
SESSION

PROCESSOR and INTEGRATED CIRCUIT DESIGN
+ LOW POWER COMPUTING + TESTING

Chair(s)

TBA

Int'l Conf. Computer Design | CDES'13 | 1

2 Int'l Conf. Computer Design | CDES'13 |

Allocation of NBTI Aging Sensors for Circuit Failure Prediction

Samir Mahaboob Khan Kagadkar and Hussain Al-Asaad
Department of Electrical and Computer Engineering,

University of California, Davis

Abstract— Negative bias temperature instability (NBTI) is
a critical device reliability concern in nanometer-scale
CMOS processes. We review the degradation effects of
this phenomenon and present techniques to measure and
combat NBTI aging. Such techniques involve the insertion
of specialized aging sensors and their use in self-correcting
dynamic reliability management systems. We propose a novel
approach to optimize the allocation of such aging sensors
to minimize overhead.

Keywords: Integrated Circuit (IC) reliability, Circuit failure pre-
diction, Negative Bias Temperature Instability (NBTI)

1. Introduction
Engineers working on the design of modern integrated

circuits (ICs) fabricated in nanometer-scale technologies are
in the unenviable position of having to face a plethora of
issues that were benign in the past. Mounting parametric
variability, radiation-induced soft errors and time-dependent
device degradation make transistors increasingly unreliable
components. A generation of engineers is realizing that
hardware failures from these unreliable components are a
distinctly realistic possibility.

Phenomena such as negative bias temperature instability,
hot carrier injection, dielectric breakdown and electromigra-
tion limit circuit lifetimes. These degradation mechanisms
are only increased with future technology scaling, further
exacerbating an already diminished reliability. As Moore’s
Law packs more transistors on each chip, it is essential to
design robust systems that can cope with these and other
unexpected challenges.

Negative Bias Temperature Instability (NBTI) is a pro-
gressive aging phenomenon that results in reduced circuit
performance. It occurs in p-channel MOS (pMOS) transis-
tors that are stressed by negative gate voltages and elevated
temperatures. NBTI has been recognized as a leading para-
metric failure mechanism in modern nanometer-scale ICs
[1], [2].

Traditionally all parametric variations and aging effects
have been tested via a go/no-go stress qualification method-
ology. ICs are designed to withstand a sustained combination
of worst-case voltages, temperatures and parametric varia-
tion. Aging effects have been similarly factored in via their
worst-case contribution to reliability degradation. As vari-
ability and degradation mechanisms worsen on modern fabri-
cation processes, these worst-case guardbands are becoming

increasingly pessimistic and resulting in lost performance
and energy-efficiency.

An alternate approach is dynamic reliability management
which uses specialized on-chip measurement circuitry to
track variation and aging. Inputs from aging sensors and
a history of past conditions predict future degradation and
help optimize circuit tuning parameters such as voltage and
frequency to prolong lifetimes. By minimizing pessimistic
guardbands, such ICs offer optimal performances-per-joule
of energy spent.

We first review the mechanisms behind and effects of
NBTI degradation. We introduce sensors that track aging
effects and their role in reliability management systems. In
particular we explore a strategy that results in an economical
allocation of aging sensors. An optimal allocation of aging
sensors results in lower overhead and, hopefully, will hasten
adoption of circuit failure prediction sensing in ICs.

2. Review of NBTI: Device-level and
Circuit-level Effects

The phenomenon of NBTI occurs in p-channel MOS-
FET devices (pMOS) which are stressed with negative gate
voltages at elevated temperatures. Although either negative
voltages or elevated temperatures can cause NBTI, the
effect is most strongly manifested when these conditions
occur together. At a transistor level NBTI exhibits itself as
decreases in absolute drain current IDSat, transconductance
gm and absolute “off" current Ioff , and increases in threshold
voltage |VT | (VT becomes more negative). At a digital circuit
level, the increased pMOS threshold voltages and degraded
drive current capabilities result in reduced performances and
timing shifts. These timing shifts can eventually lead to delay
faults and device failures.

Typical stress conditions are temperatures of 100−250◦C
and oxide electric fields of a few MV/cm. Elevated tem-
peratures and high electric fields have become common
in modern IC operation, especially when processing heavy
workloads.

Various mechanisms have been described to explain the
physics of NBTI. One theory that is commonly suggested
is the breaking of Si-H bonds at the silicon/oxide interface
resulting in the generation of dangling Si bonds. These
dangling bonds act as electrically active interface traps.
Under NBTI stresses, these traps are usually positively

Int'l Conf. Computer Design | CDES'13 | 3

charged and result in threshold voltage increases. Details
of such mechanisms can be found in [3].

Knowledge of NBTI dates as far back as the 1960s
and 1970s [4], [5]. These early experiments established the
buildup of positive charges at the interface Qit due to NBTI,
sensitivity of these charges to temperature as well as a power
law dependence on aging times (t0.25).

Commonly used surface channel MOSFET devices with
SiO2-based gate dielectric exhibit the NBTI effect. With
each technology generation, more and more high-performing
devices are being packed onto single dies. Such high densi-
ties and rapid switching have increased on-die temperatures
(T ≈ 100◦C), especially at peak activity. The non-linear
reduction of operating voltages with the technology scaling
has resulted in high gate oxide electric fields. The shift to
nitrided oxides on advanced CMOS devices aggravated the
NBTI effects. Moreover the interface trap density introduced
by NBTI has a 1/tox dependence on the oxide thickness tox,
making the effect more pronounced on modern, ultra-thin
gate oxide CMOS devices.

More recent MOS processes at the 45n and below tech-
nology nodes introduced high-k dielectrics and metal gates
to combat high levels of leakage from ultra-thin SiON
dielectrics. Such devices also exhibit bias temperature in-
stability [2].

2.1 Interface States and Device-level Charac-
teristics of NBTI Damage

The threshold voltage of a p-channel MOSFET device is
given by [6]:

VT = VFB − 2ψBn −
|Qs|
Cox

(1)

The second term is the surface potential at strong in-
version ψs ≈ −2ψBn = −2 ln(ND/ni). |Qs| =√

2εsqND(2|ψBn|) represents total space charge density.
VFB is the flatband voltage and is given by:

VFB = φms −
Qf

Cox
− Qit

Cox
(2)

Here φms is the work function difference between the metal
and semiconductor. Qf and Qit are densities of fixed charge
and interface traps respectively. ND is substrate doping
density. Cox is the oxide capacitance per unit area. The other
symbols have the usual meanings.

An interface trapped charge, also called an interface
trap, is a dangling bond at the SiO2/Si interface. These
interface traps are electrically active defects that can act
as generation/recombination sites. Since electrons and holes
occupy the trap states, they contribute to threshold voltage
shifts:

∆VT = −∆Qit/Cox (3)

Interface traps have energy states that are distributed
throughout the forbidden gap, acting as acceptors in the up-
per half and donors in the lower half. In pMOS devices under

inversion, NBTI stress leads to an activation of positively
charged interface traps. This results in the threshold voltage
becoming more negative (increase in |VT |).

NBTI causes degradation in device characteristics and
reduced performance. The MOSFET saturation drain current
and transconductance are:

IDSat = (W/2L)µeffCox(VG − VT)2 (4)
gm = (W/L)µeffCox(VG − VT) (5)

The threshold voltage changes described above result in
reduced gate overdrive (VG−VT) and hence degraded drive
currents and device transconductances.

2.2 Circuit-level Characteristics of NBTI Dam-
age

Studies have shown that pMOS threshold voltages can
shift by 50mV over a period of ten years. The associated
drive current reduction and lower device performance trans-
lates to over 20% degradation in circuit speed [3], [7].

Negative gate bias stresses correspond to the “output high”
state of the CMOS inverter operation. With speedy transition
times on high performance circuits, large portions of time
can be spent in the NBTI stress state. Such stresses may
be coupled with high temperatures depending on device
workloads and position on the die. High activity regions of
the IC often reach elevated temperatures.

NBTI has been shown to be a dynamic phenomenon
[1]. A large fraction of the interface traps activated under
the NBTI stressing are annealed when the CMOS inverter
switches to a “low” output state. This recovery phase may
be explained by the diffusion of hydrogen back into the
Si/SiO2 interface thus passivating interface traps. Figure
1 illustrates threshold voltage degradation during negative
bias stress and subsequent recovery under positive bias. The
temperature sensitivity and the dynamic nature of NBTI
degradation make the phenomenon strongly dependent on
the actual computational workloads of the IC.

Stress Recovery

time

D VT

Fig. 1: pMOS NBTI vs. time illustrating both degradation
and recovery when stress is removed. Note that magnitude
of threshold voltage is used here.

4 Int'l Conf. Computer Design | CDES'13 |

The reduced drive characteristics and circuit speed result
in delay shifts of timing paths that contain NBTI damaged
gates. These delay shifts may or may not immediately
manifest themselves as delay faults. For example, a timing
path may possess more timing margin (slack before the
onset of degradation) than the delay degradation caused by
NBTI. These delay shifts can be used as indicators of NBTI,
and sensors based on this principle are explored in sections
ahead.

3. Combating Aging
An ideal solution to limit aging and the associated para-

metric degradation is to improve device fabrication process.
Improved passivation of interface trap states reduces the
NBTI effect. As process scaling is approaching physical and
manufacturing limits, radical process improvements are non-
trivial. A design engineer must recognize that aging is a
realistic concern that must be dealt with proactively. Such
design techniques are explored in this section.

3.1 Guardbands
This involves estimating the cumulative worst-case degra-

dation that may occur over the lifetime of a device due to
a combination of temperature, voltage, computing workload
and other stresses. The clock frequency is reduced to ac-
commodate for this worst-case degradation.

3.2 Dynamic Reliability Management
The technique of guardbands is based upon continuous

stressing of a sample under pessimistic operating conditions
and evaluating whether it passes or fails. In reality widely
varying operation conditions and dynamic power saving
methods mean most parts are not stressed to these worst-
case levels. Thus by using pessimistic guardbands, we lose
out on a substantial performance margin between worst-case
conditions and typical conditions. This loss is illustrated in
Figure 2.

An alternate approach to worst-case stress qualification is
a knowledge-based risk assessment and mitigation technique.
A framework for application-specific knowledge-based test
is defined by the JEDEC JESD-94 standard [8]. This requires
a detailed knowledge of individual failure mechanisms and
their models. Tests are developed to capture these failure
modes under a range of operation conditions and reliability
targets specific to the device’s end use and application.
Implementations of this knowledge-based approach are often
termed as dynamic reliability management [9], [10].

The dynamic reliability management system we envis-
age uses real-time on-die measurements including voltage,
thermal information, computing workloads and inputs from
specialized on-die aging sensors. Characterization and anal-
ysis of failure mechanisms provides models that can use
these inputs and past operating history to predict future
degradation.

These predictions allow the adjustment of circuit control
parameters as a self-correcting measure to guarantee the
device is under a reasonable reliability envelope.

3.3 Self-Correction
Dynamic Voltage Frequency Scaling (DVFS) is the scaling

of clock frequency and/or supply voltage dynamically and
has been used to trade-off between a device’s time-dependent
performance and its energy consumption. At peak demand,
both voltage and frequency can be scaled up to guarantee
maximum performance. On the other hand these can be
reduced at periods of low activity, thus ensuring low average
power consumption. Since voltage scaling helps offset delay
degradation on aged timing paths, this can be used to correct
for NBTI degradation [11], [12].

It must be noted that higher supply voltages (VDD) tend to
increase the rate of NBTI degradation. Thus it is important
to carefully choose supply voltages that do not unnecessarily
accelerate aging effects if such voltage increases are not
immediately required. Moreover higher voltages also cause
increased power consumption and the associated rise in
operating temperature that further exacerbates NBTI aging.

Since bias temperature instability causes increases in
threshold voltage, this results in reduced subthreshold cur-
rents and a corresponding reduction in total circuit leakage
power (Isub ∝ e

−VT
mkT). This presents us an opportunity of

trading off this power saving for recovered performance by
forward body biasing (FBB) the devices [13], [14].

A combination of the adaptive voltage scaling and adap-
tive body bias techniques can be used to correct for aging
wearout. This correction scheme is embedded as part of a
more general circuit tuning framework which dynamically
matches operating voltage, frequency and body bias to
application-based performance needs, power saving goals,
and to combat variations in process and temperature.

4. Aging Sensors
Real-time chip- and system-level sensors measure and

track the actual aging process and allow the implementation
of reliability enhancement processes that can compensate for
aging effects. The insertion of such sensors as part of a larger
self-correcting dynamic reliability management system is
one way to avoid overly pessimistic design margins.

Most modern high performance ICs already include on-
chip measurement circuits such as process monitors (for
example, ring oscillators) and temperature sensors. It is
probably unwise to rely solely on the inputs from such
conventional monitor cells [15]. Due to the time and location
variability of stresses from dynamic workloads, the stresses
faced by a conventional monitor might be very different from
the stresses faced by various functional modules of the chip.

NBTI degradation manifests itself in a number of vis-
ible ways. Any of these signatures can be measured by
specialized aging sensors and used to detect NBTI-based

Int'l Conf. Computer Design | CDES'13 | 5

0 5 10
Time in Years

C
ir
c
u

it
 P

e
rf

o
rm

a
n

c
e

Worst−Case Degradation

Typical Degradation

Worst−Case
Guardband

Lost
Performance

100%

90%

Fig. 2: Reliability degradation over time

circuit aging. Most commonly degradation in circuit speed
is measured to detect NBTI. Data collected from these aging
sensors is supplanted with data from conventional measure-
ment circuits (thermal and voltage monitors) and data logs
(operating history, sleep states and past measurements from
on-die sensors). This information can be used to predict
future reliability failures.

Some techniques for designing NBTI sensors include ana-
log measurements. Measurement of quiescent power supply
current (IDDQ test) [16] or measurement of the control
voltage for locking a delay-locked-loop [17] are examples
of such techniques. Several other groups have suggested the
use of ring oscillators to track NBTI aging [18], [19], [20].
In practice the use of analog measurements is unwieldy for
measurement of in-field aging. Moreover, it is uncertain that
the wearout of ring oscillator elements occurs at the same
rate as data-dependent aging on paths in functional modules.

Agarwal et al. developed an NBTI measurement technique
that embeds delay shift measuring circuitry within existing
design flip-flops [15]. Their essential idea is to compare a
delayed sample of the signal at the input of a flip-flop with
the original sample. Figure 3 illustrates this idea.

Fig. 3: Measurement circuitry that compares original and
delayed samples indicating guardband violation. Adapted
from [15].

They define a guardband interval as a small worst-case
timing guardband that ensures circuit functionality over a
short period of time, for example fifteen days. The design is
closed with this safety margin and thus is ensured to work
over the period of the guardband interval. Data at the output
of logic cones is double sampled. A regular flip-flop takes
one sample of the data and another flip-flop samples the data
after a specified delay. This timing shift is implemented by a
delay element with a delay equal to the guardband interval.
These sampled signals are now compared via an exclusive-
OR (XOR) gate. If the compared signals differ, this results
in a logic-high signal at the output of the XOR gate. This
indicates at least one timing path in the combinational logic
cloud has sufficiently degraded due to aging thus entering
the guardband and further timing degradation might cause
a delay fault. If this has happened the IC enters a self-
correction phase where guardbands and system parameters
are adjusted to ensure future reliability [21]. Related research
uses the general principle but has different circuitry of the
sensor [15]. By sampling critical functional timing paths,
these sensors measure in-situ aging due to real computing
workloads of the device. We will consider this technique as
the sensor of choice for future sections.

5. Allocation of Aging Sensors
In this section we explore a methodology to place NBTI

aging sensors. A frugal insertion strategy minimizes over-
head of these sensors. The insertion of aging sensors comes
at the cost of area and power. For example, the sensors
described earlier double sample logic outputs. The additional
flip-flops add an area overhead as well as consume power
when they sample data. Moreover signals from the aging
sensors need to be routed to a dynamic reliability manage-
ment unit for analysis which causes wiring overhead.

Since dynamic NBTI exhibits both stress and recovery
(passivation) phases during circuit operation, the degradation
due to NBTI is sensitive to the input patterns applied. In

6 Int'l Conf. Computer Design | CDES'13 |

addition to voltage and temperature information, estimates
of delay shifts should consider node switching activities from
realistic computational workloads. NBTI degradation models
that include activity factors indicating the fraction of time
spent in stress states are presented in [22], [23]. Circuit
topologies and realtime workloads cause duty cycles that
vary both spatially and temporally and between gates within
a logic cone.

Furthermore, dynamic on-die temperature readings are
very workload dependent and temperature hotspots for one
application might differ significantly from the temperature
hotspots for another application. It is thus important to
develop and use a well-representative mix of benchmark
applications that will model realistic in-field computing
workloads and temperature stresses generated therein. In
addition to data-dependence, thermal profiles depend on the
power-saving options in use on the device. Measures such as
power gating, clock gating and other sleep states can cause
large variations in temperature maps.

5.1 Optimal Placement of NBTI Aging Sensors
A naïve strategy for insertion is to place them at all flip-

flops where setup timing slack is less than our guardband
interval [24]. This aging estimate is based on static NBTI and
is hence unnecessarily pessimistic. Agarwal et al. improve
upon this strategy by performing timing analysis assuming
a worst-case activity factor of 0.95 (fraction of time spent
in pMOS stress state). In our opinion the overhead obtained
with this empirical activity ratio is still too high for practical
use on ICs. For example their analysis requires embedding
aging sensors on a particularly large number of flip-flops.
On two designs they report 16% and 52% of flip-flops that
need embedding of aging sensors [24]. Another important
consideration that is not considered explicitly in their work
is the impact of thermal stress.

We propose an alternate strategy that minimizes the over-
head of on-chip aging sensors by including the realistic
considerations of activity ratios and temperature profiles.
Timing analysis is performed on post-layout netlists as a part
of design closure to ensure correctness of device operation
under specified performance targets. This analysis is often
performed using a static timing analysis (STA) tool such
as Synopsys PrimeTime. Our strategy to decide optimal
locations for aging sensors is only a simple modification
to an existing STA flow.

This strategy is outlined in Figure 4. Multiple vector
based simulations are performed on the circuit netlist for a
mix of representative real-world workloads. Such analysis is
often performed on post-layout netlists to obtain dynamic
power and dynamic voltage drop estimates. This simula-
tion yields application-specific node activity information as
well as temperature maps. Temperature maps could also
be obtained by a separate analysis or based on previous
silicon measurements. These activity and temperature maps

are overlaid on the static timing analysis (STA) environment.
An aging aware cell library embeds cell-level aging infor-
mation specific to activity ratios at gate inputs and operating
temperature. Timing slacks obtained from such application-
specific timing analyses allows insertion of aging sensors
optimally. Flip-flops with timing slack less than a specified
guardband interval are most sensitive to NBTI aging and its
associated slowdown. These are now replaced by flip-flops
with aging sensors embedded within them.

Our STA flows can be sped up by eliminating non-critical
end-points from our analysis. Timing paths with enough
slack to tolerate pessimistic degradation can be skipped from
the detailed temperature-sensitive and vector-based timing
analysis. For example, end-points with more setup slacks
than would be lost under worst-case static NBTI degradation
at elevated temperatures are eliminated from our analysis.

Once critical end-points are identified by timing analysis,
we insert aging sensors at these locations and perform incre-
mental place-and-route to obtain final layouts. By inserting
sensors on paths that are most sensitive to aging, we are able
to minimize the overhead of aging sensors.

6. Conclusion
NBTI is a phenomenon that contributes significantly to re-

duced reliability of pMOS transistors and ICs that use these
transistors as building blocks. Although we are not yet facing
an insurmountable barrier due to such issues, additional com-
plexity has been introduced on already burdened engineers.
Design engineers can use measurements of in-field aging by
the use of specialized on-die measurement circuits. These
measurements are used to predict future circuit failures and
also used in a dynamic reliability management framework
to tune circuit control parameters such as voltage and body
bias. We reviewed aging sensors that track NBTI degradation
and explored a strategy based on application-specific data for
the economical allocation of such sensors.

Int'l Conf. Computer Design | CDES'13 | 7

Static Timing Analysis
Environment

(Temperature and Aging Aware)

Gate Libraries
with

Aging
Degradation
Information

Post-Layout
Circuit
Netlist

Vector-based
Simulation

Realistic
Workload

(Representative
Input Vectors)

Node Activity
Information Temperature Maps

Post-Layout Timing Reports
(Identify Timing Margins)

Insert aging sensors on flip-flops
based on timing slack information

Incremental Place-and-Route

Fig. 4: Flow to optimally insert aging sensors

References
[1] G. Chen, M. Li, C. Ang, J. Zheng, and D. Kwong.

“Dynamic NBTI of p-MOS transistors and its impact
on MOSFET scaling.” In: Electron Device Letters,
IEEE 23.12 (2002), pp. 734–736.

[2] J. Hicks, D. Bergstrom, M. Hattendorf, J. Jopling,
J. Maiz, S. Pae, C. Prasad, and J. Wiedemer. “45nm
transistor reliability.” In: Intel Technology Journal
12.2 (2008), pp. 131–144.

[3] D. Schroder and J. Babcock. “Negative bias temper-
ature instability: Road to cross in deep submicron

silicon semiconductor manufacturing.” In: Journal of
Applied Physics 94.1 (2003), pp. 1–18.

[4] B. Deal, M. Sklar, A. Grove, and E. Snow. “Character-
istics of the Surface-State Charge (Qss) of Thermally
Oxidized Silicon.” In: Journal of the Electrochemical
Society 114.3 (1967), pp. 266–274.

[5] A. Goetzberger, A. Lopez, and R. Strain. “On the
Formation of Surface States during Stress Aging of
Thermal Si-SiO2 Interfaces.” In: Journal of the Elec-
trochemical Society 120.1 (1973), pp. 90–96.

[6] S. Sze and K. Ng. Physics of semiconductor devices.
Wiley-interscience, 2006.

8 Int'l Conf. Computer Design | CDES'13 |

[7] S. Borkar. “Electronics beyond nano-scale CMOS.”
In: Proceedings of the 43rd annual Design Automa-
tion Conference. ACM. 2006, pp. 807–808.

[8] J. JESD94A. “Application Specific Qualification Us-
ing Knowledge Based Test Methodology.” In: JEDEC
Solid State Technology Association (2007).

[9] E. Karl, D. Blaauw, D. Sylvester, and T. Mudge.
“Multi-mechanism reliability modeling and manage-
ment in dynamic systems.” In: Very Large Scale
Integration (VLSI) Systems, IEEE Transactions on
16.4 (2008), pp. 476–487.

[10] J. Srinivasan, S. Adve, P. Bose, and J. Rivers. “The
case for lifetime reliability-aware microprocessors.”
In: ACM SIGARCH Computer Architecture News.
Vol. 32. 2. IEEE Computer Society. 2004, p. 276.

[11] L. Zhang and R. P. Dick. “Scheduled voltage scaling
for increasing lifetime in the presence of NBTI.”
In: Design Automation Conference, 2009. ASP-DAC
2009. Asia and South Pacific. IEEE. 2009, pp. 492–
497.

[12] A. Tiwari and J. Torrellas. “Facelift: Hiding and slow-
ing down aging in multicores.” In: Microarchitecture,
2008. MICRO-41. 2008 41st IEEE/ACM International
Symposium on. IEEE. 2008, pp. 129–140.

[13] J. W. Tschanz, J. T. Kao, S. G. Narendra, R. Nair,
D. A. Antoniadis, A. P. Chandrakasan, and V. De.
“Adaptive body bias for reducing impacts of die-to-die
and within-die parameter variations on microproces-
sor frequency and leakage.” In: Solid-State Circuits,
IEEE Journal of 37.11 (2002), pp. 1396–1402.

[14] S. V. Kumar, C. H. Kim, and S. S. Sapatnekar. “Adap-
tive techniques for overcoming performance degrada-
tion due to aging in digital circuits.” In: Proceedings
of the 2009 Asia and South Pacific Design Automation
Conference. IEEE Press. 2009, pp. 284–289.

[15] M. Agarwal, B. Paul, M. Zhang, and S. Mitra. “Circuit
failure prediction and its application to transistor
aging.” In: VLSI Test Symposium, 2007. 25th IEEE.
IEEE. 2007, pp. 277–286.

[16] K. Kang, K. Kim, A. Islam, M. Alam, and K. Roy.
“Characterization and estimation of circuit reliability
degradation under NBTI using on-line IDDQ mea-
surement.” In: Design Automation Conference, 2007.
DAC’07. 44th ACM / IEEE. IEEE. 2007, pp. 358–363.

[17] J. Keane, T. Kim, and C. Kim. “An on-chip NBTI
sensor for measuring PMOS threshold voltage degra-
dation.” In: Very Large Scale Integration (VLSI) Sys-
tems, IEEE Transactions on 18.6 (2010), pp. 947–956.

[18] V. Reddy, A. Krishnan, A. Marshall, J. Rodriguez,
S. Natarajan, T. Rost, and S. Krishnan. “Impact of
negative bias temperature instability on digital cir-
cuit reliability.” In: Microelectronics Reliability 45.1
(2005), pp. 31–38.

[19] T. Kim, R. Persaud, and C. Kim. “Silicon odometer:
An on-chip reliability monitor for measuring fre-
quency degradation of digital circuits.” In: Solid-State
Circuits, IEEE Journal of 43.4 (2008), pp. 874–880.

[20] E. Karl, P. Singh, D. Blaauw, and D. Sylvester.
“Compact in-situ sensors for monitoring negative-
bias-temperature-instability effect and oxide degra-
dation.” In: Solid-State Circuits Conference, 2008.
ISSCC 2008. Digest of Technical Papers. IEEE In-
ternational. IEEE. 2008, pp. 410–623.

[21] Y. Li, Y. Kim, E. Mintarno, D. Gardner, and S. Mitra.
“Overcoming early-life failure and aging for robust
systems.” In: Design & Test of Computers, IEEE 26.6
(2009), pp. 28–39.

[22] S. Bhardwaj, W. Wang, R. Vattikonda, Y. Cao, and
S. Vrudhula. “Predictive modeling of the NBTI ef-
fect for reliable design.” In: Custom Integrated Cir-
cuits Conference, 2006. CICC’06. IEEE. IEEE. 2006,
pp. 189–192.

[23] W. Wang, S. Yang, S. Bhardwaj, R. Vattikonda, S.
Vrudhula, F. Liu, and Y. Cao. “The impact of NBTI
on the performance of combinational and sequential
circuits.” In: Design Automation Conference, 2007.
DAC’07. 44th ACM/IEEE. IEEE. 2007, pp. 364–369.

[24] M. Agarwal, V. Balakrishnan, A. Bhuyan, K. Kim,
B. C. Paul, W. Wang, B. Yang, Y. Cao, and S.
Mitra. “Optimized circuit failure prediction for aging:
Practicality and promise.” In: Test Conference, 2008.
ITC 2008. IEEE International. IEEE. 2008, pp. 1–10.

Int'l Conf. Computer Design | CDES'13 | 9

Implementation of a Fast Fourier Transform

Processor in NULL Convention Logic

Zhen Song and Scott C. Smith

Department of Electrical Engineering, University of Arkansas, Fayetteville, AR, U.S.A.

szuark@gmail.com and smithsco@uark.edu

Abstract – The Fast Fourier Transform (FFT) is a critical part in

communication systems, because it can greatly reduce the

computation requirement for signal processing. This paper presents

the design of a FFT processor using NULL Convention Logic (NCL),

which has been shown to have power consumption advantages over

its synchronous counterpart. Performance metrics for the NCL FFT

processor are obtained from Cadence simulation, and compared to

an equivalent synchronous implementation.

1. INTRODUCTION

Hardware implementations of FFT are divided into two
categories, fixed-point and floating-point. Although floating-
point numbers inherently have large dynamic range, hardware
implementation is larger, slower, and more power consuming
than the fixed-point counterpart. This is because arithmetic
operations for both mantissa and exponent need to be handled
in the hardware [1]. Therefore, in order to design a low-power
and high-speed processor, a synchronous FFT processor is
usually designed using Q15 Fixed-point format [1, 2].

2. PREVIOUS WORK

1) Synchornous FFT Architecture:

The synchronous FFT processor in Figure 1 utilizes a
single stage architecture. 32 butterfly units are used, one for
each two points [4, 5].

Figure 1. Synchronous FFT architecture

The feedback from each stage is hardcoded on MUX
inputs. The select signal on the MUX is controlled by a
counter, which counts the computation stages. A 64-point FFT
requires 6 butterfly computation stages, so computing one set
of input data will take 6 clock cycles. As shown in Figure 1,
the 64-bit Data_in first goes through the Bit_reverse unit to get
bit-reverse ordered Data_Rev. Then, for the first stage, each
butterfly unit gets two points and calculates the corresponding
intermediate results, called Processed_Data. These
intermediate data are then fed back to the multiplexers for
computations in the next stage. The MUXs take in
Processed_Data from the previous stage as input for
computation on the current stage. This kind of data flow
continues until the final computation stage. After calculations
in the final stage, a final re-order unit is used to output data in
the correct order.

