
SESSION

COMMUNICATION TECHNIQUES IN
RECONFIGURABLE SYSTEMS

Chair(s)

TBA

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 | 1

2 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 |

Hardware Parallel Decoder of Compressed HTTP Traffic on
Service-oriented Router

Daigo Hogawa1, Shin-ichi Ishida1, Hiroaki Nishi1
1 Dept. of Science and Technology, Keio University, Japan

Abstract— This paper proposes a parallel GZIP decoder
architecture that includes a multiple context manager for
decompressing network streams directly on a router. On the
Internet, some HTTP packet streams are encoded by GZIP.
Moreover, Internet content is often divided into smaller
packets and transmitted without regard to the original order
of the packets. The previously proposed Service-oriented
Router for content-based packet stream processing needs
to decode GZIP data in order to analyze packet payloads.
The proposed GZIP decoder is implemented in hardware
in order to process the data of multiple network data
streams quickly and concurrently using context switching.
The GZIP decoding hardware logic is simulated by Verilog-
HDL. When one dictionary generation module and eight
decoding modules are designed using FPGA, the throughput
becomes 0.71 Gbps. When this architecture is synthesized in
ASIC, the throughput reaches 10.41 Gbps and the circuit
area of that architecture becomes 0.14mm2.

Keywords: GZIP, Decompression, Hardware, Parallel, Context
Switch, Service-oriented Router.

1. Introduction
Internet technology has made great progress in the last

decade. Since it is now used as a communication tool
throughout the world, the amount of the data transmitted
over the network has been increasing. People have come
to use the Internet not only for collecting information, but
also for transmitting it. Recently, people have begun to use
social networking services (SNSs) with their own devices,
such as a desktop computer or smartphone. They frequently
share knowledge and information for various purposes, and
the number of those who use Internet content has become
larger than ever.

In a network, content is transmitted using packets as a
unit of transmission; these packets are delivered to their
destinations by a router at the center of network. Since the
router is a key device for interconnecting networks, it can
acquire many kinds of information that are included in every
packet stream. In fact, any packet can be passively captured
by a router. A conventional router is a device that only
forwards data packets between computer networks. When a
data packet arrives, the router checks the address information
in the packet header to determine its ultimate destination and
directs the packet to the next network.

However, network traffic is growing year after year, and
users have come to want even richer content. For example,
at the Amazon online store, there is a recommendation
service that collects users’ purchase and browsing history
and recommends goods related to this history according to an
analysis. If we could analyze packet payloads on the routers,
then we could create new services, not as infrastructure but
as a service vendor.

We have proposed a new router, the Service-oriented
Router (SoR) [1]. This router analyzes packets and can
achieve content-based routing. SoR is not just routing hard-
ware that transmits data and coverts protocols; it can analyze
the semantic meaning of content, inspect traffic data streams
including packet payloads, and provide functionalities in the
application layer to servers, clients, and neighboring routers.

However, some packets in a network are encoded by the
GZIP algorithm. In addition, in the Ethernet devices of a
link layer, data that is larger than 1500 KB may be split
into smaller packets. Many Internet users send or receive
content to/from the network. These data are divided into
packets and sent regardless of the order of the packets. In
HTTP 1.1, which is generally used in Webpage access or
Web data transfer, the GZIP compression option is available,
and is used by some servers such as Amazon, Yahoo,
Twitter, and The New York Times. Therefore, the SoR
needs to decompress GZIP data for general packet analysis.
This paper proposes a hardware GZIP decoder that can
manage multiple data to adapt to content streams divided
into packets. Using design architecture based on context
switching, the proposed hardware can decode multiple users’
data concurrently and effectively.

The remainder of this paper is organized as follows.
Section II briefly introduces networks, SoR, and the GZIP
algorithm. Section III explains related work. In Section
IV, our proposed GZIP decoder hardware is explained. In
Sections V and VI, we evaluated the architecture. Finally,
Section VII concludes the paper.

2. Background
2.1 HTTP1.1, TCP/IP, ETHERNET

Most Internet throughput consists of HTTP packets, and
the most widely used set of basic communications protocols
is TCP/IP. The datagram is encapsulated by a TCP/IP header
where some frame headers and footers are added to the

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 | 3

original divided contents using Internet Protocol (IP). Figure
1 shows a brief overview of an Internet connection. IP is the
principal communication protocol used for relaying packets
over the Internet. It is responsible for forwarding packets by
addressing hosts and routing datagrams from a source host
to the destination host over one or more IP networks. Packets
consist of two parts, IP headers and datagrams. The routing
information required to route and deliver the datagram is
included in the IP header.

Fig. 1: Data Format

In HTTP1.1, the datagram is often compressed by GZIP
[2],[3],[4], and then transmitted to a network. The need to
send data via the Internet is growing, and many services
are continuously provided to address this need. In order to
send as much data as possible, a compression algorithm,
generally GZIP, is used in HTTP1.1 protocols. The GZIP
algorithm compresses data by 30-40% on average, and the
size of data is reduced by more than half in most situations,
enabling effective network utilization. Since GZIP is a free
algorithm, anyone can use it, and it is widely used in the
UNIX community.

2.2 Service-oriented Router (SoR)
Recently, Internet networking technologies have been sig-

nificantly developed, and many individuals and commer-
cial services now use these technologies. The Internet has
become one of the most important infrastructures in our
lives. Nowadays, people share knowledge and information
for business and academic purposes over the Internet. It
is now common for most people to use the Internet since
it is very useful to send or receive information anytime,
anywhere.

A network router is a device that connects several inde-
pendent networks together and forwards data from source to
destination. In order to manage lots of content, a new type of
router is needed. Our laboratory has proposed a new router,
called SoR, which can serve content-based services. General
routers cannot provide these content-based services, and this
implicitly limits the user experience and limits the benefits of
a carrier. SoR provides services to end users from the router
itself using a special application programming interface
(API) based on SQL. It has many advantages because it
enables passive data correction, which is different from

active data correction. In active data correction, end hosts
can get required data only by accessing other hosts such
as the Web crawlers of search engines. Current end-to-end
systems have to correct data actively. This takes time, and the
coverage of data correction is limited. Frequent crawling to
obtain the real-time status of the Internet sometimes causes
network congestion. Passive data correction of SoR enables
real-time data acquisition and provides current Internet status
without any network accesses.

For the SoR to analyze and correct data, a GZIP decoder
is needed because packets may be encoded by an HTTP 1.1
GZIP algorithm at the end host server. In addition, there are
various kinds of data on the Internet. SoR cannot decode
perfectly without context management information, such as
the streaming ID. Moreover, the network throughput has
been increasing recently, and SoR will need to deal with
throughput that is 10 Gbps or higher. A hardware GZIP
decoder could be suitable for decoding multiple data quickly
and concurrently.

Fig. 2: Service-oriented Router

2.3 GZIP algorithm
In HTTP 1.1, transmitting compressed data is allowed,

and the GZIP compression algorithm is used mainly in
current network. GZIP is based on a deflate algorithm which
consists of the Huffman [5] and LZ77 [6] algorithms. The
header of compressed data has information such as the
dictionary of the decoding process, which contains the rules
to decode Huffman compressed binaries into ASCII codes.
The dictionary, which is created at compression, is also used
at decompression. Since LZ77 uses a sliding buffer up to
32 KB in size to compress and decompress iteration parts,

4 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 |

a GZIP decoder must provide buffers of that size in the
architecture.

Since each stream has independent dictionary informa-
tion, the decoder hardware must create a dictionary table
whenever a new stream arrives at the decoder. In addition,
whenever a new packet arrives, the decoder needs to appro-
priately choose the dictionary information with the correct
decoding rule for the packet.

3. Related Works
Few researchers work on Hardware GZIP decompression,

probably because it has not been necessary to decompress
GZIP encoded texts at network wire-speed before. There
are three papers we are aware of that deal with hardware
GZIP decoders. [7] and [8] implemented a GZIP decoder on
FPGA and evaluated some values, such as the size of logic
cells. However, they did not evaluate throughput, which is
important for network analysis. Although [9] evaluates their
throughput, it did not show other results, such as circuit area
or number of logic cells used. This status makes it difficult
for us to precisely compare these methods with our proposed
method.

The research in [10] tackles the GZIP decoding prob-
lem with CPU and hardware collaboration. In this study,
they implemented various kinds of compression methods
in embedded systems. Though they implemented GZIP
compression and decompression using hardware, they used
the same Huffman dictionary generated during compression
when decoding. In other words, their decoding hardware
used the Huffman trees created by the compression process
beforehand.

In addition, the studies described above do not deal with
network traffic, in which data are separated into multi-
ple packets. Reconstruction of all network streams from
separated packets exhausts memory resources. This is the
reason why context-switching technology is indispensable.
The main papers that deal with compressed HTTP traf-
fic are [11], [12], and [13]. The authors of these papers
solve HTTP decompression using software implemented on
gateway servers. These approaches are similar to our ap-
proach, and many good features are proposed to solve GZIP
decompression. However, a software solution is limited in
both throughput and the resources needed when used in an
Internet router. Hence, these methods are not appropriate
for our purpose. The proposed architecture is different from
other studies in that it uses effective parallelizing architecture
and on-the-fly analysis of HTTP traffic.

4. Implementation
In order to attain the wire-speed throughput of a network,

we propose the following architecture for a hardware-based,
parallel GZIP decoder for HTTP traffic, as shown in Figure
3. The proposed architecture consists of two main modules

and various sub modules. One main module is a dictionary
module that generates the dictionary from the header part of
the GZIP encoded text. The other main module is the decod-
ing module. The sub modules consist of input buffer modules
and a switching module. The number of input buffers is the
same as the total number of dictionary generation modules
and decoding modules. These modules have a queue of
registers that stores several input packets.

The proposed architecture has two main contributions:
context switching and parallelizing. Context-switching tech-
nology enables the intermediate status of a GZIP decoding
stream to be exchanged between the decoding modules and
context buffers. The correct context, re-coded in a context
buffer RAM, is selected and used by the decoding modules.
Whenever a certain packet arrives and is buffered in a queue,
the control logic fetches the correct context of the stream
from the context buffer in which the packet belongs.

The proposed architecture decodes GZIP in two separate
phases: a process in a dictionary generation module and a
process in a decoding module. In this way, dictionary genera-
tion modules and decoding modules can work independently
and in a parallel manner. While the dictionary generation
module makes a dictionary for a certain stream, decoding
modules concurrently decode other packets. This improves
the throughput of the entire GZIP decoding process and this
architecture allows the number of modules to be flexibly
tuned according to the specifications of the target network
throughput.

Using this context-switching design paradigm, the pro-
posed hardware successfully continues decoding constantly,
switching the intermediate status of one process after another
according to the incoming network traffic. The number of
contexts that can be handled at one time is approximately
105 in captured network traffic (Table 1). In this case, the
size of the context memory needed is approximately 840
MB. This size is small enough to implement using an off-
chip SRAM.

Table 1: an Average number of GZIP Streams.
timeout(s) Number of GZIP streams
600 1.40 × 105

300 7.00 × 104

60 2.63 × 104

10 5.25 × 103

5. Evaluation
5.1 Environment

We evaluated the proposed GZIP decoding process using
both ASIC and FPGA designs from the viewpoints of
throughput and circuit area, or used slices. In this section,
we evaluate the scale of the circuit and the throughput
of the proposed decoding module. The decoding module

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 | 5

Fig. 3: Whole GZIP Decoding Architecture.

was implemented in Verilog HDL and synthesized using
Xilinx ISE Design Suite 14.2 on an FPGA device (Vertex5
XC5VLX330T). For comparison, we used Synopsys Design
Compiler 2005.09 by FREEPDK 45-nm Technology as the
ASIC implementation.

First, we conducted an evaluation of real network traffic
data to investigate its characteristics. In this data, the average
size of one stream is 6,107 B, and it consists of 5 packets
on average. We used HTTP traffic captured in our laboratory
from 5 December 2011 to 13 December 2011. It includes
approximately 0.5% GZIP encoded data.

Table 2 shows the evaluation environment of the proposed
GZIP decoding module. Table 3 shows characteristics of the
traffic data captured in Nishi Laboratory, which was used in
this evaluation.

Table 2: an Environment of Simulation and Synthesis.
Language Verilog-HDL
Logic Simulation Cadence NC-Verilog LDV5.7
Wave Form tool Cadence Simvision
ASIC synthesis tool Synopsys Design Compiler X-2005.09
Library for ASIC synthesis FreePDK OSU Library[14]

(NAND2 gate area: 0.798 µm2)

Table 3: Traffic Data in Nishi Laboratory for Evaluation.

Proportion of HTTP all bytes in the whole traffic 78%
Proportion of GZIP all bytes in the whole HTTP stream 7.05%
Proportion of GZIP all bytes in the whole stream 5.50%
Average packet size 1,221.54byte
Average GZIP compression rate 32.33%
Average size of GZIP decoded packet 3,778.43byte
Average # of packets contained in one GZIP stream 5packet

6 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 |

We created test data from data that was captured from
www.kantei.go.jp, the Website of the Prime Minister of
Japan and his Cabinet. The data size is 6.5 KB, or 31.4
KB when decompressed. This size is almost the same as
the average size of a network stream. The data is captured
using 36 parallel accesses to the Website, and the sampled
dataset includes 36 streams. This data is stored into separate
buffers. The number of buffers is equal to the total number
of dictionary generation modules and decoding modules.

5.2 Performance
5.2.1 Waveforms in Simvision

In this research, we used the prepared test data from
www.kantei.go.jp as described above. We analyzed the cap-
tured data, compressed the data with GZIP for testing, and
conducted a simulation. Figure 4 shows the output waveform
of the proposed hardware decoder.

5.2.2 ASIC evaluation
Figure 5 shows that the processing throughput increases to

some extent as the number of decoding modules increases.
Though the increase of decoding modules improves the total
throughput, this is not always true if the number of modules
exceeds eight. The throughput of the proposed decoder is
10.41 Gbps in the ASIC implementation, and the circuit area
of the hardware is 0.14mm2. If we assume that there are
2.63× 104 streams in a network, then the system needs 840
MB memory for managing context.

When the ratio of dictionary generation modules to decod-
ing modules reaches 1:8, their throughput is almost equal.
For instance, if the number of dictionary generation modules
is 2, then 16 decoding modules achieves the best results for
throughput. In other words, the optimum number of decoding
module is influenced by the number of dictionary generation
modules.

Figure 6 describes the index of throughput per circuit area
for various numbers of modules. Using this index, we can
compare different hardware configurations simultaneously.
It reveals that the best performance is achieved when the
number of dictionary generation modules is one and the
number of decoding modules is eight. As the number of
dictionary generation modules is increased, the performance
decreases gradually because the dictionary module cannot
be used fully, causing this index to deteriorate. In this
evaluation, the result is almost the same as the evaluation
of total throughput described in Figure 5.

5.2.3 FPGA evaluation
Table IV shows the throughput when the proposed archi-

tecture is implemented in FPGA using one dictionary gen-
eration module and eight decoding modules. For this eval-
uation, we implemented the proposed hardware in Virtex-5.
The usage of register slices is approximately 13% whereas

the usage of look-up-table slices is 29%. The usage of
bock RAM is 40%. There are enough unused slices for
implementing additional functions in the future.

Table 4: FPGA Synthesis and Simulation Result.
Minimum period 21.14ns
Minimum Frequency 47.30MHz
Throughput 0.71Gbps
Number of Slice Registers 13%
Number of Slice LUTs 29%
Number of fully used LUT-FF pairs 14%
Number of bounded IOBs 0%
Number of Block RAM 40%
Number of BUFG 9%

6. Discussion
The proposed system attains the best performance when

GZIP decoding hardware is configured such that the ratio of
dictionary generation modules to decoding modules is 1:8.
This is because this ratio matches the existing ratio of GZIP
dictionary headers to GZIP data in network traffic. This
rate depends on the characteristics of the network traffic.
Given the conditions of the captured traffic, it is effective
to extend the hardware in keeping with the basic ratio, for
instance, using 2 dictionary modules to 16 decoder modules,
if the processing throughput needs to be improved in order
to decode higher-throughput network traffic.

From another viewpoint, the circuit area of a dictionary
generation module is approximately 3.5 times larger than
that of a decoding module. Thus, it can be said that using
fewer dictionary generation modules attains relatively better
performance. A dictionary generation module generates ap-
proximately eight dictionaries whereas a decoding module
decodes a single stream (five packets on average). In other
words, dictionary generation modules and decoding modules
constantly work together when their ratio is 1:8. Figure
7 shows the results when different ratios of modules are
implemented. For the ratio of 1:8, indicated by the sky-
blue waveforms of Figure 7, there are few blanks in both
the dictionary generation and decoding processes. In the
waveforms of ratios higher than 1:8, the dictionary genera-
tion module does not work constantly, though the decoding
modules work relatively constantly. In contrast, below a ratio
of 1:8, the decoding module waveform includes blank spaces
caused by the decoder module waiting for the dictionary
module. In these cases, the total latency of processing is
almost same even for different ratios. This is caused by the
waiting. Namely, there is a saturation point for the proposed
hardware that depends on the characteristics of the Internet
HTTP traffic.

7. Conclusions
This paper proposed hardware-based GZIP decoder mod-

ules for implementation in a SoR. In the evaluation, the

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 | 7

Fig. 4: Waveform of the Decoding.

Fig. 5: Throughput and Circuit area of the Decoding in ASIC with the number of modules changed.

Fig. 6: Throughput per Circuit Area in ASIC with the number of modules changed.

number of decoding modules was varied, and the parallel
utilization of GZIP decoder was evaluated. Since the simu-
lation was conducted based on not software but hardware,
the decoder could quickly manage the significant amount
of GZIP data streaming on the Internet, and the use of
context switching enabled concurrent decoding of multiple
data streams. GZIP decoding hardware was evaluated using
Verilog-HDL. When one dictionary generation module and
eight decoding modules are used, the best throughput is
achieved, 10.41 Gbps for an ASIC design and 0.71 Gbps
for an FPGA design. The circuit area of that architecture is

0.14mm2.

8. Acknowledgment
This work was partially supported by Funds for the

Integrated Promotion of Social System Reform and Research
and Development, Ministry of the Environment and Grant-
in-Aid for Scientific Research (B) (25280033). This work
was also supported by VLSI Design and Education Center
(VDEC), the University of Tokyo in collaboration with
Synopsys, Inc., and Cadence Design Systems, Inc.

8 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 |

Fig. 7: Time Chart of the Simulation with Various Numbers of Modules. Each color line has a dictionary generation module
(the lines below), and various numbers of decoding modules (the lines above).

References
[1] M. Koibuchi H. Kawashima K. Inoue, D. Akashi and H. Nish. Seman-

tic router using data stream to enrich services. In 3rd International
Conference on Future Internet CFI 2008 Seoul, pp. 20–23, June 2008.

[2] P. Deutsch. Hypertext transfer protocol – http/1.1. http://http:
//www.w3.org/Protocols/rfc2616/rfc2616-sec14.
html#sec14.3, June 1999.

[3] P. Deutsch. Deflate compressed data format specification version 1.3,
May 1996. http://www.ietf.org/rfc/rfc1951.txt.

[4] P. Deutsch. Gzip file format specification version 4.3, May 1996.
http://www.ietf.org/rfc/rfc1952.txt.

[5] D. Huffman. A method for the construction of minimum-redundancy
codes. Proc. IRE, Vol. 40, No. 9, pp. 1098–1101, September 1952.

[6] J. Ziv and A. Lempel. A universal algorithm for sequential data
compression. IEEE Trans. Inf. Theory, Vol. IT-23, No. 3, pp. 337–
343, May 1977.

[7] S. Rigler, W. Bishop, and A. Kennings. Fpga-based lossless data
compression using huffman and lz77 algorithms. In Electrical and
Computer Engineering, 2007. CCECE 2007. Canadian Conference
on, pp. 1235 –1238, april 2007.

[8] L. Perroton M. Akil and T. Grandpierre. FPGA-based architecture for
hardware compression/decompression of wide format images. Journal

of Real-Time Image Processing, Vol. 1, No. 2, pp. 163–170, September
2006.

[9] H. Luo J. Ouyang, C. Liu Z. Wang, J. Tian, and K. Sheng. FPGA
implementation of GZIP compression and decompression for IDC
services. 2010 International Conference on Field-Programmable
Technology, pp. 265–268, December 2010.

[10] C. Beckhoff D. Koch and J. Teich. Hardware decompression tech-
niques for FPGA-based embedded systems. Reconfigurable Technol-
ogy and Systems, Vol. 2, No. 2, pp. 1–23, 2009.

[11] A. Bremler-Barr and Y. Koral. Accelerating Multi-Patterns Matching
on Compressed HTTP Traffic. IEEE INFOCOM 2009 - The 28th
Conference on Computer Communications, pp. 397–405, April 2009.

[12] A. Bremler-Barr and Y. Koral. Accelerating Multipattern Matching on
Compressed HTTP Traffic. IEEE/ACM Transactions on Networking,
Vol. 20, No. 3, pp. 970–983, June 2012.

[13] A. Bremler-Barr Y. Afek and Y. Koral. Space efficient deep packet
inspection of compressed web traffic. Computer Communications,
Vol. 35, No. 7, pp. 810–819, April 2012.

[14] Freepdk. http://www.eda.ncsu.edu/wiki/FreePDK.

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 | 9

Simplifying Microblaze to Hermes NoC
Communication through Generic Wrapper

Andres Benavides A.
1
, Byron Buitrago P.

2
, Johnny Aguirre M.

1

1
 Electronic Engineering Department, University of Antioquia, Colombia
2
 Systems Engineering Department, University of Antioquia, Colombia

Abstract—In this paper an easy microprocessor to NoC

connection strategy, based in a hardware wrapper design is

proposed. The implemented wrapper simplifies the connection

between a network on chip infrastructure and several

MicroBlaze softcore processors. Proposed strategy improves

the design process of a parallel computing environment.

Wrapper development process, synthesis results and

functionality test are showed and analyzed.

Key words: FPGA, Multicore, Hermes NoC, MicroBlaze, FSL

bus, Embedded processors.

1. INTRODUCTION

Nowadays, computer applications need more than one
processor to resolve complex tasks in short time. This
particular fact has generated a new tendency in the design
of high performance electronic systems. In an effort to
improve the performance of a single processor scheme,
multiprocessor architectures have been proposed. A
multiprocessor (or multi-core) system takes advantage of
the billion transistor era to achieve high performance by
running multiple tasks simultaneously, on independent
processors, decreasing applications execution time.
However, parallel processing faces a lot of troubles, among
which may be mentioned: Shared memory access and
communication infrastructure. In a multi-core system,
efficient communication among CPUs is a critical item to
performance measurement. In reduced multi-core systems,
a common bus is enough to connect the components.
However with more than 8 cores a bus is not scalable
because bus electrical load increases while its speed is
reduced, and the bandwidth demand is not satisfied [1].

A scalable and efficient solution to connect on-chip
components is a packet-switched on-chip network (NoC)
[2]. Network-on-Chip (NoC) brings the techniques
developed for macro-scale, multi-hop networks into a chip.
Hermes [3], AET [4], Xpipes [5], are examples of NoC’s
implementation. By means of NoC, systems
communications improve by modularity support, cores
reuse, and scalability increase. Those features enable a

higher level of abstraction in multicore’s architectural
modeling and allow heterogeneous systems building.

Another big problem in multicore architectures is
related to quick prototyping capability. Traditionally, it has
been only possible put under test the system once the
silicon is available. In last years, softcore implementation
on FPGA has emerged as a solution to rapid prototyping,
due to their reduced cost, flexibility, platform independence
and greater immunity to obsolescence [6]. A soft-core
processor is a hardware description language (HDL) model
of a specific processor (CPU) which can be customized for
specific application requirements and synthesized for an
ASIC or FPGA target. Examples of softcore are OpenRisc
1200 [7], LEON [8] and MicroBlaze [9]. Several
architectures based in softcores can be found on internet
sites as OpenCores [10] or Xilinx [11]. However typically
softcore designs are limited to single processor or reduce
multi-processors architectures connected by shared bus
structure.

In this paper a strategy based in a hardware wrapper to
simplify the connection between the Hermes NoC and
MicroBlaze processor in order to facilitate the multicore
architecture prototyping and design is proposed.

This paper starts with a background section in order to
understand Hermes network on chip and MicroBlaze
architecture. Then, wrapper design and internal architecture
are explained. Wrapper implementation results,
functionality test, conclusions and future work are showed
and discussed at the end of this paper.

2. PRELIMINARIES AND BACKGROUND

INFORMATION

2.1. NOC INFRASTRUCTURE

We have employed as communication infrastructure the
HERMES NoC, developed by Moraes et al. [3]. The NoC
(Figure 1) is formed by IP blocks and routers which are
connected on a mesh topology. In Moraes’ NoC each IP
block represents a computational element; in our case an IP
block means MicroBlaze (MB) CPU. A unique address is

10 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 |

associated to each router on the net. The IP blocks have the
same router´s address to which they are connected.

Figure 1. Router and a 33 HERMES NoC

All IP blocks can communicate with each other by

sending packets on a rate of 500Mbps by each router. A

valid packet is formed by a set of flits (1flit=8bits)

according the formats illustrate in the Figure 2. Hermes

NoC uses the wormhole flow-control for packet

transference and a bi-dimensional routing algorithm.

Figure 2. HERMES NoC packet’s formats

The router transfers packets among IP blocks by means

of 4 bidirectional ports (North, South, East and West), and a

local port (to connect an IP block). The Figure 3 shows

physical connection between two consecutive ports. Each

port has an output and input gates. Each one of them has a

FIFO memory buffer to temporal information storage. In the

output gate, the tx indicates that there is a flit in the

data_out bus, the signal is cancelled when the ack_tx signal

is received. In the input gate the rx signal indicates that

there is a flit in the data_in bus, when it is taken and sent to

other router (or to the IP block), the ack_rx signal is

generated.

Figure 3. Example of Router’s port

Any IP block can be plugged into the network once it is

equipped with the proper interface (wrapper). The wrapper

adapts the IP block to router connection signals. The

sections 3 explain how MicroBlaze processors were

connected into the Hermes NoC.

2.2. MICROBLAZE SOFTCORE

The MicroBlaze core (Figure 5) is organized as Harvard

architecture with separate bus interface units for data and

instruction accesses. Each bus interface unit is further split

into a Local Memory Bus (LMB) and IBM’s On-chip

Peripheral Bus (OPB). Further, MicroBlaze core provides 8

input and 8 output interfaces to Fast Simplex Link (FSL)

buses. The FSL buses are unidirectional, non-arbitrated,

dedicated and synchronized communication channels. The

FSL bus transmits data directly from the MicroBlaze core

to other peripherals or processors buses in master-slave

scheme without using a shared bus. MicroBlaze contains

several instructions to read from the input FSLs and write

to the output FSLs. Each read and write operations

consume two FPGA’s clock cycles.

Figure 4. MicroBlaze Core Block Diagram

We have employed the FSL bus to connect the

MicroBlaze to designed wrapper due its high speed

communication. The FLS signals are showed in the Figure

4.

Figure 4. MicroBlaze Core Block Diagram

 A FIFO memory buffer is used as interface

between the Microblaze and the other peripheral. Buffer

allows using different clock sources for the FSL_M_Clk

and FSL_S_Clk signals. In a master to slave writing process

the master checks the FSL_M_Full signal to known the

FIFO state. When the FIFO is available (FSL_M_Full=0)

the master puts the data on the FSL_M_data bus and

activates the FSL_M_Write signal. On the slave side the

signal FSL_S_Exists indicates it that a data should be read.

The peripheral takes the data by means the FSL_S_Data

bus and activates the FSL_S_Read signal as acknowledge.

1st flit 2nd flit 3rdflit 4thflit 5thflit 6thflit 7thflit 8thflit

Read
Target

Address

Payload

Size 4

Source

Address

Code

0

Address

[15:8]

Address

[7:0]

Write
Target

Address

Payload

Size 6

Source

Address

Code

1

Address

[15:8]

Address

[7:0]

Data

[15:8]

Data

[7:0]

Start

Stop

Target

Address

Payload

Size 2

Source

Address

Code

2

Return

Read

Target

Address

Payload

Size 4

Source

Address

Code

9

Data

[15:8]

Data

[7:0]

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 | 11

The optional FSL_M_Control and FSL_S_Control signals

can be used to coordinate the communication. In a slave to

master writing process the roles between the Microblaze

and the peripheral are inverted. Also, the FIFO depth can

be increased to raise the performance communication.

3. FSL WRAPPER ARCHITECTURE

 The designed wrapper allows to plug each processor

with the NoC infrastructure [12]. The wrapper takes the

signals from FSL and translates them to router´s properly

signals. In this way, wrapper functionality can be

interpreted how FSL to NoC and NoC to FSL

communications abstraction layer. In the first case, flits

arrive from FSL to be routed by the NoC. In the second

case, flits arrive from NoC to be sent to the MicroBlaze.

Figure 5. FSL to NoC wrapper

The wrapper (Figure 5) is composed by a coprocessor,

a register manager and Tx/Rx Module.

 Coprocessor: It takes the FSL signals described in

the section 2, and generates asynchronous signals

to write or read in the register manager.

 Register Manager: In the FSL to NoC

communication process, it receives the frames sent

by the coprocessor, decodes and saves them in the

W-FSL register. In the NoC to FSL communication

process, it takes the data from W-NoC register,

encodes and sends them to coprocessor.

 Tx/Rx Module: It fixes the connection with the

router’s local port. Input and output gates,

described at section 2, are its main components.

This module takes flits from W-FSL register and

puts them on the output gate. In the other way, it

takes the data from the input gate and writes them

on the W-NoC register in the manager register

module.

Packets’ integrity is guaranteed by NoC infrastructure.
However it was necessary to implement a local protocol for
wrapper in order to ensure the correct communication
between MicroBlaze and router. In this local protocol, each
packet is transmitted in three frames according the format

shown in figure 6. The control field indicates which frame
is been sending. The decode module in the register
manager interpreters those frames. When one field is lost,
the whole frame is rebroadcast.

 Control 1st Flit 2nd Flit 3th flit

1st
Frame

0x01 Target
Address

Payload
Size

Code

2nd
Frame

0x02 Address
[15:8]

Address
[7:0]

0x02

3th
Frame

0x03 Data
[15:8]

Data
[7:0]

0x03

Figure 6. Wrapper protocol

The wrapper also allows to see NoC like an extension of

the FSL bus. Therefore, NoC’s writing and reading tasks

can be managed using high level functions available for the

FSL since a programming language. The example 1 shows

the C function to send a packet from MicroBlaze to NoC.

void writeNoc(char tg, char sz, char cm,

 char adH, char adL, char daH,char daL)

{

auxTx = 0x01<<24 | tg<<16 | sz<<8 | cm;

putfsl(auxTx, FSL_MASTER);

auxTx = 0x02<<24 | adH<<16 | adL<<8 |0x02;

putfsl(auxTx, FSL_MASTER);

auxTx = 0x03<<24 | daH<<16 | daL<<8 |0x03;

putfsl(auxTx, FSL_MASTER);

}

Example 1. FSL to NoC writing process

The example 2 shows the function to read a packet from

NoC.

void readNoc (char * frame)

{

getfsl(auxRx,FSL_SLAVE);

frame->tg=(char)(auxRx>>16);

frame->sz=(char)(auxRx>>8);

frame->cm=(char)auxRx;

getfsl(auxRx,FSL_SLAVE);

frame->adH=(char)(auxRx>>16);

frame->adL=(char)(auxRx>>8);

getfsl(auxRx,FSL_SLAVE);

frame->daH=(char)(auxRx>>16);

frame->daL=(char)(auxRx>>8);

}

Example 2. NoC to FSL reading process

4. WRAPPER TEST

To study the wrapper functionality, it was generated an
architecture with three MicroBlaze CPUs connected
through the designed wrapper to Hermes NoC. A serial port

12 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 |

was included for debug purposes. The whole system is
illustrated in the figure 7.

