
SESSION

ANIMATION AND RELATED METHODOLOGIES

Chair(s)

TBA

Int'l Conf. Computer Graphics and Virtual Reality |  CGVR'13  | 1



 

2 Int'l Conf. Computer Graphics and Virtual Reality |  CGVR'13  |



BodySpeech: A configurable facial and gesture animation
system for speaking avatars

A. Fernández-Baena, M. Antonijoan, R. Montaño, A. Fusté, and J. Amores
Grup de Tecnologies Mèdia (GTM), La Salle - Universitat Ramon Llull, Barcelona, Catalonia, Spain

Abstract— Speaking avatars are present in many Human
Computer Interaction (HCI) applications. Their importance
lies in communicative goals which entail interaction within
other avatars in virtual worlds or in marketing where they
have become useful in customer push strategies. Generating
automatic and plausible animations from speech cues have
become a challenge. We present BodySpeech, an automatic
system to generate gesture and facial animations driven by
speech. Body gestures are aligned with pitch accents and
selected based on the strength relation between speech and
body gestures. Concurrently, facial animation is generated
for lip sync, adding emphatic hints according to intonation
strength. Furthermore, we have implemented a tool for
animators. This tool enables us to modify the detection of
pitch accents and the intonation strength influence on output
animations, allowing animators to define the activation of
gestural performances.

Keywords: human computer interaction; speaking avatars; gesture
animation; facial animation

1. Introduction
Face-to-face communication has the goal of transmitting a

message from one person to another. Besides the semantics,
the way a message is transmitted can change how the
receiver perceives it. Body language and facial animations
accompany the acoustic signal of speech, and moreover,
they enrich communication and make it believable [1]. So,
in order to make human computer interfaces believable,
we must take into account the characteristics of the visual
speech. Given the difficulty of creating realistic speech
animations automatically, many companies use hand-crafted
animations. Generating specific animations for any speech
utterance results in increased production time and budget. On
the other hand, automatic synthesis of gestures according to
speech have been broadly studied in the character animation
research community [2][3], providing a solution for the
mentioned issues.

In this paper we present BodySpeech: an automatic
method to generate appropriate body gestures and facial
expressions according to an arbitrary speech. The system
is able to select body gestures based on speech intonation
and to concatenate them generating a smooth motion stream.
We use mocap data to create a motion graph [4] which is
named gesture motion graph (GMG). The animation system

generates a continuous stream of gestures by concatenating
units included in the GMG. The gesture selection process
is driven by prosodic features of pitch accents (changes
in speech intonation) in speech. Pitch accents and their
corresponding features (time and strength) are automatically
detected based on [5]. For every pitch accent, the system
selects a gesture phrase with an equivalent strength (see
Figure 1). Moreover, gestures and pitch accents are aligned
in time. At same time, facial animation is generated by lip
sync. We use the blendshapes approach to create visemes
(facial shapes) that are assigned to phonemes. Additionally,
we modify output visemes based on pitch accent strength
for each pitch accent.

Fig. 1: BodySpeech. Gestural phrases (GP) are matched with
pitch accents (PA) times and strength.

Moreover, we have implemented an application for anima-
tors that makes the generation of gesture and facial anima-
tions for speaking avatars easier. Using this application, an-
imators can modify the speaker style by changing emphasis
parameters. Emphasis of output animations depends on the
frequency of performed gestures and the kinematic features
of gestural movements. So, we facilitate the parameterized
detection of pitch accents and determine how their strength
affects output body and facial animations.

We summarize the related work in Section 2. Then,
we describe the BodySpeech system in Section 3. Finally,
we present an application for animators (Section 4) and
conclude our work in Section 5.

This work expands on our prior work [6], primarily in

Int'l Conf. Computer Graphics and Virtual Reality |  CGVR'13  | 3



the automatization of gesture synthesis. In this paper we
consider the automatic detection of pitch accents avoiding a
manual annotation phase. This new way of detecting pitch
accents is accompanied by a new pitch accent strength
computation (more details in Section 3.3.1). Thanks to this,
we have defined a new gesture-speech strength relation
used in gesture selection (3.3.2.2). In terms of animation,
we have enriched the GMG by reusing the input data to
create more gestures (3.2.1). In addition, in order to avoid
stroke modification (the most meaningful part of gestures)
we have improved gesture temporal alignment with speech
(3.3.2.1). Moreover, to improve output motion quality we
use optimal blend length [7] to create blended transitions
between gestures. Furthermore, as we have mentioned, we
have added facial animation and implemented an authoring
animation tool.

2. Related work
The generation of appropriate body language to a specific

speech stream is a complex task. It is known that speech
and gestures are related [8][9][10]. However, it is difficult
to extract a set of rules capable of covering the broad
variety of gestures taxonomy [1] (iconic, metaphoric, deictic
and beats) and then to use that information to drive a
gesture synthesis system. Another challenge arises from the
attempt to automatize the gesture selection and animation
synthesis processes, avoiding the time-consuming step of
manual annotation.

One early attempt to generate body language automati-
cally was presented by Casell et al. in BEAT [11]. They
presented a system that analyzes an input text (natural
language structure and content), and defines a set of gesture
generation algorithms that suggest gestures depending on the
result of the text analysis. The algorithms rely on a manually
created Knowledge Base, which defines the gestures that are
appropriate to certain actions or objects. Stone et al. [12]
presented another automatic gesture synthesizer. However,
in this case it uses a unit selection approach, and units
are pieces of motion captured from real performances. This
permits the generation of animation that naturally contains
the subtleties of real human motion, which are hard to repro-
duce otherwise. Stone’s synthesizer is limited to generating
utterances present in a pre-defined grammar. Although this
grammar can be extended as much as desired, the creation
of this grammar requires some manual annotation. Neff et
al. [13] proposed a novel system, that from an input text is
capable of generating animations that recreate the style of a
certain speaker. The process begins with a gesture selection
step, which is driven by a statistical model created from
performances of the speaker. In the next step the animation
engine uses parameters that define the shape of gestures
produced by the speaker and a set of predefined rules to
produce the animation. The system is fully automatic but
requires some annotation in the input text.

Other systems, do not rely in input text to generate
animation but in prosodic parameters of speech directly. This
allows to go a step further in adaptability because these pa-
rameters can be extracted either from the output of a text-to-
speech synthesizer, as well from the audio of real speech. A
limitation of these systems is that it is not possible to extract
language structure or semantic content from prosody, and
therefore they cannot be correlated with content of gestures.
Moreover, prosodic-based gesture synthesizers usually only
generate beat type gestures. Beats are a type of gesture that
do not carry meaning, and their function is to emphasize
words in a utterance [1]. It is known that prosody correlates
well with emphasis [14], which suggests that beats are
good candidates to be synthesized based on prosody. Levine
et al. proposed two algorithms [15] [2] that automatically
generate beat gestures based on input audio. Their systems
use statistical models that shape the correlations between
prosody and kinematic parameters of gestures. These models
are used to select gestural units stored in a mocap database.
Gestural units are composed of a single gestural phase. In a
further work, Chiu et al. [3] presented a similar system but
in this case units are composed by single animation frames.
This permits the generation of a greater variety of gestures at
cost of animation realism. Our approach is similar to Chiu’s
and Levine’s in the fact that it uses prosody to select motion
units from a database. However, the unit selection process
is not governed by a statistical model but by a set of rules.
This allows greater parametrization of the process, which in
turn provides greater control of the output.

3. BodySpeech
3.1 Overview

The animation system is divided into two stages: an off-
line preprocessing step and a runtime unsupervised step.
Figure 2 shows an outline of the whole system. In the
first stage, gesture mocap data is arranged in a motion
graph structure as described in Section 3.2.1. On the other
hand, we associate visemes (mouth shapes) with phonemes.
Vowel phonemes have more than one associated viseme
in order to capture emphasis in facial animation. Visemes
parameterization is further explained in Section 3.2.2.

The second stage is where the output animation is gen-
erated. Speech is used to drive both gesture synthesis and
facial animation. Input speech is analyzed in order to detect
pitch accents (time occurrence and strength indicator) and
the phoneme transcription of the message (Section 3.3.1).
Pitch accents drive gesture synthesis by selecting the most
appropriate gesture unit for each one depending on strength
levels (see more details in Section 3.3.2). We use gestural
phrases as gesture units. A gestural phrase [16] consists
of the following phases: stroke (obligatory phase where it
is contained the ’expression of the gesture’), preparation
(movement that leads to the beginning of the stroke) and

4 Int'l Conf. Computer Graphics and Virtual Reality |  CGVR'13  |



Fig. 2: System overview. The off-line stage is used to generate a motion graph (at the bottom) and a set of visemes (on
top). Then, body and facial animation are obtained from a speech signal in the runtime stage (on the middle).

retraction (body parts are moved to the rest position).
Moreover, gestural phrases may include hold phases which
are temporary cessations of movement. At the same time,
phonemes intervals are matched with visemes to generate
facial animation. Additionally, visemes are modified based
on pitch accent strength indicators (see Section 3.3.3).

3.2 Off-line stage
3.2.1 Motion graph creation

A labeled gesture motion database is used to construct a
motion graph [4]. This database consists of 6 clips that last
slightly more than one minute each, in which an amateur
actor with mocap recording experience was asked to perform
an improvised monologue with a concrete speaking style
and performing only beat gestures. We choose neutral and
aggressive style in order to obtain a broad variety of gestures
with different strengths. Gestural phrases and their corre-
sponding gesture phases are annotated in this database. Also,
stroke apexes (the maximum extension point) are annotated.
So, we use gestural phrases (GP) motion clips to populate
a gesture motion graph (GMG). Also, stroke phases are
extracted and added as new gestural phrases. In this way,
we maximize the number of gestural phrases allowing more
variety in gesture synthesis.

A GMG is defined by N for the set of nodes (GP’s),
E for the set of edges (transitions) and W (E) for the set
of edge weights (transition parameters). First, we connect
all the consecutive GP’s from the original database with a
directional edge. Then, we create new edges between non-
consecutive GP’s. Transitioning between non consecutive

1	   2	   3	   4	   5	   6	  

7	   8	   9	   10	   11	   12	  

13	   14	   15	   16	   17	   18	  

50	   51	   52	   53	   54	   55	  

Motion 1 

Motion 2 

Motion 3 

Motion n 

… 

Original 

Similarity < s0 

GP	  

Nodes Original edges Transition edges 

Fig. 3: Edge generation in gesture motion graph. We create
an edge connecting two gestural phrases if they are con-
secutive in the original recordings (original edges) or their
posture similarity is below s0 (transition edges).

gesture phrases can produce jerky motions if GPs extreme
postures are not similar enough. Therefore, we compute
posture similarity between initial and ending frames from
all motion clips in the graph using joint angles distance
metric [4]. As a consequence, we create edges when the
similarity value is lower than a threshold s0 (see Figure 3).
In order to search the appropriate gestures in the motion
graph and to generate smooth transitions between GP’s,
we weight the edges of the graph with posture similarity
values. We scale posture similarity values to [0,1], where 1
is the specified threshold s0. Transitions between GP’s are

Int'l Conf. Computer Graphics and Virtual Reality |  CGVR'13  | 5



generated with motion blending to ensure smoothness. To
optimize transitions, we compute the optimal blend length
[7] for each pair of connected GP’s. Finally, to avoid dead
ends in the graph, we use Tarjan’s algorithm to compute
the largest strongly connected component (SCC) which will
become the resulting GMG.

3.2.2 Visemes parameterization

We relate each phoneme with a viseme, which is repre-
sented by combination of blendshapes (shapes of the same
mesh). To create a phoneme-viseme mapping we consider
that multiple phonemes have similar mouth shapes when
they are pronounced, therefore, they are linked to the same
viseme. We use 15 categories (see Table 1).

Table 1: 15 phoneme categories. Each category maps to a
single viseme. Symbols are codified with MRPA (Machine
Readable Phonemic Alphabet).

/pau/ /r/ /k/, /g/, /ng/
/ae/, /ax/, /ah/, /aa/ /f/, /v/ /ch/, /sh/, /jh/
/ao/, /y/, /iy/, /ih/,
/ay/, /aw/

/ow/, /oy/ /n/, /d/, /t/, /l/

/ey/, /eh/, /el/, /em/,
/en/, /er/

/th/, /dh/ /s/, /z/, /zh/

/b/, /p/, /m/ /hh/ /w/, /uw/, /uh/

It is known that lip movements are linked to prosody [17].
Furthermore, the jaw lowers more in stressed syllables than
in unstressed syllables [18]. Based on these statements, we
propose a modification of visemes based on pitch accents
strength. To that effect, we define a viseme blending space
between high emphatic and low emphatic facial expressions,
each one with appropriate jaw positions. For each vowel,
three visemes are defined (see /ah/ and /aw/ phonemes
examples in Figure 4): neutral, high emphatic and low
emphatic.

Fig. 4: Emphatic visemes for /ah/ and /aw/ phonemes.

3.3 Runtime stage
3.3.1 Pitch accents detection

Regarding pitch accent detection, we have developed a
straightforward algorithm inspired by [5]. By pitch accent
detection we mean detection of prominences in the speech
stream. These prominences are potential candidates to be
synchronized with gestures.

Taking a speech file as an input, we extract all the signal
cycles with their associated information (amplitude, position,
etc.). After selecting principal cycles, we extract voiced and
unvoiced regions. Then, we extract and normalize pitch and
intensity from voiced region nucleus (defined as maximum
energy cycle inside the region) and compute the strength
indicator as a sum of both parameters (see Figure 5). Finally,
we have also detected pauses and we have rewarded voiced
regions preceding a pause with extra strength indicator, as we
observed that prosody tends to decrease in these situations
causing undetected pitch accents.

Final pitch accents are detected according to the extracted
strength indicators of the voiced region nucleus. Specifically,
they are chosen depending on two tunable constraint param-
eters: strength indicator threshold and time difference thresh-
old. Basically, the strength indicator threshold represents
what percentage of the nucleus are pitch accents candidates
(taking as a reference maximum strength indicator), and the
time difference threshold defines how close pitch accents can
be. If two pitch accent candidates are too close according to
this parameter, we keep the one with the greater strength
indicator. Finally, the pitch accents strength indicator is
expressed in a [0,1] scale, taking as 1 the maximum strength
indicator of the series.

Fig. 5: Pitch accents detection. On top, there is the speech
signal. Below, intensity (green) and pitch (blue) curves are
displayed. In addition, pitch accent (PA) strength and time
are shown. At the bottom, the intonation is represented
(using the ToBI system [19]) with the affected vowel. The
image was created thanks to the Praat software [20].

Furthermore, speech is analyzed to extract the phoneme
transcription. So, we obtain a sequence of phonemes with

6 Int'l Conf. Computer Graphics and Virtual Reality |  CGVR'13  |



its type definition and timestamps. For each phoneme, initial
time and final time are detected.

3.3.2 Body gesture synthesis

As we have explained, gesture synthesis is driven by
pitch accents. Distances between consecutive pitch accent
times define the duration of selected GPs, and pitch accents
strength are related to GP’s strength. We adopt FMDistance
[21] to define GP strength using the reported parameters
in [6]. Moreover, it is only computed for the stroke phase
and it is normalized to [0,1]. Then, we iteratively evaluate
each pitch accent and seek the most appropriate GP for each
one. Gesture performance starts with a rest pose (which is
also included in the motion graph as a node) and we use a
breadth-first search algorithm to traverse the graph according
to a proposed cost metric. Selected GP’s are concatenated
by motion blending to obtain a smooth motion stream. To
finish the animation, the avatar returns to the rest pose.

a) Temporal alignment: Before computing the cost metric,
candidate GPs (connected to the current node) are warped to
temporally align them with the current pitch accent time. Our
objective is to make the apex of the stroke coincide with the
pitch accent time. However, it is known that gesture apexes
are not exactly aligned with pitch accents [9]. In order to
allow this de-synchronization, we compute an anticipation
time for each pitch accent as a random value within a pre-
defined window (from -0.03 to 0.22 seconds [6]) .

Fig. 6: Gesture alignment. Body gestures are aligned with
pitch accents by modifying their length. The goal is to
match stroke apexes with pitch accents times (t), taking into
account anticipation times (Ta). We consider two cases: only
stroke (on the left) and gestural phrase (on the right).

Furthermore, it is important to not modify strokes because
they are the most significative part of gestures and emphasis
relation in gesture selection is based on them. Hence, we
manage two cases to align GPs with pitch accents times:
’only stroke’ and ’gestural phrase’. ’Only stroke’ means that
the gestural phrase is formed by a unique stroke, in this
case, stroke length will be modified. ’Gestural phrase’ case

means that GP has more phases besides the stroke, so, we
modify phases which are not the stroke phase. Then, GP
length (and its phases length) is computed by taking into
account the mentioned cases, anticipation time and blending
length (included as an edge weight in GMG) between the
current node and the candidate one. Therefore, we obtain a w
warping factor (original length divided by target length) for
each candidate GP. In the ’only stroke’ case, we consider the
stroke length to compute w. On the other hand, we consider
the sum of non-stroke phases lengths in the ’gestural phrase’
case.

b) Gestural phrase selection: Our cost metric is based
on: length similarity between a GP and the interval to fill
(time cost), posture similarity between candidate GP and the
previous one (smooth cost) and pitch accent strength-stroke
strength relation (emphasis cost). As a result, we define our
cost metric as

C(e(ni, nj), pak) = Csmooth + Cemphasis + Ctime (1)

where ni is the previous GP, nj is a candidate GP, and
pak is the k-th pitch accent in speech stream. Smooth cost
(Csmooth) is directly the posture similarity edge weight. Em-
phasis cost (Cemphasis) is the absolute difference between
pitch accent strength indicator and gesture strength indicator.
We recompute gesture strength indicator in the ’only stroke’
time alignment case due to its duration, and consequently,
its strength has changed. Time cost (Ctime) is defined by

Ctime =

{
w′ if min < w < max
p otherwise (2)

where w′ is the normalized warping factor from
[min,max] to [0,1]. We use min and max to not deteriorate
motion quality by excessive changes on the original lengths.
p is a penalty parameter that we use for penalizing GP’s
that exceed boundaries, avoiding their selection. Depending
on the case of warping min and max take different values:
0.8 and 1.2 respectively for the ’gestural phrase’ case, and
0.9 and 1.1 for the ’only stroke’ case. Penalty parameter p
is set to 10.

Once we have selected a gesture (the one with the
minimum cost), this is concatenated with the previous one
by linear motion blending. We use start-end blending scheme
[7] and the blending length included in the edge weights of
the graph.

3.3.3 Facial animation synthesis
We use phoneme transcription of the speech message to

match phonemes with defined visemes. As usual, coarticu-
lation between phonemes is generated by interpolating mesh
points of visemes during initial and final times of phonemes.
To include emphasis in facial expressions, we modify vowel

Int'l Conf. Computer Graphics and Virtual Reality |  CGVR'13  | 7



visemes by blending them with its emphatic visemes. This
only occurs when a vowel phoneme matchs with a pitch
accent. We relate pitch accent strength indicator with the
amount of weight from neutral and high/low emphatic
visemes. Pitch accent strength indicator is expressed in a 0
to 1 scale, so, we associate 0 values to low emphatic viseme,
and 1 to high emphatic viseme as illustrated in Figure 7. So,
pitch accent strength indicators that are lower than 0.5 will
be represented by a combination of neutral and low emphatic
viseme. Otherwise, neutral and high emphatic visemes will
be used in the morphing process. In this way, we obtain the
appropriate viseme according to speech intonation.

Fig. 7: Output viseme generation for pitch accents. Pitch
accent (PA) strength is used to weight low emphatic, neutral
and high emphatic visemes in the morphing process. In
this example, higher emphatic visemes have more opened
mouths.

4. Implementation
We have implemented the BodySpeech system as a plugin

for the Unity3D game engine [22]. The Unity editor was
used to create a visual interface that allows generating
animations by selecting input speech audio files. In addition,
the application uses Microsoft Speech API (SAPI) [23] to
detect speech phonemes, and the Tagarela plugin [24] for
facial morphing.

The application is able to parameterize the processes of
gesture motion graph creation and viseme generation. Also,
the process that synthesizes animations can be parameterized
in order to modify emphasis, both for gesture and facial
animations. This way„ animators can adjust output anima-
tions to satisfy plot requirements. The application is divided
into three parts: New profile, Load profile and Player. New
profile permits to generate a custom GMG (see Figure 8)
and visemes; Load profile allows to select a saved profile;
and Player lets to replay previous generated animations.

The process of generating new GMG’s can be configured
with the following parameters: joint weights (they are used in

Fig. 8: New graph screen. GMG can be parameterized by
changing input databases, joint weights for posture similarity
computation (dark blue box in the middle), threshold that
defines the existance of transitions between GP’s (slider on
top right). Once the GMG is generated, graph information
is displayed at the bottom of the screen to know graph
capabilities.

posture similarity distance metric) and similarity threshold.
Altering these parameters the GMG is modified. Moreover,
the user can select one or several motion capture databases
to be used as source of GP’s for the GMG. This allows
increasing the size of the GMG which in turn improves
animation richness. Branching factor is displayed in the
interface to lead animators know the richness of generated
graphs. Also, visemes can be customized by changing the
weights of former blendshapes.

Fig. 9: Synthesis screen. On the upper-left corner, there are
the buttons to select an audio and generate the animations.
At the bottom, there are the configurable pitch accent detec-
tion parameters, and sliders for adjusting gestural or facial
animation emphasis.

As explained in Section 3.3.1, pitch accent detection can
be parameterized by changing the strength indicator thresh-
old and the time difference threshold. These two parameters

8 Int'l Conf. Computer Graphics and Virtual Reality |  CGVR'13  |



can be modified in the application affecting the frequency
of detected pitch accents and gestures. A greater gesture
frequency is perceived as a more emphatic animation. More-
over, emphasis of gesture and facial animations can be also
be adjusted independently with two moving sliders. The
gesture slider modifies the amount of strength that is added
or subtracted to pitch accent strength (from -1 to +1). 0
denotes that the input pitch accent strength remains equal,
positive values increase pitch accent strength value up to
1, while negative values decrease strength value down to -1.
This permits the generation of more prominent gestures from
a low emphatic speech, or contrarily, to relax gesticulation in
a high emphatic speech. Similarly, facial animation emphasis
is controlled by an analogous slider.

5. Conclusions and future work
In this paper, we have presented an automatic method

to generate body gestures and facial animation according
to speech input. Our animation system is based on motion
graphs and lip sync techniques. Gesture animation stream
is produced by concatenating gesture phrases aligned with
pitch accents. Gestures are selected in order to maintain
motion smoothness, preserve as many original motion clips
as possible and obey emphasis relation with speech. Lip
sync is generated following a standard algorithm. However,
we relate speech strength with facial expressions to im-
prove realism. Moreover, we have implemented a tool for
animators that allows controlling the output animations via
parameterization. A set of straightforward parameters are
presented which permit a change in animation emphasis
by adjusting pitch accents detection or emphasis relation
between gestures/visemes with speech.

As future work, we plan to improve facial animation
synthesis by studying the relationship between speech into-
nation and facial expressions. In addition, we plan to include
independent head motion [25] and finger motion [26] to
further increase realism of the overall animations.

Acknowledgements
This work was supported by the CENIT program number

CEN-20101019, granted by the Ministry of Science and
Innovation of Spain.

References
[1] D. McNeill, Hand and Mind: What Gestures Reveal about Thought.

Chicago: University of Chicago Press, 1992.
[2] S. Levine, P. Krähenbühl, S. Thrun, and V. Koltun, “Gesture con-

trollers,” ACM Trans. Graph., vol. 29, no. 4, pp. 124:1–124:11, July
2010.

[3] C.-C. Chiu and S. Marsella, “How to train your avatar: a data
driven approach to gesture generation,” in Proceedings of the 10th
international conference on Intelligent virtual agents, ser. IVA’11.
Berlin, Heidelberg: Springer-Verlag, 2011, pp. 127–140.

[4] J. Lee, J. Chai, P. S. A. Reitsma, J. K. Hodgins, and N. S. Pollard,
“Interactive control of avatars animated with human motion data,”
ACM Trans. Graph., vol. 21, pp. 491–500, July 2002.

[5] O. Maeran, V. Piuri, and G. Storti Gajani, “Speech recognition through
phoneme segmentation and neural classification,” in Instrumentation
and Measurement Technology Conference, 1997. IMTC/97. Proceed-
ings. Sensing, Processing, Networking., IEEE, vol. 2, May, pp. 1215–
1220 vol.2.

[6] A. Fernández-Baena, R. Montaño, M. Antonijoan, A. Roversi, D. Mi-
ralles, and F. Alías, “Gesture synthesis adapted to speech emphasis,”
Speech Communication (Special Issue on Gesture and Speech in
Interaction). In press.

[7] J. Wang and B. Bodenheimer, “Synthesis and evalua-
tion of linear motion transitions,” ACM Trans. Graph.,
vol. 27, pp. 1:1–1:15, March 2008. [Online]. Available:
http://doi.acm.org/10.1145/1330511.1330512

[8] D. McNeill, “So you think gestures are nonverbal?” Psychological
Review, vol. 92, no. 3, pp. 350–371, 1985.

[9] D. Loehr, “Gesture and intonation,” Ph.D. dissertation, Georgetown
University, 2004.

[10] T. Leonard and F. Cummins, “The temporal relation between
beat gestures and speech,” Language and Cognitive Processes,
vol. 26, no. 10, pp. 1457–1471, 2011. [Online]. Available:
http://www.tandfonline.com/doi/abs/10.1080/01690965.2010.500218

[11] J. Cassell, “Beat: The behavior expression animation toolkit.” ACM
Press, 2001, pp. 477–486.