Figure 2. Hardcoded MUX inputs of 8-bit FFT

The calculation of MUX index is presented as follows [3]:
in the flow graph of FFT, butterflies cross over each other in
an ascending manner in each stage. The index_para for both
inputs and outputs of butterfly0 are 0 and 1, 2 and 3 for
butterfly1, and so on. For each node on both the right side and
the left side of the butterfly groups in each stage, index_cross
is used. Index_cross is the natural order we count from the
first node all the way to the last node, from 1 to 64. Using
excel, we can get corresponding relations to transfer
index_cross to index_para on each stage and vice versa. The
function to transfer index_cross to index_para on stage i is
called CtoPi and the function to transfer index_para to

Butterfly Unit

Bit_reverse

WN ROM

S

Register

Butterfly Unit

WN ROM

Data_in Data_Rev

Data_Rev(0)

Feedback

Feedback
Feedback
Feedback
Feedback

S

Data_Rev(1)

Feedback

Feedback
Feedback
Feedback
Feedback

S

Data_Rev(2)

Feedback

Feedback
Feedback
Feedback
Feedback

S

Data_Rev(3)

Feedback

Feedback
Feedback
Feedback
Feedback

Processed_Data(0)

Processed_Data(1)

Processed_Data(2)

Processed_Data(3)

…
..

…
..

…
..

count

count

Final_re-order

Data_out

…
..

Register

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

Butterfly 3

Butterfly 2

Butterfly 1

Butterfly 0
Processed_Data(0)

1

2

3

4

5

6

7

Index_para

Processed_Data(1)

Processed_Data(2)

Processed_Data(3)

Processed_Data(4)

Processed_Data(5)

Processed_Data(6)

Processed_Data(7)

Data_Rev(0)

Data_Rev(1)

Data_Rev(2)

Data_Rev(3)

Data_Rev(4)

Data_Rev(5)

Data_Rev(6)

Data_Rev(7)

Processed_Data(7)

Processed_Data(3)

Processed_Data(5)

Processed_Data(1)

Processed_Data(6)

Processed_Data(2)

Processed_Data(4)

Processed_Data(0)

0

10 Int'l Conf. Computer Design | CDES'13 |

mailto:szuark@gmail.com
mailto:smithsco@uark.edu

index_cross on stage i is called PtoCi. In order to re-arrange
the output of butterflies at stage i, the following equation is
used:

 CtoPi(PtoCi-1(index_para))

Using the equations presented, the hardcoded MUX inputs of
an 8-bit FFT are shown in Figure 2.

2) Butterfly Unit

The butterfly unit in Figure 3 computes the following
equations [4, 5].:

 Xm[p] = Xm-1[p] + WN
r
Xm-1[q]

 Xm[q] = Xm-1[p] - WN
r
Xm-1[q]

The twiddle factor multiplier, TwiddleX, as shown in Figure 4,
calculates the complex multiplication of WN

r
Xm-1[q] inside the

butterfly unit.

Figure 3. Butterfly unit

TwiddleX gets the value of WN_real and WN_img from a
ROM, and calculates the following equation for complex
multiplication:

(Xr+ j*Xi)*(WN_real + j* WN_img) = (Xr* WN_real - Xi*

WN_img) + j*(Xi* WN_real + Xr* WN_img)

where Xr and Xi are the real and imaginary part of Xm-1[q]

Figure 4. Twiddle factor multiplier

Each butterfly performs only 6 calculations for the entire
process, so we only need to store the 6 specific WN values in
each ROM. Each addition and subtraction in the twiddle factor
multiplier and the butterfly unit may cause overflow, so all
overflow detection signals for these operations are combined
together to get the final overflow signal at the output of the
butterfly unit.

A 3-bit up-counter is used to control the FFT data path.
This counter is reset to 0, and counts up whenever Enable is 1.

The corresponding algorithmic state machine diagram is
shown in Figure 5.

Figure 5. State machine diagram

Upon initialization, Xrqst is asserted to request new data,
and counter is reset to 0. If Xdat is 1 the registers will load in
the new data; otherwise they wait until Xdat is 1. In S1, FFT
loads and calculates intermediate data until the count
reaches 5. S2 is an idle state that is used to wait for Yrqst to be
asserted before asserting Ydat to signify that the output is
valid.

3) Introduction to NCL

Generally, asynchronous circuits fall into one of two
categories: bounded-delay model or delay-insensitive model.
NCL circuits belong to the delay-insensitive model, which
means they can operate correctly with little timing analysis [6,
7, 8]. Symbolic completeness of expression is utilized in NCL
to realize delay-insensitivity. Specifically, dual-rail and quad-
rail logic are used in NCL design. Symbolically complete
means that the outputs are only determined by the presence of
the input signals, regardless of the timing relationship between
the input signals [8].

In NCL, both dual-rail and quad-rail signals use space
optimal 1-hot encoding and represent 1 bit by two wires [6, 7].
A dual-rail signal D consists of two wires: D

0
 and D

1
, whose

values are from the set {DATA0, DATA1, NULL}. DATA0
corresponds to logic 0 in Boolean logic, with D

0
=1 and D

1
=0,

while DATA1 is equivalent to logic 1 in Boolean logic, with
D

0
=0 and D

1
=1. NULL means the dual-rail signal is not

available, so D
0
 =0 and D

1
=0. Just as logic 0 and logic 1 are

mutually exclusive in Boolean logic, DATA0 and DATA1 are
also mutually exclusive; therefore, D

0
 and D

1
 cannot be 1

simultaneously, which is defined as an illegal state. Similarly,

Xdat

load

Count=5 ?YrqstYdat
Yes

No

0

1

1

S1

Initial

Xrqst, CNrst

CNen,load

S2

S0

Yrqst

1

0

Ydat

0

TwiddleX

WN_real WN_img

Xm-1[q] WN
r *Xm-1[q]

Overflow_TX

TwiddleX

Butterfly

Xm-1[q]

Xm-1[p]

WN_real WN_img

count

Xm[p]

Xm[q]

Overflow

WN
r
*Xm-1[q]

Overflow_TX

Int'l Conf. Computer Design | CDES'13 | 11

a quad-rail signal uses 4 wires, D
0
, D

1
, D

2
, and D

3
, which can

have a value of {DATA0, DATA1, DATA2, DATA3,
NULL}. A quad-rail signal corresponds to two Boolean logic
signals, X and Y. DATA0 is represented with D

0
=1, D

1
=0,

D
2
=0, and D

3
=0, which corresponds to X=0 and Y=0. DATA1

is represented with D
1
=1 and the rest of the rails 0, which

corresponds to X=0 and Y=1. DATA2 is expressed as D
2
=1

and the rest of the rails are 0, which corresponds to X=1 and
Y=0. DATA3 is expressed as D

3
=1 and the rest of the rails are

0, which corresponds to X=1 and Y=1. NULL means the data
is not available, so all four rails are 0. The four wires of a
quad-rail signal are mutually exclusive, which means only one
of them can be asserted at a time. If more than one rail is
asserted, this state is defined as an illegal state [6, 9, 12, 13].

NCL logic is composed of 27 fundamental gates. Each rail
in NCL logic, both dual-rail and quad-rail, counts as a separate
variable. Each of the fundamental gates can have four or fewer
variables as inputs. NCL gates are a subclass of the C-element.
A C-element output assumes the value of the inputs when all
inputs have the same value. Otherwise, the output remains its
previous value [6]. The primary type of NCL gate is the THmn

gate, where 1 m n, as shown in Figure 6 [6, 10, 11].

Figure 6. THmn NCL Gate [6, 10, 11]

The THmn gate has n inputs and threshold of m. The output
of the gate will only be asserted when at least m of the n inputs
are asserted. The inputs are connected to the arc on the left-
hand side. The output is connected from the tip on the right-
hand side [6].

3. NCL FFT PROCESSOR

1) NCL Components

The NCL overflow detector is designed as shown in
Figure 7.

Figure 7. NCL overflow detector

a) NCL Array Multiplier

By using the Baugh and Wooley method [14], a 16-bit by
16-bit NCL array multiplier is designed, as shown in Figure 8.
A partial product is generated by ANDing two bits of the input

signal. Then some of the partial products are inverted
according to the Baugh-Wooley scheme. In the array
multiplier structure, adders only use wires to communicate to
adjacent adders, thus making its layout area efficient.

Figure 8. NCL 2-D array multiplier [14]

b) NCL Counter

The NCL counter is comprised of increment circuitry and
feedback registers. In order to prevent deadlock, at least three
registers are needed in a feedback loop. The internal data flow
is controlled by request signal Ki and acknowledge signal Ko.
Completion detection circuits are used to detect complete
DATA and NULL wavefronts [7]. The up counter with three
feedback registers is shown in Figure 9.

Figure 9. NCL counter [7]

Reg0 is reset to DATA0 and Reg1 and Reg2 are reset to
NULL, to allow the DATA-NULL wavefront flow. This
counter is initially reset to DATA0; then it counts from 0 to 5
and is rolled over. The reset signal is a standard logic signal.
As a result, there is no NCL input signal for the counter. Thus,
no Ko signal is needed. The counter increment circuitry is
shown in Figure 10.

HA

SCo

X[0]Y[1]

X[1]Y[0]HA

SCo

X[0]Y[2]

X[1]Y[1]

FA

SCo

X[2]Y[0]

HA

SCo

X[0]Y[3]

X[1]Y[2]

FA

SCo

X[2]Y[1]FA

SCo

X[2]Y[2]

HA

SCo

X[0]Y[14]

X[1]Y[13]HA

SCo

X[0]Y[15]

X[1]Y[14]

FA

SCo

X[2]Y[13]FA

SCo

X[2]Y[14]

FA

SCo

X[3]Y[0]FA

SCo

X[3]Y[1]FA

SCo

X[3]Y[2]FA

SCo

X[3]Y[13]FA

SCo

X[3]Y[14]

FA

SCo

X[15]Y[0]FA

SCo

X[15]Y[1]FA

SCo

X[15]Y[2]FA

SCo

X[15]Y[13]FA

SCo

FA1

S

Co
FA

S

Co
FACo

FA

S

Co
FA

Co

X[0]Y[0]

X[1]Y[15]

X[2]Y[15]

X[3]Y[15]

…
.

…
.

…
.

…
.

…
.

…
.

…..

X[15]Y[14]

X[14]Y[15]

X[15]Y[15]

HA1

SCo

Ci CiCi

S

Ci

…...

…...

…...

…...
P0

P1

P2

P3

P16

P15

P14

P17P18P31 P30 P29

Reg_0 Reg_1 Reg_2

Ki_0Ko_0 Ki_1Ko_1 Ki_2Ko_2comp_0

comp_1

Ki

Increment

Cirtuitry

Reset Reset Reset

Count(2:0)

D0 NULL NULLI Q

3

Overflow1 3

X0Y0Z
1
 X1Y1Z0

Overflow
0

A
B

C

D

F

THand0

2

m

Input 1
Input 2

Input n

…
.. Output

12 Int'l Conf. Computer Design | CDES'13 |

Figure 10. Counter increment circuitry

c) NCL 6 to 1 Multiplexer

In the FFT architecture, the inputs are only DATA at the
beginning of the whole operation. The intermediate results
then loop inside the FFT to compute the results. Therefore, the
NCL multiplexer is designed to be input-incomplete with
respect to the inputs, and only input-complete with respect to
the select signal. Output F is DATA when select signal S is
DATA and the selected input is DATA, and is NULL when S
is NULL and the previously selected input is NULL. Internal
control signals S_0 through S_5 are generated using TH33
gates, as shown in Figure 11.

Figure 11. NCL 6 to 1 MUX

d) NCL Twiddle Factor Storage

Because the NCL circuit does not have an existing ROM,
the twiddle factor values are stored using a multiplexer. The
stored twiddle factor is in binary format. So, the MUX_ROM
is very similar to the NCL 6 to 1 MUX, except that the twiddle
factor value is directly used as D

1
 and its inverse is used as D

0
,

as shown in Figure 12.

Figure 12. NCL multiplexer used as ROM

e) Sequence Generator

A sequence generator produces a specific stream of
standard logic output using TH33 gates [9]. The sequence
generator consists of a single-rail ring structure [15, 16].

For the NCL FFT, two sequence generators are needed that
produce the following stream of bits, in order to only output
the final FFT value by masking the output register’s Ko during
the internal iterations:

Table I. Sequence stream of Y_0 and Y_1

By observing the waveforms of internal nodes, Y_0 is
obtained by combining D0, D2, D4, D6, D8, D10, and R11, as
shown in Figure 13.

Figure 13. Sequence generator for Y_0

 Initial 1 2 3 4 5 6 7 8 9 10 11 12

Reset 1 0 0 0 0 0 0 0 0 0 0 0 0

Ki X 1 0 1 0 1 0 1 0 1 0 1 0

Y_0 1 1 0 1 0 1 0 1 0 1 0 1 1

Y_1 0 0 0 0 0 0 0 0 0 0 0 1 0

3N 3D 3N 3D 3N 3D 3N 3D 3N 3D 3N 3N

Ki

Reset

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R0

1

1
S0

A
B

C

D

F

THand0

A
B

C

D

F

THand0

I(0)0I(0)1 I(1)0 I(1)1 I(2)0 I(2)1

3

2

Q(2)
1

Q(2)0

Q(1)0

3

2 Q(1)1

3

3

Q(0)
0

Q(0)
1

333333

S(0)0

S(0)1

S(1)
0

 S(1)1

S(2)0

S(2)1

S_1 S_0S_2S_3S_4S_5
D(0)

0
D(0)1 D(1)

0
D(1)

1
D(2)

0
D(2)

1
D(3)0

D(3)1 D(4)
0

D(4)
1

D(5)0 D(5)
1

F
0

F1

2

2

2

2

2

2

2

2

2

2

2

2

1

1

1

1

333333

S(0)0

S(0)1

S(1)
0

 S(1)1

S(2)0

S(2)1

S_1 S_0S_2S_3S_4S_5

AND2

D0D1D2D3D4D5

AND2

AND2

AND2

AND2

AND2

AND2

AND2

AND2

AND2

AND2

AND2

F0

F
1

1

1

1

1

Int'l Conf. Computer Design | CDES'13 | 13

Y_1 is just D0, as shown in Figure 14.

Figure 14. Sequence generator for Y_1

f) NCL Twiddle Factor Multiplier

The design for NCL twiddle factor multiplier is shown in
Figure 15. The NCL overflow component is designed for
addition. So, the sign bit of XiWi(31) resulting from the
subtraction needs to be inverted before it enters the overflow
component. The overflow signal from addition and
subtraction are combined using TH12 gate.

Figure 15. NCL Twiddle Factor Multiplier

g) NCL Butterfly Unit

The design for the NCL butterfly unit is shown in
Figure 16. The NCL overflow signals are combined using a
TH14 and TH12 gate to get the final overflow signal.

Figure 16. NCL Butterfly Unit

2) NCL FFT Top-level Architecture

The NCL FFT utilizes a similar architecture as the
synchronous one. In total, 32 butterfly units are used; one for
each two points. For simplicity, only one butterfly unit is
shown in Figure 17. It takes 6 DATA/NULL cycles to
compute all 64 points. In each DATA/NULL cycle, the
intermediate data is fed back to the multiplexer. The select
signal of the multiplexer is controlled by a counter. Once the
computation finishes, the final results are re-ordered before
being output.

In NCL FFT logic, the Xrqst, Xdat, Yrqst, and Ydat signals are
no longer needed since NCL circuits use Ki and Ko as request
and acknowledge signals. The internal register of the
synchronous FFT is replaced with 3-register NCL feedback to
prevent deadlock. The NCL FFT architecture is shown in
Figure 17.

Upon reset, all NCL registers are initialized to NULL.
When Data_in is ready, counter_0 outputs 0 to select bit-
reversed new data to load into Reg_0. In the following
5 iterations, the intermediate results are fed back to Reg_0
through the multiplexer. In the 6

th
 iteration, the final results are

computed and loaded into Select_Reg, and new data is loaded
into Reg_0 at the same time. The Final_reorder unit rearranges
the sequence of results and outputs the final result. New data is
loaded into NCL FFT every 6 iterations. Select_Reg is
connected to the external Ki signal and is reset to NULL at the
beginning of each new FFT computation. During these
iterations, Ko_S from Select_Reg is always requesting DATA.
In order to let the internal data feedback through, the request
signal from Select_Reg needs to be masked for the first
5 iterations. An AND gate and Sequencer_0 are used to realize
this function. Request signal Ksel from select register is
masked by an AND gate. As described in Section III.A, Y_0
from sequencer_0 is asserted during cycles 1, 3, 5, 7, and 9.
This stream of signal from Y_0 mimics the requesting
behavior of DATA/NULL wavefront from request register for
the first 5 iterations. In the last iteration, Y_1 is asserted to
allow the final result to load into Select_Reg. The request
signal for Sequencer_0 is connected to the completion
detection signal Ki1 from Reg_2. In addition, the select signal
in Select_Reg needs to be asserted to load data. Sequencer_1
is used to produce this signal.

Y_1 from Sequence_1 stays at 0 during the first 5
iterations and is asserted at cycle 11, which is the data cycle
for the 6

th
 iteration. The request signal for Sequencer_1 is

connected to the mask signal. As seen in Figure 17, data
needs to propagate through Reg_0 and Reg_1 to arrive at the
butterfly unit for computation. Two registers are used to latch
the count value so that the corresponding twiddle factor value
is loaded from ROM to do the computation. NCL FFT loads
new data when the count is rolled over to 0, so the Ko signal is
generated when count is 0. This is done by connecting count0

0
,

count1
0
and count2

0
 to a TH33 gate.

NCL

 Multiplier

NCL

Subtractor

NCL

 Multiplier

X_real

WN_real

X_img

WN_img

Out_real

NCL

 Multiplier
NCL Adder

NCL

 Multiplier

X_img

WN_real

X_real

WN_img

Out_img

NCL

 Overflow
Out_real(31)

XiWr

XrWi

XrWr

XiWi

XiWr(31)
XrWi(31)

OV_add

NCL

 Overflow
Out_img(31)

XrWr(31)

XiWi(31)
OV_sub

NCL INV

1
Overflow

TwiddleX

WN_real WN_img

Xm-1[q]_real Z_r

Xm-1[q]_img
Z_i

OV_TX

Xm-1[p]_real
NCL

Adder

NCL

AdderXm-1[p]_img Xm[p]_img

Xm[p]_real

NCL

subtractor

NCL

subtractor

Xm[q]_img

Xm[q]_real

1

1
Overflow

3N 3D 3N 3D 3N 3D 3N 3D 3N 3D 3N 3N

Ki

Reset

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R0

S1

14 Int'l Conf. Computer Design | CDES'13 |

Figure 17. NCL FFT architecture

4. SIMULATION AND CONCLUSION

1) Comparison of Results from NCL FFT and Matlab

The word length of Q15 format is 16 bits. Because of this
finite bit-length, some least significant bits are truncated
during FFT computation. This truncation error is accumulated
in the feedback path. Compared with Matlab calculation
results, in the worst case scenario, the last 3 bits from the NCL
FFT computation are not accurate. There are 16 bits for each
word, so the error rate for the NCL FFT is 2

3
/2

16
 = 0.012 %.

2) Performance of Synchronous FFT and NCL FFT

The synchronous FFT and NCL FFT are synthesized to the
the IBM cmr8f 130nm process library. These synthesis results
are listed in Table II, showing that the NCL FFT uses about
four times as many transistors compared to the synchronous
FFT.

Table II. Number of transistors used in synchronous and NCL FFT

 Number of Transistors

NCL FFT 4983104

Synchronous FFT 1335802

Power consumption and computation speed are simulated
in Cadence, and shown in Table III. The average computation
time for one complete NCL FFT operation is 452 ns, which
means it takes 452 ns to compute the final result after getting
new data. When running at this speed, the average current,
Iavg, flowing through the NCL FFT is 0.0267 A. Running the

synchronous FFT at the same speed as the NCL version
requires a clock frequency of 452/6 = 75.3 ns. The average
current of the synchronous FFT is 0.0354 A at this speed.
Therefore, the power consumption for the synchronous FFT is
33% higher than the NCL version running at the same speed.
The highest clock speed to operate the synchronous FFT
without any timing violation is 9.75 ns, resulting in a
calculation time of 9.75*6 = 58.5 ns to obtain the final result.
At this fastest speed, the synchronous FFT requires 70%
higher energy consumption than the NCL FFT and 28% more
than when running it slower. Hence, although the NCL FFT is
bigger and slower, it consumes less power than the
synchronous FFT, even when operating at the same speed.

Table III. Comparison of NCL and synchronous FFT processor

 Computation Time (ns) Iavg (A) Energy(10-9 J)

NCL FFT 452 0.0267 14.49

Synchronous FFT 452 = (75.3 * 6) 0.0354 19.20

Synchronous FFT 58.5 = (9.75 *6) 0.3500 24.57

REFERENCES

[1] Nasser Kehtarnavaz, Real-Time Digital Signal Processing: Based on the
TMS320C6000, Newnes, 2004.

[2] Wayne T. Padgett, David V. Anderson and Jose Moura, Fixed-Point Signal
Processing, Morgan and Claypool Publishers, 2009.

[3] R. Veenkant, "A serial minded FFT," Audio and Electroacoustics, IEEE
Transactions on, vol. 20, pp. 180-185, 1972.

3

Butterfly Unit

Bit_reverse

WN ROM

S

S

Ki_0(0)Ko_0(0)

Ki_0(1)Ko_0(1)

Ki_1(0)Ko_1(0)

Ki_1(1)Ko_1(1)

Ki_2(0)Ko_2(0)

Ki_2(1)Ko_2(1)

Ki_S(0)Ko_S(0)

Ki_S(1)Ko_S(1)

compKi0
comp

Ko_2
Ki1

Comp_S
Ko_SKsel

comp0Ko_0 Ki2

mask

S

S

Y_1

Y_1

Reg_0 Reg_1 Reg_2 Select_Reg

Count0(0).rail0

Count0(1).rail0

Count0(2).rail0

Ko

Ki

Ki

Final_reorder

Counter_0

Ki_C0

count0

Reg_count1 Reg_count2

Ki_C1 Ki_C2Ko_C1 Ko_C2

count0 count1

Comp_C0
Ko_0
ko_c1

64

3

Comp_C1 ko_c2
3

kic1

Ki1

Ki0

Ki0

Ki1

Ki1 Ki2

Ki2

Sequencer_0

reset Ki_sq0 Ki1

Sequencer_1

reset Ki_sq1

Y_1

mask

Data_RevData_In

Data_Rev(0)

Data_Rev(1)

Feedback

Feedback

Feedback

Feedback

Feedback

Feedback

Feedback

Feedback

Feedback

Feedback
Data_Out

Ko_1 …
..

…
..

…
..

…
..

…
..

Int'l Conf. Computer Design | CDES'13 | 15

[4] Alan V. Oppenheim, Ronald W. Schafer and John R. Buck, Discrete-time
signal processing, Prentice Hall, 1999.

[5] Sanjit Mitra, Digital signal processing A computer-based approach,
McGraw-Hill Science/Engineering/Math, 2005.

[6] Scott C. Smith and Jia Di, Designing Asynchronous Circuits using NULL
Convention Logic (NCL), Morgan & Claypool Publishers, July 2009.

[7] S. C. Smith, "Gate and throughput optimizations for null convention self-
timed digital circuits," Ph.D dissertation, Dept. Computer Eng, Uinv.of
Central Florida, Orlando, Florida 2001.

[8] K. M. Fant and S. A. Brandt, "NULL convention LogicTM: A complete
and consistent logic for asynchronous digital circuit synthesis," in Proceedings
of International Conference on Application Specific Systems, Architectures
and Processors: ASAP '96, 1996, pp. 261-73.

[9] S. C. Smith, "Speedup of NULL convention digital circuits using NULL
cycle reduction," J. Syst. Archit., vol. 52, pp. 411-22, 07, 2006.

[10] V. Satagopan, B. Bhaskaran, W. Al-Assadi, S. C. Smith and S. Kakarla,
"DFT techniques and automation for asynchronous NULL conventional logic
circuits," IEEE Transactions on very Large Scale Integration (VLSI) Systems,
vol. 15, pp. 1155-9, 10, 2007.

[11] G. E. Sobelman and K. Fant, "CMOS circuit design of threshold gates
with hysteresis," in ISCAS '98 Proceedings of the 1998 IEEE International
Symposium on Circuits and Systems, 1998, pp. 61-4.

[12] S. C. Smith, R. F. DeMara, J. S. Yuan, D. Ferguson and D. Lamb,
"Optimization of NULL convention self-timed circuits," Integration, the VLSI
Journal, vol. 37, pp. 135-65, 08, 2004.

[13] S. C. Smith, R. F. DeMara, J. S. Yuan, M. Hagedorn and D. Ferguson,
"Delay-insensitive gate-level pipelining," Integration, the VLSI Journal, vol.
30, pp. 103-31, 10, 2001.

[14] Behrooz Parhami, Computer arithmetic: Algorithms and hardware
designs, Oxford University Press,New York, 2000.

[15] S. C. Smith, "Design of a NULL convention self-timed divider," in
Proceedings of the International Conference on Embedded Systems and
Applications ESA'04 - Proceedings of the International Conference on VLSI,
VLSI'04, June 21, 2004 - June 24, 2004, pp. 447-453.

[16] W. Kuang, J. S. Yuan, R. F. DeMara, M. Hagedorn and K. Fant,
"Performance analysis and optimisation of NCL self-timed rings," IEE
Proceedings: Circuits, Devices and Systems, vol. 150, pp. 167-172, 2003.

16 Int'l Conf. Computer Design | CDES'13 |

Network-Based System for Face Recognition
on Mobile Wireless Devices

Keita Imaizumi and Vasily G. Moshnyaga
Graduate School of Engineering, Faculty of Engineering

Fukuoka University
Fukuoka, 814-0180 Japan

Abstract - This paper describes new internet-based face
recognition system to be used in portable devices. In contrast to
existing systems, which run computationally intensive face-
recognition tasks at a mobile terminal shortening its battery
lifetime, the proposed system uses mobile device only for image
capturing and user-interface. All complex image processing tasks
are performed by a remote high-powered network server to
achieve robust and real time face recognition. The system is
implemented in software and tested on Android-based Sony
Tablet-S wireless terminal. According to measurements, it
provides face recognition in images of 240x320 pixels in size at
10f/sec rate with very high accuracy. The paper discusses the
proposed client-server architecture and the results of its
experimental evaluation.

Keywords- face recognition, face identification, network-based

I. INTRODUCTION

With emerging popularity of camera-equipped wireless
multimedia devices, such as Apple’s iPhone, iPad and iPod,
Google’s Android, and RIM’s Blackberry, new applications
employing face recognition can further enhance usage,
intelligence and context-awareness of the devices. In this paper,
we focus on real-time identification of a person from a digital
image or video captured by the mobile device [1]. Providing a
stand-alone mobile application can potentially benefit a user in
remembering people, retrieving names of people, whom he/she
has met before, and/or finding helpful information about person
of interest. It could be also useful for elderly people to recall
faces and names enhancing their memory and social interaction.
The application can also assist law enforcement when an
unknown person is being compared with images in a database
in real time.

Automatic face recognition has been an active research area
over the last two decades. Surveys on the methods and systems
proposed can be found in [2], [3]. Although there are many
systems capable of performing robust face recognition at
desktops, incorporating them into mobile devices is not a trivial
task. Additionally to common problems, such as face
illumination, occlusion, rotation and movement of the person
relatively to the camera, mobile face recognition is challenged
by limited energy budget of batteries, limited computing power,
limited storage, limited image resolution and size, limited
network bandwidth, etc. Although it is easy for a human to
detect and recognize faces, performing it on hardware requires
complex algorithms and many energy dissipating computations.
The high computational complexity of the task makes it

unsuitable for energy and resource constrained mobile devices.
While work has been done on algorithms which reduce the
amount of computation for face detection and identification
(e.g. a unified LDA/PCA algorithm [4], Haar-like Adabooth
classifiers [5], geometric features [6], Local-Binary Pattern [7]
and random incremental classifier [8], platform-driven
mapping [9], etc.), there is an inherent tradeoff between
computation and recognition accuracy. Unfortunately, those
algorithms which recognize faces accurately are extremely
computationally complex, whereas computationally simple
algorithms often produce incorrect results.

