Tb = 3Tc.The 
autocorrelation function of c(t), defined as 

Rc (τ ) =
1
Tb

c(t)c(t −τ
to

to+Tb∫ )dt             (9) 
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             (10) 

 
Figure II.6 : PN sequence and its Autocorrelation 

Remarkably Rc (τ )  is also periodic with period 𝑇! = N𝑇!, N = 3, 
and shown below against the PN sequence. The following 
sequence in described in Table I was recreated using the 
transmitted symbols from the USRP boards. As can be observed 
from Figure II.6, the PN sequence has a time period 𝑇! ,of about 
9.38e-5 secs and 𝑇! of about 3.09e-5 secs. 

D. Channel Impulse Response 

1) Multipath in Wireless Transmission 
Consider a channel h(t) , to which we subject a PN sequence 
c(t) . The channel h(t)  brings about certain changes to c(t) . 
Ideally in a free space system where there exist just one line of 
sight component between the transmitter and receiver the 
response of the channel appears as described in Figure II.7:  
 

                c(t),Rc (τ ) c(t),Rc (τ )

TABLE I 
GENERATION OF PN SEQUENCE USING LFSR 

Time, n     Sn-1,x      Sn,x2     Output 
 

     Cn 
 

-1 0 1 - -1 
0 1 0 1 1 
1 1 1 0 -1 
2 0 1 1 -1 
3 1 0 1 1 
4 1 1 0 -1 
5 0 1 1 -1 
6 1 0 1 -1 
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As a result, there is no modification in the PN sequence. The 
above channel represents a channel in which the transmitted 
wave doesn’t suffer any reflection. Therefore, the autocorrelation 
at the input will be the same as the autocorrelation at the output. 
Now consider a channel in which the transmitted wave 
undergoes reflections. The impulse response is given by h(t)  and 
the channel appears as follows 

 

 
                                 
 

 
Where c' (t) = c(t)∗h(t) .              (11) 
Convolving c' (t)  by c' (−t)  we get 
c' (t)∗c' (−t) = (c(t)∗h(t))∗ (c(−t)∗h(−t))               (12) 
c' (t)∗c' (−t) = c(t)∗c(−t)∗h(t)∗h(−t)          (13) 
R

c'
(τ ) = Rc (τ )∗Rh (τ )               (14) 

Since, x(t)∗ x(−t) = Rh (τ )              (15) 

Therefore, R
c'
(τ ) = Rc (τ )∗h(τ )  for observational purposes. 

2) Delay Spread 
Delay spread equals the time delay between the arrival of the 
first received signal component (LOS or multipath) and the last 
received signal component associated with a single transmitted 
pulse. Another characteristic of the multipath channel is its time-
varying nature. This time variation arises because either the 
transmitter or the receiver is moving, and therefore the location 
of reflectors in the transmission path, which give rise to 
multipath, will change over time. [4]  

E. Maximal-Ratio Receiver Combining 
Maximal-Ratio-Receiver combing is one of the most complex 
combing techniques. The retrieval of bits is dependent on the 
successful estimation of the channel. The two channels 
established between the lone transmitter and the two receivers 
have the impulse responses h0  and h1. On being received by the 
receiver, the received signal needs to be compensated for the 
channel effect by multiplying it with the conjugates of the 
respective impulse responses. The received symbols are: 
r0 = h0S + n0                    (16)  
r1 = h1S + n1                    (17)

 Using the conjugates of the channel estimates we render the 
effects of the channel neutralized. It only manifests itself in the 

form of a scalar magnitude. The receiver combining effect can be 
summarized as follows.  
h0
*r0 = h

*
0 (h0S + n0 ) = h

*
0h0S + h

*
0n0 = h0

2 S + h*0n0      (18)

 h*1r1 = h
*
1(h1S + n1) = h

*
1h1S + h

*
1n1 = h1

2 S + h*1n1       (19) 
Thus, we obtain the original signal that was originally 
transmitted. However, it is only scaled by the magnitude of the 
impulse response. The noise too is affected by the channel 
estimates [4]. 
 

 
 

Figure II.4 MRRC Architecture. 

F. Transmit Diversity 
Transmit Diversity can be described by the arrangement shown 
in the Figure II.11 below. We send two independent symbols on 
two separate antennae. The two successive symbols on the same 
antennae are not independent of the frames sent before them. 
They are derived from the first two symbols sent previously. 
They are conjugates of the previous symbols. This brings us to 
the fascinating new concept as space-time encoding. The bits 
sent are S0 and S1. 
 

 
Figure II.10 Transmit Diversity Architecture. 

The received signals at time t and t+T the following. 
r0 = h 0S0 + h1S1                  (20)

 r1= −h0S1
* + h1S0

*                  (21) 
The received symbols are then combined with the channel 
estimates in the following manner. 
h0
*r0 + h1r1

*                    (22)
 h1

*r0 − h0r1
*                    (23) 

The result of that is as follows. 
h0
*(h 0S0 + h1S1 + n0 )+ h1(−h0S1

* + h1S0
* + n1)

*        (24) 
h1
*(h 0S0 + h1S1 + n0 )− h0 (−h0S1

* + h1S0
* + n1)

*        (25) 

h 0
2 S0 + h0

*h1S1 + h0
*n0 − h1h0

*S1 + h1
2 S0 + h1n1

*        (26) 

h1
*h 0S0 + h1

2 S1 + h1
*n0 + h 0

2 S1 − h0h1
*S0 − h0n11

*      (27) 
After combining, what remains are the scaled symbols. The 
scaling is nothing but the combined magnitude of the two 

 
 

 
 

  

Figure II.7 Channel model with only Line of sight. 

Figure II.8 Channel Impulse Response with multiple paths. 
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complex channels. The accompanying noise is colored by the 
channel estimates,which is similar to MRRC. 
( h0

2
+ h1

2 )S0 + h
*
0n0 + h1n1              (28) 

( h0
2
+ h1

2 )S1 + h
*
0n0 − h1n

*
1              (29) 

III. THE SETUP 
The test bed is comprised of two setups, one for transmission and 
the other for reception. We will consider each of them one by 
one. Figure III.1 describes the setup required. 
 
 

 
Figure III.1 The Laboratory Setup 

A. Transmitter  
The transmitting station consists of the host PC connected to one 
of the software-defined radios (SDRs) with the help of a gigabit 
Ethernet cable. The two SDRs are further connected to one 
another through a Multiple Input Multiple output (MIMO) 
connection. (Refer Figure III.1). The host PC on the transmitter 
side is responsible for constructing the data frame and space-time 
encoding. The data-frame is then distributed over two SDRs. The 
two SDRs are synchronized using the MIMO cable. The two 
transmitters establish two channels with impulse responses h0 
and h1 between the transmitting setup and receiving setup. 

B. Receiver 
The receiving station consists of a similar setup. However, just 
one SDR is connected to a host PC using the Ethernet cable. 
(Refer Figure 3). The host PC on the receiver side is responsible 
for channel estimation and retrieval of the symbols through 
combining. The channel estimator constantly spits out the 
estimated channel responses h0 

^ and h1
^
 used in combining. 

IV. EQUIPMENT 
The equipment used in this experiment are as follows. 

• Software Defined Radios – Universal software defined 
radio peripheral (USRP2) from Ettus Research. 

• Host PC – Running Windows XP. 
• Simulation Tools – Simulink Mathworks- 2011b. 

Software Defined Radios are devices that is capable of operating 
on a range of frequencies, with variable gains and programmable 
modulation scheme. They are composed of a mother board and a 
RF front-end. The specification of one such SDR is given a 
follows. 

A. USRP2 Specifications 
USRP2 devices have the following specifications 

• Mother Board 
• 2 ADC 100MS/s (14--‐bit) 1  
• 2 DAC 400MS/s (16--‐bit)  
• Gigabit Ethernet Interface 2  
• Larger FPGA2  
• On--‐board SRA 
• MIMO 

1 USRP2 is capable of processing signals up to 100 MHz wide.  
2  USRP2 has Gbps high--‐speed serial interface for expansion. 
 
• RF Daughterboard 

• RFX-900 
The RFX900 daughter board is capable of 
supporting a frequency range of 750MHz to 
1050MHz. 

1) USRP2 Operational Parameters 
The USRP2 has the following three programmable operational 
parameters. 

a) Frequency 
USRP2 is an RF front-end that does the up-conversion and 
down-conversion of the baseband signal produced on the host 
PC. The frequency for up-conversion is specified through the 
host PC and must lie between the specified frequency range of 
the respective RF daughter board. The daughterboard used for 
this experiment is RFX900. 

b) Gain 
The gain can be specified through the host PC. It is specified in 
dB and must be limited so as to not saturate the receivers. 
Saturating the receiver results in the observation of non-linear 
behavior on the receiving side. 

c) Decimation and Interpolation 
The decimation and interpolation factor must be maintained 
consistent on both sides. The decimation and interpolation dictate 
the sampling frequency of the SDR. Since, the upper limit of the 
frequency that can be processed is 100MHz. Hence we need to 
conserve the frequency of signal being fed to the SDRs. The 
frequency of the baseband signal is thus dependent on the data 
rate. Thus, we need to observe the following conservation As a 
result, the sampling frequency is given by the following 
equation. 

           (25) 
The sampling time is given by the reciprocal of the sampling 
frequency.  

           (26) 

d) Frame Length 
The USRP is capable of transmitting frames of data. The 
receiving end provides provision to accept a certain data length 
depending on the specified frame length. It can be set to any 
integer value. By default, it is set to 365,which is the length of 
the payload length of 1500 byte MTU of the Ethernet protocol 

symbol
s

×
samples
symbol

× I =100MHz

Fs =
samples

s
=
100MHz

I
=
1
Ts
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V. TRANSMITTER OPERATION 
The transmitter operation carried out on the host PC consist of 
the following  

• Data Frame Construction. 
• Alamouti Space Time Encoding. 

We choose an Interpolation factor of 512 hence our sample time 
is given by the following. 

        (27) 

We however use an actual sampling time of 4000 times the 
original sample time. As a result, it is 0.0819 seconds. The chip 
time of the PN sequences used is also the same. It is sufficiently 
large compared to the coherence time. Therefore, the channels 
varies slowly as compared to the symbol time. The carrier 
frequency is decided to by 868MHz and with transmitter gain of 
44dB. In Summary, the following device parameters are 
programmed on the USRP2 on the transmitter side as shown in 
Table II 

TABLE II 
TRANSMITTER OPERATIONAL PARAMETERS  

 
Parameter 

 
VALUE 

Frequency 868MHz 
Gain 44dB 

Interpolation Factor 512 

Sample Time 0.0819 seconds 
Chip Time 0.0819 seconds. 
Frequency Value 

Gain 868MHz 
  

A. Data Construction 
• We transmit a data stream of 1023 bits of sample time 

appended with 380 header bits.  
• The header bits consist of a PN sequence, which is padded 

with zeros to make an equivalent length of 380 bits. 
• The first frame consists of a PN sequence of order 6 and 

length 63. It is followed with a zero padding of 317 bits to 
conserve the header length of 380 bits. This header is then 
affixed in front of a data frame of size 1023 bits,which is the 
first symbol frame {S1}. 

• The second frame consists of a PN sequence of order 7 and 
length 127. A zero padding of length 253 bits to maintain the 
header length of 380 bits succeeds it. A data frame of length 
1023 is attached to this header as payload. It is the second 
symbol frame {S2}.  

• As portrayed in Figure V.1, the two payload frames are PN 
sequences of order 10 and length 1023 bits. A PN sequence 
is used to compare the received signal for performance 
measurements. The payload data frames are modulated using 
Differential Binary Phase Shift keying (DBPSK). 

• Thus, we have a frame of length 2806 bits to be processed 
by the Alamouti Space Time Encoder. 

 
Figure V.1 Data Construction. 

B. Alamouti’s Space Time Encoding. 
 

• The complete frame fed to the combiner unit on the 
transmitter side is bifurcated into its constituent 
individual frames for the purpose of encoding. 

• The next step in the encoding is to strip the individual 
frames off their headers. This is done so as to maintain 
integrity of the PN sequence. As it is needed, on the 
receiver side for channel estimation. 

• The payload data frames {S1} and {S2} are now split in 
space and need to be encoded in time to be distributed 
over their respective antenna. This is done by producing 
their conjugates and associating each bit and its 
successive conjugate bit with the respective antenna. 

• Now that the data has been encoded we need to 
interleave it with the respective headers. Each antenna 
carries both the PN sequence. As a result, we need to 
make the same organized complete frame that came in 
to the combiner. 

• Thus ,each antenna carries a frame of length 2806 bits 
after encoding. The composite time period required to 
deliver two frames is maintained on the two transmitting 
antennae. 

 

 
Figure V.2 Alamouti Encoding 

VI. RECEIVER OPERATION 
The receiver operations carried out on the host PC at the receiver 
are as follows. 

• Channel Estimation 
• Combining 

Ts =
I

100MHz
=

512
100MHz

= 0.512e− 5s
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The USRP on the transmitter side is programmed with the 
following parameters. We use the same sample time on the 
receiver side. We do use a factor ‘d’ for oversampling. It can 
assume any integer value and thus the sample time becomes Ts/d. 
This will make the receive frame to be d times in length. 
However, we use d as 1. It is absolutely imperative that the 
carrier frequency must be similar to that on the receiver side for 
successful down-conversion. The decimation factor must match 
the corresponding interpolation factor on the transmitter side. In 
summary, the USRP2 is programmed using the following device 
parameters shown in Table III 

 
TABLE III 

RECEIVER OPERATIONAL PARAMETERS  
 

Parameter 
 

VALUE 
Frequency 868MHz 

Gain 44dB 
Decimation Factor 512 

Sample Time 0.0819 seconds 
Frame Length 2806 

  

A. Channel Estimation 
The process of channel estimation involves correlating the 
received signal with the PN sequences used in the header. We 
then observe the peaks that result out of correlation and extract 
the complex channel gains. The above process is carried out 
using the following steps. 
• The correlation is performed using matched filters tuned 

to the PN sequences used in the header frames. The 
incoming signal is sent to two branches, one have a 
matched filter tuned to the one with order 6 and the other 
tuned to the matched filter with the order 7. The matched 
filters are constructed employing digital filters. The 
coefficients of the matched filters are selected such that it 
is a flipped version of the PN sequence. 

• After passing the absolute value of the signal through the 
match filter, we observe peaks on the other side. The 
peaks coincide with the respective PN sequence 
placement.  

• The matched filter tuned to the PN sequence of order 6 
gives peaks due to the PN sequence of order 6. 

• The matched filter tuned to the PN sequence of order 7 
gives peaks due to the PN sequence of order 7. 

• The peaks thus obtained are then normalized and 
subjected to a threshold value. 

• If they pass the threshold, they are then zoomed into  
through oversampling. We oversample the peaks and find 
out the value where they are roughly constant and then 
extract the corresponding complex values. 

• These complex channel values are then fed to the 
Alamouti combiner. 

 
Figure VI.1 Channel Estimation 

B. Combining 
Once we are furnished with the channel estimates, we need to put 
the two frames together. While the channel estimator finds the 
channel parameters on one branch of the receiver operations, we 
condition the received frames to be further processed by the 
combiner. 

• Similar to the encoding process, the incoming signal is 
bifurcated into two frames and we strip each frame of its 
header. Thus, the incoming signal of length 2806 is split 
into 2 streams of 1403 bit length.  

• Subsequently, we unwrap the 380-bit length header and 
the frames are thus ready for combining. 

• The payload frames are combined with the channels 
estimates in the following fashion. 

• After the time period of two frames has elapsed , we are 
able to construct the two original frames that were sent. 

 

 
 

Figure VI.2 Alamouti Combining 

VII. PERFORMANCE AND RESULTS 

A. PN Correlation. 
We were able to successfully estimate the channel using the 
proposed scheme. Figure VII.1 and FigureVII.2 give the 
correlated output of the channel estimator. 
Figure VII. 1 bears just the alternate bursts of PN sequences.  
In this case, we only send the two PN sequences, the rest of the 
data is zero. The top window shows the matched filter output of 
the correlator that is tuned to the PN sequence of length 63 .The 
second window is the received signal. The third window is the 
filter output of the matched filter of the correlator that is tuned to 
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the PN sequence for length 127.As can be observed, we see 
correlation at alternate bursts. It can be easily interpreted that PN 
sequence of length 63 is followed by a PN sequence of length 
127 and this combination is repeated. 

 
Figure VII.1 Autocorrelation of just PN sequences 

Figure VII.2 is the result when we send the headers followed by 
payload data of length 1023 bits. We can see the bursts received 
and separate the zero padding. The first window is the output of 
the matched filter tuned to the PN sequence of order 6 –length 63 
and the second window is just the burst being received. The third 
window is the output of the matched filter tuned to the PN 
sequence of order 7- length 127. 
 

 
Figure VII.2 Autocorrelation of complete frame 

B. Demodulation. 
The channel coefficients thus obtained are used to combine the 
frames together and given to the DBPSK modulator. The output 
of the DBPSK modulator is explained in Figure VII.3. As can be 
evidently seen, we are able to gain a sense of DBPSK from 
Figure VII.3. 

 
Figure VII.4 Demodulation of the payload 

VIII. FUTURE WORK 

A. Frame Synchronisation 
Presently the receiver has no sense of timing. We need to 
incorporate that to achieve the complete results. Since there are 3 
remote units involved, each of them have their respective local 
oscillators. This manifests itself in the relative drift between the 
clocks and hence it may so happen that we process a frame 
midway as opposed to the beginning. 
We need to device a technique for choosing data bits after the 
correlation peaks and open a widow for streaming for a length of 
(1023 + the padded zeroes).	
  This will ensure that we combine the 
encoded symbols without any offset in the received streamed 
data 
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Heuristically Driven Task Agglomeration in Limited Resource
Partially-Reconfigurable Systems

David Austin1, B. Earl Wells1,
1Dept. of Electrical and Computer Engineering, Univ. of Alabama in Huntsville, Huntsville, Alabama, USA

Abstract— This paper introduces a method for enhancing
run time performance of a dynamic partially reconfigurable
system. The technique is applied to fully deterministic task
systems that are large in comparison to the resources of the
target reconfigurable device. Performance improvements are
realized by increasing the granularity of the task system at
compile time in a manner that reduces the number of context
switches that are required during run-time, thereby decreas-
ing the system execution time. Two algorithms are proposed
to implement this technique. Both methods are implemented
using simulation, and their performance is compared to a
sophisticated heuristic scheduler, which reveals a significant
improvement in performance.

Keywords: reconfigurable systems, scheduling, heuristic algo-
rithms

1. Introduction
Partially dynamically reconfigurable systems make use

of reconfigurable hardware, such as Field-Programmable
Gate Arrays (FPGAs), that are capable of being modified
while executing. These systems are attractive since they
combine the flexibility of software with the performance
of hardware. With careful orchestration, modern systems
are reconfigurable at run-time allowing an application to
be mapped into a reconfigurable system that is physically
smaller than what would normally be necessary to implement
the application. A large application can fit into a physically
smaller device because parts of the application that are not
active can be removed from the device so that other parts of
the application can make use of the resources of the device,
allowing a type of spatial multiplexing within the device.

The lifecycle of a reconfigurable system can be subdivided
into two phases: compile time, and run-time. During compile
time, bitstreams are generated, initial configurations are
defined and loaded, and static scheduling is performed. In
run-time, the generated tasks are executed and reconfigured.
The time necessary to generate a new bitstream for a
reconfigurable partition can be on the order of minutes. This
requires that the synthesis operation be performed at compile
time with the system being compiled into separate modular
bitstreams for each task.

In order to map the application onto a physically smaller
device, it must be divided into discrete functional units, or

tasks. However, the fragmentation of the overall application
creates a sub-optimal condition since the area allocated to
the functional block must be large enough to implement
the largest possible function it will ever contain. If the
application is partitioned such that there is one large task
and many smaller tasks, the spacial efficiency is poor since
the extra area available in the hardware goes unused by the
majority of the tasks.