[12] M. Stone, D. DeCarlo, I. Oh, C. Rodriguez, A. Stere, A. Lees, and
C. Bregler, “Speaking with hands: creating animated conversational
characters from recordings of human performance,” ACM Trans.
Graph., vol. 23, no. 3, pp. 506–513, Aug. 2004. [Online]. Available:
http://doi.acm.org/10.1145/1015706.1015753

[13] M. Neff, M. Kipp, I. Albrecht, and H.-P. Seidel, “Gesture modeling
and animation based on a probabilistic re-creation of speaker style,”
ACM Trans. Graph., vol. 27, no. 1, pp. 5:1–5:24, Mar. 2008.
[Online]. Available: http://doi.acm.org/10.1145/1330511.1330516

[14] J. Terken, “Fundamental frequency and perceived prominence of
accented syllables,” The Journal of the Acoustical Society of America,
vol. 89, no. 4, pp. 1768–1776, 1991.

[15] S. Levine, C. Theobalt, and V. Koltun, “Real-time prosody-
driven synthesis of body language,” ACM Trans. Graph.,
vol. 28, no. 5, pp. 172:1–172:10, Dec. 2009. [Online]. Available:
http://doi.acm.org/10.1145/1618452.1618518

[16] A. Kendon, “Gesture and speech: two aspects of the process utter-
ances,” Nonverbal Communication and Language, pp. 207–227, 1980.

[17] E. Cvejic, J. Kim, and C. Davis, “It’s all the same to me: Prosodic
discrimination across speakers and face areas,” in Speech Prosody
2010-Fifth International Conference, 2010.

[18] K. de Jong, M. Beckman, and J. Edwards, “The interplay between
prosodic structure and coarticulation.” Lang Speech, vol. 36 ( Pt 2-3).

[19] K. Silverman, M. Beckman, J. Pierrehumbert, M. Ostendorf,
C. Wightman, and J. Hirschberg, “TOBI: A standard scheme for
labeling prosody,” in Proceedings of ICSLP-92, Banff, October 1992,
pp. 867–879.

[20] P. Boersma and D. Weenink, “Praat: doing phonetics by com-
puter [computer program]. (v.5.2.29),” retrieved 12 July 2011 from
http://www.praat.org/, 2011.

[21] K. Onuma, C. Faloutsos, and J. K. Hodgins, “FMDistance: A fast and
effective distance function for motion capture data,” in Short Papers
Proceedings of EUROGRAPHICS, 2008.

[22] Unity, “Unity3d,” 2013. [Online]. Available: http://www.unity3d.com/
[23] Microsoft, “Microsoft speech api,” 2013. [Online]. Available:

http://www.microsoft.com/en-us/download/details.aspx?id=10121
[24] R. Pegorari, “Tagarela - open source lip sync system for unity,”

2013. [Online]. Available: http://rodrigopegorari.net/blog/?p=241
[25] C. Busso, Z. Deng, U. Neumann, and S. Narayanan, “Natural

head motion synthesis driven by acoustic prosodic features: Virtual
humans and social agents,” Comput. Animat. Virtual Worlds,
vol. 16, no. 3-4, pp. 283–290, July 2005. [Online]. Available:
http://dx.doi.org/10.1002/cav.v16:3/4

[26] S. Jörg, J. Hodgins, and A. Safonova, “Data-driven finger
motion synthesis for gesturing characters,” ACM Trans. Graph.,
vol. 31, no. 6, pp. 189:1–189:7, Nov. 2012. [Online]. Available:
http://doi.acm.org/10.1145/2366145.2366208

Int'l Conf. Computer Graphics and Virtual Reality |  CGVR'13  | 9



Animating TTS Messages in Android using Open-Source
Tools

Ronald Yu
School of Computer Science

and Engineering
University of California, Irvine

ronaly1@uci.edu

Tong Lai Yu
School of Computer Science

and Engineering
California State University,

San Bernardino
tyu@csusb.edu

Ihab Zbib
School of Computer Science

and Engineering
California State University,

San Bernardino
zbibi@csusb.edu

ABSTRACT
We describe in this paper how to use open-source resources
to design and implement an Android application that ren-
ders a three-dimensional model of a human head to animate
the lip movements of human speech from input text. The
application utilizes the Android Text-To-Speech (TTS) en-
gine[1] to convert any input text, which can be entered by
the user in a text box or chosen from a menu of predefined
messages, to human speech in English. Animation of the
speech is carried out by a 3D graphics model of a human
head composed of polygon meshes[20]. Blender[7, 30], a
popular open-source graphics suite, is employed to create
the 3D model and save its mesh data in the COLLAbora-
tive Design Activity (COLLADA) format[22], which is also
an open graphics format.

We use Java language to develop a parser[25, 42] to ex-
tract coordinates of polygons from a COLLADA file and
organize the data into a format that can be rendered effec-
tively by OpenGL ES, the graphics rendering library used
by Android. The producer-consumer paradigm is employed
to synchronize the animated lip movements and the speech
generated by TTS. When the application is lying idle, it
moves the head randomly to simulate other facial expres-
sions such as blinking the eyes and yawning.

Keywords
Open-source, 3D Graphics, Animation, Text-To-Speech, TTS,
Android

1. INTRODUCTION
Open-source software has been playing a critical role in the
advent of technology. A lot of breakthroughs in technol-
ogy development and application such as Watson’s Jeopardy
win[5] and the phenomenal 3D movie Avatar[4] are based
on open-source software. It is a significant task to explore
the usage of available open-source tools to develop software

WORLDCOMP’13:CGVR13 July 22–25, 2013, Las Vegas, Nevada, USA.
Copyright 2013 WORLDCOMP .

applications for research or for commercial use[40, 41]. The
Android application reported in this paper is developed with
free software resources, which are mainly open-source.

Mobile devices have become ubiquitous and in the last cou-
ple of years, Android, an open-source software stack for
running mobile devices, has become the dominant platform
of many mobile devices such as mobile phones and smart
phones[14]. There has been exponential growth in mobile
applications in recent years. Speech simulation is one of the
areas that enjoy rapid growth, and a significant amount of
research has been done on speech animation using 3D graph-
ics models[32]. The video compression standard MPEG-4
also has specifications on facial animation for synthesized
speech[28, 13].

Though speech simulation is still an ongoing research topic,
it already has numerous commercial applications includ-
ing game development and customer service[6], and it con-
tributes to both the developments of acoustic and visual
applications[12, 9].

Our work reported in this paper develops and merges the au-
dio and visual technologies into one application by making
use of open-source technologies. The main tool we use for
rendering graphics is OpenGL for embedded systems (ES).
The graphics library OpenGL[33] is the industry standard
for developing 2D and 3D graphics applications[2, 8], and
OpenGL ES[23, 3, 27] is OpenGL modified for embedded
systems. There is a major difference between OpenGL ES
1.X and OpenGL ES 2.X. While the 1.X version shares the
same functionality and syntax of the traditional OpenGL
APIs and, like early OpenGL, has a fixed pipeline and op-
erates as a state machine, the 2.X version has adopted a
programmable pipeline architecture that allows users to pro-
gram vertex and fragment shaders[24, 31], the equivalent of
OpenGL Shading Language (GLSL)[18]. The vertex shader
is responsible for processing geometry. The fragment shader
works at the pixel level, processing incoming fragments to
produce colors including transparency.

Mobile devices are characterized by small display size[29],
limited memory capacity and limited computing power. All
of these aspects affect the graphic animation experience of
the mobile user. These limitations make the design and
implementation of a TTS animation application in a mobile
device very different from that of an application running on

10 Int'l Conf. Computer Graphics and Virtual Reality |  CGVR'13  |



a desktop PC.

Another problem one must address is the audio-video syn-
chronization. For traditional video compression of natural
scenes, MPEG standard uses timestamps to synchronize au-
dio and video streams[19]. MPEG-4 also addresses cod-
ing of digital hybrids of natural and synthetic, aural and
visual information[28, 32]. Doenges et al. mentioned in
their paper[13] that special attention must be paid to the
synchronization of acoustic speech information with coher-
ent visible articulatory movements of the speakers mouth in
MPEG-4 synthetic/natural hybrid coding (SNHC) for ani-
mated mixed media delivery. However, they did not present
the details of synchronization in the paper. Our synchro-
nization problem of video and audio is different from that of
MPEG-4 as our application does not involve any data encod-
ing and decoding, and data transmission. Therefore, we do
not use timestamps to synchronize audio and video. Instead,
the synchronization is done using the producer-consumer
paradigm[35], which works effectively in this situation.

The application is developed for Android-based mobile de-
vices. Android provides a Text-to-Speech (TTS) engine
(PICO) with limited APIs[1]. The main thread of the ap-
plication presents a text box to the user for entering texts;
prepared sample texts are also available as items on the ap-
plication menu, and a sample can be chosen by clicking on
a button of the menu. The input text is used for the speech
simulator that plays the sound using the Android TTS APIs
and renders the corresponding visemes while performing a
lip-synchronization action, keeping the audio and video syn-
chronized. Visemes, which can be considered as visual coun-
terpart of phonemes in audio, are visually distinct mouth,
teeth, and tongue articulations for a language.

Besides the main thread, the application has three other
threads. One of them is responsible for voice synthesis and
speech simulation by making use of the Android Text-to-
Speech(TTS) engine[1]. Another thread controls the 3D
rendering and animation of a human head. This thread im-
plements the OpenGL ES function calls and has to decide
which object to render based on the input data. The last
thread is the input text thread that handles the insertion
of the data into the text buffer. This thread implements
the producer in the Producer-Consumer problem. Figure
1 is a UML diagram showing these components and their
connections, where the TTS Thread is Consumer 1 and the
Animation Thread is Consumer 2.

2. GRAPHICS 3D MODEL
The 3D model is initially imported from Google SketchUp
3DWarehouse[16] and is shown in Figure 2. We use the free
version of Sketchup[36], a 3D drawing tool, to convert it to
a COLLADA file, which can be then imported by Blender[7,
30]. Blender is a free 3D graphic suite for creating, rendering
and animating graphics models[30]. It supports a variety
of formats such as COLLADA(.dae), Wavefront(.obj), 3D
Studio(.3ds), and others.

To generate a new facial expression, the model is modified
by deforming the mesh, and a different copy is created and
passed to the COLLADA parser to create a metafile. The
viseme, or the shape of the mouth that corresponds to each

Figure 1: Components Diagram

Figure 2: Model From Google 3DWarehouse

phoneme, is based on the lip-sync phonetic-based anima-
tion[38, 15] used in animation movies. Figure 3 shows the
lip shapes for phonemes that we have adopted.

In addition to the mouth shapes, other facial expressions are
created to help simulate a more human-like agent. These
facial expressions include eye blinking, eyebrow movements
and yawning. These expressions are presented to keep the
user entertained when the application is idle. Figure 4 shows
the Android emulator running the 3D Face at rest position.

Java is used to develop a COLLADA parser[25], which parses
a COLLADA file and extracts the necessary information for
rendering and animating the graphic models. The faces of
the model are meshes of polygons of three or more edges. Be-
cause OpenGL ES 1.0 can only render triangles, the parser
has to extract the indices of every polygon, convert them
into triangles, and recalculate the normal vector for every
triangle by performing a cross product of the vectors along
two of the triangle’s edges.

Since the COLLADA file is essentially an XML document,
the parser needs to make use of an XML library to carry
out the parsing. Java APIs provide wide support for XML
parsing and a variety of libraries to choose from such as
JAXP, JDOM and SAX. Most of these libraries support the
XML Path Language (XPath) [17]. While the Document
Object Model (DOM) [39] is a more complete tree struc-
ture representation of the document, XPath is a straight-
forward language that allows the selection of a subset of
nodes based on their location in the document [17]. The
parsing program described here makes use of the Java pack-
age javax.xml.xpath to extract the necessary nodes from the

Int'l Conf. Computer Graphics and Virtual Reality |  CGVR'13  | 11



Figure 3: Preston Blair Phoneme Series

Figure 4: Resting Position

COLLADA document.

The parser parses the data of a COLLADA file into a meta-
file containing a set of vertices coordinates, their normal vec-
tors, the indices of the triangle and normalized color codes.
The following data sample is an example of the data of a
meta-file.

Meta-file Data Sample:

#upper_head.dae
object:base_039-mesh
{

vertices:2517
{

0 2.8f,1.38f,-0.66f,
1 2.83f,1.31f,-0.72f,
2 2.78f,1.31f,-0.72f,
...

}
normals:2517
{

0 0.02f,0.62f,-0.78f,
1 0.03f,1.0f,-0.08f,
2 -0.74f,0.26f,-0.61f,
...

}
indices:4311
{

0 0,1,2,
1 3,4,5,
2 6,2,1,
...

}
materials:6
{

0 3509,0.51f,0.37f,0.31f,1.0f,
1 50,0.41f,0.41f,0.41f,1.0f,
2 690,0.13f,0.0f,0.0f,1.0f,
...

}
}

The data labeled materials represent the color codes in red,
green, and blue (RGB) of the affected faces. The first num-
ber is the table index and the second number indicates the
number of faces that this color is applied to. The next three
numbers are normalized RGB color codes. The color codes
are normalized by dividing every component by 255. And
the last number is the transparency, with values between 0
and 1, a value of 1 meaning opaque, and 0 meaning total
transparency.

Every facial expression requires a separate graphic file that
has to be loaded by the Android application. In order to
reduce the amount of data, if the meta-file is a variation
of the base model, the parser will compare it to the base
model and export only the differences. This helps to reduce
the start-up time of the Android application, as it does not
need to create a different graphic object for every variation.
The application can duplicate the original model and apply
the changes in coordinates.

12 Int'l Conf. Computer Graphics and Virtual Reality |  CGVR'13  |



As mentioned earlier, OpenGL ES is the industry standard
for embedded 3D graphics applications. This project makes
use of OpenGL 1.0, which is supported by most of the com-
mercial devices with an Android operating system. The
minimum version of Android required is the Gingerbread,
Android 2.3.3 API 10. One of the limitations of OpenGL
ES 1.0 is that it only renders triangles. To overcome this
issue, the COLLADA parser transforms a generic polygon
into triangles and recalculates the normal vectors.

There are two ways to render a 3D object (or 2D for that
matter) with OpenGL ES 1.0. One is array-based, and the
other is element-based. To render the model with the array-
based method, the vertices have to be inserted in the right
order, so that OpenGL can render them in that sequence.
The element-based approach is more flexible, as it does not
require changes to the vertices buffer. A pointer to the in-
dices buffer can be manipulated to render certain portions
of the model at the time. This allows the program to apply
certain attributes, such as color codes, to specific faces of
the model without the need to load a complete color buffer
with redundant information. The following is the code that
renders the 3D model.

3D Model Rendering:

public void draw(GL10 gl) {
//Enable drawing
gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);
gl.glEnableClientState(GL10.GL_COLOR_ARRAY);
gl.glEnableClientState(GL10.GL_NORMAL_ARRAY);
gl.glFrontFace(GL10.GL_CW);
gl.glVertexPointer(3, GL10.GL_FLOAT, 0,

vertexBuffer);
gl.glNormalPointer(GL10.GL_FLOAT, 0,

normalsBuffer);
int offset = 0;
for(int i=0; i<materials.length; i++){

gl.glColor4f(materials[i].rgb[0],
materials[i].rgb[1],materials[i].rgb[2],

materials[i].rgb[3]);
int length = materials[i].length;
//!!!!very important
indexBuffer.position(offset);
int mode = GL10.GL_TRIANGLES;
gl.glDrawElements(mode,length*3,

GL10.GL_UNSIGNED_SHORT,indexBuffer);
offset += length * 3;

}
//!!!!very important
indexBuffer.position(0);
//Disable drawing
gl.glDisableClientState(GL10.GL_VERTEX_ARRAY);
gl.glDisableClientState(GL10.GL_COLOR_ARRAY);
gl.glDisableClientState(GL10.GL_NORMAL_ARRAY);

}

The application starts by loading the meta-files data of the
3D model previously prepared by the COLLADA parsing
program into memory. The 3D model is composed of two
parts. One is the upper head, and the other is composed
of the mouth and jaws. Combined, they constitute a com-
plete 3D model of a human head. While the application is

loading the base model of each part to represent the resting
position, a parallel thread is created to load the rest of the
meta-files for different expressions. That reduces the startup
time to half of what it would be if all the models are loaded
in sequence. Once the meta-files are loaded into appropriate
arrays and buffers, they are cached using a key-map struc-
ture for efficient access.

When there is no input, the application assumes itself to be
in an idle situation and starts a timer. The application will
periodically monitor the timer, and will randomly replace
the resting models with animated ones, creating a frame-
based movement effect. As soon as the user enters a text and
sends the execute command, the application switches to the
speech simulation mode, starts the TTS activity, and syn-
chronizes the mouth animation to create the visual speech
effect.

3. LIPS-AUDIO SYNCHRONIZATION
The producer-consumer paradigm[19, 34, 37], a well-studied
synchronization problem in Computer Science, is employed
to synchronize lip movements with the speech. A classi-
cal producer-consumer problem has two threads (one called
producer, the other consumer) sharing a common bounded
buffer. The producer inserts data into the buffer, and the
consumer takes the data out. In our case, the buffer is a
queue where characters are entered at the tail and are read
at the head. Physically, the queue is a circular queue[19].
Logically, one can imagine it to be a linear infinite queue.
The head and tail pointers are always advancing (increment-
ing) to the right. (To access a buffer location, the pointer
is always taken the mod of the physical quenue length, e.g
tail % queue length.) If the head pointer catches up with
the tail pointer (i.e. head = tail), the queue is empty, and
the consumer must wait. If the difference between head and
tail is equal to the length of the buffer, the queue is full, and
the producer must wait.

In the application, the problem is slightly modified: it has
one producer and two consumers, each has its own head
pointer. The producer is the thread that accepts the input
text and puts it in the queue, and the consumers are the
Android TTS engine and the animation thread with routine
calls to OpenGL ES. The text stream input thread controls
the tail of the buffer and waits. Every time a new character
is entered, tail is incremented. The TTS thread and the ani-
mation thread read and process the data while each of them
is incrementing its own head. When the distance between
the tail and one of the heads is larger than or equal to a
certain empirical constant C, the producer stops and waits
for the heads to catch up. When both heads reach for the
tail, the producer starts inserting new data into the buffer.
To further improve the algorithm, the TTS head and the
animation head wait for each other, which forces the speech
and the animation to be more in sync as shown in Figure 5.
Below is a Java-like pseudo code for the synchronization of
the TTS with the animation using the producer-consumer
algorithm.

Producer-Consumer Code:

long tail = ttsThread = animationThread =0;

Int'l Conf. Computer Graphics and Virtual Reality |  CGVR'13  | 13



Figure 5: Producer-Consumer Data Buffer

//Fixed size buffer
char[] textBuffer = new char[offset];
//Producer thread
while(true){

if(tail-head1>=offset||tail-head2>=offset)
inputThread.sleep(100);

else{
textBuffer[tail % offset]=ch;
tail++;

}
}

//TTS thread
while(true){

if(head1 == head || head1 >= head2+C1)
ttsThread.sleep(100);
else{

char ch = textBuffer[head1 % offset];
tts.speak(ch);
head1++;

}
}
//Animation thread
while(true){

if(head2==tail || head2>=head1+C2)
animationThread.sleep(100);

else{
char ch = textBuffer[head2 % offset];
animation.render(ch);
head2++;

}
}

4. CONCLUSIONS AND DISCUSSIONS
We have presented the design and implementation of a speech
animator for the Android mobile platform using exclusive
open-source technologies. A parser written in Java is used
to parse a COLLADA file containing 3D model data to a
meta-file which can be rendered by OpenGL ES programs.
Normally, only the difference between a 3D model and the
base model are read from the meta-file. The final model is
obtained by overlaying the scene created with the difference
data on the base model. The producer-consumer paradigm
is used to achieve lips-audio synchronization. The code of
the application will be available for students and developers
who want to use it as a starting point for further develop-
ment.

There are unlimited ways of extending and enhancing the
application. In particular, it is a significant task to explore
the application of the Active Shape Models(ASM) or Active

Appearance Model (AAM) developed by Tim Cootes and
Chris Taylor in the 1990s[11, 10] to create more realistic 3D
models. ASM and AAM are statistical models for image
processing, in particular facial recognition. Using ASM or
AAM, a system can be trained to generate new sets of data
from a reduced covariance matrix and the vector represent-
ing the pose model, or the mean shape. In this case, the
principal components can be applied to produce the differ-
ent facial expression by training the model with a sample
of visemes, representing the mouth shapes for the different
phonemes. That will result in a more realistic movement
of the mouth when simulating the visual speech. Some re-
searchers have explored this approach and obtained good
results[21].

Another significant enhancement to the application could be
an interface enhancement with text messaging feature. In-
stead of reading the message, the user could listen to it and
watch the simulation. It could also be interfaced with a live
video streaming application. Instead of transmitting audio
and video data which might be huge even after compres-
sion, one can transmit only the text of the talking person,
along with some control data. The other person can watch
and listen to a real-time simulation of the conversation. To
realize this, speech recognition capabilities are required at
the sender side. The Android platform supports this feature
using Google’s speech-recognition service[26]. Of course the
transmitted text can be compressed by the sender and de-
compressed by the receiver but no synchronization is needed
for the transmitted data as the animation is driven by the
text and the lip-speech synchronization is done using the
producer-consumer paradigm at the receiver end.

5. ACKNOWLEDGMENTS
We would like to thank Mr. Ted Benic, who helped enhance
many of the 3D model images using Blender.

6. REFERENCES
[1] Android Open Source Project: TextToSpeech,

http://developer.android.com/reference/android/speech/

[2] E. Angel, Interactive Computer Graphics: A
Top-Down Approach Using OpenGL, Fourth Edition,
Addison-Wesley, 2005.

[3] D. Astle and D. Durnil, OpenGL ES Game
Development, Thomson Course Technology, 2004.

[4] Jun Auza, The Technology Behind Avatar (Movie),
http://www.junauza.com/2010/01/technology-behind-
avatar-movie.html, Jan
2010.

[5] Charles Babcock, Watson’s Jeopardy Win A Victory
For Mankind, Information Week, Feb 2011.

[6] Koray Balc, Xface: Open source toolkit for creating 3d
faces of an embodied conversational agent, pp.
263-266, Smart Graphics, 2005.

[7] Blender Foundation. Blender.org
http://www.blender.org/, 2013.

[8] S. R. Buss, 3-D Computer Graphics: A Mathematical
Introduction with OpenGL, Cambridge University
Press, 2003.

14 Int'l Conf. Computer Graphics and Virtual Reality |  CGVR'13  |



[9] C. Bregler, M. Covell, and M. Slaney, Video Rewrite:
Driving Visual Speech with Audio, p.353-360,
SIGGRAPH’97 Proceedings, ACM Press, 1997.

[10] T.F. Cootes, G. J. Edwards, and C. J. Taylor, Active
appearance models, p. 484-498, ECCV, 2, 1998.

[11] T.F. Cootes, C.J. Taylor, D.H. Cooper and J. Graham
Active Shape Models - Their Training and Application,
Computer Vision and Image Understanding, p. 38-59,
Vol. 61, No. 1, Jan. 1995.

[12] E. Cosatto, H.P. Graf, and J. Schroeter,
Coarticulation method for audio-visual text-to-speech
synthesis, US Patent 8,078,466, Dec 2011.

[13] P.K. Doenges et al., MPEG-4: Audio/video and
synthetic graphics/audio ifor mixed media, p.433-463,
Signal Processing: Image Communication,
ELSEVIER, 9, 1997.

[14] Forbes Magazine, Android Solidifies Smartphone
Market Share, http://www.forbes.com/, Jan., 2013.

[15] Gary C. Martin, Preston Blair phoneme series,
http://www.garycmartin.com/mouth shapes.html,
2006.

[16] Google Inc. Trimble Navigation Limited. 3D
Warehouse. http://sketchup.
google.com/3dwarehouse/, 2013.

[17] E.R. Harold. Processing XML with Java: a guide to
SAX, DOM, JDOM, JAXP, and TrAX,
Addison-Wesley Professional, 2003.

[18] S. Hill, M. Robart, and E. Tanguy, Implementing
Opengl ES 1.1 over OpenGL ES 2.0, Consumer
Electronics, 2008, ICCE 2008, Digest of Technical
Papers, International Conference, IEEE, 2008.

[19] F. June, An Introduction to Video Compression in
C/C++, Createspace, 2010.

[20] F. June, An Introduction to 3D Computer Graphics,
Stereoscopic Image, and Animation in OpenGL and
C/C++, Createspace, 2011.

[21] G. A. Kalberer, P. Muller, and L.V. Goo, Modeling
and Synthesis of Realistic Visual Speech in 3D, p.
266-294, 3D Modeling & Animation, edited by N.
Sarris and M. G. Strintzis, IRM Press, 2005.

[22] The Khronos Group Inc.,https://collada.org/, 2011.

[23] The Khronos Group Inc., OpenGL ES The Standard
for Embedded Accelerated 3D Graphics,
http://www.khronos.org/opengles/, 2013.

[24] The Khronos Group Inc., OpenGL Shading Language,
http://www.opengl. org/documentation/glsl/, 2013.

[25] M. Milivojevic, I. Antolovic, and D. Rancic,
Evaluation and Visualization of 3D Models Using
Collada Parser and Webgl Technology, p. 153-158,
Proceedings of the 2011 International Conference on
Computers and Computing, World Scientific and
Engineering Academy and Society (WSEAS), 2011.