Several systems for mobile face recognition have been
already reported in literature. Some of them (e.g. [6, 7, 8, 11,
12, 1]) utilize fast algorithms to run the face recognition
process entirely on a mobile device at the cost of accuracy and
operation time. The others, such as [13-15] overcome the
performance limitations of mobile platforms through effective
utilization of the network resources. Rather than implementing
the whole face recognition process on the energy constrained
mobile device, these systems transfer the majority of
computation from the device to a high-powered server on the
network. For example, the Bluetooth-based system [13]
implements on mobile device image preprocessing and face
detection while the face recognition is done on dedicated
computer (server). Similarly, [14] and [15] use the DROID
phone to detect a face in an image, preprocess the face
calculating the Fisherfaces weights, based on which the server
performs face recognition. However, even these distributed
architectures still enforce mobile devices to carry out many
computations, affecting both the battery budget and the
processing speed. This is due to the lack of mobile processors
(e.g. ARM) for executing floating point operations and also to
the fact that face detection performs exhaustive image scans at
different locations and scales, yielding in hundreds of
thousands of sub-windows to process, which is time consuming.
By tuning out the system parameters, one can further speed-up
the detector but at the cost of quality degradation.

In this work, we also employ a network-based approach to
reduce computation on mobile device. Unlike related systems,
we use mobile device only as input and output interface; all
functions of face detection and face recognition are done by the
network server. The key contribution of our work is new client-
server architecture, which effectively utilizes the network as a
powerful computational resource to achieve face recognition at
a frame rate.

Int'l Conf. Computer Design | CDES'13 | 17

The paper is organized as follows. Section 2 describes the
proposed network-based face recognition system. Section 3
reports evaluation results. Section 4 summarizes our findings
and outlines work for the future.

II. THE NETWORK-BASED FACE RECOGNITION SYSTEM

A. An overview

The proposed network-based face recognition system
utilizes a high-powered remote server and a battery operated
mobile wireless device (client), equipped with a video camera.
The server has access to a face database which contains face
images with corresponding information of the person. We
assume that the database is shared between the client and the
server through a cloud so the user has an option to upload new
face images and add/delete data from database using either
his/her mobile device (client) or the server (computer). Also we
assume that the server is activated before the user initiates face
recognition application from the wireless device. The client –
server connection is set before entering the data transfer phase
and released after data transmission is complete. The
connection is established based on TCP/IP protocol and
managed by OS through a programming interface.

The system splits the face recognition tasks between the
client and the server, as shown in Fig.1. The server performs
complex and accurate face recognition, while the client
implements only I/O operations related to image acquisition
and display of the results. The face recognition starts as the
user activates the application from his/her mobile device. In
this case, the client captures an image and sends it to the server
with a request for processing. Upon receiving the request, the
server converts image from YUV to RGB format and runs face
detection and face recognition (see Fig.2) to identify the person

of interest based on information stored in database. The results
in terms of face rectangle and data identifying the person of
interest are then sent back to the client, to be shown over the
image displayed on the screen. In the next subsections we
discuss the face recognition steps in details.

B. Image conversion

The color image captured by video camera on mobile
device is represented in YUV 420 SP format, allowing reduced
bandwidth for chrominance components. During transmission,
the luma (Y) and the chroma (U and V) components are
compressed with the sample ratio of 4:1:1 (see Fig.3); so the
picture has only a quarter as much resolution in color as it does
in brightness. Because the server uses RGB888 image format
(Fig.3, right) for face recognition, each image is converted at
the server from YUV to RGB format as follows:

 B[i]={1192×(Y-16)+2066×(U-128)
G[i]={1192×(Y-16)+833×(V-128)-400×(U-128)
R[i]={1192×(Y-16)+1633×(V-128)

B = (B[i]>> 10) & 0xFF (4)
G ={(G[i] >> 2) & 0xFF00} >>8 (5)
R ={(R[i] << 6) & 0xFF0000} >>16 (6)

C. Face detection

The goal of this task is to find an area corresponding to
human face in the given RGB image if any. It is implemented
based on Viola-Jones algorithm [5], which transforms the
RGB image into the integral image representation, and then
scans it with detection window to compute Haar-like face
features. The features are then applied to a cascade of 25
AdaBoost classifiers to find a true face from possible
candidates. The algorithm is implemented in Intel’s OpenCV
as cvHaarDetectObjects() using the Android’s Face Detector
class [16]. This class provides information regarding all the
faces found in an input bitmap image. The confidence factor
(a number between 0 & 1) by which the face is identified, the
distance between the eyes, position of midpoint between the
eyes and the face’s pose (rotation around X, Y, Z axis) are the

Image capture

Wait for the result

Display the result

Image
data

Wait for request

Receive image

Face recognition

Client activation Server activation

Send the results
Recognition

results

High-powered
remote server

Battery operated
wireless device

Data
base

Figure 1: The face recognition flow in the proposed system

Y:8bit

Y:8bit Y:8bit

Y:8bit Y:8bit

Y:8bit Y:8bit

Pixel[1] Pixel[2] Pixel[3]

Pixel[4] Pixel[5] Pixel[6] Pixel[7]

U:8bit

V:8bit

U:8bit

V:8bit

Pixel[0]

Y:8bit

Pixel[1] Pixel[2] Pixel[3]

Pixel[4] Pixel[5] Pixel[6] Pixel[7]

Pixel[0]
B:8bit
G:8bit
R:8bit

B:8bit
G:8bit
R:8bit

B:8bit
G:8bit
R:8bit

B:8bit
G:8bit
R:8bit

B:8bit
G:8bit
R:8bit

B:8bit
G:8bit
R:8bit

B:8bit
G:8bit
R:8bit

B:8bit
G:8bit
R:8bit

Figure 3: The image format used by the client (left) and the server (right)

Image
Conversion

Face
Detection

Face
Recognition

Feature
Classification

(LDA)

Feature
Extraction

(PCA)

Figure 2: The face recognition tasks implemented by the server

imaizumi

(a) (b) (c)

Figure 4: An illustration of an input image (a), the face detection result
(b) and the result of face recognition (c)

18 Int'l Conf. Computer Design | CDES'13 |

extra details the class associates with each face. A face is
considered detected if the confidence ratio is above 0.3. The
result of face detection is presented by a face bounding box
depicted over the input image as shown in Fig. 4(b). The
derived face image is preprocessed to gray scale and
histogram equalization to decrease the effects of illumination,
subsampled to the database sample size and applied for face
recognition. If no face is detected, the server terminates the
recognition process, sending a corresponding acknowledge
signal to the client.

D. Face recognition

Given a set of sample images labeled with the person
identity (the set is stored in database) and the unlabeled face
image (xi), (derived by face detection), the face recognition
problem is to identify the name of the person in the test image.
We solve the problem based on the Eigenface method [17,18]
with Principle Component Analysis (PCA) for feature
extraction and the Fisher’s Linear Discriminant Analysis
(LDA)[19] for feature reduction. Having a set of N face images,
a1, a2,…, aN, with each image belonging to one of C classes, A1,
A2,…, AC, the method calculates a mean face of each class
j=(1/n)×j

n aj, the total mean, =(1/C)× i
N i, and vectors,

Di=ai -i, which represent difference between the mean and
the training face images. This covariance matrix
M={D1,D2,…,DC} of the face images is then subjected to LDA
to find a set Vo={v1,v2,…,vk} of k orthogonal vectors (i.e.
eigenvectors), corresponding to the k largest eigenvalues. The
LDA takes advantage of the fact that the classes are linearly
separable, selecting the projection in such a way that the ratio
of the between the class scatter and the within class scatter is
maximized. The within-class scatter, SW, is defined as the mean
of the co-variances of samples within all classes, i.e.
SW =1/C (j

C Mj×Mj
T). The between-class scatter is defined as

the co-variance of data sets consisting of mean vectors of each
class: SB =j

C j-
 j-

 . With LDA the problem is
reduced to finding such a projection Vo that maximizes the total
scatter ST = SW+SB

 of the data while minimizing the within
scatter of the classes:

Vo = arg maxV (V×ST×VT)/(V×SW×VT)= [v1 v2…vk]. (7)

The problem is solved through transformations such as
rotating and scaling the axes of tested image in different ways.
Depending on the size of the data, the projection can be done
onto to a lower or higher dimension. The computed eigenvector
matrix Vo is then used for estimating the weights of projecting
the target face xi onto these eigenvectors. The weights are

calculated as w	 =Vo (xi−). A class Aj with the minimum
Euclidean distance of weights is selected. The data related to
the class is sent to the client as a result. Fig.5 shows an
example. If no match has been found for the given face, the
system marks it as an “unknown”.

E. Implementation

The proposed system has been implemented based on the
Sony Tablet-S (1GHz ARM Cortex™-A9 dual core CPU,
1GB RAM, 16GB internal storage, 9.4-inch display,
Android™ 4.03 OS) as a client and DELL PC (Intel® Core™
i5 2.80GHz CPU, 4GB memory, MS Windows 7 OS) as a
server. The application software was created by using the
Microsoft Visual Studio 2010 (Eclipse 3.6) and the Android
software development kit. The client-server communication
was implemented through Internet Socket API (ws2_32.lib)
and TCP/IP transport protocol [20]. To support the OS-based
control of the communication, a dedicated programming
interface was also created. The face detection and face
recognition software were programmed in C/C++ by using
Intel’s Open CV 2.4.2 library[21].

III. EXPERIMENTAL EVALUATION

A number of experiments were conducted to assess
performance of the proposed system. The first group of
experiments aimed at evaluating efficiency of face detection
and face recognition software implemented on the server
computer. The second group of experiment targeted
performance evaluation of the entire system. Below we discuss
the experiments in detail.

A. Evaluation of the face recognition software

To evaluate the ability of the developed face recognition
software to detect and identify human faces correctly, we
applied it to the “Faces 1999” database of 357 static frontal
face images developed at Caltech [22] in total. For the sake of
experiment, all the images have been manually transformed to
grey-scale representation, resized and trimmed to face area
only as shown in Fig.5. In such a way we prepared an
experimental database of 17 different persons (9 men and 8
women), with each person represented by 10 images (170
images in total). Fig.6 exemplifies face images of the same
person. All face images were 120x120 pixels in size and
labeled by a unique digital tag for identification.

In the experiment, we used all 357 original pictures from Faces
1999 as an input to the developed face recognition software.

(a) (b)

Figure 5: An illustration of face sample generation Figure 6: Example face images from the database “Faces1999”

Int'l Conf. Computer Design | CDES'13 | 19

Namely, each image was captured by Logicool C600 video
camera (640x480 frame size) from a display and used as an
input image of a person to be identified. For each image we
evaluated whether the face detection and face recognition
produced correct or false results. To consider effects of face
inclination, we repeated the test for each image by rotating the
camera with 5˚ increment and determining the maximal
inclination angle at which the results were correct. Fig.7
illustrates an image inclined by 25˚.

Fig.8 shows the results in terms of the recognition ratio and the
maximal angle at which the recognition was correct. As one
can see, the recognition ratio is high, reaching 98% in average.
Though face inclination affects the results, the software can
correctly recognize faces inclined by as much as 24˚ and 12.5˚
on average.

The results revealed that glasses, mustaches, beard, hairstyle,
gender, age, race, etc. had no bad effect on the face recognition
if the corresponding features are reflected by samples stored in
database. Nevertheless, there are several factors which can
impede the face recognition performance. One is face
brightness. Dark images might either lead to inability to detect
a face (see Fig.9, top) or cause incorrect face identification (see
Fig.9 bottom). Another factor which affects the results is the
number of sample images in database. For example, if database

provides only a single image per person, the face recognition
ratio becomes 76.5%. The recognition rate is also affected
when the number of samples in each class of database is
uneven. If for example, one person is represented by 10 images
while the others by 2 or 3, the recognition rate does not exceed
83.3%. To increase the recognition efficiency, the number of
samples in a class (i.e. for a person) has to be not only large but
also the same as in the other classes.

To evaluate the software efficiency in identifying faces of real
people in typical environment, we added 60 sample face image
of 6 students (10 images per person, 120x120 pixels image) to
the database and conducted a set of tests, in which each student
appeared before the video camera at a distance ranged from
20cm to up to 2.5m. The room illumination was relatively good
and the background was typical for computer lab, as shown in
Fig.10. In the experiment, the students were asked to conduct
five behavioral patterns: face the camera frontally with open
and close eyes, turn the face up and down, turn the face to the
right and to the left. Each pattern was 5 sec long and repeated
twice by each user. The results (Fig.11) showed that the system
was able to distinguish and track faces correctly at up to 2 m

Figure 7: Example face images from the Face1999 database

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Recognition ratio Angle

Image class

Figure 8: Recognition ratio and max.inclination angle per image

Figure 9: False results. Top pictures: the face was not detected;

 Bottom pictures: the face was detected but identified incorrectly

Figure 10: An example of real person recognition.

20 Int'l Conf. Computer Design | CDES'13 |

distance, recognizing them with 91% rate at up to 1.6 meter
distance unless the face rotation left/right and inclination in
vertical or horizontal directions is over 15°. With larger
rotation, inclination and distance to the camera, the
misdetection rate increases. Although our experience shows
that extending the database to rotated and inclined faces
improves the system performance significantly, recognizing
faces at farer distances requires a more powerful camera to be
incorporated into the mobile device.

TABLE I. SYSTEM PERFORMANCE (AT 1M DISTANCE)

Frame size (pixels) 160×120 320×240 848×480

Aspect ratio 1.3 1.3 1.8

Processing speed (fps) 10 3 0.43

Recognition accuracy (%) 96 100 71

B. Evaluation of the network-based system performance

The system performance was tested by running the developed
face recognition system wirelessly from the Sony Tablet-S
device using the 802.11n WiFi protocol and communication
resources of gigabit local area network. As Tablet-S device
provides three different picture formats for video capturing, we
evaluated the system performance using each of them while
applying the system to identification of same 6 persons. Fig. 12
shows an image observed at the screen of Sony Tablet-S device.

Table I summarizes the results in terms of the processing speed
and the recognition rate versus the size and the aspect ratio of
images, captured by the mobile device at the 1m distance. We
observe that the system processing speed decreases as the
image frame size increases. At the frame size of 160x120
pixels, it achieves speed of 10 frames per second (fps) with the
recognition accuracy of 96%. As the image aspect ratio equals
1.3, i.e. the ratio of images used for sample generation, the face
recognition quality is high. At the image size of 320x240 pixels,
the recognition accuracy even increases reaching the maximum
level due to better image quality. However, the speed of
processing (320x240) images is 3 fps. The cause of this speed
drop can be explained by the longer time required for
transmitting and processing large images. As the frame size
becomes very large (848x480 pixels) these delays become
increasingly high, decreasing the speed to 0.46 frames per
second.

Table II puts our system in perspective to the mobile face-
recognition systems reported in the literature and online. Here

the processing time refers to the time in seconds required to
process one image frame. We observe that the proposed system
outperforms the existing solutions by both the processing speed
and the recognition ratio. In comparison to the related solutions,
which operate on small (160x120) images at the 1 fps rate at
most, our system runs 10 times faster. Moreover, it supports
face recognition in larger images which is more preferable for
the users. Although it looks that more powerful resources,
which our system exploits in comparison to the others, is the
main cause of its speed-up. However, it turns out that as long as
the training is done beforehand, the bottleneck of typical face
recognition system is actually the face detection, not the
recognition, since the recognition images are fairly small.
Detecting a face on a mobile device and transmitting it to the
server is much longer than sending and processing the image at
the server. Unlike the others, our system does not run the face
recognition on mobile device and therefore is fast. It turns out
that new client-server architecture that relieves the mobile
device from any complex processing is the key the speed-up
achieved by the proposed system.

IV. CONCLUSION

In this paper we presented novel client-server architecture
for the network-based face recognition. Experiments showed
that our system outperforms the related systems in both the
processing quality and speed, allowing real-time (10fps)
robust (96% accuracy) face recognition for people located up
to 1.6m distance from the mobile device. In the current work
we restricted ourselves to a simple case of a singular person
and frontal face recognition. We are currently working on
mobile recognition of multiple faces, extending the work to
inclined and rotated faces, recognition of faces with partial
occlusion, as well as issues related to power-aware
optimizations of face recognition algorithms. Also a
representative database is important to the success of the face
recognition system. Therefore, in order to further improve the
system, a larger mobile face database is necessary. Problems
related to database development, automatic generation of
sample images, etc. will be also investigated in the future.

Figure 12: An illustration of face recognition result

0

10

20

30

40

50

60

70

80

90

100

20 40 60 80 100 120 140 160 180 200 220 240

D is tan ce fro m cam era (cm)

R
ec
o
g
n
it
io
n
 r
at
io
 (
%
)

Figure 11: An example of real person recognition.

Int'l Conf. Computer Design | CDES'13 | 21

REFERENCES
[1] J.Xiang, X.Chien, W.Kunz, H.Kundra, “Face as an index:

knowing who is who using a PDA”, ,Int. Journal of Imaging
Systems and Technology, vol.13, no.1, pp.33-41, 2003

[2] R.Chepalla, C.Wilson, and S.Sirohey, “Human and machine
recognition of faces: a survey”, Proc. IEEE, vol.83, no.5,
pp.705-740, 1995.

[3] X.Tan, S.Chen, Z.-H.Zhou, F.Zhang, “Face recognition from a
single image per person: A survey,” Pattern Recognition, Vol.39,
pp.1725-1745, 2006

[4] J.Yang, H.Yu, and W.Katz, “An efficient LDA algorithm for
face recognition”, Int. Conf. on Automation, Robotics and
Computer Vision, Dec.2000

[5] M. Jones, P. Viola, “Face recognition using boosted local
features, Proceedings of International Conference on Computer
Vision”, 2003 .

[6] C.K. Ng, M. Savvides, P.K. Khosla, “Real-time face verification
system on a cell-phone using advanced correlation filters, 4th
IEEE Workshop on Automatic Identification Advanced
Technologies, 2005, pp. 57–62.

[7] C.Schneider, N.Esau, L.Kleinjohann, B.Kleinjohann, “Feature
based face localization and recognition on mobile devices”, Int.
Conf. Control, Automation, Robotics andVision, 2006, pp.1–6.

[8] Hadid, A.; Heikkila, J.Y.; Silven, O.; Pietikainen, M.; , "Face
and Eye Detection for Person Authentication in Mobile Phones,"
ACM/IEEE Int. Conf. on Distributed Smart Cameras, pp.101-
108, 2007

[9] Y-C.Wang, K-T.Cheng, “Energy-optimized mapping of
application to smartphone platform – a case study of mobile face
recognition”, IEEE Workshop on Embedded Computer Vision,
2011

[10] Q.Tao,R.Veldhuis, “Biometric authentication system on mobile
personal devices”, IEEE Trans. Instrumentation and
Measurement, vol.59, no.4, pp. 763–773, 2010.

[11] G.Dave, X.Chao, K.Sriadibhatla, “Face Recognition in Mobile
Phones”,Stanford Univ.

[12] J.Ren, X.Jiang, and J.Yuan. "A complete and fully automated
face verification system on mobile devices." Pattern Recognition,
vol.46 pp.45-56, 2013

[13] S.Kumar, P.Singh, V.Kumar, “Architecture for Mobile based
Face Detection/ Recognition”, IJCSE Int. J. on Computer Sc.
and Engineering, Vol. 2, No. 3, 889-894, 2010

[14] A.Pabbaraju, S.Puchakayala, “Face Recognition in Mobile
Devices” Electrical Engineering and Computer Science,
University of Michigan, 2010.

[15] H.Yu, Face Recognition for Mobile Phone Using Eigenfaces,
University of Michigan, 2010.

[16] Android Developers, FaceDetector, available online from:
http://developer.android.com/reference/android/media/FaceDete
ctor.html

[17] M. Turk and A. Pentland, “Eigenfaces for recognition”, Journal
of Cognitive Neuroscience 3, 72-86

[18] R.Fisher, “The use of multiple measures in taxonomic problems,
Ann.Eugenics, no.7, pp.179-188, 1936

[19] K. Etemad, R. Chellappa, Discriminant Analysis for Recognition
of Human Face Images, Journal of the Optical Society of
America A, vol. 14, No. 8, Aug. 1997, pp. 1724-1733

[20] Internetworking with TCP/IP:Principles, Protocols, and
Architecture. 1 (5th ed.). Prentice Hall

[21] Open CV (Open Source Computer Vision), available online
from http://opencv.org/

[22] Faces 1999 (Front), California Institute of Technology,
http://www.vision.caltech.edu/archive.html.

TABLE II : COMPARISON TO EXISTING SYSTEMS

System [11] [12] [13] [14] [15] This work

Mobile Device
(CPU Spec.)

Motorola DROID
CortexA8@1GHz

Motorola O2 XDA,
Intel IR@ 520MHz

Sony-Erics.w550i
ARM@300MHz

Motorola DROID
CortexA8@1GHz

Motorola DROID
CortexA8@1GHz

Sony Tablet-S
ARM CortexA9@1GHz.

Server PC
(CPU Spec.)

Not used
Intel Core 2 Duo

CPU @ 2.66 GHz
Dell Inspiron1520
Core2duo@2.1GHz

T2050@1.6 GHz T2050@1.6 GHz
Dell Inspiron

Intel Core i5@ 2.80GHz

Frame size (pixels) 80x60 144x176 176 x 220 160x120 160x120 160×120 320×240

Processing time (s) 1.58 1.03 39 1.4 1.05 0.1 0.33

Recognition rate (%) 94 97 n/a 92 80 96 100

n/a: data is not available

22 Int'l Conf. Computer Design | CDES'13 |

A Fault Injection Environment for the Evaluation

of a Soft Error Detection Technique based on

Time Redundancy

Luis Bustamante and Hussain Al-Asaad

Department of Electrical and Computer Engineering

University of California, Davis, CA, USA

Abstract − This paper presents a Verilog test simulation

environment designed to inject random transient faults on a

32-bit microprocessor. The purpose of the test environment

is to study a hardware-assisted soft error detection

technique based on time redundancy. The soft error

detection method compares the states of the microprocessor

of two independent executions of the same program. The

simulation environment takes advantage of the redundant

execution and divides the process in two phases. The first

phase operates during the first execution of the program to

determine the number of cycles that are required to

complete the task when no faults are present. The second

phase is performed during the second execution of the

program to inject a soft error in the microprocessor. The

hardware assistance saves the microprocessor states as the

program is executing the first time and detects the soft error

as they occur during the second execution.

Keywords: On-line testing, soft errors, fault injection, time

redundant double execution, error detection, built-in self-

test.

1 Introduction

 Design of complex digital systems requires extensive

testing before fabrication to validate correct operation and to

detect design or implementation errors. A typical

verification environment accomplishes this by applying

stimulus test vectors to the inputs of the device under test

(DUT) and then monitors its response through the output

ports of the device. The functionality of the design is

validated when the DUT meets the design specifications.

However, if after applying correct stimulus vectors, the

DUT does not respond according to the design

specifications, it usually means that there is a logic or

implementation error present in the device. These errors are

permanent as they are intrinsic to the device and can be

exposed and reproduced with the appropriate stimulus.

These permanent errors will remain part of the digital

system until the designer takes the appropriate steps to

correct them. Once the logic is corrected, the same test

vectors that detected the original errors can be used again to

confirm that the problem has been fixed.

 The problem with the verification environment just

described becomes evident when errors are caused by

transient faults. These transient faults are called soft errors

and they can occur randomly in any part of the

semiconductor device. Soft errors are originated by high-

energy subatomic particles. When these particles strike

semiconductor devices, they can create electron-hole pairs

with enough energy to produce charge variations large

enough to change the logic state of elements in the circuit

[1]. This is why soft errors are not the result of design or

implementation errors, but they are caused by external

disturbances that the semiconductors are exposed during

operation. Because of their short duration, soft errors

effects disappear and hence cannot be duplicated with

traditional verification techniques. That is why a verification

environment, capable of modeling the effects of soft errors,

also has to have the ability to introduce random transient

faults into the DUT during simulations.

 The test environment we are proposing was designed

to test a soft error detection technique, which is based on

time redundancy with some limited support of assisting

hardware. The technique simulates the effect of a soft error

during the redundant execution of a task. One of the

advantages of our verification environment is that it does

not require special modification of the DUT's RTL. The

fault injection environment is a simple and robust method

that uses Verilog features combined with the specific

knowledge of the DUT to create an environment that models

a random soft error into any state register of a

microprocessor.

Int'l Conf. Computer Design | CDES'13 | 23

 Other fault injection techniques have been proposed in

the literature. Some are based on VHDL [2] or dependent

on making hardware modifications by inserting blocks

designed to add controllability to the fault insertion [3]. The

approach we propose is simple and can be used to evaluate

other soft error detection methods based on time

redundancy.

 Before describing the proposed fault injection

technique, it is important to first understand the soft error

detection mechanism. For this purpose, we first describe

how the time redundancy is used on a basic RISC

microprocessor to detect soft errors and then we describe

our soft error injection process.

2 Soft Error Detection Method

 The method to detect soft errors is based on a time-

redundant execution technique that requires a limited

amount of hardware support to assist with this process [4].

One of the functions of the supporting hardware is to store

in memory the states of the microprocessor during the first

execution of a program. The time redundancy process also

requires a second execution of the same program to detect

any transient fault. Figure 1 shows the states of the

microprocessor as they are generated during each execution

of the program. The states generated by the first and second

execution are then compared in order to detect any

difference between them. The reasoning is that the

probability that a soft error may occur in the exact same

register at the same relative clock cycle of the program

execution is extremely unlikely. Therefore, any difference

in states between the first and second executions can be

attributed to a soft error.

 The soft error detection technique was applied to a

microprocessor, which was modified with some limited

amount of hardware to assists in the storage and comparison

of the first and second execution states. One of these

modifications included extending the instruction set to assist

with the control of the supporting hardware.

2.1 State Storage Module (SSM)

 The state storage module interfaces with n registers of

the DUT, and the current states of the registers constitute the

state from the microprocessor. The DUT's state is

represented by Si where the index i represent the cycle

interval at which the state is sampled. The total number of

states represents the microprocessor execution states of the

program and they are defined by the state vector S.

Similarly, the state vector for the second execution can be

represented as S'. The index k is the total number cycle

intervals required to run the program.

 S = {S0, S1, …, Si, ..., Sk-2, Sk-1} (1)

 The SSM accomplishes the soft error detection by

storing in memory the states of the microprocessor S during

the first execution of the program. After all the first

execution states S have been store in memory, the SSM

compares them with the second execution states S' as they

are generated during simulation. If at any point of the

second execution, a difference is detected by the SSM

between the S and the S' execution states of the program, a

soft error has been detected. The program execution is

stopped and the software upper layer can be notified so that

it can execute the appropriate recovery protocol procedure.

 All the states generated during the first execution are

stored in memory with the assistance of the SSM, as shown

in Figure 2. When a particular task is targeted for soft error

detection, the microprocessor signals the SSM to start

storing the states of the microprocessor Si by asserting

Execution1 and de-asserting Execution2. The SSM then

stores the states information into memory at specific

intervals until completion of the task. At this point the

microprocessor is ready to start re-execution of the same

task for the second time. The microprocessor accomplishes

this by asserting Execution2 and de-asserting Execution1 to

indicate to the SSM that the second execution of the task is

starting. The SSM starts retrieving the first execution states

Si from memory and concurrently compares them with the

Fig. 1. State vectors S and S' generated during 1st and 2nd execution.

Fig. 2. SSM hardware support to store and compare first and second

execution states.

24 Int'l Conf. Computer Design | CDES'13 |

states Si' of the second execution that is in progress. If any

difference is detected by the SSM logic between Si and S'i,

then a Soft Error Detected signal is asserted to indicate that

a soft error has been detected.

3 Device under Test (DUT)

 For the purpose of testing our soft error injection

environment, we designed and implemented the soft error

detection assisting hardware in a basic 32-bit RISC

microprocessor, also shown in Figure 2. The test

environment injects a soft error randomly into any of the

microprocessor state registers by inverting the next_state

value of the register and effectively corrupting its state value

when the register clock is asserted. For the purpose of

controlling the SSM, the instruction set of the

microprocessor was enhanced to include two additional

instructions that are used to control when the execution

states are saved and compared by the state storage module.

3.1 Microprocessor

 The DUT is a basic 32-bit microprocessor with

floating point unit. To limit the complexity of the

simulation environment, the microprocessor has a reduced

instruction set and the soft error detection study was limited

to the control unit of the microprocessor (CU). The CU was

chosen because of its critical interaction with every module

in the microprocessor. This helped restrict the state space to

less than 32 registers that needed to be monitored by the

SSM. This is also the limit of registers that the current soft

error injection environment could act on. Future research

will enable a larger sample of registers from the

microprocessor.