Another drawback of this approach is that because of the
way reprogramming bitstreams are generated, each bitstream
is specifically tied to a given location within the device [1].
To be able to implement all tasks in every reconfigurable
region, each region must have an available task implemen-
tation that is specifically mapped to that location in the
device. This can cause a large number of bitstreams to be
generated for the entire application. There has been some
work [2] to allow bitstreams to be placed at generic locations
in a FPGA, but even then tasks cannot be arbitrarily placed
in any functional block. This further restricts the ability to
dynamically reprogram the device. Reducing the number of
tasks, the number of relocatable regions, or both will reduce
the number of combinations required to be generated.

In order to overcome these challenges, this paper presents
a method to combine the functional blocks to make more
efficient use of the space occupied within a reconfigurable
device. This technique is suitable to be run at compile time
in order to help improve the performance of the task system.
Further, by combining tasks we reduce the number of tasks,
which helps to reduce the number of partial bitstreams that
are required to implement it in reconfigurable hardware.

2. Background
Scheduling of reconfigurable systems is a very active area

of research, and has been mentioned many times [3], [4], [5].
Task clustering has been previously suggested as a means
to improve performance of various scheduling techniques.
Clustering of software tasks on multiprocessor systems has
been considered for some years [6], [7]. Clustering for
reconfigurable systems has only been proposed in a few
recent papers. In [8], the authors describe a methodology
to map an application onto a Network-on-Chip (NoC) to
improve communication performance. This is accomplished
by combining high communication cost tasks into small
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System-on-Chip (SoC) like clusters that then connect to
a larger NoC. This technique is primarily concerned with
optimizing the inter-task communication by minimizing the
communication distance between regularly communicating
tasks. The authors of [9] develop a very capable algorithm
for clustering tasks as part of a codesign process. However,
their approach relies on being able to effectively profile the
system’s operation. While they do apply this approach to a
heterogeneous reconfigurable architecture, they do not apply
it to any dynamically reconfigurable systems.

A dynamically reconfigurable clustering technique is pro-
posed in [10]. This approach is similar to the technique that
we present in this paper. However, the authors assume that
the reconfigurable architecture is large enough to contain the
entire application. In their approach, they use a tiered NoC
Approach. Tasks are grouped into clusters interconnected
with a network switch, and then assigned to a reconfigurable
slot, which is connected to the other slots via interslot
network switches. This system allows dynamic bitstream
generation, and is primarily concerned with improving area
utilization, and adding capabilities at run time.

None of the previous research we examined considers the
limited resource case where the reconfigurable system needs
to be shared to implement the entire application. Consistent
with this approach, the primary method considered for
improving the runtime is centered on improving the intertask
communication performance. The contributions of this paper
are a heuristic based task combination algorithm that is
suitable for improving the runtime of a reconfigurable system
in a limited resource, nonpreemptive, partially reconfigurable
hardware environment.

2.1 Definitions
A task is a discrete set of operations executed in order that

transforms an input into an output. Tasks generally have data
dependencies as well as control dependencies. If a task is
data dependent on another task, the dependent task is said
to be a data dependency sink task, whereas the other task is
said to be a data dependency source task.

Tasks are described by several metrics which include: the
task area, which is the amount of reconfigurable resources
needed to implement the task; the execution time of the task;
and the time required to reconfigure (context switch) the
device for the task. It is assumed that the context switching
time is comparatively long relative to the execution time,
which imposes a significant penalty on context switching.
Given this long switching time we do not consider the pre-
emptive case where a task is interrupted before it completes
execution.

Each task also has a type; the task’s type represents the
specific set of actions the task performs. Tasks with the same
type perform the same operations, however, the data that the
task operates on is expected to differ between instantiations.
As an example, in a signal processing application a type may

represent an operation such as a Fourier Transform that is
run multiple times during the course of the application.

An application is an arrangement of tasks such that the
data and control dependencies are met in a meaningful way
to accomplish a specific purpose. Therefore, an application
can be modeled as a directed acyclic graph. The graph
(application) G can be visualized as a tuple, G = (T,Ed),
where T is the set of tasks, Ed is the set of directed edges
that represent data flow, [11].

A dynamically configurable platform represents the com-
plete hardware execution environment for the application.
The platform consists of multiple Processing Elements
(PEs) used to execute individual tasks. In general, there
will be both software PEs (traditional microprocessors) and
hardware PEs (FPGAs) in a reconfigurable system. Only
hardware PEs are considered in this paper.

Since the PEs are partially dynamically reconfigurable,
each PE is comprised of one or more partially reconfigurable
partitions, which are the minimum reconfigurable unit of the
PE. Generally, these partitions are heterogeneous in size,
however, for the purposes of this paper it is assumed that
the partitions are homogeneous in size.

Each PE partition has a limited number of reconfigurable
resources available to implement tasks. These are classified
into two principal categories: routing resources and pro-
cessing resources. Both types of resources are consumed
by implementing a task; it is assumed that the processing
resources are the dominating constraint.

2.2 Practical Partially Reconfigurable Archi-
tectures

Current FPGAs support a limited partial reconfiguration;
the partitions can contain an arbitrary number of columns,
but have fixed row division boundaries. Fig. 1 shows an
example PE that has a single fixed row division. In this
example, a partition can be any number of columns wide,
but must either be less than half the height of the device, or
occupy the entire height of the device. Of course, it follows
that the size of the largest task dictates the minimum size of
a PE partition.

For partial dynamic reconfiguration to work, the device
must be divided into static and dynamically reconfigurable
regions. The static areas are used to implement such func-
tions as reconfiguration control logic and I/O, both between
the various reconfigurable regions and outside the PE. In
Fig.1, the static regions are shown as the dark shaded
areas, while the lighter areas represent the dynamically
reconfigurable areas.

Another practical restriction on the capabilities of existing
hardware is the number of simultaneous reconfigurations a
device may support. Typical hardware limits the number of
such reconfigurations because there are a limited number of
reconfiguration controllers. In this paper, we do not restrict
the number of simultaneous reconfigurations.

30 Int'l Conf. Reconfigurable Systems and Algorithms |  ERSA'13  |



PARTITION 
1

UPPER

PARTITION 
2 

UPPER

PARTITION 
3 

UPPER

PARTITION 
4 

UPPER

PARTITION 
1

LOWER

PARTITION 
2

LOWER

PARTITION 
3

LOWER

PARTITION 
4

LOWER

Figure 1: Example Processing Element

3. Theory of Operation
It is envisioned that the technique described in this paper

is capable of producing schedules that are significantly
better (smaller makespan) than schedules of unmodified
task systems. Further, the approach should not decrease
the performance of any task system during run-time. This
technique does impose a level of computational overhead,
but it is only incurred once for each task system, at compile
time, which is not generally time critical.

To justify the computational overhead of the clustering
algorithm, graphs should be selected to maximize the effec-
tiveness of clustering. Clustering should be most effective on
graphs that experience a significant amount of reconfigura-
tion. Likely the optimum value is a function of the number
of PEs, and the average size of tasks relative to the area
available in a PE partition.

3.1 Formalization of Rules
We make the following observations and assumptions

relative to applications, tasks, and PEs:
1) The number of PEs and partitions is set before run-

time.
2) The application is large relative to the size of the

partition, such that the entire application cannot be
realized in the available reconfigurable resources at
one time.

3) The time to reconfigure a partition is a function of the
size of the partition.

4) Task types represent a specific sequence of operations.
Tasks with the same type id differ only in the data
processed.

5) Subsequent executions of tasks with the same type id
within the same PE do not require reconfiguration.

6) Each PE partition can have exactly one active task at
any given time.

7) Even though only one task is active at a time more
than one task can be present within a partition. If so,
we declare this to be a task cluster.

8) At compile time, tasks can be divided into groups such
that the resultant grouping will fit into at least 1 PE

partition.
9) Subsequent execution of different tasks within the

same cluster doesn’t require a reconfiguration.
10) Resources within a cluster are only consumed once

per instance.
Given the above, we conclude that it should be possible

to combine 2 or more individual tasks from the task graph
into a complex clustered task that performs the functions
of the individual constituent tasks. Further, we infer that
doing so should improve the run-time of the system because
the number of system reconfigurations has been reduced.
We also note that the act of clustering tasks is logically
equivalent to introducing a new task type. The clustered
task’s type serves to identify which of the constituent tasks
are included in the cluster.

It should be noted that when tasks are clustered they do
not lose their identities. Only the type is altered to match
the other tasks in the same cluster. When a PE must be
reconfigured to bring in a new task, the tasks that are likely
to be needed next are many times brought into that same
partition instead of padding the configuration bitstream.

4. Example Task System
We now consider an illustrative example to demonstrate

the proposed concept. Consider the application and recon-
figurable platform shown in Fig. 2. The task system consists
of 3 tasks executing on a single PE with 2 reconfigurable
regions. Each task is a different type, which is represented
by the varying size of each task in the figure. Assume that
Task 1 and Task 2 are independent of each other, and that
Task 3 is data dependent on the output of Task 2.

Fig. 2a represents an initial task allocation to the available
hardware. Since Task 1 and Task 2 are independent, they
may begin execution once the hardware is configured and
ready. Fig. 2b shows how this application would execute.
Both PE partitions begin by reconfiguring for their first task.
Once reconfigured, the tasks begin execution. Since Task 1
completes before Task 2, partition 1 can begin reconfiguring
to execute Task 3. Task 3 can begin execution as soon as
both the reconfiguration is complete and Task 2 completes
execution. Since Task 2 completes before the reconfiguration
is done for Task 3, Task 3 may begin execution as soon as
reconfiguration is complete.

We note from the example that although Task 1 occupies
only a small portion of reconfigurable region 1, the entire
region is consumed by this task, as shown in Fig. 2a. This
mapping represents poor spatial efficiency because recon-
figurable region 1 has so much unused space. Alternatively
there is the approach presented in Fig. 3. In this scenario,
Task 1 and Task 3 have been combined into a single task
cluster, which now represents a new fourth task type. Fig. 3b
depicts the effect of clustering on the execution of this
example task system. As before, Task 1 and Task 2 may
begin execution immediately following the completion of the
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Figure 3: Example Task System After Clustering (a) Physical
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initial reconfiguration, but because Tasks 1 and 3 have been
combined into a new task there is no need to reconfigure
partition 1 after Task 1 completes execution. However, since
Task 3 is dependent on the completion of Task 2, it may not
begin to execute until Task 2 has completed. Therefore, an
idle period has been introduced before the start of Task 3 to
delay its execution until Task 2 has completed.

We see from this example that although the idle time
has been introduced, it is for a shorter period than the
reconfiguration delay that would have normally occurred.
Further, this idle period can be of varying length while the
reconfiguration time must always be of the same duration,
since a fixed size partition is always being reconfigured.

5. Algorithm Development
The selection of optimal clusters is a topic of consid-

eration. In this paper we present two algorithms that we
have developed to generate candidate task clusters. The first
uses a simulated annealing heuristic to develop and weigh
clusters, while the second uses a straightforward list based
methodology to develop a proposed task clustering.

Both clustering algorithms makes use of a sophisticated
heuristic based static scheduler to determine an initial sched-
ule. This scheduler has been used in previous research to
create good base-line schedules to compare in terms of
quality to those produced by less knowledgeable dynamic
methodologies [11]. This scheduler utilizes multi-iteration
lifecycle heuristics of Particle Swarm, Simulated Annealing,
and genetic algorithms to produce its results. In this work
we utilize the genetic algorithm methodology exclusively
because its parameters were set in a manner that produced
significantly better results than the other two methods. The
genetic algorithm utilizes a classical multigenerational GA
that merges PE assignment and the partial task ordering
into a single chromosome. The standard genetic operators
of crossover and mutation are performed along with a
tournament style selection algorithm. The parameters used in
[11] of population size, crossover probability, and mutation
probability were identical to those used in this work.

It should be noted that the scheduler has two separate
components. One component produces the task ordering
which specifies the PE region within the reconfigurable logic
that task would execute and the relative order that the task
would execute. It does not specify the actual timing though.
The second component produces the detailed schedule which
includes the task execution time, the idle time, and the
task reconfiguration time. It does this in a manner that
adheres to the ordering information produced by the ordering
component. The fitness function was designed in a manner
that minimizes the makespan time. It should be noted that
having the two component architecture allows the static
scheduler to produce suggested clusters in at least two ways.
One by changing the typing information for the given task
graph before the scheduling method was invoked and the
second method was to modify the task ordering routine to
allow tasks to be combined together into new types before
the schedule was created.

These are the two approaches described in this paper. Both
approaches are based upon the combination of tasks into the
same task type only if they fit within the same cluster. To
do this, the clustering routine first adjusts the type of both
tasks to a new value that differs from any other assigned task
type. Then, all graph tasks are searched to find any tasks
that correspond to either of the base types of the clustered
tasks. These are then updated to also correspond to the newly
assigned cluster type. For example, if base types a and b are
selected for clustering, all other instances of base type a and
b are also converted to the new type. This ensures that if
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a task with a different task ID but same base type occurs
either immediately before or after task a or b, the PE will not
have to undergo a reconfiguration if transitioning from the
clustered task to one of its constituent tasks or vice versa.

5.1 Simulated Annealing Technique
The first combination algorithm uses a Simulated Anneal-

ing heuristic to control the task clustering process. Fig. 4
depicts the flow of this combination algorithm. The algo-
rithm begins with a list of all of the tasks sorted numerically
according to their task ID. Then the algorithm selects, at
random, a task ID from the list. Starting with the next task
ID, each subsequent task is evaluated to determine if the
linear combination of the two tasks area will exceed the
available resources in the PE partition. If the tasks will fit
into the partition, the clustering logic described above is
executed.

The algorithm then evaluates the next task ID in the list
to see if it can also be added to the cluster. If so, the task
is added using the same clustering logic, and advances to
the next task. It proceeds in this manner until it reaches the
numerically last task ID on the list.

Once the clustering phase is complete, the updated task
system is passed back to the static scheduler for evaluation.
The result of the static scheduler is compared to the schedule
length of the previous task system. If the new system’s
schedule length is shorter than the previous, it is accepted,
and the algorithm proceeds to the next iteration by randomly
selecting a new start task ID. In the case that the new
schedule is not improved, the new system may be ac-
cepted probabilistically. The probability of accepting a worse
schedule decreases exponentially with each iteration of the
Simulated Annealing algorithm. The schedule component is
then rerun assuming this new typing. It will produce a new
value that will represent the fitness which will feed back into
the Simulated Annealing Algorithm.

5.2 Fixed Order Technique
The second clustering technique uses a simple greedy

list based clustering algorithm, as shown in Fig. 5. This
clustering algorithm makes use of the static scheduler’s
ordering and PE allocation phase. Once the static scheduler
has determined a task to PE mapping, the clustering algo-
rithm starts with the first task allocated to the first PE. This
algorithm examines the area occupied in the PE partition by
the task. It then examines the next task to see if both tasks
will fit into the partition. If so, the two tasks are combined
using the same type conversion logic as the SA approach.
The algorithm then proceeds through the remaining tasks
assigned to the PE, adding as many tasks to the cluster as
possible. The clustering algorithm then proceeds to the tasks
assigned to the next PE and tests these tasks for clustering
in the same fashion, and so on for the remaining PEs.
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5.3 Analysis
The execution time of a given task graph can be deter-

mined by using (1), where n is the number of tasks allocated
to a given PE, TEi is the Execution time of the ith task of
the PE, nR is the number of reconfigurations undergone on
that PE, TR is the fixed reconfiguration time, TI is the total
idle time for the given PE, and the maximum is taken over
the PE partitions.

maxPE

((
n∑

i=0

TEi

)
+ nRTR + TI

)
(1)

We see from this that there are three components to the
run-time of the application. The individual task execution
times are spent doing useful computational work, while the
rest of the time is in either idle or reconfiguration states.
If we impose the restriction that the tasks must have the
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Table 1: Simulation Cases
Simulation Case Partition Size Algorithm

1 Small Simulated Annealing
2 Medium Simulated Annealing
3 Large Simulated Annealing
4 Small Fixed Order
5 Medium Fixed Order
6 Large Fixed Order

same PE allocation and ordering before and after clustering,
a speedup will be realized if the increased idle time does
not exceed the decreased reconfiguration time.

6. Results
In order to compare the effects of the clustering al-

gorithms, a set of computer simulations were run to de-
termine the effect of the proposed approach. Performance
is established by providing the simulation a number of
task graphs representing various applications. The average
results are compared against the best available nonclustered
schedule, which is provided by the static scheduler before
the clustering algorithms are applied.

Task graphs are synthetically generated using Task Graph
for Free [12]. To maintain compatibility with earlier work
[11], the input task sets are identical to those used previously.
A total of 6 simulation cases were run, as shown in Table 1.
Each simulation case consists of 40 task graphs with various
task and dependency characteristics. The partition size was
considered at 3 levels for each clustering algorithm under
consideration. The levels were chosen such that the average
task size represents 5%, 15%, and 30% of the total partition
size. These correspond to the large, medium and small
partition cases respectively.

Task characteristics were also synthetically gener-
ated using TGFF. Areas are uniformly distributed on
[1, 000, 5, 000), while execution times are uniformly dis-
tributed on [2, 000, 4, 000). The simulated reconfigurable
platform has the following characteristics:

• A single PE with 3 reconfigurable partitions
• Homogeneous partition sizes
• A fixed reconfiguration time, resulting from the homo-

geneous partition size
• Each reconfigurable partition supports independent si-

multaneous reconfiguration

7. Discussion and Conclusion
It can be seen from Fig. 6 that this approach does in fact

improve the overall task system execution time as measured
by the speedup, where the speedup is taken to be the ratio
of the clustered graph’s execution time to the best known
non-clustered execution time (the heuristic static scheduler).

Since the execution times of the individual tasks have
not been altered by this approach, the speedup can be
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attributed to improved execution efficiency, i.e. less time is
spent in non-productive states, which can be seen in Fig. 7.
The efficiency is calculated as the ratio of task execution
time to total run time. From (1) we see that there are
two components that contribute to the nonproductive time,
reconfiguration time and idle time. By further analyzing the
two unproductive states as shown in Fig. 8 and Fig. 9,
we see, as expected, a decrease in the amount of time
reconfiguring the device, but an increase in the amount of
time that the device is idle due to waiting on precedence
constraints that have not been met.

An intuitive result is that decreasing the number of task
types below the number of PE partitions does not improve
performance significantly. When the number of partitions is
equal to the number of task types there is a one to one
correspondence between types and partitions. Each partition
can implement one task type, and there will be no need to
reconfigure them. Although there may still be room in the
partition to implement additional tasks, there is no benefit to
doing so, since no further reconfigurations will be prevented.

From comparing results between the two proposed algo-
rithms, it can be seen that the heuristic based algorithm
outperforms on average the simple fixed order approach.
The Simulated Annealing technique benefits from the fact
that that every time a proposed task clustering is generated,
the static heuristic scheduler is run again. This is necessary
to determine the value of the objective function so the
simulated annealing heuristic can determine if the clustering
has improved the schedule length. However, it also allows
the task ordering to be modified, potentially determining an
order with less idle time.

We conclude that applying the clustering approach to the
limited resource problem is an effective means to improve
run-time. Both algorithms presented showed an appreciable
speedup. Although the fixed order approach is outperformed
by the heuristic approach, the fixed order algorithm benefits
from simplicity, resulting in a quicker run-time, especially
on large task graphs. Further, in no case did either of the
clustering algorithms produce a clustered schedule that ex-
ceeded the initial schedule generated by the static scheduler.
Therefore, we have met our goal of producing a scheduler
that only incurs a compile time penalty and doesn’t degrade
the run-time performance

8. Further Work
Although the results reported in this paper are encour-

aging, they represent an initial data set that validates an
intuitive concept. These results can be extended in a number
of ways. Principally, we would like to evaluate the effec-
tiveness using task graph models extracted from real world
applications.

It is expected that some amount of additional resources
are used by the resulting clustered task as opposed to the
two base tasks. Generally, this overhead would arise from

the inference of additional registers to be able to pass data
in and out of the individual tasks. Likely this overhead
is a small, fixed amount of the combined task resources.
Some investigation should be done to determine suitable
parameters to characterize this overhead.