[26] S. Mlot, Google Adds Speech Recognition to Chrome
Beta,
http://www.pcmag.com/article2/0,2817,2414277,00.asp
, PC Magazine, Jan. 2013.

[27] A. Munshi et al., OpenGL ES 2.0 Programming
Guide, Addison-Wesley Professional, 2008.

[28] I.S. Pandzic and R. Forchheimer, MPEG-4 Facial
Animation:The Standard, Implementation and
Applications, John Wiley & Sons, 2002.

[29] Thomas Rist, and Patrick Brandmeier, Customizing
Graphics for Tiny Displays of Mobile Devices,
p.260-268, Personal and Ubiquitous Computing, 6,
2002.

[30] T. Roosendaal and S. Selleri, The Official Blender 2.3
guide: free 3D creation suite for modeling, animation,
and rendering, No Starch Press, 2004.

[31] R. J. Rost et al., OpenGL Shading Language, Third
Edition, Addison-Wesley, 2009.

[32] N. Sarris and M.G. Strintzis, 3D Modeling &
Animation, IRM Press, 2005.

[33] D. Shriener et al., OpenGL Programming Guide, Eigth
Edition, Addison-Wesley, 2013.

[34] A. Silberschatz et al., Operating System Concepts,
Addison-Wesley, 1998.

[35] M. Singhal and N.G. Shivaratri, Advanced Concepts in
Operating Systems, McGraw-Hill, 1994.

[36] Sketchup,
http://www.sketchup.com/intl/en/product/gsu.html,
2013.

[37] A.S. Tanenbaum, Modern Operating Systems, Third
Edition, Prentice Hall, 2008.

[38] University of Maryland, Blendshape Face Animation,
http://userpages.umbc.edu/bailey/Courses/Tutorials/
ModelNurbsHead/BlendShape.html, 2009.

[39] L. Wood et al., Document object model (dom) level 1
specification, W3C Recommendation, 1, 1998.

[40] T.L. Yu, “Chess Gaming and Graphics using
Open-Source Tools”, Proceedings of ICC2009, p.
253-256, Fullerton, California, IEEE Computer
Society Press, April 2-4, 2009.

[41] T.L. Yu, D. Turner, D. Stover, and A. Concepcion,
“Incorporating Video in Platform-Independent Video
Games Using Open-Source Software”, Proceedings of
ICCSIT, Chengdu, China, July 9-11, IEEE Computer
Society Press, 2010.

[42] I. Zbib, 3D Face Animation with OpenGL ES: An
Android Application, CSE Master Project Report,
School of Computer Science and Engineering, CSUSB,
2013.

Int'l Conf. Computer Graphics and Virtual Reality |  CGVR'13  | 15



A Pipeline From COLLADA to WebGL for Skeletal 
Animation 

 
Jeffery McRiffey, Ralph M. Butler, and Chrisila C. Pettey 

Computer Science Department, Middle Tennessee State University, Murfreesboro, TN, USA 
 
 

Abstract - Effective use of HTML5's canvas and its access to 
WebGL for rendering 3D content requires knowledge of how 
to import externally developed 3D content.  Additionally, in 
order to efficiently reuse 3D content in various different 
browser applications, it is convenient to have a data format 
that can be rendered directly by the JavaScript program with 
WebGL. To that end, we have provided a process for 
extracting data from COLLADA files using Python's 
elementTree, storing it in a JSON format, and rendering it 
with JavaScript and WebGL.  This process works for skeletal 
animation as well as other, less complicated, 3D data. 

Keywords: WebGL, COLLADA, Skeletal Animation, Maya, 
HTML5 

 

1 Introduction 
  In the past, browser-based 3D graphics have been 

dependent on cumbersome plug-ins that were deficient in 
customization, sometimes relied on less efficient software-
based rendering, required frequent plug-in related updates, 
and lacked support for mobile systems [3]. HTML5's canvas 
and its access to WebGL overcome these deficiencies. 
However, effective use of these technologies requires 
knowledge of how to import externally developed 3D content. 
For static geometry this process is fairly straightforward. The 
real challenge comes with rendering of skeletal animation. 
Our goal was to get a 3D object into our existing engine 
without altering the game engine code so that it could parse 
3D files. To do this we decided to develop an external utility 
that would create an intermediate file using the JSON format. 
This would allow us to keep the game engine small, and at the 
same time allow us to investigate what data needed to be 
extracted.  There are several file formats for 3D objects (e.g., 
dae, fbx, and obj). Since dae seemed to be an industry 
standard, we started with that.  However, the interpretations of 
the standard were inconsistent (for example we could not 
move dae files between Blender and Maya).  Since the 
standard was hard to interpret, we looked for software to help 
us. Surprisingly, at the time we began this, all the software 
that existed only dealt with static geometry. There were some 
packages that could understand animations – for instance 
Maya can import a dae file – but for the most part these were 
proprietary and did not export the file in a format that we 
could use. 

In this paper we show how the power of Python's 
elementTree can be used to extract skeletal animation data 
from a COLLADA file converting it to a JSON format that 
can be rendered by WebGL. We begin with a discussion of 
the data that is needed by showing an example JSON file.  We 
then show where the data can be found in a COLLADA file 
and how it can be extracted with Python's elementTree.  We 
end with an explanation of how to render the JSON data with 
JavaScript and WebGL. Figures 1 and 2 show examples of 
screenshots of skeletal animation done with the process 
described in this paper.  However, these two examples contain 
more triangles and joints than can be easily described here.  
Therefore, we will use the example shown in Figure 3 of a 
cube with nine joints where joints 3 and 4 are animated.  

 

 
Figure 1. Three frames of a hand opening animation 

 

 
Figure 2. Three frames of a human jumping animation 

 

 
Figure 3. Three frames of an animated cube 

 

16 Int'l Conf. Computer Graphics and Virtual Reality |  CGVR'13  |



2 Required data in JSON format 
 The JSON format is a text based standard used for 

efficient information serialization and transmission [8]. 
Specifically, JSON is space efficient and eliminates the need 
for parsing COLLADA files within the rendering engine. The 
organization of the final JSON file is a series of key-value 
pairs. Figure 4 shows a subset of the JSON file for the 
animated cube shown in Figure 3. 

All 3D models have vertices that have positions, normals, 
and texture coordinates. The three attributes POSITION, 
NORMAL, and TEXCOORD can be seen as keys in Figure 4.  
The actual floating point values for the vertex attributes are 
stored in large arrays (represented as the values [...] in Figure 
4). Since each vertex has three values for position, three 
values for normal, and two values for texture coordinate, each 
vertex has eight numbers associated with it.  Additionally all 
meshes are ultimately represented as triangles because that is 
currently required by WebGL.  Since a vertex can belong to 
multiple triangles, the triangles are represented by an array of 
indices (another key-value pair with INDEX as the key).  

The key-value pairs directly related to animation are: 
JOINT_ID (a list of the joint names), WEIGHT (a list of 
joints that affect each vertex), BIND_SHAPE_MATRIX (a 
4x4 matrix that allows for the mesh to be transformed by the 
skeleton’s coordinate system [2]), JOINT (a description of 
each joint including the joint's id, parent, and the two 4X4 
bind pose and inverse bind pose matrices), and ANIMATION 
(a dictionary containing a 4X4 matrix for each frame for each 
joint). 

 
3 COLLADA 

COLLADA is an open, XML-based 3D asset format 
maintained by the Khronos Group [5]. There are a few 
comments that need to be made about creating the COLLADA 
files. First, all geometry should be triangulated before 
exporting because WebGL requires it [3]. Second, all 
animations should be baked before exporting as COLLADA.  
Finally, it is necessary to export the transformations as a 
single matrix (i.e., scale, rotation, and translation information 
is a single 4X4 matrix for all transformed portions of the 
model). 

To produce the appropriate JSON file we need to scan a 
COLLADA file for tags that define the elements associated 
with the JSON keys that were described in the preceding 
section. This sounds like an easy task, however COLLADA 
files are typically very large and the data for a single element 
is scattered throughout the tree hierarchy, sometimes with 
logical pointers from one portion of the tree into another. In 
the remainder of this section we will briefly describe the 
location of the various necessary elements within a Maya 
generated dae file. While all 3D content packages do produce 
dae files that conform to the standard, they do not typically 
produce the same dae file. So we concentrated on dae files 
produced by Maya.  

model = { 
  "Cube":  
  { 
    "POSITION": […], 
    "NORMAL": […], 
    "TEXCOORD": […], 
    "WEIGHT": […], 
    "JOINT_ID": […], 
    "INDEX": […], 
    "BIND_SHAPE_MATRIX": […], 
    "IMAGE_LOCATION": "textures/box.jpg", 
    "JOINT":  
    { 
      "joint1": {"ID": 0 ,"PARENT": -1,"BIND_POSE":       
             […],"INVERSE_BIND_POSE": […]}, 
      "joint2": {"ID": 1 ,"PARENT":  “joint1”,"BIND_POSE":  
             […],"INVERSE_BIND_POSE": […]}, 
 
      ...   
 
      "joint8": {"ID": 7 ,"PARENT":  “joint1”,"BIND_POSE":  
            […],"INVERSE_BIND_POSE": […]}, 
      "joint9": {"ID": 8 ,"PARENT":  “joint1”,"BIND_POSE":  
            […],"INVERSE_BIND_POSE": […]}   
    }, 
    "ANIMATION":  
    { 
      "FRAME_LENGTH": 24, 
      "FRAMES":  
      { 
        "joint3":  
         { 
            1: […], 2: […], 3: […], 4: […], 5: […], 6: […],  
                 ...   
           19: […],20: […],21: […],22: […],23: […],24: […] 
         }, 
        "joint4":  
         { 
            1: […], 2: […], 3: […], 4: […], 5: […], 6: […],  
                 ...    
            19: […],20: […],21: […],22: […],23: […],24: […] 
         }, 
      } 
    } 
  } 
} 

Figure 4. Animated cube JSON model file 
 
3.1 Static geometry 

 The elements related to vertices, positions, normals, 
texture coordinates, and indices are located within the 
<library_geometries> element. Arnaud and Barnes [2] 
mention that the <library_geometries> element may contain 
numerous <geometry> elements. Furthermore, each 
<geometry> element includes a <mesh> element. The <mesh> 
element is the most interesting, as it holds one or more 
<source> elements and exactly one <vertices> element [2].  

Once a <mesh> element is discovered, it must be 
examined for <source> elements. A typical <source> element 
will contain a <float_array> and a <technique_common> 
element. The <float_array> element’s content contains a great 
deal of relevant data, and the <technique_common> element 
will hold <accessor> information for clarification. The 
<float_array> count attribute discloses the number of values 
within the array. Since a <mesh> may contain more than one 

Int'l Conf. Computer Graphics and Virtual Reality |  CGVR'13  | 17



<source> element, the <source> id attribute must be checked 
against the <input> children of the appropriate parent element.   

As an example of the fact that the data for a single 
element is scattered throughout the COLLADA tree hierarchy, 
sometimes with logical pointers from one portion of the tree 
into another, the parent element for position is the <vertices> 
element, and it is necessary to compare the source attribute of 
the <input> child of <vertices> that has a semantic attribute 
equivalent to “POSITION” with the id attribute from the 
proposed <source> element. If the two attributes match, then 
the <source> element actually does contain vertex position 
information. For normals and texture coordinates, the 
<source> id attribute must be matched to an <input> source 
attribute within <triangles> instead of <vertices>.  

The <triangles> element links to the texture value for the 
texture coordinates with its material attribute, and the actual 
indices are stored within the <p> child of the <triangles> 
element. An <input> child of the <triangles> element with a 
“VERTEX” semantic requires an extra step, as its source 
attribute points back to the <vertices> element. The <input> 
child of the <vertices> element will be the final reference to 
the positions array. The offset attributes give starting points 
for each <input> element’s indices. 

3.2 Skeletal animation data 
Skeletal animation data can be divided into three major 

parts: joints, weights, and animation frames. The joint names 
are located within the <library_controllers> element. The 
<library_controllers> element will contain one or more 
<controller> elements with a <skin> element. Each joint 
needs an inverse bind matrix to correctly represent its location 
[5]. The inverse bind matrices can be extracted from the same 
<skin> element that contains joint names. The <joints> 
element should be searched for an <input> with a semantic 
attribute of “INV_BIND_MATRIX.” This <input> source 
attribute points to a <source> that contains a <float_array> 
element. The <float_array> contains 16 times the number of 
joints, which represents a 4x4 matrix for each joint. The 
information in <float_array> will ultimately be stored as 
separate 4x4 matrices for each joint.  

An initial transformation for each joint and a skeleton 
hierarchy must be determined. Within the 
<library_visual_scenes> element, a <visual_scene> element 
will represent joint information as a <node> with a type 
attribute of “JOINT.” The id attribute of each found joint 
should match a name in the relevant <Name_array> element. 
The first joint <node> found will be considered a root joint, 
which means the joint has no parent and is not influenced by 
other joints. Every joint found may have <node> children 
with “JOINT” types. Any child joint <node> will have the 
current parent <node> as its skeleton parent. Each joint 
<node> should also contain a <matrix> element. The 
<matrix> element represents a 4x4 initial transformation 
matrix. Figure 5 depicts a skeleton hierarchy for the cube in 
Figure 3 where “joint1” is the parent of 8 other joints. 

 

<?xml version="1.0" encoding="utf-8"?> 
<COLLADA xmlns="..." version="..."> 
  <asset>...</asset> 
    <library_visual_scenes> 
      <node name="joint1" id="joint1" type="JOINT"> 
        <matrix>...</matrix> 
        <node name="joint2" id="joint2" type="JOINT"> 
          <matrix>...</matrix> 
        </node> 
          ...  
        </node> 
        <node name="joint9" id="joint9" type="JOINT"> 
          <matrix>...</matrix>  
        </node> 
      </node> 
    </library_visual_scenes> 
  <scene>...</scene> 
</COLLADA> 
Figure 5. Joint hierarchy and initial transformation matrices 

 
 

<?xml version="1.0" encoding="utf-8"?> 
<COLLADA xmlns="..." version="..."> 
  <asset>...</asset> 
    <library_controllers> 
      <bind_shape_matrix> 
        1.000000 -0.000000 0.000000 -0.053133  
        0.000000 1.000000 -0.000000  1.536980  
        0.000000 0.000000  1.000000  0.459493  
        0.000000 0.000000  0.000000  1.000000 
      </bind_shape_matrix> 
           <source id="cubeController-Joints"> 
                 <Name_array id="cubeController-Joints-array" count="9"> 
                   joint1 joint2 joint3 joint4 joint5 joint6 joint7 joint8 joint9 
                 </Name_array> 
          </source> 
      <source id="CubeController-Weights"> 
        <float_array id="CubeController-Weights-array" 
                 count="17"> 
          1.000000 0.499967 0.499967 0.499975 0.499975 0.499984  
          0.499984 0.499990 0.499990 0.499990 0.499990 0.499995  
          0.499995 0.499976 0.499976 0.499983 0.499983 
        </float_array> 
      </source> 
      <vertex_weights count="8"> 
        <input semantic="JOINT" offset="0"  
               source="#CubeController-Joints"/> 
        <input semantic="WEIGHT" offset="1"  
               source="#CubeController-Weights"/> 
        <vcount>2 2 2 2 2 2 2 2</vcount> 
        <v> 
              0 1 4 2  //vertex 0  
              0 3 8 4  //vertex 1 
              0 5 3 6   //vertex 2 
              0 7 7 8   //vertex 3 
              0 9 2 10   //vertex 4 
              0 11 1 12   //vertex 5 
              0 13 6 14   //vertex 6 
              0 15 5 16  //vertex 7 
        </v> 
      </vertex_weights> 
    </library_controllers> 
  <scene>...</scene> 
</COLLADA> 

Figure 6. Weights and bind shape matrix 
 

18 Int'l Conf. Computer Graphics and Virtual Reality |  CGVR'13  |



Inside the same <controller> element that contains joint 
information, weight information can also be found.  First, a 
<bind_shape_matrix> element contains a 4x4 matrix that 
allows for the mesh to be transformed by the skeleton’s 
coordinate system [2]. Next, a single <vertex_weights> 
contains <input> elements labeled with the semantic attributes 
“JOINT” and “WEIGHT.” The source attribute of the 
“JOINT” <input> should match the source attribute associated 
with the corresponding joint names, while the “WEIGHT” 
<input> points to a new <source> element. That <source> has 
a <float_array> child that contains all possible weights for the 
skin. Figure 6 shows the weight information for the skinned 
animated cube. 

All information for animation frames is located in the 
<library_animations> element. This element contains an 
<animation> element for each animated joint. The name 
attribute for each <animation> ties it to a specific joint. There 
is an <input> for a <sampler> for each <animation> that has 
an “OUTPUT” semantic attribute with a source attribute that 
points to a <source> element containing animation transform 
matrices. That <source> element contains a <float_array> 
with a count attribute equal to 16 times the number of frames 
since there are 16 elements in each frame matrix. Figure 7 
shows a <library_animations> element for “joint3” with all 
but the first two frames (32 elements) of the float arrays 
removed for readability. The joint “joint3” is animated for 24 
frames in this example, so there are 384 values total. 

 
<?xml version="1.0" encoding="utf-8"?> 
<COLLADA xmlns="..." version="..."> 
  <asset>...</asset> 
    <library_animations> 
      <animation id="joint3-anim" name="joint3"> 
        <animation> 
          <source id="joint3-animation-output-transform"> 
            <float_array id="joint3-Matrix-animation-output- 
                transform-array" count="384"> 
               0.076020 -0.813660 -0.576349  1.625169  
              -0.852682 -0.352678  0.385424  2.151170  
              -0.516870  0.462142 -0.720604 -4.021905  
               0.000000  0.000000  0.000000  1.000000 
               0.076020 -0.813660 -0.576349  1.641187  
              -0.852682 -0.352678  0.385424  2.153707  
              -0.516870  0.462142 -0.720604 -4.033360  
               0.000000  0.000000  0.000000  1.000000 
                ... 
            </float_array> 
          </source> 
          <sampler id="joint3-animation-transform"> 
            <input semantic="OUTPUT" source="#joint3-animation- 
                 output-transform" /> 
          </sampler> 
        </animation> 
      </animation> 
    </library_animations> 
  <scene>...</scene> 
</COLLADA> 

Figure 7. Animation frame data for “joint3” 
 

4 Python for COLLADA to JSON 
elementTree is a Python wrapper that allows the 

programmer to load XML files and store them as trees of 

elements.  These trees can then be easily searched for the 
needed information.  Figure 8 shows four examples of the 
simplicity and power of elementTree. The find method returns 
the first child of the current element, while findall returns all 
direct children of the current element. Using / specifies the 
path to the descendant element of the current element, while 
[]'s can be used to specify attributes.  For example #1 in 
Figure 8 will find the first <input> child of the <triangles> 
child of the current <mesh> that has a semantic attribute of 
VERTEX. A // can be used to search the entire subtree of the 
current element.  For example #2 in Figure 8 will find all 
<node>'s that are descendants of <visualScene> while 
example #3 will find all <nodes>'s of type JOINT that are 
descendants of <visualScene>. Example #4 will return the 
first <material> descendant of the <library_materials> child of 
<root> that has an id of materialName. 

 
1.  vertexPosSrc =      
        mesh.find("./triangles/input[@semantic='VERTEX']") 
2.  allNodes = visualScene.findall(".//node")  
3.  jointNodes = visualScene.findall(".//node[@type='JOINT']") 
4.  material = root.find("./library_materials//material[@id='%s']"  
        % (materialName) ) 
Figure 8. Sample elementTree code for extracting data from 

XML 
 
After the data has been extracted, it may have to be 

massaged in up to three different ways. First, each matrix 
extracted from the COLLADA file must be converted from 
row-major to column-major order.  

Second, since WebGL can only utilize a single index 
array, the separate position, normal, and texcoord arrays from 
the COLLADA file must be altered [3][7]. This index 
mapping for positions, normals, and texcoords works by 
examining inline indices in groups of three. For example, if 
the first indices examined were 3, 0, and 3, then the three 
elements in the third row of the COLLADA position array 
should be written to the JSON position array, the three 
elements in row 0 of the normal array should be written to the 
JSON normal array, and the two elements of the texcoord 
array found in row 3 should be written to the JSON texcoord 
array. The final index for all of these values is now stored as 
0. This method is continued with increasing final indices until 
a repeating group of three original indices is encountered.  

Third, each vertex can have zero to n direct joint 
influences, so weight padding is required. Since WebGL will 
read a single weight array sequentially, zero weights must be 
appended to all vertices until they are associated with n 
weights.  In our example n = 3.   

5 WebGL 
There are four major steps for rendering a JSON model: 

initializing the WebGL context, compiling the shader 
program, pushing content from JSON to the GPU, and finally 
starting the rendering loop. In this paper we will not discuss 
initializing the WebGL context or the rendering loop as they 
are basic techniques described in [3] that are independent of 
what you might be rendering. The other two steps described in 

Int'l Conf. Computer Graphics and Virtual Reality |  CGVR'13  | 19



this section build on techniques written by Rowell [9], 
Thomas [11], and Seidelin [10]. Rowell’s base code was 
augmented to support skeletal animation [9].  

5.1 Shader program 
 WebGL uses a subset of the OpenGL Shading Language 

for rendering known as GLSL ES [3]. Cantor and Jones [3] 
explain that GLSL ES is a lightweight, C-like language with 
specialized facilities for handling vectors and matrices. A 
shader program, consisting of a vertex and fragment shader, is 
required for rendering [1]. Anyuru [1] goes on to mention that 
a vertex shader handles geometric data one vertex at a time. 
The resulting information is converted to fragments and 
passed to the fragment shader; each fragment has the potential 
to ultimately become a pixel on the screen [1]. 
A major goal of this project was to support skeletal animation 
and basic lighting, which requires more complex shaders. 
New attributes for normals, joint identifiers, and joint weights 
must be sent to the vertex shader. Additionally, each vertex 
uses extra uniforms for all joint transform matrices, a normal 
matrix, and lighting information. A new varying variable for 
light weighting is also passed to the fragment shader. Figure 9 
shows a commented and extensively altered fragment of a 
vertex shader for skeletal animation and lighting. 

5.2 JSON to GPU 
Once the shader program has been initialized, data can be 

accessed from the JSON model and sent to the shaders. First 
the IMAGE_LOCATION is used to a load the texture image; 
the image must finish loading before any information is 
pushed to the GPU (Figure 10 shows how to initialize a 
texture).  Next the POSITION, NORMAL, TEXTCOORD, 
JOINT_ID, WEIGHT, and INDEX arrays from the JSON 
model must be put into buffers for the vertex shader (see 
Figure 11). After the texture has loaded and the buffers have 
been filled, they can be pushed to the GPU. This requires 
setting up a vertex attribute pointer and binding each buffer 
[9] (Figure 12). The final step before drawing the scene is 
setting the uniforms based on the current projection, model-
view, normal, and joint matrices (Figure 13). 

The projection, model-view, and lighting uniforms only 
need to be updated when the perspective changes, the camera 
moves, or the model is transformed, so they do not need to be 
updated for every frame. Since the joint matrices are meant 
for animation, they have the potential to change for each 
frame and should be handled differently than the other 
uniforms. 

To calculate the joint matrices, a float array of size 16 
times the maximum number of joints should be populated 
with JSON data. Every joint has a name, parent name, bind 
matrix, and inverse bind matrix in the JSON file. Since a joint 
can influence other joints, a set of world joint transformations 
must be calculated. A joint’s world matrix is equal to the 
product of its parent’s world matrix and its own bind pose 
matrix; if a joint has no parent, its world matrix is simply its 
own bind pose matrix. A joint’s world matrix is then 

multiplied by its inverse bind matrix and the skin’s bind 
shape matrix. The resulting 4x4 matrix can then be stored 
before being sent to the shader. If the model has associated 
animations, then the current frame’s joint matrix takes the 
place of the joint’s bind pose matrix for world matrix 
calculation. Figure 14 gives pseudocode for calculating the 
skinning and animation matrices for joints. 

attribute vec3 aVertexPosition;     //positions x,y,z 
attribute vec3 aVertexNormal;       //normals x,y,z 
attribute vec3 aJointID;            //joint ids padded to 3 
attribute vec3 aJointWeight;        //joint weights padded to 3 
uniform mat4 uJMatrix[30];          //up to 30 4x4 joint matrices 
uniform mat4 uMVMatrix;             //4x4 model-view matrix 
uniform mat4 uPMatrix;              //4x4 projection matrix 
uniform vec3 uLightingDirection;    //light direction 
void main(void)  
{ 
    vec4 newVertex; //vertex after joint transformations 
    vec4 newNormal; //normal after joint transformations 
    //if no joint influences still render the vertex 
    else 
    { 
        //calculate the new vertex based on the corresponding joint matrices 
        newVertex = uJMatrix[int(aJointID[0])] *  
                    vec4(aVertexPosition, 1.0) * aJointWeight[0]; 
        newVertex = uJMatrix[int(aJointID[1])] *  
                    vec4(aVertexPosition, 1.0) * aJointWeight[1] + newVertex; 
        newVertex = uJMatrix[int(aJointID[2])] *  
                    vec4(aVertexPosition, 1.0) * aJointWeight[2] + newVertex; 
        newVertex[3] = 1.0; 
        //calculate the new normal based on the corresponding joint matrices 
        newNormal = uJMatrix[int(aJointID[0])] *  
                    vec4(aVertexNormal, 0.0)   * aJointWeight[0]; 
        newNormal = uJMatrix[int(aJointID[1])] *  
                    vec4(aVertexNormal, 0.0)   * aJointWeight[1] + newNormal; 
        newNormal = uJMatrix[int(aJointID[2])] *  
                    vec4(aVertexNormal, 0.0)   * aJointWeight[2] + newNormal; 
    } 
//calculate final vertex position 
    gl_Position = uPMatrix * uMVMatrix * newVertex;  
//send textcoords to frag shader 
//if no lighting, send frag weights of 1.0 
//else 
   //calculate final normal from the normal matrix and xyz  
   //coordinates of newNormal 
   //set dirLightWeighting to the dot product of  
   //transformedNormal and uLightingDirection or 0.0, return the  
   //largest value 
   //calculate light weighting and send to frag shader 
} 

Figure 9. Vertex shader for skeletal animation and lighting 
 

6 Conclusions and future work 
The work presented here provides a brief overview of a 

process for extracting the 3D skeletal animation content from 
a COLLADA file generated by Maya, summarizing that data 
in a JSON file, and rendering the JSON data with JavaScript 
and WebGL. The topic for this work was specifically chosen 
due to a lack of applicable literature on the process. It should 
be noted that due to the length requirements for the paper, it is 
impossible to give a detailed description of the entire process. 
Interested readers can get a more detailed description by 
checking out the the subversion directory (svn  co 
 http://svn.cs.mtsu.edu/svn/vw3/trunk   vw3). The thesis 

20 Int'l Conf. Computer Graphics and Virtual Reality |  CGVR'13  |



directory contains a detailed description of the process.  The 
dae2json.py files are in the utils directory.  A short tutorial 
and demo are located at http://vw3.cs.mtsu.edu. 