3.2 Extended Instruction Set

 The microprocessor instruction set was extended to

include two additional instructions that were created with

the purpose of controlling the SSM. The first instruction

added for this is

FES RX

The FES instruction (First Execution Start) instructs the

SSM to start saving the states of the microprocessor because

the first execution of the program is initiating. This

instruction is executed before the first instruction of the

program that is targeted for soft error detection. The RX

operand corresponds to an address in the register file of the

microprocessor that contains the return address for the

program counter (PC) to start the second execution.

 Similarly, the second instruction implemented to

control the SSM is

SES RX

The SES (Second Execution Start) instructs the SSM to start

the execution of the program by updating the PC address

with the address pointing to the first line of the program.

The return address was previously stored in the RX register

by the FES instruction. This instruction should be run after

the last line of the program that was targeted for soft error

detection. Once the second execution starts, the SSM

retrieves the states that were previously saved in memory

and compares the states of the first and second execution.

4 Soft Error Injection

 In this section, we describe our soft error injection

environment and its detailed implementation.

4.1 Test Bench Specifications

 To simplify the task of developing a suitable soft

error injection environment to validate the soft error

detection mechanism, we defined a set of minimum

requirements in the specification to help us guide an efficient

implementation of the test bench.

1) Soft errors can only be injected during any random
cycle of the second execution of the task or

program. This guarantees the environment will

have knowledge of the number of cycles that the

program normally requires to complete the first

execution of the program.

2) Every fault injected to the hardware will always
cause a flip in the state of a random register. This

guarantees efficiency by minimizing the number of

simulations.

3) Only one fault will be introduced during the
redundant execution. This is reasonable, since

multiple soft errors rarely occur in real situations.

4) The hierarchical paths of all registers are known
and they can be accessed directly from the

verification environment. This greatly reduces the

size of the test bench and simplifies the soft error

injection implementation.

4.2 Test Bench Description

 The verification environment was specifically

designed to meet the requirements of the soft error detection

technique based on time redundancy and it consists of the

following tasks and functions.

Int'l Conf. Computer Design | CDES'13 | 25

4.2.1 Count Cycles Task

 At the beginning of the first execution of the task, the

Verilog task count_cycles is called within the test bench to

count the cycles that the program requires. The task

continues counting as long the signal Execution1 is asserted.

When Execution1 is deasserted, the final cycle count is

saved in the final_count integer variable (see Figure 3).

4.2.2 Random Integer Function

 This is described by the function rand_int in Figure 4.

This function is used to generate a random clock cycle

where a soft error will be injected during the redundant

execution of the program. The number of clocks cycles

required to execute the task for the first execution is passed

to this function to generate a cycle where the soft error will

be injected.

 The function rand_int picks a random number between

0 and max_int. This function is also used by the softe_fault

Verilog task to select the random register where the fault

will be injected.

4.2.3 Register Selection

 The test bench task softe_fault keeps a list of all the

registers in the microprocessor in the form of a case

statement and randomly picks one to insert the fault that will

be injected during the second execution. The softe_fault

task counts and waits for the exact clock cycle where the

fault will be inserted. A simplified version of the softe_fault

task is shown in Figure 5.

4.2.4 Main Control Initial Task

 In Figure 6, we show how the tasks are called from the

main initial block of the test bench. When the first

execution starts, the count_cycles task determines the

number of cycles needed, then as the second execution starts

automatically, the random cycle where the soft error will be

inserted has already been calculated and saved in

softe_cycle. This value is passed to the softe_fault task and

the soft error is randomly inserted at the exact clock cycle.

task count_cycles;
 output [15:0] final_count;

 integer count;

 begin
 @(posedge clock);
 count <= 1;
 final_count <= 0;
 while (Execution1 == 1)
 begin
 @(posedge clock);
 count <= count + 1;
 end
 $display("count =", count);
 final_count = count;
 end
endtask

Fig. 3. Routine that counts the number of execution cycles.

function integer rand_int(max_int);
 integer max_int;

 parameter seed = 3;
 begin
 rand_int = {$random(seed)}%
 (max_int-1);
 end
endfunction

Fig. 4. Function rand_int selects a number between 0 and max_int.

task softe_fault;
 input [15:0] softe_cycle;

 integer softe_location;
 parameter max_regs = 4;

 begin
 softe_location = rand_int(max_regs);
 # (10*softe_cycle);
 -> soft_error;
 case (softe_location)
 0:begin
 force_tb.duv.controller0.nextstate[0]=
 ~force_tb.duv.controller0.nextstate[0];
 @(posedge clock);
 end
 1:begin
 force_tb.duv.controller0.nextstate[1]=
 ~force_tb.duv.controller0.nextstate[1];
 @(posedge clock);
 end
 2:begin
 force_tb.duv.controller0.nextstate[2]=
 ~force_tb.duv.controller0.nextstate[2];
 @(posedge clock);
 end
 3:begin
 force_tb.duv.controller0.nextstate[3]=
 ~force_tb.duv.controller0.nextstate[3];
 @(posedge clock);
 end
 endcase
 end
endtask

Fig. 5. The softe_fault task selects a random register to insert the fault.

26 Int'l Conf. Computer Design | CDES'13 |

5 Results and Future Work

 Our random fault injection and verification environment

successfully inserted soft errors in the control unit of our

microprocessor while it was performing calculations to

generate a Fibonacci sequence. Figure 7, shows the

beginning of the first execution of the Fibonacci program,

which was targeted for soft error detection. Here, it can be

observed that the first instruction was FES (First Execution

Started) and continued with the normal program instructions.

As it would be expected, current states are updated every

clock cycle but only 1 in 5 states are sampled and stored in

memory by the state sample clock. This control in the

sampling clock was implemented to study the effectiveness

of the soft error detection method with different clock

sampling intervals. Then, the sampled states are stored by

the SSM into memory and later will be compared during the

states of the second execution of the Fibonacci number

generator program. At the end of the first execution, the test

bench counted 328 clocks and it randomly generated clock

64 of the second execution to inject the fault. The test bench

also randomly selected a signal index of 2 of the softe_fault

task to inject the soft error.

 Figure 8 shows the second execution of the program.

We can observe that exactly at Execution2 count = 64 (at t =

3990 ns), the soft error event is injected and this event is

flagged by the symbol φ. In this case, the state, in which

the corruption of signal occurs, does not correspond to any

sampled state by the first execution, but because the

corruption propagates, when the SSM fetches a state from

memory at t = 4015 ns, it detects that there is no match. It is

at this point that the Soft Error Detection flag is asserted.

The work presented in this paper continues to evolve

and as we study variations of our hardware-assisted soft

error detection technique, we plan to investigate some

related areas of interest. The following are research

Fig 7. First Execution: Microprocessor states are sampled and stored every 5 clocks (starting after reset).

initial begin
 exec_cycles = 0;
 @ (posedge Execution1);
 count_cycles(exec_cycles);
 softe_cycle = rand_int(exec_cycles);
 softe_fault(softe_cycle);
end

Fig. 6. The main initial block.

Int'l Conf. Computer Design | CDES'13 | 27

opportunity areas we are currently considering:

1) Fixed memory size with SSM handshake: This will

help limit memory usage for state storage. It will

also allow the environment to control soft error

insertion on the first cycle of execution.

2) Additional supporting logic: This logic is for state

restoration from either a fast RAM or register file.

These could lead to more efficient ways of

detecting soft errors using redundant execution.

3) Shadow registers: The use of shadow registers

could improve performance by enabling faster

transitions back to a "good" known state.

4) Insertion of soft errors during cycles where states

are not sampled: This is already in progress and

further results will be analyzed and architectural

benefits will be evaluated.

6 References

[1] A. Dixit, R. Heald, and A. Wood, “The impact of new

technology on soft error rates,” Proc. International

Reliability Physics Symposium, 2011, pp. 5B.4.1-

5B.4.7.

[2] T.A. Delong, B.W. Johnson, and J.A. Profeta III, “A

fault jnjection technique for VHDL behavioral-level

models”, IEEE Design & Test of Computers, Vol. 13,

No. 4, pp. 24-33, 1996.

[3] S.R. Seward and P.K. Lala, “Fault injection for
verifying testability at the VHDL level,” Proc.

International Test Conference, 2003, pp. 131-137.

[4] L. Bustamante and H. Al-Asaad, “Soft error detection
via double execution with hardware assistance,” Proc.

AUTOTESTCON, 2012, pp. 291-293.

[5] A. Manzone and D. De Costantini, “Fault tolerant
insertion and verification: A case study”, Proc. On-Line

Testing Workshop, 2002, p. 238-242.

[6] S. Mukherjee, Architecture Design for Soft Errors,
(Boston Morgan-Kaufmann), 2008.

[7] M. Nicolaidis, “Time redundancy based soft-error
tolerance to rescue nanometer technologies”, Proc.

VLSI Test Symposium, 1999, pp. 86-94.

[8] B. Nicolescu, Y. Savaria, and R. Velazco “SIED:
Software implemented error detection”, Proc.

International Symposium on Defect and Fault

Tolerance in VLSI Systems, 2003, pp. 589-596.

Fig. 8. Second execution: The soft error occurs at time 3990 ns and it is detected at 4015 ns.

28 Int'l Conf. Computer Design | CDES'13 |

A Comparative Analysis of Parallel Prefix Adders
Megha Talsania and Eugene John

Department of Electrical and Computer Engineering
University of Texas at San Antonio

San Antonio, TX 78249
megha.talsania@gmail.com, eugene.john@utsa.edu

Abstract- All modern processors, including general purpose microprocessors, digital signal processors and
GPUs contain an Arithmetic Logic Unit (ALU). The computing efficiency of modern processors mainly
depends of the efficiency of the ALU. An adder is the basic building block for an ALU which performs
arithmetic as well as logic operations. This paper investigates the performance of six different parallel prefix
adders implemented using four different TSMC technology nodes. The parallel prefix adders investigated in
this paper are: Kogge Stone Adder, Brent Kung Adder, Han Carlson Adder, Sklansky Adder, Lander Fischer
Adder, and Knowles Adder. The performance metrics considered for the analysis of the adders are: power,
delay and area. Simulation studies are carried out for 16, 32 and 64 bit input data width.

Keywords- Prefix tree adder, High speed CMOS adder, Low Power VLSI

1. Introduction

The addition of two binary numbers is one of the most fundamental and important arithmetic function in modern
digital systems such as microprocessors and digital signal processors. In these systems binary adders are used in
arithmetic logic units (ALU), multipliers, dividers and memory address generation. The requirements of adders are
that it should be fast and efficient in terms of power and chip area. Most often, the maximum operating speed of
most of the modern digital systems depend on how fast adders can process the data and hence responsible for setting
the minimum clock cycle time in processors.

The major problem for binary addition is the propagation delay in the carry chain. As the width of the input operand
increases, the length of the carry chain increases. To address the carry propagation problem, most of the modern
adder architectures are represented as a parallel prefix adder (PPA) structure consisting of pre-processing, carry
look-ahead and post processing sections. Parallel Prefix Adders have been established as the most efficient circuits
for binary addition in digital systems. Their regular structure and fast performance makes them particularly
attractive for VLSI implementation. The delay of a parallel prefix adder is directly proportional to the number of
levels in the carry propagation stage.

This paper investigates the performance of six different parallel prefix adders implemented using four different
TSMC technology nodes. The parallel prefix adders investigated in this paper are: Kogge Stone Adder, Brent Kung
Adder, Han Carlson Adder, Sklansky Adder, Lander Fischer Adder, and Knowles Adder. The performance metrics
considered for the analysis of the adders are: power, delay and area. In this paper the CMOS adders were realized
using TSMC 130nm, 90nm, 65nm and 40 nm technologies. For performance comparison, the adders were realized
using various prefix tree algorithms. Using simulation studies, delay, area and power performance of the various
adder modules were obtained. It was observed that Kogge Stone Prefix tree adder has better circuit characteristics in
terms of delay compared to adders realized using other algorithms.

The rest of the paper is organized as follows: in Section 2 a brief description of all the six different parallel prefix
adders are given, in Section 3, the tools and methodology used for the research is explained. Section 4 gives results
and performance analysis and finally Section 5 gives conclusions.

2. Parallel Prefix Adders

In this section the six different parallel prefix adders that are investigated in this paper are briefly described.

Int'l Conf. Computer Design | CDES'13 | 29

2.1 Kogge Stone Adder

The schematic of Kogge Stone Adder is given in Figure 1 [8]. It is widely used in high performance applications.
The general concept of Kogge Stone adder is almost the same as that of the carry look ahead adder except for the
second step, called parallel carry prefix chain. In the first level (L=1), generates and propagates of 2-bit are
computed at the same time. In the second level (k=2), generates and propagates of 4-bit are calculated by using the
result of 2-bit in level 1. Therefore, the actual carry-out value of the 4th bit would be available while the calculations
in level 2 are being computed. In the third level (L=3), the carry-out of the 8th bit is computed by using the 4th bit
carry result. The same method adopted in level 3 is applied to get carry-out values of the 16th bit and the 32nd bit in
level 4 and level 5. All other carries of bit are also computed in parallel. In Figure 1, red boxes are propagate (P) and
generate (G) generators for each bit of two inputs. Yellow boxes contain propagate block and generate block and the
delay of one yellow box is equal to two gate delay (D). The blue boxes keep the original generate value transmitted
from the previous level. In each level, because all carries are calculated in parallel, the delay is the running time of
single yellow box.

Figure 1:- Schematic of 32 bit Kogge Stone Adder

2.2 Brent Kung Adder

Figure 2 gives the schematic of the Brent Kung Adder. Brent-
Kung is a parallel prefix form of the carry look ahead adder. In
carry lookahead adder, as the size of the input operands is
increased the delay of the result is also increased. Therefore the
idea here is to have a gate level depth of O(log2(n)). It takes less
area to implement than the other prefix adders such as Kogge-
Stone adder and it also has less wiring congestion. Instead of
using a carry chain to calculate the output, the method shown in
Figure 2 is used. This will reduce the delay without
compromising the power performance of the adder.
.

 Figure 2:- Schematic of 16-bit Brent Kung Adder

30 Int'l Conf. Computer Design | CDES'13 |

2.3 Han Carlson Adder

Han Carlson adder is a parallel prefix tree. It helps to reduce
complexity in Brent Kung adder [7]. It is also a hybrid design
combined stages of Brent Kung and Kogge Stone adder. This
scheme performs carry-merge operations on even bits only.
Generate and propagate signals of odd bits are transmitted
down the prefix tree. They recombine with even bits carry
signals at the end to produce the true carry bits [15]. Thus, the
reduced complexity is at the cost of adding an additional stage
to its carry-merge path. Figure 3 represents method of 16 bit
Han Carlson Adder [15].
 Figure 3: Schematic 16-bit Han Carlson Adder

2.4 Sklansky Adder

Sklansky Adder [7] is another
form of parallel prefix adder and
its schematic is shown in Figure
7. In this adder, binary tree of
propagate and generate cells will
first simultaneously generate all
the carries, Cin. It builds
recursively 2-bit adders then 4-
bit adders, 8-bit adders, 16-bit
adder and so on by abutting each
time two smaller adders. The
architecture is simple and regular, Figure 4: Schematic of 16-bit Sklansky Adder
but it suffers from fan-out problems.
Besides in some cases it is possible to use less propagate and generate cells with the same addition delay [7].

2.5 Lander Fisher Adder

The schematic of Lander Fischer Adder [9] is shown in Figure 5. This adder structure has minimum logic depth, but
has large fan-out requirement up to n/2 [9].

Figure 5: Schematic of 16 bit Lander Fischer Adder

Int'l Conf. Computer Design | CDES'13 | 31

2.6 Knowles Adder

Knowles adder is similar to Kogge Stone Adder, but it has different logic to calculate the output. Figure 6 illustrates
a 16-bit Knowles Adder [8].

Figure 6: Schematic of 16-bit Knowles Adder

3. Tools and Methodology

For the the VLSI implementation of all the parallel prefix adders investigated in this research the tools used are
ModelSim and Cadence Encounter. The technology used for this research are the TSMC 130nm process
(TCBN130GHPBC), TSMC 90m process, TSMC 65nm process (TCBN65LPBWP7T) and TSMC 40nm process
(TCBN40LPBWP). The simulations were carried out to obtain the power, area and the worst case delay of all the six
different parallel prefix adders. The designs of each adder were generated by creating Verilog source file using
ModelSim. Then each design was synthesized to simulate the functional result for functionality verification. After
that each design is verified using VCS. After confirming the accuracy of each design, the source was used to create
the netlist for schematic circuit diagram with Cadence Encounter. Finally, the performance evaluation for each
design was calculated using TSMC 130nm, 90nm, 65nm and 40nm process libraries.

4. Results and Performance Analysis

A. Schematic and Layout Synthesis
All the six different parallel prefix adders were synthesized using Cadence Encounter using TSMC 130nm, 90nm,
65nm and 40nm technology nodes. In this section the synthesis results of 32 bit Brent Kung Adder and 64-bit
Kogge Stone Adder are presented in Figures 7 and 8 respectively.

Figure 7: Schematic of 32 bit Brent Kung Adder Figure 8: Schematic of 64 bit Kogge Stone Adder

32 Int'l Conf. Computer Design | CDES'13 |

Layout of low power adders were generated to analyze the area of the different parallel prefix adders using cadence
encounter tool for TSMC 90nm technology node. Figure 9 illustrates the layout of 64 bit Kogge Stone Adder
(KSA).

Figure 9: Layout of 64 bit KSA for TSMC 90nm technology node

B. Performance Analysis of Various Adders

The delay, power and area of all the six different prefix adders were investigated using simulations for varying input
bit width for TSMC 130nm, 90nm, 65nm and 40nm technology nodes. Table 1 presents the area, power and delay
results for all the six parallel prefix adders for 16 bit input width for 90nm technology node. From the results
presented in Table 1 it can be inferred that 16 bit Brent Kung Adder occupies less area and power compared to any
other adder investigated. But, in terms of delay it has the worst performance among all the adders compared in this
study. Speed and Power are difficult characteristics to balance. As expected the 16-bit Kogge Stone Adder is the
fastest adder among all the adders investigated together with Knowles Adder. This is one of the reasons why Kogge
Stone Adder has been used in high speed applications.

Table 1: Comparison of area, power and delay for 16 bit input data width (90nm TSMC)
Adder Area(μm2) Total Power (μW) Delay(ps)

Brent Kung 329.83 20.93 522

Han Carlson 366.05 22.48 444

Knowles 502.15 27.35 428.8

Lander Fischer 335.87 21.17 458.6

Sklansky 366.05 22.60 429.6

Kogge Stone 502.16 27.35 428.8

Table 2 presents the area, power and delay results for all the six parallel prefix adders for 64 bit input width for
90nm technology node. In this case also, Kogge Stone Adder has the best delay performance and the Brent Kung
Adder has the best area and power performance.

Table 2: Comparison of area, power and delay for 64 bit input data width (90nm TSMC)
Adder Area(μm2) Total Power (μW) Delay(ps)

Brent Kung 1354.99 85.08 825.9

Han Carlson 1832.34 102.51 593.9

Knowles 2345.57 127.64 565.7

Lander Fischer 1512.49 90.21 676.8

Sklansky 1681.52 99.58 831.8

Kogge Stone 2669.91 137.22 561.5

Int'l Conf. Computer Design | CDES'13 | 33

Figures 10 - 13 presents comparison of all the parallel prefix adders investigated in this research in terms of total
power consumption and area using four different TSMC technologies. Figures 10 and 11 are for 32 bit adders and
Figures 12 and 13 are for 64 bit adders. From the data presented in Tables 1 and 2 it can be seen that the Kogge
Stone adders are the fastest among all the adders compared in this research. But from the simulation results
presented in Figures 10 – 13 it can be clearly inferred that in terms of power and area performance Kogge Stone
Adders are not among the best. The Brent Kung Adder exhibit the best performance in terms of area and power
consumption for both the 32 and 64 bit adder categories.

Figure 10: Total power consumption (μW) for various 32 bit adders

Figure 11: Total area (μm2) for various 32 bit adders

Figure 12: Total power consumption (μW) for 64 bit adders

34 Int'l Conf. Computer Design | CDES'13 |

Figure 13: Total area (μm2) for various 64 bit adders

Figure 14 shows the delay comparison for all the adders for the TSMC 90 nm technology node for 16, 32 and 64 bit
input data width. As expected, Kogge Stone Adder has the best performance among all the adders for all the input
data width considered.

Figure 14: Delay (ps)

 Comparison between all adders (90nm TSMC)
5. Conclusions

The primary objective of this research is the design, realization and performance comparison of various parallel
prefix adders. In this paper several adders were analyzed to identify the optimal adder modules that can be used for
the realization of high speed or low power adder structures. The addition algorithms that were studied include six
different types of prefix tree adders. The performance analysis was based on the silicon area required for the
implementation of the algorithm in hardware, the power dissipation during computation, and the worst case delay in
performing the operation. In this research the CMOS adders were realized using TSMC 130nm, 90nm, 65nm and 40
nm technologies. Based on our simulation studies the Kogge Stone Adder has the best performance among all the
adders for all the input data width considered. It is widely used in high performance applications and it has the
merits of uniform structure and balanced loading in each internal node to get high speed performance. The Brent
Kung Adder exhibited the best performance in terms of area and power consumption for all the input data width
considered.

Int'l Conf. Computer Design | CDES'13 | 35

Acknowledgement: Research reported in this paper was supported by National Institute of General Medical
Sciences of the National Institutes of Health under award number 1SC3GM096937-01A1. The content is solely the
responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

References

[1] K. Rawwat, T. Darwish, and M. Bayoumi, “.A low power carry select adder with reduces area”, Proc. Of

Midwest Symposium on Circuits and Systems, pp. 218- 221, 2001.
[2] A. Tyagi, “A reduced area scheme for carry-select adders”, IEEE Trans. on Computer, vol. 42, pp. 1163-

1170, 1993
[3] Padma Devi, Ashima Girdher, and Balwinder Singh, “Improved Carry Select Adder with Reduced Area

and Low Power Consumption”, International Journal of Computer Applications (0975 – 8887)Volume 3 –
No.4, June 2010.

[4] S.-L. Lu, “Speeding Up Processing with Approximation Circuits,” Computer, vol. 37, no. 3, pp. 67-73,
2004

[5] Gurkayna, F.K. , “Higher radix Kogge-Stone parallel prefix adder architectures “, 2000
[6] D. Harris, R. F. Sproull, I. E. Sutherland, “Logical Effort: Designing Fast CMOS Circuits” ,M. Kaufmann,

1999.
[7] P.Sunitha, “A Novel Approach For Designing A Low Power Parallel Prefix Adders”, Vol. 1 Issue 8,

October – 2012
[8] P. Kogge et al., IEEE Trans. Computers, vol. C-22, p. 786 (1973).
[9] D. Harris, “A Taxonomy of Parallel Prefix Networks,” in Proc. 37th Asilomar Conf. Signals Systems and

Computers, pp. 2213–7, 2003.
[10] Padma Devi, Ashima Girdher, and Balwinder Singh, “Improved Carry Select Adder with

Reduced Area and Low Power Consumption”, International Journal of Computer
Applications (0975 – 8887)Volume 3 – No.4, June 2010.

[11] S.-L. Lu, “Speeding Up Processing with Approximation Circuits,” Computer, vol. 37,
no. 3, pp. 67-73, 2004.

[12] Rabaey, J. M., “Digital Integrated Circuits: A Design perspective”, New Jersey, Prentice-Hall, 1996.
[13] N. Weste and K. Eshragian, “Principles of CMOS VLSI Designs: A System Perspective”, 2nd ed.,

Addison-Wesley, 1985-1993.
[14] B. Parhami, “Computer Arithmetic, Algorithm and Hardware Design”, Oxford University Press, New

York, pp.91-119, 2000.
[15] Sudhakar, S.M.,”Hybrid Han Carlson adder”,2012

36 Int'l Conf. Computer Design | CDES'13 |

A Short Survey on User-aware Power Management
Dongwon Min

1
 , Sangjun Lee

2
 and Sung Woo Chung

3

1
School of Business Administration, Dankook University, Yongin-si, Gyonggi-do, 448-701, Korea

2
 School of Computer Science and Engineering, Soongsil University, Seoul 156-743, Korea

3
Division of Computer and Communication Engineering, Korea University, Seoul 136-713, Korea

Abstract – This paper briefly surveys user aware power

management. In the past, most power saving techniques have

been focused on power and performance. However, recently,

there are some power management techniques that

concentrate on user satisfaction rather than performance itself.

After reading this paper, power management researchers are

expected to collaborate with consumer researchers as well as

HCI(Human Computer Interface) researchers.

Keywords: User Aware Power Management, Human

Computer Interface, Consumer research

1 Introduction

 In the green computing where users utilize computers for

a longer time with less power consumption, low power is

crucial as much as performance. Especially, low power

techniques are considered as much more important for mobile

devices such as smartphones, pads, and notebooks. As time

goes on, users need to consume more power, because they

want to run more powerful (which is more power consuming)

applications. In this case, however, battery usage time is

reduced, which eventually makes users uncomfortable. Thus,

there have been various low power techniques for mobile

devices: from clock gating and power gating at the circuit

level to power-aware scheduling at the operating systems level.

However, most low power techniques at the operating systems

level have not been applied to commercial systems, since

there is a high possibility that they may hurt user satisfaction

due to lowered performance.

Representative low power techniques used for off-the-shelf

mobile devices are as follows: 1) DVFS (Dynamic Voltage

Frequency Scaling) is adopted depending on CPU utilization,

and 2) display (or even system itself) is turned off, when there

is no user input for the predetermined time. Unfortunately,

industries are very conservative to adopt the other previously

proposed low power techniques, though they all understand

that power consumption is important as same as (or even more

important than) performance. The reason is that low power

researchers have concentrated on power and performance,

relatively ignoring user satisfaction. When users feel disturbed

from mobile devices due to low power techniques, they will

surely reluctant to use the mobile devices again. However, in

most previous low power researches, there has not been user

study to evaluate user satisfaction (disturbance). Recently, low

power techniques detecting user status via HCI (Human

Computer Interface) have been proposed. In addition, they are

evaluated in terms of not only power consumption but user

disturbance through user study widely used in consumer

research. In this paper, we examine user-aware low power

techniques for mobile devices.

2 User Aware Power Management

 In current mobile devices, user aware low power

techniques are very simple as follows: 1) when there is no

user input for a certain time, display is turned off, and 2) when

an illuminance sensor detects that it is dark enough, display

backlight is lowered. This implies that mobile devices detect

user status passively. On the other hand, the following

subsections introduce low power techniques that actively

detect user status to minimize user disturbance, still reducing

power consumption.

2.1 Biometric Sensors Based DVFS (Dynamic

Voltage Frequency Scaling)

Though it is apparent that ultimate goal of computer science

is to satisfy the users, there is little information about the users

because of the limited user input devices (e.g. the mouse and

keyboard). To have more information about the users, Shye et

al. added three biometric sensors: an eye tracker, a galvanic

skin response (GSR) sensor, and force sensors [1]. Analyzing

the information from sensors, their proposed physiological

traits-based power-management system determines whether

users are satisfied with the system performance. When users

are considered as unsatisfied with the performance, CPU

voltage and frequency are increased to boost the performance.

Otherwise, they are decreased, which leads to power reduction.

They also did user study to evaluate user satisfaction.

However, their proposed technique requires the users to wear

the eye tracker and GSR sensing device, though the force

sensors are embedded in the keyboard. Note most users may

be reluctant to wear the eye tracker and GSR sensing device,

since they feel uncomfortable with them.

2.2 Sonar Based Display Power Management

 Tarzia et al. proposed display power management

technique based on sonar detecting user presence [2]. The

insight here is that human bodies bounce back different sound

waves compared to air and other objects. As shown in Fig. 1,

the computer sends audio in the range of 15 to 20 kHz, which

is inaudible to most users. It also records the audio bounced

back from the user, which is different depending on user

states: active (input is continued), passively engaged (looking

at the computer screen), disengaged (sitting in front of the

computer, not looking at the screen), distant (away from the

Int'l Conf. Computer Design | CDES'13 | 37

computer, but still in the room), and absent (left the room).

According to the user state, different display power mode is

applied. Since most laptops have speakers and microphones,

no additional hardware is required.

Fig. 1. User detection scheme for [2]

Their user study shows that “passively engaged” state can be

discriminated from “absent” state with more than 96%

accuracy. However, they did not show how their proposed

technique is sensitive to external environments such as noise

and room floorplan.