Figure 7. Study case architecture.

EDK Xilinx tool was used to generate each MicroBlaze

core. The SDK Xilinx’s tool was employed to generate the
software. Individual programs were written by each
processor. Stop y Start commands ensures the coordination
of communication processes. Finally ISE tool was used to
make the connection among MicroBlaze processors,
designed wrappers and NoC infrastructure. The whole
system was synthetized on the Virtex 4 FX20 FPGA. The
synthesis report is illustrated on the table 1.

MODULE
Power(W)

LUTs Signals
Dynamic Quiescent

MB 0,183 0,256 2610 3006

WR 0.013 0.219 71 148

MB+WR 0,189 0,256 2891 3374

SERIAL 0.020 0.219 321 374

NOC 0.038 0.220 1912 2178

WHOLE 0.651 0.324 7490 10189

Table 1. Synthesis report.

The figure 8 shows application running results, data
was taken from a serial port sniffer. It shows a token
passing example, where each MicroBlaze takes a common
variable, increases it and passes to the next MicroBlaze and
a serial port.

The string “Print from MicroBlaze 01, i=1”, is a
message sent by processor 01 in the net. “Print from
MicroBlaze 10, i=2”, is a message sent by 10 in the net and
“Print from MicroBlaze 11, i=3”, is a message sent by
processor 11 in the net. The serial interface has 00
coordinate in the net.

Figure 8. Application.

5. CONCLUSIONS AND FUTURE IDEAS

In this paper a hardware wrapper to simplify the
multicore architecture design and prototyping, using the
Hermes NoC and the MicroBlaze softcore was introduced.
The wrapper test showed the low cell units occupied the
functionality and the good performance of the proposed
wrapper.

FSL employment to connect the MicroBlaze with NoC
allows to give to the developer a higher abstraction level,
through simple software language functions calls hidden
low level details.

On the other hand, the network structure ensures the
scalability and enables a multicore architecture can be built
in a modular way. This scheme reduces design time because
it allows a considerable components reusing strategy.

The reconfigurable hardware environment allows
architectural customization. This feature enables
heterogeneous design, particularly in Virtex FPGA,
PowerPC CPU can be employed in our multicore system
using Hermes NoC due with developed wrapper, without
the necessity of any change.

Future ideas cover applications design using multicore
platform. Those applications involve signal processing,
simultaneous multisensory acquisitions, scientific
computations, server clusters, hardware accelerators among
others.

6. ACKNOWLEDGMENTS

The authors would thank to Microelectronics and
Control group of University of Antioquia, who provided
the software and hardware tools during project realization.

REFERENCES

[1] G. Nychis, C. Fallin, T. Moscibroda, O Mutlu. “Next Generation
On-Chip Networks: What Kind of Congestion Control Do We
Need,” Hotnets-IX Proceedings of the 9th ACM SIGCOMM
Workshop on Hot Topics in Network, October 20–21, 2010.

[2] L. Benini and G. de Micheli, “Networks on Chips: A New SoC
Paradigm,” IEEE Computer, Jan. 2002.

[3] Fernando Moraes, Ney Calazans, Aline Mello, Leandro Möller,
Luciano Ost: "HERMES: an infrastructure for low area overhead

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 | 13

packet-switching networks on chip”, the VLSI Journal, vol. 38-1,
2004.

[4] T. Valtonen et al., “An autonomous error-tolerant cell for scalable
network-on-chip architectures,” in Norchip, Nov. 2001, pp. 198–
203.

[5] D. Bertozzi et al., “NoC synthesis flow for customized domain
specific multiprocessor systems-on-chip,” IEEE Trans. Parallel and
Distributed Systems,vol. 16, no. 2, pp. 113–129, Feb. 2005.

[6] Jason G. Tong, Ian D. L. Anderson and Mohammed A. S. Khalid,
“Soft-Core Processors for Embedded Systems,” The 18th
International Confernece on Microelectronics (ICM) 2006.

[7] D. Lampret. OpenRISC1200 IP Core specification.
www.opencores.org.

[8] Gaisler Research Website, www.gaisler.com, January 2013.

[9] Xilinx, Inc. Xilinx Platform Studio and the Embedded Development
Kit, EDK version 13.1 edition. www.xilinx.com/tools/platform.htm

[10] Opencores Website, www. http://opencores.org, January 2013.

[11] Xilins Website, http://www.xilinx.com, January 2013.

[12] Benavides, A.; Aedo, J.; Rivera, F., "Multi-purpose System-on-Chip
platform for rapid prototyping," Circuits and Systems (LASCAS),
2012 IEEE Third Latin American Symposium on , vol., no., pp.1,4,
Feb. 29 2012-March 2 2012.

14 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 |

An Area-Efficient Asynchronous FPGA Architecture for
Handshake-Component-Based Design

Yoshiya Komatsu, Masanori Hariyama, and Michitaka Kameyama
Graduate School of Information Sciences, Tohoku University

Aoba 6-6-05, Aramaki, Aoba, Sendai, Miyagi, 980-8579, Japan

Abstract— This paper presents an area-efficient FPGA
architecture for handshake-component-based design. The
handshake-component-based design is suitable for large-
scale, complex asynchronous circuit because of its un-
derstandability. However, conventional FPGA architecture
for handshake-component-based design is not area-efficient
because of its complex logic blocks. This paper proposes
an area-efficient FPGA architecture that combines complex
logic blocks (LBs) and simple LBs. Complex LBs implement
handshake components that implement data path controller,
and simple LBs implement handshake component that imple-
ment data path. The FPGA based on the proposed architec-
ture is implemented in a 65nm process. Its evaluation results
show that the proposed FPGA can implement asynchronous
circuits efficiently.

Keywords: FPGA, Reconfigurable LSI, Self-timed circuit, Asyn-
chronous circuit

1. Introduction
Field-programmable gate arrays (FPGAs) are widely used

to implement special-purpose processors. FPGAs are cost-
effective for small-lot production because functions and
interconnections of logic resources can be directly pro-
grammed by end users. Despite their design cost advan-
tage, FPGAs impose large power consumption overhead
compared to custom silicon alternatives [1]. The overhead
increases packaging costs and limits integrations of FPGAs
into portable devices. In FPGAs, the power consumption of
clock distribution is a serious problem because it has an
enormously large number of registers than custom VLSIs.
To cut the clock distribution power, some asynchronous
FPGAs has been proposed [2], [3], [4], [5], [6]. How-
ever, the problem is that it is difficult to design asyn-
chronous circuits and few CAD tools or design flow for
asynchronous FPGAs have been introduced. To solve the
problem, we proposed an FPGA architecture for handshake-
component-based asynchronous circuit design (HCFPGA)
[7]. In handshake-component-based design, asynchronous
circuits are designed by connecting handshake components.
Since various handshake components such as for data pro-
cessing and data path control are defined, it is easy to design
asynchronous data path and its controller. Besides, there are
hardware description languages and circuit synthesis tools

for handshake-component-based design [8], [9]. Therefore,
handshake-component-based design is suitable for complex
large-scale asynchronous circuits. However, the problem of
the previous HCFPGA is its large transistor count because
each FPGA cell is complex to support various handshake
components.

This paper proposes an area-efficient HCFPGA architec-
ture that combines complex LBs and simple LBs. As the
proposed architecture implements handshake components
efficiently, CAD tools such as Balsa [9] are utilized to design
asynchronous applications. Data path and its controller are
implemented by simple LBs and complex LBs respectively.
Therefore, the proposed architecture can implement applica-
tions efficiently.

2. Architecture
2.1 Handshake-component-based design
methodology

In asynchronous circuits, the handshake protocol is used
for synchronization instead of using the clock. Figure 1
shows a four-phase handshake sequence. First, active port
sets the request wire to “1” as shown in Fig. 1(a). Second,
passive port sets the acknowledge wire to “1” as shown in
Fig. 1(b). Third, active port sets the request wire to “0” as
shown in Fig. 1(c). Finally, passive sets the acknowledge
wire to “0” as shown in Fig. 1(d) and wire values return to
initial state. Data signals are sent along with request signals
or acknowledge signals.

Handshake components were proposed for use in the
synthesis of the language Tangram [8] created by Philips Re-
search. An asynchronous functional element such as a binary
operator is denoted by a handshake component. There are 46
handshake components [10] and each handshake component
is used for data processing or data path control. Figure
2 shows handshake components. Handshake components
constitute a handshake circuit. Figure 3 shows an example
of a handshake circuit. Each handshake component has ports
and is connected to another handshake component through a
channel. Communication between handshake components is
done by sending request signal from the “active” port and ac-
knowledge signal from the “passive” port. Depending on the
kind of handshake components, data signals are sent along
with request signals or acknowledge signals. The number of

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 | 15

������ �����	����������

��������	
���

��������

���

���

���

���

������ �����	��

��������	
���

��������

������ �����	��

��������	
���

��������

������ �����	��

��������	
���

��������

Fig. 1: A four-phase handshake sequence.

�� ���
����

�������

	
��
������

�������

�
��

�������

����

�������

	
��
������

������� 	
��
������

	
����

�
��

Fig. 2: Handshake components and channels.

ports of a handshake component and the width of data signal
can be varied. Each handshake components execute complex
handshake sequences through channels. However, handshake
circuits are easily understandable and manageable because
a function of each handshake component is clear and each
handshake is symbolized by a channel and ports. Also, there
are tools that translate high-level circuit description into
handshake circuit to synthesize asynchronous circuit. Thus,
handshake-component-based design is suitable for complex
and large-scale asynchronous circuits. Asynchronous circuit
synthesis is done by replacing each handshake component
with corresponding circuit.

2.2 Overall architecture
As mentioned in preceding section, circuit synthesis is

done by replacing each handshake component with corre-
sponding circuit. Thus, asynchronous circuits can be imple-
mented by replacing each handshake component with a com-
bination of LBs. Figure 4 shows the overall architecture of
the proposed FPGA. The FPGA consists of mesh-connected
cells like conventional FPGAs. Each cell includes an LB, two
Connection Blocks (CBs) and a Switch Block (SB). There
are two types of LBs. One is complex LB and the other is

��

�������

���������

	
�

�
��
�

�

��

�

�

��

��

��

�

�

�

�

��������

�

�

Fig. 3: A simple handshake circuit (4 bit counter).

�����������	��

��������
�������	��

������������	��

��

��

��

��

��

��

��

��

�� �� ��

�� �� ��

��

��

�� ��

��

��

��

��

�

�

��

��

����

����	�

��
��
��������	�����

��
���	
��
������	�

����

��

��
�
�

��

��
�
��

��

��
�
�

��

��
�
��

��

Fig. 4: Overall architecture.

simple LB. The upper CB connects SBs to N1, N2 and S
terminals of two LBs, and the bottom CB connects SBs to
E1, E2 and W terminals. In the proposed architecture, each
LB includes dedicated circuits for implementing handshake
components. Therefore, the proposed architecture can im-
plement handshake circuits efficiently. The proposed archi-
tecture can implement 39 out of 46 handshake components
defined in Balsa manual [10]. Handshake components that
have multiple ports or wide data path can be implemented
using several LBs. In the proposed FPGA architecture, the
Four-Phase Dual-Rail (FPDR) encoding is employed for
asynchronous data encoding. The FPDR encoding encodes
a bit and a request signal onto two wires. Table 1 shows
the code table of the FPDR encoding. The main feature is
that the sender sends a spacer and a valid data alternately
as shown in Fig. 5. FPDR circuits are robust to the delay
variation. Hence, the FPDR encoding is the ideal one for
FPGAs in which the data path is programmable. Because
the FPDR encoding is employed, three wires are required
for a data bit. Two wires are used for the data encoded in
FPDR encoding, and one wire for the acknowledge signal.

16 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 |

Table 1: Code table of the FPDR encoding.

(0,0)Spacer

Code word
(T, F)

(1,0)

(0,1)

Data 1

Data 0

(0,0)Spacer

Code word
(T, F)

(1,0)

(0,1)

Data 1

Data 0

Time
(0,1) (0,0) (0,1) (0,0) (0,1)

Data
Value

0

Data
Value

0

Data
Value

1Spacer Spacer

(0,0)

Spacer

Fig. 5: Example of the FPDR encoding.

2.3 Logic block structure
As mentioned in 2.2, there are complex LB and simple

LB. Figure 6 and 7 show the structures of a complex LB
and simple LB. Complex LB consists of a BinaryFunction
module, a Variable module, a Sequence module, a CallMUX
module, a Case module, an Encode module, an Input switch
box and an Output switch box. Simple LB consists of a
BinaryFunction module, a Variable module, a C-element, an
Input switch box and an Output switch box. An Input switch
box and an Output switch box connect modules to CBs. Each
module is used to implement a handshake component. Table
2 shows correspondence relation between modules and hand-
shake components. Complex LB can supports 39 handshake
components because it has all the modules. On the other
hand, simple cell can implement 22 handshake components
including Variable component and BinaryFunction compo-
nent. Therefore, complex LB is suitable for implementing
data path controller and simple LB can implement data path
efficiently.

3. Evaluation
The proposed FPGA is implemented in e-Shuttle 65nm

CMOS process with 1.2V supply. The circuits are evaluated
using HSPICE simulation. Table 3 shows the comparison

Table 2: Handshake components and its corresponding re-
sources.

������ ��	�
����
�����	�	�

�������� ������	���������
��������

�����	�� ��	����
�����
�����	���
�����

������� �����
�������� ��	��	���
��	��	����
�

��
�

���� !����
��
��

��
�"�����
 ���
��	�����

��

�#������
��
�$	����
�

!	���� !	����

��	��$"�	����	

�	�
��������
��	��$"�	��
��	��$"�	���	
�%�
�	��$"�	�

��������
�	�

�����	��

"��
����������

&���#�!�'��"��
����������

��

�#�!�'��"��
���������

���'��������

(�����		���

��
�����

&�����
�����	��
�����	�!�����

��	
��	��
"�����
"����
"�����
��

�����
������
��
��

�#�����
������
������

�����!�����
�$	���
�$	�������
����"���

�������

��	
��

�
��	��

��	
��

��
���

�

����

��	
��
��

�

�

��

��

��

�

��

����
���

����
��

����
��

�������	��

�����
�

�����
�

�����
��

�����

�
��	��
�

�

�

!"���#

$�%

�
��	��
�

&����'���	

&����� ����

�������	�

��

�����
�

�����
(

�����
)

�����
��

�����
�(

�����
�)
�������	
��

*����'����

*
�#���+

*����'����

*
�#���,

�
�
�

�"���#

$�%

�
��	��
�

�
��	��
(

�
��	��
)

����
���

�������	��

����������$��

�
����,

����������$���

���	���
�����

��� -���'����
�

!�,
�
���

!�,
�
������,

��
�
��

����������$�����+

�����$��

��	
��

����

����

!�,
�
��

-���'������,

!�,
�
��

��	
��

Fig. 6: Structure of a complex LB.

������

���	
���

��
���

��

�

�

��

��

��

�

��

�����
��

�����
�

�����
�

�������
��

����

���
	�

���

 �
��!���

 �
�����	��

�������
�

��

��
��

���
	�

���

�����
��

�������
��

��������

��
���

�����

�����

���������������	"
#

Fig. 7: Structure of a simple LB.

result of cells of the conventional asynchronous FPGA,
the conventional HCFPGA and the proposed HCFPGA.
Compared to the conventional asynchronous FPGA cell, the
transistor count of the complex cell is increased by 63.0%
because the complex cell is the same as the conventional
HCFPGA cell. The transistor count of the simple cell is
reduced by 31.0% compared to the complex cell.

The next evaluation shows the implementation results of
a 4-bit counter. Table 4 shows the comparison of transistor
counts, energy consumptions per operation and through-
puts. Compared to the conventional asynchronous FPGA,
the number of transistors and the energy consumption per
operation are reduced by 4.4% and 19.8% respectively. This
is because handshake-component-based design method is
suitable for designing not only controllers but also area-

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 | 17

efficient data paths. On the other hand, the throughput is
decreased by 47.6% because each handshake components
execute complex handshake sequence. Compared to the
conventional HCFPGA, the number of transistors and the
energy consumption per operation are reduced by 25.3% and
11.8% respectively and the throughput is increased by 7.9%.
This is because the data path is implemented using the cells
with simple LB.

Table 3: Transistor count of a cell and its breakdown.

�����������	

���
�������

���

�����������	

�����

��������

�����

����	���
�		 ����	��
�		

��		 ���� ���� ���� ���

!" ## #�## #�## ##

�"������"� #$#� � �$ � �$ �##%

Table 4: Evaluation results of 4-bit counter.

�����������	

���
�������

���

�����������	

�����

��������

�����

����������

�����������
����� ����� �����

 ���!�

������������"�#$
%&'� �&() �&'�

*����!����

"+�����������,��
$
'(-&(� ..&��)�&-�

4. Conclusions
This paper presented an area-efficient asynchronous

FPGA architecture for handshake-component-based design.
In the proposed HCFPGA architecture, simple LB and
complex LB are used to implement a data path and its
controller respectively. Therefore, the proposed architecture
implements applications efficiently. As a future work, we
are evaluating the proposed FPGA architecture on some
practical benchmarks.

Acknowledgment
This work is supported by VLSI Design and Education

Center (VDEC), the University of Tokyo in collaboration
with STARC, e-Shuttle, Inc., Fujitsu Ltd., Cadence Design
Systems Inc. and Synopsys Inc.

References
[1] V. George H. Zhang. and J. Rabaey, “The design of a low energy

FPGA,” in Proceedings of 1999 International Symposium on Low
Power Electronics and Design, California, USA, Aug 1999, pp. 188–
193.

[2] J. Teifel and R. Manohar, “An asynchronous dataflow FPGA architec-
ture,” IEEE Transactions on Computers, vol. 53, no. 11, pp. 1376–1392,
2004.

[3] R. Manohar, “Reconfigurable Asynchronous Logic,” inProceedings of
IEEE Custom Integrated Circuits Conference, Sep. 2006, pp. 13–20.

[4] M. Hariyama, S. Ishihara, and M. Kameyama, “Evaluation of a Field-
Programmable VLSI Based on an Asynchronous Bit- Serial Architec-
ture,” IEICE Trans. Electron, vol. E91-C, no. 9, pp. 1419–1426, 2008.

[5] M. Hariyama, S. Ishihara, , and M. Kameyama, “A Low-Power Field-
Programmable VLSI Based on a Fine-Grained Power-Gating Scheme,”
in Proceedings of IEEE International Midwest Symposium on Circuits
and Systems (MWSCAS), Knoxville(USA), Aug 2008, pp. 430–433.

[6] S. Ishihara, Y. Komatsu, M. Hariyama and M. Kameyama, “An Asyn-
chronous Field-Programmable VLSI Using LEDR/4-Phase-Dual-Rail
Protocol Converters,” inProceedings of The International Conference
on Engineering of Reconfigurable Systems and Algorithms (ERSA), Las
Vegas(USA), Jul 2009, pp. 145–150.

[7] Y. Komatsu, M. Hariyama and M. Kameyama, “Architecture of an
Asynchronous FPGA for Handshake-Component-Based Design,”Proc.
International Conference on Engineering of Reconfigurable Systems
and Algorithms (ERSA), pp. 133-136, July 2012

[8] K. van Berkel, J. Kessels, M. Roncken, R. Saeijs, and F. Schalij,
“ The VLSI-programming language Tangram and its translation into
handshake circuits,” in Proc. EDAC, 1991, pp. 384―389.

[9] A. Bardsley, “Implementing Balsa Handshake Circuits,” Ph.D. thesis,
Dept. of Computer Science, University of Manchester, 2000.

[10] Doug Edwards and Andrew Bardsley and Lilian Janin and Luis Plana
and Will Toms, "Balsa: A Tutorial Guide", 2006.

18 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 |

Abstract— The premise of this project is to provide a proof of
concept of Alamouti’s remarkably celebrated 2x1 transmit
diversity scheme with the aid of Software Defined Radios. We
aim at producing the same results as Alamouti, in an
environment that behaves as a frequency selective and slow
fading channel. The software-defined radios provide a
remote RF front-end to conduct this experiment however; the
real encoding and combining are done through Simulink
natively on external host machines.

Index Terms—Alamouti, DBPSK, Mathworks Simulink,Matched
Filter, PN sequences,Space Time Encoding, Software Defined Radios,
USRP2.

I. INTRODUCTION

hroughout the development of wireless communication
systems, the environment poses an insurmountable
challenge as our demands for mobility increase. With

increased mobility, wireless channels become riddled with
multipath and fading effects. Typically a communication system
is highly susceptible to effects of multipath and fading unless it is
compensated for additionally. Diversity is an elegant solution to
this problem. Diversity is defined as the availability of more than
one channel to transmit multiple copies of the same information.
This kind of redundancy in a communication system is
welcomed, since, it promises a better performance as opposed to
a traditional setup that does not adopt diversity. Conventionally,
diversity on the receiver side was observed for harvesting
information with the help of more than one antenna. This kind of
simultaneous reception of the same data through different
antenna provides us with resourceful, redundant information. In
an influential environment, data often loses its integrity and thus
the redundant information helps us compensate for the channel
influences and recover the data more precisely. Receiver
diversity calls for increasing the RF circuitry such as low noise
amplifiers (LNA) by two fold. In 1998, Siavash M. Alamouti
proposed, that his novel idea of transmitting using two antenna
and receiving with one provides a similar performance as
described by the maximal-ratio receiver combing (MRRC)- a
type of complex receiver diversity. With his scheme, we can reap
the benefits of receiver diversity in a multipath time varying
channel at the same cost of complexity. However, there is an

This paper was composed and submitted for review to the ESRA 2013

added advantage of reduced receiver infrastructure. Alamouti
proposed that transmit diversity provides the same trend in bit
error rate performance with an expenditure of an additional 3dB
signal to noise ratio (SNR) than MRRC. In-spite of this added
expenditure of 3dB in signal-to-noise ratio requirement, transmit
diversity scheme is more lucrative and practical. Alamouti’s
scheme calls for enhancing the base-stations with more antennae
than providing more receive antennae at the remote units, which
are large in number. [1]

II. THEORY

A. Equivalence between MRRC and Transmit Diversity
Although Maximal-Ratio Receiver combing and Transmit
Diversity bear huge differences in the computation regarding
retrieval of a bit and infrastructure i.e. orientation of the multiple
antenna, they bear remarkably similar results due to a pivotal
concept known as Space-Time Encoding. This can be observed
in Figure II.1.It shows the Monte Carlo Simulation of a Binary
Phase Shift Keying (BPSK) transmission system with no
diversity, MRRC and Transmit diversity. In order to observe the
manipulation required that makes transmit diversity work, we
need to delve in to the requirements of maximal-ratio combining.
In Addition, it is necessary that we familiarize ourselves with
what space-time coding channel estimation and channel impulse
response are

Figure II.1Monte Carlo Simulation of MRRC v/s Transmit Diversity

[2]

B. Space Time Coding
Space-time encoding helps spread our data in space and time.
This concept of spatial distribution helps us retrieve symbols
after combining. The available data is first distributed in space.
As a result, we establish multiple channels to transmit on.

Implementing 2x1 Transmit Diversity on
Software Defined Radios

Anaam Ansari, Graduate Student, San Jose State University, Dr. Robert Morelos Zaragoza, Professor,
San Jose State University.

T

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 | 19

Subsequently, we reproduce conjugates of the same data as
described in Figure II.2 and switch them up on the two
available channels. [1]. The available symbols S0 and S1 are
served for encoding at time intervals t and t+T respectively,
where T is the time period of each complete symbol. The
symbols are then sent separately over two channels during
time interval t. In our example, S0 will be sent over channel1
and S1 over channel2. In the next interval t+T, we need to send
conjugates of the previous symbols, S0

* and -S1
*. However, the

negative conjugate of S1 i.e. -S1
* is sent over channel1 and

S0
*is sent over channel2

Figure II.2 Space Time Distribution of the symbols

C. Channel Estimation
Channel Sounding is a process that is commonly employed to
obtain the channel impulse response. This process is heavily
dependent on using Pseudo Random Noise (PN) Sequences. PN
sequences are binary sequences that have peculiar properties and
are produced using Linear Feedback Shift Registers (LFSR). In
brief, to serve the purpose of channel sounding, a PN sequence is
transmitted over a channel. This is received and correlated with
the same PN sequence. This process is employed because
autocorrelation between the same PN sequences gives very
evincing results. Since, PN sequences are binary in nature, their
autocorrelation behavior can be deducted by studying how an
example

1) PN sequence example
For example, lets consider a PN sequence of the degree N=2
degrees and polynomial x2 + x +1.We get a sequence of length
L=2N – 1=3. This means that the sequence itself is periodic over
𝐿=3. The shift register array that provides this code and its initial
state is described in Figure II.5. The process of generation of a
PN sequence is described in Table I.

Figure II.3 LFSR to produce a PN sequence of order 2

Hence the transmitted pseudo random sequence is given by a
sequence of random pulses described by the following equation
(8). Where cn correspond to the bits associated with the PN
sequence, Tc is the chip time of the PN sequences. Chip Time is
defined as the time interval of every bit within a PN sequence.

c(t) = cn
n=0

∞

∑ rect
t − Tc
2
− nTc
Tc

$

%

&
&
&

'

(

)
)
)

 (8)

Evidently, the sequence c(t) is periodic with period Tb = 3Tc.The
autocorrelation function of c(t), defined as

Rc (τ) =
1
Tb

c(t)c(t −τ
to

to+Tb∫)dt (9)

Rc (τ) =
(1− N +1

NTc
), τ < Tc

−
1
N
, τ < Tc

"

#
$$

%
$
$

 (10)

Figure II.6 : PN sequence and its Autocorrelation

Remarkably Rc (τ) is also periodic with period 𝑇! = N𝑇!, N = 3,
and shown below against the PN sequence. The following
sequence in described in Table I was recreated using the
transmitted symbols from the USRP boards. As can be observed
from Figure II.6, the PN sequence has a time period 𝑇! ,of about
9.38e-5 secs and 𝑇! of about 3.09e-5 secs.

D. Channel Impulse Response

1) Multipath in Wireless Transmission
Consider a channel h(t) , to which we subject a PN sequence
c(t) . The channel h(t) brings about certain changes to c(t) .
Ideally in a free space system where there exist just one line of
sight component between the transmitter and receiver the
response of the channel appears as described in Figure II.7:

 c(t),Rc (τ) c(t),Rc (τ)

TABLE I
GENERATION OF PN SEQUENCE USING LFSR

Time, n Sn-1,x Sn,x2 Output

 Cn

-1 0 1 - -1
0 1 0 1 1
1 1 1 0 -1
2 0 1 1 -1
3 1 0 1 1
4 1 1 0 -1
5 0 1 1 -1
6 1 0 1 -1

20 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 |

As a result, there is no modification in the PN sequence. The
above channel represents a channel in which the transmitted
wave doesn’t suffer any reflection. Therefore, the autocorrelation
at the input will be the same as the autocorrelation at the output.
Now consider a channel in which the transmitted wave
undergoes reflections. The impulse response is given by h(t) and
the channel appears as follows

Where c' (t) = c(t)∗h(t) . (11)
Convolving c' (t) by c' (−t) we get
c' (t)∗c' (−t) = (c(t)∗h(t))∗ (c(−t)∗h(−t)) (12)
c' (t)∗c' (−t) = c(t)∗c(−t)∗h(t)∗h(−t) (13)
R

c'
(τ) = Rc (τ)∗Rh (τ) (14)

Since, x(t)∗ x(−t) = Rh (τ) (15)

Therefore, R
c'
(τ) = Rc (τ)∗h(τ) for observational purposes.

2) Delay Spread
Delay spread equals the time delay between the arrival of the
first received signal component (LOS or multipath) and the last
received signal component associated with a single transmitted
pulse. Another characteristic of the multipath channel is its time-
varying nature. This time variation arises because either the
transmitter or the receiver is moving, and therefore the location
of reflectors in the transmission path, which give rise to
multipath, will change over time. [4]

E. Maximal-Ratio Receiver Combining
Maximal-Ratio-Receiver combing is one of the most complex
combing techniques. The retrieval of bits is dependent on the
successful estimation of the channel. The two channels
established between the lone transmitter and the two receivers
have the impulse responses h0 and h1. On being received by the
receiver, the received signal needs to be compensated for the
channel effect by multiplying it with the conjugates of the
respective impulse responses. The received symbols are:
r0 = h0S + n0 (16)
r1 = h1S + n1 (17)

 Using the conjugates of the channel estimates we render the
effects of the channel neutralized. It only manifests itself in the

form of a scalar magnitude. The receiver combining effect can be
summarized as follows.
h0
*r0 = h

*
0 (h0S + n0) = h

*
0h0S + h

*
0n0 = h0

2 S + h*0n0 (18)

 h*1r1 = h
*
1(h1S + n1) = h

*
1h1S + h

*
1n1 = h1

2 S + h*1n1 (19)
Thus, we obtain the original signal that was originally
transmitted. However, it is only scaled by the magnitude of the
impulse response. The noise too is affected by the channel
estimates [4].

Figure II.4 MRRC Architecture.

F. Transmit Diversity
Transmit Diversity can be described by the arrangement shown
in the Figure II.11 below. We send two independent symbols on
two separate antennae. The two successive symbols on the same
antennae are not independent of the frames sent before them.
They are derived from the first two symbols sent previously.
They are conjugates of the previous symbols. This brings us to
the fascinating new concept as space-time encoding. The bits
sent are S0 and S1.

Figure II.10 Transmit Diversity Architecture.

The received signals at time t and t+T the following.
r0 = h 0S0 + h1S1 (20)

 r1= −h0S1
* + h1S0

* (21)
The received symbols are then combined with the channel
estimates in the following manner.
h0
*r0 + h1r1

* (22)
 h1

*r0 − h0r1
* (23)

The result of that is as follows.
h0
*(h 0S0 + h1S1 + n0)+ h1(−h0S1

* + h1S0
* + n1)

* (24)
h1
*(h 0S0 + h1S1 + n0)− h0 (−h0S1

* + h1S0
* + n1)

* (25)

h 0
2 S0 + h0

*h1S1 + h0
*n0 − h1h0

*S1 + h1
2 S0 + h1n1

* (26)

h1
*h 0S0 + h1

2 S1 + h1
*n0 + h 0

2 S1 − h0h1
*S0 − h0n11

* (27)
After combining, what remains are the scaled symbols. The
scaling is nothing but the combined magnitude of the two

Figure II.7 Channel model with only Line of sight.

Figure II.8 Channel Impulse Response with multiple paths.

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 | 21

complex channels. The accompanying noise is colored by the
channel estimates,which is similar to MRRC.
(h0

2
+ h1

2)S0 + h
*
0n0 + h1n1 (28)

(h0
2
+ h1

2)S1 + h
*
0n0 − h1n

*
1 (29)

III. THE SETUP
The test bed is comprised of two setups, one for transmission and
the other for reception. We will consider each of them one by
one. Figure III.1 describes the setup required.

Figure III.1 The Laboratory Setup

A. Transmitter
The transmitting station consists of the host PC connected to one
of the software-defined radios (SDRs) with the help of a gigabit
Ethernet cable. The two SDRs are further connected to one
another through a Multiple Input Multiple output (MIMO)
connection. (Refer Figure III.1). The host PC on the transmitter
side is responsible for constructing the data frame and space-time
encoding. The data-frame is then distributed over two SDRs. The
two SDRs are synchronized using the MIMO cable. The two
transmitters establish two channels with impulse responses h0
and h1 between the transmitting setup and receiving setup.

B. Receiver
The receiving station consists of a similar setup. However, just
one SDR is connected to a host PC using the Ethernet cable.
(Refer Figure 3). The host PC on the receiver side is responsible
for channel estimation and retrieval of the symbols through
combining. The channel estimator constantly spits out the
estimated channel responses h0

^ and h1
^
 used in combining.