While the COLLADA files used in this work were 
generated from Maya, we believe that the Python program 
would work with COLLADA files generated from other 3D 
content development packages such as Blender. This would 
provide us with a stable pipeline for extracting 3D data from 
any existing COLLADA file for rendering in any 
HTML5/WebGL browser application without altering the 
browser application. 

//The following algorithm is from [11] 
//creat a texture, and image, and load the image 
var objectTexture = glContext.createTexture();     
objectTexture.image = new Image();  
objectTexture.image.src = model['cube']['IMAGE_LOCATION'];      
objectTexture.image.onload = function () //wait for image to load 
{ 
    //set the texture as the current texture  
    glContext.bindTexture(glContext.TEXTURE_2D, objectTexture); 
    //flip the data along the vertical axis  
    glContext.pixelStorei(glContext.UNPACK_FLIP_Y_WEBGL, true); 
    //upload the image to the GPU  
    glContext.texImage2D(glContext.TEXTURE_2D, 0, glContext.RGBA,  
             glContext.RGBA, glContext.UNSIGNED_BYTE,  
             objectTexture.image); 
    //fast image scaling up close  
    glContext.texParameteri(glContext.TEXTURE_2D,  
             glContext.TEXTURE_MAG_FILTER, glContext.NEAREST); 
    //fast image scaling far away  
    glContext.texParameteri(glContext.TEXTURE_2D,  
             glContext.TEXTURE_MIN_FILTER, glContext.NEAREST); 
    //set current texture to null so the previous texture  
    //isn’t accidentally altered  
    glContext.bindTexture(glContext.TEXTURE_2D, null); 
} 

Figure 10. Texture initialization 

//function createArrayBuffer(values) and function 
//createElementArrayBuffer(values) come from 
//Rowell's class [10] 
var objectBuffers = {}; 
//Create the position buffer 
objectBuffers.positionBuffer =  
       createArrayBuffer(model['cube']['POSITION']); 
//Similar calls for normal, texture, joint weight, and joint id buffers 
     ... 
//Finally create the element array buffer for indices 
objectBuffers.indexBuffer =  
        createElementArrayBuffer(model['cube']['INDEX']); 

Figure 11. Creating data buffers  

 
//push index buffer and bind the buffer 
glContext.bindBuffer(glContext.ELEMENT_ARRAY_BUFFER,  
     objectBuffers.indexBuffer); 
//push position buffer,  
//bind the buffer and set the vertex attribute pointer 
glContext.bindBuffer(glContext.ARRAY_BUFFER,  
     objectBuffers.positionBuffer); 
glContext.vertexAttribPointer( 
     shaderProgram.vertexPositionAttribute,  
     3, glContext.FLOAT, false, 0, 0); 
//normals,joint ids, joint weights are all bound in the same manner  
//as positions the code has been omitted to save space 
//texture buffer is bound like the other data 
glContext.bindBuffer(glContext.ARRAY_BUFFER,  
     objectBuffers.textureBuffer); 
glContext.vertexAttribPointer(shaderProgram.textureCoordAttribute,  
     2, glContext.FLOAT, false, 0, 0); 
//activate current texture, bind it, and send it to the frag shader  
glContext.activeTexture(glContext.TEXTURE0); 
glContext.bindTexture(glContext.TEXTURE_2D, texture); 
glContext.uniform1i(shaderProgram.samplerUniform, 0);  

Figure 12. Sending attributes to the vertex shader 
 

//set up pMatrix 
var view = 45; //vertical field of view 
var aspectRatio = glContext.viewportWidth / glContext.viewportHeight; 
var minDist = 1; 
var maxDist = 500; 
var pMatrix = mat4.create(); //empty 4x4 matrix 
mat4.perspective(view, aspectRatio, minDist, maxDist, pMatrix); 
//set up mvMatrix 
var mvMatrix = mat4.create();           //empty 4x4 matrix 
mat4.idenity(mvMatrix);                 //no transforms yet 
mat4.translate(mvMatrix, [1, -5, -10]); //trans mvMatrix for x, y, z 
mat4.rotate(mvMatrix, .75, [0, 1, 0]);  //rotate 0.75 radians for y 
mat4.rotate(mvMatrix, .25, [1, 0, 0]);  //rotate 0.25 radians for x 
var lighting = true;                              //turn lighting on or off 
var lightingDirection = [-0.3, -0.3, -1.0]; //set lighting direction 
var lightingColor = [0.1, 0.1, 0.1];  //set ambient lighting color rgb 
var directionalColor = [0.9, 0.9, 0.9];  //set directional lighting rgb 
//normalize lighting direction 
var ald = vec3.create();  
vec3.normalize(lightingDirection, ald); 
vec3.scale(ald, -1); 
if(lighting)  
{ 
    //enable lighting and pass ambient lighting color to shader 
    glContext.uniform1(shaderProgram.useLightingUniform, true); 
    glContext.uniform3fv(shaderProgram.ambientColorUniform,  
             lightingColor); 
    //similarly pass directional lighting color and direction to the shader  
} 
//pass pMatrix to the shader as mat4 
glContext.uniformMatrix4fv(shaderProgram.pMatrixUniform,  
       false, pMatrix); 
//similarly pass mvMatrix 
//create and pass a normal matrix for proper lighting 
var normalMatrix = mat3.create(); 
mat4.toInverseMat3(mvMatrix, normalMatrix); 
mat3.transpose(normalMatrix); 
glContext.uniformMatrix3fv(shaderProgram.nMatrixUniform,  
       false, normalMatrix); 

Figure 13. Sending uniforms to the shaders 
 

 

 

Int'l Conf. Computer Graphics and Virtual Reality |  CGVR'13  | 21



function setUniformJointMatrix 
{ 
    for(each joint) 
    { 
        store parent name; 
        set world_matrix to an empty 4x4 matrix; 
        if(animation frame exists) 
        { 
            if(not a root joint) 
                set world_matrix to parent_world_matrix * frame_matrix; 
            else 
                set world_matrix to frame_matrix; 
        } 
        else 
        { 
            if(not a root joint) 
                set world_matrix to parent_world_matrix * bind_pose_matrix; 
            else 
                set world_matrix to bind_pose_matrix; 
        } 
        set new_matrix to world_matrix * inverse_bind_pose_matrix; 
        set final_matrix to bind_shape_matrix * new_matrix; 
        store final_matrix; 
    } 
    send all matrices to the shader; 
} 

Figure 14. Psuedocode for calculating joint matrices 

 

7 References 
[1] Anyuru, A. 2012. Professional WebGL Programming: 

Developing 3D Graphics for the Web. Wrox, Chichester, 
UK. 

[2] Arnaud, R., and Barnes, M. 2006. COLLADA: Sailing the 
Gulf of 3D Digital Content Creation. A K Peters, 
Wellesley, MA. 

[3] Cantor, D., and Jones, B. 2012. WebGL Beginner’s 
Guide. Packt, Birmingham, UK. 

[4] Irish, P., Möller E., and Zijdel, T. 2012. 
requestAnimationFrame for Smart Animating. 
http://paulirish.com/2011/requestanimationframe-for-
smart-animating/, Oct. 2012 

[5] Khronos, 2012, COLLADA 3D Asset Exchange 
Schema. https://www.khronos.org/collada, Sept. 2012. 

[6] Khronos, 2012. WebGL Specification. 
https://www.khronos.org/registry/webgl/specs/latest, 
Sept. 2012. 

[7] Milivojec, M., Antolovic, I., and Rancic, D. 2011. 
Evaluation and Visualization of 3D Models Using 
COLLADA Parser and WebGL Technology. In 
International Conference on Computers and Computing 
(Lanzarote, Canary Islands, Spain, May 2011), 153-158. 

[8] Mozilla, 2012. JavaScript Reference. 
https://developer.mozilla.org/en-
US/docs/JavaScript/Reference, Sept. 2012. 

[9] Rowell, E. 2011. HTML5 Canvas Cookbook. Packt, 
Birmingham, UK. 

[10] Seidelin, J. 2012. HTML5 Games: Creating Fun with 
HTML5, CSS3, and WebGL. John Wiley and Sons. 
Chichester, UK. 

[11] Thomas, G. Learning WebGL. 
http://www.learningwebgl.com/blog, Sept. 2012. 

 

22 Int'l Conf. Computer Graphics and Virtual Reality |  CGVR'13  |



SESSION

VIRTUAL REALITY + COMPUTER GRAPHICS +
RELATED METHODS

Chair(s)

TBA

Int'l Conf. Computer Graphics and Virtual Reality |  CGVR'13  | 23



24 Int'l Conf. Computer Graphics and Virtual Reality |  CGVR'13  |



Plasma Visualization in Parallel using Particle Systems on Graphical
Processing Units

T.S. Lyes and K.A. Hawick
Computer Science, Massey University, North Shore 102-904, Auckland, New Zealand

email: {t.s.lyes, k.a.hawick}@massey.ac.nz
Tel: +64 9 414 0800 Fax: +64 9 441 8181

April 2013

ABSTRACT

Visualising and simulating charged plasma systems present
additional challenges to conventional particle methods. Plas-
mas exhibit multi scale phenomena that often prevent the use
of standard localisation approximations. Plasmas as parti-
cle systems that emit light are important in many interest-
ing components of games, computer animated movies such
as weapons fire, explosions, astronomical effects. They also
have intrinsic value for simulating physical phenomena. We
describe the use of various shader and texture methods to ren-
der a simulated plasma system based on explicitly charged
particles. We report on attainable renderings and on coding
approaches and performance using graphical processing units.

KEY WORDS
plasma simulation; special effects; particles; electrostatic
charge; rendering.

1 Introduction
Plasmas present additional challenges for their simulation and
visualization over and above those normally associated with
particle systems. The key physics characteristic of a plasma is
that it is an ionized gas [1]. Ionization can occur by applying
extreme heat, pressure or electric discharge (such as a strong
magnetic field). Plasma contained charged particles called
ions; these can be either positively or negatively charged. This
makes plasma strongly responsive to electromagnetic fields
and electrically conductive. Such properties make plasma dif-
ferent to those of solid, liquid and gaseous states of matter.
Our sun is an example of a large plasma system, but closer to
earth the Aurora Borealis, ionosphere and neon signs are all
examples of plasmas. Plasma physics is also an important part
of fusion energy research [2].
Plasma simulation is often described as multi-scale or multi-
level. This refers to the fact that plasma systems behave on a
wide range of different lengths and time scales [3] [4]. This

makes plasma systems difficult to simulate when trying to in-
clude all the relevant physics, thus, approximate models are
used with trade-offs between accuracy and computational ef-
ficiency. A number of localisation approximations are com-
mion place in molecular dynamical simulations [5], but teh
multiple scales in plasma systems generally require a differ-
ent simulation approach.
There are two main approaches to computational modeling of
plasma systems - a fluid approach and a kinetic (particle) ap-
proach. Fluid approaches such as hydrodynamics or magneto-
hydrodynamics (MHD) are the most popular, but are inaccu-
rate when more detailed kinetic processes (for example, par-
ticle interactions) affect the behaviour of the plasma. Kinetic
simulation approaches can model plasma over larger ranges
of density and temperature [6] and are more accurate, but are
computationally expensive [7]. One way of dealing with this
issue is the use of hybrid modeling techniques featuring ele-
ments of both fluid and particle systems which compromise
between computational effectiveness and result precision [7].
The Particle-in-Cell (PIC) approach is an example of a kinetic
approach to plasma simulation [8, 9]. Other well known ki-
netic methods include the Vlasov and Fokker-Planck methods
[4]. Object-oriented methods of the Particle-in-Cell approach
have proven successful in modeling plasma systems to a good
degree of accuracy while also minimizing performance issues.
VORPAL [10] is a plasma simulation code designed using an
object-oriented style of PIC (OOPIC), while [2] investigates
methods of parallelizing OOPIC systems in a variety of differ-
ent programming languages. Other models treat plasma as a
6-dimensional phase-fluid [6], which are more complex than
typical MHD models. Kinetic modeling has also been used
in the simulation of interactions between plasma and pulse
laser systems [11], and particle-based methods have been suc-
cessful in simulating plasma systems relating to the motion of
blood cells [12].
In graphics, plasma simulations can be a eye-catching edi-
tion to any video game or movie. In these situations, accu-
racy of physics can be approximated further as the plasma

Int'l Conf. Computer Graphics and Virtual Reality |  CGVR'13  | 25



systems need only to appear to behave correctly. However,
the problem still remains of simulating a system which is ac-
curate (visually) while also being computationally expensive.
Parallelizing the behaviour of the plasma system can signifi-
cantly improve the computational performance of the system.
Graphics Processing Units (GPUs) [13] are excellent devices
for simulating highly-parallel systems such as particles [14].
This paper uses a particle-based plasma system to simulate
a ball of plasma. It uses NVidia’s Compute Unified Device
Architecture (CUDA) [15] to parallelize the plasma code and
inter-operate with OpenGL [16] to render the system in real
time using a variety of rendering techniques. In Section 2 the
core functionality of the plasma system is described and the
main equations explained. Section 3 gives the results of the
simulation, showing the different rendering techniques used.
Section 4 presents a discussion of the performance of the pro-
gram on two different GPU graphics cards as well as using
different rendering setups, and performance statistics are pre-
sented in a variety of tables. Finally Section 5 concludes the
project and offers some ideas on future work in the area.

2 Simulation Method
Our primary objective in this present article is to present the
visual rendering approaches for charged plasma systems. We
therefore do not dwell on time-integration algorithms and
other simulation details such as finite differencing algorithms
[17], but we do however summarise the main features that dif-
ferentiate plasma simulations from other ad hoc potential par-
ticle simulations.

Figure 1: A spherical shell is used to contain the particles used
to simulate the plasma body.

A plasma system can be simulated by using a particle system.
Particles in the system represent the positive ions and negative
electrons making up the plasma. A positive charge will attract
a negative charge, while both positive or negative charges will
repel each other. In this particular system, the plasma is con-
tained in a bounding sphere as shown in Figure 1. Without
some sort of container, a plasma system does not have a par-
ticular shape but just spreads as the ionized gas that it is.

Figure 2: A plasma system simulation of 32768 particles
showing the energies that are the result of collisions

There were two main equations used for simulating the plasma
particles, besides the standard position and velocity time step
functions present in almost all particle systems. Firstly, the
equation for calculating the electrostatic charge, or Coulomb’s
Law (see Equation 1) is used to calculate the attractive force
between any two particles at one time. For simulation pur-
poses, constants such as ε had to be altered slightly such that
the system was able to be observed in real time. In any case,
the equation implies the electrostatic force is determined pri-
marily on the distance r between the two particles in question
(a smaller distance means a stronger force), while the charges
of the two particles determine whether the force will attract or
repel the particles.

Fi,j = qiqj/4πε0r
2
i,j (1)

Secondly, the energy of each particle is given by the formula
in Equation 2, which is the equation for kinetic energy of a
particle. For the purpose of the simulation, it can be assumed
that all particles in the system are the same mass. Addition-
ally, no external forces (including gravity) are applied to the
system during the simulation. The total energy of the system

26 Int'l Conf. Computer Graphics and Virtual Reality |  CGVR'13  |



must remain constant, so the potential energy of each particle
is converted into kinetic energy during collisions and attrac-
tions, and this change in kinetic energy can be used to colour
the simulation - a faster moving particle will be brighter than
a slower moving one.

Ek =
1

2
mv2 (2)

The particular particle system used to model the plasma in this
paper had several important properties. Firstly, unlike some
other particle systems, particles in the plasma system cannot
be created or destroyed beyond the initialization of the system
. This is essential for maintaining some degree of equilibrium
in the system and makes sure the particles do not break free
from the confining boundaries. Secondly, particles positions
and velocities are known and updated every time step of the
simulation, and an attraction force is applied to each particle
depending on its own electric charge in relation to other parti-
cles around it. The simulation is not treated as being run in a
vacuum - therefore, some damping force is applied every time
step. This is a trivial aspect to the simulation, as if we were
to simulation a plasma system such as the Sun, such a system
does occur in a vacuum (space). This particular system is con-
tained with a spherical boundary. Particles colliding with the
boundary are bounced back into the system with some damp-
ing force applied as well. Finally, particles are coloured de-
pending on the rendering method used in the simulation.

Figure 3: Example interactions between different particles in
the plasma system

Figure 3 shows some example interactions between particles
in the plasma system. The blue and grey spheres represent the
different charged particles. There are three main situations
that arise; firstly, particles of opposite charge are attracted to
one another. Secondly, particles with the same charge are re-
pelled away from each other. The third situation occurs be-
tween particles large distances apart; although normally the
blue particles would repel each other, in this particular system
they do not affect each other because they are too far away.

Typically this would involve each particle belonging to a dif-
ferent non-neighbouring cell in the system, thus when com-
puting collisions between neighboring cells, the interaction
would never be established. This occurs for both attracting
particles and repelling particles.
As with most particle systems, the system requires a large
amount of particles for it to believably resemble a real plasma
system. This can become problematic when requiring calcu-
lations of energy and charge between each and every particle
in the system, resulting in often hundreds of millions of com-
putations (order N-squared) every time step of the simulation.
This issue can be solved by parallelizing parts of the system
using CUDA. The update functions for each particle can be
parallelized and run simultaneously, but the largest speedup in
performance may come from using CUDA to sort the particle
arrays in such a way that they need not communicate with ev-
ery particle in the system when checking for collisions - only
the particles within some area of the current particle need to
be checked. While this sorting functionality does require ad-
ditional time to sort the arrays, it makes up for this by dramat-
ically decreasing the execution time of the collision checking
functions. Specifically for this system, three main CUDA ker-
nels were used; one for updating position and velocity arrays,
one for sorting the arrays, and one for handling collisions be-
tween the particles. A generic overview of the algorithm used
to update the plasma system is shown in Algorithm 1.

Algorithm 1 A general plasma system update algorithm
for all timestep do

calculate position hash table
sort particles
calculate cells
for all particles in cell do

calculate collisions
end for
for all particles in system do

update positions, velocities
end for

end for

Further performance improvements can be made using the
interoperability functionality with CUDA and OpenGL [15].
This involves using vertex buffer objects (VBOs) to store data
and render it directly on the graphics card , thus avoiding the
overhead of copying the data to and from the device every
time step. This particular simulation keeps both the positions
and colours of the particles in VBOs, using a vertex array and
colour array respectively. The velocity of the particle does not
need to be kept in a VBO as it is not a visual aspect of the sim-
ulation, rather, a behavioural aspect. However, the velocity is
still taken into account when rendering the particles based on
the energy output - the colour of the particles is determined
primarily on their velocity, so this will be used to populate the
colour VBO.

Int'l Conf. Computer Graphics and Virtual Reality |  CGVR'13  | 27



Figure 4: A plasma system simulation showing the positively
(white) and negatively (blue) charged particles

The simulation was run using a series of different rendering
methods to observe the performance changes in each. Firstly,
the system was rendered using texturing, with the billboarding
technique used similar to [18]. This method did not make use
of the OpenGL-CUDA interoperability. The particles were
coloured according to the charge of the particle - white if
positive, and blue if negatively charged. A second rendering
method used the particles calculated energy to colour the par-
ticles. Additionally, two shaders [19, 20] were used to render
the system, one a spherical shader with depth perception, and
one a sprite shader with blending. All simulations were run
on a NVidia Quadro 4000 GPU and also on a newer GeForce
GTX 680

3 Performance Results
A range of system sizes were tested for the simulation. Frame
rates were monitored and displayed on screen in real time and
were also averaged over several thousand iterations for each
rendering technique used. Comparisons were made between
the different techniques regarding both their visual and com-
putational performance.
Figure 4 shows the plasma system rendered using non-VBO
texturing and the billboarding technique. This system size was
8192 particles - this system size was found to produce an ac-
ceptable level of frames per second for the texture rendering.
The particles are coloured according to the charge of the par-
ticle - white if the charge is positive, and blue if the charge is
negative. It is mainly used to demonstrate the distribution of
charge throughout the entire system. During the initialization

Figure 5: A plasma system simulation rendering the particles
showing the energies that are the result of collisions

phase of the simulation particles are assigned a random charge
value, irrespective of the particles position in the system.
Using a similar method, Figure 5 renders the plasma system
as textures but this time they are coloured according to the
energy of the particles from the collisions. The brighter the
particle, the more energy it contains. Particles nearer the cen-
ter of the system are far brighter than those around the edges,
as they are constantly colliding (attracting) to multiple other
particles. This becomes more apparent in Figure 2, where a
much larger system (32768 particles) is rendered in the same
way. Such a large system impacts a lot on the performance of
the program, both in computational time and rendering time.
Figure 6 is a histogram showing the speeds of the particles of
a 8192 particle system over 100 sample tests. This exhibits
the expected Maxwell-Boltzmann thermal distribution.
Figure 7 shows the plasma system rendered using a spheri-
cal shader and VBOs to take advantage of CUDA-OpenGL
interoperability. Using spheres it is easier to gauge the ex-
act positions of individual particles due to the depth percep-
tion that is enabled as well as the particles not needing to be
blended, however it does not look particularly realistic com-
pared to other simulations. It is worth noting that spherical
shaders produced the fastest frames per second results of all
the rendering techniques tested.
A different shader was used in the simulation shown in Fig-
ure 8. The results are similar to those shown in Figures 4
and 4, despite being rendered using VBOs. While the average
frame rate of the simulation while using this rendering tech-
nique is similar to other techniques, when the system is moved
further away from the camera the FPS greatly increases (in

28 Int'l Conf. Computer Graphics and Virtual Reality |  CGVR'13  |



Figure 6: Graph showing the velocity distribution of particles
over some frames

Figure 7: A plasma system simulation using a spherical shader
to render the particles

Figure 8: A plasma system simulation using a texture shader
to render the particles

other methods, this does not happen). This suggests this ren-
dering technique would be best suited for rendering objects
which are far away (for example, a sun in the sky) to get the
best results.

4 Discussion
Performance was monitored by timing the kernel execution
and averaging it over 10,000 executions. The mean execu-
tion times were taken for both cards and used to show the
comparison between the Quadro card and the newer GeForce
graphics card. The three kernels were not timed individually.
Additionally, performance regarding the graphical frame rate
was also monitored to observe the performance differences
between the different rendering methods. Frame rates were
displayed in real time as the simulation was run, as well cal-
culating a mean frame rate over 10,000 executions. Statistics
were collected for four system sizes; 4096, 8192, 16384 and
65536 particles.

No. of time(Quadro) time(GTX 680)
Particles seconds seconds

4096 0.0064 0.00348
8192 0.0153 0.00581
16384 0.0491 0.01406
65536 0.6541 0.14542

Table 1: Average kernel execution times for a plasma system
of various sizes

Firstly, it is important to note that the system speeds up the

Int'l Conf. Computer Graphics and Virtual Reality |  CGVR'13  | 29



further the particles drift apart - this is because the particles
will not need to perform the attraction collision functions as
often if they are spread out, as there are less particles in the im-
mediate vicinity and surrounding cells. When the simulation
is first started, the particles are not distributed evenly within
the bounding sphere - rather, they are distributed closer to the
center, and gradually expand outwards as the simulation pro-
gresses. The times observed will therefore be slower than ex-
pected from a system in an almost equilibrium state, however
they are more closely representative of an active plasma sys-
tem which is constantly moving, which is also a more realistic
system.
Table 1 shows the average execution times for all kernels for
each particle system size, tested for both the Quadro 4000 card
and the GeForce GTX 680 card. It can be shown that the
execution times of the kernels increase exponentially as the
size of the system increases. The render method used was the
spherical shader method.

No. of Avg FR Quadro Avg. FR GTX 680
Particles frames / sec frames / sec

4096 188.4 332.5
8192 73.6 205.7
16384 21.2 87.4
65536 1.4 6.9

Table 2: Average frame rates of a particle system of different
sizes

Table 2 compares the frame rates observed for various plasma
system sizes using both the Quadro and GTX 680 graphics
cards. As mentioned earlier, the system speeds up as particles
spread out, when there are less collisions per cell. This effects
the average frame rate as well. Because they are averaged over
this time frame, the observed FPS in tables 2 and 3 will be
faster than when the system is first initialized, and slower than
when the system has reached an almost equilibrium state. It
was found that the optimum system size for the Quadro card
was the 8192 particle system size, however the newer GTX
680 could easily render the system 16834 particle system.