2.3 Camera Based Display Power Management

 To detect user state more accurately, Kim et al. utilized

camera for display power management [3]. Since most laptops

have a camera (webcam) for interactive communication, there

is no need for additional hardware. As shown in Fig. 2, there

are four user states: interactive, attentive, inattentive, and

away. To detect user state, they use face detection algorithm

(to detect whether user face is looking at the display; not to

recognize specific user face) which incurs negligible power

and performance overhead. When frontal face is detected, the

user state is attentive. When face is detected but it is not

frontal, the user state is inattentive. When face is not detected,

it is away. In case of interactive and attentive state, display

power mode is normal. On the other hand, in case of

inattentive state, display is in slightly low power mode (e.g.

only backlight is off). In case of away mode, display is totally

turned off. Note different power mode can be assigned to the

user state by system vendors.

Their user study shows that power is saved by up to 14%,

compared to traditional timeout based display power

management. It also shows that users experienced less than

one disturbance per hour, on average, which is acceptable

enough.

3 Discussion

 In this paper, we survey user aware operating systems

level power management schemes, which are different from

the traditional schemes, in a sense that information about

users are utilized. Biometric sensors are used to detect user

status as explained in Section 2.1. The physiological

information about user status is used for DVFS (Dynamic

Voltage and Frequency Scaling). The proposed technique is

efficient to satisfy users but it should attach additional sensor

devices to users. Sonar is used to detect user state to save

display power, depicted in Section 2.2. The proposed

technique does not need any additional hardware, since most

laptops have speakers and microphones. However, it may be

sensitive to external environments. Camera is utilized to

detect user state for display power saving, explained in

Section 2.3. The advantage of the proposed technique is 1) no

additional hardware is required, and 2) user disturbance is

quite low due to high user state detection accuracy.

We hope future researches on power management consider

user satisfaction as well as performance overhead. To

optimize evaluation metrics, system researchers on power

management are expected to collaborate with consumer

researchers for user satisfaction as well as HCI researchers for

novel sensing devices.

Fig. 2. User states for display power management [3].

Acknowledgement
This research was supported by the MSIP(Ministry of

Science, ICT & Future Planning), Korea, under the

ITRC(Information Technology Research Center) support

program (NIPA-2013-H0301-13-2006) supervised by the

NIPA(National IT Industry Promotion Agency, and by the

National Research Foundation of Korea (NRF) grant funded by

the Korea government (MEST) (No.2012-013816).

References
[1] Shye, A., Pan, B., Scholbrock, B., Miller, J. S., Memik,

G., Dinda, P., Dick, R. : Power to People: Leveraging

Human Physiological Traits to Control Microprocessor

Frequency. In: International Symposium on

Microarchitecture, IEEE Press, Lake Como (2008).

[2] Tarzia, S. P., Dick, R. P., Dinda, P. A., Memik, G. :

Sonar-Based Measurement of User Presence and

Attention. In: International Conference on Ubiquitous

Computing, IEEE Press, Orlando (2009)

[3] Kim, J. M., Kim, M., Kong, J, Jang, H. B., Chung, S. W. :

Display Power Management That Detects User Intents.

IEEE Computer Magazine, vol. 44, no. 10, pp. 60-66,

IEEE press (2011)

38 Int'l Conf. Computer Design | CDES'13 |

SESSION

PERFORMANCE ISSUES + HPC AND
MULTI-PROCESSOR SYSTEMS + FPGA + FILE

SERVERS

Chair(s)

TBA

Int'l Conf. Computer Design | CDES'13 | 39

40 Int'l Conf. Computer Design | CDES'13 |

Performance Tradeoff Spectrum of Integer and Floating Point
Applications Kernels on Various GPUs

M.G.B. Johnson, D. P. Playne and K.A. Hawick
Computer Science, Massey University, North Shore 102-904, Auckland, New Zealand

email: {m.johnson, d.p.playne, k.a.hawick}@massey.ac.nz
Tel: +64 9 414 0800 Fax: +64 9 441 8181

April 2013

ABSTRACT

Floating point precision and performance and the ratio
of floating point units to integer processing elements on a
graphics processing unit accelerator all continue to present
complex tradeoffs for optimising core utilisation on modern
devices. We investigate various hybrid CPU and GPU com-
binations using a range of different GPU models occupying
different points in this tradeoff space. We analyse some per-
formance data for a range of numerical simulation kernels
and discuss their use as benchmark problems for character-
ising such devices.

KEY WORDS
MIPS vs FLOPS; computational performance; accelerator;
benchmark; GPU.

1 Introduction
Graphical Processing Units [10, 11] have become almost

mainstream accelerator devices in many applications ar-
eas. They remain non-trivial to program even with the ad-
vent of highly developed software libraries and tools such
as NVidia’s Compute Unified Device Architecture (CUDA)
[12] and Open Compute Language (OpenCL) [16]. There
are still some applications and parts of applications for
which GPUs provide very good speedups and others for
which they are less suitable. To further complicate the users
decision on which platform to deploy upon there have been
many different GPU models released over the last five years
each of which has different design features and performance
characteristics.

In this paper we use some very simple synthetic bench-
marks to experiment with a range of different GPU devices
and benchmark performance across them. Our particular fo-
cus of interest in integer versus floating point performance.

Other factors such as memory transfer bandwidth and the
exact ratio of floating point, double precision and special
function evaluation units also play a part.

Our long term goal is to develop a set of GPU related
benchmarks appropriate for computational fluid dynamics
(CFD) [1, 2, 18] and comparing conventional CFD calcula-
tions [9] that are formulated in terms of partial differential
equations that require raw floating point performance [6]
with those formulated in terms of integer calculations and
a lattice gas model approach [8].

There are a number of well known benchmarks for float-
ing point performance in the context of linear algebra and
matrix calculations [4, 17]. The NAS parallel benchmarks
[3] also exercise some features that are specific to CFD
problems as well. Other benchmarks have considered asyn-
chronous coupling effects between the GPU and its hosting
CPU [13], or have been tailored to specific applications ar-
eas such as particle dynamics [7, 15] or graph and network
problems [5].

There is topical scope to consider multiple GPUs [14,19]
attached to the same CPU and driven or serviced by different
cores. In this present paper however we focus on rather low-
level capabilities of the various GPU accelerators we study
and the main contribution is that we have been able to study
quite a large collection of different vintage devices and can
comment on which particular features contribute to which
low level performance trend.

Our article is structured as follows: We review some of
the key architectural features of graphical processing units
in Section 2. We benchmark the GPUs by separating and
emphasising the individual elements that make GPGPU and
specifically NVidia GPUs both powerful and limiting. The
areas we identified were: integer and double precision com-
putation and global memory access. These elements repre-
sent the greatest divide between the various devices and we
see in Section 3 both the strengths and weaknesses of each

Int'l Conf. Computer Design | CDES'13 | 41

device relative to the other generations of NVidia hardware.
We present a selection of benchmarks for low level opera-
tions in Section 4. We discuss their implications in Section 5
and offer some tentative conclusions, directions for the fu-
ture and other areas for further investigation in Section 6.

2 GPU Architecture
Since the initial release of CUDA and the rise of GPGPU

computing, NVIDIA has released several GPU architec-
tures. Each of these subsequent GPU architecture releases
have brought with them higher performance and additional
chip capabilities that make GPGPU programs faster and eas-
ier to develop.

The GT200 released in 2008 saw the introduction of dou-
ble precision processing and a reduction on the performance
penalties on non-coalesced memory accesses. The GF100
Fermi architecture GPUs released in 2010 in the GeForce
400 series and saw an increase in the number of cores per
multiprocessor to 32 and most significantly for the GPGPU
community the introduction of an L1/L2 cache structure.
The GF110 was released later in 2010 in the GeForce 500
series which brought with it performance improvements
over the GeForce 400 series. The general architecture of the
Fermi architecture multiprocessor can be seen in Figure 1.

Figure 1: The architecture of a Fermi GPU multiprocessor
with 32 cores, 16 Load/Store units and 4 special function
units.

In 2012 NVIDIA released the new Kepler architecture
GPU featuring the new generation Streaming Multipro-

cess architecture (SMX). These multiprocessors contain 192
cores which has allowed the maximum number of cores in a
single GPU to be increased to 1,536. These GPUs provide
higher performance than the previous generation Fermi de-
vices while using significantly less power. The architecture
of these GPUs is shown in Figure 2.

Figure 2: A Kepler architecture multiprocessor containing
192 cores, 32 Load/Store units and 32 special function units.

While these Kepler GPU have significantly higher perfor-
mance than the previous generation GPUs (theoretical peak
of 3090.4 GFlops for a GeForce GTX680 as compared to
1581.1 GFlops for a GeForce GTX580) the overall mem-
ory bandwidth has remained almost the same 192.2 GB/sec
(GTX680) compared to 192.4 GB/sec (GTX580). This
presents a problem for some GPGPU applications which
maybe limited by memory speed and not computational per-
formance. We evaluate the practical performance of these
two GPU architectures and compare them in terms of com-
putational throughput and memory access.

3 Implementation Method
We decided to reduce the benchmarks (micro bench-

marks) to their simplest possible state. For computation we
chose a basic Linear Congruential random number genera-
tor as shown in Listing 1. While, not the best random num-
ber generator for high quality randomness it only uses in-
teger calculations and no memory access. Each thread has

42 Int'l Conf. Computer Design | CDES'13 |

one kernel which generates one thousand random numbers.
Only kernel execution time is recorded and averaged over
multiple separate runs.

__global__ void int_compute_benchmark()
{

int ix = blockDim.x *blockIdx.x +threadIdx.x;
int M = 8;
int a = ix;
int c = 3;
int X = 1;
int i;
for(i=0; i<1000; i++)
{

X = (a * X + c) % M;
}

}

Listing 1: Device kernel generating one thousand random
numbers using a Linear Congruential generator for the
integer computation benchmark.

To evaluate the double precision speed of the GPUs we
use the same idea as the integer but change the algorithm
to a simple quadratic equation solver as shown in Listing 2.
This uses both double precision computation as well as the
special function units in each of the multi processors.

__global__ void double_compute_benchmark()
{

int ix = blockDim.x *blockIdx.x +threadIdx.x;
double linear = ix;
double cons = blockIdx.x*blockIdx.y;
double num1=0,num2=0;
double power=0;
for(int i=0; i<1000; i++){

double quadratic = i+1;
power=pow (linear / 2 , 2.0);
num1= (- linear + sqrt(power - (4 *

quadratic * cons))) / (2 *
quadratic);

num2= (- linear - sqrt(power - (4 *
quadratic * cons))) / (2 *
quadratic);

}
}

Listing 2: Device kernel to solve one thousand different
quadratic equations for the double precision computation
benchmark.

We examine how memory reading and writing speed dif-
fer between the devices. Again we use the most simple ex-
ample to exasperate memory transfer cost. Examining both
random and coalesced reads and writes exposes the advan-
tages and flaws for differing architecture. We expect that
the random reads will perform much worse on all devices
but will affect the 600 series cards the most, as the number
of multi-processes have been reduced.

Listing 3 shows the algorithm we use to test the coalesced
memory reads and writes. Firstly we allocate two integer ar-
rays and populate them with random integers. The memory
allocation and population is not included in the benchmark
timing. Each element is then copied from array A to array
B, incremented and written back to A. This allows for large
coalesced reads and writes with very little other computa-
tion.
__global__ void
coalesced_memory_benchmark(int *A, int *B,int *

rStore)
{

unsigned int i = ((((blockIdx.y * gridDim.x)
+ blockIdx.x) * blockDim.x) +
threadIdx.x);
A[i] = B[i];
B[i]++;
B[i] = A[i];

}

Listing 3: Device kernel to benchmark the coalesced
memory read and write speed of the devices.

__global__ void
random_memory_benchmark(int *A, int *B,int *

rStore)
{

unsigned int i = ((((blockIdx.y *
gridDim.x) + blockIdx.x) *
blockDim.x) + threadIdx.x);

int rnd1 = rStore[i];
int rnd2 = rStore[rnd1];
int rnd3 = rStore[rnd2];
int rnd4 = rStore[rnd3];
A[rnd1] = B[rnd2];
B[rnd3] = A[rnd4];

}

Listing 4: Device kernel to benchmark random memory read
and writes to device global memory.

Listing 4 shows the algorithm we have used to benchmark
the random memory access time for the various GPUs. Each
thread must perform two random reads and two random
writes to global memory. Using the same random number
for multiple threads may result in some collisions. However
as this is consistent across all of the benchmark it does not
present any advantage to a specific device.

4 Performance Results
Figure 3 shows the plot of kernel execution time for the

integer computation benchmark vs the number of thread
blocks, which contain 32 threads each. We see generally
predictable results. With the GTX 680 the fastest followed
but the: 2090, 580, 590 and so on. The order is represen-
tative of the number of cores per GPU and for devices with

Int'l Conf. Computer Design | CDES'13 | 43

260 480 580 590 660m 680 M2050 M2070 M2075 M2090
Compute Version 1.3 2.0 2.0 2.0 3.0 3.0 2.0 2.0 2.0 2.0
Total Global Memory(MB) 896 1536 1536 1536 512 2048 2687 5375 5375 5375
Number of Compute Cores 216 480 512 512 384 1536 448 448 448 512
Number of Multi Procs 27 15 16 16 2 8 14 14 14 16
GPU Clock Rate(MHz) 1400 1400 1590 1225 950 706 1150 1150 1150 1301
Memory Clock (MHz) 1000 1848 2004 1710 256 3004 1546 1494 1556 1848
Memory Bus(Bit) 448 384 384 384 256 256 384 384 384 384
L2 Cache(KBytes) 0 768 768 768 512 512 768 768 768 768
Const Memory Size(KB) 64 64 64 64 64 64 64 64 64 64
Shared Memory Size(KB) 16 48 48 48 48 48 48 48 48 48
Registers Per Block 16384 32768 32768 32768 65536 65536 32768 32768 32768 32768
Has ECC No No No No No No Yes Yes Yes Yes

Table 1: Table comparing the various NVidia GPU models that we benchmark.

Figure 3: Integer computation test

the same number of cores the clock speed separates them.
Figure 4 shows the kernel execution time for the double

precision computation benchmark vs the number of thread
blocks, again containing 32 threads each. Unlike the integer
computation benchmark we see some unexpected results.
We see that the most recent GPU tested the GTX 680 is the
slowest aside from the 200 series GPUs. As expected the
Tesla compute cards are the best performing cards in this
test. With the 2050 and 2070 again showing nearly identical
results as the main difference between them is the memory
size and minute GPU clock rate difference. The 2075 shows
an improvement over the 2070 and 2050 which is then fol-
lowed by the 580 and 480.

We see in Figure 5 the results of the random access mem-
ory benchmark. Again the results of this test are unusual

Figure 4: Double computation test

as the most recently released GPU the GTX 680 is not the
fastest as it is beaten by the 480, 580 and 590. We believe
this is due to the smaller number of multiprocessors in the
680 with eight compared with sixteen in the 580 and 590
and 14 in the 480. Because the multiprocessors handle the
memory operations for the cores within each one, randomly
accessing the memory will significantly affect the devices
with lower numbers of multiprocessors.

Figure 6 shows us the results of the coalesced memory
access bench mark. We see that unlike the random access
benchmark the 680 performs very well. The 580 also per-
forms well and comes in a close second. The GPUs seem
to be grouped into three distinct groups with the 260 and
the 295 performing surprisingly well compared to the Tesla
GPUs.

44 Int'l Conf. Computer Design | CDES'13 |

Figure 7: GFlops (above) and GFlops per core (below)

5 Discussion
GPUs are primarily designed to render computer graph-

ics and only recently have begun to be used for general pur-
pose computing (GPGPU). Producing graphics requires pri-
marily integer calculations and we see the result of this in
Figure 3 where each generation of NVidia GPU performs
better than the previous. The main factor in the integer com-
putation performance seems to be the number of cores fol-
lowed by the clock speed. We see evidence of the impact

clock speed makes in the difference between the 580 and
590 which have almost identical specifications aside from a
lower GPU clock speed and lower memory clock speed. The
2075 is also significantly slower than the 2070 and the 2050
as with the memory benchmark this cannot be explained by
the specifications.

Double precision has historically been a weak point for
GPGPU and specifically the NVidia GeForce consumer
GPUs. In the Tesla series they have concentrated on bridg-

Int'l Conf. Computer Design | CDES'13 | 45

Figure 5: Integer memory test random access

Figure 6: Integer memory test with contiguous access

ing this divide and we see the results of this in Figure 4.
The Tesla cards: 2050, 2070, 2075 and the 2090 all perform
much better than their GeForce counterparts. More surpris-
ingly the best of these cards was the oldest Fermi architec-
ture card, the 480. The 680 being the slowest card despite
being one of the new generation Kepler is reflective of the
growing divide between the consumer graphics cards and
the professional level GPGPU devices such as the 2090 and
consumer graphics focused GeForce cards such as the 680.
Although the 680 has many more cores that all of the other
GPUs, the ratio of special function units to compute cores is
much lower.

The random access memory benchmark shows some sur-

prising results as explained in Section 4. Again we see
the 680 being out performed by the previous generation
of GPUs. As with the Double precision benchmark the
evolving architecture prioritising the number of cores over
the number of multiprocessors and special function units.
The relatively large improvement of the 2075 over the 2050
and the 2070 cannot be fully explained by the specifications
shown in table 4 we can only assume that the change in ar-
chitecture from GF100 to GF110 in the 2070 and 2075 re-
spectively has some unseen performance benefit in access-
ing random memory.

The coalesced memory access benchmark is similar to
the integer computation benchmark as it reflects the NVidia
ideal where all memory access is coalesced. The 680 is not
massively faster than the 580 it represents an evolutionary
improvement over the previous generation. The biggest sur-
prise is the speed of the Tesla cards, which are mostly much
slower than their equivalent GeForce cards. The 2050, 2070
and 2075 are all beaten by both of the 200 series cards.
We believe this is due to the higher memory clock and core
speed.

Figure 7 (lower) illustrates the overall trend of the NVidia
GPGPU architecture. We see that while the overall GFlops
per GPU has been increasing as shown in Figure 7(above),
the computational power per core has been decreasing. This
clearly shows NVidia’s plan for GPU architectures moving
forward. It may reduce the effectiveness of NVidia GPGPU
for memory intensive simulations and possibly more impor-
tantly simulations which rely on special function units as
shown in Figure 4

6 Conclusion
We have shown that by creating simple micro benchmarks

we can easily identify and compare specific functions of
GPUs. We see that although some of the latest NVidia GPU
architectures have raw performance in certain areas they
do not perform as well in fifty percent of our benchmarks.
While we do not propose buying older generation GPUs, it
may give insight into why simulations are not performing as
well on some GPUs and not others. We also show that there
is a growing divide between the GeForce consumer cards
and the professional GPGPU Tesla GPUs. The next genera-
tion of GPUs that have been announced are the K20x and its
GeForce cousin the Titan show the continuing trend towards
the many core less multiprocessors architecture.

References
[1] Abbott, M., Basco, D.: Computational Fluid Dynam-

ics: an introduction for engineers. Longman (1989)

46 Int'l Conf. Computer Design | CDES'13 |

[2] Acheson, D.: Elementary Fluid Dynamics. Oxford
Applied Mathematics and Computing Science Series,
Clarendon Press (1990)

[3] Bailey, D., Barscz, E., Barton, J., Browning, D.,
Carter, R., Dagum, L., Fatoohi, R., Fineberg, S., Fred-
erickson, P., Lasinski, T., Schreiber, R., Simon, H.,
Venkatakrishnan, V., Weeratunga, S.: The nas parallel
benchmarks. Tech. Rep. RNR-94-007, NASA Ames
Research Center, Moffett Field, CA, USA. (1994)

[4] Dongarra, J.J., Luszczek, P., Petitet, A.: The LIN-
PACK Benchmark: past, present and future. Con-
currency and Computation: Practice and Experience
15(9), 803–820 (2003)

[5] Graph500.org: The Graph 500 List. http://www.
graph500.org/, last accessed November 2010

[6] Griebel, M., Dornseifer, T.: Numerical Simulation in
Fluid Dynamics A Practical Introduction. No. ISBN 0-
89871-398-6, SIAM (1998)

[7] Hawick, K.A., Playne, D.P., Johnson, M.G.B.: Numer-
ical precision and benchmarking very-high-order inte-
gration of particle dynamics on gpu accelerators. In:
Proc. International Conference on Computer Design
(CDES’11). pp. 83–89. No. CDE4469, CSREA, Las
Vegas, USA (18-21 July 2011)

[8] Johnson, M.G.B., Playne, D.P., Hawick, K.A.: Data-
parallelism and gpus for lattice gas fluid simulations.
In: Proc. International Conference on Parallel and
Distributed Processing Techniques and Applications
(PDPTA’10). pp. 210–216. CSREA, Las Vegas, USA
(12-15 July 2010), pDP4521

[9] K.Srinivas, C.A.J.Fletcher: Computational Techniques
for Fluid Dynamics. Springer Series in Computational
Physics, Springer-Verlag (1992), a Solutions Manual

[10] Leist, A., Playne, D.P., Hawick, K.A.: Exploiting
Graphical Processing Units for Data-Parallel Scientific
Applications. Concurrency and Computation: Prac-
tice and Experience 21(18), 2400–2437 (25 December
2009), CSTN-065

[11] Luebke, D., Humphreys, G.: How gpus work. Com-
puter pp. 96–100 (February 2007)

[12] NVIDIA R© Corporation: NVIDIA CUDA C Pro-
gramming Guide Version 4.1 (2011), http://www.
nvidia.com/ (last accessed April 2012)

[13] Playne, D.P., Hawick, K.A.: Comparison of
GPU Architectures for Asynchronous Commu-
nication with Finite-Differencing Applications.
Concurrency and Computation: Practice and Ex-
perience (CCPE) Online, 1–11 (7 April 2011),
http://onlinelibrary.wiley.com/doi/
10.1002/cpe.1726/abstract

[14] Playne, D.P., Hawick, K.A.: Classical mechanical

hard-core particles simulated in a rigid enclosure us-
ing multi-gpu systems. In: Proc. Int. Conf. on Paral-
lel and Distributed Processing Techniques and Appli-
cations (PDPTA’12). pp. 76–82. CSREA, Las Vegas,
USA (16-19 July 2012)

[15] Playne, D.P., Johnson, M.G.B., Hawick, K.A.: Bench-
marking GPU Devices with N-Body Simulations. In:
Proc. 2009 International Conference on Computer De-
sign (CDES 09) July, Las Vegas, USA. pp. 150–156.
WorldComp, Las Vegas, USA (13-16 July 2009)

[16] Stone, J.E., Gohara, D., Guochun, S.: Opencl: A par-
allel programming standard for heterogeneous com-
puting systems. Computing in Science & Engineering
12(3), 66–73 (May-June 2010)

[17] TOP500.org: TOP 500 Supercomputer Sites. http:
//www.top500.org/, last accessed November
2010

[18] Tritton, D.: Physical Fluid Dynamics. Clarendon
Press, 2 edn. (1988)

[19] Zaspel, P., Griebel, M.: Solving incompressible two-
phase flows on multi-gpu clusters. Computers & Fluids
In press, 1–9 (2012)

Int'l Conf. Computer Design | CDES'13 | 47

Performance Measures of an Implementation of a

Parallel Compiler

Deepa. Komathukattil
1
, Roger. Eggen

1
, Sanjay. P. Ahuja

1
 and Behrooz. Seyed. Abbassi

1

1
Computing and Information Sciences, University of North Florida, Jacksonville, FL, USA

Abstract - Parallel programming is prevalent in every field

mainly to speed up computation. Advancements in

multiprocessor technology fuel this trend toward parallel

programming. However, modern compilers are still largely

single threaded and do not take advantage of the machine

resources available to them. A good deal of research has been

reported on compilers that add parallel constructs to the

programs they are compiling, enabling programs to exploit

parallelism at run time. Auto parallelization of loops by a

compiler is one such example. Parallelizing the compilation

process itself has received less attention.

Parallelization brings along with it issues like

synchronization and communication overhead. In the

semantic analysis phase of a compiler, these issues are of

particular relevance during the construction of the symbol

table. This paper presents an approach to parallelizing

program compilation during the semantic analysis phase. The

parallel compiler developed here augments the work done

formerly on a concurrent compiler developed at the

University of Toronto. The performance speedup obtained

using the parallel compiler is evaluated using a shared

memory multiprocessor and a distributed Beowulf cluster.

Keywords: Parallel processing, Compilers, Parsing, Shared

memory, Distributed processing.

1 Introduction

 A compiler translates a program written in one language into

an equivalent program written in its target language [1]. The

target language can be machine code or intermediate code.

Research continues to this day towards generating efficient

machine code. Figure 1 illustrates the different phases of a

compiler. Every phase in the compiler plays a distinct role.

The scanner also called a lexical analyzer breaks the source

code into atomic units of the language called tokens. The

parser performs syntax analysis on the tokens provided by the

scanner. It verifies that the source code conforms to the

syntactic structure defined by the grammar of the language.

The semantic analysis phase verifies that the source code has

meaning. In this phase, the compiler typically enters

information about the data types, scopes and other attributes

associated with identifiers into the symbol table. This

information guides the semantic analysis phase. In the

optimizer phase, the compiler may include code improvements

or optimizations to the source code.

Figure 1: Phases of a Compiler [1]

Compilation of large programs could take a substantial

amount of time. With the availability of multi core processors,

parallel computing is emerging as a prevalent computing

paradigm. Modern compilers are now capable of applying

optimizations that produce highly efficient code targeted for

multiprocessors. The industry focus is largely on producing

optimizing compilers that add parallel constructs to the

programs, therefore allowing the developers of the code to be

oblivious of the underlying machine architecture. However,

the compilation process itself is far from optimized. Adding

parallel constructs to the program can affect the overall time

needed for compilation. Parallelizing the different phases in

the compiler will allow the compiler to employ more time

consuming optimizations. Although compilation in parallel

sounds promising, achieving overall speedup, efficiency and

ease of implementation has been an elusive research goal to

date.

Seshadri and Wortman [7] propose various techniques for

parallelizing the semantic analysis phase. The techniques used

in [7] are discussed in further detail in section 2.1. The

present study enhances the work done in [7] and proposes a

new technique for parallelizing the semantic analysis phase.

Lexical analysis and code generation appear to be easily

48 Int'l Conf. Computer Design | CDES'13 |

parallelizable as compared to semantic analysis [3, 5]. The

parsing technique used in the proposed parallel compiler is top

down recursive descent parsing. The compiler performance is

evaluated on two different computer hardware architectures: a

shared memory multiprocessor architecture and a Beowulf

cluster.

Section 2 summarizes related previous work on parallel

parsing and compiling. Section 3 discusses some of the

implementation issues faced when designing a parallel

compiler. The technique used for concurrent semantic analysis

is discussed in section 4. The host environments used to

evaluate the performance of the parallel compiler are

discussed in section 5. Section 6 evaluates the performance

metrics obtained for the parallel compiler and the speedup

attained with the parallel version as compared to the

sequential version of the compiler. Speedup is measured as a

ratio of execution time of the sequential algorithm to the

execution time of the parallel algorithm.

2 Related Work

 The work of Seshadri and Wortman [7] discussed in section

2.1 is chosen as the primary reference in view of the fact that it

is also trying to solve the same problem; achieving parallelism

in the semantic analysis phase. In addition, the authors

present a well-structured analysis of the problem at hand.

2.1 Parallelizing the Semantic Analysis Phase

 The concurrent compiler developed at the University of

Toronto [6, 9] takes the approach of applying parallelism in

the semantic analysis phase of compilation. The compiler is

built for source languages that require identifiers to be

declared before they are referenced. The lexical analysis stage

is sequential and is enhanced to recognize structural

boundaries and split the source code into blocks for further

processing. Scope boundaries determine parallel blocks.

Some of the major challenges encountered in this approach

were the construction of the symbol table and error reporting.

The symbol table would have to be protected by mutual

exclusion mechanisms to prevent simultaneous writes to the

table. This could result in a lot of time spent by a process just

waiting to get a lock on the symbol table and consequently

slow down processing. Moreover, the symbol table lookup

operations for identifiers had to take into account that the

tables could be incomplete. Because of concurrent

processing, the declaration of an identifier might not be

processed before the identifier is used. It is not possible to

know at this point if the declaration does exist and will be

processed subsequently. The authors term this scenario as the

“doesn’t know yet” (DKY) problem. The authors [7] propose

the following three strategies for dealing with the DKY

problem.

2.1.1 DKY Avoidance

 In this approach, parent scopes are processed before any

child scopes resulting in simplified symbol table management.

If an identifier declaration is not found while performing a

symbol table lookup then it is safe for the compiler to flag it

as an error. However, this strategy can affect parallel

processing. The amount of parallelism achieved would

heavily depend on the structure of the program being

compiled.