Overhead was not considered as part of the simulation,
since no task cluster was found to occupy the entirety
of a partition following a combination event. Rather than
complicate the task combination logic, the overhead can be
accounted for by reducing the size of the partition when the
tasks are selected for clustering. A further result of tracking
overhead in this way would result in tracking different
partition sizes for different task clusters, which would be an
important advance to considering a reconfigurable platform
with heterogeneous PE partitions.

The general task system also includes nondeterministic
control dependent tasks along with the deterministic de-
pendencies considered here. For computational simplicity,
these control tasks were not considered by this paper. An
important improvement to this technique would be to test the
effectiveness of the clustering approach against a task system
with control dependencies as well as data dependencies.
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Abstract— Conventional full-custom reconfigurable logic
device design and implementation are time consuming pro-
cesses. In this research, we propose a design framework in
order to improve FPGA IP core design efficiency by link
academic FPGA design flow and commercial VLSI CADs
based on the synthesizable method. A novel FPGA routing
tool is developed in this framework, namely the EasyRouter.
By using simple templates, EasyRouter can automatically
generate the HDL codes and the configuration bitstream for
an FPGA. With this design flow, accurate physical infor-
mation can be reported when a new FPGA architecture is
evaluated with reliable commercial VLSI CADs. For FPGA
architectures that cannot be easily implemented with present
VLSI process, EasyRouter provides a fast performance anal-
ysis flow, which improved delay accuracy 5.1 times than VPR
on average.

1. Introduction
Embedded systems play an increasingly important part

in electronic products. In particular, system-on-a-chip (SoC)
technology has developed rapidly. A variety of functions
can be implemented by embedding various hard intellectual
property (IP) cores in a single silicon die. However, a new
product must be fabricated with an entirely new mask.
Even if only small changes are made to a product to
improve functionality, a huge cost is incurred. The embedded
field-programmable gate array (FPGA) IPs can be used to
solve this problem because of their programmability after
manufacture.

There are two FPGA IP implement methods. The full-
custom FPGA IP is designed in time-consuming manually
process. On the other hand, the synthesizable FPGA IP is de-
signed with automatic application specified integrated circuit
(ASIC) flow. In traditional designs, the synthesizable method
had much worse area, delay and power performances than
the full-custom. However, the performance gaps had been
improved significantly in researches such as [1]. Therefore,
synthesizable design method is suitable for design efficiency
sensitive customizable FPGA IP implementation.

Xilinx and Altera have released their programmable SoC
products [2] [3]. A powerful ARM-based processor and
universal FPGA fabrics are integrated into one chip to reduce
power, cost, and board size. However, the FPGA IP cores
from these companies are not customizable and not provided

to other SoC designers. Menta is providing domain-specific
synthesizable and hard macro eFPGA core IPs [4]. However,
Menta’s CAD tools are only designed for their commercial
eFPGA IPs. Therefore, CAD tools and a design flow for
FPGA IP research and design are necessary.

The contribution of this paper is to propose an FPGA
design framework that specifically improves the design effi-
ciency of FPGA IP for SoC. We have developed a simple and
automatic FPGA IP design framework that combines FPGA
design tools with commercial very-large-scale integration
(VLSI) CADs. The FPGA IP that produced by the proposed
framework can be directly adopted in SoC design flow as an
IP core.

The remainder of this paper is organized as follows.
Section 2 introduces related FPGA design flows and issues
of traditional design flows. The novel router tool EasyRouter
is introduced in Section 3. Section 4 describes the proposed
FPGA IP design flow. In Section 5, we first introduce
evaluation conditions. Then we compare the performance
of EasyRouter with the conventional VPR and then discuss
evaluation results for the proposed flow. Finally we show
the simplicity and expandability of EasyRouter with a three-
dimensional (3D) FPGA case study. Conclusions are given
in Section 6.

2. Related Works
2.1 FPGA design CAD tools

Xilinx ISE and Altera Quartus are commercial CAD
tools used to implement circuits on their FPGAs. On the
other hand, open source design flows like Verilog-to-Routing
(VTR) project [5] are used for academic FPGA researches.
The VTR project consists of the placement and routing tool
Versatile Packing, Placement and Routing (VPR) [11], the
synthesis tool ODIN II [6], and technology mapping tool
ABC [7]. VPR [11] is the CAD tool that directly related to
the FPGA physical architecture.

Because VPR cannot be used for unsupported architec-
tures, many other FPGA design frameworks have been devel-
oped for various devices. Grant et al. [8] employed a typical
FPGA design flow together with a new placing, routing, and
scheduling tool for their coarse-grained architecture. Ababei
et al. [9] and Miyamoto et al. [10] proposed design flows
for a 3D-FPGA. The authors of [9] developed their TPR on
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the basis of VPR 4.0, while those of [10] used a modified
VPR for 3D-FPGA.

2.2 Issues of traditional design flows
We now discuss two issues of VPR since it is directly

related to the physical architecture of the FPGA.
First, the architecture-description-file based architecture

definition method provides flexibility for various logic block
structures. However, the flexibility of routing structure is still
limited to the supported island style architectures. For much
of our research, such as on a 3D-FPGA, we have to modify
the VPR to implement various routing architectures. It
consumes considerable development time to master, modify,
and debug the C-coded VPR.

Second, the VPR is integrated with a simple delay model
to facilitate timing-driven routing and post-routing timing
analysis. The final timing report consists of the logic and
routing delays, which are calculated in different ways.
Therefore, although the relative values of VPR delay results
can fairly evaluate FPGA architectures, the absolute value
has low accuracy for synthesizable FPGA IP design, which
requires an accurate entire chip static timing analysis (STA)
with a standard cell library. Further, VPR does not provide
any function that links FPGA design flow with commercial
VLSI CADs.

3. EasyRouter
In this section, we introduce the proposed routing tool

EasyRouter. Based on the similar routing and reporting
functions of VPR, EasyRouter has some improved features.
First, because we developed EasyRouter in C# language with
full object-oriented programming coding style, the amount
of code and complexity was reduced, making it easier
to understand and modify. Owing to the benefits of the
open-source Mono runtime environment, EasyRouter can be
executed in most operating systems. Second, we developed
a script-based architecture definition mechanism by consid-
ering the code file itself to be the architecture definition
file. This mechanism offers users maximum flexibility in
implementing new architectures. Finally, we developed HDL
codes and bitstream generation functions to facilitate the
evaluation of the designed FPGA using commercial VLSI
CADs. The block diagram of EasyRouter is shown in Fig.
1. We now describe each of the blocks in detail.

3.1 RRGraph building block
The RRGraph describes the target FPGA architecture with

routing resources (nodes) and their connection relationships
[11]. We describe the RRGraph with a graph data structure,
which is independent with any FPGA architecture. Each
routing resource in the RRGraph is called an RRNode. The
RRGraph is a collection of all necessary RRNodes.

As Fig. 1 shows, the RRGraph building block of Easy-
Router reads the C# coded FPGA architecture script file

Fig. 1: EasyRouter block diagram.

to generate an RRGraph. The actual architectural depen-
dent codes such as architecture and physical parameters
setup, netlist and placement files import, and the RRGraph
building are implemented in the RRGraph generation script
files. The architecture and physical parameters setup block
sets parameters of one FPGA architecture like the VPR
architecture file does. New FPGA architecture can be im-
plemented by modifying the RRGraph building codes of
the script. The architecture script only returns architectural
independent RRGraph to the routing block. The dynamic
script support is implemented with the Dynamic Language
Runtime (DLR) of the .net framework. With this feature, the
FPGA architecture to be evaluated by EasyRouter can be
changed by switching the RRGraph generation script input
file. Therefore, new FPGA architecture can be implemented
easily using the EasyRouter. And the architecture script is
generic to implement various FPGA architectures. When
evaluating many architectures, it is easy to switch between
them without recompiling the main EasyRouter program.

3.2 Routing block
EasyRouter implements conventional breadth-first and

timing-driven pathfinder routing algorithms [11]. Note that
the timing-driven algorithm can improve delay of routing
result when implementing customer circuits, however, it is
not employed during the FPGA scale exploration phase
because accurate physical delay information is unknown
before the architecture implementation.

3.3 HDL codes and bitstream generation block
We developed EasyRouter using FPGA HDL codes and

the user circuit configuration bitstream generation functions
to link the academic FPGA design flow with the commercial
VLSI CAD tools, since the routing algorithm stores a large
amount of architecture information that can be used to
generate HDL codes and bitstreams. As Fig. 3 shows, when
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EasyRouter operates in the evaluation mode, the channel
width (CW) and array size, which are input parameters,
are fixed. Using the netlist file, placement result file, HDL
codes templates, and architecture parameters, EasyRouter
can generate all the FPGA HDL codes and an application
bitstream.

First, we introduce HDL code generation. The logic part
contains three levels of codes: the logic cell, basic logic
element (BLE), and logic cluster (with a local connection
block). For most FPGA architectures, these structures are
homogeneous for all reconfigurable tiles. Therefore, the logic
components of HDL codes can easily be prepared manually.
The routing components of HDL codes are generated auto-
matically with simple templates. The template consists of the
structure of the switch box (SB) , connection block (CB), and
I/O block (IOB). The final routing HDL codes are generated
according to the channel width and other routing parameters
such as Fc_in, Fc_out and Fs [11]. Routing resources and
their connections can be generated automatically according
to the information maintained in the RRGraph of the router.

Next, we discuss bitstream generation. The logic element
bitstream consists of the logic cell lookup table (LUT) and
the configuration memory bit of the output multiplexer. The
output multiplexer selects the output of the BLE directly
from the LUT or through a register [11]. The logic element
bitstream is generated according to the netlist after technol-
ogy mapping. The routing bitstream contains configuration
memory values of the SB, CB, local connection block
(LCB), and IOB, which are generated according to the actual
routing results.

3.4 Report generation block
The report generation block exports routed circuit infor-

mation on the target device as the final execution stage of
EasyRouter. The device array size, minimum channel width,
the quantity of all routing resources, and the number of used
routing resources are included in this exported report. These
data are derived directly from a routed RRGraph, and are
useful for device performance analysis.

In order to evaluating large devices efficiently or spe-
cial VLSI technology (such as 3D-VLSI) that cannot be
implemented easily, a fast performance analysis method
of EasyRouter can be used. Because common FPGAs are
composed of tiles of the same structure, area and delay
performance can be calculated from the physical information
of one FPGA tile. We first finish the layout of a tile
structure with VLSI design flow and obtain its area. Then
the device area can be obtained from the product of the
tile area and ArraySize × ArraySize. We then perform
timing analysis using a simplified tile delay model, which
extracts some representative paths such as SB to SB, Channel
to LB, and BLE input to output, and set their delay to
values according to tile STA results. The critical path and
its delay are obtained from the timing analysis using the

Fig. 2: Proposed framework: FPGA scale exploration.

routed RRGraph and these represent delays of the paths.
The area and delay performance analysis at this stage is less
accurate. However, it is fast and has sufficient precision for
architecture exploration. We will prove this in Section 5.3.

4. Proposed FPGA IP Design Flow
Conventional FPGA architecture exploration and imple-

mentation processes involve two separate flows. The FPGA
architecture is determined by academic FPGA design flow.
However, in the implementation phase, commercial VLSI
design flow are used which gives rise to two problems.
One is that the academic design flow cannot provide high
accuracy area, delay and power estimates. The other is that
if design defects are found in the VLSI design phase, then
it is necessary to restart from the FPGA design flow and a
large number of HDL codes needs to be revised.

We propose an FPGA IP design flow that combines the
FPGA and VLSI design flows, to solve the above problems.
The proposed FPGA IP design flow consists of three parts:
the conventional FPGA design flow, VLSI back-end design
and analysis flow, and the novel tool EasyRouter which
can bridge the two flows. By employing the proposed IP
design flow, architecture exploration and implementation can
be performed with high accuracy and within a reasonable
execution time.

4.1 FPGA scale exploration
Since the FPGA IP core has limited on-chip area, FPGA

scale exploration is necessary. The objective of FPGA scale
exploration is to find a rational FPGA tile array size and
routing channel width by implementing target application
circuits.

Figure 2 shows how we link EasyRouter with VTR to
perform FPGA scale exploration. The synthesis tool ODIN
II reads and optimizes an HDL-described application circuit.
The output of ODIN II is a Blif netlist as it is the standard
format used to pass circuit information between academic
FPGA tools. Blif format circuits (ex. MCNC benchmarks)
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Fig. 3: Proposed framework: FPGA implementation.

can be directly inputted into ABC. The technology mapping
tool ABC maps the netlist logic circuits into FPGA logic
elements, which are typically k-input LUTs. In the case of
VPR 6.0, the logic elements are first packed into clusters.
The clustered logic blocks are then placed in an n × n tile
array. Finally, we use EasyRouter to make the connections
for the I/O pins of all logic blocks and I/O ports of the
FPGA IP. Placement and routing are performed ten times
for each circuit since different seeds (from 0 to 9) of the
simulated annealing based placement algorithm generate
different placement solutions. The routing result for each
circuit is the average of the results of ten placement seeds.

4.2 FPGA IP implementation and performance
analysis with commercial VLSI CADs

After the architecture is determined, we run EasyRouter in
the evaluation mode to generate the FPGA HDL codes and
each circuit’s bitstream, which is shown in Fig. 3. When
all the FPGA HDL codes and an application bitstream are
generated, we can start the back-end design with commer-
cial VLSI design CAD tools. Back-end design flows differ
according to the technique used and the researcher’s design
experience. However, in general, the steps shown in Fig.
3 are necessary, which are the same with common ASIC
design flow.

4.3 Fast performance analysis with EasyRouter
The full back-end design of a large scale FPGA device

is an intensely time consuming process. On the other hand,
special VLSI process devices such as the 3D-FPGA cannot
presently be implemented easily because of the lack of
available CADs support and process technology. For these
reasons, the evaluation flow presented in Fig. 3 is sometimes
not efficient or not applicable. Therefore, we developed a fast

Fig. 4: Proposed framework: Fast performance analysis.

Fig. 5: Homogeneous FPGA architecture.

performance analysis function for EasyRouter to evaluate
these devices.

Fig. 4 shows the flow when using EasyRouter for fast
performance analysis. When the target device architecture is
determined with the method described in Section 4.1, we can
make HDL code for one tile of the target device. We then
implement the one tile HDL code with VLSI design flow
and obtain the physical information such as area and delays
of representative paths, as shown in Fig. 4 (a). Finally, as
shown in Fig. 4 (b), in the fast performance analysis mode
with this physical information, EasyRouter executes the area
reports and timing results.

5. Evaluation
In this section, we first introduce the evaluation condi-

tions. Second, we report the performance of EasyRouter,
which include the execution time and minimum channel
width for each benchmark. We then evaluate the proposed
post-routing performance evaluation flow with a homoge-
neous FPGA IP. Finally, we show the expandability of
EasyRouter with a 3D-FPGA case study.

5.1 Evaluation conditions
During the EasyRouter performance evaluations, we used

conventional island style FPGA that supported by VPR
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Fig. 6: Island style FPGA channel widths.

[11]. For post-routing performance evaluation and 3D-FPGA
case study, we employed a novel homogeneous FPGA
architecture [12], as shown in Fig. 5. In this device, all
tiles have the same structure, unlike the island-style FPGA
architecture, which is composed of several types of different
tiles. Therefore, the homogeneous FPGA architecture can be
easily produced and tested. The details and performance of
this architecture have been described in a previous paper
[12]. In this evaluation we employed 4-LUT with cluster
size of four. The number of inputs of LB was ten. The SB
was wilton type. The Fs value was 3 and the Fc value was
0.5.

Circuits from the largest 20 MCNC benchmark were used
for evaluation. The device was designed using e-Shuttle 65
nm CMOS technology. The functional simulation tool was
ModelSim 6.5b. The design was synthesized with Synopsys
Design Compiler F-2011.09-SP2. The layout was performed
using Cadence EDI system 10.13. We checked the gate level
netlists outputted from the Design Compiler and EDI with
Formality A-2008.03-SP3. Finally, the STA was performed
with PrimeTime F-2011.12-SP1.

For the comparison, the area and delay physical parame-
ters of VPR were derived in the same flow and technology
process. A tile of the target FPGA was synthesized and
layouted with the same back-end design flow. The tile area
was derived from the GDS after layout. Delays within the
LB were extracted with the STA. The wire RC model was
analyzed with the HSpice. All physical parameters were
written into the architecture file in the VPR format. Note that
out evaluation targets of this evaluation were synthesizalbe
FPGAs. The evaluation result of VPR may be different for
full-custom designed FPGA.

5.2 EasyRouter performance evaluation
As we talked, the most time-consuming function of a

router is the heap sort. We tested the same heap sort
algorithm in C and C#. The basic test operation involves
adding numbers from 0 to 999,999 to a min-heap and then

Fig. 7: FPGA IP layout.

deleting it to empty from the top. The basic test operation
was repeated for 30 times. Then we compared the execution
time for the two implementations. The results showed that
the C# implementation was around 5.0 times slower than the
C implementation, because of the performance difference of
C# and C language. This implies that when implementing a
given routing algorithm, the C# program will be at least 5.0
times slower than the C program.

We evaluated the execution time of 17 benchmarks. Ac-
cording to the results, EasyRouter was 8.4 times slower than
VPR on average. However, for large circuits like frisk, pdc,
and clma, EasyRouter was near to 5.0 times slower. This is
because for large circuits, the heap sort operations dominate
the execution time to a greater extent. We examined the
s298, alu4, and pdc circuits, and the cpu instruction sampling
results showed that the execution time ratio of the heap
function were 65.8%, 76.1%, and 83.2%. Therefore, for
large circuits, the execution time overhead of EasyRouter
was close to the performance difference between the C and
C# implementations.

Fig. 6 shows the minimum channel widths of EasyRouter
and VPR. We can see that the routing performance of both
tools were similar. A reason the channel width of both differ
in some circuits, is that during the RRGraph searching step,
the expansion order of the RRNode with the same cost value
will influence the routing results. However, because of this,
the influence of the minimum channel width was only about
a factor of two (the minimum change step for unidirectional
routing architecture). Therefore, EasyRouter has a capability
that is almost identical to that of VPR.

5.3 Post-routing performance evaluation
Because the FPGA IP designs have limited die size, we

used a device array size of 15×15 to introduce the generation
of HDL codes and bitstreams, and post-routing evaluation
methods. The CW was fixed to 50. We selected the six
circuits from the 20 largest MCNC benchmarks to evaluate
the target device, because they can be implemented with a
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Fig. 8: Delay results.

target device of array size of 15× 15.

The area calculation model of VPR multiplies the area of
one tile by the number of tiles in the array. With an accurate
tile area after layout, this module is reliable. Therefore, we
only provided the physical area information of the designed
target device, which is presented in Fig. 7.

Fig. 8 shows the critical path delay calculated by the
flow of EasyRouter with full FPGA VLSI back-end design
and STA (Full FPGA STA), EasyRouter fast performance
analysis (EasyRouter), and VPR. We believe the critical path
delay of the full FPGA STA was an accurate delay value
because the evaluation of commercial VLSI design flow with
a standard cell library has the highest simulation accuracy
in industry. Note that we used the breadth-first router of
EasyRouter and VPR for pure delay accuracy comparison.

The delay value accuracy calculated by VPR was 8.9
times lower than that obtained from the full FPGA STA
on average. This was because the delay model of VPR was
pessimistic and had low accuracy. For example, all routing
segment delays were calculated with the same wire RC
model. In an actual final layout, the placement was optimized
and the physical delays were different. However, we can see
that VPR correctly reflected the performance relationship
between the circuits. This shows the reliability of VPR as a
fast architecture exploration tool.

The result accuracy calculated by EasyRouter fast per-
formance analysis was 1.7 times lower than that obtained
from the full FPGA STA on average. This result showed
that EasyRouter improved delay accuracy 5.1 times than
VPR on average. This was because, although EasyRouter
used a similar pessimistic model as VPR, all representative
path delays were calculated with the high accuracy STA
process. On the other hand, the routing delay and logic delay
of VPR was calculated with different models. Therefore,
we conclude that the EasyRouter fast performance analysis
method is reliable for fast high accuracy device evaluation.

Fig. 9: Target 3D-FPGA architecture.