Render Method FR Quadro FR GTX 680
seconds seconds

Textures 40.2 64.5
Energy 40.6 63.7

Sphere VBO 73.6 205.7
Sprite VBO 39.8 107.3

Table 3: Average frame rates of a 8192 particle system using
different rendering methods.

Table 3 shows the average frame rates observed when using
each rendering method. The simulation was restricted to run

only using a system size of 8192 particles, as from previous
tests it was decided that this system size gave the best re-
sult for the Quadro card, considering the simulation needed
to be run in real-time at a realistic speed (larger systems run
too slow), and maintain a realistic looking simulation as well
(too few particles would not achieve this). The method using
VBOs and a spherical shader produced the fastest FPS time.
Surprisingly, although the sprite texture rendering method
used VBOs as well, it did not initially perform as well as its
sequential counterparts. However, it was found that, while
rendering using this method, moving the camera away from
the system increased the frames per second by a large amount.
Moving the camera back by a factor of 5 increased the FPS
of the system from 39.8 to 76.5 on the Quadro card, and from
107.3 to 194.8 on the GTX 680. In the case of the Quadro
card, this new averaged FPS was actually faster than that of
the spherical shader. This was probably due to the fact that
the sprite shader took into account the position of the camera
when scaling the sprites it used to represent the particles; the
closer the camera, the larger the sprites would need to appear,
and thus the more pixels were needed to render. Interestingly
enough, none of the other rendering methods (including the
spherical shader) got FPS increases when moving the camera
back. As mentioned previously, this observation suggests that
the sprite pixel shader would be an ideal method to use when
rendering objects that would need to appear far away (such as
a sun on the horizon or in space).
What was also noticeable was the substantial increase in speed
when using shader rendering methods on the GTX 680 com-
pared to the other methods. Specifically, using the GTX 680
with textures resulted in an increase in FPS of 60.4 percent,
while VBO spheres increased by 179.5 percent and VBO
sprites by 169.6 percent. This suggests that these rendering
methods are better designed for parallelization and up-scaling
of the system in general.
There is scope to incorporate stereo rendering of the particles
and plasma cloud more generally. The framerates are ade-
quate and therefore with additional GPU hardware it is feasi-
ble to attain the necessary framerate doubliong to render the
system in stereo [21, 22]. This has the potential to aid the
visualisation considerably.

5 Conclusion
A plasma system of charged particles was simulated using a
particle system. OpenGL was used to visualize the simula-
tion in real time, and CUDA was used to parallelize the sys-
tem. The performance of the system was analyzed for various
sizes or numbers of particles, and results were also compared
between two different cards, the Quadro 4000 professional
graphics card and a newer GeForce 580 graphics card. Dif-
ferent methods were used to render the plasma and were eval-
uated to determine trade-offs between the computational and

30 Int'l Conf. Computer Graphics and Virtual Reality |  CGVR'13  |



visual performance of the system. These methods included
using VBOs and shaders to render the plasma.
A texture shader or sprite shader gave the best results visu-
ally, while the spherical shader resulted in the faster frame
rates. The sprite shader, while initially having the slowest ren-
dering speed, performed better when the camera was further
away from the system, and this was not the case for the other
rendering techniques. When rendering this particular plasma
system on the Quadro card, it was found that a system size
of 8192 particles was best when considering both the compu-
tational performance and visual aspects of the system. The
GeForce GTX 680 card could handle a system size of at least
16384 particles in real time, however a system size of 65536
particles could not be rendered in real time by either card.
There is scope to extend this work. Writing new shaders
specifically designed for representing a plasma system could
result in great improvements to the simulation both computa-
tionally and visually. With regards to the behavioural mechan-
ics of the system, the current simulation does not deal whatso-
ever with electromagnetic fields or fluxes. Plasma systems are
known to respond strongly to electromagnetic fields and sim-
ulating this would be quite interesting. For example, having
points on the bounding sphere acting as electric field points
or introducing an electric field in some other way might lead
to some interesting behaviour from the plasma system, such
as the creation of beams or other complex behavior such as a
sun’s corona.

References
[1] Bellan, P.M.: Fundamentals of Plasma Physics. Cambridge

(2006)
[2] Norton, C.D., Szymanski, B.K., Decyk, V.K.: Object-oriented

parallel computation for plasma simulation. Communications
of the ACM 38 (1995) 88–100

[3] Park, W., Belova, E.V., Fu, G.Y., Tang, X.Z., Strauss, H.R.,
Sugiyama, L.E.: Plasma simulation studies using multilevel
physics models. Physics of Plasmas 6 (5) (1999) 1796 – 1803

[4] Sugiyama, T., Kusano, K.: Multi-scale plasma simulation by
the interlocking of magnetohydrodynamic model and particle-
in-cell kinetic models. Journal of Computational Physics 227
(2007) 1340 – 1352

[5] Allen, M., Tildesley, D.: Computer simulation of liquids.
Clarendon Press (1987)

[6] Gibbon, P., Berberich, R.S.B., Karmakar, A., Arnold, L.,
Masek, M.: Plasma simulation with parallel kinetic particle
codes. In: NIC Symposium. (2010)

[7] Bartos, P., Blazek, J.: Hybrid computer simulation scheme
for computational study of low-temperature plasma containing
micrometer-sized dust particles. IEEE Transactions on Plasma
Science 38, No 9 (2010) 2407 – 2411

[8] Markidis, S., Lapenta, G., Rizwan-uddin: Multi-scale simu-
lations of plasma with ipic3d. Mathematics and Computers in
Simulation 80 (2010) 1509 – 1519

[9] Liewer, P.C., Decyk, V., Dawson, J., Fox, G.C.: A univer-

sal concurrent algorithm for plasma particle-in-cell simulation
codes. In: Proc. Third Hypercube Conference. Number C3P-
362 (1988) 1101–1107

[10] Nieter, C., Cary, J.R.: Vorpal: a versatile plasma simulation
code. Journal of Computational Physics 196 (2004) 448 – 473

[11] Kemp, A.J., Cohen, B.I., Divol, L.: Integrated kinetic simu-
lation of laser-plasma interactions, fast-electron generation and
transport in fast ignition. Physics of Plasmas 17 (5) (2010) 1 –
7

[12] Tusubota, K., Wada, S., Yamaguchi, T.: Particle method for
computer simulation of red blood cell motion in blood flows.
Computer Methods and Programs in Biomedicine 83 (2006)
139 – 146

[13] Leist, A., Playne, D.P., Hawick, K.A.: Exploiting Graphi-
cal Processing Units for Data-Parallel Scientific Applications.
Concurrency and Computation: Practice and Experience 21
(2009) 2400–2437 CSTN-065.

[14] Hawick, K.A., Playne, D.P., Johnson, M.G.B.: Numerical pre-
cision and benchmarking very-high-order integration of parti-
cle dynamics on gpu accelerators. In: Proc. International Con-
ference on Computer Design (CDES’11). Number CDE4469,
Las Vegas, USA, CSREA (2011) 83–89

[15] NVIDIA R© Corporation: CUDATM 3.1 Programming Guide.
(2010) Last accessed September 2010.

[16] Woo, M., Neider, J., Davis, T., Shreiner, D.: OpenGL Pro-
gramming Guide: The Official Guide to Learning OpenGL. 3rd
edition edn. Addison-Wesley (1999) ISBN:0201604582.

[17] Playne, D.P., Hawick, K.A.: Comparison of GPU Architectures
for Asynchronous Communication with Finite-Differencing
Applications. Concurrency and Computation: Practice and Ex-
perience (CCPE) Online (2011) 1–11

[18] Lyes, T.S., Hawick, K.A.: Fire and flame simulation using
particle systems and cuda. Technical Report CSTN-168, Com-
puter Science, Massey University, Albany, North Shore 102-
904, Auckland, New Zealand (2012)

[19] Bailey, M., Cunningham, S.: Graphics Shaders - Theory and
Practice. Second edn. CRC Press (2012) ISBN 978-1-56881-
434-6.

[20] Engel, W., ed.: SHADER X3 - Advanced Rendering with Di-
rectX and OpenGL. Charles River Media (2005)

[21] Lyes, T.S.: Review of stereo vision. Technical Report CSTN-
155, Computer Science, Massey University, Albany, North
Shore 102-904, Auckland, New Zealand (2011) In Proc. IIMS
Postgraduate Student Conference, October 2011.

[22] Lyes, T., Hawick, K.: Implementing stereo vision of gpu-
accelerated scientific simulations using commodity hardware.
In: Proc. International Conference on Computer Graphics and
Virtual Reality (CGVR’11). Number CGV4047, Las Vegas,
USA, CSREA (2011) 76–82

Int'l Conf. Computer Graphics and Virtual Reality |  CGVR'13  | 31



The Component Entity System for Virtual Environments 
 

Justin Ehrlich 

School of Computer Sciences, Western Illinois University 

Macomb, Illinois, US 
 

Abstract - This paper reviews a novel design pattern, 

named Component Entity System (CES), which has 

become popular for developing commercial and 

independent games. While the CES pattern is popular 

within game development communities, it has yet to 

be formally introduced to the virtual reality academic 

field. Traditionally object oriented design patterns 

have been used to develop games, and while this 

works well for simple environments, it soon becomes 

unmanageable due to a proliferation of classes, 

duplicate code, and over-customization of a complex 

environment. The beauty of the CES design pattern is 

the separation of functionality from entities. Entities 

are little more than a collection of functional 

components that can change dynamically during 

runtime, all managed by systems. It’s an elegant 

design pattern that should be used as a basis for any 

large environment architecture. An open-sourced 

example was created as an example of an 

architecture utilizing CES. 

Keywords: virtual reality, design pattern, 

component entity system, game 

1 Introduction 
In the past few decades virtual reality has become a 

“holy grail” across a multitude of disciplines. It has 

been researched and used as a tool for education[1], 

interventions for special education[2][3], trainers for 

the military and government[4], and even improving 

cognition[5]. Programming virtual environments is a 

massive undertaking that can quickly overwhelm 

even the best programmers due to the exponential 

growth of complexity as environment entities that 

interact with each other and their environment 

increase.  When developing complex interactive 

environments, it is imperative to choose a good 

design pattern that allows for extensibility and 

modulation without introducing a rigid architecture 

that is too complex to efficiently actually use. Also, 

it’s important to design the architecture in such a way 

that a non-technical designer can add content to the 

environment at run-time via a script, without having 

to program the changes and recompile. This allows 

the development of an environment to be divided 

between the design and programming portions. Also, 

if developed carefully, others outside of development 

team should be able to extend the environment for 

other purposes. 

1.1 Object Oriented Past 
Virtual environments are data-driven in that entities, 

environments, and events are allowed to enter the 

system and asynchronously interact with each other. 

An almost infinite number of possible situations are 

possible at any moment and interaction between 

entities and their environments depend on these 

conditions. The modularity of the entities and the 

interactions between these entities dynamically 

change in the environment and may not, and should 

not, be known at compile time, which makes strict 

object oriented programming inconvenient and 

unmanageable. Classic inheritance does not work 

well as a design pattern for large virtual 

environments. Typically these environments contain 

entities, environments, and managers that keep track 

of each. A general manager might keep of all of the 

entities, so there is usually a base class named Entity. 

A render manager might keep track of all of the 

entities that can be rendered, so Entity may be 

subclassed as DrawableEntity. Further, some of these 

entities can move, so are subclassed to a 

MoveableDrawableEntity object, so a physics 

manager can keep track of them. Some of the objects 

move differently, so ones that can fly may be 

subclassed as FlyableMovableDrawableEntity. Every 

time more functionality is added, the hierarchy is 

increased. This eventually causes a proliferation of 

subclasses that can become unmanageable. Further, 

as functionality is added a choice must be made of 

adding to the root or to the leaves of the hierarchy. If 

added to the leaves, duplication of code will be 

32 Int'l Conf. Computer Graphics and Virtual Reality |  CGVR'13  |



inevitable, e.g., multiple physics methods that do the 

same thing may be added to a rock and a brick 

subclass. If added to the root, there will be 

functionality in objects that shouldn’t have it, e.g., a 

rock can jump. This anti-pattern is identified by West 

[6] as the “blob.” 

 A better approach is to use composition as 

opposed to inheritance. This gives two important 

benefits: runtime composition of entities and the 

removal of an unruly hierarchy of classes. To 

compose an entity at runtime, instantiated 

functionality can be added dynamically. For instance, 

there may be a pointer to a move object that defines 

the movement functionality. Initially an object may 

be controlled by an artificial intelligence object. If 

this was a flyable object, than an instance of the 

ComputerFlyMove class may be passed to the object 

and pointed to by the move pointer. Some other time 

the user may want to take control of the object. The 

ComputerFlyMove object can be replaced by the 

UserMove object anytime. By breaking up the 

functionality into individual classes, the functionality 

of the object can be defined and redefined at runtime 

without having to compile specialized classes. There 

only needs to be functional class pointers and 

accessor methods that support this dynamic change. 

As noted by West [6], the disadvantage is that a 

“blob” still exist. Without inheritance, it will be 

necessary to have pointers to objects for every 

possible type of functionality possible in an entity. A 

rock may have null in place of the move pointer.  

 A better solution is to remove these pointers 

and instead define each entity as a collection of 

functional component objects. This design pattern, 

named Component Entity System (CES), is an 

excellent approach for developers to use when 

developing complex virtual environments because it 

solves most of the traditional Object Oriented 

Programming (OOP) patterns in existence. While the 

CES pattern is popular within game development 

communities [7][8], it has yet to be formally 

introduced to the Virtual Reality academic field. As a 

note, there have been design patterns introduced that 

are similar, such as Pettifer, Cook, Marsh and West’s 

DIVA3 [9]. I have recently been using the CES 

design pattern for my advanced graphics courses and 

research projects (virtual reality-based interventions 

for those with Autism) and it has proven to be 

popular among my students and research colleagues. 

It’s important to formalize design patterns to not only 

make the designing and development phase of a 

project more efficient, but to also improve team 

collaboration. If a common design pattern is used, it’s 

easier for others to extend the work since the 

architecture is already somewhat understood. I 

created a simple arcade shooting game named Alien 

Invasion to demonstrate the CES design pattern. It is 

written in C# and targets the XNA 4.0 framework. 

The source is licensed under the Simplified BSD 

License and is available here: 

https://www.assembla.com/code/ComponentEntitySy

stemAlienInvasion/git/nodes or using git: 

git://git.assembla.com/ComponentEntitySystemAlien

Invasion.git. I’ll be taking examples from the code to 

demonstrate the rest of this paper. 

2 A Better Approach: Component 

Entity System Architecture 
In order to permit the functionality of entities to 

dynamically change at runtime, composition over 

inheritance is a must. For entities to be given 

additional functionality, new pointers must be added 

to the Entity class creating a proliferation of pointers 

to objects that encapsulate functionality. A better 

approach is to use one base class for all functionality 

and have the entities keep track of all this 

functionality in a collection. This allows developers 

to extend the functionality of a virtual environment 

without modifying the entity class, which so 

modifications should not break any other code. By 

allowing an unrestricted collection of components, an 

entity can be made up of any combination of 

components at runtime without re-compiling. A 

designer can create a new entity type without 

programming or compiling. By only debugging the 

various components, the programmers do not need to 

worry about every possible combination, therefore 

the debugging stage much is much less complicated 

and timely. 

2.1 Component 
The components encapsulate the functionality of the 

entities. In order to allow any combination of 

components and to assure encapsulation of 

Int'l Conf. Computer Graphics and Virtual Reality |  CGVR'13  | 33



functionality, the components are autonomous and do 

not know about each other. This autonomous 

organization allows the system to be extended or 

modified without worrying about side effects, which 

can cause problems that are difficult to debug. There 

is no direct message passing, although indirect 

exchanges of information are done by the systems, 

which is discussed further in the system section. The 

entity class will keep track of a collection of 

components, but will not be concerned with which 

types. Therefore there must be one base type that is 

an interface for all other components. As an example 

of how minimal this component should be defined, 

figure 1 demonstrates the simplicity of the 

component interface from my Alien Invasion game.  

 

Figure 1: The Component Interface 

The data is also encapsulated so each 

component manages its own function and data. 

Therefore each component does not need to know 

about its entity to which it belongs. As an example, 

an entity may require a position component. Any data 

that is necessary for the functionality should be 

contained within the component. While this may 

tempt a programmer to create large components, it’s 

not advisable because this may cause duplication of 

code and data, e.g., both a moving component and a 

static component keep track of the entity’s positions. 

Typically complex functionality can be broken into 

multiple components and any messaging will be 

handled by the system. For instance, the moving 

component can be broken down into both a velocity 

and a position component. The position component 

only keeps track of the position while the velocity 

keeps track of velocity and perhaps acceleration. A 

moveable entity will contain both of these 

components while a static entity will only contain the 

position. As will be discussed later, this will also 

allow only one system to manage these components 

instead of two. This system will update the position 

component with the velocity calculated by the 

velocity component. The velocity component is 

demonstrated in figure 2. 

 

Figure 2: The Velocity Component 

2.2 Entity 
Each entity is defined by an “is-a” relationship to its 

components, so the entity class defines a collection of 

components and accessor methods to interface to this 

collection. Since all of the functionality and data is 

encapsulated in the components, there is no need to 

place any other fields besides an identification 

number to allow for communication between 

systems. As explained earlier, there should be no 

subclassing of entities since any added functionality 

is placed in components. Therefore my entity class, 

as shown in figure 3, is a sealed class. 

 

Figure 3: Entity Class 

The components are stored in a list of type 

IComponent and can be retrieved by the subclass of 

34 Int'l Conf. Computer Graphics and Virtual Reality |  CGVR'13  |



the IComponent. For instance, if the velocity 

manager needed to retrieve the velocity component 

from a specific entity, it could call 

tempEntity.GetComponent<VelocityComponent>(). 

In this simplistic implementation, if there are more 

than one components of the same type only the first 

is retrieved. There may be times where multiple 

component types need to be supported, such as an 

entity storing two different resources of the same 

type. In this case the GetComponent will need to 

return a list containing these components, e.g., 

components.OfType<ResourceComponent>(). 

2.3 System 
Systems are where the entities and components are 

managed. In its most basic form, and as implemented 

in Alien Invasion, all of the systems are composed 

and managed within a system manager. The system 

manager also keeps track of all of the entities through 

a single list. In typical interactive environments, the 

application, or “game,” loop first retrieves 

information from the user, updates the game entities, 

and renders the scene [10]. In a CES system, the 

application loop does the same thing, but through a 

collection of systems. During the application loop all 

of the systems are called to update the list of entities. 

Each manager goes through the list and determines if 

the entities contain the valid components for its 

operation. As Wenderlich [11] explains, this process 

is analogous to a lock and key. For instance, in order 

for an entity to unlock the move system, the move 

system checks the teeth of the key for both the 

velocity and position components. Both of these must 

be there because there will be indirect 

communication between them. If the move system 

verifies these two components exist, then the velocity 

is updated by calling update along with the amount of 

time that has passed since the last call. Then the new 

velocity is sent to the update method of the position 

component to update its position. Refer to figure 2 

for the details. The lock allows for an entity to 

dynamically lose or gain functionality without 

breaking the system. If a moveable objects becomes 

unmovable, e.g. an entity dies, the move system will 

simply not update the entity. The first system to be 

called is the user system, which updates all entities 

that contain a UserMoveComponent, which contains 

the necessary functionality to interact with the user. 

This system may also require the velocity 

component, as the velocity component receives a new 

velocity based upon the user controls. 

 The last system to be called in the 

application loop is the draw system. The Alien 

Invasion’s draw system requires both a position and a 

drawable component. Since the Alien Invasion is a 

2D game, all that the drawable component holds is 

the sprite to draw. The drawable component receives 

the position from the position component via the 

draw system, which works similar to the move 

system. Figure 4 lists the code for the draw system. If 

a programmer decided to render the game in 3D, she 

could easily do so by only switching out the draw 

component with one that draws in 3D. Figure 5 is a 

screenshot taken from Alien Invasion demonstrating 

the 2D game. 

 

Figure 4: The Draw System 

3 Conclusions 
The Component Entity System is a flexible design 

pattern that allows for creating a complex virtual 

environment while maintaining a simple extensible 

design. The beauty of the CES design pattern is the 

separation of functionality from entities. Entities are 

little more than a collection of functional 

components, managed by systems. An entity is 

defined by its functionality, and this functionality can 

change dynamically during runtime. Functionality 

can be added without breaking existing code. By 

treating the entity as a collection of functional 

components, the unmanageable proliferation of 

classes can be avoided. The code becomes much 

cleaner and entity functionality can be dynamically 

altered at run time without writing an entirely new 

subclass. This allows the code to be extended much 

Int'l Conf. Computer Graphics and Virtual Reality |  CGVR'13  | 35



easier, and even allows designers to develop entities 

without ever touching the code. The CES design 

pattern should be a starting point for developers to 

avoid the pitfalls of over complex design.  

 

Figure 5: Alien Invasion! 

4 Bibliography 
[1] E. Ai-Lim Lee, K. W. Wong, and C. C. Fung, “How 

Does Desktop Virtual Reality Enhance Learning 
Outcomes? A Structural Equation Modeling 
Approach,” Computers & Education, 2010. 

[2] S. H. Chen and V. Bernard-Opitz, “Comparison 
of personal and computer-assisted instruction 
for children with autism,” Mental Retardation, 
vol. 31, p. 368, 1993. 

[3] P. Mitchell, S. Parsons, and A. Leonard, “Using 
Virtual Environments for Teaching Social 
Understanding to 6 Adolescents with Autistic 
Spectrum Disorders,” Journal of Autism & 
Developmental Disorders, vol. 37, pp. 589–600, 
2007. 

[4] B. Bergeron, “Developing Serious Games (Game 
Development Series),” 2006. 

[5] L. S. Colzato, P. J. A. van Leeuwen, W. P. M. van 
den Wildenberg, and B. Hommel, “DOOM’d to 
switch: superior cognitive flexibility in players of 
first person shooter games,” Frontiers in 
Cognition, vol. 1, 2010. 

[6] “Cowboy Programming » Evolve Your 
Hierarchy.” [Online]. Available: 
http://cowboyprogramming.com/2007/01/05/e
volve-your-heirachy/. [Accessed: 15-Mar-2013]. 

[7] M. Dickheiser, Game Programming Gems 6 
(Book & CD-ROM), 1st ed. Charles River Media, 
2006. 

[8] “Component Based Entity System Design Part 1 
- Purple Pwny Studios.” [Online]. Available: 
http://purplepwny.com/blog/component_base

d_entity_system_design_part_1.html. 
[Accessed: 17-Mar-2013]. 

[9] S. Pettifer, J. Cook, J. Marsh, and A. West, 
“DEVA3: architecture for a large-scale 
distributed virtual reality system,” in 
Proceedings of the ACM symposium on Virtual 
reality software and technology, New York, NY, 
USA, 2000, pp. 33–40. 

[10] M. Stutz, The Linux cookbook: tips and 
techniques for everyday use. San Francisco: 
Linux Journal Press, 2001. 

[11] “Introduction to Component Based Architecture 
in Games.” [Online]. Available: 
http://www.raywenderlich.com/24878/introdu
ction-to-component-based-architecture-in-
games. [Accessed: 18-Mar-2013]. 

 

36 Int'l Conf. Computer Graphics and Virtual Reality |  CGVR'13  |



Data Structures Learning – A Visually Assisted Approach 
 

Loay Alzubaidi1, Ammar El Hassan2  

 
 

1Department of Computer Engineering & Science, Prince Muhammad bin Fahd University 
AL-Khobar, Saudi Arabia 

lalzubaidi@pmu.edu.sa 
 

2Department of Information Technology, Prince Muhammad bin Fahd University 
AL-Khobar, Saudi Arabia 

aelhassan@pmu.edu.sa 
 
 

 
Abstract 

 
Visual aids and multimedia contribute positively to the 
pedagogical value of in-class and eLearning education.  In this 
paper, we experiment with a visualization tool to gauge its 
effect on the test scores and, by implication, the understanding 
levels within Data Structures course offered at Junior level for 
Computer Science students.  Data Structures constitutes an 
important foundation topic in computer science education 
which many students fail to do well at due to the complexity of 
some of its concepts and theories. Therefore, we anticipate that 
this (Java Applet) tool will support the teaching and help 
students better understand the (C++) coding and algorithms 
relating to Binary Search Trees (BST). The test pool is a 
segregated learning environment which enables us to look at 
the effect of visual aids on gender as well.  The percentage of 
test score improvement between the group of students who use 
the visualizer and those who do not ranges between 10 and 13 
percent.  Although, male students do perform slightly better 
with the help of the visual aids, the difference in performance 
does not constitute a major advantage that supports gender 
related performance theories 
 
Keywords: Algorithms, Binary Search Tree, Code-Behind, 
Data Structures, Learning, Pedagogical, Syntax, Visualiser 

 

1. Introduction 
The significance of Algorithms and Data Structures [1, 2 
and 4] within Computer Science education is often 
undermined by the complexities of the concepts and the 
difficulties in communicating those concepts in an 
effective way.  This is compounded by the position of 
data structures and algorithms courses on college study 
plans.  As a fundamental subject required by two or three 
majors within IT colleges, it tends to be offered at 
sophomore or junior levels. In doing so, we 
automatically divide the class into two groups based on 
the level of comprehension achieved.  Leaving the 
course for a further semester or year (to wait for 
students’ technical maturity to improve) has a counter 
effect on the whole study plan with unacceptable delays. 
Therefore the solution to the problem of understanding 
the complexities in data structures and algorithms cannot 

be legislated for by shifting the position (order) of the 
course within college study plans; rather it needs to be 
based on current position of the course within study 
plans.  For such a solution to stand a good chance of 
success, it needs to additional support in the form of 
modern education techniques including eLearning 
applications [4, 7], visualization [6, 10], games [3, 5], 
web-based, visual interactive programs [7, 9] and 
animations etc. as a new avenue in the search for the 
optimum knowledge dissemination technique. 