2.1.2 DKY Handling

 In this approach, DKYs are allowed to occur; the

process encountering the DKY is suspended until another

process resolves the DKY. This complicates and slows down

symbol table operations.

2.1.3 Hybrid Approach

 Semantic analysis is split into two phases. In the first

phase, all the declarations in the program are processed and

the symbol table is constructed from this information. In the

second phase, statements of the program are processed. This

eliminates any synchronization issues in the second phase and

simplifies the compiler algorithm used for parallelism.

However, this approach requires an extra parse of the

program.

 Experimental results show that performance of all three

approaches was alike. The performance difference between

DKY handling and DKY avoidance was small due to

significant identifier cross usage between scopes. Though

expected, the hybrid approach did not outperform the other

two approaches. The compiler was built for Modula-2+.

Declaration processing in Modula-2+ took more time than

statement processing and hence the hybrid approach did not

achieve a significant speedup over the other approaches. The

average speedup factor for the above three approaches was

approximately 2.5.

2.2 Parallelizing the Lexical Analysis Phase

G. Srikanth [8] and Kumar et al. [3] parallelize the lexical

analyzer’s scanning and tokenizing phases. Aho-Corasick is

used for pattern matching because of its high-speed string

search capabilities. In order to split the input, a static block

size is first determined based on the input file size. Based on

this static block size, the input file is then split into dynamic

blocks using the newline character as a delimiter. These

blocks are processed in parallel. A 50% reduction in

execution time was observed as compared to the sequential

version.

2.3 Parallelizing the Code Generator

Gross et al. explored parallelism in the optimization and

code generation phases of compilation [2]. The structure of

the programming language used as an input to the compiler

Int'l Conf. Computer Design | CDES'13 | 49

consists of a high-level module. This module can contain one

or more sections. Sections in turn can contain one or more

functions that constitute a unit of work. Parallelism is

achieved by spinning off processes for each section in the

program. Processes communicate via messages, as there is no

global shared memory involved in the host architecture.

Experiments show a speedup factor ranging from three to six

over that of the sequential version of their compiler.

3 Implementation Issues

The challenge with parallelizing the semantic analysis phase

is symbol table creation and management. The semantic

analysis phase accesses the symbol table frequently to perform

additions, deletions and read operations. It is critical for these

operations to be efficient and performed in near constant time.

As with any kind of parallelism that involves a shared data

structure, concurrency and synchronization problems could

negate any performance benefit attained.

 The traditional compiler algorithms for sequential

compilers ensure that the outer scopes are built and that

declarations are added to the symbol table before the

processing of the inner scopes begin and before these

declarations get used. This makes error reporting

straightforward because the compiler can flag an error when

encountering an identifier not found in the symbol table. A

parallel compiler will have to take into account that the outer

scope processing might not have completed while the inner

scope is processed. The compiler will have to defer error

reporting until all related scopes are processed.

4 Parallel Compiler Design

 The source program is divided into multiple parallel units

such that each unit can be processed and compiled in parallel.

The approach for data partitioning used in the present study is

the same as the one used in [7]. Scope or function boundaries

are used to partition data. This approach to partitioning

reduces the dependency between processes and can save some

expensive communication between processes.

 The parallel compiler is implemented using the Master-

Worker design pattern. A Master-Worker design pattern

allows identical computations to be performed in parallel.

Figure 2 demonstrates the master worker pattern.

4.1 Master

 The main process invoked when processing begins is the

master. The master is responsible for lexical, syntax and

semantic analysis as well as intermediate code generation for

all global variables and function declarations. The master does

not analyze the function body itself. The master first invokes

lexical analysis on the input file specified. During the lexical

analysis phase, the master looks for any tokens that indicate

the start of a function. If the master finds a function

declaration, it invokes a worker and passes the file pointer

handle that holds the start of the function to the worker. The

master then skips to the end of the function and continues with

lexical analysis on the rest of the file, invoking workers when

needed. A thread pool dictates how many workers can be

active at a time.

Figure 2: Parallel Compiler Structure

 Once the master is done with the lexical analysis stage, it

continues with syntax analysis, semantic analysis and

intermediate code generation. In the semantic analysis phase,

the master builds the symbol table referred to as the master

symbol table. The master symbol table contains all global

declarations. The master waits for all workers to complete

their processing. It then validates and combines the outputs

from all workers.

4.2 Worker

 The worker is responsible for lexical, syntax and semantic

analysis as well as intermediate code generation for the

function body. The worker first invokes lexical analysis on the

50 Int'l Conf. Computer Design | CDES'13 |

function body. It stops its lexical analysis when it finds the end

of function. When the worker has enough information about

the attributes of the function that it is processing, it sends an

update message to the master with this information. Attributes

of a function include its return type, number of arguments and

the data type of those arguments. The master updates its

symbol table with this information so that the function

declaration is available for use by other workers. This is the

only scenario in which the worker sends an identifier over to

the master so that the function declaration can be added to the

master symbol table.

 In the semantic analysis phase, the worker keeps track of

any DKY’s. When the worker encounters an identifier with a

DKY, the worker marks that identifier as a dummy and adds it

to a dummy symbol table. As processing continues, the worker

starts guessing the attributes related to the dummy identifier.

The logic behind the guesswork is to assign values to the

identifier that will avoid a compile error at that point in time.

For example, consider that the worker comes across a

statement as below:

 SUM = ADD(2,3);

Supposing the worker did not find the declaration of the

identifier SUM in the master symbol table. It first adds SUM

to the dummy symbol table. In order for the above statement

to not throw a compile error, the type of SUM needs to be the

same as the return type of the function ADD. Two scenarios

are possible here: ADD is found in the master symbol table, or

ADD also had a DKY. If ADD is found in the master symbol

table, the worker assigns the return type of function ADD to

the data type of SUM. It stores this information in the dummy

symbol table. If ADD had a DKY, the worker cannot deduce

any information about the data type of SUM. In this case, it

stores the fact that SUM and ADD are related by type. The

parser can deduce this information from the order of parsing

inherent in a recursive descent parser. Information about

identifiers related by type is stored in a related identifiers list.

 For future lookups of the same identifier by the same

worker, first the master symbol table will be searched and then

the dummy symbol table. If the master did process the

identifier by this point in time, the entry from the master

symbol table is retrieved. The entry from the dummy symbol

table will be retrieved only if the master has not processed the

identifier yet. The dummy symbol table is local to the worker;

the master symbol table is never updated with the information

from the dummy symbol table. When the worker has finished

processing its block, it hands the intermediate code it

generated along with the dummy symbol table back to the

master. If a related identifiers list was created during

processing, that list is also sent back to the master.

 When all workers have finished processing their respective

functions, the master has all the information necessary in its

master symbol table to validate the results from the workers.

Validation includes verifying that any identifiers with DKY's

are in fact present in the master symbol table. In addition, any

information that was guessed by the workers is validated

against the entry in the master symbol table. If there is a

disparity between the guessed attributes and the attributes

found in the master symbol table, the identifier is flagged as an

error. Consider the previous statement:

 SUM = ADD (2, 3);

Let us assume that SUM is of type integer and return type of

ADD is a float. If SUM had a DKY and ADD did not have a

DKY, the worker would have added SUM to the dummy

symbol table and assigned float as its type. When the master

is validating the results from the workers, it finds a conflict

between the declaration for SUM in the dummy symbol table

and the master symbol table and reports the conflict as an

error. If SUM and ADD both had a DKY, they would be

added to the related identifiers list. When examining this

related identifiers list, the master would catch the fact that

SUM and ADD have different types.

 Creating dummy identifiers and guessing their attributes

reduces the overhead involved with inter-process

communication. This approach of having a separate master

symbol table and individual worker symbol tables drastically

minimizes the amount of concurrent writes to the symbol

table.

5 Host Environment

 The parallel compiler was run on two different host

systems to evaluate which computer architecture would suit

the program better. Following are the specifications for the

two systems.

5.1 Uranus

 Uranus is a thirteen-node Beowulf cluster with Gigabit

Ethernet network. All nodes are made up of 2.83GHz Intel

Xeon processor. On this distributed Uranus cluster,

communication between the master and the workers was

achieved using Java’s remote method invocation (RMI)

interface. In order to run the tests the workers are first started

on the remote nodes. The parallel compiler is then invoked

which in turn invokes the master.

5.2 Atlas

 Atlas is a shared memory multiprocessor machine. It has a

Quad Quad-Core Intel Xeon processor with a total of 64

threads running at 2.00 GHz along with 128 GB RAM. In

order to take advantage of the shared memory system in Atlas

two versions of the program were created. The first version

does not use any RMI. The master, at runtime, first creates and

starts workers and then invokes them with tasks. This program

is referred to as the Atlas program. Since the master and

workers run on the same Java Virtual Machine (JVM), they

can easily take advantage of the shared memory system

provided by Atlas. In the second version, the workers are first

started and initialized before the compiler is invoked. The

master does not create or initialize the workers. This is similar

to the program developed for Uranus in 5.1. It uses RMI for

communicating between the master and the workers. This

program is referred to as the Atlas RMI program.

Int'l Conf. Computer Design | CDES'13 | 51

 Theoretically, both the versions above have their

advantages and disadvantages. In the Atlas version, the

workers have the advantage that their copy of the master

symbol table is always current since the master symbol table is

a shared data structure. This should lead to fewer DKY’s. The

disadvantage though is that the workers have to go through

initialization every single time the program runs. This is

because the master creates and initializes the workers. This

initialization time adds to the overall response time of the

compiler. On the contrary, the response time for the Atlas

RMI program will not be dependent on the time it takes to

initialize workers. However, since the workers and the master

do not run on the same JVM, they communicate with each

other using RMI. In this case, the master symbol table

becomes distributed.

6 Results

 Compiling a program, whose size is measured in KLOC

(Thousand Lines of Code), can take a significant amount of

time on a traditional sequential compiler. Relatively smaller

programs might not benefit from parallel compilation. Ideally,

the speedup in compilation time should be n where n is the

number of processors involved in compilation. Linear

speedup would be the ideal goal, but probably overly

optimistic. The overhead associated with communication

between multiple processes can prevent linear speedup. The

implementation overhead can also contribute to this reduction

in performance. In addition, the programming style used in

the input program can negatively affect the execution times.

6.1 Performance Results

 The test bed comprises of input programs with different

sizes and different programming styles. This includes

programs that have a lot of identifier cross usage between

scopes resulting in DKY’s. The sequential response time in

the following graphs is represented by the value shown in the

graphs when the number of parallel threads is equal to one.

Figure 3 shows the response time of the parallel compiler for

a relatively large program with ten thousand lines of code.

The parallel response times are significantly smaller than the

sequential response times.

 The speedup obtained largely depends on the number of

functions in the input and on the size of these functions. For

an input program that has many small functions in it, the

overhead of delegating each of these functions to the workers

proves to be costly. This overhead can decrease the speedup

obtained.

 Scheduling of tasks and processor assignment are good

candidates for improvement. Currently, a simple first come

first serve strategy is used to schedule tasks on different

processors. As discussed previously, if the size of the

function is small, parallel execution could take more time as

compared to its sequential counterpart. A better approach

would be to group together all the small functions and process

them together using one processor.

Figure 3: Response times for 10000 LOC

6.2 Performance Comparison

 For smaller programs, namely programs in the range of

500 lines of code, the Atlas RMI program performs better than

the Atlas program. Figure 4 shows a consolidated view of

performance of all three programs on an input with 500 lines

of code.

Figure 4: Comparison of response times for 500 LOC

 As discussed in section 5.2, the Atlas program does not

initialize workers in advance. The time taken to initialize

workers in the Atlas program contributes towards the total

response time of the program. For smaller programs, this

initialization time results in a significant addition to the overall

response time and hence the Atlas RMI program performs

better than the Atlas program.

 In comparison, as the size of the program increases the

initialization time of workers is negligible compared to the

time spent on remote method invocations. Hence, for larger

programs the Atlas program performs better than the Atlas

RMI program. Figure 5 shows the performance of all three

programs on an input with 5000 lines of code.

52 Int'l Conf. Computer Design | CDES'13 |

Figure 5: Comparison of response times for 5000 LOC

 The sequential response time for an input of any given size

on Uranus is better than the sequential response time for the

Atlas programs. The same cannot be said for the parallel

response times. The programs for Uranus and Atlas RMI are

the same. Both initialize workers in advance and the master

and workers communicate using RMI. However, the speedup

obtained using Atlas RMI is marginally better than that

obtained using Uranus. This is true for inputs of any given

size.

6.3 DKY versus No DKY

 During execution of the parallel compiler, if any of the

parallel threads encounter a DKY situation they guess the

attributes of the identifier and move on. Workers add these

attributes along with their guess information to a list.

Depending on the style of programming, there could be a

sizeable amount of DKY attributes in this list. The master has

to compare this list with the master symbol table to uncover

any errors. In order to evaluate the overhead introduced by

this validation, a comparison was made between the response

times obtained by an input with no DKY versus response

times obtained from the same input program written such that

there would be many DKY identifiers.

Figure 6: DKY versus No DKY for Atlas

 Figure 6 demonstrates the results obtained from this

comparison using an input with 5000 lines of code for Atlas.

The results show that the overhead introduced by this

validation is negligible.

7 Conclusion

 Improving the speed of the first four phases of

compilation allows the compiler to apply more time-

consuming optimizations. Substantial improvements in

compilation time can be achieved using concurrency. On the

parallel compiler using 10 parallel processors, the speedup

achieved was 3 for smaller programs and 3.5 for larger

programs. As expected, the implementation overhead

prevented linear speedup.

 The most significant contribution made here is the

strategy of making use of the parsing technique itself to deal

with symbol table management. The natural order of parsing

in a recursive descent parser guides this strategy. This guides

the semantic analysis phase eliminating the need for blocking

or suspending threads. It also eliminates the need for an extra

parse of the program. This addresses the limitations of the

approaches used in [7]. Significant identifier cross usage in

the program does not affect the speedup obtained as shown in

section 6.3. The technique used for splitting the program and

parallel processing of individual functions neither introduced

nor masked any syntax or semantic errors.

 This research also compares the implementation of the

parallel compiler on two different host environments namely a

thirteen-node distributed Beowulf cluster and a shared

memory multiprocessor machine. The parallel compiler

performs best on the shared memory multiprocessor machine.

8 References

[1] Kenneth. C. Louden. Compiler Construction Principles

and Practice, Publication Date: January 24, 1997, Edition 1.

[2] T. Gross, A. Sobel, and M. Zolg. “Parallel compilation for

a parallel machine,” In Proceedings of the ACM SIGPLAN

1989 Conference on Programming language design and

implementation (PLDI '89), ACM, 91-100.

[3] P.J.Satish Kumar , M. Rajesh Khanna, H. Shine and S.

Arun. “Implementing High Performance Lexical Analyzer

using CELL Broadband Engine Processor,” International

Journal of Engineering Science and Technology, vol. 3, pp.

6907-6913, 2011.

[4] J. Cohen and S. Kolodner. "Estimating the Speedup in

Parallel Parsing,", IEEE Transactions on Software

Engineering, vol. SE-11, pp. 114-124, 1985.

[5] D. Sarkar and N. Deo. "Estimating the Speedup in Parallel

Parsing," IEEE Transactions on Software Engineering, vol.

16, no. 7, pp. 677-683, July 1990.

Int'l Conf. Computer Design | CDES'13 | 53

[6] V. Seshadri, S. Weber, D. B. Wortman, C. P. Yu, and I.

Small. “Semantic analysis in a concurrent compiler,” In

Proceedings of the ACM SIGPLAN 1988 conference on

Programming Language design and Implementation (PLDI

'88), ACM, New York, NY, USA, 233-240.

[7] V. Seshadri and D. B. Wortman. “An investigation into

concurrent semantic analysis,” Softw. Pract. Exper. 21, 12

(December 1991), 1323-1348.

[8] G. U. Srikanth. "Parallel lexical analyzer on the cell

processor," in Secure Software Integration and Reliability

Improvement Companion (SSIRI-C), 2010 Fourth

International Conference on, 2010, pp. 28-29.

[9] David B. Wortman and Michael D. Junkin. “A concurrent

compiler for Modula-2+,” In Proceedings of the ACM

SIGPLAN 1992 conference on Programming language design

 and implementation (PLDI '92), ACM, New York, NY, USA,

68-81.

54 Int'l Conf. Computer Design | CDES'13 |

SDD: Selective De-Duplication with Index by File Size for
Primary File Servers

Hitoshi Kamei1, Tomonori Esaka1, Satoru Kishimoto1, Takayuki Fukatani2,

Takaki Nakamura3 ,and Norihisa Komoda4
1Hitachi, Ltd., Yokohama, Kanagawa, Japan

2Hitachi Europe Ltd., Bracknell, Berkshire, United Kingdom
3Tohoku University, Sendai, Miyagi, Japan

4Osaka University, Suita, Osaka, Japan

Abstract – We propose a method, called SDD, for
improving performance of file level de-duplication for
primary file servers. The processing time of the de-
duplication is increasing because more and more files are
being stored in the servers, therefore the de-duplication
process cannot finish during assigned time. According to
previous studies, large files stored in the servers are
dominant in terms of the storage space, while rather small
files are dominant in terms of file count. SDD sets a file
size threshold to narrow down target files. We develop and
evaluate a prototype system using SDD, which increases
the throughput of the de-duplication processes.

Keywords: De-duplication, File Server, File System,
Indexing

1 Introduction
 In order to share information in nowadays digital
communications world, an increasing number of files are
being stored in primary file servers. This game change
concerns mostly server administrators, who are responsible
for managing infra-structures and cost. One of the
common solutions for this problem is the use of de-
duplication [1]. De-duplication finds redundant data from
file system volumes and eliminates them, thus reducing
storage foot-print. Examples of products that use de-
duplication are EMC Data Domain [1] [2] and NetApp’s
A-SIS [3].

 We can classify de-duplication in terms of its
abstraction level, i.e., block level de-duplication [2] or file
level de-duplication [4]. Block level de-duplication detects
duplicate datasets in the entire file system volume by using
fixed or variable block sizes, while file level de-
duplication detects duplicate files. Typically, block level
de-duplication leads to a more effective redundancy
elimination, but imposes a larger management overhead to
the system. Therefore, file level de-duplication is usually
considered to be more suitable for primary file servers,
where latency and throughput are highly prioritized when
compared to storage space availability.

 De-duplication is commonly executed during low-
usage periods, such as on weekends or in the night.
However, the amount of files stored in servers is rapidly
growing, and problems arise when de-duplication
processes are unable to finish during assigned periods.
This scenario has pointed out the need for better file level
de-duplication techniques.

 In this paper we present the selective de-duplication
method (SDD) for improving file level de-duplication
performance on primary file servers. In a nutshell, the
proposed method sets a threshold that represents the
minimum file size considered for de-duplication.

 This paper is organized as follows. Section II
presents the state-of-art method on file level de-duplication
and current challenges. Section III describes the SDD
method. Section IV presents our prototype system. Section
V reviews related work, and Section VI summarizes our
work and draws conclusions.

2 File level de-duplication and
challenges

 This section summarizes file level de-duplication and
the challenges of using them on primary file servers.

2.1 Summary of file level de-duplication

 File level de-duplication consist of a detection
process and a deletion process.

1) Detection process

 The detection process finds files with identical
“bodies”, which are referred to later as ‘duplicated files’.
Generally, duplicated files can be found by referring to
their hash values. Conventional methods calculate the
files’ hash values by hash functions, such as SHA-1 or
SHA-256, when they are stored on the server. Moreover,
hash values are recalculated and updated if the files are
modified. To detect duplicated files, the detection process
searches for identical hash value on a registry or database.

Int'l Conf. Computer Design | CDES'13 | 55

 This is an effective method for detecting files that
have the same data. However, there is a very low
probability that distinct file bodies present the same hash
values. Therefore, for the sake of certainty, some file
servers compare files that have the same hash value byte-
by-byte.

2) Deletion process

 The deletion process selects one of the duplicated file,
possibly randomly, and deletes the bodies of the other ones.

 Figure 1 shows an example of the deletion process.
There are two duplicated files, File1 and File2, selected by
the detection process described above. These files
comprise a metadata header and a data body, and the
metadata header points to the data body. The deletion
process deletes the data body of File2 and updates File2’s
pointer to point to File1’s data body, achieving a de-
duplication ratio of 50%.

2.2 Challenges of file level de-duplication for
primary file servers

 Figure 2 illustrates the conventional de-duplication
process and its common issues.

 One of the issues with de-duplication is that, even
though file-level de-duplication tends to optimize
management overhead costs when compared to block-level
de-duplication, calculating hash values for every file and
managing them might impose an important burden on
primary file systems, where potentially millions of files
may be stored [6]. Furthermore, file servers accessed by
multiple users present higher operation throughput (file
creation, update, deletion etc.).

 Additionally and more importantly, when a de-
duplicated file is modified, it has to be separated from its
“set”, which might involve extensive data copying, even
for small modifications.

3 Proposed method for reducing file
level de-duplication cost

 Here we present the selective de-duplication method,
or SDD, for reducing the management cost of file level de-
duplication on primary file servers.

Fig. 2. Processes of conventional de-duplication and
problems: Hashing all the files and updating de-
duplicated files makes challenges.

R
e
gi

st
ra

ti
o
n

Duplicated files

De-duplicated files

File Level
De-duplication

A B

Metadata Metadata

A B

A B

Shared data body Deleted data body

pointer

A B

Metadata Metadata

File1 File2

File1 File2

Data body

De-duplicated
file

Fig. 1. Example of deletion process. The deletion
process deletes all duplicated data bodies except one
and sets a pointer to it in the de-duplicated files

56 Int'l Conf. Computer Design | CDES'13 |

3.1 Policies for reducing costs

 The SDD method sets two policies, as described
below.

1) SDD Policy 1: file size

 Matsumoto et al. [5] concluded that files of about
1KB dominate file systems in terms of the number of files;
however, the file system volumes also likely to have a
significant number of large files that are over 1MB.
Meanwhile, Mayer et al. [6] described that a few large files
might use a large amount of a file system volume.
Therefore we can process most of the data in file system
volumes by handling large files. Accordingly, we set a
threshold on the minimum file size that is to be processed
in order to narrow down target files.

 Meanwhile, if files to be processed are different in
size, it means they cannot be de-duplicated. So by
checking only the same sized files, we can avoid detection
overheads on files that absolutely cannot be de-duplicated.

2) SDD Policy 2: file age

 Mayer et al. [6] concluded that most files are updated
shortly after being created. Hence, if these files are
selected for de-duplication, they may soon be separated
again. Hence, one can prevent such files from being de-
duplicated by referring to their last modification time.

3.2 Methodology

 The SDD method can be described by three key
points.

1) Using search engine to find large files

 The proposed method employs a search engine to
find such files, using the policies described above. The
search engine crawls through the file system, and when it
finds files that matches the policy, it adds it to a list. After
crawling, it executes the de-duplication process over the
selected files.

2) Sharing of data body between de-duplicated files

 As opposed to conventional implementations of de-
duplication processes [7], the SDD method proposes the
separation of the data body from the de-duplicated files
altogether. The separated body, referred to as a shared file,
or SF, is a special-purpose hidden file of the file system
and works as a base reference where the de-duplicated
files metadata point to.

 As a consequence, when a de-duplicated file is
updated, it keeps the reference to the SF plus the

differential data that has been modified, as in a “diff”
process. Figure 3 illustrates this scenario.

3) Using file size as a database key

 The proposed method registers the file size as a
database key instead of its hash value. Therefore, it can
narrow down the files to be de-duplicated by referring to

Fig. 3. Sharing data body between two de-duplicated
files. De-duplicated files point to a shared data file.
The de-duplicated files store differential data in their
data body

Fig. 4. The name space in the file system volume is
divided into two parts. The “export” directory has
files stored by end users and the “index” directory
stores SFs. De-duplicated files in the export
directory point to the shared file in the index
directory

Int'l Conf. Computer Design | CDES'13 | 57

the file size instead of the hash values. After that, the
detection process compares extracted files byte-by-byte.

 Instead of using a conventional database, such as
Berkley DB [8], to store and organized the metadata, we
have chosen to use the local file system and an especially
designed directory structure. The proposed method divides
the file name space into two main groups as shown in
Figure 4: export and index. The export directory stores
end-user files and the index directory stores SFs.
Furthermore, the index directory is divided into sub-
directories as file access performance generally decreases
when too many files are stored in one single directory.

 We also employ a hierarchical sub-directory division
in which SFs are distributed to directories reserved to its
specific file size. For example, the 1MB sub-directory has
sub-directories ranging from 1MB to (2MB - 1B), as
depicted in Figure 4. Moreover, the 1.1MB sub-directory
has SFs that are 1.1MB.

 An additional benefit of using the file size as the
basic key is that such key is actually managed by the file
system itself, saving us the need to create a separate
indexing structure base on additional metadata, as hash
tags managed by databases.

4 Evaluation
 This section describes our evaluation of a SDD
prototype.

4.1 Environment

 Table 1 describes the test environment. We develop
the prototype system on a server running Debian GNU
/Linux. The server is connected to a storage subsystem via

Table 1 Environment of evaluation

Item Specification
CPU Intel® Xeon(TM) CPU 3.60GHz
Memory 8GB
Internal HDD
(for OS)

SEAGATE ST373207LC，73.4 GB

Operating
System

Debian GNU/Linux, Linux 2.6.30.1
w/ file level de-duplication function

File System XFS w/ file level de-duplication
function

Storage
Subsystem
(volume)

HDD: 75GB, RAID Level: 1+0,
Connection: Fibre Channel, One LV
is created by LVM. The size of LV is
590GB.

Dataset
 characteristics

Office data

Size of dataset 490GB

Fibre Channel. The dataset is stored in the storage
subsystem. The dataset is about 490GB and have about
1.14 million files.

 Figure 5 shows the main characteristics of our dataset.
The x-axis represents the maximum file size in a
decreasing log scale. The solid line graph is the percentage
of cumulative total size. The dashed line graph shows the
percentage of the cumulative number of files. For example,
focusing on 2MB, these graphs show the cumulative
values that sum up 2MB files in terms of the total size and
the number of files. These graphs show that files that are
over 2MB account for 3% in terms of the number of stored
files but 80% in terms of occupied capacity. Therefore,
when the prototype system processes the files that are over
2MB, it includes 80% of the dataset while keeping the size
of index directory small.

4.2 Results

 Figure 6 shows the de-duplication performance of
our prototype system. The x-axis is the threshold described
in Section III in a decreasing log scale. The y-axis stands
for throughput in a log scale. In this evaluation, we vary
thresholds from 0B to 1GB and observe the performance.
Note that when threshold is 0B, all files are processed.
Figure 7 shows the storage reduction rates, also according
to the threshold.

4.3 Analysis

1) De-duplication performance

 When the threshold is set to 0B, the dataset can be
reduced by 24.3% and throughput is 18.7 MB/s. On the
other hand, when we set threshold of 128KB, the dataset
can be reduced by 23.2% and throughput is 114.9 MB/s.
Hence, the reduction rate reaches 98.9% in comparison to

Fig. 5. Characteristics of our dataset. The over 2MB
files occupy our dataset about 80% in terms of the
capacity; however; the files are less than 5% in terms
of the number of files

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

8
,3
8
8
,6
0
8

4
,1
9
4
,3
0
4

2
,0
9
7
,1
5
2

1
,0
4
8
,5
7
6

5
2
4
,2
8
8

2
6
2
,1
4
4

1
3
1
,0
7
2

6
5
,5
3
6

3
2
,7
6
8

1
6
,3
8
4

8
,1
9
2

4
,0
9
6

2
,0
4
8

1
,0
2
4

5
1
2

2
5
6

1
2
8

6
4

3
2

1
6 8 4 0

P
e
rc
e
n
ta
ge

（
%

）

File size（KB）

Cumulative files

Cumulative size

58 Int'l Conf. Computer Design | CDES'13 |

when all the files are processed. Therefore, for our dataset,
throughput of the de-duplication increases 6.1 times while
keeping roughly the same reduction efficiency. Note that
these results are for our dataset, which means that distinct
datasets might present distinct results. The dataset we used
was generated from a file server in an office environment
with about 100 users.

 These results show that by setting an appropriate
threshold, we can achieve good throughputs and reduction
rates.

2) I/O performance of de-duplication files

 Figure 8 shows read I/O performance and figure 9
shows write I/O performance. We evaluate random and
sequential I/O performance of partial block I/O and full
block I/O by using fio[9]. Partial block I/O means accesses
to file data that are less than 4KB, and full block I/O

means access to file data that equals to 4KB. To avoid
cache interferences, we delete all the cached data before
every evaluation by using Drop_Caches [10] of Linux
function. The file size used in this evaluation is 318KB
based on the study of Mayer et al. [6].