IV. EQUIPMENT
The equipment used in this experiment are as follows.

• Software Defined Radios – Universal software defined
radio peripheral (USRP2) from Ettus Research.

• Host PC – Running Windows XP.
• Simulation Tools – Simulink Mathworks- 2011b.

Software Defined Radios are devices that is capable of operating
on a range of frequencies, with variable gains and programmable
modulation scheme. They are composed of a mother board and a
RF front-end. The specification of one such SDR is given a
follows.

A. USRP2 Specifications
USRP2 devices have the following specifications

• Mother Board
• 2 ADC 100MS/s (14--‐bit) 1
• 2 DAC 400MS/s (16--‐bit)
• Gigabit Ethernet Interface 2
• Larger FPGA2
• On--‐board SRA
• MIMO

1 USRP2 is capable of processing signals up to 100 MHz wide.
2 USRP2 has Gbps high--‐speed serial interface for expansion.

• RF Daughterboard

• RFX-900
The RFX900 daughter board is capable of
supporting a frequency range of 750MHz to
1050MHz.

1) USRP2 Operational Parameters
The USRP2 has the following three programmable operational
parameters.

a) Frequency
USRP2 is an RF front-end that does the up-conversion and
down-conversion of the baseband signal produced on the host
PC. The frequency for up-conversion is specified through the
host PC and must lie between the specified frequency range of
the respective RF daughter board. The daughterboard used for
this experiment is RFX900.

b) Gain
The gain can be specified through the host PC. It is specified in
dB and must be limited so as to not saturate the receivers.
Saturating the receiver results in the observation of non-linear
behavior on the receiving side.

c) Decimation and Interpolation
The decimation and interpolation factor must be maintained
consistent on both sides. The decimation and interpolation dictate
the sampling frequency of the SDR. Since, the upper limit of the
frequency that can be processed is 100MHz. Hence we need to
conserve the frequency of signal being fed to the SDRs. The
frequency of the baseband signal is thus dependent on the data
rate. Thus, we need to observe the following conservation As a
result, the sampling frequency is given by the following
equation.

 (25)
The sampling time is given by the reciprocal of the sampling
frequency.

 (26)

d) Frame Length
The USRP is capable of transmitting frames of data. The
receiving end provides provision to accept a certain data length
depending on the specified frame length. It can be set to any
integer value. By default, it is set to 365,which is the length of
the payload length of 1500 byte MTU of the Ethernet protocol

symbol
s

×
samples
symbol

× I =100MHz

Fs =
samples

s
=
100MHz

I
=
1
Ts

22 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 |

V. TRANSMITTER OPERATION
The transmitter operation carried out on the host PC consist of
the following

• Data Frame Construction.
• Alamouti Space Time Encoding.

We choose an Interpolation factor of 512 hence our sample time
is given by the following.

 (27)

We however use an actual sampling time of 4000 times the
original sample time. As a result, it is 0.0819 seconds. The chip
time of the PN sequences used is also the same. It is sufficiently
large compared to the coherence time. Therefore, the channels
varies slowly as compared to the symbol time. The carrier
frequency is decided to by 868MHz and with transmitter gain of
44dB. In Summary, the following device parameters are
programmed on the USRP2 on the transmitter side as shown in
Table II

TABLE II
TRANSMITTER OPERATIONAL PARAMETERS

Parameter

VALUE

Frequency 868MHz
Gain 44dB

Interpolation Factor 512

Sample Time 0.0819 seconds
Chip Time 0.0819 seconds.
Frequency Value

Gain 868MHz

A. Data Construction
• We transmit a data stream of 1023 bits of sample time

appended with 380 header bits.
• The header bits consist of a PN sequence, which is padded

with zeros to make an equivalent length of 380 bits.
• The first frame consists of a PN sequence of order 6 and

length 63. It is followed with a zero padding of 317 bits to
conserve the header length of 380 bits. This header is then
affixed in front of a data frame of size 1023 bits,which is the
first symbol frame {S1}.

• The second frame consists of a PN sequence of order 7 and
length 127. A zero padding of length 253 bits to maintain the
header length of 380 bits succeeds it. A data frame of length
1023 is attached to this header as payload. It is the second
symbol frame {S2}.

• As portrayed in Figure V.1, the two payload frames are PN
sequences of order 10 and length 1023 bits. A PN sequence
is used to compare the received signal for performance
measurements. The payload data frames are modulated using
Differential Binary Phase Shift keying (DBPSK).

• Thus, we have a frame of length 2806 bits to be processed
by the Alamouti Space Time Encoder.

Figure V.1 Data Construction.

B. Alamouti’s Space Time Encoding.

• The complete frame fed to the combiner unit on the
transmitter side is bifurcated into its constituent
individual frames for the purpose of encoding.

• The next step in the encoding is to strip the individual
frames off their headers. This is done so as to maintain
integrity of the PN sequence. As it is needed, on the
receiver side for channel estimation.

• The payload data frames {S1} and {S2} are now split in
space and need to be encoded in time to be distributed
over their respective antenna. This is done by producing
their conjugates and associating each bit and its
successive conjugate bit with the respective antenna.

• Now that the data has been encoded we need to
interleave it with the respective headers. Each antenna
carries both the PN sequence. As a result, we need to
make the same organized complete frame that came in
to the combiner.

• Thus ,each antenna carries a frame of length 2806 bits
after encoding. The composite time period required to
deliver two frames is maintained on the two transmitting
antennae.

Figure V.2 Alamouti Encoding

VI. RECEIVER OPERATION
The receiver operations carried out on the host PC at the receiver
are as follows.

• Channel Estimation
• Combining

Ts =
I

100MHz
=

512
100MHz

= 0.512e− 5s

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 | 23

The USRP on the transmitter side is programmed with the
following parameters. We use the same sample time on the
receiver side. We do use a factor ‘d’ for oversampling. It can
assume any integer value and thus the sample time becomes Ts/d.
This will make the receive frame to be d times in length.
However, we use d as 1. It is absolutely imperative that the
carrier frequency must be similar to that on the receiver side for
successful down-conversion. The decimation factor must match
the corresponding interpolation factor on the transmitter side. In
summary, the USRP2 is programmed using the following device
parameters shown in Table III

TABLE III

RECEIVER OPERATIONAL PARAMETERS

Parameter

VALUE
Frequency 868MHz

Gain 44dB
Decimation Factor 512

Sample Time 0.0819 seconds
Frame Length 2806

A. Channel Estimation
The process of channel estimation involves correlating the
received signal with the PN sequences used in the header. We
then observe the peaks that result out of correlation and extract
the complex channel gains. The above process is carried out
using the following steps.
• The correlation is performed using matched filters tuned

to the PN sequences used in the header frames. The
incoming signal is sent to two branches, one have a
matched filter tuned to the one with order 6 and the other
tuned to the matched filter with the order 7. The matched
filters are constructed employing digital filters. The
coefficients of the matched filters are selected such that it
is a flipped version of the PN sequence.

• After passing the absolute value of the signal through the
match filter, we observe peaks on the other side. The
peaks coincide with the respective PN sequence
placement.

• The matched filter tuned to the PN sequence of order 6
gives peaks due to the PN sequence of order 6.

• The matched filter tuned to the PN sequence of order 7
gives peaks due to the PN sequence of order 7.

• The peaks thus obtained are then normalized and
subjected to a threshold value.

• If they pass the threshold, they are then zoomed into
through oversampling. We oversample the peaks and find
out the value where they are roughly constant and then
extract the corresponding complex values.

• These complex channel values are then fed to the
Alamouti combiner.

Figure VI.1 Channel Estimation

B. Combining
Once we are furnished with the channel estimates, we need to put
the two frames together. While the channel estimator finds the
channel parameters on one branch of the receiver operations, we
condition the received frames to be further processed by the
combiner.

• Similar to the encoding process, the incoming signal is
bifurcated into two frames and we strip each frame of its
header. Thus, the incoming signal of length 2806 is split
into 2 streams of 1403 bit length.

• Subsequently, we unwrap the 380-bit length header and
the frames are thus ready for combining.

• The payload frames are combined with the channels
estimates in the following fashion.

• After the time period of two frames has elapsed , we are
able to construct the two original frames that were sent.

Figure VI.2 Alamouti Combining

VII. PERFORMANCE AND RESULTS

A. PN Correlation.
We were able to successfully estimate the channel using the
proposed scheme. Figure VII.1 and FigureVII.2 give the
correlated output of the channel estimator.
Figure VII. 1 bears just the alternate bursts of PN sequences.
In this case, we only send the two PN sequences, the rest of the
data is zero. The top window shows the matched filter output of
the correlator that is tuned to the PN sequence of length 63 .The
second window is the received signal. The third window is the
filter output of the matched filter of the correlator that is tuned to

24 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 |

the PN sequence for length 127.As can be observed, we see
correlation at alternate bursts. It can be easily interpreted that PN
sequence of length 63 is followed by a PN sequence of length
127 and this combination is repeated.

Figure VII.1 Autocorrelation of just PN sequences

Figure VII.2 is the result when we send the headers followed by
payload data of length 1023 bits. We can see the bursts received
and separate the zero padding. The first window is the output of
the matched filter tuned to the PN sequence of order 6 –length 63
and the second window is just the burst being received. The third
window is the output of the matched filter tuned to the PN
sequence of order 7- length 127.

Figure VII.2 Autocorrelation of complete frame

B. Demodulation.
The channel coefficients thus obtained are used to combine the
frames together and given to the DBPSK modulator. The output
of the DBPSK modulator is explained in Figure VII.3. As can be
evidently seen, we are able to gain a sense of DBPSK from
Figure VII.3.

Figure VII.4 Demodulation of the payload

VIII. FUTURE WORK

A. Frame Synchronisation
Presently the receiver has no sense of timing. We need to
incorporate that to achieve the complete results. Since there are 3
remote units involved, each of them have their respective local
oscillators. This manifests itself in the relative drift between the
clocks and hence it may so happen that we process a frame
midway as opposed to the beginning.
We need to device a technique for choosing data bits after the
correlation peaks and open a widow for streaming for a length of
(1023 + the padded zeroes).	
 This will ensure that we combine the
encoded symbols without any offset in the received streamed
data

IX. REFERENCES

[1] Siavash M. Alamouti. “A Simple Transmit Diversity Technique for

Wireless Communications”,IEEE JOURNAL ON SELECT AREAS IN
COMMUNICATIONS, VOL. 16, NO. 8, OCTOBER 1998.

[2] Introduction to MIMO systems, Mathworks Matlab. Natick, Massachusetts,
U.S.A. 1984.

[3] Simon Haykin, “Communication Systems”, 4th Edition Wiley
[4] Andrea Goldsmith, “Wireless Communications” 2005 Cambridge

University Press

Anaam Ansari is a graduate student at Charles W. Davidson
College of Engineering, San Jose State University in the
Electrical Engineering Department. She obtained her
undergraduate degree, Bachelor of Engineering – Electronics
(B.E) from the University of Mumbai in the year 2011.
Email Address: anaam.ansari@sjsu.edu

Dr. Robert Morelos Zaragoza is professor at the Charles W.
Davidson College of Engineering, San Jose State University
inthe Electrical Engineering Department. He has research
interests in the areas of error correcting codes and digital signal
processing techniques for wireless communication systems. He is
the author of twenty international peer-reviewed journal papers,
more than eighty international conference papers and the
book The Art of Error Correcting Coding (2nd edition, John
Wiley and Sons, 2006). Prof. Morelos-Zaragoza holds eighteen
patents in the U.S.A., Japan and Europe, on the topics of error
correcting coding (ECC) and cognitive radio (CR). Robert is a
senior member of the IEEE, an active consultant for industry in
ECC and CR technologies, and serves as reviewer, editor and
technical program committee member in numerous international
IEEE conferences and journals in Information Theory and
Wireless Communication Systems.
Email Adress: robert.morelos-zaragoza@sjsu.edu.

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 | 25

26 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 |

SESSION

DEVELOPING RECONFIGURABLE
HETEROGENEOUS SYSTEMS

Chair(s)

TBA

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 | 27

28 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 |

Heuristically Driven Task Agglomeration in Limited Resource
Partially-Reconfigurable Systems

David Austin1, B. Earl Wells1,
1Dept. of Electrical and Computer Engineering, Univ. of Alabama in Huntsville, Huntsville, Alabama, USA

Abstract— This paper introduces a method for enhancing
run time performance of a dynamic partially reconfigurable
system. The technique is applied to fully deterministic task
systems that are large in comparison to the resources of the
target reconfigurable device. Performance improvements are
realized by increasing the granularity of the task system at
compile time in a manner that reduces the number of context
switches that are required during run-time, thereby decreas-
ing the system execution time. Two algorithms are proposed
to implement this technique. Both methods are implemented
using simulation, and their performance is compared to a
sophisticated heuristic scheduler, which reveals a significant
improvement in performance.

Keywords: reconfigurable systems, scheduling, heuristic algo-
rithms

1. Introduction
Partially dynamically reconfigurable systems make use

of reconfigurable hardware, such as Field-Programmable
Gate Arrays (FPGAs), that are capable of being modified
while executing. These systems are attractive since they
combine the flexibility of software with the performance
of hardware. With careful orchestration, modern systems
are reconfigurable at run-time allowing an application to
be mapped into a reconfigurable system that is physically
smaller than what would normally be necessary to implement
the application. A large application can fit into a physically
smaller device because parts of the application that are not
active can be removed from the device so that other parts of
the application can make use of the resources of the device,
allowing a type of spatial multiplexing within the device.

The lifecycle of a reconfigurable system can be subdivided
into two phases: compile time, and run-time. During compile
time, bitstreams are generated, initial configurations are
defined and loaded, and static scheduling is performed. In
run-time, the generated tasks are executed and reconfigured.
The time necessary to generate a new bitstream for a
reconfigurable partition can be on the order of minutes. This
requires that the synthesis operation be performed at compile
time with the system being compiled into separate modular
bitstreams for each task.

In order to map the application onto a physically smaller
device, it must be divided into discrete functional units, or

tasks. However, the fragmentation of the overall application
creates a sub-optimal condition since the area allocated to
the functional block must be large enough to implement
the largest possible function it will ever contain. If the
application is partitioned such that there is one large task
and many smaller tasks, the spacial efficiency is poor since
the extra area available in the hardware goes unused by the
majority of the tasks.

Another drawback of this approach is that because of the
way reprogramming bitstreams are generated, each bitstream
is specifically tied to a given location within the device [1].
To be able to implement all tasks in every reconfigurable
region, each region must have an available task implemen-
tation that is specifically mapped to that location in the
device. This can cause a large number of bitstreams to be
generated for the entire application. There has been some
work [2] to allow bitstreams to be placed at generic locations
in a FPGA, but even then tasks cannot be arbitrarily placed
in any functional block. This further restricts the ability to
dynamically reprogram the device. Reducing the number of
tasks, the number of relocatable regions, or both will reduce
the number of combinations required to be generated.

In order to overcome these challenges, this paper presents
a method to combine the functional blocks to make more
efficient use of the space occupied within a reconfigurable
device. This technique is suitable to be run at compile time
in order to help improve the performance of the task system.
Further, by combining tasks we reduce the number of tasks,
which helps to reduce the number of partial bitstreams that
are required to implement it in reconfigurable hardware.

2. Background
Scheduling of reconfigurable systems is a very active area

of research, and has been mentioned many times [3], [4], [5].
Task clustering has been previously suggested as a means
to improve performance of various scheduling techniques.
Clustering of software tasks on multiprocessor systems has
been considered for some years [6], [7]. Clustering for
reconfigurable systems has only been proposed in a few
recent papers. In [8], the authors describe a methodology
to map an application onto a Network-on-Chip (NoC) to
improve communication performance. This is accomplished
by combining high communication cost tasks into small

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 | 29

System-on-Chip (SoC) like clusters that then connect to
a larger NoC. This technique is primarily concerned with
optimizing the inter-task communication by minimizing the
communication distance between regularly communicating
tasks. The authors of [9] develop a very capable algorithm
for clustering tasks as part of a codesign process. However,
their approach relies on being able to effectively profile the
system’s operation. While they do apply this approach to a
heterogeneous reconfigurable architecture, they do not apply
it to any dynamically reconfigurable systems.

A dynamically reconfigurable clustering technique is pro-
posed in [10]. This approach is similar to the technique that
we present in this paper. However, the authors assume that
the reconfigurable architecture is large enough to contain the
entire application. In their approach, they use a tiered NoC
Approach. Tasks are grouped into clusters interconnected
with a network switch, and then assigned to a reconfigurable
slot, which is connected to the other slots via interslot
network switches. This system allows dynamic bitstream
generation, and is primarily concerned with improving area
utilization, and adding capabilities at run time.

None of the previous research we examined considers the
limited resource case where the reconfigurable system needs
to be shared to implement the entire application. Consistent
with this approach, the primary method considered for
improving the runtime is centered on improving the intertask
communication performance. The contributions of this paper
are a heuristic based task combination algorithm that is
suitable for improving the runtime of a reconfigurable system
in a limited resource, nonpreemptive, partially reconfigurable
hardware environment.

2.1 Definitions
A task is a discrete set of operations executed in order that

transforms an input into an output. Tasks generally have data
dependencies as well as control dependencies. If a task is
data dependent on another task, the dependent task is said
to be a data dependency sink task, whereas the other task is
said to be a data dependency source task.

Tasks are described by several metrics which include: the
task area, which is the amount of reconfigurable resources
needed to implement the task; the execution time of the task;
and the time required to reconfigure (context switch) the
device for the task. It is assumed that the context switching
time is comparatively long relative to the execution time,
which imposes a significant penalty on context switching.
Given this long switching time we do not consider the pre-
emptive case where a task is interrupted before it completes
execution.

Each task also has a type; the task’s type represents the
specific set of actions the task performs. Tasks with the same
type perform the same operations, however, the data that the
task operates on is expected to differ between instantiations.
As an example, in a signal processing application a type may

represent an operation such as a Fourier Transform that is
run multiple times during the course of the application.

An application is an arrangement of tasks such that the
data and control dependencies are met in a meaningful way
to accomplish a specific purpose. Therefore, an application
can be modeled as a directed acyclic graph. The graph
(application) G can be visualized as a tuple, G = (T,Ed),
where T is the set of tasks, Ed is the set of directed edges
that represent data flow, [11].

A dynamically configurable platform represents the com-
plete hardware execution environment for the application.
The platform consists of multiple Processing Elements
(PEs) used to execute individual tasks. In general, there
will be both software PEs (traditional microprocessors) and
hardware PEs (FPGAs) in a reconfigurable system. Only
hardware PEs are considered in this paper.

Since the PEs are partially dynamically reconfigurable,
each PE is comprised of one or more partially reconfigurable
partitions, which are the minimum reconfigurable unit of the
PE. Generally, these partitions are heterogeneous in size,
however, for the purposes of this paper it is assumed that
the partitions are homogeneous in size.

Each PE partition has a limited number of reconfigurable
resources available to implement tasks. These are classified
into two principal categories: routing resources and pro-
cessing resources. Both types of resources are consumed
by implementing a task; it is assumed that the processing
resources are the dominating constraint.

2.2 Practical Partially Reconfigurable Archi-
tectures

Current FPGAs support a limited partial reconfiguration;
the partitions can contain an arbitrary number of columns,
but have fixed row division boundaries. Fig. 1 shows an
example PE that has a single fixed row division. In this
example, a partition can be any number of columns wide,
but must either be less than half the height of the device, or
occupy the entire height of the device. Of course, it follows
that the size of the largest task dictates the minimum size of
a PE partition.

For partial dynamic reconfiguration to work, the device
must be divided into static and dynamically reconfigurable
regions. The static areas are used to implement such func-
tions as reconfiguration control logic and I/O, both between
the various reconfigurable regions and outside the PE. In
Fig.1, the static regions are shown as the dark shaded
areas, while the lighter areas represent the dynamically
reconfigurable areas.

Another practical restriction on the capabilities of existing
hardware is the number of simultaneous reconfigurations a
device may support. Typical hardware limits the number of
such reconfigurations because there are a limited number of
reconfiguration controllers. In this paper, we do not restrict
the number of simultaneous reconfigurations.

30 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 |

PARTITION
1

UPPER

PARTITION
2

UPPER

PARTITION
3

UPPER

PARTITION
4

UPPER

PARTITION
1

LOWER

PARTITION
2

LOWER

PARTITION
3

LOWER

PARTITION
4

LOWER

Figure 1: Example Processing Element

3. Theory of Operation
It is envisioned that the technique described in this paper

is capable of producing schedules that are significantly
better (smaller makespan) than schedules of unmodified
task systems. Further, the approach should not decrease
the performance of any task system during run-time. This
technique does impose a level of computational overhead,
but it is only incurred once for each task system, at compile
time, which is not generally time critical.

To justify the computational overhead of the clustering
algorithm, graphs should be selected to maximize the effec-
tiveness of clustering. Clustering should be most effective on
graphs that experience a significant amount of reconfigura-
tion. Likely the optimum value is a function of the number
of PEs, and the average size of tasks relative to the area
available in a PE partition.

3.1 Formalization of Rules
We make the following observations and assumptions

relative to applications, tasks, and PEs:
1) The number of PEs and partitions is set before run-

time.
2) The application is large relative to the size of the

partition, such that the entire application cannot be
realized in the available reconfigurable resources at
one time.

3) The time to reconfigure a partition is a function of the
size of the partition.

4) Task types represent a specific sequence of operations.
Tasks with the same type id differ only in the data
processed.

5) Subsequent executions of tasks with the same type id
within the same PE do not require reconfiguration.

6) Each PE partition can have exactly one active task at
any given time.

7) Even though only one task is active at a time more
than one task can be present within a partition. If so,
we declare this to be a task cluster.

8) At compile time, tasks can be divided into groups such
that the resultant grouping will fit into at least 1 PE

partition.
9) Subsequent execution of different tasks within the

same cluster doesn’t require a reconfiguration.
10) Resources within a cluster are only consumed once

per instance.
Given the above, we conclude that it should be possible

to combine 2 or more individual tasks from the task graph
into a complex clustered task that performs the functions
of the individual constituent tasks. Further, we infer that
doing so should improve the run-time of the system because
the number of system reconfigurations has been reduced.
We also note that the act of clustering tasks is logically
equivalent to introducing a new task type. The clustered
task’s type serves to identify which of the constituent tasks
are included in the cluster.

It should be noted that when tasks are clustered they do
not lose their identities. Only the type is altered to match
the other tasks in the same cluster. When a PE must be
reconfigured to bring in a new task, the tasks that are likely
to be needed next are many times brought into that same
partition instead of padding the configuration bitstream.

4. Example Task System
We now consider an illustrative example to demonstrate

the proposed concept. Consider the application and recon-
figurable platform shown in Fig. 2. The task system consists
of 3 tasks executing on a single PE with 2 reconfigurable
regions. Each task is a different type, which is represented
by the varying size of each task in the figure. Assume that
Task 1 and Task 2 are independent of each other, and that
Task 3 is data dependent on the output of Task 2.

Fig. 2a represents an initial task allocation to the available
hardware. Since Task 1 and Task 2 are independent, they
may begin execution once the hardware is configured and
ready. Fig. 2b shows how this application would execute.
Both PE partitions begin by reconfiguring for their first task.
Once reconfigured, the tasks begin execution. Since Task 1
completes before Task 2, partition 1 can begin reconfiguring
to execute Task 3. Task 3 can begin execution as soon as
both the reconfiguration is complete and Task 2 completes
execution. Since Task 2 completes before the reconfiguration
is done for Task 3, Task 3 may begin execution as soon as
reconfiguration is complete.

We note from the example that although Task 1 occupies
only a small portion of reconfigurable region 1, the entire
region is consumed by this task, as shown in Fig. 2a. This
mapping represents poor spatial efficiency because recon-
figurable region 1 has so much unused space. Alternatively
there is the approach presented in Fig. 3. In this scenario,
Task 1 and Task 3 have been combined into a single task
cluster, which now represents a new fourth task type. Fig. 3b
depicts the effect of clustering on the execution of this
example task system. As before, Task 1 and Task 2 may
begin execution immediately following the completion of the

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 | 31

Static Region

{
{

Reconfigurable
Region 1

Reconfigurable
Region 2

Task 3

Task 1

Task 2

Task 1

Task 2

(a)

Reconfigure

Reconfigure

Reconfigurable
Region 1

Reconfigurable
Region 2

Execute Task 1

Execute Task 2

Execute Task 3

Time

Reconfigure

(b)

Figure 2: Example Task System Before Clustering (a) Phys-
ical Implementation and (b) Execution Profile

Static Region

{
{

Reconfigurable
Region 1

Reconfigurable
Region 2

Task 3

Task 1

Task 2

Overhead Area

Task 3

Task 1

Overhead Area

Task 2

(a)

Reconfigure

Reconfigure

Reconfigurable
Region 1

Reconfigurable
Region 2

Execute Task 1

Execute Task 2

Execute Task 3

Time

Idle

(b)

Figure 3: Example Task System After Clustering (a) Physical
Implementation and (b) Execution Profile

initial reconfiguration, but because Tasks 1 and 3 have been
combined into a new task there is no need to reconfigure
partition 1 after Task 1 completes execution. However, since
Task 3 is dependent on the completion of Task 2, it may not
begin to execute until Task 2 has completed. Therefore, an
idle period has been introduced before the start of Task 3 to
delay its execution until Task 2 has completed.

We see from this example that although the idle time
has been introduced, it is for a shorter period than the
reconfiguration delay that would have normally occurred.
Further, this idle period can be of varying length while the
reconfiguration time must always be of the same duration,
since a fixed size partition is always being reconfigured.

5. Algorithm Development
The selection of optimal clusters is a topic of consid-

eration. In this paper we present two algorithms that we
have developed to generate candidate task clusters. The first
uses a simulated annealing heuristic to develop and weigh
clusters, while the second uses a straightforward list based
methodology to develop a proposed task clustering.

Both clustering algorithms makes use of a sophisticated
heuristic based static scheduler to determine an initial sched-
ule. This scheduler has been used in previous research to
create good base-line schedules to compare in terms of
quality to those produced by less knowledgeable dynamic
methodologies [11]. This scheduler utilizes multi-iteration
lifecycle heuristics of Particle Swarm, Simulated Annealing,
and genetic algorithms to produce its results. In this work
we utilize the genetic algorithm methodology exclusively
because its parameters were set in a manner that produced
significantly better results than the other two methods. The
genetic algorithm utilizes a classical multigenerational GA
that merges PE assignment and the partial task ordering
into a single chromosome. The standard genetic operators
of crossover and mutation are performed along with a
tournament style selection algorithm. The parameters used in
[11] of population size, crossover probability, and mutation
probability were identical to those used in this work.

It should be noted that the scheduler has two separate
components. One component produces the task ordering
which specifies the PE region within the reconfigurable logic
that task would execute and the relative order that the task
would execute. It does not specify the actual timing though.
The second component produces the detailed schedule which
includes the task execution time, the idle time, and the
task reconfiguration time. It does this in a manner that
adheres to the ordering information produced by the ordering
component. The fitness function was designed in a manner
that minimizes the makespan time. It should be noted that
having the two component architecture allows the static
scheduler to produce suggested clusters in at least two ways.
One by changing the typing information for the given task
graph before the scheduling method was invoked and the
second method was to modify the task ordering routine to
allow tasks to be combined together into new types before
the schedule was created.

These are the two approaches described in this paper. Both
approaches are based upon the combination of tasks into the
same task type only if they fit within the same cluster. To
do this, the clustering routine first adjusts the type of both
tasks to a new value that differs from any other assigned task
type. Then, all graph tasks are searched to find any tasks
that correspond to either of the base types of the clustered
tasks. These are then updated to also correspond to the newly
assigned cluster type. For example, if base types a and b are
selected for clustering, all other instances of base type a and
b are also converted to the new type. This ensures that if

32 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 |

a task with a different task ID but same base type occurs
either immediately before or after task a or b, the PE will not
have to undergo a reconfiguration if transitioning from the
clustered task to one of its constituent tasks or vice versa.

5.1 Simulated Annealing Technique
The first combination algorithm uses a Simulated Anneal-

ing heuristic to control the task clustering process. Fig. 4
depicts the flow of this combination algorithm. The algo-
rithm begins with a list of all of the tasks sorted numerically
according to their task ID. Then the algorithm selects, at
random, a task ID from the list. Starting with the next task
ID, each subsequent task is evaluated to determine if the
linear combination of the two tasks area will exceed the
available resources in the PE partition. If the tasks will fit
into the partition, the clustering logic described above is
executed.

The algorithm then evaluates the next task ID in the list
to see if it can also be added to the cluster. If so, the task
is added using the same clustering logic, and advances to
the next task. It proceeds in this manner until it reaches the
numerically last task ID on the list.

Once the clustering phase is complete, the updated task
system is passed back to the static scheduler for evaluation.
The result of the static scheduler is compared to the schedule
length of the previous task system. If the new system’s
schedule length is shorter than the previous, it is accepted,
and the algorithm proceeds to the next iteration by randomly
selecting a new start task ID. In the case that the new
schedule is not improved, the new system may be ac-
cepted probabilistically. The probability of accepting a worse
schedule decreases exponentially with each iteration of the
Simulated Annealing algorithm. The schedule component is
then rerun assuming this new typing. It will produce a new
value that will represent the fitness which will feed back into
the Simulated Annealing Algorithm.

5.2 Fixed Order Technique
The second clustering technique uses a simple greedy

list based clustering algorithm, as shown in Fig. 5. This
clustering algorithm makes use of the static scheduler’s
ordering and PE allocation phase. Once the static scheduler
has determined a task to PE mapping, the clustering algo-
rithm starts with the first task allocated to the first PE. This
algorithm examines the area occupied in the PE partition by
the task. It then examines the next task to see if both tasks
will fit into the partition. If so, the two tasks are combined
using the same type conversion logic as the SA approach.
The algorithm then proceeds through the remaining tasks
assigned to the PE, adding as many tasks to the cluster as
possible. The clustering algorithm then proceeds to the tasks
assigned to the next PE and tests these tasks for clustering
in the same fashion, and so on for the remaining PEs.

T >
T freeze ?

Start

End

Randomly
Pick Task X

Initialize Task
J to (X + 1)

Increment J

A(X) + A(J) >
MAX Area?

J > Num.
Tasks?

Combine
Tasks X & J

Calculate
Schedule

Shorter Time?

Update
schedule with

combined
tasks

Probabalistically
Accept?

Output
Partition

Update T

YES

NO

YES

YES

NO

YES

NO

NO

YES

NO

Figure 4: Simulated Annealing Process Flow

Start

End

PE = 0, i =
0, j = i+1

A(TaskPE, i)+
A(TaskPE, j) >

AreaMax ?

Combine
Tasks I & j

j > last task ?

No

Increment j

Increment
PE

Yes PE > last PE ?

Yes

No

Yes

Figure 5: Fixed Order Process Flow

5.3 Analysis
The execution time of a given task graph can be deter-

mined by using (1), where n is the number of tasks allocated
to a given PE, TEi is the Execution time of the ith task of
the PE, nR is the number of reconfigurations undergone on
that PE, TR is the fixed reconfiguration time, TI is the total
idle time for the given PE, and the maximum is taken over
the PE partitions.

maxPE

((
n∑

i=0

TEi

)
+ nRTR + TI

)
(1)

We see from this that there are three components to the
run-time of the application. The individual task execution
times are spent doing useful computational work, while the
rest of the time is in either idle or reconfiguration states.
If we impose the restriction that the tasks must have the

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 | 33

Table 1: Simulation Cases
Simulation Case Partition Size Algorithm

1 Small Simulated Annealing
2 Medium Simulated Annealing
3 Large Simulated Annealing
4 Small Fixed Order
5 Medium Fixed Order
6 Large Fixed Order

same PE allocation and ordering before and after clustering,
a speedup will be realized if the increased idle time does
not exceed the decreased reconfiguration time.