 
To this end, we introduce in this paper an intelligent 
visual representation of some of the concepts of data 
structures.  We will show with a Java applet how a 
typical data structures function such as INSERT is 
performed both visually and with the corresponding code 
generated simultaneously and in parallel.  The idea is 
that this can aid the learning process in the classroom 
with practical visualization that demonstrates the 
correctness of the theory, thus increasing their 
motivation and, by implication, understanding as well 
[11, 12]. In the sections to follow, some of the work 
carried out on the effects of computer visual aid tools on 
learning will be introduced, together with the visualizer 
that was used in this study, this will be followed by the 
methodology followed and the statistical data collected 
during study, finally the conclusions and further work 
will be discussed. 
 

2. Learning with Visual Aids 
Some of the work carried out in this area includes an 
earlier project that utilized the motivational effect of 
gaming as a learning tool [3, 12].  Although we are not 
developing a learning game in this paper, it is envisaged 
that the visualizer tool presented here will contribute to 
the overall motivation of the students as much as a 
typical game would.   The motivational aspect is only 
one of the outputs of the learning support system that 
we are anticipating; other components include gender-
specific learning patterns [14], effect of knowledge 
levels in the course prerequisite, and also the effect of 

Int'l Conf. Computer Graphics and Virtual Reality |  CGVR'13  | 37



the visualizer on the performance of the students.  As 
we will show with statistical data collected over two 
consecutive semesters, the visualizer does contribute a 
notable increase in the performance and, by implication, 
the understanding of the students.  Another notable (and 
expected) phenomenon is the discrepancy in the 
increment in performance between the two genders. 

 

3. Methodology & Process 

The BST is a Binary tree, which meets the following 
requirements:   

• Each node contains a key 
• The key of every node in the left sub-tree is 

smaller than the key of this node 
• the key of every node in the right sub-tree is 

larger than the key of this node 

Previously, students in the Data Structures course 
performed poorly in the area of BST manipulation 
(Search, Insert, etc.) due to lack of understanding of: 
 

(i) The complexity of the theoretical concepts 
presented 

(ii) The syntax and logic of the C++ code used to 
illustrate the ideas 

 
The visualizer created in this research was inspired by 
similar work in this area [17] and will demonstrate major 
functionality relating to binary search trees, including 
Insert (Sequential), Insert (Random), Search and Delete.  
The node definition for the tree is shown below; 
noteworthy in the figures that follow in this section is the 
inclusion of the code-behind feature which shows the 
syntax of the required function as a statement-by-
statement C++ code. 
 
A. Node Definition 

struct node { 
int key; 

node* left; 

node* right}; 

B. Insert Operation 

The Insert operation should follow the binary search tree 
property.  
 
If the key value to insert is less than the key value of 
root, new node should be inserted to the left sub-tree.  If 
left sub-tree is null, simply insert the new node here. 
 

If the key value to insert is greater than that of the root, 
new node should be inserted in the right sub-tree.  If 
right sub-tree is null, simply insert new node here. 
 
Other scenarios are illustrated in the recursive pseudo 
code below. 
 
///////////////////////////////////////////////////////////////////////////// 

//  Purpose: insert node with data t into the BST 

//  Inputs:    pointer of new node ,  pointer of tree_node 

//  Effect:    do nothing if tree already contains node 

//     otherwise, add the new node  

///////////////////////////////////////////////////////////////////////////// 

Insert(new_node * , tree_node * ) 
if tree_node is not True then 

tree_node   new_node;    
else if (key of new_node < key of tree_node) 

insert(new_node , left child of tree_node) 
else 

insert(new_node, right child of tree_node) 
endif 
 

 
Figure 1. Graph of insert operation with C++ code 

 
Figure 1, Shows the state of the application with a few 
nodes already inserted. By inserting a new node the 
application follows the BST property and simple C++ 
code displayed in the left side of the application to show 
the students adding process step by step. 
 
C.  Search Operation 

Searching for a node in a BST is analogous to the Insert 
operation, above.  The search algorithm traverses the tree 
"in-depth" by following binary search tree property and 
comparing key values of each visited node with that of 
the target node. 

///////////////////////////////////////////////////////////////////////////// 

//   Purpose: find Item in the Tree 

//  Inputs:     target to be found, tree_node pointer 

38 Int'l Conf. Computer Graphics and Virtual Reality |  CGVR'13  |



//  Output:    pointer of node containing the target 

//                  , if it exists; NULL otherwise. 

///////////////////////////////////////////////////////////////////////////// 

search (tree_node * , int target) 

if (tree_node = NULL) 
return NULL 

else if ( target < key of tree_node ) 

return search(left child,target) 

else if ( target > key of tree_node) 

return search(right child, target) 

else 

return tree_node 

endif 

 
Figure 2. Graph of search operation with C++ code 

 
D.  Delete Operation 

The Delete operation on binary search tree is more 
complicated than the Add and Search operations. It is 
best divided into two stages: 

a) search for a target node 
b) if the node is found, run specific delete algorithm 

depending of the node status: 

i. Node is a leaf 
ii. Node has one child 

iii. Node has two children 

///////////////////////////////////////////////////////////////////////////// 
//  Purpose: delete node  
//  Inputs:    target value to be deleted, tree_node pointer 
//  Effect:   update binary search tree by deleting the 
 //               target node 
///////////////////////////////////////////////////////////////////////////// 

delete( target , tree_node * ) 

// use the temp * as temperary pointer   
If (target < key of tree_node) 

delete(target, left child) 
else if (target > key of tree_node) 

delete(target, right child) 
else  // found the node to be deleted! Take action 

//based on number of node children 
    if (both children equal NULL) 
  delete tree_node 
 else if (left child = NULL)  
  // node with a right child 

temp = tree_node 
tree_node = righ child of tree_node 
delete temp 

 else if (right child = NULL) 
  // node with a left child 

temp = tree_node 
tree_node = left child of tree_node 
delete temp 

else   // Removing a node with 2 children 
//SWAP the key of tree_node with the  
//Minimum key from right subtree 
 
temp = pointer of node with the 
            Min key from right subtree 
key of tree_node = key of temp 
delete(key of temp, right child) 

 
 

 
Figure 3. Graph of Delete operation with C++ code 

 

4. Test Statistics 
With the assumption that the visualization application 
will be of positive pedagogical value, we conducted an 
experiment over a period of two consecutive semesters 
involving Computer Science students at PMU.   The 
results obtained, in accordance with our expectations do 
support the original hypothesis of the importance of 
visual aids for learning plus some unexpected results.  
The results are discussed in this section.  The 
experiment that was conducted consisted of a Major 
exam on the subject of Binary Trees; specifically on the 
main concepts: definition, syntax of node declaration, 
code for Insert, Search and also Delete.   The student 

Int'l Conf. Computer Graphics and Virtual Reality |  CGVR'13  | 39



samples were selected according to the following 
criteria: 
 4 samples: 2 Female classes and 2 Male classes.   
 2 samples (1 Female and 1 Male) used the 

visualization tool and 2 did not 
 Sample size is 20 students, distributed evenly 

around the Average GPA for the group: 5 below; 5 
equal (roughly) and 5 above average.  5 students 
from each group had to be eliminated due to various 
reasons, like missing the exam or having technical 
difficulties with workstations (including Java 
support on the host environment) or other technical 
problems like computer crashes. 

 
Prior to conducting the experiments and collecting the 
data, our initial set of expectations, based on teaching 
experience, were as follows: 
 
 All students would benefit from the visual aids as 

supportive material to the textbook and slides 
 The effect of the visual aids would, at worst, be 

negligible, but most likely, quite positive 
 As the visual aid application is gender-neutral [16], 

Female students would be affected by it in the same 
way as male students.  As Computer Science and IT 
instructors though, we were anticipating that males 
would enjoy the visualizer more and hence gain a 
higher level of benefit from it. 

 
It is worth noting that our approach for testing was not to 
use the same students in sample pool for a pre-visualizer 
and post-visualizer test [18].  This is because a pre-
visualizer test would put the students in the frame of 
mind to enable them to improve their results in 
subsequent tests with or without the aid of a visualizer, 
thus corrupting the statistics.   
 
Our approach, rather, was to test distinct groups of 
students taught by the same instructor from the same 
textbook.  We based our grouping criteria on the students 
GPA within the College of Computer Engineering & 
Science at PMU.  This enabled us to obtain results which 
are reasonably representative of the effects of the 
visualizer aid.   Hence our philosophy is that a student 
with 2.5 GPA would probably score a similar result to 
another student with 2.5 GPA if they are both taught by 
the same instructor and from the same textbook; this is 
unless one of the two students had a distinct instructional 
advantage like a visualizer.   
 
Due to the fact that we are testing different students in 
each test group, the effect of the visualizer on the 
performance of the students in the exam cannot be 
gauged perfectly, there is no elegant solution for this 
problem unless we can somehow roll-back/wipe the 

students memory of any exam questions.  By the same 
token, it can be argued that there is a problem of sample 
pollution that takes place when the same student is tested 
twice in a short time span [18].  Neither approach is 
perfect, the approach presented here is sufficiently 
indicative of the phenomenon being studied. 
 

Table 1. Test scores - Male and Female students 
Males – No Visualizer Males – With Visualizer 

    

ID GPA 
Test 

Score % ID GPA 
Test 

Score % 

S1 2.2 56  S1 2.4 69 

S2 2.54 61  S2 2.3 72 

S3 2.48 50  S3 2.4 64 

S4 2.32 62  S4 2.5 73 

S5 2.44 39.5  S5 2.63 55 

S6 2.95 60  S6 2.87 74 

S7 2.91 41  S7 2.84 69 

S8 2.97 69  S8 2.83 77 

S9 2.97 64.5  S9 2.88 86 

S10 2.94 67  S10 2.89 77 

S11 3.6 85  S11 3.62 90 

S12 3.22 81.5  S12 3.39 87 

S13 3.42 79  S13 3.35 84 

S14 3.32 66.5  S14 3.34 83 

S15 3.41 87  S15 3.78 92.5 

Average 2.91 64.60 Average 2.93 76.83 
Females – No Visualizer Females – With Visualizer 

    

ID GPA 
Test Score 

% ID GPA 
Test Score 

% 

S1 2.6 39  S1 2.48 61 

S2 2.3 61  S2 2.33 66 

S3 2.4 54.5  S3 2.44 60 

S4 2.65 43.5  S4 2.23 58 

S5 2.65 34  S5 2.62 55 

S6 2.89 49.5  S6 2.81 78 

S7 2.91 67  S7 2.8 73 

S8 2.93 62  S8 2.88 74 

S9 2.89 71  S9 2.92 74 

S10 2.88 72  S10 2.98 86 

S11 3.72 69  S11 3.3 72.5 

S12 3.36 83  S12 3.45 84 

S13 3.67 76.5  S13 3.12 91 

S14 3.57 89  S14 3.33 90 

S15 3.61 91  S15 3.47 92 

Average 3.00 64.13 Average 2.88 74.3 

40 Int'l Conf. Computer Graphics and Virtual Reality |  CGVR'13  |



The test results are listed in table 1 above, showing 
Student ID, GPA and Test Score Percentage. 
 
 

 
 

Figure 4. Male Students Test Scores 
 
 

 
 

Figure 5. Female Students Test Scores 
 
 

5. Conclusions, Limitations & Future Work 
The effect of using the visual application tool was both 
as expected and somehow contrary to our expectations at 
the same time.  Both males and females average exam 
grade improved as a result of using the visualizer.  
However, they increased from 64.6% to 76.83% for 
males and from 64.13% to 74.30% for females.   This 
leads to one of two conclusions:  
 
(a) Although we predicted that males would like the 

visual learning technique more than females, they 
are not necessarily increasing their understanding 
of the underlying complexities at a rate that is large 
enough to justify the initial hypothesis  

or 
 

(b) Female students are as amenable [15] to visualizer 
aids as male counterparts, and that they are at least 
as capable of transforming fun to knowledge of the 
concepts as their male counterparts.  

 
It is well established in almost all references in this paper 
that visual aids and multimedia add significant 
pedagogical value in education.  We set out to test this 
phenomenon with a specific, fairly complex computer 
science sub-field and have found that these subjects are 
just as amenable to education aids as others.  We also 
found that, even though, we assumed that gender will 
constitute a significant factor in the study, it turned out to 
be almost negligible.   
 
There are limitations in this work; a significant one is the 
sample sizes.  20 students in each group is a very good 
sample size for illustrating a phenomenon, however, we 
would like to test the effect of visual aids on learning 
algorithms with 200 or more students to get a better 
impression of the effect, this will be our next step, 
although controlling 200 students in terms of sample 
pollution is likely to be significantly more difficult.   
 
The other limitation in our work, which is less serious, is 
that our application is written in Java, even though it aids 
C++ learning, which is the programming language used 
in class.  Our visual aid does not include video and audio 
features, nor did we test the effects of such aids on 
different age groups in the college.  We anticipate these 
areas can be touched upon in future work. 
 
In conclusion, the visualizer presented here did have a 
significant and positive effect on the performance and 
therefore the understanding of the students of the Data 
Structures course. As such, it constitutes a good 
eLearning tool to support the traditional in-class and lab 
teaching methods. 
 
 

6. References 
[1] W. H. Ford and W. R.  Topp “Data Structures with 

C++ using STL”  Second Edition. Prentice Hall. ‘02 
 

[2] J. Beidler  “Data Structures and Algorithms” 
Springer Verlag. ‘97 
 

[3] S. Shabanah, J. Chen, H. Wechsler, D. Carr and E. 
Wegman “Designing Computer Games to Teach 
Algorithms” 
Proc. 2010 Seventh International Conference on 
Information Technology, ITNG '10 
 

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 101112131415

Males – No Visualizer

Males – With Visualizer

students

Sc
or
e 
%

Average = 76.83

Average = 64.60

Low GPA  Average GPA High  GPA

30
40
50
60
70
80
90

100

0 1 2 3 4 5 6 7 8 9 101112131415

Females – No Visualizer
Femles – With Visualizer

students

Sc
or
e 
%

Average = 74.30
Average = 64.13

Low GPA  Average GPA High  GPA

Int'l Conf. Computer Graphics and Virtual Reality |  CGVR'13  | 41



[4] Budd, Timothy, “Classic Data Structures in Java” 
Addison Wesley Longman. ‘01. 

 
[5] A. Schalk, J. Juan Palacios-Perez “Concrete Data 

Structures as Games” Electronic Notes in 
Theoretical Computer Science (ENTCS) Volume 
122, Elsevier Science Publishers B. V. March ‘05
  
 

[6] A. S. Erkan, T. J. VanSlyke and T. M. Scaffidi 
“Data structure visualization with latex and prefuse” 
Proc. 12th annual SIGCSE conference on Innovation 
and technology in computer science education 
ITiCSE  June ‘07 
 

[7] M. L. Model “Data structures, data abstraction: a 
contemporary introduction using C++” Prentice-
Hall, Inc. January ‘94 

 
 

[8] A. Drozdek “Data Structures and Algorithms in 
Java” Brooks Cole. ‘01 

 
[9] T. L. Naps, G. Rossling, V. Almstrum, W. Dann, R. 

Fleischer, C. Hundhausen, A. Korhonen, L. Malmi, 
M. McNally, S. Rodger, and J. A. Velazquez-
Iturbide 
“Exploring the role of visualization and engagement 
in computer science education” ITiCSE-WGR ’02: 
Working group reports from ITiCSE on Innovation 
and technology in computer science education, 
Aarhus.  ACM Press, ‘02, pp. 131–152 
 

[10] Kris M. Y. Law, Victor C. S. Lee, Y. T. Yu “Learning 
motivation in e-learning facilitated computer 
programming courses” 
Computers & Education , Volume 55 Issue 1 Elsevier 
Science Ltd. August ‘10 
 

[11] H. Tüzün, M. Yılmaz-Soylu, T. Karakuş, Y. İnal, G. 
Kızılkaya “The effects of computer games on primary 
school students' achievement and motivation in geography 
learning” Computers & Education , Volume 52 Issue 1 
Elsevier Science Ltd. January ‘09 

 
[12] R. Lawrence “Teaching data structures using competitive 

games” IEEE Transactions on Education  Volume 47, 
Issue 4 pp 459 – 466 NOV ‘04 
 

[13] M. P. Chen, L. C. Wang “The Effects of Type of 
Interactivity in Experiential Game-Based Learning” 
Graduate Institute of Information and Computer 
Education, National Taiwan Normal University, Taipei, 
Taiwan 10610 Proc. 4th International Conference on E-
Learning and Games: Learning by Playing. Game-based 
Education System Design and Development Edutainment 
'09 

 
 

[14] J. C. Yen, J. Y. Wang and I. J. Chen“Gender differences 
in mobile game-based learning to promote intrinsic 
motivation” Proc. 15th WSEAS international conference 
on Computers  World Scientific and Engineering 
Academy and Society (WSEAS) Stevens Point, 
Wisconsin, USA ©2011 
 

[15] K. Al Mubireek (Author), S. K. Damarin (Advisor) 
“Gender-oriented vs. gender-neutral computer games in 
education” Doctoral Dissertation - The Ohio State 
University '03 
 

[16] R.Mukundan “Java Applets Centre” 
http://www.cosc.canterbury.ac.nz/mukundan/dsal/BSTNe
w.htm, University of Canterbury 
 

[17] K. Davis and Dr. A.G. Hamilton Taylor “Interactivity in 
Data Structures and Algorithm Courses with SKA for 
RBTs” International Journal of Innovation, Management 
and Technology, Vol. 2, No. 1, February, 2011 ISSN: 
2010-0248 

 

42 Int'l Conf. Computer Graphics and Virtual Reality |  CGVR'13  |



Generation and Rendering of Fractal Terrains on Approximated
Spherical Surfaces

J. M. Willemse and K. A. Hawick
Computer Science, Institute of Natural and Mathematical Sciences

Massey University, Albany, New Zealand
email: { j.m.willemse, k.a.hawick }@massey.ac.nz

Tel: +64 9 414 0800 Fax: +64 9 441 8181

Abstract— Terrain modelling and rendering is an important
aspect of modern computer games, computer generated
scene rendering in movies and is also used in scientific
simulations and geographic modelling. Rendering a plan-
etary surface without polar geometry issues has long been a
difficult problem, and this is exacerbated when simulation
models need approximately smooth and equal areas. We
have developed a terrain approximation algorithm suited
for planetary surfaces, that achieves a reasonably uniform
spherical approximation by combining polyhedral subdi-
vision and midpoint displacement. We give details of the
algorithm and some examples of its use.

Keywords: Fractal Terrain, Geodesic Mesh Generation, Midpoint
Displacement, Polyhedral Subdivision

1. Introduction
Generating and rendering realistic planetary surfaces is

an important problem for computer games, movies and
animations. It is also useful for testing various geospatial
simulation models. Although it has been known since the
work of Mandelbrot and others [1] that realistic height
elevation maps are fractal in nature it is not trivial to
generate a reaslistic looking height model that is free of
any algorithmic artifacts. Generating a suitable map on a
spherical mesh that is approximately equal area and which is
therefore suitable for a simulated planetary surface presents
further challenges.

A new technique for generating a simulated model of
terrestrial bodies is presented in this paper. The algorithm
is a hybrid of an existing method to create fractal terrain
known as midpoint displacement and an existing method to
generate geodesic spherical approximations by polyhedral
subdivision. The aim of this research has been to investigate
means of generating artificial planets where the surface has
realistic terrain rather than employing textures to give the
illusion of terrain. Potential applications of this Fractal
Planet algorithm are in the computer graphics field. For
example, in video game maps where it is necessary to
have an unbounded, but finite surface. Commonly, but rather
unrealistically, this is achieved with rectangular or square
maps with periodic boundary conditions, effectively forming

a toroidal surface. Usually, players are oblivious to this when
they view the world from a first or third person perspective.
Another potential purpose, applicable to the research inter-
ests of the authors is in the field of complex systems and
simulations. A fractal planet surface presents a new paradigm
for lattice-based and particle simulations where elevation and
proximity to water can have significance.

1.1 Related Works
A 1982 article by Alan Fournier, et. al. [2] is widely

attributed with the introduction of the concept of stochastic
terrain models. This work was discussed further by Gavin
Miller [3]. The diamond-square algorithm [2] is still widely
used in graphical applications and is a very good approxi-
mation of mountainous landscapes on flat meshes.

A method to procedurally generate planet-like meshes
using a region tree is discussed in [4] and another spherical
terrain renderer using the HEALPix grid [5] is presented
in [6]. These techniques include consideration for dynamic
level of detail on a spherical coordinate systems and are
ideal for visually aesthetic computer graphics, whereas,
the work presented in this particular paper focuses on the
generation of the grid and the application of fractal terrain as
a parametrisable aspect for triangular or by extent hexagonal
lattice simulations.

Simulations which may be modified and performed on
a Fractal Planet include, but are not limited to Lotka-
Volterra predator-prey models [7], [8], epidemiology models
and Gaia hypotheses models such as Daisyworld [9].

2. Fractal Terrain
Terrain can be described as a fractal phenomena in that

any subset and magnification is self-similar. I.e., Statistically,
all subsets have an equivalent signature to any other subset
or the whole. This can be represented computationally by the
midpoint displacement technique employed by the Diamond-
Square algorithm [2].

Figure 1 is a two-dimensional rendering of an arbitrary
terrain created using the diamond-square algorithm. With no
additional data, the same values used to generate the two-
dimensional image can be used to create a three-dimensional

Int'l Conf. Computer Graphics and Virtual Reality |  CGVR'13  | 43



Fig. 1: A two-dimensional height map generated with the
diamond-square algorithm

Fig. 2: A three-dimensional visualisation of terrain generated
with the diamond-square algorithm

representation of the terrain. Consider that figure 2 is
rendered within a three-dimensional Cartesian coordinate
system; for each (x, y, z) coordinate, only the y value is
determined by the algorithm, x and z are regular discrete
intervals. Therefore, the y data can be algorithmically de-
termined and stored in a simple array or matrix. Both
interpretations can be tiled seamlessly forming a theoretical
torus.

The diamond-square algorithm begins with a matrix of
uninstantiated y values except for the four corners, which
are seeded with the value 0. There are two recursive steps
which are repeated until all cells of the matrix have been set.
The diamond step sets the midpoint of every square of set
cells, effectively forming diamond shapes, the square step
sets the midpoint of the vertical and horizontal lines of each
diamond, forming squares once again. Figure 3 demonstrates
this algorithm. The value given to each new set cell is
determined by the average of the the set points surrounding
the new cell, plus some random value in a delta-height range.
This range is reduced at each recursive step by multiplying

Fig. 3: Steps of the diamond-square algorithm

by a roughness constant ∈ [0, 1], so as the resolution of
the set points increases, the possible displacement range
decreases.

The midpoint displacement concept is applied to the frac-
tal displacement technique of the Fractal Planet algorithm
presented in this work. See section 4.3.

3. Spherical Geodesic Grids
The motivation behind employing spherical geodesic grids

arises from the inherent problem due to the meridian
convergence on latitude-longitude grids. I.e., the constant
longitudinal lines converge at the poles of the sphere causing
higher vertex resolution at the poles than the equatorial line
[10]. This is not considered such a problem on spherical
approximations where the surface is smooth. However, as
this work aims to introduce terrain-like elevation variance
to the surface, it is important to have an approximately
uniform vertex resolution. This can be achieved by recursive
subdivision of regular convex polyhedra (platonic solids)
[11].

In this work, the simplest of all of the platonic solids,
a tetrahedron, is used for a reason which is explained in
section 4. The tetrahedron’s four equilateral triangle sides
are created with four vertices, each with a magnitude of one
unit, i.e., a normalised vector (See table 2). This tetrahedron
can be thought to be a sphere approximation of the lowest

44 Int'l Conf. Computer Graphics and Virtual Reality |  CGVR'13  |



Fig. 4: A normalised regular tetrahedron bounded by a unit
sphere

possible resolution. Figure 4 illustrates a tetrahedron with a
bounding unit sphere. All four vertices are located at a point
on the surface of the unit sphere.

Upon subdividing the initial tetrahedron, a new vertex is
added at the middle point of each edge. Each edge belongs
to two faces. Connecting the three new vertices belonging to
each face results in one triangle becoming four. Of course,
simply adding new vertices does not create a better spherical
approximation. All new vertices must also be extended to the
unit sphere such that their magnitude is equivalent to the
original vertices. This is achieved by vector normalisation
(Equation 1).

v̂ =
v

‖v‖
=

(
x

‖v‖
,

y

‖v‖
,

z

‖v‖

)
(1)

Obviously, the further the tetrahedron is subdivided, the
higher the resolution of the approximated sphere. There
is no need to keep track of each vertex in memory. Al-
though multiple faces share a given vertex, the calculation
to determine the new vertex’s position is simple enough
that it can be processed on a face-by-face basis. Effectively
calculating the position of the same vertex twice. However,
once fractal terrain is introduced, the vertex positions are
non-deterministic and therefore, must be calculated only
once and referenced by each face that uses it, so as to prevent
disconnected edges between faces. This is the main problem
addressed by the Fractal Planet algorithm.