5.4 3D-FPGA case study
EasyRouter is designed to implement new FPGA archi-

tectures easily. In this section, we show the expandability of
EasyRouter by evaluating a novel 3D-FPGA architecture that
was developed in a previous work [13]. The area and critical
path delay performance of the homogeneous 2D-FPGA and
the novel 3D-FPGA were compared. The new 3D-FPGA
architecture script file was modified from a conventional 2D-
FPGA architecture script file by adding only few codes for
vertical connections of 3D-VLSI technology.

5.4.1 Target 3D-FPGA architecture
Fig. 9(a) and (b) shows the tile image and the detail of

the proposed 3D routing architectures. The two layers in the
proposed 3D-FPGA were the logic and routing layers. We
employed the face-down 3D stacking technique to connect
two dies with micro bumps. The tiles on the logic layer had
a LB and a small part of the routing resources, while the tiles
on the routing layer had only routing resources. The tiles for
the two layers were designed within approximately the same
area. Different from conventional 3D routing architectures
with 3D-SBs, we made the 3D connections on the input and
output pins of the LB, which we named 3D-CB structure.
The router chose one net to be routed on either the logic
layer or the routing layer.

By dividing routing resources into two layers, we achieved
a smaller tile. A smaller tile means a higher logic density,
shorter routing wire, and faster signal transportation. There-
fore, the routing performance could be improved. Moreover,
the proposed 3D-FPGA was realistic, because the number
of inter-layer connections within one tile was equal to the
number of input and output pins of the LB. Compared
to conventional the 3D-FPGA based on the 3D-SB, which
required two times the number of channel width inter-layer
connections, the proposed architecture significantly reduced
the requirement for inter-layer connections.

5.4.2 Evaluation conditions and results
We successfully implemented the 3D-FPGA architecture

on EasyRouter in a relatively short development time. The
FPGA scale exploration was performed with the flow that
we introduced in Section 4.1. The performance analysis was
performed using the method that we described in Section
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Fig. 10: Area result for 3D-FPGA.

4.3. We simply define the delay of one vertical connection
between logic layer and routing layer as the same delay of
one segment wire.

Fig. 10 shows the evaluation results for the area. We can
see that the proposed 3D-FPGA used half the package area
of 2D-FPGA by allocating nets on two layers. This means
the logic density had improved by about a factor of two. The
critical path delay also improved about 4% on average. This
is because the increased channel width has better routability,
and the smaller tile has shorter routing wire length.

With this 3D-FPGA case study, we can say various archi-
tectures can be implemented on the EasyRouter framework
within a relatively short development time. High accuracy
area and delay performance analysis can also be performed
with the proposed framework.

6. Conclusions
In this paper, we proposed a novel FPGA routing tool,

EasyRouter, and an FPGA IP design flow that combines
conventional FPGA design tools with VLSI CADs. Easy-
Router facilitates easy modeling of new FPGA architectures
without any limitations, which can significantly shorten
the development cycle. EasyRouter can also automatically
generate device HDL codes and configuration bitstream files
of the implemented circuits that can be processed by VLSI
CADs. With this design flow, accurate physical information
STA can be reported when a new FPGA IP architecture is
evaluated with reliable commercial VLSI CADs. For FPGA
architectures that cannot be easily implemented with present
VLSI process, EasyRouter provides a fast performance anal-
ysis flow, which improved delay accuracy 5.1 times than
VPR on average. We have also evaluated the proposed
FPGA design flow with three different devices to show its
performance and expandability.

References
[1] I. Kuon, A. Egier, and J. Rose, “Design, layout and verification of an FPGA using

automated tools,” Proc. of the 2005 ACM/SIGDA International Symposium on
Field Programmable Gate Arrays, pp.215-226, Feb. 2005.

[2] “Zynq All Programmable SoC Architecture,” 2012.
http://www.xilinx.com/products/silicon-devices/soc/index.htm.

[3] “SoC FPGAs: Integration to Reduce Power, Cost, and Board Size,” 2012.
http://www.altera.com/devices/processor/soc-fpga/proc-soc-fpga.html.

[4] “eFPGA Core IP: The embedded Field Programmable Gate Array IP,” 2012.
http://www.menta.fr/down/ProductBrief_eFPGA_Core.pdf.

[5] J. Rose, J. Luu, C. W. Yu, O. Densmore, J. Goeders, A. Somerville, K. B. Kent,
P. Jamieson, and J. Anderson, “The VTR Project: Architecture and CAD for
FPGAs from Verilog to Routing,” Proc. of the 2012 ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, pp.77-86, Feb. 2012.

[6] P. Jamieson, K. Kent, F. Gharibian, and L. Shannon, “Odin II-An Open-Source
Verilog HDL Synthesis Tool for CAD Research,” IEEE Annual International
Symposium on Field programmable Custom Computing Machines, pp.149-156,
May 2010.

[7] A. Mishchenko et al., “ABC: A System for Sequential Synthesis and Verification,”
http://www.eecs.berkeley.edu/ alanmi/abc/, 2009.

[8] D. Grant, C. Wang, and G. G. F. Lemieux, “A CAD Framework for MALIBU:
An FPGA with Time-multiplexed Coarse-grained Elements,” Proc. of the 2011
ACM/SIGDA International Symposium on Field Programmable Gate Arrays,
pp.77-86, Feb. 2011.

[9] C. Ababei, H. Mogal, and K. Bazargan, “Three-dimensional Place and Route
for FPGAs,” IEEE Tran. on Computer Aided Design of Integrated Circuits and
Systems, pp.1132-1140, Jun. 2006.

[10] N. Miyamoto, Y. Matsumoto, H. Koike, T. Matsumura, K. Osada, Y. Nakagawa,
and T. Ohmi, “Development of a CAD Tool for 3D-FPGAs,” Proc. of the 2010
3D Systems Integration Conference, pp.1-6, Nov. 2010.

[11] V. Betz, J. Rose, and A. Marquardt, “Architecture and CAD for Deep-Submicron
FPGAs,” Kluwer Academic Publishers, Mar. 1999.

[12] K. Inoue, M. Koga, M.Iida, M. Amagasaki, Y. Ichida, M. Saji, J. Iida, and T.
Sueyoshi, “An Easily Testable Routing Architecture and Prototype Chip,” IEICE
Trans. Inf. & Syst., vol. E95-D, oo.303-313, Feb. 2012.

[13] Q. Zhao, Y. Iwai, M. Amagasaki, Y. Ichida, M. Saji, J. Iida, and T. Sueyoshi,
“A Novel Reconfigurable Logic Device Base on 3D Stack Technology,” Proc. Of
the 3D Systems Integration Conference, P-2-14, Feb. 2012.

42 Int'l Conf. Reconfigurable Systems and Algorithms |  ERSA'13  |



Types, signatures, interfaces, and components in NOOP:
The core of an adaptive run-time
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Abstract— Python is a dynamic language well suited to build a run-
time providing adaptive support to distributed applications. NOOP
introduces a type language and a way to apply typing to functions
(and methods). This type system is described in the first part of this
paper. The second part use this type system to create interfaces and a
software component model. And finally it is discussed how NOOP can
provide adaptive support to distributed applications.
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1. Introduction
Python is a dynamic interpreted language with implicit typing.

When a new function is defined no explicit type information is
provided. Argument values are assigned values at call time based
on their position or name. It is possible for arguments to have a
default value. It is also possible to combine positional and named
arguments when a function call is performed. A typical usage of
this is to have one or two obligatory positional arguments followed
by a set of named optional arguments.

The withdraw function in Figure 1 has two obligatory posi-
tional arguments account and amount and two optional named
arguments on_behalf_of and message. At call time in this
example three of these arguments are provided values, and therefore
implicit given a type. The two optional arguments were at define
time given a default value and therefore an implicit type. However,
in Python any argument (and any variable) can be assigned a value
of different type everytime it is used (sometimes this is intentional).

In large software projects well-defined function behavior is
important. Part of this is well-defined arguments and return values.
Introduction of types and a type system is a common approach to
support this. If this is introduced for Python functions the actual
implementation of these functions can be made less complex and
less error prone. The reason is that the programmer can expect
that the arguments are of the correct type. In a distributed setting
this can be extended to avoid that a remote method invocation is
performed if the correct type of arguments are not provided. Raising
such an error locally at the callee is more efficient.

The type of arguments and return values of a function is the
signature of the function. If functions are class methods we can
call the set of signatures provide by the class instances for the
interface. If all interaction of a class instance (or an object) is
through well-defined interfaces this is close to what commonly is
called a software component [1].

Python does not have type safe functions, but Python provides
the necessary mechanisms to implement it. In the NOOP project a
type system for Python functions that makes it possible to define
the signature of such functions has been implemented. We have

chosen a hybrid approach to the NOOP type system [2] where it is
possible to combine statical typing of NOOP with the dynamic
typing of Python. Signatures can be used to create interfaces.
Interfaces applied to well-defined Python classes are the core of
NOOP software components. Such components can be deployed in
a NOOP run-time both as single component or as a composition of
components. At deploy time a contract between the component and
the run-time is provided. This contract includes the requirements
of the component that has to be fulfilled by the run-time. How
the contract is fulfilled also depends on the given context of the
deployed component.

In this paper will present the type system of NOOP, how this
is used to define the signature of Python functions, and how such
signatures are used to define interfaces. NOOP components and the
deployment of such components will be introduced. Finally, its is
discussed how NOOP can provide adaptive support to distributed
applications. A more detailed overview of NOOP is available in [3].

2. Types and signatures
Python provides a set of built-in types. For example, type(1) is

int. In NOOP the type system has been extended with composite
types. A few examples are given in Figure 2. The first example
gives us the possibility to define a tuple with a well-defined number
of elements with well-defined types (a tuple with three elements
of the type int, str, and float). The second example gives us
the possibility to define a list of integers (lists in Python can have
any combination of value types). The third example gives us the
possibility to define a dictionary of any length where the keys are
of type str and the values are of type int. And the last example
provides a dictionary with two elements where the first key is "id"
and the second key is "sh", and the value of "id" is of type int
and the value of "sh" is of type str.

A few new type constructors have been added to NOOP. The
reason is that such constructors can be used to give a more precise
definition of the programmer’s intention. Figure 3 lists the new
type constructors. The extended type system is available in the
signature module.

All the type constructors are used to create new types. The
whatever type is true for any values. The opt type says that
the value should either be of this type or not present at all. The
one type says that the value should be of one of the listed types.
The type constructor pred has an argument p that is a predicate.
This predicate is a function that accepts one argument and returns
either True or False. The argument is the value of the applied
argument to the type. The tgtz type below specifies all integers
larger than zero:

def gtz(): return v > 0

Int'l Conf. Reconfigurable Systems and Algorithms |  ERSA'13  | 43



def withdraw(account, amount, on_behalf_of="", message=""): 1

# The actual implementation is ignored in this example 2

return amount 3

new_balance = withdraw(13219254, 125.25, message="School trip") 4

Fig. 1: Python function combining positional and named arguments.

type((1,"foo",2.3)) is (int,str,float)
type([1,4,7,8]) is [int]
type({"ID":212,"GID":100}) is {str:int}
type({"id":42,"sh":"bash"}) is {"id":int,"sh":str}

Fig. 2: Composite types in NOOP.

whatever Value of any type
opt(t) Value of type t or no value
one(t1,t2,...,tn) Value of either type t1, t2, . . .
pred(t,p) Value of the type t and p is true

Fig. 3: New type constructors in NOOP.

tgtz = pred(int, gtz)

The predicate type constructor is used to limit the accepted values
of a given type. It should not be confused with the concept of
dependent types [4], [5] that can create more expressive type con-
structors. Currently NOOP does not provide such type constructors.

The type system in NOOP is extensible. It is easy to create
new types using the type constructors discussed above. It is also
possible to create completely new types constructors using the
typespec class. Create a new class that inherits the typespec
class and implement the actual type check for the new type
in the __call__ method. If the new type constructor is pa-
rameterized the __init__ method has to be implemented too.
The whatever type is not parameterized, but the other type
constructors listed in Figure 3 are. A new parameterized type
constructor for positive integers up to a given value is implemented
in Figure 4. The __init__ method is called when a new type
is created using the type constructor (line 10). The __call__
method should have exactly one argument. This is the value that is
type checked against the type when NOOP performs type checking.
The __call__ method should raise a SignatureError if the
value does not match the type.

In NOOP, two approaches are used to add signatures to func-
tions. The first approach use Python decorators (available for
functions since Python 2.4). Decorators can be applied to Python
functions by a line starting with @ before the function definition.
Following the @ is the name of the decorator and optionally a set
of arguments. A Python decorator is implemented as a function.
In NOOP a signature decorator can be used to add signatures to
functions. The @signature decorator takes three arguments.

class maxint(typespec): 2

def __init__(self, max): 3

self.max = max 4

def __call__(self, value=missing): 5

if ((not type(value) is int) or 6

(value < 0) or 7

(value > self.max)): 8

raise SignatureError("No match") 9

Fig. 4: A new type constructor maxint.

The first argument is the type specification of the decorated
function’s arguments. It is either a tuple or a dictionary. Each
element of the tuple or the dictionary represents an argument to the
function. If it is a dictionary the type specification is given using
the names of the arguments. The arguments of the withdraw
function above could be specified like this (the first line as a tuple
and the following lines as a dictionary):

(int, float, opt(str), opt(str)) 1

{"account": int, "amount": float, 2

"on_behalf_of": opt(str), 3

"message": opt(str)} 4

The second argument of the @signature decorator is the type
specification of the decorated function’s return value. This is just
the return value type. The return value type of the withdraw
function above is float. The third argument is a list of exceptions
the decorated function might raise during its execution. If the
withdraw function above raised an IndexError when an
unknown account number was applied the exception list could be
specified with [IndexError]. The complete signature of the
withdraw function using the @signature decorator is shown
in Figure 5.

It is also possible to specify the @signature decorator with
named arguments. The arguments type specification in named
args, the return value type specification is named ret, and the
list of exceptions is named exc. This is a signature with named
arguments for the gtz function:

@signature(args=(int,), ret=bool, 2

exc=[TypeError]) 3

def gtz(v): 4

return v > 0 5

The second approach to add signatures to Python functions in
NOOP is to use annotations. Annotations has been available since
Python 3.0. In NOOP we use annotations to annotate arguments
and return values of functions with types. When a function is
defined each argument can be annotated using a colon. If a function
has an argument s of type str, the argument can be annotated
like this: s:str. To specify the type of the return value of a
function the function is annotated using ->. To apply the possible
list of exceptions a function can raise we still have to use the
@signature decorator.

At define time the function is analyzed to see if it matches
the type specification. At call time type checking ensures that no
arguments not matching the type specification is forwarded to the
function. Type checking also ensures that the return value matches
the type specification and that no exception not defined in the
signature is raised. If either of these fails a SignatureError
exception is raised.

It is possible to completely ignore exceptions in type checking
at call time. The consequence is that any exceptions raised by the
function will be thrown back to the caller. To achieve this effect
the exception paramater (exc) of the @signature decorator is
set to None This can also be achieved by providing no value for
this argument.
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@signature((int,float,opt(str),opt(str)), float, [IndexError]) 2

def withdraw(account, amount, on_behalf_of="", message=""): 3

# The actual implementation is ignored in this example 4

return amount 5

Fig. 5: Signature decorator for the withdraw function.

mSig = ((int, int), int, []) 1

iMath = {"add": mSig, "sub": mSig} 2

@interfaces(math=iMath) 4

class Math: 5

def add(self, x:int, y:int) -> int: 6

return x + y 7

def sub(self, x:int, y:int) -> int: 8

return x - y 9

Fig. 6: A Math class with an interface math.

@receptacles(m=iMath) 4

class Wallet: 5

def __init__(self): 6

self.v = 0 7

def doSave(self, x: int): 8

self.v = m.add(self.v, x) 9

def doSpend(self, x: int): 10

self.v = m.sub(self.v, x) 11

Fig. 7: A Wallet class with a receptacle m.

3. Interfaces and receptacles
The NOOP approach to interfaces differs a lot from the now

rejected proposal for Python found in PEP 245 [6]. PEP 245
proposes interfaces similar to what is found in Java where a class
implements a defined interface. This is also true for Zope interfaces
[7]. While the NOOP approach also can be used like this, its main
purpose is to support the interaction between objects. In that sense
it is closer to interfaces related to software components or remote
invocation.

In NOOP interfaces of objects lists methods with signatures.
One object can implement several interfaces. Receptacles represent
interfaces used by objects. Object implementations refer to external
interfaces through receptacles and receptacles are explicit bound to
interfaces (late binding). The binding operation (e.g. bind) can be
(and often is) performed outside the object implementation.

The @interface decorator is used to create interfaces on
a Python object in NOOP. To the interface decorator named
arguments are applied. The names represents the name of the
interface. The value list the methods and their signatures. A Math
class that can be used to create objects with an interface math
of type iMath with two metods add and sub are defined in
Figure 6 (mSig is the signature of both method add and sub).
The signature of each method specified in the math interface are
applied to the matching methods of the class. It is possible apply
these signatures explicit to each method in the class. Type checking
will then ensure that the signatures of the methods match the
signatures of the interface. In the example in Figure 6 the methods
are annotated with the type information.

If an object should access an interface of another object re-
ceptacles are used. A receptacle refers to an external interface
implementation that is unknown at definition time. Later, this

mSig = ((int, int), int, []) 1

iMath = {"add": mSig, "sub": mSig} 2

@component(provides={"math": iMath}) 4

class Math: 5

def add(self, x:int, y:int) -> int: 6

return x + y 7

def sub(self, x:int, y:int) -> int: 8

return x - y 9

Fig. 8: A Math component providing interface math.

receptacle can be bound to such an interface. The @receptacles
decorator is used to add receptacles to an object. In Figure 7 the
receptacle m is added to all objects of the Wallet class. The
receptacle m can then be used to call to methods of an interface of
the type iMath (like the math interface of Math objects). Before
m can be used it has to be bound to an interface of type iMath. The
following code makes an instance of both the Math and Wallet
class, connects the receptacle m of the wallet to the math object, and
perform the doSave operation of the wallet object. The doSave
operation accesses the add method of the math object though the
receptacle m and the interface math.

myWallet = Wallet() 3

myMath = Math() 4

localBind(myMath["math"],myWallet["m"]) 5

myWallet.doSave(145) 6

4. Software components
A NOOP component is a Python object with well defined

external behavior defined by a set of interfaces (provides), a
set of receptacles (uses), and a run-time contract. To implement a
NOOP component a @component decorator is added to the class
of the object. It is easy to rebrand the Math and Wallet class
to NOOP components. The @interfaces and @receptacles
decorators are replaced with @component decorators that include
the named arguments provides and uses. The provides
argument lists the interfaces provided by this component, and
the uses argument lists the interfaces used by this component
(the receptacles). Figure 8 and 9 show the implementation of the
Math component and the Wallet component, respectively. In the
Wallet component we have added a provided interface wallet.

A NOOP component is not instantiated like ordinary Python
objects. A NOOP component is deployed, and the run-time contract
is applied to the component at deploy time. The run-time contract
includes external interfaces used by the component and life-cycle
management information.

The deployment operation returns a unique reference for the
component. This reference is a global unique reference that can
be used to refer to this component globally in any NOOP run-
time. Every NOOP run-time (in NOOP called a capsule) has to
implement a deploy method. The actual implementation might
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wSig = ((int,), None, []) 1

cSig = ((), int, []) 2

iWallet = {"doSave":wSig, "doSpend":wSig, 3

"content": cSig} 4

@component(provides={"wallet": iWallet}, 5

uses={"m": iMath}) 6

class Wallet: 7

def __init__(self): 8

self.v = 0 9

def doSave(self, x: int): 10

self.v = m.add(self.v, x) 11

def doSpend(self, x: int): 12

self.v = m.sub(self.v, x) 13

def content(self): 14

return self.v 15

Fig. 9: A Wallet component providing interface wallet and
using interface m.

vary depending of the features and services provided by the run-
time. The deploy-time contract can be used to specify features
and services needed by a given component (or composition of
components).