6. Results
In order to compare the effects of the clustering al-

gorithms, a set of computer simulations were run to de-
termine the effect of the proposed approach. Performance
is established by providing the simulation a number of
task graphs representing various applications. The average
results are compared against the best available nonclustered
schedule, which is provided by the static scheduler before
the clustering algorithms are applied.

Task graphs are synthetically generated using Task Graph
for Free [12]. To maintain compatibility with earlier work
[11], the input task sets are identical to those used previously.
A total of 6 simulation cases were run, as shown in Table 1.
Each simulation case consists of 40 task graphs with various
task and dependency characteristics. The partition size was
considered at 3 levels for each clustering algorithm under
consideration. The levels were chosen such that the average
task size represents 5%, 15%, and 30% of the total partition
size. These correspond to the large, medium and small
partition cases respectively.

Task characteristics were also synthetically gener-
ated using TGFF. Areas are uniformly distributed on
[1, 000, 5, 000), while execution times are uniformly dis-
tributed on [2, 000, 4, 000). The simulated reconfigurable
platform has the following characteristics:

• A single PE with 3 reconfigurable partitions
• Homogeneous partition sizes
• A fixed reconfiguration time, resulting from the homo-

geneous partition size
• Each reconfigurable partition supports independent si-

multaneous reconfiguration

7. Discussion and Conclusion
It can be seen from Fig. 6 that this approach does in fact

improve the overall task system execution time as measured
by the speedup, where the speedup is taken to be the ratio
of the clustered graph’s execution time to the best known
non-clustered execution time (the heuristic static scheduler).

Since the execution times of the individual tasks have
not been altered by this approach, the speedup can be

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

Small Medium Large

Sp
e

e
d

u
p

(P

e
rc

e
n

t)

Partition Size

Average Speedup

Simulated Annealing

Fixed Order

Figure 6: Avg. Speedup of the Clustering Algorithms

0%

10%

20%

30%

40%

50%

60%

70%

0% 10% 20% 30% 40%
To

ta
l E

ff
ic

ie
n

cy

(P
e

rc
e

n
t)

Partition Size

(Percent)

Average Efficiency

Baseline

Simulated
Annealing

Fixed Order

Figure 7: Avg. Efficiency of the Clustering Algorithms

0

5000

10000

15000

20000

25000

30000

35000

0% 10% 20% 30% 40%

R
e

co
n

fi
gu

ra
ti

o
n

 T
im

e

(C
lo

ck
 T

ic
ks

)

Partition Size
(Percent)

Average Reconfiguration Time

Baseline

Simulated
Annealing

Fixed Order

Figure 8: Avg. Reconfiguration Time after Clustering

0

5000

10000

15000

20000

25000

0% 10% 20% 30% 40%

Id
le

 T
im

e

(C
lo

ck
 T

ic
ks

)

Partition Size
(Percent)

Average Idle Time

Baseline

Simulated
Annealing

Fixed Order

Figure 9: Avg. Idle Time after Clustering

34 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 |

attributed to improved execution efficiency, i.e. less time is
spent in non-productive states, which can be seen in Fig. 7.
The efficiency is calculated as the ratio of task execution
time to total run time. From (1) we see that there are
two components that contribute to the nonproductive time,
reconfiguration time and idle time. By further analyzing the
two unproductive states as shown in Fig. 8 and Fig. 9,
we see, as expected, a decrease in the amount of time
reconfiguring the device, but an increase in the amount of
time that the device is idle due to waiting on precedence
constraints that have not been met.

An intuitive result is that decreasing the number of task
types below the number of PE partitions does not improve
performance significantly. When the number of partitions is
equal to the number of task types there is a one to one
correspondence between types and partitions. Each partition
can implement one task type, and there will be no need to
reconfigure them. Although there may still be room in the
partition to implement additional tasks, there is no benefit to
doing so, since no further reconfigurations will be prevented.

From comparing results between the two proposed algo-
rithms, it can be seen that the heuristic based algorithm
outperforms on average the simple fixed order approach.
The Simulated Annealing technique benefits from the fact
that that every time a proposed task clustering is generated,
the static heuristic scheduler is run again. This is necessary
to determine the value of the objective function so the
simulated annealing heuristic can determine if the clustering
has improved the schedule length. However, it also allows
the task ordering to be modified, potentially determining an
order with less idle time.

We conclude that applying the clustering approach to the
limited resource problem is an effective means to improve
run-time. Both algorithms presented showed an appreciable
speedup. Although the fixed order approach is outperformed
by the heuristic approach, the fixed order algorithm benefits
from simplicity, resulting in a quicker run-time, especially
on large task graphs. Further, in no case did either of the
clustering algorithms produce a clustered schedule that ex-
ceeded the initial schedule generated by the static scheduler.
Therefore, we have met our goal of producing a scheduler
that only incurs a compile time penalty and doesn’t degrade
the run-time performance

8. Further Work
Although the results reported in this paper are encour-

aging, they represent an initial data set that validates an
intuitive concept. These results can be extended in a number
of ways. Principally, we would like to evaluate the effec-
tiveness using task graph models extracted from real world
applications.

It is expected that some amount of additional resources
are used by the resulting clustered task as opposed to the
two base tasks. Generally, this overhead would arise from

the inference of additional registers to be able to pass data
in and out of the individual tasks. Likely this overhead
is a small, fixed amount of the combined task resources.
Some investigation should be done to determine suitable
parameters to characterize this overhead.

Overhead was not considered as part of the simulation,
since no task cluster was found to occupy the entirety
of a partition following a combination event. Rather than
complicate the task combination logic, the overhead can be
accounted for by reducing the size of the partition when the
tasks are selected for clustering. A further result of tracking
overhead in this way would result in tracking different
partition sizes for different task clusters, which would be an
important advance to considering a reconfigurable platform
with heterogeneous PE partitions.

The general task system also includes nondeterministic
control dependent tasks along with the deterministic de-
pendencies considered here. For computational simplicity,
these control tasks were not considered by this paper. An
important improvement to this technique would be to test the
effectiveness of the clustering approach against a task system
with control dependencies as well as data dependencies.

References
[1] Xilinx, “Partial reconfiguration user guide v14.3,” October 2012.
[2] T. Becker, W. Luk, and P. Y. Cheung, “Enhancing relocatability of

partial bitstreams for run-time reconfiguration,” in Proc. 2007 IEEE
Symp. Field-Programmable Custom Computing Machines, April 2007,
pp. 35 – 44.

[3] J. Resano and D. Mozos, “Specific scheduling support to minimize the
reconfiguration overhead of dynamically reconfigurable hardware,” in
Proc. 41st annual Design Automation Conference, 2004, pp. 119–124.

[4] K. Danne and M. Platzner, “An edf schedulability test for periodic
tasks on reconfigurable hardware devices,” in ACM SIGPLAN Notices,
vol. 41, no. 7, 2006, pp. 93–102.

[5] S. M. Loo and B. E. Wells, “Applying stochastic static task scheduling
to a reconfigurable hardware environment,” Int. Journal Computers
and their Applications, vol. 12, no. 2, pp. 57–75, 2005.

[6] A. Gerasoulis and T. Yang, “On the granularity and clustering of
directed acyclic task graphs,” IEEE Trans. Parallel Distrib. Syst.,
vol. 4, no. 6, pp. 686–701, 1993.

[7] M. Palis, J. Liou, and D. Wei, “A greedy task clustering heuristic
that is provably good,” in 1994 Int. Symp. Parallel Architectures,
Algorithms and Networks, (ISPAN), 1994, pp. 398–405.

[8] F. Fangfa, B. Yuxin, H. Xinaan, W. jinxiang, Y. Minyan, and Z. Jia,
“An objective-flexible clustering algorithm for task mapping and
scheduling on cluster-based noc,” in 2010 Academic Symp. Optoelec-
tronics and Microelectronics Technology and 10th Chinese-Russian
Symp. Laser Physics and Laser Technology, 2010, pp. 369–373.

[9] S. Ostadzadeh, R. Meeuws, K. Sigdel, and K. Bertels, “A multipurpose
clustering algorithm for task partitioning in multicore reconfigurable
systems,” in 2009 Int. Con. on Complex, Intelligent and Software
Intensive Systems. (CISIS ’09)., March 2009, pp. 663 –668.

[10] I. Beretta, V. Rana, D. Atienza, and D. Sciuto, “Run-time mapping
of applications on fpga-based reconfigurable systems,” in Proc. 2010
IEEE International Symp. Circuits and Systems (ISCAS), May 30-June
2 2010, pp. 3329 –3332.

[11] Z. Pan and B. Wells, “Hardware supported task scheduling on dy-
namically reconfigurable SOC architectures,” IEEE Trans. VLSI Syst.,
vol. 16, no. 11, pp. 1465 –1474, Nov. 2008.

[12] R. P. Dick, D. L. Rhodes, and W. Wolf, “TGFF: Task graphs
for free,” in Proc. 6th Int. Workshop Hardware/Software Codesign
(CODES/CASHE ’98), 1998, pp. 97–101.

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 | 35

An Automatic Design and Implementation Framework for
Reconfigurable Logic IP Core

Qian Zhao, Motoki Amagasaki, Masahiro Iida, Morihiro Kuga and Toshinori Sueyoshi
Graduate School of Science and Technology, Kumamoto University

Abstract— Conventional full-custom reconfigurable logic
device design and implementation are time consuming pro-
cesses. In this research, we propose a design framework in
order to improve FPGA IP core design efficiency by link
academic FPGA design flow and commercial VLSI CADs
based on the synthesizable method. A novel FPGA routing
tool is developed in this framework, namely the EasyRouter.
By using simple templates, EasyRouter can automatically
generate the HDL codes and the configuration bitstream for
an FPGA. With this design flow, accurate physical infor-
mation can be reported when a new FPGA architecture is
evaluated with reliable commercial VLSI CADs. For FPGA
architectures that cannot be easily implemented with present
VLSI process, EasyRouter provides a fast performance anal-
ysis flow, which improved delay accuracy 5.1 times than VPR
on average.

1. Introduction
Embedded systems play an increasingly important part

in electronic products. In particular, system-on-a-chip (SoC)
technology has developed rapidly. A variety of functions
can be implemented by embedding various hard intellectual
property (IP) cores in a single silicon die. However, a new
product must be fabricated with an entirely new mask.
Even if only small changes are made to a product to
improve functionality, a huge cost is incurred. The embedded
field-programmable gate array (FPGA) IPs can be used to
solve this problem because of their programmability after
manufacture.

There are two FPGA IP implement methods. The full-
custom FPGA IP is designed in time-consuming manually
process. On the other hand, the synthesizable FPGA IP is de-
signed with automatic application specified integrated circuit
(ASIC) flow. In traditional designs, the synthesizable method
had much worse area, delay and power performances than
the full-custom. However, the performance gaps had been
improved significantly in researches such as [1]. Therefore,
synthesizable design method is suitable for design efficiency
sensitive customizable FPGA IP implementation.

Xilinx and Altera have released their programmable SoC
products [2] [3]. A powerful ARM-based processor and
universal FPGA fabrics are integrated into one chip to reduce
power, cost, and board size. However, the FPGA IP cores
from these companies are not customizable and not provided

to other SoC designers. Menta is providing domain-specific
synthesizable and hard macro eFPGA core IPs [4]. However,
Menta’s CAD tools are only designed for their commercial
eFPGA IPs. Therefore, CAD tools and a design flow for
FPGA IP research and design are necessary.

The contribution of this paper is to propose an FPGA
design framework that specifically improves the design effi-
ciency of FPGA IP for SoC. We have developed a simple and
automatic FPGA IP design framework that combines FPGA
design tools with commercial very-large-scale integration
(VLSI) CADs. The FPGA IP that produced by the proposed
framework can be directly adopted in SoC design flow as an
IP core.

The remainder of this paper is organized as follows.
Section 2 introduces related FPGA design flows and issues
of traditional design flows. The novel router tool EasyRouter
is introduced in Section 3. Section 4 describes the proposed
FPGA IP design flow. In Section 5, we first introduce
evaluation conditions. Then we compare the performance
of EasyRouter with the conventional VPR and then discuss
evaluation results for the proposed flow. Finally we show
the simplicity and expandability of EasyRouter with a three-
dimensional (3D) FPGA case study. Conclusions are given
in Section 6.

2. Related Works
2.1 FPGA design CAD tools

Xilinx ISE and Altera Quartus are commercial CAD
tools used to implement circuits on their FPGAs. On the
other hand, open source design flows like Verilog-to-Routing
(VTR) project [5] are used for academic FPGA researches.
The VTR project consists of the placement and routing tool
Versatile Packing, Placement and Routing (VPR) [11], the
synthesis tool ODIN II [6], and technology mapping tool
ABC [7]. VPR [11] is the CAD tool that directly related to
the FPGA physical architecture.

Because VPR cannot be used for unsupported architec-
tures, many other FPGA design frameworks have been devel-
oped for various devices. Grant et al. [8] employed a typical
FPGA design flow together with a new placing, routing, and
scheduling tool for their coarse-grained architecture. Ababei
et al. [9] and Miyamoto et al. [10] proposed design flows
for a 3D-FPGA. The authors of [9] developed their TPR on

36 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 |

the basis of VPR 4.0, while those of [10] used a modified
VPR for 3D-FPGA.

2.2 Issues of traditional design flows
We now discuss two issues of VPR since it is directly

related to the physical architecture of the FPGA.
First, the architecture-description-file based architecture

definition method provides flexibility for various logic block
structures. However, the flexibility of routing structure is still
limited to the supported island style architectures. For much
of our research, such as on a 3D-FPGA, we have to modify
the VPR to implement various routing architectures. It
consumes considerable development time to master, modify,
and debug the C-coded VPR.

Second, the VPR is integrated with a simple delay model
to facilitate timing-driven routing and post-routing timing
analysis. The final timing report consists of the logic and
routing delays, which are calculated in different ways.
Therefore, although the relative values of VPR delay results
can fairly evaluate FPGA architectures, the absolute value
has low accuracy for synthesizable FPGA IP design, which
requires an accurate entire chip static timing analysis (STA)
with a standard cell library. Further, VPR does not provide
any function that links FPGA design flow with commercial
VLSI CADs.

3. EasyRouter
In this section, we introduce the proposed routing tool

EasyRouter. Based on the similar routing and reporting
functions of VPR, EasyRouter has some improved features.
First, because we developed EasyRouter in C# language with
full object-oriented programming coding style, the amount
of code and complexity was reduced, making it easier
to understand and modify. Owing to the benefits of the
open-source Mono runtime environment, EasyRouter can be
executed in most operating systems. Second, we developed
a script-based architecture definition mechanism by consid-
ering the code file itself to be the architecture definition
file. This mechanism offers users maximum flexibility in
implementing new architectures. Finally, we developed HDL
codes and bitstream generation functions to facilitate the
evaluation of the designed FPGA using commercial VLSI
CADs. The block diagram of EasyRouter is shown in Fig.
1. We now describe each of the blocks in detail.

3.1 RRGraph building block
The RRGraph describes the target FPGA architecture with

routing resources (nodes) and their connection relationships
[11]. We describe the RRGraph with a graph data structure,
which is independent with any FPGA architecture. Each
routing resource in the RRGraph is called an RRNode. The
RRGraph is a collection of all necessary RRNodes.

As Fig. 1 shows, the RRGraph building block of Easy-
Router reads the C# coded FPGA architecture script file

Fig. 1: EasyRouter block diagram.

to generate an RRGraph. The actual architectural depen-
dent codes such as architecture and physical parameters
setup, netlist and placement files import, and the RRGraph
building are implemented in the RRGraph generation script
files. The architecture and physical parameters setup block
sets parameters of one FPGA architecture like the VPR
architecture file does. New FPGA architecture can be im-
plemented by modifying the RRGraph building codes of
the script. The architecture script only returns architectural
independent RRGraph to the routing block. The dynamic
script support is implemented with the Dynamic Language
Runtime (DLR) of the .net framework. With this feature, the
FPGA architecture to be evaluated by EasyRouter can be
changed by switching the RRGraph generation script input
file. Therefore, new FPGA architecture can be implemented
easily using the EasyRouter. And the architecture script is
generic to implement various FPGA architectures. When
evaluating many architectures, it is easy to switch between
them without recompiling the main EasyRouter program.

3.2 Routing block
EasyRouter implements conventional breadth-first and

timing-driven pathfinder routing algorithms [11]. Note that
the timing-driven algorithm can improve delay of routing
result when implementing customer circuits, however, it is
not employed during the FPGA scale exploration phase
because accurate physical delay information is unknown
before the architecture implementation.

3.3 HDL codes and bitstream generation block
We developed EasyRouter using FPGA HDL codes and

the user circuit configuration bitstream generation functions
to link the academic FPGA design flow with the commercial
VLSI CAD tools, since the routing algorithm stores a large
amount of architecture information that can be used to
generate HDL codes and bitstreams. As Fig. 3 shows, when

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 | 37

EasyRouter operates in the evaluation mode, the channel
width (CW) and array size, which are input parameters,
are fixed. Using the netlist file, placement result file, HDL
codes templates, and architecture parameters, EasyRouter
can generate all the FPGA HDL codes and an application
bitstream.

First, we introduce HDL code generation. The logic part
contains three levels of codes: the logic cell, basic logic
element (BLE), and logic cluster (with a local connection
block). For most FPGA architectures, these structures are
homogeneous for all reconfigurable tiles. Therefore, the logic
components of HDL codes can easily be prepared manually.
The routing components of HDL codes are generated auto-
matically with simple templates. The template consists of the
structure of the switch box (SB) , connection block (CB), and
I/O block (IOB). The final routing HDL codes are generated
according to the channel width and other routing parameters
such as Fc_in, Fc_out and Fs [11]. Routing resources and
their connections can be generated automatically according
to the information maintained in the RRGraph of the router.

Next, we discuss bitstream generation. The logic element
bitstream consists of the logic cell lookup table (LUT) and
the configuration memory bit of the output multiplexer. The
output multiplexer selects the output of the BLE directly
from the LUT or through a register [11]. The logic element
bitstream is generated according to the netlist after technol-
ogy mapping. The routing bitstream contains configuration
memory values of the SB, CB, local connection block
(LCB), and IOB, which are generated according to the actual
routing results.

3.4 Report generation block
The report generation block exports routed circuit infor-

mation on the target device as the final execution stage of
EasyRouter. The device array size, minimum channel width,
the quantity of all routing resources, and the number of used
routing resources are included in this exported report. These
data are derived directly from a routed RRGraph, and are
useful for device performance analysis.

In order to evaluating large devices efficiently or spe-
cial VLSI technology (such as 3D-VLSI) that cannot be
implemented easily, a fast performance analysis method
of EasyRouter can be used. Because common FPGAs are
composed of tiles of the same structure, area and delay
performance can be calculated from the physical information
of one FPGA tile. We first finish the layout of a tile
structure with VLSI design flow and obtain its area. Then
the device area can be obtained from the product of the
tile area and ArraySize × ArraySize. We then perform
timing analysis using a simplified tile delay model, which
extracts some representative paths such as SB to SB, Channel
to LB, and BLE input to output, and set their delay to
values according to tile STA results. The critical path and
its delay are obtained from the timing analysis using the

Fig. 2: Proposed framework: FPGA scale exploration.

routed RRGraph and these represent delays of the paths.
The area and delay performance analysis at this stage is less
accurate. However, it is fast and has sufficient precision for
architecture exploration. We will prove this in Section 5.3.

4. Proposed FPGA IP Design Flow
Conventional FPGA architecture exploration and imple-

mentation processes involve two separate flows. The FPGA
architecture is determined by academic FPGA design flow.
However, in the implementation phase, commercial VLSI
design flow are used which gives rise to two problems.
One is that the academic design flow cannot provide high
accuracy area, delay and power estimates. The other is that
if design defects are found in the VLSI design phase, then
it is necessary to restart from the FPGA design flow and a
large number of HDL codes needs to be revised.

We propose an FPGA IP design flow that combines the
FPGA and VLSI design flows, to solve the above problems.
The proposed FPGA IP design flow consists of three parts:
the conventional FPGA design flow, VLSI back-end design
and analysis flow, and the novel tool EasyRouter which
can bridge the two flows. By employing the proposed IP
design flow, architecture exploration and implementation can
be performed with high accuracy and within a reasonable
execution time.

4.1 FPGA scale exploration
Since the FPGA IP core has limited on-chip area, FPGA

scale exploration is necessary. The objective of FPGA scale
exploration is to find a rational FPGA tile array size and
routing channel width by implementing target application
circuits.

Figure 2 shows how we link EasyRouter with VTR to
perform FPGA scale exploration. The synthesis tool ODIN
II reads and optimizes an HDL-described application circuit.
The output of ODIN II is a Blif netlist as it is the standard
format used to pass circuit information between academic
FPGA tools. Blif format circuits (ex. MCNC benchmarks)

38 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 |

Fig. 3: Proposed framework: FPGA implementation.

can be directly inputted into ABC. The technology mapping
tool ABC maps the netlist logic circuits into FPGA logic
elements, which are typically k-input LUTs. In the case of
VPR 6.0, the logic elements are first packed into clusters.
The clustered logic blocks are then placed in an n × n tile
array. Finally, we use EasyRouter to make the connections
for the I/O pins of all logic blocks and I/O ports of the
FPGA IP. Placement and routing are performed ten times
for each circuit since different seeds (from 0 to 9) of the
simulated annealing based placement algorithm generate
different placement solutions. The routing result for each
circuit is the average of the results of ten placement seeds.

4.2 FPGA IP implementation and performance
analysis with commercial VLSI CADs

After the architecture is determined, we run EasyRouter in
the evaluation mode to generate the FPGA HDL codes and
each circuit’s bitstream, which is shown in Fig. 3. When
all the FPGA HDL codes and an application bitstream are
generated, we can start the back-end design with commer-
cial VLSI design CAD tools. Back-end design flows differ
according to the technique used and the researcher’s design
experience. However, in general, the steps shown in Fig.
3 are necessary, which are the same with common ASIC
design flow.

4.3 Fast performance analysis with EasyRouter
The full back-end design of a large scale FPGA device

is an intensely time consuming process. On the other hand,
special VLSI process devices such as the 3D-FPGA cannot
presently be implemented easily because of the lack of
available CADs support and process technology. For these
reasons, the evaluation flow presented in Fig. 3 is sometimes
not efficient or not applicable. Therefore, we developed a fast

Fig. 4: Proposed framework: Fast performance analysis.

Fig. 5: Homogeneous FPGA architecture.

performance analysis function for EasyRouter to evaluate
these devices.

Fig. 4 shows the flow when using EasyRouter for fast
performance analysis. When the target device architecture is
determined with the method described in Section 4.1, we can
make HDL code for one tile of the target device. We then
implement the one tile HDL code with VLSI design flow
and obtain the physical information such as area and delays
of representative paths, as shown in Fig. 4 (a). Finally, as
shown in Fig. 4 (b), in the fast performance analysis mode
with this physical information, EasyRouter executes the area
reports and timing results.

5. Evaluation
In this section, we first introduce the evaluation condi-

tions. Second, we report the performance of EasyRouter,
which include the execution time and minimum channel
width for each benchmark. We then evaluate the proposed
post-routing performance evaluation flow with a homoge-
neous FPGA IP. Finally, we show the expandability of
EasyRouter with a 3D-FPGA case study.

5.1 Evaluation conditions
During the EasyRouter performance evaluations, we used

conventional island style FPGA that supported by VPR

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 | 39

Fig. 6: Island style FPGA channel widths.

[11]. For post-routing performance evaluation and 3D-FPGA
case study, we employed a novel homogeneous FPGA
architecture [12], as shown in Fig. 5. In this device, all
tiles have the same structure, unlike the island-style FPGA
architecture, which is composed of several types of different
tiles. Therefore, the homogeneous FPGA architecture can be
easily produced and tested. The details and performance of
this architecture have been described in a previous paper
[12]. In this evaluation we employed 4-LUT with cluster
size of four. The number of inputs of LB was ten. The SB
was wilton type. The Fs value was 3 and the Fc value was
0.5.

Circuits from the largest 20 MCNC benchmark were used
for evaluation. The device was designed using e-Shuttle 65
nm CMOS technology. The functional simulation tool was
ModelSim 6.5b. The design was synthesized with Synopsys
Design Compiler F-2011.09-SP2. The layout was performed
using Cadence EDI system 10.13. We checked the gate level
netlists outputted from the Design Compiler and EDI with
Formality A-2008.03-SP3. Finally, the STA was performed
with PrimeTime F-2011.12-SP1.

For the comparison, the area and delay physical parame-
ters of VPR were derived in the same flow and technology
process. A tile of the target FPGA was synthesized and
layouted with the same back-end design flow. The tile area
was derived from the GDS after layout. Delays within the
LB were extracted with the STA. The wire RC model was
analyzed with the HSpice. All physical parameters were
written into the architecture file in the VPR format. Note that
out evaluation targets of this evaluation were synthesizalbe
FPGAs. The evaluation result of VPR may be different for
full-custom designed FPGA.

5.2 EasyRouter performance evaluation
As we talked, the most time-consuming function of a

router is the heap sort. We tested the same heap sort
algorithm in C and C#. The basic test operation involves
adding numbers from 0 to 999,999 to a min-heap and then

Fig. 7: FPGA IP layout.

deleting it to empty from the top. The basic test operation
was repeated for 30 times. Then we compared the execution
time for the two implementations. The results showed that
the C# implementation was around 5.0 times slower than the
C implementation, because of the performance difference of
C# and C language. This implies that when implementing a
given routing algorithm, the C# program will be at least 5.0
times slower than the C program.

We evaluated the execution time of 17 benchmarks. Ac-
cording to the results, EasyRouter was 8.4 times slower than
VPR on average. However, for large circuits like frisk, pdc,
and clma, EasyRouter was near to 5.0 times slower. This is
because for large circuits, the heap sort operations dominate
the execution time to a greater extent. We examined the
s298, alu4, and pdc circuits, and the cpu instruction sampling
results showed that the execution time ratio of the heap
function were 65.8%, 76.1%, and 83.2%. Therefore, for
large circuits, the execution time overhead of EasyRouter
was close to the performance difference between the C and
C# implementations.

Fig. 6 shows the minimum channel widths of EasyRouter
and VPR. We can see that the routing performance of both
tools were similar. A reason the channel width of both differ
in some circuits, is that during the RRGraph searching step,
the expansion order of the RRNode with the same cost value
will influence the routing results. However, because of this,
the influence of the minimum channel width was only about
a factor of two (the minimum change step for unidirectional
routing architecture). Therefore, EasyRouter has a capability
that is almost identical to that of VPR.

5.3 Post-routing performance evaluation
Because the FPGA IP designs have limited die size, we

used a device array size of 15×15 to introduce the generation
of HDL codes and bitstreams, and post-routing evaluation
methods. The CW was fixed to 50. We selected the six
circuits from the 20 largest MCNC benchmarks to evaluate
the target device, because they can be implemented with a

40 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 |

Fig. 8: Delay results.

target device of array size of 15× 15.

The area calculation model of VPR multiplies the area of
one tile by the number of tiles in the array. With an accurate
tile area after layout, this module is reliable. Therefore, we
only provided the physical area information of the designed
target device, which is presented in Fig. 7.

Fig. 8 shows the critical path delay calculated by the
flow of EasyRouter with full FPGA VLSI back-end design
and STA (Full FPGA STA), EasyRouter fast performance
analysis (EasyRouter), and VPR. We believe the critical path
delay of the full FPGA STA was an accurate delay value
because the evaluation of commercial VLSI design flow with
a standard cell library has the highest simulation accuracy
in industry. Note that we used the breadth-first router of
EasyRouter and VPR for pure delay accuracy comparison.

The delay value accuracy calculated by VPR was 8.9
times lower than that obtained from the full FPGA STA
on average. This was because the delay model of VPR was
pessimistic and had low accuracy. For example, all routing
segment delays were calculated with the same wire RC
model. In an actual final layout, the placement was optimized
and the physical delays were different. However, we can see
that VPR correctly reflected the performance relationship
between the circuits. This shows the reliability of VPR as a
fast architecture exploration tool.

The result accuracy calculated by EasyRouter fast per-
formance analysis was 1.7 times lower than that obtained
from the full FPGA STA on average. This result showed
that EasyRouter improved delay accuracy 5.1 times than
VPR on average. This was because, although EasyRouter
used a similar pessimistic model as VPR, all representative
path delays were calculated with the high accuracy STA
process. On the other hand, the routing delay and logic delay
of VPR was calculated with different models. Therefore,
we conclude that the EasyRouter fast performance analysis
method is reliable for fast high accuracy device evaluation.

Fig. 9: Target 3D-FPGA architecture.

5.4 3D-FPGA case study
EasyRouter is designed to implement new FPGA archi-

tectures easily. In this section, we show the expandability of
EasyRouter by evaluating a novel 3D-FPGA architecture that
was developed in a previous work [13]. The area and critical
path delay performance of the homogeneous 2D-FPGA and
the novel 3D-FPGA were compared. The new 3D-FPGA
architecture script file was modified from a conventional 2D-
FPGA architecture script file by adding only few codes for
vertical connections of 3D-VLSI technology.

5.4.1 Target 3D-FPGA architecture
Fig. 9(a) and (b) shows the tile image and the detail of

the proposed 3D routing architectures. The two layers in the
proposed 3D-FPGA were the logic and routing layers. We
employed the face-down 3D stacking technique to connect
two dies with micro bumps. The tiles on the logic layer had
a LB and a small part of the routing resources, while the tiles
on the routing layer had only routing resources. The tiles for
the two layers were designed within approximately the same
area. Different from conventional 3D routing architectures
with 3D-SBs, we made the 3D connections on the input and
output pins of the LB, which we named 3D-CB structure.
The router chose one net to be routed on either the logic
layer or the routing layer.

By dividing routing resources into two layers, we achieved
a smaller tile. A smaller tile means a higher logic density,
shorter routing wire, and faster signal transportation. There-
fore, the routing performance could be improved. Moreover,
the proposed 3D-FPGA was realistic, because the number
of inter-layer connections within one tile was equal to the
number of input and output pins of the LB. Compared
to conventional the 3D-FPGA based on the 3D-SB, which
required two times the number of channel width inter-layer
connections, the proposed architecture significantly reduced
the requirement for inter-layer connections.

5.4.2 Evaluation conditions and results
We successfully implemented the 3D-FPGA architecture

on EasyRouter in a relatively short development time. The
FPGA scale exploration was performed with the flow that
we introduced in Section 4.1. The performance analysis was
performed using the method that we described in Section

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 | 41

Fig. 10: Area result for 3D-FPGA.

4.3. We simply define the delay of one vertical connection
between logic layer and routing layer as the same delay of
one segment wire.

Fig. 10 shows the evaluation results for the area. We can
see that the proposed 3D-FPGA used half the package area
of 2D-FPGA by allocating nets on two layers. This means
the logic density had improved by about a factor of two. The
critical path delay also improved about 4% on average. This
is because the increased channel width has better routability,
and the smaller tile has shorter routing wire length.

With this 3D-FPGA case study, we can say various archi-
tectures can be implemented on the EasyRouter framework
within a relatively short development time. High accuracy
area and delay performance analysis can also be performed
with the proposed framework.

6. Conclusions
In this paper, we proposed a novel FPGA routing tool,

EasyRouter, and an FPGA IP design flow that combines
conventional FPGA design tools with VLSI CADs. Easy-
Router facilitates easy modeling of new FPGA architectures
without any limitations, which can significantly shorten
the development cycle. EasyRouter can also automatically
generate device HDL codes and configuration bitstream files
of the implemented circuits that can be processed by VLSI
CADs. With this design flow, accurate physical information
STA can be reported when a new FPGA IP architecture is
evaluated with reliable commercial VLSI CADs. For FPGA
architectures that cannot be easily implemented with present
VLSI process, EasyRouter provides a fast performance anal-
ysis flow, which improved delay accuracy 5.1 times than
VPR on average. We have also evaluated the proposed
FPGA design flow with three different devices to show its
performance and expandability.