4. Fractal Planet Algorithm
The Fractal Planet algorithm combines spherical approxi-

mation by polyhedral subdivision and midpoint displacement
techniques to achieve a sphere based rendering model with
seamless fractal landscapes without bump or texture map-
ping. The stochastic nature of this algorithm means that,
while certain attributes can be specified and the general
appearance of the planet will always be statistically fractal
(i.e., self-similar), continent size, location and elevation are
non-deterministic.

Tetrahedron Root

L  T  C  R  L  T  C  R  L  T  C  R  L  T  C  R  L  T  C  R  ... ...

L     T     C     R     L     T     C     R     L     T     C     R     L     T     C     R

L                      T                       C                       R
  

Fig. 5: Tree structure demonstrating the node associativity
of the subdivided tetrahedron

In essence, the Fractal Planet algorithm is a particular
quad-tree traversal technique used to find vertex associativ-
ity on a spherical approximation formed by the recursive
subdivision of a tetrahedron. The technique relies on the
triangular geometry of the faces forming the sphere.

4.1 Quad-Tree Data Structure
A spherical approximation generated by tetrahedron sub-

division is usually rendered by vertices which are exclusive
to a single face. Such that, although there are commonly
six triangular faces (five at the net corners) which share a
vertex in theory, each vertex of a face is simply determined
by assuming the normalised midpoint of all edges of the
previous level of subdivision. With the introduction of fractal
terrain to a spherical surface, this property is no longer valid.

A quad-tree is an obvious solution for storing references
to triangular faces. Consider that each node of the quad-
tree is a triangle containing three vertices which define it
in three-dimensional space and three initially unused mid-
point vertices which, once subdivided, will reference the new
vertices along each of a triangles three edges. All six of the
mentioned vertices will be referenced by a pointer to the
memory location at which each is stored. These pointers
will be reused by six triangles for the most part, but by
five triangles at the four vertices of the initial polyhedron.
Figure 5 shows the basic quad-tree structure.

The polyhedron used within this work is a regular tetra-
hedron for the simple reason that its net is a triangle itself.
This inherent property lends itself well to the quad-tree of
triangle nodes in that the root node of the tree is the net. It is
a slightly special case, however, as its three defining vertex
pointers are all references to the same memory location
– vertex a (see table 1 and figure 6). The nature of the
tetrahedron also means the three mid-point edge vertices
are given – vertices b, c and d. The four given tetrahedron
vertices must be at positions on the unit sphere. Table 2
shows these initial normalised vector values.

To determine the path to a neighbour of any given node in
the mesh, the “Three Adjacency" rules can be applied to the
path of the known node. The rules are basic and rely on two
things. Firstly, all nodes must know their own quad-tree path
including their child type (e.g., Left, Top, Centre or Right).
Secondly, the three edges of every triangle are relative to
their orientation (i.e., a triangle either points up or down).

Int'l Conf. Computer Graphics and Virtual Reality |  CGVR'13  | 45



Table 1: Initial Tetrahedron Faces
Vertex

Face 1 2 3
Root a a a
Top a d c
Left c b a

Centre b c d
Right d a b

Top

Left

Centre

Right

a
b

c d

a

a

Fig. 6: The net of a regular tetrahedron

If a triangle is pointed upward relative to the perspective of
the viewer, the left, right and bottom edges are exactly as
labelled. However, a downward pointing triangle’s left edge
and right edges are opposite to the viewer’s perspective and
the bottom edge is the horizontal edge on top. See figure 7.

Table 3 illustrates the aforementioned rules. In order to
apply the rules, take the path of the current node and
determine the most recent common ancestor node of it and
its desired neighbour node by traversing its path in reverse
order until a ‘C’ (Centre) or the “opposite" node type is
reached (i.e., L and R, and T and C are opposites). Apply
the swap rules for the appropriate edge to each node in
the path after and including the determined most recent
common ancestor. For example, in figure 8 take the node
with the path “CCLLL", based on the above, the most recent
common ancestor of it and its left neighbour is the second
‘C’, therefore, from this node onward, we apply the “Left
Edge Rule", resulting in “C, C→R, L→T, L→T, L→T"
(“CCTTT"). Also note that the left neighbour of “CCTTT"
is the original example node “CCLLL", which means all left

Table 2: Initial Tetrahedron Vertices [11]
Three-Dimensional Coordinates

Vertex x y z
a 0.0 0.0 1.0
b 0.0 0.942809 -0.333333
c 0.816497 -0.471405 -0.333333
d -0.816497 -0.471405 -0.333333

Bottom Edge(s)

Le
ft
 E

d
g
e

R
ig

h
t E

d
g
e

R
ig

h
t E

d
g
e Le

ft
 E

d
g
e

Fig. 7: Triangular nodes with edge labels relative to the
orientation of the triangle

Table 3: Rules for Determining the Quad-Tree Paths of the
Three-Adjacency Neighbours of a Triangle Node

Bottom Edge Left Edge Right Edge
T ↔ C C ↔ R L ↔ C
L ↔ R L ↔ T T ↔ R

neighbours of node x have x as their left neighbour too. The
same applies for all edges and nodes.

Algorithm 1 explains the key data structure used for the
quad-tree. Before new nodes can be added to the tree,
they must be created through a subdivision technique, as
discussed in the following subsection.

4.2 Iterative Subdivision
After the initial tetrahedron is defined, the subdivision

of the faces takes place. A level of subdivision (N ) must
be given as a number of times the tree will be divided.
A breadth-first traversal of the tree occurs inside a loop
(algorithm 2) and each leaf node is subdivided into four new
child nodes where the vertex associativity between neighbour
nodes occurs in order to determine whether a desired vertex
already exists. Algorithm 3 explains this in detail.

4.3 Fractal Displacement
Algorithm 4 shows how displacements are calculated

using a delta height range and the average unit vector offset
of the two vertices of which the new node is the dividing
midpoint.

Where (a, b, c) occur in Algorithms 1 to 4, the points
in respective order are clockwise from the relative top of
their triangle. Figure 6 illustrates the original vertices and
the make up of the four faces of the tetrahedron. Figure 7

46 Int'l Conf. Computer Graphics and Virtual Reality |  CGVR'13  |



LTRRL

LCLLR

LCLLC

LCLLL

LCLLT

LTRRC

LTRRR

LTRRT

CRTTR

CRTTC

CRTTL

CRTTT

CCLLL

CCLLC

CCLLR

CCLLT

CCLCR CCLCL

CCLCC

CCLCT

CCLTL

CCLTC

CCLTR

CCLTT

Fig. 8: A magnified subset of a subdivided tetrahedron with quad-tree traversal path labels

Algorithm 1 new TriangleQuadTree()
Require: R, V
Ensure: 0 < R ≤ 1 ∧ 0 < V ≤ 1
tetra→ (a, b, c, d)⇐ Table 2
root→ (a, b, c)⇐ tetra→ (a, a, a)
root→ ∆h⇐ V
root→ parent⇐ NULL
root→ ab⇐ tetra→ d
root→ bc⇐ tetra→ b
root→ ca⇐ tetra→ c
root→ L→ (a, b, c)⇐ tetra→ (c, b, a)
root→ T → (a, b, c)⇐ tetra→ (a, d, c)
root→ C → (a, b, c)⇐ tetra→ (b, c, d)
root→ R→ (a, b, c)⇐ tetra→ (d, a, b)
root→ {L, T,C,R} → parent⇐ root
root→ {L, T,C,R} → ∆h⇐ root→ ∆h×R
this→ subdivideTree() [Algorithm 2]

N.B. a, b, c, d, ab, bc and ca are three-dimensional vertices. root,
parent, L (left), T (top), C (centre) and R (right) are triangle
tree nodes which contain three major vertices (a, b, c) and
three subdivision vertices (ab, bc, ca) which are NULL unless
otherwise assigned (i.e., NULL for leaf nodes), each node also
contains five pointers to other nodes (parent, L, T, C,R). tetra
is the collective term for the hard-coded initial vertices which
form a regular unit-tetrahedron, ∆h is the range of a triangles
node’s potential elevation displacement ([−∆h

2
, ∆h

2
]), this value

is determined by the elevation variance constant V for the root,
each subdivided node’s ∆h is its parents ∆h value multiplied
by the roughness constant R.

demonstrates the relative left, right and top points of a
triangle based on its directional orientation.

Algorithm 2 subdivideTree()
Require: N
Ensure: N ≥ 1

i⇐ 0
while i < N do

q ⇐ Queue()
q → push(root→ {L, T,C,R})
t⇐ NULL
while q → size() 6= 0 do

t⇐ q → front()
q → pop()
if t→ {L, T,C,R} 6= NULL then

q → push(t→ {L, T,C,R})
else

subdivideNode(t) [Algorithm 3]
end if

end while
i⇐ i + 1

end while
N.B. This method iterates over the tree N times, each time
creating a new level of subdivision. q is a queue data structure
used to traverse the current state of the quad-tree in breadth-
first order. The root triangle node’s children (L, T,C and R)
are pushed to the queue. t is assigned the front value of q in a
loop and t’s children are added to q if they exist. However, if
t does not have any children, a leaf node has been reached and
that node is subdivided.

5. Future Work and Conclusions

The tetrahedron was selected for this work for its simplic-
ity. It is the most basic of the platonic solids in terms of the

Int'l Conf. Computer Graphics and Virtual Reality |  CGVR'13  | 47



Algorithm 3 subdivideNode(node)
Require: node
pathbottom ⇐ node→ getBottomNeighbourPath()
pathleft ⇐ node→ getLeftNeighbourPath()
pathright ⇐ node→ getRightNeighbourPath()
ab⇐ getNode(pathright) → ab
if ab ≡ NULL then

x⇐ node→ a→ x + node→ b→ x
y ⇐ node→ a→ y + node→ b→ y
z ⇐ node→ a→ z + node→ b→ z
ab⇐ Vertex(x, y, z)
ab⇐ âb

offset⇐ ‖node→ a‖+ ‖node→ b‖
2

− 1

ab→ fractalDisplace(node→ ∆h, offset)
node→ ab⇐ ab

end if
bc⇐ getNode(pathbottom) → bc
if bc ≡ NULL then

x⇐ node→ b→ x + node→ c→ x
y ⇐ node→ b→ y + node→ c→ y
z ⇐ node→ b→ z + node→ c→ z
bc⇐ Vertex(x, y, z)
bc⇐ b̂c

offset⇐ ‖node→ b‖+ ‖node→ c‖
2

− 1

bc→ fractalDisplace(node→ ∆h, offset)
node→ bc⇐ bc

end if
ca⇐ getNode(pathleft) → ca
if ca ≡ NULL then

x⇐ node→ c→ x + node→ a→ x
y ⇐ node→ c→ y + node→ a→ y
z ⇐ node→ c→ z + node→ a→ z
ca⇐ Vertex(x, y, z)
ca⇐ ĉa

offset⇐ ‖node→ c‖+ ‖node→ a‖
2

− 1

ca→ fractalDisplace(node→ ∆h, offset)
node→ ca⇐ ca

end if
node→ L⇐ Node(node, LEFT, ca, bc, node→ c)
node→ T ⇐ Node(node, TOP, node→ a, ab, ca)
node→ C ⇐ Node(node, CENTRE, bc, ca, ab)
node→ R⇐ Node(node,RIGHT, ab, node→ b, bc)
N.B. The three get*NeighbourPath() methods apply the three-
adjacency rules to the path of a node in order to determine
the neighbour paths (See table 3). getNode(path) returns a
triangle node by traversing the route given by the path argument.
fractalDisplace(∆h, offset) is described in Algorithm 4. The
Node(node, TY PE, a, b, c) constructor creates a new triangle
node where node is the parent, TY PE is the child type and a,
b and c are the vertices which make up the triangle (clockwise
from relative top).

number of faces and vertices required to construct it. The
equilateral triangle shape of its net is the same as the shape
of its faces and therefore, accommodated for a simple quad-
tree structure of triangular nodes where the root node is the
tetrahedron itself. In future works, the use of other, more
complicated platonic solids will be explored. The presumed
advantage of this is the reduction in the severity of the fold-

Algorithm 4 fractalDisplace(∆h, offset)
Require: ∆h, offset

min⇐ −∆h

2

max⇐ ∆h

2

displace⇐ min + (max−min)× rand()
RAND_MAX

displace⇐ displace + offset
{x, y, z} ⇐ {x, y, z} × (displace + 1)

N.B. This method is performed on a new vertex, offset is the
average displacement of the two vertices which form the edge
that the new vertex is dividing, this value is added to a midpoint
displacement random value in the range [−∆h

2
, ∆h

2
]

edge artifacts. Icosahedra are regarded as the best platonic
solids for the generation of geodesic grids and will therefore
inherently be the best grid for a Fractal Planet.

In summary we have introduced a new method for
geodesic traversal of a spherical graph or mesh of points.
We have shown how the resulting mesh is both reasonably
uniform and helps remove artifacts that often spoil typical
spherical mesh rendered models and simulations.

We have given detailed algorithms describing the ap-
proach and related how it differs from conventional ap-
proaches. We have illustrated the approach using tree traver-
sal diagrams and also given an example rendering of a fractal
landscape generated on our spherical mesh.

We believe our algorithm and approach has scope for ren-
dering a number of planetary surface area based simulation
models that are based on localised interactions and which
need a systematic neighbour determination algorithm.

Figure 9 shows a sample rendering of a planetary elevation
map surface generated by the algorithm.

References
[1] Benoit B. Mandelbrot. The Fractal Geometry of Nature. W.H.

Freeman, 1982.
[2] Alain Fournier, Don Fussell, and Loren Carpenter. Computer render-

ing of stochastic models. Commun. ACM, 25(6):371–384, Jun 1982.
[3] Gavin S P Miller. The definition and rendering of terrain maps. In

Proceedings of the 13th annual conference on Computer graphics and
interactive techniques, SIGGRAPH ’86, pages 39–48, New York, NY,
USA, 1986. ACM.

[4] Felix Haase, Maximilian Klein, Andreas Tarnowsky, and Franz-Erich
Wolter. Interactive fractal compositions. In Proceedings of the
11th ACM SIGGRAPH International Conference on Virtual-Reality
Continuum and its Applications in Industry, VRCAI ’12, pages 181–
188, New York, NY, USA, 2012. ACM.

[5] K. M. Górski, E. Hivon, A. J. Banday, B. D. Wandelt, F. K. Hansen,
M. Reinecke, and M. Bartelmann. HEALPix: A Framework for High-
Resolution Discretization and Fast Analysis of Data Distributed on the
Sphere. Am. J. Phys., 622:759–771, apr 2005.

[6] Rolf Westerteiger, Andreas Gerndt, and Bernd Hamann. Spherical
Terrain Rendering using the hierarchical HEALPix grid. In Christoph
Garth, Ariane Middel, and Hans Hagen, editors, Visualization of Large
and Unstructured Data Sets: Applications in Geospatial Planning,
Modeling and Engineering - Proceedings of IRTG 1131 Workshop
2011, volume 27 of OpenAccess Series in Informatics (OASIcs), pages

48 Int'l Conf. Computer Graphics and Virtual Reality |  CGVR'13  |



Fig. 9: A basic rendering of a Fractal Planet with simple elevation thresholds to determine the colour of the surface.
Generated with 11 levels of subdivision, 71.113% surface water, 0.1 elevation variance and 0.65 roughness constant.

13–23, Dagstuhl, Germany, 2012. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik.

[7] Alfred J. Lotka. Contribution to the theory of periodic reactions. The
Journal of Physical Chemistry, 14(3):271–274, 1909.

[8] V. Volterra. Variation and fluctuations of the number of individuals
of animal species living together. In Animal Ecology. McGraw-Hill,
1926.

[9] Andrew J. Watson and James E. Lovelock. Biological homeostasis
of the global environment: the parable of daisyworld. Tellus B,
35B(4):284–289, 1983.

[10] D.A. Randall, T.D. Ringler, R.P. Heikes, P. Jones, and J. Baumgardner.
Climate modeling with spherical geodesic grids. Computing in Science
Engineering, 4(5):32–41, Sep/Oct 2002.

[11] Edward Angel and Dave Shreiner. Interactive Computer Graphics: A
Top Down Approach with Shader-Based OpenGL. Addison-Wesley,
Boston, 6 edition, 2012.

Int'l Conf. Computer Graphics and Virtual Reality |  CGVR'13  | 49



 
 

 
 

 

 

 
 

 

 

Abstract - In this paper, we presented a classification 
method of facial expressions displayed in images or video 
sequences using adaptive template. In our approach, we 
trained the seven basic expressions templates known as 
“Happiness”, “Anger”, “Disgust”, “Fear”, “Surprise”, 
“Sadness” and “Neutral”. Then we take an input face 
image with unknown facial expressions and calculate the 
nearest distance between the feature points on that input 
face image and the feature points on each of the seven 
facial expressions templates, therefore to find the closest 
match. Experimental result shows that adaptive template is 
an effective method to identify facial expressions in an 
image that contains human face with unknown emotions. 

Keywords: Facial expression recognition, feature points 

 
1    Introduction 
Facial expressions form a vital part of our interaction with 
people. Without facial expressions, if would be difficult to 
capture the whole meaning of a message being conveyed 
through conversation. Psychologist Mehrabian [8] noted 
that, facial expressions contributed to 55 percent to a 
message while 38 percent contributed to the vocal part such 
as voice intonation. Only 7 percent contributed to the 
verbal part, which is the spoken word. Facial expression 
recognition can be defined as a process performed by 
humans or computers, which consists of locating faces in a 
scene, extracting facial features from the detected face 
region(facial feature extraction), and analyzing the motion 
of the facial feature and/or the changes in the appearance of 
the facial features and classifying this information into 
some facial expression–interpretative categories such as 
facial muscle activations like smile, emotion categories like 
anger or attitude categories like (dis)liking [9]. Adaptive 
templates help us capture facial expressions variations or 
deformations. In our approach, we classify facial 
expression using adaptive templates.  
 
 

 
 

 
 
 
 
 

Facial Expression Recognition Using Adaptive Template 

 
 
 
 
 

A. Attipoe¹, J. Yan² 
¹Department of Computer Science, Bowie State University, Bowie, Maryland, USA 
²Department of Computer Science, Bowie State University, Bowie, Maryland, USA 

 
2    Related Works 
 
Lajevardi and Hussain [5] stated that an automatic 
classification of facial expressions consists of two stages: 
feature extraction and feature classification. And of the two 
stages, feature extraction is of key importance to the whole  
classification process. Lajevardi and Hussain [5] explained 
that, if inadequate features are used, even the best classifier 
could fail to achieve accurate recognition. Usually, 
extracted facial features are either geometric features such 
as the shapes of the facial components (eyes, mouth, etc) 
and the locations of facial fiducial points (corners of the 
eyes, mouth, etc), or appearance features representing the 
texture of the facial skin in specific areas including 
wrinkles, bulges, and furrows [9]. Brunelli and Poggio [1] 
performed a comparative analysis of geometric, feature-
based matching and template matching. In the former, 
computation of a set of geometrical features from the 
picture of a face is performed. In the latter, the image, 
which is represented as a bidimensional array of intensity 
values, is compared with a suitable metric (typically the 
euclidean distance) with a single template representing the 
whole face.  After performing face recognition using the 
two approaches, Brunelli and Poggio [1] concluded that the 
use of template matching is superior in recognition 
performance on their database. Zhang, Lyons, Schuster and 
Akamatsu [14] noted that, though geometric feature-based 
techniques are usually computationally more expensive 
than template-based techniques, they are more robust to 
variation in scale, size, orientation, and location of the face 
in the image. 

 
 

3  Methodology 
Our technique for facial expression recognition involves 
extracting facial features geometrically from the face 
region of an image and recognizing the face by classifying 
the extracted facial features. The processes covered in our 
experiment apply to images in both the training and testing 
set. 
 

 

50 Int'l Conf. Computer Graphics and Virtual Reality |  CGVR'13  |



 
 

 
 

3.1    Data Acquisition 

The images used for training and testing were taken from 
the Japanese Female Facial Expression database (JAFFE) 
and the Taiwanese Facial Expression Image Database 
(TFEID). The Taiwanese Facial Expression Image database 
consists of 7200 stimuli captured from 40 models (20 
males) and (20 females), each with eight facial expressions: 
neutral, anger, contempt, disgust, fear, happiness, sadness 
and surprise. Models were asked to gaze at two different 
angles (0° and 45°). Each expression included two kinds of 
intensities (high and slight), and was captured by two 
CCD-cameras simultaneously with different viewing angles 
(0° and 45°). A combination of grayscale and color images 
was used. The images taken from the Japanese Female 
Facial Expression database consists of 219 image variations 
of the six basic facial expressions and the neutral facial 
expressions of ten Japanese female models.  

We took 175 images of the different facial expressions in 
total from the Taiwanese Facial Expression Image 
Database. 140 images were used for the testing set; each of 
the seven facial expressions had 20 input/test images. Then 
35 images were used for the training set. Each of the seven 
facial expressions had five, sample images. We ensured 
that the facial expressions chosen for the training set were 
posed by the same male and female models. 77 images 
were chosen from the Japanese Female Facial Expression 
database. 70 images for the testing set (ten images for each 
facial expression) and seven images for the training set, 
each image representing one of the seven facial 
expressions. All the images had a frontal view. 

 

3.2    Image Pre-possessing 

During image pre-processing, we scaled the images to 
256x256 pixels and ensured that they were all of the same 
size and shape. We also normalized all the images to ensure 
that they had uniform intensity values.

 

Figure1: Above is the normalized training set for the 
Japanese Female Facial Expression (JAFFE) database 

 

 

 

Figure 2: These are ten images of the "fear" facial 
expression in the testing set, which were taken from the 

Taiwanese Facial Expression Image Database and used for 
experimental analysis. Each of the images is 256x256 

pixels.  
 

3.3  Feature Extraction 

Feature points were chosen on the face region for all the 
images in our training and testing set. Feature points were 
chosen on the eye brows, eyes and mouth on the face 
region of each image retrieved from the Taiwanese facial 
expression database. And for the images retrieved from the 
Japanese female facial expression database, feature points 
were chosen on the eye brows, eyes, mouth, chin and 
around the contour of the face. The goal was to use areas of 
the face that showed the most deformation after a facial 
expression has been made. For example, a surprise facial 
expression will show that the eye brows raised up and eyes 
wide open whereas a neutral facial expression will show 
the reverse. Each feature point on the face of an image is 
represented by an x-axis and a y-axis. To extract some 
geometric measurements from the feature points, we 
matched each image in our testing set against the seven 
facial expressions in our training set. Then we calculated 
the distance between the feature points located at the same 
location on the two images. The distance for all the feature 
points was calculated and summed. For each input image 
from our testing set, seven different distances were 
generated. 

 

Int'l Conf. Computer Graphics and Virtual Reality |  CGVR'13  | 51



 
 

 
 

 

 

 

 

 

 

 

                              

Image Acquisition 
 

An image is extracted from a video sequence 

Normalization The image is normalized; it is scaled to the shape and size of the images 
in the training set 

Feature Point Extraction Feature points are extracted from the image 

Feature Template The feature template represents the final template after the feature points 
have been extracted. 

Training Set The training set contains normalized images of the seven facial 
expressions 

Classification The input image is classified by matching the feature template against 
the seven facial expressions in the training set 

Table 1: These steps show the facial expression recognition approach used in our research 

  

Figure3: The facial expression recognition technique used in this research 

52 Int'l Conf. Computer Graphics and Virtual Reality |  CGVR'13  |



 
 

 
 

 

 

 

 

 
Experimental Results for Disgust Facial Expression 

Grayscale  Images – Male Models 
 

Input Image Anger Disgust Fear Happiness Neutral Sadness Surprise Results 

Image1 588.274 282.826 736.591 641.45 570.307 610.487 953.741 Matches 

Image2 671.77 391.888 840.107 702.337 643.916 715.799 1029.16 Matches 

Image3 707.52 373.836 832.939 679.12 662.373 689.664 1033.89 Matches 

Image4 565.241 279.052 685.508 551.4 516.064 536.249 896.51 Matches 

Image5 626.419 
 

605.351 536.194 447.965 810.888 False Alarm 

Image6 485.41 300.429 625.11 449.845 442.746 533.819 841.982 Matches 

Image7 458.051 293.513 563.366 391.773 399.355 486.053 779.307 Matches 

Image8 787.42 439.974 923.111 845.738 755.025 712.19 1060.76 Matches 

Image9 601.599 328.846 734.675 613.035 548.826 585.717 925.44 Matches 

Image10 467.804 349.293 632.663 632.302 434.449 607.6 867.875 Matches 

438.834  424.115

Table 2: Sample results of the calculated distance for all the seven facial expressions in the training set using ten disgust 
input images. 

Disgust Surprise Fear Neutral Happines
s Sadness Anger

0
2
4
6
8

10
12
14
16
18
20

T
ot

al
 #

 o
f i

np
ut

 im
ag

es

Number of Matches vs. False Alarms

Matches 18 16 15 15 14 13 12
False Alarms 2 4 5 5 6 7 8

Figure 4: Each facial expression has 20 input images. The chart shows the number of input images that 
match the facial expressions and the number that gave false alarms. 