 These results show that read performance is not
affected except for that of sequential file read.
Performance of sequential full read, however, declines at
about 15%. The reason is that read-ahead techniques don’t
perform well in this scenario: if there are differential data
on a de-duplicated file, the read operation issues read I/O
to the de-duplicated file and the corresponding SF.
Meanwhile, write performance is not affected by proposed
method.

5 Related work
 Some other studies have aimed to reduce processing
time of the de-duplication technologies. BloomStore [11]
intends to improve the search performance of KVS that
stores the hash values of blocks of the file system volumes

Fig. 7. Reduction size of dataset. When the
threshold is set 128KB, the reduction rate reaches
98.9% of the total reduced size in our dataset.

Fig. 6. De-duplication throughput of prototype
system. When the threshold is set 128KB, the
throughput is over 100MB/s.

0

20

40

60

80

100

120

1
,0
4
8
,5
7
6

5
2
4
,2
8
8

2
6
2
,1
4
4

1
3
1
,0
7
2

6
5
,5
3
6

3
2
,7
6
8

1
6
,3
8
4

8
,1
9
2

4
,0
9
6

2
,0
4
8

1
,0
2
4

5
1
2

2
5
6

1
2
8

6
4

3
2

1
6

8

4

0

R
e
d
u
ct
io
n
 S
iz
e
 (
G
B
)

Threshold (KB)

1

10

100

1,000

10,000

100,000
1
,0
4
8
,5
7
6

5
2
4
,2
8
8

2
6
2
,1
4
4

1
3
1
,0
7
2

6
5
,5
3
6

3
2
,7
6
8

1
6
,3
8
4

8
,1
9
2

4
,0
9
6

2
,0
4
8

1
,0
2
4

5
1
2

2
5
6

1
2
8

6
4

3
2

1
6

8

4

0

D
e
‐d
u
p
lic
at
io
n
 t
h
ro
u
gh
p
u
t
(M

B
/s
)

Threshold (KB)
Fig. 8. Read I/O performance. The proposed method
affects performance of sequential full read. The
performance declines 15%. However, other read I/O
patterns aren’t affected.

Fig. 9. Write I/O performance. In terms of write
throughput, there are little overhead by the proposed
method.

0.0

0.5

1.0

1.5

2.0

2.5

N
o
rm

al

D
e
d
u
p
e
d

N
o
rm

al

D
e
d
u
p
e
d

N
o
rm

al

D
e
d
u
p
e
d

N
o
rm

al

D
e
d
u
p
e
d

Partial (1KB) Full (4KB) Partial (1KB) Full (4KB)

Sequential Random

Th
ro
u
gh
p
u
t
(M

B
/s
)

I/O Pattern (READ)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
o
rm

al

D
e
d
u
p
e
d

N
o
rm

al

D
e
d
u
p
e
d

N
o
rm

al

D
e
d
u
p
e
d

N
o
rm

al

D
e
d
u
p
e
d

Partial (1KB) Full (4KB) Partial (1KB) Full (4KB)

Sequential Random

Th
ro
u
gh
p
u
t
(M

B
/s
)

I/O Pattern (WRITE)

Int'l Conf. Computer Design | CDES'13 | 59

for the block level de-duplication technologies by using
BloomFilter [12]. BloomStore uses a Flash device as
storage device for indexes of BloomFilter. Because
BloomFilter can search the indexes by using the Flash
device, its detection process becomes faster than other
conventional detection processes. ChunkStash [13] also
uses Flash device. ChunkStash calculates checksums of
de-duplicated blocks and the checksums are stored in
RAM. ChunkStash can reduce the amount of RAM used
for storing indexes, and it achieves high search
performance.

 These studies aim to improve search performance of
KVS to achieve high throughput of block level de-
duplication technologies. That is, they don’t focus on
using file metadata to improve the performance of the file
level de-duplication technologies.

6 Conclusions
 We proposed a method for improving the
performance of file level de-duplication of primary file
servers. In this study, we focused on file level de-
duplication performance. According to previous studies,
the number of small files in the file system volumes is
greater than the number of large files, however; large files
dominate the file system volume in terms of the occupied
amount.

 The proposed method uses threshold that represents
the minimum processing size and date, which allows us to
discard small and recent files on which file level de-
duplication would probably be inefficient. Moreover, the
proposed method doesn’t use a dedicated database,
proposing the file name space as the storage medium.
Furthermore, in order to share data, the proposed method
creates files to share data and de-duplicated files point to
the shared file. If the de-duplicated files are modified,
SDD doesn’t need to update the management information.

 We implemented and evaluated a prototype system
on the Debian/GNU Linux. We confirmed that SDD
improved the performance of file level de-duplication. In
particular, when we set 128KB as the threshold, SDD was
about six times faster than it was when it processes all the
stored files.

7 References
[1] B. Zhu, K. Li, and R.H. Patterson, “Avoiding the
Disk Bottleneck in the Data Domain Deduplication File
System,” in Proc of the 6th USENIX Conference on File
and Storage Technologies (FAST’08), pp.269-282., 2008

[2] “EMC Data Domain DD800 Series,” [online]
Available: http://www.datadomain.com.

[3] S. Moulton, and C. Alvarez, “Technical Report
NetApp Data Compression and Deduplication Deployment
and Implementation Guide: Data ONTAP 8.1 Operating in
7-Mode,” [online] Available :
http://www.netapp.com/us/media/tr-3958.pdf

[4] EMC Corporation, “Achieving Storage Efficiency
through EMC Celerra Data Deduplication,” [online]
Available: http://www.emc.com/collateral/hardware/white-
papers/h6065-achieve-storage-effficiency-celerra-dedup-
wp.pdf

[5] T. Matsumoto, T. Onoyama, and N. Komoda, “File
Size Distribution Model in Enterprise File Server toward
Efficient Operational Management,” International
Conference on Systems Engineering and Engineering
Management (ICSEEM’12), 2012.

[6] D.T. Meyer and W.J. Bolosky, "A Study of Practical
Deduplication," in Proc. USENIX Conference on File and
Storage Technologies (FAST’11), pp.1-13, 2011.

[7] Bolosky, W. J., Corbin S., Goebel D., and Douceur, J.
R. :Single Instance Storage in Windows 2000, Proc 4th
USENIX Windows Systems Symposium, pp.13-24, 2000.

[8] M.A. Olson, K. Bostic, and M.I. Seltzer, "Berkeley
DB," in Proc. USENIX Annual Technical Conference,
FREENIX Track, pp.183-191, 1999.

[9] “ fio,” [online] Available:
http://freecode.com/projects/fio.

[10] “ drop_caches,” [online] Available:
http://www.kernel.org/doc/Documentation/sysctl/vm.txt.

[11] G. Lu, Y.J. Nam, and D.H.C. Du, “BloomStore:
Bloom-Filter based Memory-efficient Key-Value Store for
Indexing of Data Deduplication on Flash,” The 28th IEEE
Conference on Massive Data Storage, 2012.

[12] B.H. Bloom, "Space/Time Trade-offs in Hash Coding
with Allowable Errors," Communications of The ACM,
pp.422-426, 1970.

[13] B. Debnath, S. Sengupta, and J. Li, “ChunkStash:
Speeding up Inline Storage Deduplication using Flash
Memory,” in Proc. of USENIX annual technical
conference, 2010.

60 Int'l Conf. Computer Design | CDES'13 |

Iterative Synthesis Techniques for Multiple-Valued Logic

Functions A Review and Comparison

Mostafa Abd-El-Barr

Department of Information Science, Kuwait University, Kuwait.

Abstract - A number of heuristics for near optimal functional

synthesis of Multi-Valued Logic (MVL) have been reported in

the literature. Among the well-known heuristics is the Direct

Cover algorithm (DCA). We have introduced a number of

improved versions of the DCA. These include the Weighted

Direct Cover (WDC), the Ordered Direct Cover (ODC), and

the Fuzzy Direct Cover (FDC). In this paper, we review and

compare the performance of those heuristic iterative

techniques using two set of benchmarks. The first consists of

50000 randomly generated 2-varaible 4-valued functions and

the second consists of 50000 2-variable 5-valued functions.

The average number of product terms required to synthesize a

given MVL function is used as the criterion for comparison.

The results obtained show that the modified iterative synthesis

heuristics outperformed the DCA and that among the

modified techniques the FDC produces the best results.

Keywords: Direct-Cover algorithms (DCA), Weighted DC

(WDC), Ordered DC (ODC), Fuzzified DC (FDC), non-

binary digital signal processing (DSP)

1 Introduction

 Digital information processing using Multiple-Valued Logic

(MVL) is carried out using more than discrete logic levels.

Due to technological reasons and for easy interfacing with the

predominantly existing binary digital systems, 4-valued logic

has been the most widely used. Recent advances in Very Large

Scale Integration (VLSI) technology made it possible to

fabricate more efficient 4-valued circuits using binary CMOS

(Complementary Metal Oxide Semiconductor) technology [1],

[5], and [7]. These circuits have shown considerable reduction

both in processing time and chip area compared to their binary

counterparts [1-8].

The MVL functional synthesis problem is however more

complex when compared to its binary counterpart. This is

because of the massive size of the MVL functional search

space. Consider, for example, the case of two-variable

functions. While there are only 16 2-variable binary functions

there are 4294967296416 2-variable 4-valued functions.

Exact minimization of MVL functions is prohibitively

expensive [9]. A number of iterative heuristics for near

minimal synthesis of MVL functions have been introduced

see, for example, [9]-[16]. Fuzzy-based synthesis of MVL

functions has also been reported in the literature [17].

An n -variable r -valued function)(Xf is a

mapping RRf n : , where 1,,1,0 rR is a set

of r logic values with 2r and nxxxX ,,, 21 is a

set of r -valued n variables. The followings are sample

MVL logic operators.

(1) The window literal

otherwise 0

)()1(bxaifr
xba

where Rba , and ba

(2) The tsum (truncated sum)

e otherwis r

rnaaif anaaa
naaanaaatsum

1

1...21 ...21...21),...,2,1(

Where ai R and represents the truncated sum operation.

(3) The maximum (MAX) of two MVL variables

otherwise

 if
),(

2

211

21
x

xxx
xxMAX

(4) The minimum (MIN) of two MVL variables

otherwise

 if
),(

2

211

21
x

xxx
xxMIN

Fig. 1 shows an example of a 2-varaible 4-valued function. In

this figure 1
0
X1

0

3
X2

3
, 2

0
X1

0

1
X2

1
 and 3

0
X1

0

2
X2

2
 are

examples for minterms while 2
0
X1

1

1
X2

1
and 2

0
X1

1

1
X2

2
 are

examples for implicants.

Fig. 1: A Tabular Representation of f(X1, X2).

2 The Direct Cover Algorithm

 The Direct Cover Algorithm (DCA) for synthesis of MVL

functions [10]-[13] consist of the following main steps:

1. Choose a minterm (see Definition 3),

2. Identify a suitable implicant (see Definition 4) that covers

the chosen minterm,

Int'l Conf. Computer Design | CDES'13 | 61

3. Obtain a reduced function by removing the identified

implicant, and

4. Repeat steps 1 to 3 until no more minterms remain

uncovered.

The selection of appropriate minterms and the implicants

covering them play an important role in obtaining less number

of product terms to cover a given function. The DCAs

reported in the literature differ in the way appropriate

minterms are chosen. They also differ in the way appropriate

implicants are identified. Different metrics to select minterms

have been proposed in the literature. We have presented a

comprehensive analysis of the DCAs in [15]. The outcome of

this analysis has indicated that improvements to the DCA are

still possible. We have introduced three iterative-based

heuristics as improvements to the DCA. These are explained

below.

3 Weighted Direct Cover (WDC)

It is observed in [15] that all criteria used for selection of

minterms and/or implicants have linear and monotonic

function. All criteria, except for RBC and NRC, assume

values greater than or equal to 0. We use the term weight

pattern to specify the weight for each selection criterion for

both minterm and implicant and that the weight should be in

the set {0, 1, 2, 3}. A minterm weight pattern 112 means that

wCF =1, wCFN =1, and wIW =2. Combining the weight patterns

for minterms with the weight patterns for implicants, we will

have 4096 different patterns (P-1, P-2, …). Representatives of

different weight scenarios are examined (see Table 1). These

weight patterns will be used for both minterm and implicant.

In total, the number of different algorithms (because of

different patterns) tested in this paper is (24)
2
 = 576.

Table 1 : Different Weighting Scenarios.

 WM-1 WM-2 WM-3 WM-1 WM-2 WM-3

P1 0 0 1 P13 1 2 2

P2 0 1 0 P14 1 2 3

P3 0 1 1 P15 2 0 1

P4 0 1 2 P16 2 1 0

P5 0 2 1 P17 2 1 1

P6 1 0 0 P18 2 1 2

P7 1 0 1 P19 2 1 3

P8 1 0 2 P20 2 2 1

P9 1 1 0 P21 2 3 1

P10 1 1 1 P22 3 1 2

P11 1 1 2 P23 3 2 1

P12 1 2 1 P24 3 3 1

All of the 576 patterns will be tested using our benchmark.

Since presenting all results from the 576 different algorithms

is not practical, we only present the best 10 results (in terms of

average PTs) for both 2-variable 4-valued and 2-variable 5-

valued functions among the benchmarks used. Tables 2 and

Table 3 show these results, respectively. The results presented

in these tables show that the best result is obtained using the

following pattern: for minterm, CF = 0, CFN = 1 and IW = 2

and for implicant, RBC = 1, NRC = 0 and LRZ = 0. Using this

pattern (written shortly as 012-100), the average number of

product terms (PTs) required to cover a given 2-variable 4-

valed function is 7.24914 while it is 12.1658 in the case of a

2-variable 5-valed function.

Table 2 : The best 10 weight patterns for 2-variable 4-valued

 Minterms Implecant #PTs

 CF CFN IW RBC NRC LRZ

P1 0 1 2 1 0 0 7.2491

P2 1 2 3 1 0 0 7.2502

P3 0 0 1 2 1 3 7.2623

P4 0 1 1 1 0 0 7.2625

P5 1 2 2 1 0 0 7.2629

P6 0 0 1 2 1 2 7.2636

P7 0 0 1 3 1 2 7.2636

P8 1 1 2 1 0 0 7.2636

P9 0 0 1 2 1 1 7.2650

P10 1 2 3 2 1 0 7.2707

Table 3 : The best 10 weight patterns for 2-variable 5-valued

 Minterms Implecant #PTs

 CF CFN IW RBC NRC LRZ

P1 0 1 2 1 0 0 12.166

P2 1 2 3 1 0 0 12.175

P3 1 1 2 1 0 0 12.189

P4 1 2 2 1 0 0 12.196

P5 0 1 1 1 0 0 12.197

P6 1 1 1 1 0 0 12.208

P7 0 2 1 1 0 0 12.213

P8 1 2 1 1 0 0 12.222

P9 2 2 1 1 0 0 12.224

P10 2 3 1 1 0 0 12.229

4 Ordered Direct Cover (ODC)

According to this approach selection criteria are ordered based

on a given priority [16]. There are three criteria for minterm

selection. These are Smallest CF, Smallest CFN, and Smallest

IW. There are three criteria for implicant selection. These are

Smallest RBC, Smallest NRC, and Largest LRZ. Assume that

for minterm selection we set Criterion 1 as ‘Samllest CF”,

Criterion 2 as “Smallest CFN” and Criterion 3 as “Smallest

IW” and for implicant selection we set Criterion 1 as

“Samllest RBC”, Criterion 2 as “Smallest NRC, and Criterion

3 as “Largest LRZ” (See Table 4). In Table 5, we summarize

the different scenarios for ordering (O-1, O-2, …) the above

mentioned criteria.

The performance of the WDC algorithm is assessed through

the results obtained using a benchmark consisting of 50000

randomly generated 2-variable 4-valued functions and a

benchmark consisting of 50000 randomly generated 2-

varaiable 5-valued functions. This assessment is presented in

Section 6.

62 Int'l Conf. Computer Design | CDES'13 |

Table 4: Criteria used for ODC Algorithm.

 Criterion 1 Criterion 2 Criterion 3

Minterm Smallest CF Smallest

CFN

Smallest IW

Implicant Smallest RBC Smallest

NRC

Largest LRZ

Table 5: Different Order Scenario.

 Order-1 Order-2 Order-3

P1 CR1 ~ ~

P2 CR1 CR2 ~

P3 CR1 CR3 ~

P4 CR1 CR2 CR3

P5 CR1 CR2 CR3

P6 CR2 ~ ~

P7 CR2 CR1 ~

P8 CR2 CR3 ~

P9 CR2 CR1 CR3

P10 CR2 CR3 CR1

P11 CR3 ~ ~

P12 CR3 CR1 ~

P13 CR3 CR2 ~

P14 CR3 CR1 CR2

P15 CR3 CR2 CR1

We assess the performance of the ODC through the results

obtained using the same benchmark used in the case of the

WDC. Table 6 and Table 7 show ten orderings that give the

best results for 2-variable 4-valued and 2-variable 5-valued

functions, respectively.

Table 6: The best 10 results of ODC for 2-variable 4 valued

Order Pattern

#PTs Minterm Implicant
Order 1 Order 2 Order 3 Order 1 Order 2 Order 3
Smallest

IW

 Smallest

RBC

Largest

LRZ 7.20234

Smallest

IW

 Smallest

RBC

Largest

LRZ

Smallest

NRC 7.20234

Smallest

IW

Smallest

CF

 Smallest

RBC

Largest

LRZ 7.20248

Smallest

IW

Smallest

CF

 Smallest

RBC

Largest

LRZ

Smallest

NRC 7.20248

Smallest

IW

Smallest

CFN

 Smallest

RBC

Largest

LRZ 7.20248

Smallest

IW

Smallest

CFN

 Smallest

RBC

Largest

LRZ

Smallest

NRC 7.20248

Smallest

IW

Smallest

CF

Smallest

CFN

Smallest

RBC

Largest

LRZ 7.20248

Smallest

IW

Smallest

CF

Smallest

CFN

Smallest

RBC

Largest

LRZ

Smallest

NRC 7.20248

Smallest

IW

Smallest

CFN

Smallest

CF

Smallest

RBC

Largest

LRZ 7.20248

Smallest

IW

Smallest

CFN

Smallest

CF

Smallest

RBC

Largest

LRZ

Smallest

NRC 7.20248

The performance of the ODC algorithm is assessed through

the results obtained using a benchmark consisting of 50000

randomly generated 2-variable 4-valued functions and a

benchmark consisting of 50000 randomly generated 2-

varaiable 5-valued functions. This assessment is presented in

Section 6.

Table 7: The best 10 results of ODC for 2-variable 5 valued

Order Pattern

#PTs Minterm Implicant
Order 1 Order 2 Order 3 Order 1 Order 2 Order 3

Smallest

IW

Smallest

CF
Smallest

RBC

Largest

LRZ 12.0682

Smallest

IW

Smallest

CF
Smallest

RBC

Largest

LRZ

Smallest

NRC 12.0682

Smallest

IW

Smallest

CFN
Smallest

RBC

Largest

LRZ 12.0682

Smallest

IW

Smallest

CFN
Smallest

RBC

Largest

LRZ

Smallest

NRC 12.0682

Smallest

IW

Smallest

CF

Smallest

CFN
Smallest

RBC

Largest

LRZ 12.0682

Smallest

IW

Smallest

CF

Smallest

CFN
Smallest

RBC

Largest

LRZ

Smallest

NRC 12.0682

Smallest

IW

Smallest

CFN

Smallest

CF
Smallest

RBC

Largest

LRZ 12.0682

Smallest

IW

Smallest

CFN

Smallest

CF
Smallest

RBC

Largest

LRZ

Smallest

NRC 12.0682

Smallest

IW

Smallest

CF
Smallest

RBC

Largest

LRZ 12.0685

Smallest

IW

Smallest

CF
Smallest

RBC

Largest

LRZ

Smallest

NRC 12.0685

5 Fuzzy-based Direct Cover (FDC)

The Fuzzy Direct Cover (FDC) algorithm employs fuzzy rules

to select the best minterm and the best implicant covering it

[17]. A fuzzy logic rule expresses the way in which linguistic

variables (objectives) are interrelated, the relationship between

these objectives, and the overall function value [18]. The goal

is to find a high quality solution, represented by a linguistic

variable. See the next two illustrative examples.

1. IF a minterm has a good CF OR good CFN OR good IW,

THEN it is a good minterm for selection.

2. IF an implicant has a good RBC OR a good LRZ OR a

good NRC, THEN it is a good implicant for selection.

Our proposed Fuzzy-based Direct Cover (FZDC) algorithm

employs fuzzy rules (along with preferences) to select the best

set of minterm and the most appropriate implicant covering

each such that the whole function is covered. The goodness of

a minterm (implicant) is examined using the abovementioned

fuzzy rules and preferences. Looking at these rules, it is easy

to deduce that we can use the ‘OR-‘like operator to aggregate

all decision criteria. Table 8 shows the mathematical formulae

we introduced for each membership function in the minterm

selection. Table 9 shows the same for implicant selection.

Efficiency of the proposed fuzzy selection process is

influenced by the parameter used in fuzzy operators, i.e. the

value of in OWA operator. In addition to that, fuzzy

preference rules will also impact the performance of the

proposed algorithm. Since there are three criteria for each of

the minterm and implicant selection, there will be additional 6

parameters to fine tuned in order to get the best performance

of the algorithm. In order to obtain the best result using the

Int'l Conf. Computer Design | CDES'13 | 63

proposed fuzzy-based selection criteria, the following set of

experiments are conducted:

1. Experiments with different fuzzy operators

2. Experiments with parameters in fuzzy operators

Table 8: Membership functions in Min terms selection.

Minterm Selection
Technique Criterion Formulated Membership Function

DM [10] CF

wiseif other

CFMaxCF if
CFMax

CFCFMax

if CF

CFμ

 0

0

0 1

ND [8] CFN

otherwise

CFNMax CFN if

CFNMax

CFNCFNMax

 if CFN

CFNμ

0

0

01

BS [3] IW

otherwise

IW
MaxIW

IW
Minif

IW
MinIWif

IW
Min

IW
Max

IW
IW

Max

IW

0

1

Table 9: Membership functions in implicant selection.

Implicant Selection
Technique Criterion Formulated Membership Function

DM [10] RBC

otherwise

RBCMaxRBCRBCMINif

RBCMinRBCif

RBCMinRBCMax

RBCRBCMAX

RBC

0

1

ND [8] NRC

otherwise

NRCMaxNRCNRCMINif

NRCMinNRCif

NRCMinNRCMax

NRCNRCMAX

NRC

0

1

 BS [3] LRZ

otherwise

LRZ
MaxLRZif

LRZ
MaxLRZif

LRZ
Max

LRZ

LRZ
0

0

1

Table 10 shows the fuzzy preference used for the first

experiment.

Table 10: Fuzzy preference for minterm and implicant.

Minterm Implicant

Criteria Fuzzy Preference Criteria Fuzzy Preference

IW 0.9 RBC 0.9

CF 0.2 LRZ 0.2

CFN 0.1 NRC 0.1

Using the above mentioned fuzzy preferences, we tested the

proposed fuzzy selection criteria against the 50000 randomly

generated 2-variables 4-valued MVL functions. Five different

fuzzy operators are used for this purpose. Table 11 shows the

results of the experiment. It should be noted that we list the

results obtained in two cases: not considering minterm values

in any order (No CMV) and taking minterm values in

ascending orders; lower to higher values (With CMV). We set

 = 0.5 while collecting the results reported in Table 11.

Table 11: Performance of different fuzzy operator in FDC.

Operator # PT No CMV # PT With CMV

Max 8.5513 8.0301

Max with pref. 7.30344 7.21964

OWA 7.38226 7.28898

OWA with pref. 7.27186 7.19450

Weighted Average 7.30646 7.19784

6 Comparison

In this section we provide a comparison among the iterative

heuristics presented above. The results shown in Table 12

reveal that the three heuristic algorithms outperform other

existing DC-based techniques, regardless of the number of

minterms in the given MVL function. Among the three

introduced algorithms, it is clear that in the worst case, the

FDC produces results that are as good as those produced by

the other two algorithms. However, in vast majority of the

cases, the FDC produces results that are better than those

produced by the other two algorithms in terms of the average

number of product terms needed to synthesize a given

function.

Table 12: Average #PT with Respect to Different Number of

Minterms of MVL Functions used.

minterm # functions Promper Besslich Dueck

ODC WDC

FDC

16 500 7.594 7.562 7.002 7.086 7.01
6.946

15 2679 8.295 8.307 7.51 7.481 7.501 7.423

14 6589 8.355 8.405 7.569 7.516 7.559 7.500

13 10585 8.275 8.352 7.541 7.491 7.545 7.484

12 11230 8.049 8.098 7.382 7.33 7.383 7.320

11 9003 7.707 7.757 7.129 7.086 7.134 7.087

10 5434 7.323 7.366 6.831 6.787 6.837 6.794

9 2575 6.871 6.879 6.473 6.436 6.479 6.444

8 1038 6.309 6.322 6.023 5.978 6.022 5.981

7 277 5.726 5.751 5.527 5.484 5.523 5.505

6 75 5.133 5.147 4.973 4.96 4.987 4.960

5 13 4 4 4 3.923 4 4

4 1 4 4 4 4 4 4

3 1 3 3 3 3 3 3

Total 50000

The following tables 13 to 15 provides tabular forms of the

obtained percentage improvements achieved using the three

iterative heuristics as compared to the results obtained using

the conventional DC heuristics.

Table 13: The percentage of improvement achieved by FDC.
Type of functions Number of functions % functions

 12% Functions

improvement

6589 13.2%

10% improvement <12% (2679+10585+11230) = 24494 49%

< 10% improvement 5% (500+9003+5434+2575+1038)

= 18550

 37.1%

< 5% improvement (277+75)= 352 0.7%
No improvement 15 0.03%

64 Int'l Conf. Computer Design | CDES'13 |

Table 14: The percentage of improvement achieved by WDC
Type of functions Number of functions % functions
Functions with

improvement 10%

(2679+6589+10585)=19853 39.7%

Functions with 5%

improvement <10%

(500+11230+9003+5434+2575)

 = 28742

 57.48%

Functions with

improvement < %5

(1038+277+75) = 1390 2.78%

Functions with no

improvement

15 0.03%

Table 15: The percentage of improvement achieved by ODC.

Type of functions Number of functions % functions

 10% improvement (2679+6589+10585+11230) =

31083

 62.1%

5% improvement

<10%

(500+9003+5434+2575 +1038) =

18550

 37.1%

< %5 improvement (277+75+13) = 365 0.73%

No improvement 2 0.004%

From Table 13, we can see that the maximum percentage of

improvement achieved using the FDC heuristic over all DC-

based techniques is 12.067% and this is achieved in 6589

functions out of the 50000 (about 13.2% of the benchmark

functions). From Table 14, we can see that the maximum

percentage of improvement achieved using the WDC heuristic

over all DC-based techniques is 11.192%. This has been

achieved in 6589 functions (about 13.2% of the 50000

benchmark functions). From Table 15, we can see that the

maximum percentage of improvement achieved using the

ODC heuristic over all DC-based techniques is 11.828%. This

has been achieved in 6589 functions (about 13.2% of the

50000 benchmark functions).

A summary of the results obtained using the three heuristic

algorithms is provided in Table 16 in the form of an overall

comparison among the heuristic algorithms and the existing

DC-based algorithms in terms of the average number of PTs

used using the randomly generated 50000 2-variable 4-valued

and the 50000 2-variable 5-valued benchmarks.

Table 16: Comparison among three different heuristic

algorithms

 #PT (2-variable 5-valued) #PT (2-variable 4-valued)

Promper 13.4404 7.89012

Besslich 13.6507 7.93882

Dueck 12.1525 7.24786

WDC 12.1525 7.24914

ODC 12.0682 7.20234

FDC 12.0694 7.19422

7 Concluding Remarks

In this paper, we have presented three iterative heuristics for

synthesis of MVL functions: the WDC, ODC, and FDC. We

have also compared the results obtained using these

algorithms through simulating the three algorithms using two

benchmarks: 50000 2-variable 4-valued and 2-variable 5-

valued functions. The results obtained showed that the three

heuristics outperform the conventional DCs. Among the three

heuristics the FDC achieved the best improvements.

Acknowledgement

The author would like to acknowledge the support of Kuwait

University provided in the form of the funded research project

WI 04/10.

References

[1] Dubrova, E., “Multiple-Valued Logic in VLSI”,

International Journal on Multiple-Valued Logic and Soft

Computing, 2002, pp. 1-17.