References
[1] I. Kuon, A. Egier, and J. Rose, “Design, layout and verification of an FPGA using

automated tools,” Proc. of the 2005 ACM/SIGDA International Symposium on
Field Programmable Gate Arrays, pp.215-226, Feb. 2005.

[2] “Zynq All Programmable SoC Architecture,” 2012.
http://www.xilinx.com/products/silicon-devices/soc/index.htm.

[3] “SoC FPGAs: Integration to Reduce Power, Cost, and Board Size,” 2012.
http://www.altera.com/devices/processor/soc-fpga/proc-soc-fpga.html.

[4] “eFPGA Core IP: The embedded Field Programmable Gate Array IP,” 2012.
http://www.menta.fr/down/ProductBrief_eFPGA_Core.pdf.

[5] J. Rose, J. Luu, C. W. Yu, O. Densmore, J. Goeders, A. Somerville, K. B. Kent,
P. Jamieson, and J. Anderson, “The VTR Project: Architecture and CAD for
FPGAs from Verilog to Routing,” Proc. of the 2012 ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, pp.77-86, Feb. 2012.

[6] P. Jamieson, K. Kent, F. Gharibian, and L. Shannon, “Odin II-An Open-Source
Verilog HDL Synthesis Tool for CAD Research,” IEEE Annual International
Symposium on Field programmable Custom Computing Machines, pp.149-156,
May 2010.

[7] A. Mishchenko et al., “ABC: A System for Sequential Synthesis and Verification,”
http://www.eecs.berkeley.edu/ alanmi/abc/, 2009.

[8] D. Grant, C. Wang, and G. G. F. Lemieux, “A CAD Framework for MALIBU:
An FPGA with Time-multiplexed Coarse-grained Elements,” Proc. of the 2011
ACM/SIGDA International Symposium on Field Programmable Gate Arrays,
pp.77-86, Feb. 2011.

[9] C. Ababei, H. Mogal, and K. Bazargan, “Three-dimensional Place and Route
for FPGAs,” IEEE Tran. on Computer Aided Design of Integrated Circuits and
Systems, pp.1132-1140, Jun. 2006.

[10] N. Miyamoto, Y. Matsumoto, H. Koike, T. Matsumura, K. Osada, Y. Nakagawa,
and T. Ohmi, “Development of a CAD Tool for 3D-FPGAs,” Proc. of the 2010
3D Systems Integration Conference, pp.1-6, Nov. 2010.

[11] V. Betz, J. Rose, and A. Marquardt, “Architecture and CAD for Deep-Submicron
FPGAs,” Kluwer Academic Publishers, Mar. 1999.

[12] K. Inoue, M. Koga, M.Iida, M. Amagasaki, Y. Ichida, M. Saji, J. Iida, and T.
Sueyoshi, “An Easily Testable Routing Architecture and Prototype Chip,” IEICE
Trans. Inf. & Syst., vol. E95-D, oo.303-313, Feb. 2012.

[13] Q. Zhao, Y. Iwai, M. Amagasaki, Y. Ichida, M. Saji, J. Iida, and T. Sueyoshi,
“A Novel Reconfigurable Logic Device Base on 3D Stack Technology,” Proc. Of
the 3D Systems Integration Conference, P-2-14, Feb. 2012.

42 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 |

Types, signatures, interfaces, and components in NOOP:
The core of an adaptive run-time

Anders Andersen
Department of Computer Science

Faculty of Science and Technology
University of Tromsø
9037 Tromsø, Norway

Abstract— Python is a dynamic language well suited to build a run-
time providing adaptive support to distributed applications. NOOP
introduces a type language and a way to apply typing to functions
(and methods). This type system is described in the first part of this
paper. The second part use this type system to create interfaces and a
software component model. And finally it is discussed how NOOP can
provide adaptive support to distributed applications.

Keywords: Software components, Adaptive, Typing, Python.

1. Introduction
Python is a dynamic interpreted language with implicit typing.

When a new function is defined no explicit type information is
provided. Argument values are assigned values at call time based
on their position or name. It is possible for arguments to have a
default value. It is also possible to combine positional and named
arguments when a function call is performed. A typical usage of
this is to have one or two obligatory positional arguments followed
by a set of named optional arguments.

The withdraw function in Figure 1 has two obligatory posi-
tional arguments account and amount and two optional named
arguments on_behalf_of and message. At call time in this
example three of these arguments are provided values, and therefore
implicit given a type. The two optional arguments were at define
time given a default value and therefore an implicit type. However,
in Python any argument (and any variable) can be assigned a value
of different type everytime it is used (sometimes this is intentional).

In large software projects well-defined function behavior is
important. Part of this is well-defined arguments and return values.
Introduction of types and a type system is a common approach to
support this. If this is introduced for Python functions the actual
implementation of these functions can be made less complex and
less error prone. The reason is that the programmer can expect
that the arguments are of the correct type. In a distributed setting
this can be extended to avoid that a remote method invocation is
performed if the correct type of arguments are not provided. Raising
such an error locally at the callee is more efficient.

The type of arguments and return values of a function is the
signature of the function. If functions are class methods we can
call the set of signatures provide by the class instances for the
interface. If all interaction of a class instance (or an object) is
through well-defined interfaces this is close to what commonly is
called a software component [1].

Python does not have type safe functions, but Python provides
the necessary mechanisms to implement it. In the NOOP project a
type system for Python functions that makes it possible to define
the signature of such functions has been implemented. We have

chosen a hybrid approach to the NOOP type system [2] where it is
possible to combine statical typing of NOOP with the dynamic
typing of Python. Signatures can be used to create interfaces.
Interfaces applied to well-defined Python classes are the core of
NOOP software components. Such components can be deployed in
a NOOP run-time both as single component or as a composition of
components. At deploy time a contract between the component and
the run-time is provided. This contract includes the requirements
of the component that has to be fulfilled by the run-time. How
the contract is fulfilled also depends on the given context of the
deployed component.

In this paper will present the type system of NOOP, how this
is used to define the signature of Python functions, and how such
signatures are used to define interfaces. NOOP components and the
deployment of such components will be introduced. Finally, its is
discussed how NOOP can provide adaptive support to distributed
applications. A more detailed overview of NOOP is available in [3].

2. Types and signatures
Python provides a set of built-in types. For example, type(1) is

int. In NOOP the type system has been extended with composite
types. A few examples are given in Figure 2. The first example
gives us the possibility to define a tuple with a well-defined number
of elements with well-defined types (a tuple with three elements
of the type int, str, and float). The second example gives us
the possibility to define a list of integers (lists in Python can have
any combination of value types). The third example gives us the
possibility to define a dictionary of any length where the keys are
of type str and the values are of type int. And the last example
provides a dictionary with two elements where the first key is "id"
and the second key is "sh", and the value of "id" is of type int
and the value of "sh" is of type str.

A few new type constructors have been added to NOOP. The
reason is that such constructors can be used to give a more precise
definition of the programmer’s intention. Figure 3 lists the new
type constructors. The extended type system is available in the
signature module.

All the type constructors are used to create new types. The
whatever type is true for any values. The opt type says that
the value should either be of this type or not present at all. The
one type says that the value should be of one of the listed types.
The type constructor pred has an argument p that is a predicate.
This predicate is a function that accepts one argument and returns
either True or False. The argument is the value of the applied
argument to the type. The tgtz type below specifies all integers
larger than zero:

def gtz(): return v > 0

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 | 43

def withdraw(account, amount, on_behalf_of="", message=""): 1

The actual implementation is ignored in this example 2

return amount 3

new_balance = withdraw(13219254, 125.25, message="School trip") 4

Fig. 1: Python function combining positional and named arguments.

type((1,"foo",2.3)) is (int,str,float)
type([1,4,7,8]) is [int]
type({"ID":212,"GID":100}) is {str:int}
type({"id":42,"sh":"bash"}) is {"id":int,"sh":str}

Fig. 2: Composite types in NOOP.

whatever Value of any type
opt(t) Value of type t or no value
one(t1,t2,...,tn) Value of either type t1, t2, . . .
pred(t,p) Value of the type t and p is true

Fig. 3: New type constructors in NOOP.

tgtz = pred(int, gtz)

The predicate type constructor is used to limit the accepted values
of a given type. It should not be confused with the concept of
dependent types [4], [5] that can create more expressive type con-
structors. Currently NOOP does not provide such type constructors.

The type system in NOOP is extensible. It is easy to create
new types using the type constructors discussed above. It is also
possible to create completely new types constructors using the
typespec class. Create a new class that inherits the typespec
class and implement the actual type check for the new type
in the __call__ method. If the new type constructor is pa-
rameterized the __init__ method has to be implemented too.
The whatever type is not parameterized, but the other type
constructors listed in Figure 3 are. A new parameterized type
constructor for positive integers up to a given value is implemented
in Figure 4. The __init__ method is called when a new type
is created using the type constructor (line 10). The __call__
method should have exactly one argument. This is the value that is
type checked against the type when NOOP performs type checking.
The __call__ method should raise a SignatureError if the
value does not match the type.

In NOOP, two approaches are used to add signatures to func-
tions. The first approach use Python decorators (available for
functions since Python 2.4). Decorators can be applied to Python
functions by a line starting with @ before the function definition.
Following the @ is the name of the decorator and optionally a set
of arguments. A Python decorator is implemented as a function.
In NOOP a signature decorator can be used to add signatures to
functions. The @signature decorator takes three arguments.

class maxint(typespec): 2

def __init__(self, max): 3

self.max = max 4

def __call__(self, value=missing): 5

if ((not type(value) is int) or 6

(value < 0) or 7

(value > self.max)): 8

raise SignatureError("No match") 9

Fig. 4: A new type constructor maxint.

The first argument is the type specification of the decorated
function’s arguments. It is either a tuple or a dictionary. Each
element of the tuple or the dictionary represents an argument to the
function. If it is a dictionary the type specification is given using
the names of the arguments. The arguments of the withdraw
function above could be specified like this (the first line as a tuple
and the following lines as a dictionary):

(int, float, opt(str), opt(str)) 1

{"account": int, "amount": float, 2

"on_behalf_of": opt(str), 3

"message": opt(str)} 4

The second argument of the @signature decorator is the type
specification of the decorated function’s return value. This is just
the return value type. The return value type of the withdraw
function above is float. The third argument is a list of exceptions
the decorated function might raise during its execution. If the
withdraw function above raised an IndexError when an
unknown account number was applied the exception list could be
specified with [IndexError]. The complete signature of the
withdraw function using the @signature decorator is shown
in Figure 5.

It is also possible to specify the @signature decorator with
named arguments. The arguments type specification in named
args, the return value type specification is named ret, and the
list of exceptions is named exc. This is a signature with named
arguments for the gtz function:

@signature(args=(int,), ret=bool, 2

exc=[TypeError]) 3

def gtz(v): 4

return v > 0 5

The second approach to add signatures to Python functions in
NOOP is to use annotations. Annotations has been available since
Python 3.0. In NOOP we use annotations to annotate arguments
and return values of functions with types. When a function is
defined each argument can be annotated using a colon. If a function
has an argument s of type str, the argument can be annotated
like this: s:str. To specify the type of the return value of a
function the function is annotated using ->. To apply the possible
list of exceptions a function can raise we still have to use the
@signature decorator.

At define time the function is analyzed to see if it matches
the type specification. At call time type checking ensures that no
arguments not matching the type specification is forwarded to the
function. Type checking also ensures that the return value matches
the type specification and that no exception not defined in the
signature is raised. If either of these fails a SignatureError
exception is raised.

It is possible to completely ignore exceptions in type checking
at call time. The consequence is that any exceptions raised by the
function will be thrown back to the caller. To achieve this effect
the exception paramater (exc) of the @signature decorator is
set to None This can also be achieved by providing no value for
this argument.

44 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 |

@signature((int,float,opt(str),opt(str)), float, [IndexError]) 2

def withdraw(account, amount, on_behalf_of="", message=""): 3

The actual implementation is ignored in this example 4

return amount 5

Fig. 5: Signature decorator for the withdraw function.

mSig = ((int, int), int, []) 1

iMath = {"add": mSig, "sub": mSig} 2

@interfaces(math=iMath) 4

class Math: 5

def add(self, x:int, y:int) -> int: 6

return x + y 7

def sub(self, x:int, y:int) -> int: 8

return x - y 9

Fig. 6: A Math class with an interface math.

@receptacles(m=iMath) 4

class Wallet: 5

def __init__(self): 6

self.v = 0 7

def doSave(self, x: int): 8

self.v = m.add(self.v, x) 9

def doSpend(self, x: int): 10

self.v = m.sub(self.v, x) 11

Fig. 7: A Wallet class with a receptacle m.

3. Interfaces and receptacles
The NOOP approach to interfaces differs a lot from the now

rejected proposal for Python found in PEP 245 [6]. PEP 245
proposes interfaces similar to what is found in Java where a class
implements a defined interface. This is also true for Zope interfaces
[7]. While the NOOP approach also can be used like this, its main
purpose is to support the interaction between objects. In that sense
it is closer to interfaces related to software components or remote
invocation.

In NOOP interfaces of objects lists methods with signatures.
One object can implement several interfaces. Receptacles represent
interfaces used by objects. Object implementations refer to external
interfaces through receptacles and receptacles are explicit bound to
interfaces (late binding). The binding operation (e.g. bind) can be
(and often is) performed outside the object implementation.

The @interface decorator is used to create interfaces on
a Python object in NOOP. To the interface decorator named
arguments are applied. The names represents the name of the
interface. The value list the methods and their signatures. A Math
class that can be used to create objects with an interface math
of type iMath with two metods add and sub are defined in
Figure 6 (mSig is the signature of both method add and sub).
The signature of each method specified in the math interface are
applied to the matching methods of the class. It is possible apply
these signatures explicit to each method in the class. Type checking
will then ensure that the signatures of the methods match the
signatures of the interface. In the example in Figure 6 the methods
are annotated with the type information.

If an object should access an interface of another object re-
ceptacles are used. A receptacle refers to an external interface
implementation that is unknown at definition time. Later, this

mSig = ((int, int), int, []) 1

iMath = {"add": mSig, "sub": mSig} 2

@component(provides={"math": iMath}) 4

class Math: 5

def add(self, x:int, y:int) -> int: 6

return x + y 7

def sub(self, x:int, y:int) -> int: 8

return x - y 9

Fig. 8: A Math component providing interface math.

receptacle can be bound to such an interface. The @receptacles
decorator is used to add receptacles to an object. In Figure 7 the
receptacle m is added to all objects of the Wallet class. The
receptacle m can then be used to call to methods of an interface of
the type iMath (like the math interface of Math objects). Before
m can be used it has to be bound to an interface of type iMath. The
following code makes an instance of both the Math and Wallet
class, connects the receptacle m of the wallet to the math object, and
perform the doSave operation of the wallet object. The doSave
operation accesses the add method of the math object though the
receptacle m and the interface math.

myWallet = Wallet() 3

myMath = Math() 4

localBind(myMath["math"],myWallet["m"]) 5

myWallet.doSave(145) 6

4. Software components
A NOOP component is a Python object with well defined

external behavior defined by a set of interfaces (provides), a
set of receptacles (uses), and a run-time contract. To implement a
NOOP component a @component decorator is added to the class
of the object. It is easy to rebrand the Math and Wallet class
to NOOP components. The @interfaces and @receptacles
decorators are replaced with @component decorators that include
the named arguments provides and uses. The provides
argument lists the interfaces provided by this component, and
the uses argument lists the interfaces used by this component
(the receptacles). Figure 8 and 9 show the implementation of the
Math component and the Wallet component, respectively. In the
Wallet component we have added a provided interface wallet.

A NOOP component is not instantiated like ordinary Python
objects. A NOOP component is deployed, and the run-time contract
is applied to the component at deploy time. The run-time contract
includes external interfaces used by the component and life-cycle
management information.

The deployment operation returns a unique reference for the
component. This reference is a global unique reference that can
be used to refer to this component globally in any NOOP run-
time. Every NOOP run-time (in NOOP called a capsule) has to
implement a deploy method. The actual implementation might

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 | 45

wSig = ((int,), None, []) 1

cSig = ((), int, []) 2

iWallet = {"doSave":wSig, "doSpend":wSig, 3

"content": cSig} 4

@component(provides={"wallet": iWallet}, 5

uses={"m": iMath}) 6

class Wallet: 7

def __init__(self): 8

self.v = 0 9

def doSave(self, x: int): 10

self.v = m.add(self.v, x) 11

def doSpend(self, x: int): 12

self.v = m.sub(self.v, x) 13

def content(self): 14

return self.v 15

Fig. 9: A Wallet component providing interface wallet and
using interface m.

vary depending of the features and services provided by the run-
time. The deploy-time contract can be used to specify features
and services needed by a given component (or composition of
components).

The simplest contract possible is an empty contract. In NOOP it
is created as an empty dictionary:

contract = {}

A more common contract of a component maps its recepta-
cles to external interfaces using the bind argument. For the
Wallet component the deploy contract could be specified like
this (mathRef is the unique reference to a Math component):

contract={"bind":{"m":mathRef["math"]}}

The contract specifies that a binding between the m receptacle of
the Vallet and the math interface of the Math component
has to be created. To complete the example of the Math and
Wallet component, this is how we deploy and use a Math
component and a Wallet component using an empty contract for
the Math component and a simple bind contract for the Wallet
component:

mathRef=deploy(Math,{}) 5

contract={"bind":{"m":mathRef["math"]}} 6

walletRef=deploy(Wallet,contract) 7

walletRef["wallet"].doSave(145) 8

In a NOOP run-time the component references can be used as
proxies. The interfaces (and receptacles) can be accessed using
their names as keys (like a Python dictionary). The methods of the
interfaces can be accessed using ordinary dot-notation.

In NOOP a composite component is a composition of com-
ponents. Every single component in the composition have an
individual contract, and the composition of components have a
common contract. All components of a composition is deployed in
a single operation. The actual steps performed when a composition
is deployed are these: (i) All components are instantiated. (ii) The
contracts are applied to the components. (iii) The composition
contract is applied to the composition.

Software components in NOOP are an unit for deployment. It
is possible to see a component (and a composite component) as a
unit that can be distributed independently and deployed in different
applications and systems. The details of how this is achieved is out
of the scope of this paper.

5. Dynamic support
Late binding and re-binding is an important part of the dynamic

application support provided by NOOP. Components access other
components, including system level components, through recepta-
cles. Receptacles are bound to actual implementations at deploy
time, and can be re-bound to other implementations later if this
matches the given context better. Contracts specify the requirements
of a component, including the services a component needs. Such
contracts can include quality of service (QoS) specifications, and
how a service is implemented might depend on the given context.
Some services might be optional (a typical example is logging), and
some contracts might specify a preferred service quality level and a
minimum acceptable service quality level. The given context might
also influence how the run-time fulfills the component requirements
specified in the contract.

A typical NOOP application is a distributed application with a
set of components deployed in a set of run-times called capsules.
Each NOOP capsule an be tailored to the specific requirements of
its deployed components. In NOOP the goal is not a single capsule
type supporting a wide range of component requirements, but
specialized capsules configured to support its deployed components
(similar to the extensible application server discussed in [8]). A
composite component might be distributed over several capsules.
A typical example of such a distributed composite component is
a remote binding that contains a stub and a skeleton deployed in
different capsules.

When a component is deployed in a capsule the contract might
specify complex requirements that includes adaption rules triggered
by observed context changes. The details of such adaption is out
of the scope of this paper. However, the NOOP component model,
interfaces, receptacles and contracts are important mechanisms
necessary to provide the adaptive run-time of NOOP.

6. Conclusion
The component model and the NOOP run-time is the base of sev-

eral research projects investigating adaptive support for distributed
applications. Different versions of the run-time exists, and the run-
time itself can be configured to provide specialized support for a
given type of application. The NOOP core functionality presented
in this paper is used to investigate such adaptive and context
sensitive behaviour further.

References
[1] C. Szyperski, Component Software, Beyond Object-Oriented Program-

ming, 2nd ed., ser. The Component Software Series. Addison-Wesley,
2002.

[2] J. Siek and W. Taha, “Gradual typing for objects,” in Proceedings of the
21st European conference on Object-Oriented Programming: ECOOP
2007. Springer-Verlag, 2007, pp. 2–27.

[3] A. Andersen, “The NOOP components and run-time described,” Uni-
versity of Tromsø, Tech. Rep. 2013-73, 2013.

[4] J. McKinna, “Why dependent types matter,” ACM Sigplan Notices,
vol. 41, no. 1, pp. 1–1, Jan. 2006.

[5] H. Barendregt, “Lambda calculi with types,” in Handbook of Logic in
Computer Science, S. Abramsky, D. Gabbay, and T. Maibaum, Eds.
Oxford Science Publications, 1992.

[6] M. Pelletier, PEP 245: Python Interface Syntax, 2001.
[7] B. Muthukadan, A Comprehensive Guide to Zope Component Architec-

ture. Lulu, 2007.
[8] A. Munch-Ellingsen, D. P. Eriksen, and A. Andersen, “Argos, an ex-

tensible personal application server,” in Middleware 2007, ser. Lecture
Notes in Computer Science, vol. 4834, Nov. 2007, pp. 21–40.

46 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 |

Heterogeneous Multicore Platform with Accelerator Templates and
Its Implementation on an FPGA with Hard-core CPUs

Yasuhiro Takei, Hasitha Muthumala Waidyasooriya, Masanori Hariyama and Michitaka Kameyama
Graduate School of Information Sciences, Tohoku University

Aoba 6-6-05, Aramaki, Aoba, Sendai, Miyagi, 980-8579, Japan
Email: {takei, hasitha, hariyama, kameyama}@ecei.tohoku.ac.jp

Abstract— Heterogeneous multi-core architectures with
CPUs and accelerators attract many attentions since they
can achieve power-efficient computing in various areas from
low-power embedded processing to high-performance com-
puting. Since the optimal architecture is different from appli-
cation to application, finding the most suitable accelerator
is very important. In this paper, we propose an FPGA-based
heterogeneous multi-core platform with custom accelerator
templates. Accelerator templates can be reused after optimiz-
ing for different applications. According to the evaluation,
the proposed platform gives comparable performance to the
industrial heterogeneous multicore processors at around 1W
of power.

Keywords: Heterogeneous multicore processor, FPGA, Multime-
dia processing, High-performance-computing

1. Introduction
Applications used in low-power embedded processing to

high performance computing have different tasks such as
data-intensive tasks and control-intensive tasks. Therefore,
optimal architecture is different from application to ap-
plication. Heterogeneous multicore processing is proposed
to execute applications power-efficiently. It uses different
processor cores such as CPU cores and accelerator cores as
shown in Fig.1. If the tasks of an application are correctly
allocated to the most suitable processor cores, all the cores
work together to increase the overall performances.

Examples of low-power heterogeneous multi-core proces-
sors are [1] and [2]. The former has multiple cores of CPUs
and ALU arrays. The latter has multiple cores of CPUs, a
micro-controller and SIMD (single-instruction multiple-data)
type processors. Such commercially available processors are
partially programmable so that a part of the data path and
computations of processing elements (PEs) can be changed
to some extent. However, due to the wide variety of tasks and
their different memory requirements, this programmability
is not enough to extract sufficient performance. Moreover,
the programming environments in various heterogeneous
architectures. Therefore, each time the architecture changes,
large design time is required to re-map the application into
the new architecture.

Fig. 1: Heterogeneous multi-core processor architecture

To solve these problems, we propose an FPGA-based
platform for heterogeneous multicore processors to explore
accelerator architectures suitable for applications. Recently,
speed and power consumption of FPGAs are greatly im-
proved, and it would be very practical to use the FPGA-
based platform for real applications. The proposed platform
consists of CPU cores suitable for control-intensive tasks and
custom accelerator cores suitable for data-intensive tasks.
The use of the architecture templates reduces the design
effort to explore the architectures suitable for applications.
It would also make it easy to re-use the same software on
different accelerators derived from the same template. More-
over, the high reconfigurability of FPGAs enables to adopt
the different types of accelerators for a single application
depending on the nature of tasks. The major disadvantage
of FPGA-based processors over the commercially available
once is the low-performance of CPU cores since CPU cores
are generated using look-up tables. Such “soft-core CPUs”
cause large computation time and large data transfer time.
However, recent FPGAs such as Xilinx Zynq and Altera
Cyclone V contain “hard-core CPUs” operating at about 8
times faster than the soft-core CPUs.

This paper is an extension of the work done in [3]
which explains the basic idea of the heterogeneous multicore
platform. However, the soft-core CPU in [3] is replaced by
a low-power hard-core CPU (“Cortex-A9 dual core ARM
processor”) using Xilinx Zynq so that the processing and
data transfer time are significantly reduced. In this paper,
as a typical architecture templates, we consider two types
of custom accelerators: SIMD one-dimensional PE array
(SIMD-1D) and MIMD two-dimensional PE array (MIMD-
2D). The SIMD-1D accelerator is suitable for executing sim-
ple operations at a high degree of parallelism. The proposed

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 | 47

SIMD-1D accelerator is designed similar to the GPU data
path to use the CUDA (compute unified devise architecture)
[4] programming language. The MIMD-2D accelerator is
suitable for executing complex operation at a medium degree
of parallelism. To increase the memory access speed, we
introduce a custom hardware called address generation unit
(AGU). We can also reconfigure the data path, the number of
PEs, the number of memory modules, and memory capacity
according to the requirements of a given task to optimize the
performance. The evaluation demonstrates that the proposed
FPGA-based platform achieves good performance and low-
power consumption comparable to industrial heterogeneous
processors such as RP1 [1].

2. Heterogeneous multicore platform
2.1 Overall architecture

This section explains the architecture of the heterogeneous
multi-core platform. Figure 2 shows the overall architecture.
An external DDRII SDRAM is connected to the CPU core
through the FPGA board. The custom accelerators have
different architectures such as SIMD-1D and MIMD-2D.

It is important to reduce data-transfer time between cores
for processing faster in heterogeneous multicore. In pre-
vious work [5], window-based image processing time and
memory capacity are reduced by using optimal memory
allocation and a data-transfer scheme. For further reduction
the processing time, we overlap the data-transfer with data
processing on different cores as shown in Fig.3. In FPGAs,
We can determine the optimal number of accelerator cores
and PEs so as to minimize the processing time.

Fig. 2: Proposed heterogeneous multi-core architecture

Transfer Transfer

Processing

time

Accelerator1 ���

���

Transfer

Accelerator2

���

���

Transfer

Processing Processing

Processing

Fig. 3: Overlapping data-transfer and processing

Fig. 4: SIMD-1D architecture

Fig. 5: Architecture of the PE

2.2 SIMD-1D accelerator
The proposed SIMD-1D accelerator is designed similar

to the GPU accelerator so that we can use the same CUDA
code. The basic idea of the SIMD-1D accelerator is dis-
cussed in [6]. It has a 1-dimensional array of PEs connected
to the shared memory as shown in Fig.4. AGUs are included
to increase the address generation speed. To execute an
application, we have to divide it into independent threads
where several of them can be executed in parallel. After
the execution is finished, new threads are fed. When all the
threads are executed, the resulting data are read by the CPU.

Figure 5 shows the architecture of a PE. It consists of a
16bit fixed-point ALU and a multiplier. Operations such as
addition, accumulation subtraction, comparison and absolute
difference computation are done in the ALU, and multiplica-
tion is done in the multiplier. Multiply-accumulation is done
by a pipelining the multiplier and the adder.

In CPUs, the address calculation and data processing are
done in the same ALU as shown in Fig.6(a). Therefore, when
the addresses are calculated, we cannot do data processing.
In the proposed architecture, the address calculation is done
in the AGU shown in Fig.6(b). The address calculation and
data processing are done in parallel so that we can reduce the
total processing time. A detailed description about AGUs is
given in [5]. As shown in Fig.2, accelerators in the proposed
heterogeneous platform contain AGUs.

2.3 MIMD-2D accelerator
The proposed MIMD-2D accelerator is designed based

on the FE-GA accelerator [1] that has a dynamically recon-
figurable PE array. Figure 7 shows the proposed MIMD-
2D accelerator. It consists of a 2-dimensional array of PEs,

48 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 |

Address1 Data1 Address2 Data2ALU
time

������

(a) Address processing on ALU

Data1 Data2

Address1 Address2 Address3

time
ALU

AGU
������

������

Address4

Data3

(b) Address processing on AGU

Fig. 6: Address processing

Fig. 7: MIMD-2D architecture model

local memory modules and AGUs. In order to simplify the
interconnection network while still meeting the streaming
applications, we limit the interconnection network; only left-
most PEs can directly retrieve data from local memory mod-
ules, and only rightmost PEs can directly write data to local
memory modules. PEs, AGUs and interconnection network
are dynamically reconfigurable. To implement applications,
we have to divided it into multiple contexts that execute
sequentially. Within a context, we can perform parallel com-
putations. The computation starts after the configuration data
of multiple contexts are written to the configuration memory
of the accelerator. When the computation is finished, the
resulting data are read by the CPU.

3. Evaluation
We implement the proposed heterogeneous multicore plat-

form on Xilinx Zynq-7000 EPP ZC702 evaluation kit [7].
Since SIMD-1D and MIMD-2D architectures have differ-
ent topologies, we perform two comparisons to evaluate
the architectures. In the first comparison, the number of
look-up-tables (LUTs) in both accelerators is a constant.
In the second comparison, the degree of parallelism of
the memory access is a constant. As shown in Table 1,
SIMD9 and MIMD12 accelerators have almost the same
number of LUTs. SIMD4 and MIMD12 accelerators have
the same number of memory modules. Therefore, the de-
gree of parallelism of the memory access is the same. In
parallel processing, both the number PEs and the degree of
parallelism with the memory are equally important.

We compare the processing time of filter computation and
SAD-based template matching [8]. The image and window

Table 1: Specification of accelerator cores
Accele- Number Number Number Degree
rator of of of of para-
core PEs LUTs memories llelism
SIMD4 4× 1 3301 8 (16kB) 4
SIMD9 9× 1 7354 18 (18kB) 9
MIMD12 4× 3 7322 8 (16kB) 4

sizesand the operating frequency are256 × 16, 16 × 16
and 100MHz respectively. Table 2 shows the comparison of
SIMD-1D (SIMD9) and MIMD-2D (MIMD12) accelerators
when the number of LUTs is a constant. For the filter com-
putation, the processing time of the SIMD-1D accelerator
is less than half of that of the MIMD-2D accelerator. The
SIMD-1D accelerator has a one-dimensional PE array, where
all 9 PEs are directly connected to the memory as shown in
Fig.4. The MIMD-2D architecture has a two-dimensional PE
array of4×3 where only leftmost 4 PEs can directly retrieve
data from the local memory as shown in Fig.7. Therefore, the
SIMD-1D accelerator has the higher degree of parallelism of
memory access than the MIMD-2D accelerator. In the SAD
computation, SIMD-1D accelerator is slightly faster than
MIMD-2D accelerator. SAD computation requires two types
of operations: absolute difference and addition. the MIMD-
2D accelerator can perform these two operations at the
same time by pipelining while SIMD-1D accelerator cannot.
However, the processing time of the SIMD-1D accelerator is
still smaller due to its high degree of parallelism. If we use
an application that have three or more types of operations,
the MIMD-2D accelerator could give much better results.