The simplest contract possible is an empty contract. In NOOP it
is created as an empty dictionary:

contract = {}

A more common contract of a component maps its recepta-
cles to external interfaces using the bind argument. For the
Wallet component the deploy contract could be specified like
this (mathRef is the unique reference to a Math component):

contract={"bind":{"m":mathRef["math"]}}

The contract specifies that a binding between the m receptacle of
the Vallet and the math interface of the Math component
has to be created. To complete the example of the Math and
Wallet component, this is how we deploy and use a Math
component and a Wallet component using an empty contract for
the Math component and a simple bind contract for the Wallet
component:

mathRef=deploy(Math,{}) 5

contract={"bind":{"m":mathRef["math"]}} 6

walletRef=deploy(Wallet,contract) 7

walletRef["wallet"].doSave(145) 8

In a NOOP run-time the component references can be used as
proxies. The interfaces (and receptacles) can be accessed using
their names as keys (like a Python dictionary). The methods of the
interfaces can be accessed using ordinary dot-notation.

In NOOP a composite component is a composition of com-
ponents. Every single component in the composition have an
individual contract, and the composition of components have a
common contract. All components of a composition is deployed in
a single operation. The actual steps performed when a composition
is deployed are these: (i) All components are instantiated. (ii) The
contracts are applied to the components. (iii) The composition
contract is applied to the composition.

Software components in NOOP are an unit for deployment. It
is possible to see a component (and a composite component) as a
unit that can be distributed independently and deployed in different
applications and systems. The details of how this is achieved is out
of the scope of this paper.

5. Dynamic support
Late binding and re-binding is an important part of the dynamic

application support provided by NOOP. Components access other
components, including system level components, through recepta-
cles. Receptacles are bound to actual implementations at deploy
time, and can be re-bound to other implementations later if this
matches the given context better. Contracts specify the requirements
of a component, including the services a component needs. Such
contracts can include quality of service (QoS) specifications, and
how a service is implemented might depend on the given context.
Some services might be optional (a typical example is logging), and
some contracts might specify a preferred service quality level and a
minimum acceptable service quality level. The given context might
also influence how the run-time fulfills the component requirements
specified in the contract.

A typical NOOP application is a distributed application with a
set of components deployed in a set of run-times called capsules.
Each NOOP capsule an be tailored to the specific requirements of
its deployed components. In NOOP the goal is not a single capsule
type supporting a wide range of component requirements, but
specialized capsules configured to support its deployed components
(similar to the extensible application server discussed in [8]). A
composite component might be distributed over several capsules.
A typical example of such a distributed composite component is
a remote binding that contains a stub and a skeleton deployed in
different capsules.

When a component is deployed in a capsule the contract might
specify complex requirements that includes adaption rules triggered
by observed context changes. The details of such adaption is out
of the scope of this paper. However, the NOOP component model,
interfaces, receptacles and contracts are important mechanisms
necessary to provide the adaptive run-time of NOOP.

6. Conclusion
The component model and the NOOP run-time is the base of sev-

eral research projects investigating adaptive support for distributed
applications. Different versions of the run-time exists, and the run-
time itself can be configured to provide specialized support for a
given type of application. The NOOP core functionality presented
in this paper is used to investigate such adaptive and context
sensitive behaviour further.
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Abstract— Heterogeneous multi-core architectures with
CPUs and accelerators attract many attentions since they
can achieve power-efficient computing in various areas from
low-power embedded processing to high-performance com-
puting. Since the optimal architecture is different from appli-
cation to application, finding the most suitable accelerator
is very important. In this paper, we propose an FPGA-based
heterogeneous multi-core platform with custom accelerator
templates. Accelerator templates can be reused after optimiz-
ing for different applications. According to the evaluation,
the proposed platform gives comparable performance to the
industrial heterogeneous multicore processors at around 1W
of power.

Keywords: Heterogeneous multicore processor, FPGA, Multime-
dia processing, High-performance-computing

1. Introduction
Applications used in low-power embedded processing to

high performance computing have different tasks such as
data-intensive tasks and control-intensive tasks. Therefore,
optimal architecture is different from application to ap-
plication. Heterogeneous multicore processing is proposed
to execute applications power-efficiently. It uses different
processor cores such as CPU cores and accelerator cores as
shown in Fig.1. If the tasks of an application are correctly
allocated to the most suitable processor cores, all the cores
work together to increase the overall performances.

Examples of low-power heterogeneous multi-core proces-
sors are [1] and [2]. The former has multiple cores of CPUs
and ALU arrays. The latter has multiple cores of CPUs, a
micro-controller and SIMD (single-instruction multiple-data)
type processors. Such commercially available processors are
partially programmable so that a part of the data path and
computations of processing elements (PEs) can be changed
to some extent. However, due to the wide variety of tasks and
their different memory requirements, this programmability
is not enough to extract sufficient performance. Moreover,
the programming environments in various heterogeneous
architectures. Therefore, each time the architecture changes,
large design time is required to re-map the application into
the new architecture.

Fig. 1: Heterogeneous multi-core processor architecture

To solve these problems, we propose an FPGA-based
platform for heterogeneous multicore processors to explore
accelerator architectures suitable for applications. Recently,
speed and power consumption of FPGAs are greatly im-
proved, and it would be very practical to use the FPGA-
based platform for real applications. The proposed platform
consists of CPU cores suitable for control-intensive tasks and
custom accelerator cores suitable for data-intensive tasks.
The use of the architecture templates reduces the design
effort to explore the architectures suitable for applications.
It would also make it easy to re-use the same software on
different accelerators derived from the same template. More-
over, the high reconfigurability of FPGAs enables to adopt
the different types of accelerators for a single application
depending on the nature of tasks. The major disadvantage
of FPGA-based processors over the commercially available
once is the low-performance of CPU cores since CPU cores
are generated using look-up tables. Such “soft-core CPUs”
cause large computation time and large data transfer time.
However, recent FPGAs such as Xilinx Zynq and Altera
Cyclone V contain “hard-core CPUs” operating at about 8
times faster than the soft-core CPUs.

This paper is an extension of the work done in [3]
which explains the basic idea of the heterogeneous multicore
platform. However, the soft-core CPU in [3] is replaced by
a low-power hard-core CPU (“Cortex-A9 dual core ARM
processor”) using Xilinx Zynq so that the processing and
data transfer time are significantly reduced. In this paper,
as a typical architecture templates, we consider two types
of custom accelerators: SIMD one-dimensional PE array
(SIMD-1D) and MIMD two-dimensional PE array (MIMD-
2D). The SIMD-1D accelerator is suitable for executing sim-
ple operations at a high degree of parallelism. The proposed

Int'l Conf. Reconfigurable Systems and Algorithms |  ERSA'13  | 47



SIMD-1D accelerator is designed similar to the GPU data
path to use the CUDA (compute unified devise architecture)
[4] programming language. The MIMD-2D accelerator is
suitable for executing complex operation at a medium degree
of parallelism. To increase the memory access speed, we
introduce a custom hardware called address generation unit
(AGU). We can also reconfigure the data path, the number of
PEs, the number of memory modules, and memory capacity
according to the requirements of a given task to optimize the
performance. The evaluation demonstrates that the proposed
FPGA-based platform achieves good performance and low-
power consumption comparable to industrial heterogeneous
processors such as RP1 [1].

2. Heterogeneous multicore platform
2.1 Overall architecture

This section explains the architecture of the heterogeneous
multi-core platform. Figure 2 shows the overall architecture.
An external DDRII SDRAM is connected to the CPU core
through the FPGA board. The custom accelerators have
different architectures such as SIMD-1D and MIMD-2D.

It is important to reduce data-transfer time between cores
for processing faster in heterogeneous multicore. In pre-
vious work [5], window-based image processing time and
memory capacity are reduced by using optimal memory
allocation and a data-transfer scheme. For further reduction
the processing time, we overlap the data-transfer with data
processing on different cores as shown in Fig.3. In FPGAs,
We can determine the optimal number of accelerator cores
and PEs so as to minimize the processing time.

Fig. 2: Proposed heterogeneous multi-core architecture

Transfer Transfer

Processing

time

Accelerator1 ���

���

Transfer

Accelerator2

���

���

Transfer

Processing Processing

Processing

Fig. 3: Overlapping data-transfer and processing

Fig. 4: SIMD-1D architecture

Fig. 5: Architecture of the PE

2.2 SIMD-1D accelerator
The proposed SIMD-1D accelerator is designed similar

to the GPU accelerator so that we can use the same CUDA
code. The basic idea of the SIMD-1D accelerator is dis-
cussed in [6]. It has a 1-dimensional array of PEs connected
to the shared memory as shown in Fig.4. AGUs are included
to increase the address generation speed. To execute an
application, we have to divide it into independent threads
where several of them can be executed in parallel. After
the execution is finished, new threads are fed. When all the
threads are executed, the resulting data are read by the CPU.

Figure 5 shows the architecture of a PE. It consists of a
16bit fixed-point ALU and a multiplier. Operations such as
addition, accumulation subtraction, comparison and absolute
difference computation are done in the ALU, and multiplica-
tion is done in the multiplier. Multiply-accumulation is done
by a pipelining the multiplier and the adder.

In CPUs, the address calculation and data processing are
done in the same ALU as shown in Fig.6(a). Therefore, when
the addresses are calculated, we cannot do data processing.
In the proposed architecture, the address calculation is done
in the AGU shown in Fig.6(b). The address calculation and
data processing are done in parallel so that we can reduce the
total processing time. A detailed description about AGUs is
given in [5]. As shown in Fig.2, accelerators in the proposed
heterogeneous platform contain AGUs.

2.3 MIMD-2D accelerator
The proposed MIMD-2D accelerator is designed based

on the FE-GA accelerator [1] that has a dynamically recon-
figurable PE array. Figure 7 shows the proposed MIMD-
2D accelerator. It consists of a 2-dimensional array of PEs,
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local memory modules and AGUs. In order to simplify the
interconnection network while still meeting the streaming
applications, we limit the interconnection network; only left-
most PEs can directly retrieve data from local memory mod-
ules, and only rightmost PEs can directly write data to local
memory modules. PEs, AGUs and interconnection network
are dynamically reconfigurable. To implement applications,
we have to divided it into multiple contexts that execute
sequentially. Within a context, we can perform parallel com-
putations. The computation starts after the configuration data
of multiple contexts are written to the configuration memory
of the accelerator. When the computation is finished, the
resulting data are read by the CPU.

3. Evaluation
We implement the proposed heterogeneous multicore plat-

form on Xilinx Zynq-7000 EPP ZC702 evaluation kit [7].
Since SIMD-1D and MIMD-2D architectures have differ-
ent topologies, we perform two comparisons to evaluate
the architectures. In the first comparison, the number of
look-up-tables (LUTs) in both accelerators is a constant.
In the second comparison, the degree of parallelism of
the memory access is a constant. As shown in Table 1,
SIMD9 and MIMD12 accelerators have almost the same
number of LUTs. SIMD4 and MIMD12 accelerators have
the same number of memory modules. Therefore, the de-
gree of parallelism of the memory access is the same. In
parallel processing, both the number PEs and the degree of
parallelism with the memory are equally important.

We compare the processing time of filter computation and
SAD-based template matching [8]. The image and window

Table 1: Specification of accelerator cores
Accele- Number Number Number Degree
rator of of of of para-
core PEs LUTs memories llelism
SIMD4 4× 1 3301 8 (16kB) 4
SIMD9 9× 1 7354 18 (18kB) 9
MIMD12 4× 3 7322 8 (16kB) 4

sizesand the operating frequency are256 × 16, 16 × 16
and 100MHz respectively. Table 2 shows the comparison of
SIMD-1D (SIMD9) and MIMD-2D (MIMD12) accelerators
when the number of LUTs is a constant. For the filter com-
putation, the processing time of the SIMD-1D accelerator
is less than half of that of the MIMD-2D accelerator. The
SIMD-1D accelerator has a one-dimensional PE array, where
all 9 PEs are directly connected to the memory as shown in
Fig.4. The MIMD-2D architecture has a two-dimensional PE
array of4×3 where only leftmost 4 PEs can directly retrieve
data from the local memory as shown in Fig.7. Therefore, the
SIMD-1D accelerator has the higher degree of parallelism of
memory access than the MIMD-2D accelerator. In the SAD
computation, SIMD-1D accelerator is slightly faster than
MIMD-2D accelerator. SAD computation requires two types
of operations: absolute difference and addition. the MIMD-
2D accelerator can perform these two operations at the
same time by pipelining while SIMD-1D accelerator cannot.
However, the processing time of the SIMD-1D accelerator is
still smaller due to its high degree of parallelism. If we use
an application that have three or more types of operations,
the MIMD-2D accelerator could give much better results.

Table 2: Comparison 1 : The same number of LUTs
Application Acceleratorcore Processingtime (ms)

Filter
SIMD9 0.069

MIMD12 0.154

SAD
SIMD9 0.139

MIMD12 0.154

Table 3 shows the comparison of SIMD-1D (SIMD4)
and MIMD-2D (MIMD12) accelerators when the degree
of parallelism of the memory access is a constant. In the
filter computation, the processing times of the SIMD-1D
and MIMD-2D accelerators are the same. This is because,
multiplication and addition operations are pipelined in both
accelerators, so that two operations are performed in one
cycle. Moreover, both accelerators have the same degree of
parallelism. In the SAD computation, the processing times
in MIMD-2D accelerator is about half of that in SIMD-1D
accelerator. As described above, the MIMD-2D accelerator
can pipeline different type of operations (absolute difference
and addition in SAD computation). Hence, MIMD-2D can
obtain higher degree of parallelism of operations compared
to the SIMD-1D accelerator under the condition of the same
number of memory modules.

Let us compare the FPGA-based platform with conven-
tional industrial heterogeneous multicore processors. Figure
8 shows the implemented architecture. There are MIMD-
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Table 3: Comparison 2 : The same degree of parallelism
Application Acceleratorcore Processingtime (ms)

Filter
SIMD4 0.156

MIMD12 0.154

SAD
SIMD4 0.318

MIMD12 0.154

2D accelerator cores which process the filter computation
in parallel. Table 4 shows the resource utilization on the
FPGA with four MIMD16 cores. Since the FPGA design
tool removes unused units on the implemented architecture
automatically, the resource utilization is smaller than ex-
pected. Note that the number of accelerator cores and the
number of PEs in one core can be selected depending on
the applications.

Table 5 shows the comparison of the filter computation
time for the proposed FPGA-based platform and RP1 [1].
The image size is640 × 480. The number of PEs on
FPGA is 64, and it is equal to using two FE-GAs in RP1.
When the number of FE-GA cores is two, the processing
time on the proposed platform is very similar to that of
RP1. The power consumption of both processors is around
1W. In conclusion, the FPGA-based heterogeneous multicore
architecture provides comparable performance to the RP1
heterogeneous multicore processor.

Cortex-A9

Accelerator
core 1

AXI4-lite Bus

DDR3

Accelerator
core N

Control 
Unit

AXI
Timer���

FPGA(100MHz)
start/stop signal

Cortex-A9
(666. 667MHz) SDRAM

Fig. 8: Implemented architecture

Table 4: Resource utilization of four MIMD16 cores

Module LUT Register Block RAM DSP
Accelerators 1044 1604 18 16
Control unit 28 28 0 0
AXI timer 312 217 0 0

AXI Interconnect 397 182 0 0
Total 1781(3%) 2031(2%) 18(13%) 16(7%)

Table 5: Comparison of processing time

Window size

Processingtime (ms)
Zynq RP1[5]

1xCortex-A9(666.667MHz) 1xSH-4A(600MHz)
+ FPGA(100MHz) + 2xFE-GA(300MHz)

12× 12 46.51 36.24
18× 18 70.50 72.94
24× 24 115.89 96.55

4. Conclusion
We have proposed an FPGA-based heterogeneous mul-

ticore platform with custom accelerators. The accelera-
tor cores are customizable for each application. Dedicated
AGUs are used to increase the processing speed and to
reduce the area and power. We evaluate the proposed plat-
form using several examples and show that the proposed
platform has performance comparable to industrial hetero-
geneous processors. To select the best accelerator for a
given application, we have to match the requirements of
the application with the properties of the accelerator under
the design constraints. Most of the application requirements
and accelerator properties can be parameterized and repre-
sented. The design constraints are the operating frequency,
amount of hardware resources such as LUTs and memories,
power consumption, etc. Our next step would be to find a
relationship between those application requirements and the
accelerator properties to satisfy the design constraints. Then
we can automatically optimize the proposed heterogeneous
platform for given applications.
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Abstract— We present an architectural framework for N-
Modular Redundant (NMR) systems exploiting the dynamic
partial reconfiguration capability of FPGAs. Partial recon-
figuration is used to dynamically construct the throughput
datapath under failure conditions. The throughput datapath
utilizes only one instance of a Functional Element (FE) while
the other instances undergo evaluation by being subjected
to the same actual inputs to the system. A software-based
process is shown to be sufficient to periodically monitor
the health of the active and standby FEs, thus avoiding a
hardware voter in the datapath. The defective behavior of
an active FE triggers the reconfiguration process and con-
sequently a healthy element is introduced into the datapath.
Meanwhile, sustainability is increased by refurbishing faulty
FEs using Genetic Algorithms (GAs) to circumvent aging
or radiation-induced hard faults. Furthermore, the config-
uration bitstreams are protected in the flash memory using
Reed-Solomon codes to provide multi-bit block correction.
Together, this hybrid of adaptive modular redundancy and
online error correction is shown to provide fault coverage
at very low latency overhead.

Keywords: SRAM-based FPGAs, Reconfiguration Techniques
for Fault-handling, Evolvable Hardware, Autonomous Operation,
Semiconductor Aging, Hard/Permanent Fault Refurbishment

1. Introduction
Intelligent self-healing capability is desirable in micro-

electronics based systems which can be achieved through
biologically-inspired design paradigms. Adaptive designs
seek to increase sustainability of circuit operation when
subject to aging-induced degradation which is increasingly
prominent with reduced feature size. The need to mitigate
radiation effects experienced by SRAM-based FPGAs in
space applications provides an additional motivation for
exploring fault handling schemes. FPGAs are prone to faults
in the logic resources as well in the configuration memory,
such as Single Event Upsets (SEUs) [1]. Scrubbing is an
established technique of in-situ fault-mitigation [1], [2].
Scrubbing consists of rewriting the configuration memory
with a fault-free bitstream to eliminate any SEU occurrences
which have corrupted the configuration logic.

Previous external scrubbing techniques rely on a fault-
free “golden” copy of the bitstream to be available at all
times. Traditionally, the reference bitstream resides in an
external storage device [2] which is considered to be a

golden element. We avoid this assumption of a failsafe
storage device as even flash memories are susceptible to
faults due to space radiation effects [3]. Thus to achieve
sustainability, consideration of error correcting codes can be
worthwhile to protect the bitstreams in a storage media.

The proposed On-demand Fault Scrubbing technique uti-
lizes a Reed-Solomon error correcting decoder implemented
using the on-chip PowerPC processor. In the prototype, the
processor fetches a partial bitstream from the Compact Flash,
decodes it, and writes the decoded bitstream to the config-
uration memory through the Xilinx Internal Configuration
Access Port (ICAP) port. Adaptive modular redundancy
utilizes dynamic reconfiguration to adjust redundancy during
computation. The proposed system can operate in simplex
mode where only one instance is active and the periodic
scrubbing provides a basic level of fault tolerance. To further
increase reliability, an FE is replicated thereby introducing
redundancy into the design. The majority voting of the
output of FEs is performed for fault detection, or to identify
the health of these modules using NMR. To sustain a pool of
healthy modules, faulty FEs are refurbished by a GA using
mutation and crossover operations at the physical-resource
level. Autonomous fault-handling capability is achieved in
presence of faults, without needing manual intervention.

2. Related Work
The homogeneous nature of FPGA Configuration Logic

Blocks (CLBs) allows development of generic testing
schemes to detect faults in the logic resources. Emmert,
Stroud, and Abramovici [4] proposed an online Built-In
Self-Test (BIST) technique for mitigating hardware faults in
FPGAs. For this purpose, Roving Self-Test AReas (STARs)
are subjected to test pattern inputs and the output response
of the contained resources is analyzed to detect faults.
The Cyclic NMR technique [5] is based upon functional
testing of resources, yet at a coarse granularity to improve
fault isolation latency and fault recovery period. In contrast
to resource-based testing schemes, functional-based testing
schemes utilize the intrinsic functionality of a Circuit Under
Test (CUT) without applying additional test inputs.