Int'l Conf. Computer Graphics and Virtual Reality |  CGVR'13  | 53



 
 

 
 

0

10

20

30

40

50

60

70

80

90

100

Disgust Surprise Fear Neutral Happiness Sadness Anger

Recognition Rate

 

3.4 Classification 

Assuming the input image under consideration was the 
disgust facial expression. Matching the anger facial 
expression against each facial expression template will 
yield seven distance values. We scan through the seven 
distance values and choose the smallest value or shortest 
distance and its corresponding facial expression. Since the 
input image under consideration is the disgust input image, 
our goal is to have the shortest distance correspond to the 
disgust facial expression template, signifying a match and 
hence positive recognition. Our aim in using a minimum of 
20 input images for each facial expression is to detect how 
well our approach recognizes facial expressions.  

 

4  Experimental Results 

Table 2 is an example of part of the results gathered for the 
disgust facial expression. You will notice that, for each 
disgust input image, the disgust image in the training set 
(i.e. the disgust template) had the smallest distances, except 
for input image5. Ten of the fear images in the testing set 
yielded 100% matches in the first experiment. In the 
second experiment, the next ten “fear” input images yielded 
five false alarms. The results indicated that the distance of  

 

 

Figure 5: Shows the recognition rate for each facial expression facial expressions and the number that gave false alarms

 

another facial expression in the training set was smaller 
than the fear facial expression. In that case, our technique 
could not recognize the input image, which was fear.  
Figure 4 shows the number of matches’ verses false alarms. 
The “disgust” facial expression had the fewest false alarms, 
followed by the “surprise” facial expression. The anger 
facial expression had the highest number of false alarms. 
The recognition rate for the seven facial expressions is 
shown in Figure 5. 

 

5 Conclusions 

Our goal in this research was to recognize facial 
expressions displayed in images or video by using adaptive 
template. The recognition rate for the seven facial 
expressions ranged from 60% to 90%. This result is an 
indication that adaptive templates can be used to gain good 
recognition results.  

 

 

 

 

54 Int'l Conf. Computer Graphics and Virtual Reality |  CGVR'13  |



 
 

 
 

6     References 

[1] R. Brunelli and T. Poggio, “Face recognition: 
features versus templates,” IEEE Transactions on 
Pattern Analysis and Machine Intelligence, vol. 15, 
no. 10. pp. 1042–1052, 1993. 

[2] C. Chibelushi and F. Bourel, “Facial expression 
recognition: A brief tutorial overview,” … : On-
Line Compendium of Computer Vision, 2003. 

[3] I. Cohen, N. Sebe, a. Garg, M. S. Lew, and T. S. 
Huang, “Facial expression recognition from video 
sequences,” Proceedings. IEEE International 
Conference on Multimedia and Expo, vol. 2. Ieee, 
pp. 121–124. 

[4] I. Cohen, N. Sebe, A. Garg, L. S. Chen, and T. S. 
Huang, “Facial expression recognition from video 
sequences: temporal and static modeling,” 
Computer Vision and Image Understanding, vol. 
91, no. 1–2. pp. 160–187, Jul-2003. 

[5] S. Lajevardi and Z. Hussain, “Local feature 
extraction methods for facial expression 
recognition,” Proceedings of 17th European Signal 
…, 2009. 

[6] P. Li, “Adaptive feature extraction and selection for 
robust facial expression recognition,” 2010. 

[7] J. J. Lien, T. Kanade, and J. F. Cohn, “Automated 
facial expression recognition based on FACS action 
units,” Proceedings Third IEEE International 
Conference on Automatic Face and Gesture 
Recognition. IEEE Comput. Soc, pp. 390–395. 

[8] A. Mehrabian, “Communication Without Words,” 
Psychology Today, vol. 2, no. 9, pp. 52 – 55, 1968. 

[9] M. Pantic, “Facial expression recognition,” 
Encyclopedia of Biometrics. 2009. 

[10] A. Ryan, J. F. Cohn, S. Lucey, J. Saragih, P. Lucey, 
F. De la Torre, and A. Rossi, “Automated Facial 
Expression Recognition System,” 43rd Annual 
2009 International Carnahan Conference on 
Security Technology. Ieee, pp. 172–177, Oct-2009. 

[11] K. Song and Y. Chen, “A design for integrated face 
and facial expression recognition,” IECON 2011-
37th Annual Conference on …, 2011. 

[12] F. Tang and B. Deng, “Facial Expression 
Recognition using AAM and Local Facial 
Features,” Third International Conference on 
Natural Computation (ICNC 2007). Ieee, pp. 632–
635, 2007. 

[13] M. Yeasin, B. Bullot, and R. Sharma, “Recognition 
of facial expressions and measurement of levels of 
interest from video,” Multimedia, IEEE 
Transactions …, 2006. 

[14] Z. Zhang, M. Lyons, M. Schuster, and S. 
Akamatsu, “Comparison Between Geometry-Based 
and Gabor-Wavelets-Based Facial Expression 
Recognition Using Multi-Layer Perceptron,” pp. 
454–459, 2004. 

[15] B. Zhou, X; Huang, X; Xu, “Real-Time Facial 
Expression Recognition Based on Boosted 
Embedded Hidden Markov Model,” Third 
International Conference on Image and Graphics 
(ICIG’04). Ieee, pp. 290–293. 

Int'l Conf. Computer Graphics and Virtual Reality |  CGVR'13  | 55



Camera Tracking for Implementation of Augmented 
Reality 

 
Boo-Gyum Kim1, Jong-Soo Choi2, and Jin-Tae Kim3 

1Solutionix Co., Ltd, Seoul, Korea 
2Department of Image Engineering, Graduate School of Advanced Imaging Science, Multimedia and Film, 

Chung-Ang University, Seoul, Korea 
3Department of Aerospace Software Engineering, Hanseo University, Chungnam, Korea 

 
 

Abstract –Augmented reality is the field that provides 
users with more information by registering virtual 
objects in realistic images acquired from the camera. In 
this paper, an augmented reality system was 
implemented using the SIFT algorithm on behalf of 
marker recognition. 

 

Keywords: augmented reality, virtual object, SIFT, 
marker, feature points 

 

1 Introduction 
Augmented reality is the technology to implement a 

newer computing environment by registering virtual 
objects in realistic images derived from the camera and 
providing users with its outputs. A variety of techniques 
are used in augmented reality. Major techniques include 
3D modeling that makes virtual objects, camera 
calibration to compute camera variables, the tracking 
algorithm that finds the location of objects, and 
registration that combines virtual objects with realistic 
images. The most general method to implement 
augmented reality is to use separate markers that have 
earlier-defined shapes and patterns. Therefore, under the 
conditions without markers, the implementation of 
augmented reality becomes highly difficult. 

In this paper, aimed at implementing augmented reality, 
a real-time camera tracking technique that does not use 
separate markers is proposed. The proposed method 
detects ground planes on the three-dimensional space 
using the SIFT (Scale-Invariant Feature Transform) 
algorithm, and based on it, performs real-time camera 
tracking and the registration of virtual objects. 
Accordingly, this technique is capable of implementing 
augmented reality without separate markers that are used 
in existing methods such as ARtoolkit [1]. 
 

2 Extraction of Feature Points 
The SIFT algorithm extracts robust size and rotation 

features. Feature vectors from this are characterized by 
the stability of image sizes and rotations. The SIFT 
algorithm generally goes through the following four 
phases. 

Step 1) Scale-space extrema detection 

Step 2) Key-point localization and filtering 

Step 3) Orientation assignment 

Step 4) Key-point descriptor 

 

3 Proposed Algorithm 
 The system implemented in this paper is shown in Fig. 

1.  
 

 

Fig. 1. Block diagram of the implemented system 

Firstly, real-world images are extracted using a camera. 
Thereafter, within the images, the areas that the user 

56 Int'l Conf. Computer Graphics and Virtual Reality |  CGVR'13  |



 

 

meaningfully captured are extracted. With regard to the 
user images and the real-world image areas obtained in 
real time, the feature points of each image are extracted 
using the SIFT algorithm. After estimating the 
homography relationship regarding the extracted feature 
points, planes for the user images are obtained. Finally, 
using OpenGL, virtual objects are registered on the planes. 

In order to improve the speed of the SIFT algorithm, 
the SIFT algorithm was applied to the obtained plane 
areas in a limited manner. In addition, accuracy was 
improved by increasing the number of feature points 
found in the areas and heightening matching sensitivity. 
The corresponding results were confirmed by a test. 

 
4 Experiment and Discussion 

A test was performed on the proposed system. Firstly, 
320×240 images were extracted using the camera in an 
indoor environment, and then their user areas were 
defined. Thereafter, base on the results of extracting and 
matching the features of the real-time camera images and 
the characteristics of the user images, an augmentation 
test was conducted. Fig. 2 shows the testing on the 
accuracy of the overall system's UI and the accuracy of 
the camera-derived images. As shown in Fig. 3, the 
extraction of the feature points of the user-defined images 
was confirmed. 

 

 
Fig. 2. UI of the overall system 

 

 
Fig. 3. Extraction of feature points 

 
Fig. 4 exhibits the matching between user-defined 

images and camera-derived real-time real-world 
images, the application of homographies and the 
extraction of planes. 

 
(a) 

 
(b) 

Fig. 4. Matching with real-world images 
 
5 Conclusions 

This paper proposed a system that tracks objects, 
implements planar homographies, and augments virtual 
objects on matched objects by using the extraction of 
features points based on the SIFT algorithm and a 
matching algorithm. The ARToolkit library's marker-
based augmented reality is easy to use and of good 
performance. However, this technique not only involves 
the limitation of having only fixed patterns, but also 
cannot perform augmentation if the patterns are hidden or 
removed. On the other hand, because the SIFT-based 
augmented reality system uses natural features that do not 
have fixed patterns, it has the advantage of robust 
augmentation even when patterns are hidden. Moreover, 
with an additional ability to track real-world natural 
objects, it has the advantage of being able to compensate 
for the artificiality of markers. 

 
6  References 
[1] ARToolkit, http://www.hitl.washington.edu/artoolkit 
[2] Ronald. T. Azuma, “A Survey of Augmented 

Reality,” Hughes Research Laboratories, 
Teleoperators and Virtual Environments, vol. 6, pp. 
355-385, Aug. 1997. 

[3] David G. Lowe, “Distinctive Image Features from 
Scale-Invariant Keypoints,” International Journal of 
Computer Vision, vol. 20, no. 2, pp. 91-110, 2004. 

[4] V. Lepetit, “Point Matching as a Classification 
Problem for Fast and Robust Object Pose 
Estimation,” Computer Vision and Pattern 
Recognition, vol. 2, pp. 244-250, 2004. 

Int'l Conf. Computer Graphics and Virtual Reality |  CGVR'13  | 57



Proposal of the Digital Art Watching System Letting  
Picture and  Visitor Fuse in Real Time 

 
 

Koji Fujita 
Graduate School of Engineering, Toyo University 

Kujirai2100,Kawagoe-City,Saitama, Japan 
s46d01300026@toyo.jp 

Takayuki Fujimoto 
Graduate School of Engineering, Toyo University 

Kujirai2100,Kawagoe-City,Saitama, Japan 
me@fujiotokyo.com

 
 

Abstract—In this study, we propose the digital art view 
system which lets a picture and a viewer fuse in real time. As the 
background, the art has the history. To date much art works 
were shown in the world. Therefore, the picture projects the time. 
For example, it drew social conditions and drew scenery picture. 
Various art works exist. However, those pictures are plain art 
works. Therefore, in this study, we propose a real-time view 
system using the synthetic technique. I compose a picture and the 
viewer whom a viewer watches now. A user gets in a picture 
afterwards. It is given the sense that it totally passes through the 
frame, and seems to enter the picture to a viewer. It is a new 
digital art system. 

Keywords—art; ; art museum; communication;  

Ⅰ . 	 INTRODUCTION 
	 The art is the historical thing which supported by culture of 
the entertainment in the life of the person. The picture reflects 
social conditions. It affected many people who saw the picture. 
However, those pictures were drawn on a plane. Many art 
museums don't let you touch those important art works 
because there are the possibilities of lost or wreck of works. 
Visitors can look only from constant distance away because of 
that. We thought that the picture could see it with more 
interesting if visitors could touch the art works. We thought it 
can get author's feelings and the thought. However, it is 
essentially difficult to touch the art works. Therefore, we plan 
to use the synthetic techniques. We compose the picture and 
visitors by specific synthetic processing software in real time. 
We project a synthetic image to a monitor afterwards. From 
this result, visitors could feel the entertainment in the picture 
more. Because of this, visitors enter the frame in real time and 
the image was synthesizing. This becomes the digital art work 
which rise entertainment characteristics. The digital art system 
which let you such information technology and art fuse	 	 
thought that there might be demand. In addition, in this paper, 
we propose the digital art view system which lets the picture 
and viewer fuse in real time. 

	 

Ⅱ .  PURPOSE OF STUDY 
	 In this paper, the purpose of that is let a displayed picture 
fuse with information technology and makes the digital art 
system. In the current art museum, visitors could watch only 
from some distant away from displayed work of art. However, 
the system to propose in this paper is synthesized in real time 
when the visitors entered to the appointed space of the certain 
uniformity and look at a picture. The method synthesizes both 
data of picture and visitor by Chroma Key. In addition, this 
system compared to the figure of the visitor with the picture. 
This is because it displays a visitor in the picture with real size. 
This gives the sense that got into the picture to a visitor. In 
addition, this system can let a visitor feel it in real time. This 
system is not works for just to watch a picture. Visitors always 
look at pictures on a plane. However, they can look at this 
system for the sense that seemed to enter the picture. 
Furthermore, we can propose system that enable 
unprecedented picture viewing of visitor participation type. 
 

Ⅲ .  SYSTEM SUMMARY 
	 We will explain the summary of this system in this chapter. 
This system projects the image which converted an art work 
into data and shown to monitor. Then, the visitor who came to 
watch a picture watches the monitor. Take movie of user by a 
camera installed in the upper part of the picture afterwards. 
Finally, it Synthesizes a picture and a visitor in real time. 
	 
A.	 About space to perform Chroma key	 
	 Gallery space, which perform chroma key on carrying out 
this system, is necessary. Therefore, it is important to make 
space such as figure 1. 

58 Int'l Conf. Computer Graphics and Virtual Reality |  CGVR'13  |



	 
Figure 1	 Environmental  
to perform chroma key. 

	 
	 It display the art work in the same way as the normal art 
museum.  Monitor is set on the side. In addition, there is a 
camera to reflect visitor to the monitor. This inputs projected 
over the wall exhibiting art work. The visitor image converted 
to size in comparison with the specific object in the picture. 
Therefore, image height and place is not problem. 
Behind the visitor, a green sheet is set. This sheet is necessary 
to perform Chroma key. In addition, we put a camera on the 
upper part of the wall of the picture in the environment. As a 
result, the wall which display art work set at lower place than 
sheet side. Because of this, the environment build the digital 
art system which reflected a visitor in the real time.	 
	 In this study, this system need the following machine to let 
a art work link the visitor in real time. 
	 

(1). Sheet for chroma key 
(2). Camera for chroma key 
(3). Monitor for chroma key 
(4). System for input the height of the visitor	 
	 
These are the necessary items. 
	 
B.	 	 Sheet for chroma key	 
	 
	 When we take synthesized video, chroma key is used. 
Green background is necessary for it. For example, target 
person wants to make synthesis image flying into the sky. In 
this case, we need to make a motion that the target is flying in 
front of a sheet of chroma-key. It synthesize the target image 
and blue sky. In the result, it can create the synthesis image 
which there is flying	 in the sky. Figure 2 is an example of the 
studio using sheet of chroma key.	 
	 

	 
Figure 2	  Example using sheet for chroma key 

	 	 
Thus, only visitor have to do is watching an art work and this 
system can synthesize an art work and visitor.  
	 
C.	 Camera for chroma key	 
	 
	 Next, we will explain the camera for chroma key. We show 
the camera for chroma key in figure 3. 
	 

	 
Figure 3	  the camera for chroma key 

 
This camera is handy camera of Sony HDR-PJ390. This is 
machine to use when we sysnthesize visitor and an art work. 
This camera puts on a wall displaying a art work and it take a 
visitor movie. Thus, it does not give discomfort for visitor 
watching an art work and it can watch an art work in natural 
form.	 
	 

D.	  MONITOR FOR CHROMA KEY 
In this paper, a monitor always projecting the art work image. 
It projects the picture of chroma key made in the realtime 
when visitor came in front of the art work. We show a monitor 
to use in figure 4. 

Int'l Conf. Computer Graphics and Virtual Reality |  CGVR'13  | 59



	 
Figure 4	  Figure of monitor for chroma key 

	 
	 The monitor of figure 4 is liquid crystal display LB-T401 of 
the SHARP40V type for business use. The monitor will chose 
the size that would be equal to a picture. Therefore, we use 
these machine. The visitors will see one's figure watching a 
picture by putting this monitor on the wall. The visitor feel 
they enter the world of the picture when they see the monitor 
	 
E.	 System to input the height of the visitor	 
	 This system synthesize a visitor and an art work. 
Accordingly, this system compare the shape of the art work 
which it set with the height of the user. Therefore, this system 
synthesize it based on the shape that it calculated.  This system 
project the result to a monitor. Thus, a system, to input the 
height of the visitor, is necessary.  We show input system in 
figure 5. 
 

	 
Figure 5	  The system which inputs height 

	 
	 This system is to input the height of a visitor who watching 
an art work. Visitor input height into this square frame.  It 
calculates an art work shape and the ratio of the visitor , then it 
make real size when we compared the visitor with the art work.  
For example, when author use this system. Height of author is 
174 centimeters. Thus, author inputs the height in a square. 
When input is completed, user push the decision button under 
the input box. The data of the height which a visitor who are 
watching a picture, are sent. For example, it assume that there 
is the art work which it drew a person image on. Let we say 
the height of the drawn person is 180 centimeters. we 

substitude 180 centimeters with 1. Then we substitude the 
height of the visitor with X. When an author input data into 
this system, the calculating formula form the expression that 
we wrote down below.	 
	 

180:174=1:X 
180X=174 
X=0.966…	 

	 
	 Thus, visitor is about 96% of size for the art work which in 
this case is set. In consequence,the visitor is projected with 
real size in a art work. It program this calculation in a system 
which visitor inputting height. Therefore,it enable to chroma 
key synthesizing image in the real time. In addition, it is 
necessary to develop this system as an application system. 
This should be installed in tablet terminals. We put it in the 
place where a picture is displayed. In consequence, a visitor 
does not have to carry a device. 
	 

Ⅳ .	  PROPOSAL SYSTEM 
	 We used the software which perform chroma key to 
suggesting this system by "Institute for system plan Co., Ltd., 
ISP." This system is called "ROBUSKEY LIVE." As for this 
software, there is best matche computer is selling together. We 
use this computer and software to realize synthesis image real 
time. We show a computer to use in figure 6. 
	 

	 
Figure 6 	  The computer which was equipped with 
"ROBUSKEY LIVE" 
	 
This software perform chroma key. At first, it take by using 
camera. It is perform that it synthesize background image 
which we set to the computer and taken information. For this 
reason, the digital art system in this study is possible. Here, we 
show the flow of the system in figure 7. 
	 

	 

60 Int'l Conf. Computer Graphics and Virtual Reality |  CGVR'13  |



	 
Figure 7	  Flow of the system 

	 
First of all, it takes a visitor who watching an art work in front 
of a sheet for chroma key.「ROBUSKEY LIVE」Secondly, 
there is a computer equipped with "ROBUSKEY LIVE" and 
user choose the background image letting you synthesize it 
here. Thirdly, the picture of the visitor which took using a 
camera is performed chroma key. Next, we broadcast this 
picture to USTEREAM. It performs the broadcast of this 
USTEREAM by limited account. Thereby, it prevent it from 
leaking picture outside. Then, it acquire a picture broadcast to 
USTREAM with other computers. We connect the computer 
and monitor using an HDMI terminal. Finally, it projected 
picture to a monitor. By the flow of these system, we can 
propose the digital art system in the real time. Furthermore, 
the visitor input one's height into the system before reflecting 
visitor in art work. Therefore, visitor is synthesized with real 
size in it. We explain an object to compare. The used art work 
really sets one any object. It compare the value of the visitor 
with the value and it is synthesize afterwards. 
	 Then, we give the example using the system. I explain this 
using a real art work. It assumed that an author used a system. 
We perform it with the art work of "the Henry VIII image" 
which Hans Holbein drew. I show the picture in figure 8. 
 

	 
Figure 8	 Henry VIII image 

 

It is said that Henry VIII was about 190 centimeters. 
Accordingly, I set the subject of this picture with 190 
centimeters. For example, an author uses it in this system. 
Height of the author is 174 centimeters. We show a figure 
after having done chroma key in figure 9. 
 

	 
Figure 9	  Picture at the time of the system use 

	 
We consider the case that I used chroma key and watch an art 
work as digital art this time. It was able to do a comparison 
between one's height and Henry VIII's height. This cause 
author watch a picture subjectively more than before. I try to 
read a synthesized figure. It understand that Henry VIII was 
very big. Visitor could not feel this only by having watched an 
art work. In addition, you could not touch the picture. 
However, visitor watching picture by this system can perform 
action to Henry VIII . This grants the desire of the visitor. This 
raises entertainment characteristics of the art work. 
	 Then, we show an example in the landscape. Here, I take up 
one in " Thirty-six Views of Mount Fuji" of Hokusai 
Katsushika. The name of the art work is "The Great Wave off 
Kanagawa". This is the famous picture which Hokusai 
Katsushika left as a woodcut. We show the picture in figure 10.	 
	 

	 
Figure 10	 Picture of "The Great Wave off Kanagawa" 

 

Int'l Conf. Computer Graphics and Virtual Reality |  CGVR'13  | 61



In the case of this picture, it is different from the picture of 
"the Henry VIII image". Ship, angry waves, and Mount Fuji 
are drawn. This is a landscape. Therefore, the real size of a 
visitor projected by a monitor become really small. This 
picture made a set point a ship. This ship is a small ship. Full 
length was about 12 meters. Width was about 2.5 meters. It is 
said that depth was about 0.9 meters. Therefore, we had a 
value to set the depth of the ship this time. We compare the 
value with the height of a visitor watching an art work. We 
show a figure when I used this system in figure 11.	 
	 

	 
Figure 11	  The figure which was synthesized when I used 
this system. 
	 
	 We show the image which extended figure 11. 
	 

	 
Figure 12	 Extended image 

	 
I set the ship in this picture with 90 centimeters. The high 
wave understands well that it watch this. For this reason,the 
visitor watching a picture can really feel the sense that this 
painting contained. In the result, we were able to suggest a 
system as digital art by this system. 

Ⅴ .	  conclusion and consideration 
	 In this paper, we propose the digital art watching system 
letting picture and visitor fuse in real time. It was important 
whether the art museum displayed the art work which was 
better than other art museums so far. However, there is 
different characteristic by the digital art with this system. 
When a visitor watches a picture, we perform it. If visitor 

watch an art work, visitor is projected in the picture. It gave 
the sense that entered the picture to the visitor who looked. 
This is the entertainment-related high quality system which 
you could watch the picture which visitor watched only on 
plain subjectively and objectively. As a future problem, this 
study is a proposal stage. Therefore, it is necessary to develop 
a system for the uses in real art museums. In addition, as for 
the current system, the system is finished with an art work and 
the real-time synthesized image of the user. We change a 
picture into image data in future and visitor could send it to 
one's smartphone. Thus, we perform the second utilization of 
the system. In consequence, we want to perform system 
development to promote the visitor increase to the art museum. 
In addition, there is a sheet of chroma key is necessary to 
perform synthesize. Under the present conditions, we limit 
space and uses of system. However, we put sheet of chroma 
key in all of art museums. As a result, we can perform chroma 
key at all places in an art museum. We put a system in each 
pictur. Thus, all space becomes the space that the system is 
available. We make come the real art museum cooperate in 
future true. It can be added more value to watching a picture. 
We want to increase visitor by this system. Finally, we 
perform survey with entertainment characteristics and the 
visibility as the digital art system after developed a system. I 
complete this system from the result. 
 

References 
 

[1]  Seiki Inoue, Nobuyuki Yagi, Hideki Sumiyoshi, practice  
       CG, picture composition to learn by C language,  
       Ohmsha ,2005,04 
[2] Sony Corporation ,http://www.sony.co.jp  
[3] Sharp Corporation, http://www.sharp.co.jp 
[4] Institute for system plan /ISP,     
      http://www.isp.co.jp/products/robuskey-live/index.html    
      Co., Ltd. 
[5] Akihiro Sashi, Renaissance monarch of the labyrinth –  
       U.K. of Henry VIII, temple of the Showa era, 2012.0630 
[6] Junichi Okubo, “Thirty-six Views of Mount Fuji” of  
      Hokusai who describes it in infinite variety, Shogakukan,    
      2005.9 
[7] Kaoru Sugita, Toshiaki Nakasu, Yasunobu Yamauchi,  
   display guide system expanding the museum space  
   by the association of the showpiece, Institute  
   of Electronics, Information and Communication  
   Engineers technology research report. MVE,  
   multimedia, virtual environmental basic  
   109(466), 41-44, 2010-03-05 
[8] Satoshi Ikehata, Toshihiko Yamasaki, Kiyoharu Aizawa,   
      The Shadow Man: The interactive media art using the  
      shadow, Institute of Electronics, Information and  
      Communication Engineers technology research report.  
      MVE, multimedia, virtual environmental basic 109(466),  
      119-124, 2010-03-05

 

62 Int'l Conf. Computer Graphics and Virtual Reality |  CGVR'13  |