Table 2: Comparison 1 : The same number of LUTs
Application Acceleratorcore Processingtime (ms)

Filter
SIMD9 0.069

MIMD12 0.154

SAD
SIMD9 0.139

MIMD12 0.154

Table 3 shows the comparison of SIMD-1D (SIMD4)
and MIMD-2D (MIMD12) accelerators when the degree
of parallelism of the memory access is a constant. In the
filter computation, the processing times of the SIMD-1D
and MIMD-2D accelerators are the same. This is because,
multiplication and addition operations are pipelined in both
accelerators, so that two operations are performed in one
cycle. Moreover, both accelerators have the same degree of
parallelism. In the SAD computation, the processing times
in MIMD-2D accelerator is about half of that in SIMD-1D
accelerator. As described above, the MIMD-2D accelerator
can pipeline different type of operations (absolute difference
and addition in SAD computation). Hence, MIMD-2D can
obtain higher degree of parallelism of operations compared
to the SIMD-1D accelerator under the condition of the same
number of memory modules.

Let us compare the FPGA-based platform with conven-
tional industrial heterogeneous multicore processors. Figure
8 shows the implemented architecture. There are MIMD-

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 | 49

Table 3: Comparison 2 : The same degree of parallelism
Application Acceleratorcore Processingtime (ms)

Filter
SIMD4 0.156

MIMD12 0.154

SAD
SIMD4 0.318

MIMD12 0.154

2D accelerator cores which process the filter computation
in parallel. Table 4 shows the resource utilization on the
FPGA with four MIMD16 cores. Since the FPGA design
tool removes unused units on the implemented architecture
automatically, the resource utilization is smaller than ex-
pected. Note that the number of accelerator cores and the
number of PEs in one core can be selected depending on
the applications.

Table 5 shows the comparison of the filter computation
time for the proposed FPGA-based platform and RP1 [1].
The image size is640 × 480. The number of PEs on
FPGA is 64, and it is equal to using two FE-GAs in RP1.
When the number of FE-GA cores is two, the processing
time on the proposed platform is very similar to that of
RP1. The power consumption of both processors is around
1W. In conclusion, the FPGA-based heterogeneous multicore
architecture provides comparable performance to the RP1
heterogeneous multicore processor.

Cortex-A9

Accelerator
core 1

AXI4-lite Bus

DDR3

Accelerator
core N

Control
Unit

AXI
Timer���

FPGA(100MHz)
start/stop signal

Cortex-A9
(666. 667MHz) SDRAM

Fig. 8: Implemented architecture

Table 4: Resource utilization of four MIMD16 cores

Module LUT Register Block RAM DSP
Accelerators 1044 1604 18 16
Control unit 28 28 0 0
AXI timer 312 217 0 0

AXI Interconnect 397 182 0 0
Total 1781(3%) 2031(2%) 18(13%) 16(7%)

Table 5: Comparison of processing time

Window size

Processingtime (ms)
Zynq RP1[5]

1xCortex-A9(666.667MHz) 1xSH-4A(600MHz)
+ FPGA(100MHz) + 2xFE-GA(300MHz)

12× 12 46.51 36.24
18× 18 70.50 72.94
24× 24 115.89 96.55

4. Conclusion
We have proposed an FPGA-based heterogeneous mul-

ticore platform with custom accelerators. The accelera-
tor cores are customizable for each application. Dedicated
AGUs are used to increase the processing speed and to
reduce the area and power. We evaluate the proposed plat-
form using several examples and show that the proposed
platform has performance comparable to industrial hetero-
geneous processors. To select the best accelerator for a
given application, we have to match the requirements of
the application with the properties of the accelerator under
the design constraints. Most of the application requirements
and accelerator properties can be parameterized and repre-
sented. The design constraints are the operating frequency,
amount of hardware resources such as LUTs and memories,
power consumption, etc. Our next step would be to find a
relationship between those application requirements and the
accelerator properties to satisfy the design constraints. Then
we can automatically optimize the proposed heterogeneous
platform for given applications.

Acknowledgment
This work is supported by MEXT KAKENHI Grant

Number 12020735.

References
[1] H. Shikano, M. Ito, M. Onouchi, T. Todaka, T. Tsunoda, T. Kodama,

K. Uchiyama, T. Odaka, T. Kamei, E. Nagahama, M. Kusaoke, Y.
Nitta, Y. Wada, K. Kimura, H. Kasahara, “Heterogeneous Multi-Core
Architecture That Enables 54x AAC-LC Stereo Encoding”,IEEE
Journal of Solid-State Circuits, Vol.43, No.4, pp.902-910, 2008.

[2] H. Kondo, M. Nakajima, N. Masui, S. Otani, N. Okumura, Y. Takata,
T. Nasu, H. Takata, T. Higuchi, M. Sakugawa, H. Fujiwara, K. Ishida,
K. Ishimi, S. Kaneko, T. Itoh, M. Sato, O. Yamamoto and K. Arimoto,
“Design and Implementation of a Configurable Heterogeneous Multi-
core SoC With Nine CPUs and Two Matrix Processors”,IEEE Journal
of Solid-State Circuits, Vol.43, No.4, pp.892-901, 2008.

[3] H. M. Waidyasooriya, Y. Takei, M. Hariyama and M. Kameyama,
“FPGA implementation of Heterogeneous Multicore Platform with
SIMD/MIMD Custom Accelerators”, IEEE International Symposium
on Circuits and Systems (ISCAS), pp.1339-1342, 2012.

[4] NVIDIA Corporation, “NVIDIA CUDA Programming Guide”
Ver2.2.1, 2009.

[5] H. M. Waidyasooriya, Y. Ohbayashi, M. Hariyama and M. Kameyama,
“Memory Allocation Exploiting Temporal Locality for Reducing
Data-Transfer Bottlenecks in Heterogeneous Multicore Processors”,
IEEE Transactions on Circuits and Systems for Video Technology,
Vol.21, No.10, pp.1453-1466, 2011.

[6] H. M. Waidyasooriya, M. Hariyama and M. Kameyama, “Architec-
ture of an FPGA-Oriented Heterogeneous Multi-core Processor with
SIMD-Accelerator Cores”, International Conference on Engineering
of Reconfigurable Systems and Algorithms (ERSA), pp.179-186,
2010.

[7] http://www.xilinx.com/products/boards-and-kits/
EK-Z7-ZC702-G.htm

[8] M. Hariyama, H. Sasaki, and M. Kameyama, “Architecture of a stereo
matching VLSI processor based on hierarchically parallel memory
access”, IEICE Trans. Inform. Syst., Vol.E88-D, No.7, pp.1486.1491,
2005.

50 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 |

On-demand Fault Scrubbing Using Adaptive Modular Redundancy

Naveed Imran, Rizwan A. Ashraf, and Ronald F. DeMara
Department of Electrical Engineering and Computer Science

University of Central Florida, Orlando, FL 32816-2362, United States

Abstract— We present an architectural framework for N-
Modular Redundant (NMR) systems exploiting the dynamic
partial reconfiguration capability of FPGAs. Partial recon-
figuration is used to dynamically construct the throughput
datapath under failure conditions. The throughput datapath
utilizes only one instance of a Functional Element (FE) while
the other instances undergo evaluation by being subjected
to the same actual inputs to the system. A software-based
process is shown to be sufficient to periodically monitor
the health of the active and standby FEs, thus avoiding a
hardware voter in the datapath. The defective behavior of
an active FE triggers the reconfiguration process and con-
sequently a healthy element is introduced into the datapath.
Meanwhile, sustainability is increased by refurbishing faulty
FEs using Genetic Algorithms (GAs) to circumvent aging
or radiation-induced hard faults. Furthermore, the config-
uration bitstreams are protected in the flash memory using
Reed-Solomon codes to provide multi-bit block correction.
Together, this hybrid of adaptive modular redundancy and
online error correction is shown to provide fault coverage
at very low latency overhead.

Keywords: SRAM-based FPGAs, Reconfiguration Techniques
for Fault-handling, Evolvable Hardware, Autonomous Operation,
Semiconductor Aging, Hard/Permanent Fault Refurbishment

1. Introduction
Intelligent self-healing capability is desirable in micro-

electronics based systems which can be achieved through
biologically-inspired design paradigms. Adaptive designs
seek to increase sustainability of circuit operation when
subject to aging-induced degradation which is increasingly
prominent with reduced feature size. The need to mitigate
radiation effects experienced by SRAM-based FPGAs in
space applications provides an additional motivation for
exploring fault handling schemes. FPGAs are prone to faults
in the logic resources as well in the configuration memory,
such as Single Event Upsets (SEUs) [1]. Scrubbing is an
established technique of in-situ fault-mitigation [1], [2].
Scrubbing consists of rewriting the configuration memory
with a fault-free bitstream to eliminate any SEU occurrences
which have corrupted the configuration logic.

Previous external scrubbing techniques rely on a fault-
free “golden” copy of the bitstream to be available at all
times. Traditionally, the reference bitstream resides in an
external storage device [2] which is considered to be a

golden element. We avoid this assumption of a failsafe
storage device as even flash memories are susceptible to
faults due to space radiation effects [3]. Thus to achieve
sustainability, consideration of error correcting codes can be
worthwhile to protect the bitstreams in a storage media.

The proposed On-demand Fault Scrubbing technique uti-
lizes a Reed-Solomon error correcting decoder implemented
using the on-chip PowerPC processor. In the prototype, the
processor fetches a partial bitstream from the Compact Flash,
decodes it, and writes the decoded bitstream to the config-
uration memory through the Xilinx Internal Configuration
Access Port (ICAP) port. Adaptive modular redundancy
utilizes dynamic reconfiguration to adjust redundancy during
computation. The proposed system can operate in simplex
mode where only one instance is active and the periodic
scrubbing provides a basic level of fault tolerance. To further
increase reliability, an FE is replicated thereby introducing
redundancy into the design. The majority voting of the
output of FEs is performed for fault detection, or to identify
the health of these modules using NMR. To sustain a pool of
healthy modules, faulty FEs are refurbished by a GA using
mutation and crossover operations at the physical-resource
level. Autonomous fault-handling capability is achieved in
presence of faults, without needing manual intervention.

2. Related Work
The homogeneous nature of FPGA Configuration Logic

Blocks (CLBs) allows development of generic testing
schemes to detect faults in the logic resources. Emmert,
Stroud, and Abramovici [4] proposed an online Built-In
Self-Test (BIST) technique for mitigating hardware faults in
FPGAs. For this purpose, Roving Self-Test AReas (STARs)
are subjected to test pattern inputs and the output response
of the contained resources is analyzed to detect faults.
The Cyclic NMR technique [5] is based upon functional
testing of resources, yet at a coarse granularity to improve
fault isolation latency and fault recovery period. In contrast
to resource-based testing schemes, functional-based testing
schemes utilize the intrinsic functionality of a Circuit Under
Test (CUT) without applying additional test inputs.

Evolutionary techniques for fault tolerance have been
proposed in literature with the objective of either designing
fault-insensitive circuits or achieving runtime refurbishment
of faults. Keymeulen et al. [6] demonstrated the ability of
GAs to realize fault-insensitive Field Programmable Analog

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 | 51

Array (FPAA) designs for increased survivability of elec-
tronics used in space missions. On the other hand, runtime
refurbishment provides sustainable functionality when per-
manent faults occur due to unforeseen events such as aging.

Traditionally, Hamming codes have been applied in mem-
ory systems to correct single bit errors. Their implementation
is straightforward, yet their fault-handling capacity in terms
of the number of erroneous bits per block is low. On the other
hand, more advance techniques like Reed-Solomon error
correcting codes provide higher fault capacity, at the expense
of increased logic complexity in the correction circuit.
For flash memories in particular, various error correction
schemes have been evaluated in the literature [7]. As the
need for reconfiguration in SRAM-based FPGAs is much
less frequent than that of accessing data in a SRAM memory
storage device, the latency overhead of a sophisticated error
scheme can be justified. Therefore, we investigate using
Reed-Solomon codes to protect configuration bitstreams. In
addition, the logic complexity of the error correcting scheme
is of less concern since our software-based decoder runs
on an embedded processor. Exposures to failures in the
PowerPC have been addressed in recent work [8] using
a radiation-hardened controller to monitor the health of
the PowerPC within the FPGA fabric. Moreover, in the
technique proposed herein, the PowerPC is not on the critical
throughput path, so its catastrophic failure would impair only
the recovery capability rather than the output correctness.

Previous methods for configuration memory protection
employ scrubbing schemes. A basic scrubbing scheme per-
forms readback of the configuration memory and if any
error is found in a particular frame, then only the cor-
responding frame is overwritten [2]. On the other hand,
NASA’s (Radiation Effects and Analysis Group) proposed
an external blind scrubbing method in which configuration
memory is periodically overwritten by a golden bitstream.
An internal scrubber utilizing a PicoBlaze processor softcore
was proposed by Heiner et al. [9]. However, multiple bit
upsets are challenging to accommodate when using Single
Error Correction, Double Error Detection codes described
therein. We exploited the high error correcting capability
of Reed-Solomon codes to handle multiple bit errors in the
configuration bitstream.

3. Adaptive Modular Redundancy with
On-demand Scrubbing

The hardware architecture of our proposed approach is
shown in the Fig. 1. An on-chip PowerPC processor monitors
the throughput for any discrepancy while the other on-chip
processor is employed to perform refurbishment. An NMR
configuration consists of N instances of a given FE, where
all of them are subjected to the same input. An Active FE is
defined as the FE whose datapath is directly connected to the
output of the system. The outputs from both the active and

PowerPC1

(Reconfiguration

Processor, GA-

Engine)

Compact Flash

Processor Local Bus

(PLB)

B
u

s
M

a
cr

o
s

FE1

FEA

FEN

Circuit Under Test (CUT)

Input Output

B
u

s
M

a
cr

o
s...

...

System ACE

GPIO HWICAP

Configuration

Memory

R
o

u
ti

n
g

PowerPC2

(Fault Detecting

Processor)

ICAPGPIO

Fig. 1: Adaptive Redundancy based Hardware Architecture

NO

FD=TRUE

NidiscrFE
i

1)1.arg(

Fig. 2: Flowchart of Fault Detection Process

standby FEs are communicated through the GPIO and PLB
to the PowerPC software which monitors the health of these
elements. After an Evaluation window, E, the software based
voter updates the health status of the FEs based upon their
discrepant behavior. The functional resources in datapath as
well as the resources under test are evaluated with the actual
throughput data inputs to the system instead of any synthetic
test vectors. Upon identification of a faulty PE, the GA-based
refurbishment mechanism is initiated to circumvent faults in
the mapped design.

Fig. 2 and Fig. 3 illustrate the flow of the fault-handling
mechanism. Initially, multiple copies of a given FE are
instantiated in various partial reconfigurable regions. The
software-based discrepancy monitor implemented by Fault
Detecting Processor periodically observes outputs to detect
discrepancies between the output of individual FEs and the
majority of their outputs. Intermittent sampling removes the
hardware voter from the throughput path and is appropriate
for applications such as signal processing in which checking
of every output is not essential to maintain viable throughput.
Any discrepant behavior detected by the PowerPC results
in that FE to be marked as faulty. If the active FE in the
datapath becomes faulty, the system’s main output port is
transferred to that of one of healthy FEs. In this way, a

52 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 |

Fig. 3: Flowchart of Fault Recovery Process

healthy FE is inserted in the datapath and becomes the
new Active FE as illustrated in Fig. 3. Thus, the system
is reconfigured with minimum latency to maintain system
throughput. Meanwhile, the Refurbishment Processor on
second PowerPC controls the reconfiguration mapping for
fault recovery. As a proof-of-concept system, the GA is
currently implemented on the host PC to refurbish faulty FEs
outside the critical path so as to keep all N FEs healthy.

4. Experimental Setup and Results
For the proof of concept, MCNC benchmarks circuits [10]

have been used to study the proposed dynamic NMR ar-
rangement, bitstreams encoding, and GA-based refurbish-
ment techniques. First, a 32-input with 32-output MCNC
benchmark circuit C6288 is implemented on a Xilinx de-

Table 1: Reconfig. latency for improved correction capability
Codeword
Length, n

Fault
Capacity, t

Reconfiguration
Time (msec), λ

15 3 609
17 4 774
19 5 976
21 6 1213

velopment board ML410. This board has a Virtex-4 FPGA
on it and the synthesized circuit occupies 752 LUTs (or 427
slices) for one instantiation. The PowerPC is instantiated by
Xilinx Platform Studio. The project is managed in Xilinx
ISE, and the partial bitstream files are generated using
PlanAhead. The partial bitstreams for the FEs are stored in
compact flash which is interfaced to the processor through
the System ACE controller.

For NMR of size N=5, a total of 5 instances of a
benchmark circuit are created at design time. Five partial
reconfiguration regions are defined whose sizes depend upon
the application circuits. The partial bitstream size of an FE
is 38KBytes whereas that of a blank bistream is 11KByte.
In their original approach, Reed and Solomon represented a
message of length k by a polynomial p(x). The coefficients
of this polynomial are the source symbols. The polynomial
p(x) is over-sampled to provide some redundancy in the
information and the resultant codeword is sent over the noisy
channel. Thus, a Reed-Solomon encoder [11] is specified as
RS(n, k) where: k = number of data symbols with s-bit
each in the original message, and n = number of symbols in
the codeword after appending parity symbols. The receiver
end recovers the original message by solving a linear system
of equations. The error correction capability, t of a Reed-
Solomon decoder is given by [11]: t = (n−k)

2 . Thus, the
decoder can correct up to t symbols in the codeword. In
RS(15,9), each codeword contains 15 symbols out of which 9
are data symbols and 6 are parity symbols. For evaluating the
error correcting code scheme for memory protection, faults
are randomly injected into the encoded bitstream stored on a
compact flash. Bitstream errors reasonably mimic the effect
of radiations on an FPGA device. The PowerPC’s software
based Reed-Solomon decoder extracts the actual bitstream
from the encoded bitstream, and it is observed that these
faults are correctable as far as the number of errors are less
than half of the difference between the encoded message size
and the data block size [11]. Although, the Reed-Solomon
decoder has currently a software based implementation, it
can be implemented in hardware in future work.

Table 1 lists reconfiguration time overhead when using
the proposed fault tolerant architecture. In simplex mode,
only one instance of an FE is instantiated whereas it is
replicated 5 times in the NMR case. The size of the RS
encoded partial bitstream increases from its original size,
thereby increasing the reconfiguration time as listed which
includes the time for decoding. For typically-sized circuits,

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 | 53

Table 2: GA Refurbishment Results for various sized circuits
c17 cm42a 3-to-8 decoder cm85a 3x3 Multiplier misex1 Z9sym

No. of LUTs 8 20 24 36 40 72 148
Max. Fitness 64 160 64 6144 384 1792 512
Fault Impact 46 159 57 6120 327 1648 420

Avg. no of Generations 105 529 169 113.1 1428 77297 60195
95% Confidence Interval 102, 109 428,630 145,193 92.6,133.6 1018,1837 51129,103464 60195,60195

No. of Runs 20 20 20 20 20 20 1

the logic and memory resource overhead of NMR can be
justifiable within the capacity of current multi-million gate-
equivalent FPGAs and gigabyte capacity flash memories.

To study fault effects in logic resources, multiple stuck-
at faults are injected in the post-place and route simulation
model of the circuit. It is observed that the output deviates
from the truth-table of the circuit. The Evaluation Window
depends upon the circuit and the quality of throughput
desired. The reconfiguration time of a faulty PE is not in
the critical path and may be neglected when considering the
total time for fault isolation and recovery.

Next, experiments were conducted to determine a tractable
size of the circuit that the GA can refurbish in the presence
of fault(s). Circuits with various extents of LUTs utilization
were selected to assess GA-based refurbishment feasibility
with increasing number of LUTs. The experiments were
performed on a platform which models a FPGA circuit
composed of 4-input LUTs. A custom synthesis cell library
was built to map the benchmark circuits on to a predefined
subset of LUT functions supported by the platform. The
circuits were mapped using the ABC synthesis tool [12].
The software platform implements a conventional finite
population GA. GA operators of mutation and crossover
are supported with tournament-based selection and elitism
to maintain best performing individuals over time.

The results of refurbishment experiments are demon-
strated in Table 2 for the benchmark circuits of c17 (5
inputs, 2 outputs), cm42a (4, 10), 3-to-8 decoder,
cm85a (11, 3), 3x3 multiplier, misex1 (8, 7) and
Z9sym (9, 1) with population size of 50. The population
size was decreased to 20 for experiments with the follow-
ing benchmarks: cm85a, misex1 and Z9sym. The GA
terminates upon achieving the preset fitness threshold, thus
sufficiently refurbishing functionality to the specified level.
The results indicate the effect on the performance of the
GA while increasing the number of LUTs utilized and also
increasing number of output lines.

5. Discussion
In the fault-handling technique developed herein, by con-

tinually keeping all the FEs in operation, the fault capacity
of a system is improved to tolerate multiple failures. Upon
fault-detection, a faulty module in the datapath is replaced
by one of the healthy modules in the test pool. Meanwhile,
the faulty module can be refurbished by using GAs without
impeding the operational datapath. The scheme can be

conceptualized as if only one FE is active, other resources
periodically undergo test. However, the resources under test
are evaluated to actual inputs at all times, which is also
useful in verifying the health of the active FE. As opposed
to resource-based testing schemes, this functional testing
scheme maintains throughput for the inputs which are actu-
ally used rather than exhaustive testing of the resources by
additional test vectors. The recovery results of experiments
for various benchmark circuits demonstrate the effectiveness
of the proposed scheme for adaptive runtime refurbishment.

References
[1] N. Rollins, M. Fuller, and M. Wirthlin, “A comparison of fault-tolerant

memories in SRAM-based FPGAs,” in Aerospace Conference, 2010
IEEE, pp. 1 –12, March 2010.

[2] M. Berg, C. Poivey, D. Petrick, D. Espinosa, A. Lesea, K. LaBel,
M. Friendlich, H. Kim, and A. Phan, “Effectiveness of internal versus
external seu scrubbing mitigation strategies in a Xilinx FPGA: Design,
test, and analysis,” Nuclear Science, IEEE Transactions on, vol. 55,
pp. 2259 –2266, Aug. 2008.

[3] F. Irom and D. N. Nguyen, “Radiation tests of highly scaled high den-
sity commercial nonvolatile flash memories,” tech. rep., Jet Propulsion
Laboratory Pasadena, California, 2008.

[4] J. Emmert, C. Stroud, and M. Abramovici, “Online fault tolerance for
FPGA logic blocks,” Very Large Scale Integration (VLSI) Systems,
IEEE Transactions on, vol. 15, pp. 216 –226, Feb. 2007.

[5] N. Imran and R. F. DeMara, “Cyclic NMR-based fault tolerance with
bitstream scrubbing via Reed-Solomon codes,” in Presentations at the
ReSpace/MAPLD Conference, Aug. 2011.

[6] D. Keymeulen, A. Stoica, R. Zebulum, S. Katkoori, P. Fernando,
H. Sankaran, M. Mojarradi, and T. Daud, “Self-reconfigurable analog
array integrated circuit architecture for space applications,” in Adap-
tive Hardware and Systems, 2008. AHS ’08. NASA/ESA Conference
on, pp. 83–90, 2008.

[7] B. Chen, X. Zhang, and Z. Wang, “Error correction for multi-level
nand flash memory using reed-solomon codes,” in Signal Processing
Systems, 2008. SiPS 2008. IEEE Workshop on, pp. 94 –99, Oct. 2008.

[8] M. Bucciero, J. P. Walters, and M. French, “Software fault tolerance
methodology and testing for the embedded PowerPC,” in Aerospace
Conference, 2011 IEEE, pp. 1–9.

[9] J. Heiner, N. Collins, and M. Wirthlin, “Fault tolerant ICAP controller
for high-reliable internal scrubbing,” in Aerospace Conference, 2008
IEEE, pp. 1 –10, March 2008.

[10] S. Yang, “Logic synthesis and optimization benchmarks version 3,”
tech. rep., Microelectronics Center of North Carolina, 1991.

[11] M. Riley and I. Richardson, “An introduction to Reed-Solomon
codes: principles, architecture and implementation,” 1996. Retrieved
on Nov. 02, 2011 [Online] http://www.cs.cmu.edu/afs/cs/
project/pscico-guyb/realworld/www/reedsolomon/
reed_solomon_codes.html.

[12] Berkeley Logic Synthesis and Verification Group, “ABC: A system
for sequential synthesis and verification,” Retrieved on May 31, 2013
[Online] http://www.eecs.berkeley.edu/alanmi/abc/.

54 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 |

Reducing Floating-Point Error Based on Residue-Preservation and
Its Evaluation on an FPGA

Hasitha Muthumala Waidyasooriya, Hirokazu Takahashi, Yasuhiro Takei,
Masanori Hariyama and Michitaka Kameyama

Graduate School of Information Sciences, Tohoku University
Aoba 6-6-05, Aramaki, Aoba, Sendai, Miyagi, 980-8579, Japan

Email: {hasitha, hirokazu, takei, hariyama, kameyama}@ecei.tohoku.ac.jp

Abstract— Although scientific computing is gaining many
attentions, calculations using computers always associated
with arithmetic errors. Since computers have limited hard-
ware resources, rounding is necessary. When using iterative
computations, the rounding errors are added and propagated
through the whole computation domain so that the final
results can be completely wrong. In this paper, we propose
a floating-point error reduction method and its hardware
architecture for addition. The proposed method is based on
preserving the residue coursed by rounding and reusing the
preserved value in next iteration. The evaluation shows that
the proposed method gives almost the same accuracy as the
conventional double-precision floating point computation.
Moreover, using the proposed method is 24% area efficient
than using a conventional double-precision adder.

Keywords: Precise arithmetic, floating-point, FPGA.

1. Introduction
Scientific computing is an area where mathematical mod-

els are executed in computers to analyze and simulate
various physical behaviors. Such simulations are used in
many fields such as fluid dynamics, molecular analysis and
even in rocket science. Many of such models use repeated
calculations spans many iterations. For example, finite-
difference time-domain (FDTD) [1] used in fluid dynamics is
such a well know method that deals with solving differential
equations in a time-domain.

Although scientific computing is gaining many attentions
due to the introduction of multicore CPUs and many core
GPUs, calculations using computers are always associated
with arithmetic errors. Due to the limited hardware re-
sources in computers, rounding of the computation results
is necessary. This gives a small error in many computations.
Although such errors are negligible in a single calculation,
they are a very big problem in scientific computing. The
simulation models use repeated calculations with thousands
of iterations to produce a result. Therefore, small error in
each iteration add up and propagated through the whole
computation domain. Due to this, the final results obtained
after thousands of iterations might be completely wrong.
Computation errors are been discussed in many works such

as [2] and [3]. Accepting those results could bring devastat-
ing effects since many simulations are connected with real
world application such as air plane designing, power plant
controlling etc.

Easiest way of reducing computation error is to add
more precision [4]. However, that comes with an increased
hardware cost. Using software libraries such as “multiple
precision integers and rationals (MPIR)” [5] is another way
of dealing with this problem. However, when the precision
increases the processing time also increases exponentially. In
this paper, we focus on floating-point addition and propose
a error-reduction method and its area-efficient hardware
implementation. The proposed method based on a very
simple idea of preserving the residue due to rounding and
reuse it in recursive computation. We propose an efficient
method implement this algorithm in smaller number of time
steps. According to the evaluation using FPGA, the proposed
single-precision floating-point adder gives almost the same
accuracy of the double-precision floating-point adder, but
requires 24% less area compared to the conventional double-
precision adder.

2. Floating-point error reduction using
residue-preservation

In this section, we focus on reducing the floating-point
error due to normalization and rounding in iterative compu-
tations. In these computations, the output of the iterationi
is used as an input of iterationi + 1. Therefore, the error is
propagated from iteration to iteration. However, if we can
keep the residue of rounding in one iteration, we can use it
in the next iteration. Even if the residue is very small during
a single iteration, it will become large if we keep storing it.
Therefore, after many iterations, the residue of rounding is
also add up to the result and that will reduce the error. The
algorithm to reduce the floating-point error in summation is
given as follows.

Step 1:R = S0 = 0
Step 2:U = R + Xi

Step 3:Si+1 = Si + U
Step 4:V = Si+1 − Si

Step 5:R = U − V

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 | 55

Fig. 1: Floating-point error reduction method

Step 6: if(i < n), increasei by 1 and go to Step 2
else, finish

Figure 1 explains this algorithm using the computation of∑n−1
n=0 Xi as an example. In the first iteration, the valueXi

is added with the residueR of the previous step. The result
is saved asU as shown in Step 2. In this calculation, we
loose a part ofR due to rounding. Then we addU to the
sumSi to get the new summationSi+1. Due to the rounding,
only a part ofU is added. This partV is found in Step 4.
To find the non-added part ofU , we subtractV from U in
Step 4. Since this part is not added to the summation yet,
we preserve it asR and use it in the next iteration.

Figure 2 shows the evaluation of this method. When
the number of computations are large, this error reduction
method with single precision computation gives extremely
better results compared to conventional single-precision
computation as shown in Fig.2(a). Moreover, the error re-
duction method gives very similar results to the conventional
double precision computation. Note that, we calculate the er-
ror compared to the double-precision computation so that the
error of doable-precision becomes zero. Figure 2(b) shows
the graphs of the error reduction method and conventional
double precision method to see the difference more clearly.
There are two reasons for this difference. The first one is
the rounding occurs in the conventional double precision
computation. The second one is the unused residue occurs
in the addition ofXi andR in Step 2 as shown in Fig.1.

Although this method gives a very good computation
results, it has so many steps and need two additions and
two subtractions. Therefore, if available, it is better to use a
high-precision computation than using the error reduction
method with low-precision computation. However, in the
next section, we propose an improved algorithm combined
with a new floating-point adder architecture to get the same
error reduction under less additional computation and small
hardware overhead.

(a) Computation error vs. number of additions

(b) Enlarged capture of Fig.2(a)

Fig. 2: Evaluation of the computation error

3. Proposed error reduction algorithm
and its FPGA implementation

In the error-reduction algorithm explained in Section 2,
the processing time is wasted in Steps 4 and 5 to calculate
the residue occurs due to the rounding ofSi+1. However,
if we can preserve all the bits ofSi+1 before rounding, we
can find the residue easily. This method is show as follows.

Step 1:R = S0 = 0
Step 2:U = R + Xi

Step 3:Si+1 = Si + U
R = residue of roundedSi+1

Step 4: if(i < n), increasei by 1 and go to Step 2
else, finish

56 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 |

Fig. 3: Architecture of the proposed floating-point adder

Note that the residue calculation in Steps 4 and 5 are
removed and the residue is preserved in Step 3.

To execute this algorithm, we proposes a new floating-
point adder architecture as shown in Fig.3. The gray areas in
Fig.3 shows the units we added to the conventional floating-
point adder. To explain the architecture and the proposed
algorithm, let us consider single-precision floating point
addition. The “Add” unit shown in Fig,3 is the same one used
in conventional single-precision adder. The only difference
is that it produces two outputs; the normalized addition
result and the residue after normalization and rounding.
Since no extra adders are included, this architecture can be
implemented area efficiently.

4. Evaluation
We implement the proposed floating-point adder on “Cy-

clone II EP2C35F6’2C6” FPGA to evaluate the error-
reduction method. We used “Quartus II” software tool
to calculate the number of logic elements (LEs) and the
clock frequency. In the evaluation, the proposed method
is compared with conventional single-precision and double-
precision floating-point computations. Note that, we did not
use any pipelines when implementing different adders. It is
difficult to compare adders with different precisions with
different pipeline stages.

Table 1 shows the evaluation results. According to the
results, the proposed method requires less area than conven-

Table 1: FPGA evaluation of floating-point adders
Conventional Conventional Proposed

single-precision double-precision single-precision
floating-point floating-point floating-point

Frequency 38 MHz 31 MHz 27 MHz
Num. LEs 611 1336 1014

tional double-precision floating-point method. However, the
clock frequency is slightly lower than that of the double-
precision method. As discussed in the previous section, the
accuracy of the proposed method is much better than the
single-precision and almost the same as the double-precision.
Therefore, using the proposed method with single-precision
is area-effective than using double-precision. However, as
shown in 2(b) , if the number of iterations are extremely large
as few millions, the difference between the proposed method
and conventional double-precision method gets larger.