Evolutionary techniques for fault tolerance have been
proposed in literature with the objective of either designing
fault-insensitive circuits or achieving runtime refurbishment
of faults. Keymeulen et al. [6] demonstrated the ability of
GAs to realize fault-insensitive Field Programmable Analog
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Array (FPAA) designs for increased survivability of elec-
tronics used in space missions. On the other hand, runtime
refurbishment provides sustainable functionality when per-
manent faults occur due to unforeseen events such as aging.

Traditionally, Hamming codes have been applied in mem-
ory systems to correct single bit errors. Their implementation
is straightforward, yet their fault-handling capacity in terms
of the number of erroneous bits per block is low. On the other
hand, more advance techniques like Reed-Solomon error
correcting codes provide higher fault capacity, at the expense
of increased logic complexity in the correction circuit.
For flash memories in particular, various error correction
schemes have been evaluated in the literature [7]. As the
need for reconfiguration in SRAM-based FPGAs is much
less frequent than that of accessing data in a SRAM memory
storage device, the latency overhead of a sophisticated error
scheme can be justified. Therefore, we investigate using
Reed-Solomon codes to protect configuration bitstreams. In
addition, the logic complexity of the error correcting scheme
is of less concern since our software-based decoder runs
on an embedded processor. Exposures to failures in the
PowerPC have been addressed in recent work [8] using
a radiation-hardened controller to monitor the health of
the PowerPC within the FPGA fabric. Moreover, in the
technique proposed herein, the PowerPC is not on the critical
throughput path, so its catastrophic failure would impair only
the recovery capability rather than the output correctness.

Previous methods for configuration memory protection
employ scrubbing schemes. A basic scrubbing scheme per-
forms readback of the configuration memory and if any
error is found in a particular frame, then only the cor-
responding frame is overwritten [2]. On the other hand,
NASA’s (Radiation Effects and Analysis Group) proposed
an external blind scrubbing method in which configuration
memory is periodically overwritten by a golden bitstream.
An internal scrubber utilizing a PicoBlaze processor softcore
was proposed by Heiner et al. [9]. However, multiple bit
upsets are challenging to accommodate when using Single
Error Correction, Double Error Detection codes described
therein. We exploited the high error correcting capability
of Reed-Solomon codes to handle multiple bit errors in the
configuration bitstream.

3. Adaptive Modular Redundancy with
On-demand Scrubbing

The hardware architecture of our proposed approach is
shown in the Fig. 1. An on-chip PowerPC processor monitors
the throughput for any discrepancy while the other on-chip
processor is employed to perform refurbishment. An NMR
configuration consists of N instances of a given FE, where
all of them are subjected to the same input. An Active FE is
defined as the FE whose datapath is directly connected to the
output of the system. The outputs from both the active and
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standby FEs are communicated through the GPIO and PLB
to the PowerPC software which monitors the health of these
elements. After an Evaluation window, E, the software based
voter updates the health status of the FEs based upon their
discrepant behavior. The functional resources in datapath as
well as the resources under test are evaluated with the actual
throughput data inputs to the system instead of any synthetic
test vectors. Upon identification of a faulty PE, the GA-based
refurbishment mechanism is initiated to circumvent faults in
the mapped design.

Fig. 2 and Fig. 3 illustrate the flow of the fault-handling
mechanism. Initially, multiple copies of a given FE are
instantiated in various partial reconfigurable regions. The
software-based discrepancy monitor implemented by Fault
Detecting Processor periodically observes outputs to detect
discrepancies between the output of individual FEs and the
majority of their outputs. Intermittent sampling removes the
hardware voter from the throughput path and is appropriate
for applications such as signal processing in which checking
of every output is not essential to maintain viable throughput.
Any discrepant behavior detected by the PowerPC results
in that FE to be marked as faulty. If the active FE in the
datapath becomes faulty, the system’s main output port is
transferred to that of one of healthy FEs. In this way, a
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Fig. 3: Flowchart of Fault Recovery Process

healthy FE is inserted in the datapath and becomes the
new Active FE as illustrated in Fig. 3. Thus, the system
is reconfigured with minimum latency to maintain system
throughput. Meanwhile, the Refurbishment Processor on
second PowerPC controls the reconfiguration mapping for
fault recovery. As a proof-of-concept system, the GA is
currently implemented on the host PC to refurbish faulty FEs
outside the critical path so as to keep all N FEs healthy.

4. Experimental Setup and Results
For the proof of concept, MCNC benchmarks circuits [10]

have been used to study the proposed dynamic NMR ar-
rangement, bitstreams encoding, and GA-based refurbish-
ment techniques. First, a 32-input with 32-output MCNC
benchmark circuit C6288 is implemented on a Xilinx de-

Table 1: Reconfig. latency for improved correction capability
Codeword
Length, n

Fault
Capacity, t

Reconfiguration
Time (msec), λ

15 3 609
17 4 774
19 5 976
21 6 1213

velopment board ML410. This board has a Virtex-4 FPGA
on it and the synthesized circuit occupies 752 LUTs (or 427
slices) for one instantiation. The PowerPC is instantiated by
Xilinx Platform Studio. The project is managed in Xilinx
ISE, and the partial bitstream files are generated using
PlanAhead. The partial bitstreams for the FEs are stored in
compact flash which is interfaced to the processor through
the System ACE controller.

For NMR of size N=5, a total of 5 instances of a
benchmark circuit are created at design time. Five partial
reconfiguration regions are defined whose sizes depend upon
the application circuits. The partial bitstream size of an FE
is 38KBytes whereas that of a blank bistream is 11KByte.
In their original approach, Reed and Solomon represented a
message of length k by a polynomial p(x). The coefficients
of this polynomial are the source symbols. The polynomial
p(x) is over-sampled to provide some redundancy in the
information and the resultant codeword is sent over the noisy
channel. Thus, a Reed-Solomon encoder [11] is specified as
RS(n, k) where: k = number of data symbols with s-bit
each in the original message, and n = number of symbols in
the codeword after appending parity symbols. The receiver
end recovers the original message by solving a linear system
of equations. The error correction capability, t of a Reed-
Solomon decoder is given by [11]: t = (n−k)

2 . Thus, the
decoder can correct up to t symbols in the codeword. In
RS(15,9), each codeword contains 15 symbols out of which 9
are data symbols and 6 are parity symbols. For evaluating the
error correcting code scheme for memory protection, faults
are randomly injected into the encoded bitstream stored on a
compact flash. Bitstream errors reasonably mimic the effect
of radiations on an FPGA device. The PowerPC’s software
based Reed-Solomon decoder extracts the actual bitstream
from the encoded bitstream, and it is observed that these
faults are correctable as far as the number of errors are less
than half of the difference between the encoded message size
and the data block size [11]. Although, the Reed-Solomon
decoder has currently a software based implementation, it
can be implemented in hardware in future work.

Table 1 lists reconfiguration time overhead when using
the proposed fault tolerant architecture. In simplex mode,
only one instance of an FE is instantiated whereas it is
replicated 5 times in the NMR case. The size of the RS
encoded partial bitstream increases from its original size,
thereby increasing the reconfiguration time as listed which
includes the time for decoding. For typically-sized circuits,
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Table 2: GA Refurbishment Results for various sized circuits
c17 cm42a 3-to-8 decoder cm85a 3x3 Multiplier misex1 Z9sym

No. of LUTs 8 20 24 36 40 72 148
Max. Fitness 64 160 64 6144 384 1792 512
Fault Impact 46 159 57 6120 327 1648 420

Avg. no of Generations 105 529 169 113.1 1428 77297 60195
95% Confidence Interval 102, 109 428,630 145,193 92.6,133.6 1018,1837 51129,103464 60195,60195

No. of Runs 20 20 20 20 20 20 1

the logic and memory resource overhead of NMR can be
justifiable within the capacity of current multi-million gate-
equivalent FPGAs and gigabyte capacity flash memories.

To study fault effects in logic resources, multiple stuck-
at faults are injected in the post-place and route simulation
model of the circuit. It is observed that the output deviates
from the truth-table of the circuit. The Evaluation Window
depends upon the circuit and the quality of throughput
desired. The reconfiguration time of a faulty PE is not in
the critical path and may be neglected when considering the
total time for fault isolation and recovery.

Next, experiments were conducted to determine a tractable
size of the circuit that the GA can refurbish in the presence
of fault(s). Circuits with various extents of LUTs utilization
were selected to assess GA-based refurbishment feasibility
with increasing number of LUTs. The experiments were
performed on a platform which models a FPGA circuit
composed of 4-input LUTs. A custom synthesis cell library
was built to map the benchmark circuits on to a predefined
subset of LUT functions supported by the platform. The
circuits were mapped using the ABC synthesis tool [12].
The software platform implements a conventional finite
population GA. GA operators of mutation and crossover
are supported with tournament-based selection and elitism
to maintain best performing individuals over time.

The results of refurbishment experiments are demon-
strated in Table 2 for the benchmark circuits of c17 (5
inputs, 2 outputs), cm42a (4, 10), 3-to-8 decoder,
cm85a (11, 3), 3x3 multiplier, misex1 (8, 7) and
Z9sym (9, 1) with population size of 50. The population
size was decreased to 20 for experiments with the follow-
ing benchmarks: cm85a, misex1 and Z9sym. The GA
terminates upon achieving the preset fitness threshold, thus
sufficiently refurbishing functionality to the specified level.
The results indicate the effect on the performance of the
GA while increasing the number of LUTs utilized and also
increasing number of output lines.

5. Discussion
In the fault-handling technique developed herein, by con-

tinually keeping all the FEs in operation, the fault capacity
of a system is improved to tolerate multiple failures. Upon
fault-detection, a faulty module in the datapath is replaced
by one of the healthy modules in the test pool. Meanwhile,
the faulty module can be refurbished by using GAs without
impeding the operational datapath. The scheme can be

conceptualized as if only one FE is active, other resources
periodically undergo test. However, the resources under test
are evaluated to actual inputs at all times, which is also
useful in verifying the health of the active FE. As opposed
to resource-based testing schemes, this functional testing
scheme maintains throughput for the inputs which are actu-
ally used rather than exhaustive testing of the resources by
additional test vectors. The recovery results of experiments
for various benchmark circuits demonstrate the effectiveness
of the proposed scheme for adaptive runtime refurbishment.
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Abstract— Although scientific computing is gaining many
attentions, calculations using computers always associated
with arithmetic errors. Since computers have limited hard-
ware resources, rounding is necessary. When using iterative
computations, the rounding errors are added and propagated
through the whole computation domain so that the final
results can be completely wrong. In this paper, we propose
a floating-point error reduction method and its hardware
architecture for addition. The proposed method is based on
preserving the residue coursed by rounding and reusing the
preserved value in next iteration. The evaluation shows that
the proposed method gives almost the same accuracy as the
conventional double-precision floating point computation.
Moreover, using the proposed method is 24% area efficient
than using a conventional double-precision adder.

Keywords: Precise arithmetic, floating-point, FPGA.

1. Introduction
Scientific computing is an area where mathematical mod-

els are executed in computers to analyze and simulate
various physical behaviors. Such simulations are used in
many fields such as fluid dynamics, molecular analysis and
even in rocket science. Many of such models use repeated
calculations spans many iterations. For example, finite-
difference time-domain (FDTD) [1] used in fluid dynamics is
such a well know method that deals with solving differential
equations in a time-domain.

Although scientific computing is gaining many attentions
due to the introduction of multicore CPUs and many core
GPUs, calculations using computers are always associated
with arithmetic errors. Due to the limited hardware re-
sources in computers, rounding of the computation results
is necessary. This gives a small error in many computations.
Although such errors are negligible in a single calculation,
they are a very big problem in scientific computing. The
simulation models use repeated calculations with thousands
of iterations to produce a result. Therefore, small error in
each iteration add up and propagated through the whole
computation domain. Due to this, the final results obtained
after thousands of iterations might be completely wrong.
Computation errors are been discussed in many works such

as [2] and [3]. Accepting those results could bring devastat-
ing effects since many simulations are connected with real
world application such as air plane designing, power plant
controlling etc.

Easiest way of reducing computation error is to add
more precision [4]. However, that comes with an increased
hardware cost. Using software libraries such as “multiple
precision integers and rationals (MPIR)” [5] is another way
of dealing with this problem. However, when the precision
increases the processing time also increases exponentially. In
this paper, we focus on floating-point addition and propose
a error-reduction method and its area-efficient hardware
implementation. The proposed method based on a very
simple idea of preserving the residue due to rounding and
reuse it in recursive computation. We propose an efficient
method implement this algorithm in smaller number of time
steps. According to the evaluation using FPGA, the proposed
single-precision floating-point adder gives almost the same
accuracy of the double-precision floating-point adder, but
requires 24% less area compared to the conventional double-
precision adder.

2. Floating-point error reduction using
residue-preservation

In this section, we focus on reducing the floating-point
error due to normalization and rounding in iterative compu-
tations. In these computations, the output of the iterationi
is used as an input of iterationi + 1. Therefore, the error is
propagated from iteration to iteration. However, if we can
keep the residue of rounding in one iteration, we can use it
in the next iteration. Even if the residue is very small during
a single iteration, it will become large if we keep storing it.
Therefore, after many iterations, the residue of rounding is
also add up to the result and that will reduce the error. The
algorithm to reduce the floating-point error in summation is
given as follows.

Step 1:R = S0 = 0
Step 2:U = R + Xi

Step 3:Si+1 = Si + U
Step 4:V = Si+1 − Si

Step 5:R = U − V
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Fig. 1: Floating-point error reduction method

Step 6: if(i < n), increasei by 1 and go to Step 2
else, finish

Figure 1 explains this algorithm using the computation of∑n−1
n=0 Xi as an example. In the first iteration, the valueXi

is added with the residueR of the previous step. The result
is saved asU as shown in Step 2. In this calculation, we
loose a part ofR due to rounding. Then we addU to the
sumSi to get the new summationSi+1. Due to the rounding,
only a part ofU is added. This partV is found in Step 4.
To find the non-added part ofU , we subtractV from U in
Step 4. Since this part is not added to the summation yet,
we preserve it asR and use it in the next iteration.

Figure 2 shows the evaluation of this method. When
the number of computations are large, this error reduction
method with single precision computation gives extremely
better results compared to conventional single-precision
computation as shown in Fig.2(a). Moreover, the error re-
duction method gives very similar results to the conventional
double precision computation. Note that, we calculate the er-
ror compared to the double-precision computation so that the
error of doable-precision becomes zero. Figure 2(b) shows
the graphs of the error reduction method and conventional
double precision method to see the difference more clearly.
There are two reasons for this difference. The first one is
the rounding occurs in the conventional double precision
computation. The second one is the unused residue occurs
in the addition ofXi andR in Step 2 as shown in Fig.1.

Although this method gives a very good computation
results, it has so many steps and need two additions and
two subtractions. Therefore, if available, it is better to use a
high-precision computation than using the error reduction
method with low-precision computation. However, in the
next section, we propose an improved algorithm combined
with a new floating-point adder architecture to get the same
error reduction under less additional computation and small
hardware overhead.

(a) Computation error vs. number of additions

(b) Enlarged capture of Fig.2(a)

Fig. 2: Evaluation of the computation error

3. Proposed error reduction algorithm
and its FPGA implementation

In the error-reduction algorithm explained in Section 2,
the processing time is wasted in Steps 4 and 5 to calculate
the residue occurs due to the rounding ofSi+1. However,
if we can preserve all the bits ofSi+1 before rounding, we
can find the residue easily. This method is show as follows.

Step 1:R = S0 = 0
Step 2:U = R + Xi

Step 3:Si+1 = Si + U
R = residue of roundedSi+1

Step 4: if(i < n), increasei by 1 and go to Step 2
else, finish
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Fig. 3: Architecture of the proposed floating-point adder

Note that the residue calculation in Steps 4 and 5 are
removed and the residue is preserved in Step 3.

To execute this algorithm, we proposes a new floating-
point adder architecture as shown in Fig.3. The gray areas in
Fig.3 shows the units we added to the conventional floating-
point adder. To explain the architecture and the proposed
algorithm, let us consider single-precision floating point
addition. The “Add” unit shown in Fig,3 is the same one used
in conventional single-precision adder. The only difference
is that it produces two outputs; the normalized addition
result and the residue after normalization and rounding.
Since no extra adders are included, this architecture can be
implemented area efficiently.

4. Evaluation
We implement the proposed floating-point adder on “Cy-

clone II EP2C35F6’2C6” FPGA to evaluate the error-
reduction method. We used “Quartus II” software tool
to calculate the number of logic elements (LEs) and the
clock frequency. In the evaluation, the proposed method
is compared with conventional single-precision and double-
precision floating-point computations. Note that, we did not
use any pipelines when implementing different adders. It is
difficult to compare adders with different precisions with
different pipeline stages.

Table 1 shows the evaluation results. According to the
results, the proposed method requires less area than conven-

Table 1: FPGA evaluation of floating-point adders
Conventional Conventional Proposed

single-precision double-precision single-precision
floating-point floating-point floating-point

Frequency 38 MHz 31 MHz 27 MHz
Num. LEs 611 1336 1014

tional double-precision floating-point method. However, the
clock frequency is slightly lower than that of the double-
precision method. As discussed in the previous section, the
accuracy of the proposed method is much better than the
single-precision and almost the same as the double-precision.
Therefore, using the proposed method with single-precision
is area-effective than using double-precision. However, as
shown in 2(b) , if the number of iterations are extremely large
as few millions, the difference between the proposed method
and conventional double-precision method gets larger.

5. Conclusion
We have proposed a floating-point error reduction method

and its hardware architecture for addition. The proposed
method based on preserving the residue coursed by rounding
and reusing the preserved value for the calculation. The
proposed adder store the residue in registers so that re-
calculating of residue is not required. The evaluation shows
that the proposed method gives almost the same accuracy as
the double-precision floating point computation and more
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area efficient than the double precision adder. In future
works, we will extend the proposed method of other com-
putations such as multiplication and division.
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Abstract –Eventhough the area of video compression has 

existed for many decades, programming a coding algorithm is 

still a challenging problem. The actual bottleneck is to provide 

compressed video in real-time to communication systems. All 

those constraints have to be solved while keeping a good 

tradeoff between visual quality and compression rates. In this 

context, Motion Estimation (ME) is known to be a key 

operation. On the other hand, in the hardware industry, there 

is great emphasis on High Performance Computing (HPC) 

which is characterized by a shift to multi and many core 

systems. The programming community has to embrace the new 

parallelismin order to take advantage of the performance 

gains offered by the new technology. In this research work, we 

introduce a novel ME scheme with high level of data 

parallelism. It is capable of performing motion search for all 

the blocks of the frame in parallel using a modified Particle 

Swarm Optimization (PSO). This scheme can be implemented 

on Nvidia’s massively parallel Graphical Processing Units 

(GPUs) to yield tremendous speedup as compared to existing 

techniques. 

Keywords:Motion Estimation, Parallel Computing, PSO, 

GPU, Multicore 

 

1 Introduction 

 Today, video coding has become the central technology 

in a wide range of applications, as shown in Fig. 1. Some of 

these include digital TV, DVD, Internet streaming video, 

video conferencing, distance learning, surveillance, and 

security.  

 Video coding standards have evolved primarily through 

the development of the well-known ITU-T and ISO/IEC 

standards. The ITU-T produced H.261 and H.263, ISO/IEC 

produced MPEG-1 and MPEG-4 Visual, and the two 

organizations jointly produced the H.262/MPEG-2 Video and 

H.264/MPEG-4 AVC standards. Recently, these two 

organizations have been working together in a partnership 

known as the Joint Collaborative Team on Video Coding 

(JCT-VC) to produce the HEVC, the High Efficiency Video 

Coding standard, which is the most recent video coding 

standard. The first edition of the HEVC standard was 

finalized in January 2013[1].  

 Inter-prediction motion estimation is a common tool 

used in all video coding standards. The current H.264/MPEG-

4 AVC video coding standard and the upcoming 

HEVCstandard employ the same hybrid approach to achieve 

high compression performance. Inter-prediction motion 

estimation is considered the most computationally intensive 

feature of the coding process.  