5. Conclusion
We have proposed a floating-point error reduction method

and its hardware architecture for addition. The proposed
method based on preserving the residue coursed by rounding
and reusing the preserved value for the calculation. The
proposed adder store the residue in registers so that re-
calculating of residue is not required. The evaluation shows
that the proposed method gives almost the same accuracy as
the double-precision floating point computation and more

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 | 57

area efficient than the double precision adder. In future
works, we will extend the proposed method of other com-
putations such as multiplication and division.

Acknowledgment
This work is supported by MEXT KAKENHI Grant

Number 12020735.

References
[1] H. S. Yee, “Numerical Solution of Initial Boundary Value Problems

Involving Maxwell’s Equations in Isotropic Media”, IEEE Transac-
tions on Antennas and Propagation, Vol.14, No.3, pp.302-307, 1966.

[2] B. Parhami, “Computer Arithmatic”, Oxford University Press, 2010.
[3] M. Sofroniou and G. Spaletta, “Precise numerical computat”, The

Journal of Logic and Algebraic Programming, Vol.64, Issue 1, pp.113-
134, 2005.

[4] Y. Hida , X. S. Li and D. H. Bailey, ”Algorithms for Quad-Double
Precision Floating Point Arithmetic”, 15th IEEE Symposium on
Computer Arithmetic, pp.155-162, 2001.

[5] http://www.mpir.org/

58 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 |

SESSION

BEST YOUNG ENTREPRENEUR; STUDENT
RESEARCH CATEGORY

Chair(s)

Dr. Toomas Plaks
UK

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 | 59

60 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 |

ERSA-NVIDIA AWARD

“Best Young Entrepreneur”

Student Research Category

A Novel Parallel Computing Approach for Motion

Estimation Based on Particle Swarm Optimization

Manal K. Jalloul

ECE Department, American University of Beirut, Beirut, Lebanon

Abstract –Eventhough the area of video compression has

existed for many decades, programming a coding algorithm is

still a challenging problem. The actual bottleneck is to provide

compressed video in real-time to communication systems. All

those constraints have to be solved while keeping a good

tradeoff between visual quality and compression rates. In this

context, Motion Estimation (ME) is known to be a key

operation. On the other hand, in the hardware industry, there

is great emphasis on High Performance Computing (HPC)

which is characterized by a shift to multi and many core

systems. The programming community has to embrace the new

parallelismin order to take advantage of the performance

gains offered by the new technology. In this research work, we

introduce a novel ME scheme with high level of data

parallelism. It is capable of performing motion search for all

the blocks of the frame in parallel using a modified Particle

Swarm Optimization (PSO). This scheme can be implemented

on Nvidia’s massively parallel Graphical Processing Units

(GPUs) to yield tremendous speedup as compared to existing

techniques.

Keywords:Motion Estimation, Parallel Computing, PSO,

GPU, Multicore

1 Introduction

 Today, video coding has become the central technology

in a wide range of applications, as shown in Fig. 1. Some of

these include digital TV, DVD, Internet streaming video,

video conferencing, distance learning, surveillance, and

security.

 Video coding standards have evolved primarily through

the development of the well-known ITU-T and ISO/IEC

standards. The ITU-T produced H.261 and H.263, ISO/IEC

produced MPEG-1 and MPEG-4 Visual, and the two

organizations jointly produced the H.262/MPEG-2 Video and

H.264/MPEG-4 AVC standards. Recently, these two

organizations have been working together in a partnership

known as the Joint Collaborative Team on Video Coding

(JCT-VC) to produce the HEVC, the High Efficiency Video

Coding standard, which is the most recent video coding

standard. The first edition of the HEVC standard was

finalized in January 2013[1].

 Inter-prediction motion estimation is a common tool

used in all video coding standards. The current H.264/MPEG-

4 AVC video coding standard and the upcoming

HEVCstandard employ the same hybrid approach to achieve

high compression performance. Inter-prediction motion

estimation is considered the most computationally intensive

feature of the coding process.

Figure 1Some applications of video coding

 Efficient algorithms are needed to target the real-time

processing requirements of emerging applications. Many fast

search motion estimation algorithms have been developed to

reduce the computational cost required by full-search

algorithms. Fast search motion estimation techniques

however often converge to a local minimum, which makes

them subject to noise and matching errors.In this research

work, we propose a novel fast and accurate block motion

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 | 61

estimation algorithm based on an improved parallel PSO

algorithm. The proposed scheme alleviates the problem of

being trapped in local minima by employing the strategies of

PSO. As a result, the proposed scheme produces a quality that

outperforms most of the well-known fast searching

techniques.

 Today, we witness a high revolution in the hardware

industry. There is a transition to multi-core and many-core

systems which require a change in the programming approach

to develop algorithms with high parallelism in order to take

advantage of the high speedup provided by the available

hardware. Existing ME algorithms are serial. They operate on

blocks of the frame serially following the raster order. The

proposed algorithm, on the other hand, exhibits high level of

data parallelism. It performs motion estimation for all blocks

of the frame in parallel. As a result, the proposed algorithm

provides tremendous speedup and improved quality as

compared to the exhaustive-search algorithm and to the well-

known fast searching techniques.The proposed scheme will

be implemented on the multi-core CPU architecture and the

massively parallel architecture of the GPU using the NVIDIA

CUDA platform and evaluated.

2 Technical description

 Block-Matching Motion Estimation (BMME) with Full

Search (FS) algorithm is the main computational burden in

the video encoding process due to exhaustively search all

possible blocks within the search window. Although FS

algorithm can obtain the optimum motion vector (MV) in

most cases, it consumes 60 to 80% of the total computational

complexity. Thus, a fast and efficient motion estimation

algorithm is required. In this research, we propose a novel

fast and accurate block motion estimation algorithm based on

an improved parallel Particle Swarm Optimization (PSO)

algorithm.Since the proposed scheme is highly parallel, the

massively parallel architecture of the GPU can be exploited to

achieve massive speedup.

2.1 Related work

 In the literature, two major approaches were researched

to reduce the computational cost of the Exhaustive FS

method. One employs fast mode decision algorithms to skip

unnecessary block modes in variable block checking process

[2-4]. The other one utilizes Fast Motion Estimation (FME)

searching algorithms to reduce unnecessary search points.In

the past years, the FME algorithms included three-step search

[5], four-step search (4SS) [6] which can be generalized to N-

step search (NSS), the diamond search (DS) methods [7], the

cross-diamond search (CDS) method [8], and the Hexagon-

based search [9]. In each of these fast search methods, a

different search pattern is employed to reduce the number of

search points. These algorithms reduce the computational

complexity with negligible loss of image quality only when

the motions matched the pattern well; otherwise, the image

quality will decrease. In [10], a hybrid Unsymmetrical Multi-

Hexagon-grid search (UMHexagonS) algorithm, which

attempt to usemany search patterns, has achieved both fast

speed and good performance. In [11],Predictive Intensive

Direction Searching (PIDS) algorithm was developed. PIDS

successfully speeds up the process compared to

UMHexagonS. However, this algorithm still searches each

direction exhaustively, which may cause searching resource

waste. In [12], a novel Predictive Priority Region Search

(PPRS) algorithm that performs adaptively search indirection

and locality regions was proposed. Other FME algorithms

proposed in the literature include Motion adaptive search

(MAS) [13], Variable Step Search (VSS) algorithm [14], and

the Multi-Path Search (MPS) algorithm [15]. In addition to

the above, several high efficiency algorithms were presented

in the literature for ME that significantly reduce the number

of checking points examined while retaining the video

quality. These algorithms include the Motion Vector Field

Adaptive Search Technique (MVFAST)[16], the Predictive

Motion Vector Field Adaptive Search Technique(PMVFAST)

[17], the Advanced Predictive Diamond Zonal Search

(APDZS) [18], and the Enhanced Predictive Zonal Search

(EPZS) [19].

Block matching motion estimation can be formulated into an

optimization problem where one searches for the optimal

matching block within a search region which minimizes RD

cost. The above fast block matching methods suffer from

poor accuracy since they dictate that only a very small

fraction of the entire set of candidate blocks be examined,

thereby making the search susceptible to beingtrapped into

local optima on the error surface.In order to escape from the

problem of local minima; several approaches were recently

presented in the literature to use modern optimization

algorithms to solve the problem of motion estimation. In [20,

22], the Genetic Algorithm (GA) has been considered for

motion estimation. The proposed algorithms, however, tend

to be complex and suffer from a high computational burden.

In [22], the Simulated Annealing (SA) concept is employed to

control searching process and to adaptively choose the

intensive search region. In addition to GA and SA, there have

been some attempts in the literature to apply Particle Swarm

Optimization (PSO) to solve the problem of ME [23-29]. The

PSO-based motion estimation methods introduced in [23-27]

either have higher computational complexity [23] or have

lower estimation accuracy [24, 25, 26] than several existing

fast search methods.These algorithms try to improve the

speed of convergence of the PSO iterations by choosing, as

initial positions of the particles, the MVs of adjacent blocks in

the frame as well as the (0,0) MV. The PSO iterations,

however, can achieve faster convergence if we exploit the

temporal correlation with the collocated block in the adjacent

frame as well. In [29], a new variant of parallel particle

swarm optimization (PPSO) known as small population-based

modified PPSO (SPMPPSO) is proposed for fast motion

estimation. In the standard PSO, positions of particles are

updated after each individual fitness evaluation (i.e. in an

asynchronous fashion or serially). The proposed algorithm in

[29] achieves parallelism at the particle level, where the

62 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 |

particles of the swarm evaluate the fitness function

concurrently. Nevertheless, the algorithm presented in [29],

as well as all the other PSO-based ME algorithms in the

literature, operate serially on the blocks of a given frame

following the raster order. Thus, if we can device a ME

algorithm which can operate in parallel on all blocks of the

frame, then the speed of the ME process could be

tremendously enhanced. This is the main focus of our

proposed PSO-based ME scheme.

2.2 Proposed approach

 In this research work, we propose a new block matching

algorithm based on a novel parallel PSO approach. The

proposed algorithm allows performing motion estimation for

all the macroblocks within the frame in parallel. To do that, a

modified PSO algorithm is applied to all macroblocks

concurrently for a certain number of iterations. After that, a

synchronization step is performed among neighboring MBs to

exchange information about the MVs found so far in the PSO

process. Based on the assumption that the motion field is

smooth and varies slowly, there are strong correlations

between motion vectors of the neighboring blocks. As a

result, this synchronization step allows making use of the

spatial correlation characteristic between neighboring MBs to

refine the MVs found so far in the PSO process. The

proposed scheme exhibits intrinsic data parallelism and thus

can be implemented on the CPU muti-core architecture and

NVIDIA‟s GPU architecture using the CUDA platform to

achieve the required speedup. To illustrate the proposed

scheme, we first review the standard PSO algorithm, then we

explain the details of our PSO-based parallel ME algorithm

and compare it with the available schemes highlighting its

estimated improvements.

2.2.1 The standard PSO algorithm

 The PSO technique was introduced in [30] as a robust

stochastic optimization technique based on a social-

psychological model of social influence and social learning.

Belonging to the category of swarm intelligence methods,

PSO is a population-based technique inspired by the social

behavior and movement dynamics of flocks of birds, schools

of fish, and herds of animals adapting to their environment.In

the conventional PSO approach, the so-called swarm is

composed of a set of particles that are placed in a search space

where each particle represents a candidate solution to a certain

problem or function. Initially, each particle is assigned a

randomized velocity. The particles then „„fly‟‟ through a

multidimensional search space, where the position of each

particle is adjusted according to its own experience and that of

its neighbors. Each particle keeps track of its personal best

location (pbest) in the problem space, which represents the best

solution (fitness) it has achieved so far. The location of the

overall best value, obtained so far by any particle in the

population, is called gbest. The PSO algorithm updates the

position of a particle by moving the particle based on its past

personal best (pbest) and the global best position (gbest) that has

been found by all the particles in the swarm. Details of the

PSO iterations are shown in Fig. 2.

Figure 2Iterations of the PSO algorithm.

The idea of PSO is to change the velocity of each particle

towards its pbest and gbest locations at each time step.

Accelerationis weighed by a random term, with separate

random numbers being generated for acceleration toward the

pbest and gbest locations. The velocity and position of a particle

can be updated according to the following equations:

𝑉𝑖 𝑡 + 1 = 𝑤𝑉𝑖 𝑡 + 𝑐1𝑟1 𝑃𝑖 𝑡 − 𝑋𝑖 𝑡 + 𝑐2𝑟2 𝑃𝑔 𝑡 − 𝑋𝑖 𝑡 (1)

𝑋𝑖 𝑡 + 1 = 𝑋𝑖 𝑡 + 𝑉𝑖 𝑡 + 1 (2)

where i is the index of the particle, i = 1,2, . . . ,M; w the

inertia weight; c1, c2 the positive acceleration constants; r1, r2

therandom numbers, uniformly distributed within the interval

[0, 1]; t the number of iterations so far; g the index of the

bestpositioned particle among the entire swarm; Pi the

position of pbest for the particle i; and Pg is the position of gbest

for the entire swarm.

2.2.2 The proposedparallel PSO-based ME

scheme

 In this research work, we device a ME scheme which

applies PSO strategies to find the optimal MVs for all the

macroblocks of a given frame in parallel. This is done by

executing the steps shown in Fig. 3.

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 | 63

Figure 3Proposed motion estimation scheme

 A given frame is divided into 16x16 macroblocks. Then,

a swarm consisting of M particles is generated for each MB.

Each particle of a given MB represents a matching MB within

the search window in the reference frame. Using the PSO

iterations, the positions of the particles is continuously

updated until the global minimum of the Sum of Absolute

Difference (SAD) cost function is reached.

 In the standard PSO algorithm, the initial population is

randomly selected, which brings high computational

complexity to the motion search since the iterations are

starting from random points which might be far from the

global minimum. However, if the initial points are chosen to

be close to the optimum, then faster convergence can be

achieved. Since motion vectors have a high temporal

correlation feature, we initialize 9 particles of each MB to the

MVs of the collocated MB in the previous frame as well as its

8 adjacent neighbors. We also initialize one of the particles to

the (0, 0) MV to account for static blocks. The rest of the M

particles are randomly generated. Notice that at this point, we

cannot use the MVs of the adjacent blocks in the same frame

since these MVs are not calculated yet and the only apriori

information we have is the motion of the MBs of the previous

frame. This initialization step is shown in Fig. 4.

 After initialization, the swarms of particles of all MBs

are allowed to run for a predefined K number of iterations in

parallel. During each iteration, each MB with index j adjusts

the positions and velocities of its particles, independently

from other MBs, evaluates the fitness function at the new

positions, then it updates the values of Pij and Pgj which are

the position of the best fitness attained so far for particle i and

the global best position for MBj respectively. Early

termination of search is allowed here whenever the fitness

value is less than a predefined threshold value Tth.

Figure 4Particlesinitialization of agiven MB

 After the K iterations are completed by all MBs of the

frame, a synchronization step is performed to refine the MVs

found so far in the PSO process. This is done by exploiting

the high spatial correlation existing between MVs of

neighboring blocks. To do that, each MBj sorts its M particles

in a decreasing order according to their Pij values. Then the

last 8 particles which have the worst Pij values are eliminated

and replaced by 8 new particles which are initialized to the Pg

values of its 8 neighboring MBs.

 In this synchronization step, neighboring MBs are

allowed to refine their motion search process using

information from neighboring blocks. Weak particles having

the worst fitness values are replaced with strong particles

which are located closer to the global optimum. This process

is expected to speed up the convergence of the PSO

algorithm. Communication between neighboring MBs is

required in this step where each MB will broadcast to its 8

neighbors the value of it global best location Pg found so far

in the motion search process. This process is shown in Fig. 5.

Figure 5 MB synchronization

2.3 Preliminary results

2.3.1 Estimation Accuracy

 In order to test the accuracy of the proposed scheme,

simulations were carried out on video sequences of various

motion content in the QCIF format at 30 frames per

second.The searching range is ±7 pixels and the block size is

16x16 pixels. The other parameters of simulation are as

follows. For PSO, the size of the particle population was

chosen to be M=10, Nmax=12, Nsame=4, K=6 so that only one

synchronization point is needed, c1 and c2 are equal to 2.05.

64 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 |

 The results interms of Peak Signal to Noise Ratio

(PSNR) are given in table 1.

 As shown in Fig.6, our proposed PSO algorithm

performs very close to FS algorithm and exceeds that of all

other schemes. Consequently, the proposed PSO algorithm

has very high search accuracy.

Table 1Comparison of average PSNR results in db

Sequence FS DS TSS 4SS ARPS PSO

[14]

PSO

new

Foreman 33.52 33.29 33.24 33.28 33.19 33.12 33.44

Bus 24.21 23.52 23.45 23.46 23.26 23.91 24.19

News 28.19 21.38 22.69 21.51 26.29 27.99 28.10

Stefan 25.14 24.53 24.97 24.56 24.92 25.03 25.11

Soccer 22.97 21.93 22.14 21.93 22.02 22.18 22.77

Silent 35.69 35.43 35.55 35.41 35.30 35.39 35.56

Carphone 27.46 25.42 27.01 25.23 27.13 27.20 27.39

Figure 6 Motion estimation accuracyinterms of PSNR for Bus sequence

2.3.2 Speedup on multi-core processors

 The proposed scheme exhibits a high level of data

parallelism since it operates on all the blocks of the frame in

parallel rather than serially as in existing ME approaches. As

a result, our algorithm can be efficiently implemented on a

multicore system. Therefore, a multicore implementation of

our proposed algorithm is performed using the MATLAB®

Parallel Computing Toolbox™ (PCT). The PCT provides

parallel constructs in the MATLAB language, such as parallel

for loops, distributed arrays and message passing & enables

rapid prototyping of parallel code through an interactive

parallel MATLAB session.

 The proposed algorithm is simulated on a server with

two Intel Xeon 2.66GHz CPU quad cores and 2GB memory.

Thus, this server is equipped with 8 CPU cores. The

execution platform is Matlab R2012a. Simulation results are

given for Foreman sequence in QCIF format. The block size

is 16x16 pixels. Thus, one frame of the QCIF (144x176)

video sequence contains 9x11 blocks which should be

mapped to the available cores to be processed in parallel.

Since the number of MBs in the frame is odd, we used an odd

number of Matlab workers to perform simulations. For three

available Matlab workers, each worker performs motion

estimation for three rows of MBs in the frame. Whereas if

nine Matlab workers are available, then each one performs

motion estimation for one row of MBs within the frame. In

this way, load balancing between the cores is ensured. The

speedup obtained for 3 and 9 Matlab workers is given in table

2.

Table 2Speedup on multi-core CPU architecture

3 Matlab Workers 9 Matlab Workers

2.65 5.8

 We notice that the speedup is high for three workers but

not as high as expected for 9 workers. The reason behind this

is that the available architecture contains only 8 cores.

Although PCT allows to use upto 2 Matlab workers or labs

per CPU core, but the performance will not be optimized.For

a more thorough performance evaluation, simulations on a

computer cluster with higher number of cores are still in

progress.

2.3.3 Speedup on many-core GPU architecture

 Nvidia GPUs are equipped with hundreds of decoupled

cores that are capable of executing code in parallel. Our

proposed scheme is in the process of being implemented on

the GPU using the CUDA platform. Tremendous speedup is

expected.

3 Impact and significance of the project

 The significance of this research project lies in many

folds. First, the topic under investigation is of great

importance to the image and video processing industry.

Motion estimation lies in the heart of any video compression

system. It is the main block responsible for removing the

temporal redundancies in a video sequence which allows

achieving bit rate reduction and thus efficient compression.

Developing an effective algorithm would improve the

efficiency of the video codec to meet the needs of the

evolving video industry. Cutting-edge applications such as

HD video streaming, gaming, and mobile HDTV require high

quality video at a very low bit-rate. Paving the way for next

decade‟s video applications requires a video compression

system with an optimized motion estimator.

 Second, the method of investigation of this project

tackles a novel approach that combines several important

concepts. The proposed algorithm achieves parallelism which

is the main requirement of all current algorithms to be able to

use the state-of-the-art parallel processing capabilities to

achieve speedup. In both industry and research today, there is

a relentless pursuit of ever greater level of performance by

employing parallelism. The advent of multicore CPUs and

0 10 20 30 40 50 60 70 80 90 100
21

22

23

24

25

26

27

28

Frame Number

P
S

N
R

 i
n

 d
b

ES

TSS

SS4

DS

ARPS

PSOnew

PSO [14]

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 | 65

many-core GPUs means that mainstream processor chips are

now parallel systems. Therefore, the challenge is to develop

algorithms with intrinsic parallelism in order to exploit the

capabilities of today‟s processors. So far, proposed Motion

Estimation (ME) algorithms were either serial or had only

partial parallelism. The algorithm presented in this proposal

exhibits high data parallelism and thus can exploit the

advance in the hardware industry. The proposed algorithm is

to be implemented on the NVIDIA GPU architecture using

the CUDA platform. The NVIDIA programmable GPU has

evolved into a highly parallel, multithreaded, many-

coreprocessor with tremendous computational horsepower

and very high memory bandwidth [31]. Thus, an efficient and

optimized implementation of our proposed ME algorithm on

the GPU is expected to yield a tremendous amount of

speedup.

 On the other hand, the proposed algorithm is based on

modern optimization which is now gaining much popularity

in the academic and research field and is being used to solve

problems in many fields.

 Moreover, pursuing this research project would pave the

way to many other projects in the future. A deep

understanding of the problem and developing an effective

algorithm would allow for exploring more improvements not

only to the problem of motion estimation but to the other

blocks of the video codec as well.

Figure 7Significance of the project

4 Conclusions

 In this research project, we propose an efficient motion

estimation software tool that is characterized by a high

accuracy to meet the needs of the video coding industry. The

proposed scheme also has a high level of data parallelism and

thus can leverage the capabilities of today‟s High

Performance Computing (HPC) industry to achieve speedup.

Simulation results show that the proposed motion estimation

tool yields better estimation accuracy than existing fast

schemes. Preliminary implementation on a multi-core CPU

architecture shows a high prospect of speedup obtained from

available parallelism.

5 Acknowledgment

This research was supported by AUB‟s University Research

Board. This work is part of my PhD thesis, so I would like to

thank my advisor, Prof. Mohamad Adnan Al-Alaoui, and my

PhD committee members for their guidance and positive

feedback.

6 References

[1] G. J. Sullivan, J. R. Ohm, W. J. Han, T. Wiegand.

"Overview of the High Efficiency Video Coding (HEVC)

Standard" ; Circuits and Systems for Video Technology, IEEE

Transactions on, Vol. No. 22, Issue No.12, pp.1649-1668,

Dec. 2012.

[2] Jianfeng R., Kehtarnavaz N, and Budagavi M.

“Computationally Efficient Mode Selection in H.264/AVC

Video Coding” ; IEEE Trans. Consumer Electronics, vol. 54,

pp. 877-886, 2008.

[3] Knesebeck M, Nasiopoulos P. “An Efficient Early-

Termination Mode Decision Algorithm for H.264” ; IEEE

Trans. Consumer Electronics, Vol. 55: pp. 1501-1510, 2009.

[4] D. Han, A. Kulkarni and K.R.Rao. “Fast Inter-

prediction Mode Decision Algorithm for H.264 Video

Encoder” ; 9th International Conference on Electrical

Engineering/Electronics, Computer, Telecommunications and

Information Technology (ECTI-CON), 16-18 May 2012.

[5] R. Li, B. Zeng, M.L. Liou. “A new three step search

algorithm for block motion estimation”; IEEE Trans. Circuits

Syst. Video Technol., Vol.4, Issue No.4, pp. 438–442, 1994

[6] L.M. Po, W.C. Ma. “A novel four-step search algorithm

for fast block motion estimation” ; IEEE Trans. Circuits Syst.

Video Technol., vol.6, no.3, pp. 313–317, 1996.

[7] S. Zhu, K. K. Ma. “A new diamond search algorithm

for fast block-matching motion estimation” ; IEEE

Transactions on Image Processing, vol. 9, pp. 287–290, 2000

[8] C. H. Cheung, L. M. Po. “A novel cross-diamond

search algorithm for fast block motion estimation” ; IEEE

Transactions on Circuits and Systems for Video Technology

12 (12) (2002) 1168–1177.

[9] C. Zhu, X. Lin, and L. P. Chau. “Hexagon-based search

pattern for fast block motion estimation” ; IEEE Trans.

Circuits Syst. Video Technol., vol. 12, no. 5, pp. 349–355,

May 2002.

[10] Z. B. Chen, P. Zhou, and Y. He. “Fast Integer Pel and

Fractional Pel Motion Estimation for JVT” ; in Proc. 6th

Meeting: JVT–F017, Awaji Island, Japan, 2002.

66 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 |

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6243514
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6243514
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6243514
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6243514

[11] ZhiruShi, Fernando, W.A.C., De Silva, D.V.S.X. "A

motion estimation algorithm based on Predictive Intensive

Direction Search for H.264/AVC" ; IEEE Int. Conf.

Multimedia and Expo (ICME), pp.667-672, July 2010.

[12] Zhiru Shi, W.A.C. Fernando and A. Kondoz. “An

Efficient Fast Motion Estimation in H.264/AVC by Exploiting

Motion Correlation Character” ; IEEE International

Conference on Computer Science and Automation

Engineering (CSAE), Vol. 3, pp. 298 – 302, 25-27 May 2012.

[13] P. I. Hosur. “Motion Adaptive Search for Fast Motion

Estimation”; IEEE Trans. Consumer Electronics, vol. 49, pp.

1330-1340, 2003.

[14] KiBeom K, Young J, Min-Cheol H. “Variable Step

Search Fast Motion Estimation for H.264/AVC Video

Coder” ; IEEE Trans. Consumer Electronics, vol. 54: pp.

1281-1286, 2008.

[15] Goel S and Bayoumi M. A. “Multi-Path Search

Algorithm for Block-Based Motion Estimation”; IEEE Int.

Conf Image Processing, pp. 2373-2376, 2006.

[16] P.I. Hosur and K.K. Ma. “Motion Vector Field

Adaptive Fast Motion Estimation”; Second International

Conference on Information, Communications and Signal

Processing (ICICS ‟99), Singapore, 7-10 Dec. 1999.

[17] A.M. Tourapis, O.C. Au, and M.L. Liou. "Predictive

Motion Vector Field Adaptive Search Technique

(PMVFAST) - Enhancing Block Based Motion Estimation” ;

in proceedings of Visual Communications and Image

Processing (VCIP-2001), pp.883-892, San Jose, CA, January

2001.

[18] A.M. Tourapis, O.C. Au, and M.L. Liou. "New Results

on Zonal Based Motion Estimation Algorithms – Advanced

Predictive Diamond Zonal Search" ; in proceedings of 2001

IEEE International Symposium on Circuits and Systems

(ISCAS-2001), Vol. No. 5, pp.183–186, Sydney, Australia,

May 6-9, 2001.

[19] A. M. Tourapis. "Enhanced predictive zonal search for

single and multiple frame motion estimation" ;Electronic

Imaging 2002.International Society for Optics and Photonics,

pp. 1069-1079, 2002

[20] L.T. Hoand J.M. Kim. “Direction Integrated Genetic

Algorithm for Motion Estimation in H.264/AVC” ;Advanced

Intelligent Computing Theories and Applications. With

Aspects of Artificial Intelligence Lecture Notes in Computer

Science,Vol. No. 6216, pp. 279-286, 2010.

[21] A. El Ouaazizi, M. Zaim, & R. Benslimane. “A Genetic

Algorithm for Motion Estimation” ; IJCSNS International

Journal of Computer Science and Network Security, VOL.11

No.4, April 2011.

[22] Z. Shi, W.A.C. Fernando, and A. Kondoz. “Simulated

Annealing for Fast Motion Estimation Algorithm in

H.264/AVC” ; Simulated Annealing - Single and Multiple

Objective Problems, Marcos de Sales Guerra Tsuzuki (Ed.),

ISBN: 978-953-51-0767-5, InTech, DOI: 10.5772/50974.

Available from: http://www.intechopen.com/books/simulated-

annealing-single-and-multiple-objective-problems/simulated-

annealing-for-fast-motion-estimation-algorithm-in-h-264-avc

[23] G.-Y. Du, T. S. Huang, L. X. Song, and B. J. Zhao.“ A

novel fast motion estimation method based on particle swarm

optimization”;Fourth International Conference on Machine

Learning and Cybernetics, 2005.

[24] K.M. Bakwad, S.S. Pattnaik, B.S. Sohi, S. Devi, S.

Gollapudi, C.V. Sagar, and P.K. Patra. “Small population

based modified parallel particle swarm optimization for

motion estimation” ; 16th International Conference on

Advanced Computing and Communications (ADCOM‟2008),

2008.

[25] R. Ren, M.M. Manokar, Y. Shi, B. Zheng. “A Fast

Block Matching Algorithm for Video Motion Estimation

Based on Particle Swarm Optimization and Motion

Prejudgement” ; 2006.

[26] X. Yuan, X. Shen.“ Block matching algorithm based on

particle swarm optimization for motion estimation” ;

International Conference on Embedded Software and Systems

(ICESS‟2008), 2008.

[27] Zhang Ping, Chen Hu, Wei Ping.“Fast Motion

Estimation Algorithm for Scalable Motion Coding” ; 2010

International Conference on Electrical and Control

Engineering (ICECE), pp. 25-27, June 2010.

[28] Bakwad, Kamalakar M., Pattnaik, Shyam S., Sohi, B.

S., Devi, Swapna, Gollapudi, Sastry V. R. S., Sagar, Ch.

Vidya and Patra, P. K. "Fast Motion Estimation using Small

Population-Based Modified Parallel Particle Swarm

Optimisation" ; IJPEDS 26, no. 6, pp. 457-476, 2011.

[29] J. Cai, W. David Pan. “On Fast And Accurate Block-

Based Motion Estimation Algorithms Using Particle Swarm

Optimization” ; Information Sciences, Vol. No. 197, pp. 53–

64, 15 August 2012.

[30] R. Poli, J. Kennedy, and T. Blackwell.“Particle swarm

optimization: an overview”; Swarm Intelligence 1, pp. 33–57,

2007.

[31] “NVIDIA CUDA Compute Unified Device

Architecture, Programming Guide version 2.0”, 2008, found

on www.nvidia.com.