 

Figure 1Some applications of video coding 

 Efficient algorithms are needed to target the real-time 

processing requirements of emerging applications. Many fast 

search motion estimation algorithms have been developed to 

reduce the computational cost required by full-search 

algorithms. Fast search motion estimation techniques 

however often converge to a local minimum, which makes 

them subject to noise and matching errors.In this research 

work, we propose a novel fast and accurate block motion 
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estimation algorithm based on an improved parallel PSO 

algorithm. The proposed scheme alleviates the problem of 

being trapped in local minima by employing the strategies of 

PSO. As a result, the proposed scheme produces a quality that 

outperforms most of the well-known fast searching 

techniques. 

 Today, we witness a high revolution in the hardware 

industry. There is a transition to multi-core and many-core 

systems which require a change in the programming approach 

to develop algorithms with high parallelism in order to take 

advantage of the high speedup provided by the available 

hardware. Existing ME algorithms are serial. They operate on 

blocks of the frame serially following the raster order. The 

proposed algorithm, on the other hand, exhibits high level of 

data parallelism. It performs motion estimation for all blocks 

of the frame in parallel. As a result, the proposed algorithm 

provides tremendous speedup and improved quality as 

compared to the exhaustive-search algorithm and to the well-

known fast searching techniques.The proposed scheme will 

be implemented on the multi-core CPU architecture and the 

massively parallel architecture of the GPU using the NVIDIA 

CUDA platform and evaluated. 

2 Technical description 

 Block-Matching Motion Estimation (BMME) with Full 

Search (FS) algorithm is the main computational burden in 

the video encoding process due to exhaustively search all 

possible blocks within the search window. Although FS 

algorithm can obtain the optimum motion vector (MV) in 

most cases, it consumes 60 to 80% of the total computational 

complexity. Thus, a fast and efficient motion estimation 

algorithm is required. In this research, we propose a novel 

fast and accurate block motion estimation algorithm based on 

an improved parallel Particle Swarm Optimization (PSO) 

algorithm.Since the proposed scheme is highly parallel, the 

massively parallel architecture of the GPU can be exploited to 

achieve massive speedup. 

2.1 Related work 

 In the literature, two major approaches were researched 

to reduce the computational cost of the Exhaustive FS 

method. One employs fast mode decision algorithms to skip 

unnecessary block modes in variable block checking process 

[2-4]. The other one utilizes Fast Motion Estimation (FME) 

searching algorithms to reduce unnecessary search points.In 

the past years, the FME algorithms included three-step search 

[5], four-step search (4SS) [6] which can be generalized to N-

step search (NSS), the diamond search (DS) methods [7], the 

cross-diamond search (CDS) method [8], and the Hexagon-

based search [9].  In each of these fast search methods, a 

different search pattern is employed to reduce the number of 

search points. These algorithms reduce the computational 

complexity with negligible loss of image quality only when 

the motions matched the pattern well; otherwise, the image 

quality will decrease. In [10], a hybrid Unsymmetrical Multi-

Hexagon-grid search (UMHexagonS) algorithm, which 

attempt to usemany search patterns, has achieved both fast 

speed and good performance. In [11],Predictive Intensive 

Direction Searching (PIDS) algorithm was developed. PIDS 

successfully speeds up the process compared to 

UMHexagonS. However, this algorithm still searches each 

direction exhaustively, which may cause searching resource 

waste. In [12], a novel Predictive Priority Region Search 

(PPRS) algorithm that performs adaptively search indirection 

and locality regions was proposed. Other FME algorithms 

proposed in the literature include Motion adaptive search 

(MAS) [13], Variable Step Search (VSS) algorithm [14], and 

the Multi-Path Search (MPS) algorithm [15]. In addition to 

the above, several high efficiency algorithms were presented 

in the literature for ME that significantly reduce the number 

of checking points examined while retaining the video 

quality. These algorithms include the Motion Vector Field 

Adaptive Search Technique (MVFAST)[16], the Predictive 

Motion Vector Field Adaptive Search Technique(PMVFAST) 

[17], the Advanced Predictive Diamond Zonal Search 

(APDZS) [18], and the Enhanced Predictive Zonal Search 

(EPZS) [19].  

Block matching motion estimation can be formulated into an 

optimization problem where one searches for the optimal 

matching block within a search region which minimizes RD 

cost. The above fast block matching methods suffer from 

poor accuracy since they dictate that only a very small 

fraction of the entire set of candidate blocks be examined, 

thereby making the search susceptible to beingtrapped into 

local optima on the error surface.In order to escape from the 

problem of local minima; several approaches were recently 

presented in the literature to use modern optimization 

algorithms to solve the problem of motion estimation. In [20, 

22], the Genetic Algorithm (GA) has been considered for 

motion estimation. The proposed algorithms, however, tend 

to be complex and suffer from a high computational burden. 

In [22], the Simulated Annealing (SA) concept is employed to 

control searching process and to adaptively choose the 

intensive search region. In addition to GA and SA, there have 

been some attempts in the literature to apply Particle Swarm 

Optimization (PSO) to solve the problem of ME [23-29].  The 

PSO-based motion estimation methods introduced in [23-27] 

either have higher computational complexity [23] or have 

lower estimation accuracy [24, 25, 26] than several existing 

fast search methods.These algorithms try to improve the 

speed of convergence of the PSO iterations by choosing, as 

initial positions of the particles, the MVs of adjacent blocks in 

the frame as well as the (0,0) MV. The PSO iterations, 

however, can achieve faster convergence if we exploit the 

temporal correlation with the collocated block in the adjacent 

frame as well. In [29], a new variant of parallel particle 

swarm optimization (PPSO) known as small population-based 

modified PPSO (SPMPPSO) is proposed for fast motion 

estimation. In the standard PSO, positions of particles are 

updated after each individual fitness evaluation (i.e. in an 

asynchronous fashion or serially). The proposed algorithm in 

[29] achieves parallelism at the particle level, where the 
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particles of the swarm evaluate the fitness function 

concurrently. Nevertheless, the algorithm presented in [29], 

as well as all the other PSO-based ME algorithms in the 

literature, operate serially on the blocks of a given frame 

following the raster order. Thus, if we can device a ME 

algorithm which can operate in parallel on all blocks of the 

frame, then the speed of the ME process could be 

tremendously enhanced. This is the main focus of our 

proposed PSO-based ME scheme. 

2.2 Proposed approach 

 In this research work, we propose a new block matching 

algorithm based on a novel parallel PSO approach. The 

proposed algorithm allows performing motion estimation for 

all the macroblocks within the frame in parallel. To do that, a 

modified PSO algorithm is applied to all macroblocks 

concurrently for a certain number of iterations. After that, a 

synchronization step is performed among neighboring MBs to 

exchange information about the MVs found so far in the PSO 

process. Based on the assumption that the motion field is 

smooth and varies slowly, there are strong correlations 

between motion vectors of the neighboring blocks. As a 

result, this synchronization step allows making use of the 

spatial correlation characteristic between neighboring MBs to 

refine the MVs found so far in the PSO process. The 

proposed scheme exhibits intrinsic data parallelism and thus 

can be implemented on the CPU muti-core architecture and 

NVIDIA‟s GPU architecture using the CUDA platform to 

achieve the required speedup. To illustrate the proposed 

scheme, we first review the standard PSO algorithm, then we 

explain the details of our PSO-based parallel ME algorithm 

and compare it with the available schemes highlighting its 

estimated improvements. 

2.2.1 The standard PSO algorithm 

  The PSO technique was introduced in [30] as a robust 

stochastic optimization technique based on a social-

psychological model of social influence and social learning. 

Belonging to the category of swarm intelligence methods, 

PSO is a population-based technique inspired by the social 

behavior and movement dynamics of flocks of birds, schools 

of fish, and herds of animals adapting to their environment.In 

the conventional PSO approach, the so-called swarm is 

composed of a set of particles that are placed in a search space 

where each particle represents a candidate solution to a certain 

problem or function. Initially, each particle is assigned a 

randomized velocity. The particles then „„fly‟‟ through a 

multidimensional search space, where the position of each 

particle is adjusted according to its own experience and that of 

its neighbors. Each particle keeps track of its personal best 

location (pbest) in the problem space, which represents the best 

solution (fitness) it has achieved so far. The location of the 

overall best value, obtained so far by any particle in the 

population, is called gbest. The PSO algorithm updates the 

position of a particle by moving the particle based on its past 

personal best (pbest) and the global best position (gbest) that has 

been found by all the particles in the swarm. Details of the 

PSO iterations are shown in Fig. 2. 

 

Figure 2Iterations of the PSO algorithm. 

The idea of PSO is to change the velocity of each particle 

towards its pbest and gbest locations at each time step. 

Accelerationis weighed by a random term, with separate 

random numbers being generated for acceleration toward the 

pbest and gbest locations. The velocity and position of a particle 

can be updated according to the following equations: 

 
𝑉𝑖 𝑡 + 1 = 𝑤𝑉𝑖 𝑡 + 𝑐1𝑟1 𝑃𝑖 𝑡 − 𝑋𝑖 𝑡  + 𝑐2𝑟2 𝑃𝑔 𝑡 − 𝑋𝑖 𝑡   (1) 

 

𝑋𝑖 𝑡 + 1 = 𝑋𝑖 𝑡 + 𝑉𝑖 𝑡 + 1              (2) 

 

where i is the index of the particle, i = 1,2, . . . ,M; w the 

inertia weight; c1, c2 the positive acceleration constants; r1, r2 

therandom numbers, uniformly distributed within the interval 

[0, 1]; t the number of iterations so far; g the index of the 

bestpositioned particle among the entire swarm; Pi the 

position of pbest for the particle i; and Pg is the position of gbest 

for the entire swarm. 

2.2.2 The proposedparallel PSO-based ME 

scheme 

 In this research work, we device a ME scheme which 

applies PSO strategies to find the optimal MVs for all the 

macroblocks of a given frame in parallel. This is done by 

executing the steps shown in Fig. 3. 
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Figure 3Proposed motion estimation scheme 

 

 A given frame is divided into 16x16 macroblocks. Then, 

a swarm consisting of M particles is generated for each MB. 

Each particle of a given MB represents a matching MB within 

the search window in the reference frame. Using the PSO 

iterations, the positions of the particles is continuously 

updated until the global minimum of the Sum of Absolute 

Difference (SAD) cost function is reached. 

 In the standard PSO algorithm, the initial population is 

randomly selected, which brings high computational 

complexity to the motion search since the iterations are 

starting from random points which might be far from the 

global minimum. However, if the initial points are chosen to 

be close to the optimum, then faster convergence can be 

achieved. Since motion vectors have a high temporal 

correlation feature, we initialize 9 particles of each MB to the 

MVs of the collocated MB in the previous frame as well as its 

8 adjacent neighbors. We also initialize one of the particles to 

the (0, 0) MV to account for static blocks. The rest of the M 

particles are randomly generated. Notice that at this point, we 

cannot use the MVs of the adjacent blocks in the same frame 

since these MVs are not calculated yet and the only apriori 

information we have is the motion of the MBs of the previous 

frame.  This initialization step is shown in Fig. 4. 

 After initialization, the swarms of particles of all MBs 

are allowed to run for a predefined K number of iterations in 

parallel. During each iteration, each MB with index j adjusts 

the positions and velocities of its particles, independently 

from other MBs, evaluates the fitness function at the new 

positions, then it updates the values of Pij and Pgj which are 

the position of the best fitness attained so far for particle i and 

the global best position for MBj respectively. Early 

termination of search is allowed here whenever the fitness 

value is less than a predefined threshold value Tth.  

 

Figure 4Particlesinitialization of agiven MB 

 After the K iterations are completed by all MBs of the 

frame, a synchronization step is performed to refine the MVs 

found so far in the PSO process. This is done by exploiting 

the high spatial correlation existing between MVs of 

neighboring blocks. To do that, each MBj sorts its M particles 

in a decreasing order according to their Pij values. Then the 

last 8 particles which have the worst Pij values are eliminated 

and replaced by 8 new particles which are initialized to the Pg 

values of its 8 neighboring MBs. 

 In this synchronization step, neighboring MBs are 

allowed to refine their motion search process using 

information from neighboring blocks. Weak particles having 

the worst fitness values are replaced with strong particles 

which are located closer to the global optimum. This process 

is expected to speed up the convergence of the PSO 

algorithm. Communication between neighboring MBs is 

required in this step where each MB will broadcast to its 8 

neighbors the value of it global best location Pg found so far 

in the motion search process. This process is shown in Fig. 5. 

 

Figure 5 MB synchronization 

2.3 Preliminary results 

2.3.1 Estimation Accuracy 

 In order to test the accuracy of the proposed scheme, 

simulations were carried out on video sequences of various 

motion content in the QCIF format at 30 frames per 

second.The searching range is ±7 pixels and the block size is 

16x16 pixels. The other parameters of simulation are as 

follows. For PSO, the size of the particle population was 

chosen to be M=10, Nmax=12, Nsame=4, K=6 so that only one 

synchronization point is needed, c1 and c2 are equal to 2.05.  
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 The results interms of Peak Signal to Noise Ratio 

(PSNR) are given in table 1. 

 As shown in Fig.6, our proposed PSO algorithm 

performs very close to FS algorithm and exceeds that of all 

other schemes. Consequently, the proposed PSO algorithm 

has very high search accuracy. 

Table 1Comparison of average PSNR results in db 

Sequence FS  DS TSS 4SS ARPS PSO 

[14] 

PSO 

new  

Foreman 33.52 33.29 33.24 33.28 33.19 33.12 33.44 

Bus 24.21 23.52 23.45 23.46 23.26 23.91 24.19 

News 28.19 21.38 22.69 21.51 26.29 27.99 28.10 

Stefan 25.14 24.53 24.97 24.56 24.92 25.03 25.11 

Soccer 22.97 21.93 22.14 21.93 22.02 22.18 22.77 

Silent 35.69 35.43 35.55 35.41 35.30 35.39 35.56 

Carphone 27.46 25.42 27.01 25.23 27.13 27.20 27.39 

 

 

Figure 6 Motion estimation accuracyinterms of PSNR for Bus sequence 

2.3.2 Speedup on multi-core processors 

 The proposed scheme exhibits a high level of data 

parallelism since it operates on all the blocks of the frame in 

parallel rather than serially as in existing ME approaches. As 

a result, our algorithm can be efficiently implemented on a 

multicore system. Therefore, a multicore implementation of 

our proposed algorithm is performed using the MATLAB® 

Parallel Computing Toolbox™ (PCT). The PCT provides 

parallel constructs in the MATLAB language, such as parallel 

for loops, distributed arrays and message passing & enables 

rapid prototyping of parallel code through an interactive 

parallel MATLAB session. 

 The proposed algorithm is simulated on a server with 

two Intel Xeon 2.66GHz CPU quad cores and 2GB memory. 

Thus, this server is equipped with 8 CPU cores. The 

execution platform is Matlab R2012a. Simulation results are 

given for Foreman sequence in QCIF format. The block size 

is 16x16 pixels. Thus, one frame of the QCIF (144x176) 

video sequence contains 9x11 blocks which should be 

mapped to the available cores to be processed in parallel. 

Since the number of MBs in the frame is odd, we used an odd 

number of Matlab workers to perform simulations. For three 

available Matlab workers, each worker performs motion 

estimation for three rows of MBs in the frame. Whereas if 

nine Matlab workers are available, then each one performs 

motion estimation for one row of MBs within the frame. In 

this way, load balancing between the cores is ensured. The 

speedup obtained for 3 and 9 Matlab workers is given in table 

2. 

Table 2Speedup on multi-core CPU architecture 

3 Matlab Workers 9 Matlab Workers 

2.65 5.8 

 

 We notice that the speedup is high for three workers but 

not as high as expected for 9 workers. The reason behind this 

is that the available architecture contains only 8 cores. 

Although PCT allows to use upto 2 Matlab workers or labs 

per CPU core, but the performance will not be optimized.For 

a more thorough performance evaluation, simulations on a 

computer cluster with higher number of cores are still in 

progress. 

2.3.3 Speedup on many-core GPU architecture 

 Nvidia GPUs are equipped with hundreds of decoupled 

cores that are capable of executing code in parallel. Our 

proposed scheme is in the process of being implemented on 

the GPU using the CUDA platform. Tremendous speedup is 

expected. 

3 Impact and significance of the project 

 The significance of this research project lies in many 

folds. First, the topic under investigation is of great 

importance to the image and video processing industry. 

Motion estimation lies in the heart of any video compression 

system. It is the main block responsible for removing the 

temporal redundancies in a video sequence which allows 

achieving bit rate reduction and thus efficient compression. 

Developing an effective algorithm would improve the 

efficiency of the video codec to meet the needs of the 

evolving video industry. Cutting-edge applications such as 

HD video streaming, gaming, and mobile HDTV require high 

quality video at a very low bit-rate. Paving the way for next 

decade‟s video applications requires a video compression 

system with an optimized motion estimator.  

 Second, the method of investigation of this project 

tackles a novel approach that combines several important 

concepts. The proposed algorithm achieves parallelism which 

is the main requirement of all current algorithms to be able to 

use the state-of-the-art parallel processing capabilities to 

achieve speedup. In both industry and research today, there is 

a relentless pursuit of ever greater level of performance by 

employing parallelism. The advent of multicore CPUs and 
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many-core GPUs means that mainstream processor chips are 

now parallel systems. Therefore, the challenge is to develop 

algorithms with intrinsic parallelism in order to exploit the 

capabilities of today‟s processors. So far, proposed Motion 

Estimation (ME) algorithms were either serial or had only 

partial parallelism. The algorithm presented in this proposal 

exhibits high data parallelism and thus can exploit the 

advance in the hardware industry. The proposed algorithm is 

to be implemented on the NVIDIA GPU architecture using 

the CUDA platform. The NVIDIA programmable GPU has 

evolved into a highly parallel, multithreaded, many-

coreprocessor with tremendous computational horsepower 

and very high memory bandwidth [31]. Thus, an efficient and 

optimized implementation of our proposed ME algorithm on 

the GPU is expected to yield a tremendous amount of 

speedup.  

 On the other hand, the proposed algorithm is based on 

modern optimization which is now gaining much popularity 

in the academic and research field and is being used to solve 

problems in many fields. 

 Moreover, pursuing this research project would pave the 

way to many other projects in the future. A deep 

understanding of the problem and developing an effective 

algorithm would allow for exploring more improvements not 

only to the problem of motion estimation but to the other 

blocks of the video codec as well. 

 

Figure 7Significance of the project 

4 Conclusions 

 In this research project, we propose an efficient motion 

estimation software tool that is characterized by a high 

accuracy to meet the needs of the video coding industry. The 

proposed scheme also has a high level of data parallelism and 

thus can leverage the capabilities of today‟s High 

Performance Computing (HPC) industry to achieve speedup. 

Simulation results show that the proposed motion estimation 

tool yields better estimation accuracy than existing fast 

schemes. Preliminary implementation on a multi-core CPU 

architecture shows a high prospect of speedup obtained from 

available parallelism.  
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Abstract - Despite the numerous advantages of nanometer 
technologies, the increase in complexity also introduces a 
viable vector for attacking an integrated circuit (IC): a 
hardware attack, also known as a hardware Trojan. Since 
such an attack is implemented within the hardware of a 
design, it is generally undetectable to any software operating 
on this circuitry. To make matters worse, a hardware attack 
could be introduced at almost any point in a design’s 
development cycle, be it through third-party intellectual 
property (IP) licensed for a design, or through unknown 
modifications made during the fabrication process. This 
malicious hardware could act as a kill-switch for a vital 
device, or as a data-leak for sensitive information. Activation 
would occur at some predetermined time or by a trigger from 
a malicious agent. An effective method is required to find such 
unexpected functionality. This paper describes several key 
challenges to be addressed in order to provide hardware 
assurance for trustworthy systems. We examine the platform of 
field programmable gate arrays (FPGAs) both for their 
potential vulnerability to threats within third-party IP as well 
as their capability to accelerate the testing of those modules. 