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 | 67

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6261593
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6261593
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6261593
http://link.springer.com/search?facet-author=%22Linh+Tran+Ho%22
http://link.springer.com/search?facet-author=%22Jong-Myon+Kim%22
http://link.springer.com/book/10.1007/978-3-642-14932-0
http://link.springer.com/book/10.1007/978-3-642-14932-0
http://link.springer.com/book/10.1007/978-3-642-14932-0
http://link.springer.com/book/10.1007/978-3-642-14932-0
http://link.springer.com/bookseries/558
http://link.springer.com/bookseries/558
http://link.springer.com/bookseries/558
http://www.intechopen.com/books/simulated-annealing-single-and-multiple-objective-problems/simulated-annealing-for-fast-motion-estimation-algorithm-in-h-264-avc
http://www.intechopen.com/books/simulated-annealing-single-and-multiple-objective-problems/simulated-annealing-for-fast-motion-estimation-algorithm-in-h-264-avc
http://www.intechopen.com/books/simulated-annealing-single-and-multiple-objective-problems/simulated-annealing-for-fast-motion-estimation-algorithm-in-h-264-avc
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Zhang%20Ping.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Zhang%20Ping.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Zhang%20Ping.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Zhang%20Ping.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Zhang%20Ping.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5628462
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5628462
http://www.sciencedirect.com/science/journal/00200255
http://www.sciencedirect.com/science/journal/00200255/197/supp/C
http://www.nvidia.com/

68 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 |

SESSION

INVITED LECTURE

Chair(s)

Dr. Toomas Plaks
UK

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 | 69

70 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 |

ERSA – INVITED TALK/LECTURE

Addressing the Challenges of Hardware Assurance in
Reconfigurable Systems

William H. Robinson, Trey Reece, and Nihaar N. Mahatme

Security and Fault Tolerance (SAF-T) Research Group
Department of Electrical Engineering and Computer Science, Vanderbilt University

Nashville, TN, USA

Abstract - Despite the numerous advantages of nanometer
technologies, the increase in complexity also introduces a
viable vector for attacking an integrated circuit (IC): a
hardware attack, also known as a hardware Trojan. Since
such an attack is implemented within the hardware of a
design, it is generally undetectable to any software operating
on this circuitry. To make matters worse, a hardware attack
could be introduced at almost any point in a design’s
development cycle, be it through third-party intellectual
property (IP) licensed for a design, or through unknown
modifications made during the fabrication process. This
malicious hardware could act as a kill-switch for a vital
device, or as a data-leak for sensitive information. Activation
would occur at some predetermined time or by a trigger from
a malicious agent. An effective method is required to find such
unexpected functionality. This paper describes several key
challenges to be addressed in order to provide hardware
assurance for trustworthy systems. We examine the platform of
field programmable gate arrays (FPGAs) both for their
potential vulnerability to threats within third-party IP as well
as their capability to accelerate the testing of those modules.

Keywords: Trusted hardware; malicious hardware detection;
security; FPGAs; third-party intellectual property (IP)

1 Introduction
 Trustworthy computing (with software) cannot exist
until there is trustworthy hardware on which to build it [1].
To most designers, one of the advantages to implementing a
design in hardware instead of as a software implementation is
the secure nature of hardware. The assumption is prevalent
that hardware is secure while software can be attacked.
Unfortunately, this is a false assumption, created due to a lack
of security awareness with increasingly complicated circuits.
Advancements in process technology provide designers with
the ability to put more transistors on a single silicon die [2] to
fabricate increasingly complex designs. Unfortunately, the
contents of these chips can be obscured, leading to potential
security vulnerabilities within the hardware. A full design
could have logical blocks contributed by dozens of different
sources, with hundreds of different people contributing to the

overall design. In some cases, these designers may have
nothing to do with each other, and may come from outside of
the company. There exists the threat that malicious agents can
compromise the supply chain of integrated circuits (ICs)
[3, 4] by inserting hardware Trojans (i.e., tiny circuits
implanted in the original design to make it work contrary to
the expected way in certain rare and critical situations [5]). In
addition, the capital investment required for semiconductor
foundries has limited the number of companies who fabricate
their own ICs. Many companies have become “fabless” and
rely upon overseas foundries to manufacture their designs
(Table 1); these designs are then returned as packaged chips.
The challenge of detecting malicious hardware requires that
the testing methodology identifies unknown functionality
within a chip after fabrication.

Table 1: 2011 Top 10 Semiconductor Foundries [6]

Rank Foundry Location
Sales
(USD)

1 TSMC Taiwan 14,533M

2 UMC Taiwan 3,604M

3 GlobalFoundries U.S. 3,580M

4 SMIC China 1,319M

5 TowerJazz Israel 613M

6 IBM Microelectronics U.S. 545M

7 Vanguard International Taiwan 516M

8 Dongbu HiTek South Korea 483M

9 Samsung South Korea 470M

10 Powerchip Technology Taiwan 431M

 Furthermore, different points of insertion can also
involve different types of Trojans. A Trojan inserted at
fabrication might utilize direct physical changes, due to the
lack of a digital copy of the Trojan. On the other hand, a
Trojan inserted through third-party intellectual property (IP)
could pretend to be a type of digital watermark, yet hide
additional malicious functionality. The reuse of IP makes it
difficult to guarantee the security of a system when the
underlying components are untrusted [7]. For example, a

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 | 71

design might include licensed design modules from vendors
supplying third-party intellectual property, requiring
techniques to ensure the trustworthiness of those modules
[8-11]. For reconfigurable systems using field-programmable
gate arrays (FPGAs), third-party IP becomes a likely attack
vector. Some approaches with FPGAs attempt to isolate
modules within the system’s implementation [12], or
establish a root of trust within the FPGA fabric [13].
 The concept of trust requires an accepted dependence or
reliance upon another component or system [14]. In an age
where hardware complexity provides the means to hide
malicious hardware, the assumption that the hardware is
secure can be misleading. Although software attacks are still
the most common, a hardware attack emerges within the
realm of possibility. Standard verification techniques ensures
that a design meets the minimum functional requirements, but
new methods of verification are required to guarantee that a
design performs its intended function but nothing more. This
paper discusses the challenges of developing trustworthy,
reconfigurable computing systems. It is crucial for a designer
to determine the trustworthiness of the design, as well as what
possibilities are available for compromising that design. A
solution for hardware assurance likely needs some automation
to cover the potential test vector space. Reconfigurable
hardware offers the possibility to accelerate the process.
 The rest of this paper is organized as follows. Section 2
discusses hardware assurance and the basis for a root of trust.
Section 3 provides a perspective on risk management by
vendors and designers. Section 4 describes detection methods
that have been developed and presented in the literature.
Section 5 proposes a potential hardware testbed where field-
programmable gate arrays (FPGAs) could be used to
accelerate the verification process. Finally Section 6
summarizes the paper and offers some potential directions for
future research.

2 Hardware Assurance

Figure 1: Linkages among hardware and software for secure
and reliable computing

 Many systems use hardware as the root of trust in order
to defend against software-level attacks. Consequently, there
is significant research on software assurance. However,
viewing the system strictly in terms of hardware and software
is a coarse-grained analysis. Understanding the linkages
among technology, architecture, communication, and the

application domain is critical for development of a trusted
system (Figure 1). This section discusses the threat model
used and its potential to affect full computing systems. It also
describes a taxonomy for understanding malicious hardware
and its potential impact on semiconductor intellectual
property.

2.1 Threat model

 One of the most insidious methods of attacking a circuit
is by modifying its hardware in a malicious way. To put it
simply, a hardware Trojan is created by discreetly inserting
hidden functionality into a hardware design. This insertion
can occur at any stage in a production path, and could have
devastating effects on the final design. Such Trojans can have
a variety of functionality, ranging from denial-of-service
functionality that gives designs a controllable kill switch, to
hidden data-leaks that can leak sensitive information [14].
 One of the earliest papers covering the concept of
Hardware Trojans was published by a group of researchers at
the University of Champaign-Urbana [15]. This research
included the design and test of a variant of the Aeroflex
Gaisler LEON 3 [16] processor, called the Illinois Malicious
Processor (IMP). The IMP was a fully functional version of
the LEON 3 that operated normally in almost all
circumstances, with the sole exception of one trigger: the
receipt of a specially crafted corrupt network packet.
Triggering this functionality would then switch the processor
into a new shadow mode where the processor would accept
and perform commands sent over the network. The shadow
mode allowed an attacker to both compromise and hijack a
system running on this processor, regardless of any security
measures in the software. Additionally, this modification only
required the insertion of 1,341 gates to the existing circuit,
which originally contained over 1 million. Detecting such an
insertion representing 0.1% of the circuit poses a significant
problem. Even in much smaller circuits, the percent impact of
hardware Trojans on the total area of a circuit is less than
0.5% [17, 18].

2.2 Classification of malicious hardware

 The structure of a hardware Trojan can vary greatly
depending upon intended functionality and payload [19]. A
well-placed bug in a critical location can be as detrimental as
a secret data-leak in a strong cryptosystem. Some Trojans are
triggered via a specific sequence of inputs that are unlikely to
occur in standard operation, and other Trojans are
continuously active with an indiscernible payload. A
taxonomy proposed by Karri et al. (Figure 2) [20] organizes
Trojans based on 5 characteristics: (1) the point at which the
Trojan enters the design, (2) the abstraction level of the
Trojan, (3) the type of triggering which activates the Trojan,
(4) the effect/payload of the Trojan, and (5) the location of the
Trojan in the design. A similar taxonomy proposed by Wang
et al. [21] focuses on three factors: (1) the physical
characteristics (i.e., structure), (2) the activation
characteristics (i.e., trigger), and (3) the action characteristics

72 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 |

(i.e., payload). Additionally, while a large number of attacks
fall under the classification of a hardware Trojan, the
detection techniques are greatly dependent upon the
individual characteristics of such Trojans.

2.3 Impact on semiconductor intellectual
property (IP)

 Depending on the method through which a Trojan is
inserted, possible detection methods vary greatly [22-24].
Semiconductor IP has become a key part of electronics design
because it can reduce IC development costs, accelerate time-
to-market, reduce time-to-volume, and increase end-product
value [25]. (According to Gartner Dataquest, the
semiconductor IP market will reach $2.3B in 2014 [26].)
Another confounding factor that increases the difficulty of
developing countermeasures is that few attacks have been
found in the wild. Instead, researchers must rely upon
example attacks developed as benchmarks to illustrate the
threat of malicious hardware. Unfortunately, these example
attacks can often contain unnecessary functionality, making
the detection of such an attack significantly easier. To make
progress in this research area, it is necessary to understand
both the attack and the defense of digital designs [27]. The
Trust-Hub research community [28] developed as a forum to
host and exchange resources related to hardware security and
trust. It has grown to contain a significant number of tools
and benchmarks, becoming the largest repository of hardware
Trojans available to the public. It is supported by the National
Science Foundation (NSF) and continually grows each year
as contributors submit further resources.

3 Risk Management in the Supply Chain
 When determining the security of a design, the first step
is to identify clearly what types of steps in the design flow
can be trusted, and what cannot. This determination might
change depending upon the types of circuits and their
implementations, but typically a vendor will trust its in-house
design process and acknowledge the potential vulnerability of

external design. Of course, there is the possibility of insider
threats [29, 30].

3.1 In-house design

 A simplifying assumption made for the purpose of this
discussion is that that all in-house design can be considered
trusted. Under no circumstances does this mean that there are
no security leaks, attempted sabotage, theft, or other problems
within an organization. In fact, organizations have
experienced this type of in-house threat. However, there are
effective methods to resolve these threats that can be put into
place. It is difficult to sabotage a design secretly if all changes
to a digital design are tracked and logged with significant
oversight on all changes. To put it simply, in-house design
has its own process of verification that acts completely
separately from other types of verification. The point of this
assumption is to clearly define external attack vectors in order
to most effectively block possible attacks. This allows a
designer to guarantee that every possible step in a design is
covered from attacks.

3.2 External design

 After declaring all in-house work as trusted, the next
step is to declare all work done outside of an organization as
suspect. Any production step in which a design is modified by
or in the care of an outside source can represent a possible
vector for an attack. For each step, it is important to identify
what attacks might be made by a third-party during this
opportunity, and determine methods of either preventing or
identifying such attacks. For example, a medical device
company designing a pacemaker might license a wireless
controller block from a vendor marketing third-party
intellectual property (IP). It could be disastrous if this
controller had malicious functionality hidden by the designer.
In such a situation, it is foremost to identify the risk posed by
incorporating this untrusted block in a design.

Figure 2: Hardware Trojan taxonomy based on five different attributes [20]

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 | 73

3.3 Vulnerabilities in the supply chain

 One reason that external resources are considered
universally untrusted is because of the difficulty in tracking
the source of an external resource in the supply chain,
regardless of the accompanying documentation. This has been
a significant issue with defense contractors in the past few
years, with regards to actual physical chips often purchased
from reputable vendors or resellers. For example, a fiasco
involving the United States Navy was made public in 2010,
when a company called VisionTech was charged with selling
over 59,000 microchips that contained hidden kill-switch
functionality. This functionality would allow an attacker to
disable whatever was running on these chips, including
missiles, communication equipment, and other military
vehicles. For years, this company had been importing
counterfeit chips from China, and marketing them to defense
companies as military grade microchips [31]. The list of these
companies included: (1) BAE systems, which provided
Identification Friend-or-Foe (IFF) systems to the U.S. Navy,
and (2) Raytheon Missile systems, which supplied chips for
use on F-16 fighter planes. Unfortunately, VisionTech is not
the only reseller to buy cheap microchips from overseas and
sell them domestically. Another similar example of
corruption in the supply chain is the 2005 example of United
Aircraft and Electronics, a company in which the operator
was sentenced to 188 months in prison for false certification
of aircraft parts sold [32]. Another 2002 example was the case
of United Space Alliance, a company which bid and received
a $24 million contract with NASA to supply military grade
8086 microprocessors for use with the space shuttle
computers. This company then proceeded to purchase used
computers off eBay and pull commercial-grade 8086
processors off the motherboards [32]. Commercial-grade
chips would almost certainly have difficulties operating in the
adverse environments required by the space shuttle
computers. Unless it is possible to completely track the life of
a resource, then that resource should be considered suspect.
Since verification of an external resource is generally a
simpler task than a full forensic investigation of the history of
a resource, verification is the preferred method of determining
whether something can be considered trusted.

4 Detection Methods
 The majority of the existing methods proposed for
identifying malicious hardware use the fabricated device; they
can be classified into two types: (1) methods that detect
changes on the transient current response drawn from extra
circuitry on the chip [33-35], and (2) methods that detect
timing differences due to the additional circuitry on the chip
[36, 37]. A golden chip must be used as the trustworthy
baseline in order to measure the deviation by a suspected
chip. These methods assume that a trustworthy chip has
already been identified, but do not address the issue of how to
identify that chip in the first place. There are also some
approaches that have attempted to encode signature
information (i.e., a watermark) into the design to prevent

unwanted piracy of ICs [38-40] or use side-channel
measurements to determine the signature of a design [33, 41].
In addition, fault injection could be used to provide hardware
assurance [42].

4.1 Physical testing

 After the fabrication stage, the individual packaged
chips are subjected to a large amount of testing in order to
make sure that the designs work as intended. This step can be
very involved, depending upon the complexity of the chip.
This can require expensive testing equipment and a
significant investment of time in order to fully verify a circuit.
While this step can be done entirely in-house, outsourcing it
to save costs would introduce an opportunity for an attacker
to replace chips with compromised ones. Generally, the test
vectors chosen will be completely trusted. The test sequences
can be chosen entirely in-house, and can be supplied entirely
from a known trusted ATPG algorithm. Physical testing
typically requires a golden copy of the design and sensitive
measurement equipment. Even then, there are still challenges
due to the potential of process variation that masks the
response [43]. Another method of testing/authentication
involves the use of physical unclonable functions (PUFs) to
provide challenge/response pairs for a design’s
implementation [44, 45]. In order for a Trojan to remain
hidden, there are three main characteristics that directly
contribute to the difficulty of identification. If even one of
these characteristics is lacking, then the difficulty in detecting
the Trojan will be reduced.
 Small Size: As Trojans can be constructed using a
fraction of a percent of the components in the overall circuit,
they can be quite small and still attain the desired
functionality. However, the larger the Trojan grows, the more
circuitry is added to the circuit, thus affecting its
functionality. Even if the Trojan is not triggered, some inputs
can activate smaller sections of the Trojan, changing the
power consumed by the chip. Some techniques involve
partially activating the Trojan circuitry in order to make it
easier to detect [46, 47]. Additional circuitry is also more
likely to displace the existing circuitry, compromising the
second desired characteristic of hardware Trojans.
 Low Displacement: When inserting a Trojan, it can be
necessary to relocate existing circuitry, in order to make room
for malicious components. However, such displacement of
existing components can have a significant effect on side-
channel measurements, making it possible to detect the
malicious circuitry [22, 33, 35, 36]. In some cases, a very
small Trojan added to a circuit could have a significant effect
on the timing response of a circuit, especially if an automatic
place-and-route function is implemented. In this case, manual
placement of the Trojan circuitry in the layout can minimize
the displacement of existing circuitry and help the Trojan to
remain covert.
 Resistance to unintended triggering: The last
characteristic necessary for a Trojan to remain undiscovered
is simply for it to be difficult to trigger accidentally. It does
not matter how large the Trojan is, or how artfully placed the

74 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 |

components are if the Trojan is found during routine testing,
such as standard logical verification. If the Trojan is always
on and lacks a trigger, then the payload needs to be something
discreet that does not appear on standard tests. For example,
the Trojan in the modified LEON3 processor [15] was
triggered via a uniquely crafted network packet, which would
normally be treated as corrupt. Such a possible input would
likely never be tested, simply because it is impossible to test
every possible input on every possible state. However, this
inability to test every possible input is what makes hardware
Trojans effective as malicious attacks.

4.2 Third-party IP

 As third-party IP is supplied from an external source,
there is no baseline with which to compare the IP to in order
to identify differences. Instead, it becomes necessary to
identify possibly suspicious behavior in a design. This means
that the IP design needs to be thoroughly analyzed for
possible malicious functionality. Thus, the most significant
vector to attacking a circuit during the design stage comes
through the inclusion of third-party IP in a design. Most
organizations cannot afford to re-invent solutions every time
a common component is used, and therefore rely on IP
vendors that supply design-modules to perform the desired
functionality. The organization can save money and time
while avoiding the issue of creating the design from scratch.
Designers will instead assemble licensed design modules in
order to meet the design specification, often treating the third-
party IP as black boxes. These unknown designs can easily
make their way unmodified into a final design, allowing for
an effective vector for compromising a circuit.
 Suppose that a designer were to license a cryptographic
circuit for use within a design. The cryptographic block's
encryption could be easily undermined if it were to possess an
extra hidden key. While it would appear to function correctly
under normal use, someone with knowledge of the hidden key
could easily circumvent any security provided by the
cryptographic block within the final design. Another risk with
third-party IP is that there are a plethora of vendors supplying
designs for every possible function, with very little oversight.

Vendors come and go, often only possessing an online
presence. It would not be difficult for a malicious agent to
create a fake vendor persona, and supply malicious design
modules at a below-market fee. Compounding the problem is
the continuous issue of stolen IP design modules. Vendors
sometimes have their IP stolen and resold by other vendors,
or even just stolen by designers wanting to use the IP for free.
Unfortunately, this has led to a culture of obfuscation and
suspicion, making it difficult to get clean, non-obfuscated
code in order to identify possible attacks.

5 Accelerated Testing with FPGAs
 Although FPGAs exhibit vulnerabilities to the insertion
of malicious hardware, they do offer the potential to assist
with detecting threats within a design. FPGAs could be used
in fault injection campaigns to identify suspected behavior
within a design. The potential test vector space is very large,
when considering: (1) the number of input vectors (2) the
number of fault locations, and (3) the current state for a
particular cycle of operation. Emulation in hardware would
require less time than using traditional simulation tools [42].
FPGA hardware can also be used to perform the testing in an
automated manner. Figure 3 shows a test setup to measure the
power drawn for a design under test (DUT). The DUT is a
Xilinx BASYS2 FPGA development board, and the I/O is
supplied by an Altera DE2 FPGA development board.

6 Summary and Future Work
 Unfortunately, detecting malicious hardware within a
reconfigurable computing system is an exceedingly difficult
task. Inactive Trojans can have an exceedingly small impact
on a circuit in terms of area and power, and Trojans are
statistically unlikely to be triggered on accident. Stealth is
also a key requirement of malicious hardware. A reliance on
third-party IP offers a direct path for the insertion of
malicious hardware. The very nature of reconfigurability with
FPGAs opens the door for security vulnerabilities. Despite the
evident need for detecting such changes to a circuit design,
there is currently no simple solution to this problem. Many

Figure 3: Test setup using an FPGA to provide input test vectors and monitor the output

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 | 75

methods wait until after a chip is fabricated. One alternative is
to take samples of the lot for extensive analysis. However,
examining the die is becoming increasingly more difficult as
transistors decrease in size. Even with an expensive imaging
procedure, it would not be possible to test every chip ordered,
as imaging may require the destruction of the chip. Other
techniques involve detecting changes in the electric current
drawn from extra circuitry on the chip, or detecting timing
differences due to the additional circuitry on the chip. These
methods rely upon the characterization of a golden copy in
their comparison, but this trustworthy copy is not available if
the original design was compromised, or the parameters could
be masked due to process variation on the IC. This paper
described the key research challenges for identifying
malicious hardware and the state-of-the-art for detection and
verification. Yet, there are still opportunities for research
contributions as new application domains emerge. For
example, in FPGA-based software-defined radio, a designer
must defend against malicious modification during
initialization and runtime [48]. In wireless sensor networks,
the need security emerges for access/discovery, routing, and
information [49]. Hardware/software codesign [50] also
offers the potential to include security within the overall
design framework to address the linkages among technology,
architecture, communication, and applications for trustworthy
reconfigurable systems.

7 Acknowledgment
This work was supported in part by TRUST (The Team for
Research in Ubiquitous Secure Technology), which receives
support from the National Science Foundation (NSF award
number CCF-0424422) and the following organizations:
AFOSR (#FA9550-06-1-0244) Cisco, British Telecom,
ESCHER, HP, IBM, iCAST, Intel, Microsoft, ORNL, Pirelli,
Qualcomm, Sun, Symantec, Telecom Italia and United
Technologies.

8 References
[1] D. Collins, "DARPA "TRUST in IC's" effort," in
Microsystems Technology Symposium, San Jose, CA, 2007.

[2] G. E. Moore, "Cramming more components onto
integrated circuits," Proceedings of the IEEE, vol. 86, pp. 82-
85, 1998.

[3] S. Adee, "The hunt for the kill switch," IEEE Spectrum,
vol. 45, pp. 34-39, 2008.

[4] M. Inman. (2008). Malicious hardware may be next
hacker tool. Available: http://www.newscientist.com/article/
mg19826546.000-malicious-hardware-may-be-next-hacker-
tool.html

[5] M. Banga, "Partition based approaches for the isolation
and detection of embedded trojans in ICs," Master of Science
Master of Science, Electrical and Computer Engineering,
Virginia Polytechnic Institute and State University,
Blacksburg, VA, 2008.

[6] Solid State Technology. (2012). Top 10 semiconductor
foundries in 2011. Available: http://www.electroiq.com/
articles/sst/2012/03/top-10-semiconductor-foundries-in-
2011.html

[7] P. Kocher, R. Lee, G. McGraw, A. Raghunathan, and S.
Ravi, "Security as a new dimension in embedded system
design," in 41st Design Automation Conference (DAC 2004),
San Diego, CA, 2004, pp. 753-760.

[8] E. Love, J. Yier, and Y. Makris, "Enhancing security via
provably trustworthy hardware intellectual property," in 2011
IEEE International Symposium on Hardware-Oriented
Security and Trust (HOST), 2011, pp. 12-17.

[9] E. Love, J. Yier, and Y. Makris, "Proof-carrying hardware
intellectual property: A pathway to trusted module
acquisition," IEEE Transactions on Information Forensics
and Security, vol. 7, pp. 25-40, 2012.

[10] T. Reece, D. B. Limbrick, and W. H. Robinson, "Design
comparison to identify malicious hardware in external
intellectual property," in 2011 IEEE 10th International
Conference on Trust, Security and Privacy in Computing and
Communications (TrustCom), Changsha, China, 2011, pp.
639-646.

[11] G. Shrestha and M. S. Hsiao, "Ensuring trust of third-
party hardware design with constrained sequential
equivalence checking," in 2012 IEEE Conference on
Technologies for Homeland Security (HST), 2012, pp. 7-12.

[12] T. Huffmire, B. Brotherton, W. Gang, T. Sherwood, R.
Kastner, T. Levin, T. Nguyen, and C. Irvine, "Moats and
drawbridges: An isolation primitive for reconfigurable
hardware based systems," in IEEE Symposium on Security
and Privacy (SP '07), 2007, pp. 281-295.

[13] T. Eisenbarth, T. Güneysu, C. Paar, A.-R. Sadeghi, D.
Schellekens, and M. Wolf, "Reconfigurable trusted computing
in hardware," in 2007 ACM Workshop on Scalable Trusted
Computing, Alexandria, VA, USA, 2007, pp. 15-20.

[14] C. E. Irvine and K. Levitt, "Trusted hardware: Can it be
trustworthy?" in 44th ACM/IEEE Design Automation
Conference (DAC '07), 2007, pp. 1-4.

[15] S. T. King, J. Tucek, A. Cozzie, C. Grier, W. Jiang, and
Y. Zhou, "Designing and implementing malicious hardware,"
in 1st Usenix Workshop on Large-Scale Exploits and
Emergent Threats (LEET 2008), San Francisco, CA, 2008.

[16] J. Gaisler and M. Isomäki, "LEON3 GR-XC3S-1500
Template Design," ed: Gaisler Research, 2006.

[17] T. Reece, D. B. Limbrick, X. Wang, B. T. Kiddie, and
W. H. Robinson, "Stealth assessment of hardware trojans in a
microcontroller," in 30th IEEE International Conference on
Computer Design (ICCD 2012), Montreal, Quebec, Canada,
2012.

[18] T. Reece and W. H. Robinson, "Analysis of data-leak
hardware Trojans in AES cryptographic circuits," in IEEE

76 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 |

Conference on Technologies for Homeland Security (HST
’13), Waltham, MA, 2013.

[19] M. Tehranipoor and F. Koushanfar, "A survey of
hardware trojan taxonomy and detection," IEEE Design &
Test of Computers, vol. 27, pp. 10-25, 2010.

[20] R. Karri, J. Rajendran, K. Rosenfeld, and M.
Tehranipoor, "Trustworthy hardware: Identifying and
classifying hardware trojans," Computer, vol. 43, pp. 39-46,
2010.

[21] X. Wang, M. Tehranipoor, and J. Plusquellic, "Detecting
malicious inclusions in secure hardware: Challenges and
solutions," in IEEE International Workshop on Hardware-
Oriented Security and Trust (HOST 2008), 2008, pp. 15-19.

[22] F. Koushanfar and A. Mirhoseini, "A unified framework
for multimodal submodular integrated circuits trojan
detection," IEEE Transactions on Information Forensics and
Security, vol. 6, pp. 162-174, 2011.

[23] H. Salmani and M. Tehranipoor, "Layout-aware
switching activity localization to enhance hardware trojan
detection," IEEE Transactions on Information Forensics and
Security, vol. 7, pp. 76-87, 2012.

[24] H. Salmani, M. Tehranipoor, and J. Plusquellic, "A novel
technique for improving hardware trojan detection and
reducing trojan activation time," IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 20, pp. 112-125,
2012.

[25] V. Ratford, N. Popper, D. Caldwell, and T. Katsioulas,
"Understanding the semiconductor intellectual property (SIP)
business process," in SIP Handbook, ed: Fabless
Semiconductor Association, 2003.

[26] J. Koeter. What’s Next in Semiconductor IP? Available:
http://www.gabeoneda.com/news/what%E2%80%99s-next-
semiconductor-ip

[27] T. Reece and W. H. Robinson, "Hardware Trojans: The
defense and attack of integrated circuits," in 29th IEEE
International Conference on Computer Design (ICCD 2011),
Amherst, MA, 2011, pp. 293-296.

[28] trust-HUB. Available: http://trust-hub.org/

[29] A. Waksman and S. Sethumadhavan, "Tamper evident
microprocessors," in 2010 IEEE Symposium on Security and
Privacy (SP), 2010, pp. 173-188.

[30] A. Waksman and S. Sethumadhavan, "Silencing
hardware backdoors," in 2011 IEEE Symposium on Security
and Privacy (SP), 2011, pp. 49-63.

[31] Department of Justice Press Release. (2011).
Administrator of VisionTech Components, LLC sentenced to
38 months in prison for her role in sales of counterfeit
integrated circuits destined to U.S. military and other
industries. Available: http://www.justice.gov/usao/dc/news/
2011/oct/11-472.html

[32] J. Stradley and D. Karraker, "The electronic part supply
chain and risks of counterfeit parts in defense applications,"
IEEE Transactions on Components and Packaging
Technologies, vol. 29, pp. 703-705, 2006.

[33] D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi, and
B. Sunar, "Trojan detection using IC fingerprinting," in IEEE
Symposium on Security and Privacy (SP '07), 2007, pp. 296-
310.

[34] R. Rad, J. Plusquellic, and M. Tehranipoor, "Sensitivity
analysis to hardware trojans using power supply transient
signals," in IEEE International Workshop on Hardware-
Oriented Security and Trust (HOST 2008), 2008, pp. 3-7.

[35] X. Wang, H. Salmani, M. Tehranipoor, and J.
Plusquellic, "Hardware trojan detection and isolation using
current integration and localized current analysis," in IEEE
International Symposium on Defect and Fault Tolerance of
VLSI Systems (DFTVS '08), 2008, pp. 87-95.

[36] Y. Jin and Y. Makris, "Hardware trojan detection using
path delay fingerprint," in IEEE International Workshop on
Hardware-Oriented Security and Trust (HOST 2008), 2008,
pp. 51-57.

[37] J. Li and J. Lach, "At-speed delay characterization for IC
authentication and trojan horse detection," in IEEE
International Workshop on Hardware-Oriented Security and
Trust (HOST 2008), 2008, pp. 8-14.

[38] F. Koushanfar, I. Hong, and M. Potkonjak, "Behavioral
synthesis techniques for intellectual property protection,"
ACM Transactions on Design Automation of Electronic
Systems (TODAES), vol. 10, pp. 523-545, 2005.

[39] Y. Alkabani, F. Koushanfar, N. Kiyavash, and M.
Potkonjak, "Trusted integrated circuits: A nondestructive
hidden characteristics extraction approach," in Information
Hiding. vol. 5284, ed: Springer Berlin Heidelberg, 2008, pp.
102-117.

[40] J. A. Roy, F. Koushanfar, and I. L. Markov, "Ending
piracy of integrated circuits," Computer, vol. 43, pp. 30-38,
2010.

[41] S. Sathyanarayana, W. H. Robinson, and R. A. Beyah,
"A novel network-based approach to counterfeit detection," in
IEEE Conference on Technologies for Homeland Security
(HST ’13), Waltham, MA, 2013.

[42] H. M. Quinn, D. A. Black, W. H. Robinson, and S. P.
Buchner, "Fault simulation and emulation tools to augment
radiation-hardness assurance testing," IEEE Transactions on
Nuclear Science, vol. 60, pp. 2119-2142, 2013.

[43] S. G. Narendra, "Challenges and design choices in
nanoscale CMOS," Journal of Emerging Technology in
Computer Systems, vol. 1, pp. 7-49, 2005.

[44] B. Gassend, D. Clarke, M. v. Dijky, and S. Devadas,
"Silicon physical random functions," in 9th ACM Conference
on Computer and Communications Security, Washington, DC,
USA, 2002, pp. 148 - 160.

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 | 77

[45] M. Majzoobi, F. Koushanfar, and M. Potkonjak,
"Techniques for design and implementation of secure
reconfigurable PUFs," ACM Transactions on Reconfigurable
Technology and Systems, vol. 2, pp. 1-33, 2009.

[46] M. Banga and M. S. Hsiao, "A region based approach for
the identification of hardware trojans," in IEEE International
Workshop on Hardware-Oriented Security and Trust (HOST
2008), 2008, pp. 40-47.

[47] M. Banga and M. S. Hsiao, "A novel sustained vector
technique for the detection of hardware trojans," in 22nd
International Conference on VLSI Design, New Delhi, India,
2009, pp. 327-332.

[48] C. Li, N. K. Jha, and A. Raghunathan, "Secure
reconfiguration of software-defined radio," ACM Transactions
on Embedded Computing Systems, vol. 11, pp. 1-22, 2012.

[49] J. Yick, B. Mukherjee, and D. Ghosal, "Wireless sensor
network survey," Computer Networks, vol. 52, pp. 2292-2330,
2008.

[50] J. Teich, "Hardware/Software Codesign: The past, the
present, and predicting the future," Proceedings of the IEEE,
vol. 100, pp. 1411-1430, 2012.

78 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'13 |