Keywords: Trusted hardware; malicious hardware detection; 
security; FPGAs; third-party intellectual property (IP) 

 

1 Introduction 
 Trustworthy computing (with software) cannot exist 
until there is trustworthy hardware on which to build it [1]. 
To most designers, one of the advantages to implementing a 
design in hardware instead of as a software implementation is 
the secure nature of hardware. The assumption is prevalent 
that hardware is secure while software can be attacked. 
Unfortunately, this is a false assumption, created due to a lack 
of security awareness with increasingly complicated circuits. 
Advancements in process technology provide designers with 
the ability to put more transistors on a single silicon die [2] to 
fabricate increasingly complex designs. Unfortunately, the 
contents of these chips can be obscured, leading to potential 
security vulnerabilities within the hardware. A full design 
could have logical blocks contributed by dozens of different 
sources, with hundreds of different people contributing to the 

overall design. In some cases, these designers may have 
nothing to do with each other, and may come from outside of 
the company. There exists the threat that malicious agents can 
compromise the supply chain of integrated circuits (ICs)  
[3, 4] by inserting hardware Trojans (i.e., tiny circuits 
implanted in the original design to make it work contrary to 
the expected way in certain rare and critical situations [5]). In 
addition, the capital investment required for semiconductor 
foundries has limited the number of companies who fabricate 
their own ICs. Many companies have become “fabless” and 
rely upon overseas foundries to manufacture their designs 
(Table 1); these designs are then returned as packaged chips. 
The challenge of detecting malicious hardware requires that 
the testing methodology identifies unknown functionality 
within a chip after fabrication. 

Table 1: 2011 Top 10 Semiconductor Foundries [6] 

Rank Foundry Location 
Sales 
(USD) 

1 TSMC Taiwan 14,533M 

2 UMC Taiwan 3,604M 

3 GlobalFoundries U.S. 3,580M 

4 SMIC China 1,319M 

5 TowerJazz Israel 613M 

6 IBM Microelectronics U.S. 545M 

7 Vanguard International Taiwan 516M 

8 Dongbu HiTek South Korea 483M 

9 Samsung South Korea 470M 

10 Powerchip Technology Taiwan 431M 
 
 Furthermore, different points of insertion can also 
involve different types of Trojans. A Trojan inserted at 
fabrication might utilize direct physical changes, due to the 
lack of a digital copy of the Trojan. On the other hand, a 
Trojan inserted through third-party intellectual property (IP) 
could pretend to be a type of digital watermark, yet hide 
additional malicious functionality. The reuse of IP makes it 
difficult to guarantee the security of a system when the 
underlying components are untrusted [7]. For example, a 
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design might include licensed design modules from vendors 
supplying third-party intellectual property, requiring 
techniques to ensure the trustworthiness of those modules  
[8-11]. For reconfigurable systems using field-programmable 
gate arrays (FPGAs), third-party IP becomes a likely attack 
vector. Some approaches with FPGAs attempt to isolate 
modules within the system’s implementation [12], or 
establish a root of trust within the FPGA fabric [13]. 
 The concept of trust requires an accepted dependence or 
reliance upon another component or system [14]. In an age 
where hardware complexity provides the means to hide 
malicious hardware, the assumption that the hardware is 
secure can be misleading. Although software attacks are still 
the most common, a hardware attack emerges within the 
realm of possibility. Standard verification techniques ensures 
that a design meets the minimum functional requirements, but 
new methods of verification are required to guarantee that a 
design performs its intended function but nothing more. This 
paper discusses the challenges of developing trustworthy, 
reconfigurable computing systems. It is crucial for a designer 
to determine the trustworthiness of the design, as well as what 
possibilities are available for compromising that design. A 
solution for hardware assurance likely needs some automation 
to cover the potential test vector space. Reconfigurable 
hardware offers the possibility to accelerate the process. 
 The rest of this paper is organized as follows. Section 2 
discusses hardware assurance and the basis for a root of trust. 
Section 3 provides a perspective on risk management by 
vendors and designers. Section 4 describes detection methods 
that have been developed and presented in the literature. 
Section 5 proposes a potential hardware testbed where field-
programmable gate arrays (FPGAs) could be used to 
accelerate the verification process. Finally Section 6 
summarizes the paper and offers some potential directions for 
future research. 

2 Hardware Assurance 

 

Figure 1: Linkages among hardware and software for secure 
and reliable computing 

 Many systems use hardware as the root of trust in order 
to defend against software-level attacks. Consequently, there 
is significant research on software assurance. However, 
viewing the system strictly in terms of hardware and software 
is a coarse-grained analysis. Understanding the linkages 
among technology, architecture, communication, and the 

application domain is critical for development of a trusted 
system (Figure 1). This section discusses the threat model 
used and its potential to affect full computing systems. It also 
describes a taxonomy for understanding malicious hardware 
and its potential impact on semiconductor intellectual 
property. 

2.1 Threat model 

 One of the most insidious methods of attacking a circuit 
is by modifying its hardware in a malicious way. To put it 
simply, a hardware Trojan is created by discreetly inserting 
hidden functionality into a hardware design. This insertion 
can occur at any stage in a production path, and could have 
devastating effects on the final design. Such Trojans can have 
a variety of functionality, ranging from denial-of-service 
functionality that gives designs a controllable kill switch, to 
hidden data-leaks that can leak sensitive information [14]. 
 One of the earliest papers covering the concept of 
Hardware Trojans was published by a group of researchers at 
the University of Champaign-Urbana [15]. This research 
included the design and test of a variant of the Aeroflex 
Gaisler LEON 3 [16] processor, called the Illinois Malicious 
Processor (IMP). The IMP was a fully functional version of 
the LEON 3 that operated normally in almost all 
circumstances, with the sole exception of one trigger: the 
receipt of a specially crafted corrupt network packet. 
Triggering this functionality would then switch the processor 
into a new shadow mode where the processor would accept 
and perform commands sent over the network. The shadow 
mode allowed an attacker to both compromise and hijack a 
system running on this processor, regardless of any security 
measures in the software. Additionally, this modification only 
required the insertion of 1,341 gates to the existing circuit, 
which originally contained over 1 million. Detecting such an 
insertion representing 0.1% of the circuit poses a significant 
problem. Even in much smaller circuits, the percent impact of 
hardware Trojans on the total area of a circuit is less than 
0.5% [17, 18]. 

2.2 Classification of malicious hardware 

 The structure of a hardware Trojan can vary greatly 
depending upon intended functionality and payload [19]. A 
well-placed bug in a critical location can be as detrimental as 
a secret data-leak in a strong cryptosystem. Some Trojans are 
triggered via a specific sequence of inputs that are unlikely to 
occur in standard operation, and other Trojans are 
continuously active with an indiscernible payload. A 
taxonomy proposed by Karri et al. (Figure 2) [20] organizes 
Trojans based on 5 characteristics: (1) the point at which the 
Trojan enters the design, (2) the abstraction level of the 
Trojan, (3) the type of triggering which activates the Trojan, 
(4) the effect/payload of the Trojan, and (5) the location of the 
Trojan in the design. A similar taxonomy proposed by Wang 
et al. [21] focuses on three factors: (1) the physical 
characteristics (i.e., structure), (2) the activation 
characteristics (i.e., trigger), and (3) the action characteristics 
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(i.e., payload). Additionally, while a large number of attacks 
fall under the classification of a hardware Trojan, the 
detection techniques are greatly dependent upon the 
individual characteristics of such Trojans. 

2.3 Impact on semiconductor intellectual 
property (IP) 

 Depending on the method through which a Trojan is 
inserted, possible detection methods vary greatly [22-24]. 
Semiconductor IP has become a key part of electronics design 
because it can reduce IC development costs, accelerate time-
to-market, reduce time-to-volume, and increase end-product 
value [25]. (According to Gartner Dataquest, the 
semiconductor IP market will reach $2.3B in 2014 [26].) 
Another confounding factor that increases the difficulty of 
developing countermeasures is that few attacks have been 
found in the wild. Instead, researchers must rely upon 
example attacks developed as benchmarks to illustrate the 
threat of malicious hardware. Unfortunately, these example 
attacks can often contain unnecessary functionality, making 
the detection of such an attack significantly easier. To make 
progress in this research area, it is necessary to understand 
both the attack and the defense of digital designs [27]. The 
Trust-Hub research community [28] developed as a forum to 
host and exchange resources related to hardware security and 
trust. It has grown to contain a significant number of tools 
and benchmarks, becoming the largest repository of hardware 
Trojans available to the public. It is supported by the National 
Science Foundation (NSF) and continually grows each year 
as contributors submit further resources. 

3 Risk Management in the Supply Chain 
 When determining the security of a design, the first step 
is to identify clearly what types of steps in the design flow 
can be trusted, and what cannot. This determination might 
change depending upon the types of circuits and their 
implementations, but typically a vendor will trust its in-house 
design process and acknowledge the potential vulnerability of 

external design. Of course, there is the possibility of insider 
threats [29, 30]. 

3.1 In-house design 

 A simplifying assumption made for the purpose of this 
discussion is that that all in-house design can be considered 
trusted. Under no circumstances does this mean that there are 
no security leaks, attempted sabotage, theft, or other problems 
within an organization. In fact, organizations have 
experienced this type of in-house threat. However, there are 
effective methods to resolve these threats that can be put into 
place. It is difficult to sabotage a design secretly if all changes 
to a digital design are tracked and logged with significant 
oversight on all changes. To put it simply, in-house design 
has its own process of verification that acts completely 
separately from other types of verification. The point of this 
assumption is to clearly define external attack vectors in order 
to most effectively block possible attacks. This allows a 
designer to guarantee that every possible step in a design is 
covered from attacks. 

3.2 External design 

 After declaring all in-house work as trusted, the next 
step is to declare all work done outside of an organization as 
suspect. Any production step in which a design is modified by 
or in the care of an outside source can represent a possible 
vector for an attack. For each step, it is important to identify 
what attacks might be made by a third-party during this 
opportunity, and determine methods of either preventing or 
identifying such attacks. For example, a medical device 
company designing a pacemaker might license a wireless 
controller block from a vendor marketing third-party 
intellectual property (IP). It could be disastrous if this 
controller had malicious functionality hidden by the designer. 
In such a situation, it is foremost to identify the risk posed by 
incorporating this untrusted block in a design. 

 

Figure 2: Hardware Trojan taxonomy based on five different attributes [20] 
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3.3 Vulnerabilities in the supply chain 

 One reason that external resources are considered 
universally untrusted is because of the difficulty in tracking 
the source of an external resource in the supply chain, 
regardless of the accompanying documentation. This has been 
a significant issue with defense contractors in the past few 
years, with regards to actual physical chips often purchased 
from reputable vendors or resellers. For example, a fiasco 
involving the United States Navy was made public in 2010, 
when a company called VisionTech was charged with selling 
over 59,000 microchips that contained hidden kill-switch 
functionality. This functionality would allow an attacker to 
disable whatever was running on these chips, including 
missiles, communication equipment, and other military 
vehicles. For years, this company had been importing 
counterfeit chips from China, and marketing them to defense 
companies as military grade microchips [31]. The list of these 
companies included: (1) BAE systems, which provided 
Identification Friend-or-Foe (IFF) systems to the U.S. Navy, 
and (2) Raytheon Missile systems, which supplied chips for 
use on F-16 fighter planes. Unfortunately, VisionTech is not 
the only reseller to buy cheap microchips from overseas and 
sell them domestically. Another similar example of 
corruption in the supply chain is the 2005 example of United 
Aircraft and Electronics, a company in which the operator 
was sentenced to 188 months in prison for false certification 
of aircraft parts sold [32]. Another 2002 example was the case 
of United Space Alliance, a company which bid and received 
a $24 million contract with NASA to supply military grade 
8086 microprocessors for use with the space shuttle 
computers. This company then proceeded to purchase used 
computers off eBay and pull commercial-grade 8086 
processors off the motherboards [32]. Commercial-grade 
chips would almost certainly have difficulties operating in the 
adverse environments required by the space shuttle 
computers. Unless it is possible to completely track the life of 
a resource, then that resource should be considered suspect. 
Since verification of an external resource is generally a 
simpler task than a full forensic investigation of the history of 
a resource, verification is the preferred method of determining 
whether something can be considered trusted. 

4 Detection Methods 
 The majority of the existing methods proposed for 
identifying malicious hardware use the fabricated device; they 
can be classified into two types: (1) methods that detect 
changes on the transient current response drawn from extra 
circuitry on the chip [33-35], and (2) methods that detect 
timing differences due to the additional circuitry on the chip 
[36, 37]. A golden chip must be used as the trustworthy 
baseline in order to measure the deviation by a suspected 
chip. These methods assume that a trustworthy chip has 
already been identified, but do not address the issue of how to 
identify that chip in the first place. There are also some 
approaches that have attempted to encode signature 
information (i.e., a watermark) into the design to prevent 

unwanted piracy of ICs [38-40] or use side-channel 
measurements to determine the signature of a design [33, 41]. 
In addition, fault injection could be used to provide hardware 
assurance [42]. 

4.1 Physical testing 

 After the fabrication stage, the individual packaged 
chips are subjected to a large amount of testing in order to 
make sure that the designs work as intended. This step can be 
very involved, depending upon the complexity of the chip. 
This can require expensive testing equipment and a 
significant investment of time in order to fully verify a circuit. 
While this step can be done entirely in-house, outsourcing it 
to save costs would introduce an opportunity for an attacker 
to replace chips with compromised ones. Generally, the test 
vectors chosen will be completely trusted. The test sequences 
can be chosen entirely in-house, and can be supplied entirely 
from a known trusted ATPG algorithm. Physical testing 
typically requires a golden copy of the design and sensitive 
measurement equipment. Even then, there are still challenges 
due to the potential of process variation that masks the 
response [43]. Another method of testing/authentication 
involves the use of physical unclonable functions (PUFs) to 
provide challenge/response pairs for a design’s 
implementation [44, 45]. In order for a Trojan to remain 
hidden, there are three main characteristics that directly 
contribute to the difficulty of identification. If even one of 
these characteristics is lacking, then the difficulty in detecting 
the Trojan will be reduced. 
 Small Size: As Trojans can be constructed using a 
fraction of a percent of the components in the overall circuit, 
they can be quite small and still attain the desired 
functionality. However, the larger the Trojan grows, the more 
circuitry is added to the circuit, thus affecting its 
functionality. Even if the Trojan is not triggered, some inputs 
can activate smaller sections of the Trojan, changing the 
power consumed by the chip. Some techniques involve 
partially activating the Trojan circuitry in order to make it 
easier to detect [46, 47]. Additional circuitry is also more 
likely to displace the existing circuitry, compromising the 
second desired characteristic of hardware Trojans.  
 Low Displacement: When inserting a Trojan, it can be 
necessary to relocate existing circuitry, in order to make room 
for malicious components. However, such displacement of 
existing components can have a significant effect on side-
channel measurements, making it possible to detect the 
malicious circuitry [22, 33, 35, 36]. In some cases, a very 
small Trojan added to a circuit could have a significant effect 
on the timing response of a circuit, especially if an automatic 
place-and-route function is implemented. In this case, manual 
placement of the Trojan circuitry in the layout can minimize 
the displacement of existing circuitry and help the Trojan to 
remain covert.  
 Resistance to unintended triggering: The last 
characteristic necessary for a Trojan to remain undiscovered 
is simply for it to be difficult to trigger accidentally. It does 
not matter how large the Trojan is, or how artfully placed the 
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components are if the Trojan is found during routine testing, 
such as standard logical verification. If the Trojan is always 
on and lacks a trigger, then the payload needs to be something 
discreet that does not appear on standard tests. For example, 
the Trojan in the modified LEON3 processor [15] was 
triggered via a uniquely crafted network packet, which would 
normally be treated as corrupt. Such a possible input would 
likely never be tested, simply because it is impossible to test 
every possible input on every possible state. However, this 
inability to test every possible input is what makes hardware 
Trojans effective as malicious attacks. 

4.2 Third-party IP 

 As third-party IP is supplied from an external source, 
there is no baseline with which to compare the IP to in order 
to identify differences. Instead, it becomes necessary to 
identify possibly suspicious behavior in a design. This means 
that the IP design needs to be thoroughly analyzed for 
possible malicious functionality. Thus, the most significant 
vector to attacking a circuit during the design stage comes 
through the inclusion of third-party IP in a design. Most 
organizations cannot afford to re-invent solutions every time 
a common component is used, and therefore rely on IP 
vendors that supply design-modules to perform the desired 
functionality. The organization can save money and time 
while avoiding the issue of creating the design from scratch. 
Designers will instead assemble licensed design modules in 
order to meet the design specification, often treating the third-
party IP as black boxes. These unknown designs can easily 
make their way unmodified into a final design, allowing for 
an effective vector for compromising a circuit. 
 Suppose that a designer were to license a cryptographic 
circuit for use within a design. The cryptographic block's 
encryption could be easily undermined if it were to possess an 
extra hidden key. While it would appear to function correctly 
under normal use, someone with knowledge of the hidden key 
could easily circumvent any security provided by the 
cryptographic block within the final design. Another risk with 
third-party IP is that there are a plethora of vendors supplying 
designs for every possible function, with very little oversight. 

Vendors come and go, often only possessing an online 
presence. It would not be difficult for a malicious agent to 
create a fake vendor persona, and supply malicious design 
modules at a below-market fee. Compounding the problem is 
the continuous issue of stolen IP design modules. Vendors 
sometimes have their IP stolen and resold by other vendors, 
or even just stolen by designers wanting to use the IP for free. 
Unfortunately, this has led to a culture of obfuscation and 
suspicion, making it difficult to get clean, non-obfuscated 
code in order to identify possible attacks. 

5 Accelerated Testing with FPGAs 
 Although FPGAs exhibit vulnerabilities to the insertion 
of malicious hardware, they do offer the potential to assist 
with detecting threats within a design. FPGAs could be used 
in fault injection campaigns to identify suspected behavior 
within a design. The potential test vector space is very large, 
when considering: (1) the number of input vectors (2) the 
number of fault locations, and (3) the current state for a 
particular cycle of operation. Emulation in hardware would 
require less time than using traditional simulation tools [42]. 
FPGA hardware can also be used to perform the testing in an 
automated manner. Figure 3 shows a test setup to measure the 
power drawn for a design under test (DUT). The DUT is a 
Xilinx BASYS2 FPGA development board, and the I/O is 
supplied by an Altera DE2 FPGA development board. 

6 Summary and Future Work 
 Unfortunately, detecting malicious hardware within a 
reconfigurable computing system is an exceedingly difficult 
task. Inactive Trojans can have an exceedingly small impact 
on a circuit in terms of area and power, and Trojans are 
statistically unlikely to be triggered on accident. Stealth is 
also a key requirement of malicious hardware. A reliance on 
third-party IP offers a direct path for the insertion of 
malicious hardware. The very nature of reconfigurability with 
FPGAs opens the door for security vulnerabilities. Despite the 
evident need for detecting such changes to a circuit design, 
there is currently no simple solution to this problem. Many 

     

Figure 3: Test setup using an FPGA to provide input test vectors and monitor the output 
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methods wait until after a chip is fabricated. One alternative is 
to take samples of the lot for extensive analysis. However, 
examining the die is becoming increasingly more difficult as 
transistors decrease in size. Even with an expensive imaging 
procedure, it would not be possible to test every chip ordered, 
as imaging may require the destruction of the chip. Other 
techniques involve detecting changes in the electric current 
drawn from extra circuitry on the chip, or detecting timing 
differences due to the additional circuitry on the chip. These 
methods rely upon the characterization of a golden copy in 
their comparison, but this trustworthy copy is not available if 
the original design was compromised, or the parameters could 
be masked due to process variation on the IC. This paper 
described the key research challenges for identifying 
malicious hardware and the state-of-the-art for detection and 
verification. Yet, there are still opportunities for research 
contributions as new application domains emerge. For 
example, in FPGA-based software-defined radio, a designer 
must defend against malicious modification during 
initialization and runtime [48]. In wireless sensor networks, 
the need security emerges for access/discovery, routing, and 
information [49]. Hardware/software codesign [50] also 
offers the potential to include security within the overall 
design framework to address the linkages among technology, 
architecture, communication, and applications for trustworthy 
reconfigurable systems. 
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