[2] Naiff, K., Rich, D., and Smalley, K., “A Four-State ROM

using Multi-level Process Technology”, IEEE Journal of

Solid-State Circuits, vol. 19, no. 2, April 1984, pp. 174-179.

[3] Razavi, H. And Bou-Ghazale, S., “Design of a Fast CMOS

Ternary Adder”, Proceedings IEEE International Symposium

on Multiple-Valued Logic (ISMVL), May 1987, pp. 20-23.

[4] Hanyu, T. And Kameyama, M., “A 200 MHz Pipelined

Multiplier using 1.5 V-Supply Multiple-Valued MOS Current-

Mode Circuits with Dual-Rail Source-Coupled Logic”, IEEE

Journal of Solid-State Circuits, vol. 30, no. 11, November

1995, pp. 1239-1245.

[5] Patel, V. And Gurmurthy, K., “Arithmetic Operations in

Multi-Valued Logic”, International Journal of VLSI &

Communication Systems (VLSICS), vol. 1, no. 1, March

2010, pp. 21-32.

[6] Manikas, T. And Teeters, D., “Multiple-Valued Logic

Memory System Design using Nano-Scale Electro-Chemical

Cells”, Proceedings ISMVL-2008, May 2008, pp. 197-201.

[7] Hosseinzadeh, M., Jassbi, S., and Navi, K., “A Novel

Multiple-Valued Logic OHRNS Modulo Adder Circuit”,

Proceedings World Academy of Science, Engineering, and

Technology, vol. 25, November 2007, ISSN 1307-6884, pp.

128-133.

[8] Kouretus, I. And Puliourus, V., “High-Radix Redundant

Circuits for RNS Modulo 1 ,,1 nnn rORrr ”, Proceedings

IEEE International Symposium on Circuits and Systems

(ISCAS-2003), vol. 5, 2003, pp. V-229-V-232.

[9] Dubrova, E., Jiang Y., and Brayton, R., “Minimization of

multi-valued functions in Post algebra”, Proceedings

International Workshop on Logic and Synthesis, 2001, pp.

132-137.

[10] Promper, G., Armstrong A., “Representation of multiple

valued functions using the direct cover method”, IEEE

Transactions on Computers (TC), September 1981, pp. 674-

679.

[11] Besslich, W., “Heuristic Minimization of MVL

Functions: A Direct Cover Approach”, IEEE Transactions on

Computers (TC), vol. C-35, no. 2, February 1986, pp. 134-

144.

Int'l Conf. Computer Design | CDES'13 | 65

[12] Dueck, G., Miller, M., “A Direct Cover MVL

Minimization Using the Truncated Sum”, Proceedings

ISMVL-87, May 1987, pp. 221-227.

[13] Yang, C., and Wang, Y., “A neighbourhood decoupling

algorithm for truncated sum minimization”, Proceedings

ISMVL-90, pp. 153-160.

[14] Lee, K., El-Sharkawi, M., “Modern Heuristic

Optimization Techniques”, Institute of Electrical and

Electronics Engineers (IEEE), ISBN 9780470225868, 2008.

[15] Abd-El-Barr, M., and Al-Awami, L., “Analysis of Direct

Cover Algorithms for Minimization of MVL Functions”,

International Conference on Microelectronics (ICM 03), 2003,

pp. 308- 312.

[16] Abd-El-Barr, M., Sarif, B., “Weighted and Ordered

Direct Cover Algorithms for Minimization of MVL

Functions”, Proceedings ISMVL-2007, May 2007, pp. 48-53.

[17] Sarif, B., and Abd-El-Barr, M, “Fuzzy-based Direct

Cover Algorithm for Synthesis of Multiple-Valued Logic

Functions”, Proceedings IASTED Circuits and Systems,

Hawaii 2008, pp. 625-630.

[18] Zadeh, L., “Fuzzy Sets”, Information and Control, vol. 8,

1965, pp. 338-353.

66 Int'l Conf. Computer Design | CDES'13 |

FPGA-based Hexapod Robot Spider

Yuhua Li
Dept. of Computer Science and Technology

Xi’an Jiaotong University, City College
Xi’an, China

yhli@mail.xjtu.edu.cn

Huimin Ma
Dept. of Computer Science and Technology
Xi’an Jiaotong University, City College

Xi’an, China
mlhfm@yahoo.com.cn

Abstract—This paper describes a FPGA-based hexapod robot

spider, which is used for student education purposes. In the
paper mechanical design, kinematic analysis, electro-mechanical
device and FPGA system are introduced. Some key points about
gait mode, non-stop PWM signal，filter of reflex ultrasonic wave
and Bluetooth control are given in detail. At the end of the paper
a discussion section gives some technical opinions about FPGA-
based system, gait mode, filter of sonar echo and remote control.

Index Terms—FPGA, robot spider, mini-sever, PWM ，
Bluetooth Control

I. INTRODUCTION

Robot spiders are widely built and researched for a variety
of purposes, including space exploration, mine cleaning in
battle fields and rescue work in disasters. Robot spiders can be
used in such application situations because of their special leg-
walking mode. Compared with wheel mode robot, the
efficiency of robot spider is not higher, but a robot spider can
easily cross over obstacles.

The hexapod robot spider CC-Balck5 described in the
paper is used for educational purposes for college students.
They can take it as an experiment platform, and write their own
VHDL program to realize varieties of movements.

II. MECHANICAL DESIGN

The robot spider CC-Black5 consists of 6 legs, which are
located on both sides of the body, as shown in Fig.1. Each leg
has 2 joints, i.e. each leg includes 2 freedoms. One freedom is
rotating around lengthways axis. This is defined as the small-
leg joint. Another freedom is rotating around the crosswise axis
and it is defined as the big-leg joint. The whole structure
includes 12 freedoms. Some mechanical data are listed in
TABLE I.

Fig.1 Top view and front view of CC-Black5

TABLE I. MECHANICAL CHARACTERISTICS

length 250(mm)

width 230(mm)

height 130(mm)

Height of bottom space 100(mm)

Total mass 615(g)

mass of each leg including 2 joints 82(g)

stride 50(mm)

speed 50(mm/s)

III. KINEMATICS ANALYSIS

A. Gait Mode

A robot spider with six legs could have a lot of gait modes.
The gait mode of CC-Black5 is similar to the mode of
coxswainles-six-oar rowboat. With the rowboat mode the
movement of all six paddles are same at the same time, but for
CC-Black5 there are some differences. All six legs of CC-
Black5 are divided into two groups: Group A and Group B, as
shown in Fig.2. Group A includes two left legs, L1,L3 and one
right leg, R2. Group B includes two right legs, R1,R3 and one
left leg, L2.Each group forms a triangle. All three legs which
are in one group will make the same movement at the same
time. The main consideration is that, when the legs of one
group leave from the ground, then the other three legs of the
other group keep standing on the ground. This can keep CC-
Black5’s movement stable.
In term of kinematics design, the movement of each leg
includes four beats: leg rising→return stroke→leg descending

→paddling. The movement is like as human arm in free style
swim, or like as paddle in a rowboat. The positions of one right
leg of CC-Black5 during 4 beats is shown in Fig.3, where in
states 3 and 4, the leg contacts the ground, in states 1 and 2, the
leg leaves the ground. In state 4, the leg carries CC-Black5
forwards. At this moment, the three joints of the three big legs
in one group output the maximum power. The CC-Black5
takes 250ms for one beat. Four beasts form a loop, which takes
one second. A stride length of a loop is 50mm.

Int'l Conf. Computer Design | CDES'13 | 67

Fig.2 Two groups of legs Fig.3 Four-beat movement mode

B. Eight-beat gait or four-beat gait mode

The experimental program has been tested for two ways of
gait: 8-beat gait and 4-beat gait.

In the 8-beat gait program, Group B is standing on the
ground until 4-beat movement of Group A is completed, and

vice versa. The 8-beat sequence is: Group A leg rising→return

stroke→ leg descending→paddling→Group B leg rising→

return stroke→ leg descending→paddling. In this way CC-
Black5 moves very stably. But the efficiency is lower. One
loop of walking costs 2 seconds, and because there are always
3 legs standing on the ground, a bigger friction occurs.

In the 4-beat gait program, Group A and Group B move
simultaneously following 4-beat mode, but two groups have 2-
beat phase difference. The 4-beat sequence is: Group A leg

rising and Group B leg descending→Group A return stroke and

Group B paddling→Group A leg decending and Group B leg

rising→Group A paddling and Group B return stroke. In this
way the movement of CC-Black5 is faster and more lively.
One loop of walking takes 1 second.

However it is very important to notice that, in 4-beat gait
program beat 1 and beat 3 demand 3 legs rising and 3 legs
descending simultaneously. In fact it leads to a strongly
harmful push-up movement. A fine adjustment of time
sequence during beat 1 and beat 3 must be made. With
adjustment every time leg-rising allways occurs a little bit later
than leg-descending. This adjustment makes the walking of
CC-Black5 more stable and stronger.

C. Basic Status

The basic statuses of CC-Black5 are: standing, going
forward, going backward, turning left and turning right. The
standing status is the most important one, and all joints of CC-
Black5 are located in their middle position. Because of

mechanical deviation, the duty values of each PWM signal for
each jiont is not in the same. These initialization values must
be carefully adjusted. All other statuses need only off-set
parameters based on standing status. All off-set parameters are
nearly the same. Other additional statuses, such as hand-
waving, body up-down, swing dance are also possible to
configurate.

IV. ELECTRO-MECHANICAL DEVICE

The electro-mechanical device used as a joint of legs is a
mini-server, as shown in Fig.4. Its electrical and mechnical
characteristics are listed in the TABLE II.

A mini-server consists of an IC for control-drive, a DC
motor, a gear set and a proportional potentiometer, as shown in
Fig.4 and Fig.5. Control-drive module can detect a specific
PWM signal and drive the DC motor. The gear set reduces the
rotating speed of the motor. According to the duty time of a
signal the control module fixes the axis of the mini-server to a
certain position. The proportional potentiometer outputs an
electrical level to the control module to correct this position. So
the mini-server then rotates to a fixed position between 0 and
180 degree according to the duty of PWM signal(see Fig.7).
Because the gear set has no self-lock characterristics, the mini-
server can not keep this position if the signal disappears, or is
broken. Fig.6 shows the control conception of a mini-server.

Fig.4 Mini-server Fig.5 Structure of mini-server

Fig.6 Control conception of a mini-server

TABLE II. ELECTRICAL AND MECHANICAL CHARACTERISTICS OF MINI-
SERVER

power 5(V DC)

Max. current 100(mA)

Control signal
50(Hz), PWM with duty 0.5(ms) – 2.5(ms),
LVTTL

Rotating angle 0 – 180(degree)

torque ≥20(N-cm)

weight 35(g)

68 Int'l Conf. Computer Design | CDES'13 |

Fig.7 PWM signals of 2 mini-servers

V. FPGA SYSTEM

A. Minimum System of FPGA

The movement of CC-Black5 is all under the control of a
FPGA(Field-Programmable Gate Array) system. A standard
minimum system of FPGA is used in CC-Black5, according
to the system recommended by Xilinx Inc. Other than this
minimum system no other additional components and devices
are used. The hardware design is based on the Master Serial
Mode as shown in Fig.8. It is a low cost, high-performance
solution for a robot spider.

The system consists of two ICs only. The main one is
FPGA, which type is XC3S500E-PQ208. It belongs to Spartan-
3E FPGA family of Xilinx Inc. Inside of the chip 500K system
gates, 158 I/O pins are integrated. The run speed of FPGA is
high up to 300MHz. Another chip in Fig.8 is a flash memory,
which type is XCF04S of Platform PROM family of Xilinx Inc.
The size of XCF04S is 4 Mb. It is used to keep the
configuration data of FPGA. The configuration data is
programmed with VHDL(Very high speed Hardware
Description Language), and is down loaded into the flash
memory through JTAG interface.

B. Sonar device

A sonar device as shown in Fig.9 is used to measure the
distance between CC-Black5 and a wall. If the distance is
smaller than 10cm, CC-Black5 will turn back and change
forward direction. A speaker of the device sends 40kHz
ultrasonic wave. The receiver has the same size as the speaker.
Both of them are resonated under 40kHz ultrasonic wave. The
transmission speed of ultrasonic wave in the air is 340m/s. A
counter in FPGA measure the response time of the echo, and
gives a signal to change the the walking direction when the
response time is shorter than 0.59ms.

Fig.8 FPGA system based on Master Serial Mode

Fig.9 Sonar device

C. Bluetooth Module

A Bluetooth module as shown in Fig.10 is used to control
CC-Black5.Through it man can use a mobile phone or a laptop
to remote control movements of CC-Black5. The control
distance is more than 50m. The frequency of the Bluetooth
module is 2.4GHz. The control commands include “stop”,
“forward”, “backward”, “turn right”, “turn left”, and “hand
waving”. The communication between the host and the
Bluetooth module is on the basis of protocol V2.1+ EDR. The
interface between Bluetooth module and FPGA is LVTTL-
UART with 115,200 Baud rate. The Bluetooth module
consists of the chip BlueCore4-Ext (CSR Ltd.) and a MCU.
The functional block diagram is shown in Fig.11.

 Fig.10 Bluetooth Module

Int'l Conf. Computer Design | CDES'13 | 69

 Fig.11 Functional Blocks of The Bluetooth

D. I/O Port Assignments

The I/O resourece of FPGA, XC3S500E is very rich. It has
158 I/O pins on the chip. CC-Black5 has 12 joints, which need
12 I/O ports. The sonar device needs one input to get the
response of the echo and one output to trigger ultrasonic wave.
The Bluetooth module needs one output pin to connect its
RXD, and one input pin to connect its TXD. Additional 2
outputs are used for LEDs as indicators. All 18 I/O ports
occupy only a small part of the I/O resource of FPGA. Fig.12
shows the I/O assignment of FPGA.

E. Synchronous and Non-Stop PWM Signal

The all 12 PWM signals are synchronous. Fig.7 shows only
2 signals of the 12 signals, and they are exactly synchronous.
The FPGA is clocked with an external 50MHz crystal
oscillator. Through frequency divides it results in some basic
clocks: 50Hz for PWM signal, 4Hz for beats of walking, and
other clocks for the Sonar and for UART of the Bluetooth
module. Because of concurrent characteristics of FPGA it is
easy to keep all 12 PWM signals non-stop and synchronous. It
means that during the whole running cycle of CC-Black5 all 12
PWM signals will never be broken, but can be changed. It is
important for mini-server. If the PWM signal stops, the rotate
position of mini-server will be easily changed under a load. It
will make a robot spider weaker and instable.

Using Xilinx hardware design tool ISE it is easy to create
the schematic of the FPGA system of CC-Black5, as shown in
Fig.13 and Fig.14. Fig.13 shows that the FPGA system
becomes an ASIC(Application Specific IC), having three input
pins on the left side of the IC: clk pin, echo pin and txd pin,
and 16 output pins on the right side of the IC: led, led1, 12
mini-server signals, trig and rxd pins.

Fig.12. Assignment of I/O pins

Fig.13 Schematic of FPGA Fig.14 Fine schematic

The input clk pin gets external 50MHz clock, the input

echo pin gets a reflex ultrasonic wave signal, and the input txd
pin gets signals from Bluetooth module, which form a 8-bit
command. The signal type of the three input pins is rising-edge
of externals. Both led pin and led1 pin output high level (3.3V)
or low level (0V). 12 mini-server signal pins output
synchronous non-stop PWM signals, which control
movements of spider legs. The trig pin outputs a rising-edge
signal to start the sonar device. The rxd pin outputs an
acknowledge to the Bluetooth module after the command is
implemented. Fig.14 shows a detail of schematic, which
includes a lot of counters to divide frequency and FFs(flip-flop)
to capture rising-edge of signals and output synchronous
signals.

In the field of robot spider, some of them have been built
based on the 32-bit embedded system. For these kind of robot
spider to keep all PWM signals synchronous and non-stop is
not so easy. Compared with control by the embedded system,
the FPGA-base robot spider CC-Black5 walks more stably.

F. Communication of the Bluetooth Module

Between the host and Bluetooth module the communication
is 2.4GHz RF according to the protocol V2.1+ EDR. The host
can be an android mobile phone, or a windows laptop. The App
for Bluetooth on the mobile phone must support UART format.
The communication between the Bluetooth module and FPGA
is LVTTL-UART. The Baudrate for both of them are set as
115,200.

For example, if the host sends a character “r”, the Bluetooth
module gets it, then transmits it to FPGA through its TXD pin.
According to “r” FPGA changes its moving status into “turning
right”, and gives a response character back to RXD pin of the
Bluetooth module. The Bluetooth module sends the response
back to the host. It is a complete transaction.

VI. DISCUSSION

By the concurrent feature of FPGA and its rich resources of
I/O, the demand for more synchronous and non-stop PWM
signals can be easily met. In the authors’ point of view, FPGA
system is more suitable to such loading case than the 32-bit
embedded system.

70 Int'l Conf. Computer Design | CDES'13 |

CC-Black5 uses 12 mini-servers, which can be drived by
FPGA XC3S500E directly. If more powerful big servers are
used, then additional drive modules are needed to insert
between output pins of FPGA and servers.

Because the gait mode is not as stable as the wheel mode, it
causes instable reflex ultrasonic waves. A filter design for
sonar device in FPGA is then necessary. In CC-Black5 , when
a reflex echo continues more than 2 seconds, it can be
confirmed that there is a real obstacle wall in front. Sometimes
when a reflex ultrasonic wave from the floor reaches to the
receiver of the device, the filter will ignore it.

The UART interface as a process in FPGA has been
programmed. The remote control can be easily realized with
various devices. Except of the Bluetooth module, the GSM
base-band module SIM300S, or SIM900A(Siemens) are
successfully constructed in CC-Black5. A Man-Spider
communication through a mobile phone can be set up.

The battery is always a problem just like in other kind of
robots. Here, CC-Black5 needs 5V and maximum 1.5A power
supply.

ACKNOWLEDGMENT

We would like to express our deep gratitude to Professor
Lina Lu, whose encouragement and support to CC-Black5

project are greatly appreciated. We also thank the other team
members, Mr. Zhe Zhang, Mr. Chao Sun and Mrs. Roumei
Jiang, for their hard working and full co-operation. The CC-
Black5 project has been supported by Xilinx University
Program. For this valuable supporting we give our special
thanks to Dr. Kevin Xie, Great China Manager of Xilinx
University Program.

REFERENCES

[1] Wang Jintong, Wang Zhouyi and Li Hongkai, “Movement of a
Spider on a Horizonal Surface”, Chinese Science Bulletin.
Beijing, October 2011.

[2] Din Xilun, Wang Zhiying and Alberto Rovetta, “Typical Gaits
and Motion Analysis of Hexagonal Symmetrical Hexapod
Robot”, Robot, Vol.32, November 2011.

[3] LiuuJianhui and Ye Jing, “Gait Study of a Bionic Spider”,
Journal of Liaoning Technical University, June 2008.

[4] www.xilinx.com, “Spartan-3E FPGA Family”, Data Sheet.
August 2009.

[5] www.xilinx.com, “Platform Flash PROM User Guide”, October
2009.

[6] Peter Wilson, “Deign Recipes for FPGAs”, Elsevier(Singapore)
Pte Ltd., 2009.

Int'l Conf. Computer Design | CDES'13 | 71

3D Lattice Monte Carlo Simulations on FPGAs

A. Gilman1, A. Leist2 and K.A. Hawick1
1 Institute of Natural and Mathematical Sciences,

2 School of Engineering and Advanced Technology,
Massey University, North Shore 102-904, Auckland, New Zealand

email: { a.gilman, a.leist, k.a.hawick }@massey.ac.nz
Tel: +64 9 414 0800 Fax: +64 9 441 8181

Abstract— Field Programmable Gate Arrays (FPGAs)
offer significant performance advantages over general
purpose compute architectures for certain scientific prob-
lems, including lattice-based Monte Carlo simulations of
complex systems models. We report on a custom logic
design for the 3D-lattice Ising model that keeps the entire
system state in on-chip memory to achieve very high
throughput rates. The pipelined architecture, which is
implemented in Verilog, is able to process an entire row of
cells per clock cycle. When processing a system of 2563

spins on a Xilinx Virtex-7 device, about 3000 full system
sweeps can be performed per second. We discuss imple-
mentation issues and solutions that apply in similar ways
to a variety of nearest neighbour, lattice-based Monte
Carlo simulations, as well as the performance of the Ising
model implementation on two FPGA architectures.

Keywords: FPGA-based design; simulation; complex systems;
parallel computing; performance evaluation.

1. Introduction
While Field Programmable Gate Arrays (FPGAs) were

at first predominantly used by engineers to implement
time-critical applications, recent advances in FPGA tech-
nology [1]–[3] have led to an increasing interest from the
scientific high-performance computing community.

FPGAs are now more and more frequently utilised to
accelerate complex systems simulations that were pre-
viously the domain of general purpose compute clus-
ters, supercomputers or data-parallel accelerators such
as graphics processing units [4], [5]. They have been
successfully employed to accelerate physics calculations
[6], bio-informatics data processing [7], image processing
[8]–[10], and agent-based models [11] to name but a few.

We are interested in three-dimensional (3D) Monte
Carlo simulations [12] and explore the FPGA platform
for these types of problems using the Ising model [13],
one of the most widely studied systems of interacting
particles, which remains an important tool for theoretical
and numerical analysis of phase transitions in critical
systems. Real magnets exhibit phase transitions at the
Curie temperature – above which iron for example ceases
to exhibit spontaneous ferromagnetism – and this macro-
scopic phenomena can be reproduced and scrutinised with
the Ising model.

While the Ising model has been solved analytically
[14] on both one and two-dimensional lattices, the three-
dimensional Ising model remains intractable and its prop-
erties have only been investigated using numerical sim-

ulations. The critical temperature and critical exponents
have been determined to some degree of precision using
computer simulations [15], but to compare the 3D Ising
model with other models and systems, greater accuracy is
needed. This can only be obtained using very large system
sizes, which in turn require parallel computing solutions
to be practically feasible. While specialist processor and
accelerator units and computer clusters have been brought
to bear on the 3D Ising model and associated problems
[16], there is still scope for considerably improved com-
putational performance.

FPGAs have already been applied to the 2D Ising
model [17], which is useful as numerical properties can be
compared to the known analytic solutions. It is however
the 3D Ising system that represents the great unknown and
it is hoped that modern FPGA accelerators may provide
a more feasible route towards a greater precision answer.

This paper presents an investigation into using FPGA
processing elements to address the problem of using
Monte Carlo methods to simulate large systems like the
3D Ising model. We give an overview of the Ising model
in section 2 and explain our approach to implementing the
model on FPGAs in section 3. Section 4 describes the re-
sults of the chosen approach and sections 5 and 6 discuss
our findings and offer some conclusions respectively.

2. Ising Model Simulation
The Ising model is used to investigate the properties of

the phase transition from unordered (non-ferromagnetic)
to ordered (ferromagnetic) domains, and vice versa, of a
computational ferromagnet as the system temperature is
adjusted. This transition occurs at the Curie temperature
Tc for models with more than one dimension. In general,
the Ising model can be used to study macroscopic phe-
nomena caused by pairwise correlations between neigh-
bouring sites on the microscopic scale. For instance, it can
be applied to the propagation of opinions in a network of
social interactions [18].

The widespread interest in the Ising model can be
attributed to its simplicity, which makes it a good test
case for new approximate methods for the investigation of
systems of interacting particles. As Newell and Montroll
put it: “If a proposed method cannot deal with the Ising
model, it can hardly be expected to be powerful enough
to give reliable results in more complicated cases” [19].

The common approach to dealing with the lack of an
analytic solution for the 3D Ising model is to use Monte
Carlo simulations to approximate the critical temperature
and exponents through random sampling.

72 Int'l Conf. Computer Design | CDES'13 |

Each spin in the Ising model takes on one of only two
possible values, “up” and “down” or +1 and −1, but an
extension to Q spin values can be found in the Q-state
Potts model [20]. The spins are arranged in a graph, most
commonly a lattice, but irregular graph structures are also
of interest, as these structures more accurately represent
some natural systems. Examples of the latter include Ising
model studies on small-world networks [21], [22] and
scale-free graphs [23].

The simulation typically starts with a random “hot”
spin configuration, which is then quenched to a tempera-
ture T . If this temperature is at or below the Curie temper-
ature Tc, then clusters of like-spins begin to form, creating
order in the initially random system. Neighbouring spins
interact according to an energy function or Hamiltonian
of the form [24]:

H = −
∑
〈i,j〉

Jijσiσj , (1)

where σi = ±1, i = 1, 2, ...N sites. Jij = 1/kBT is
the ferromagnetic coupling over neighbouring sites i and
j, T is the temperature and kB is the Boltzmann constant.
The total energy E of a particular system configuration
is obtained from the Hamiltonian. The magnetisation M
is defined as [24]:

M =
1

N

∣∣∣∣∣∑
i

σi

∣∣∣∣∣ (2)

Different Monte Carlo algorithms have been proposed
to investigate the Ising model [25]–[29], with the the
Markov-chain method of Metropolis et al. [25] being the
scheme most commonly used. It was later generalised by
Hastings [30] and is now commonly referred to as the
Metropolis-Hastings algorithm. Subject to certain proce-
dural limitations on the way the update is conducted, this
method is known to produce an appropriate sampling of
the Ising model configuration space.

In practice great care is needed so that the probabilities
of updating a spin site are chosen with the correct weights.
The Boltzmann factors described below must be com-
puted on the basis of the states of the nearest neighbouring
spins and neighbouring spins cannot therefore be updated
simultaneously. However, as will be described later in this
present paper, choosing the order of update is crucial to
being able to exploit the parallelism inherent from having
many FPGA processing elements working together.

For the latter half of the 20th century it was believed
that a very strict ordering of the spins to update was
necessary to obtain the strong detailed balance condition
[31] and that a systematic sweep order of the update
violated this. More recent work [32] using a transition
matrix formulation has shown that providing the updates
of neighbours that are energetically linked to one another
is avoided, then the order in which the updates are
performed is not important. This is an important consider-
ation and it allows us to arrange our parallel updates to be
performed in an order that best exploits the data locality
available in the processing pipeline, providing we do not
update immediate neighbours at once.

Table 1: This lookup table specifies the probability to flip
a spin and thus transition to a new state for every possible
∆E, which is directly related to the number of unlike
neighbouring spins xµ in the current state. The factor of
two in the exponent adjusts for the bidirectional nature of
the spin neighbourhood.

xµ ∆E e−2β∆E

0 6 p0 = e−12β

1 4 p1 = e−8β

2 2 p2 = e−4β

3 0

always flip4 -2
5 -4
6 -6

At each discrete time step, the Metropolis algorithm
chooses a random spin and flips its value if:

• the system energy E of the proposed configuration
is lower than or equal to the current configuration,
i.e. ∆E ≤ 0, or

• the proposed configuration is accepted with random
probability e−β∆E , where β = 1

kBT
.

If neither of these conditions is fulfilled, then the
change is rejected and the system remains in its previous
state. Table 1 expresses this as a lookup table for all
possible values of the number of unlike neighbouring
spins in the current configuration xµ.

Due to the local nature of the system updates in the
Metropolis algorithm, it is well suited for parallel imple-
mentations of the Ising model. Parallel implementations
can exploit the knowledge that, assuming the spins are
arranged on a regular lattice, the checkerboard pattern can
be used to update half of the sites concurrently without
the risk of race conditions, as neighbouring spins will
never be updated at the same time. We have previously
demonstrated [33], [34] that this approach can be used
to efficiently implement the Metropolis algorithm on
graphics processing units.

3. FPGA Implementation
To achieve any significant advantage over the software

implementations, computation of updates must be highly
paralellized. We were able to successfully achieve this
in our previous work [35] – implementing the Game
of Life cellular automata – resulting in some significant
computational throughputs. The implementation of the
Ising model, however, carries a number of additional
complications:

• the lattice is 3-dimensional and must be linearized
to be stored in memory

• the on-chip block RAM (BRAM) is used, which has
large bandwidth, but limited capacity

• 7 memory reads and 1 write are required for each
spin computation (current state + six neighbouring
states + writing the result)

• periodic boundary conditions on 6 sides
• a (pseudo-) random number is required for each spin

computation

Int'l Conf. Computer Design | CDES'13 | 73

Fig. 1: The 3D lattice arrangement for the spins of the
Ising system. The neighbourhood of a spin (x, y, z) con-
sists of the spins {x−, x+, y−, y+, z−, z+}, which refer
to the cells to the left, right, above, below, in front and
behind respectively. Periodic boundary conditions apply.

• cannot compute updates for neighbouring spins si-
multaneously

We opted for a similar strategy to our previous work
– designing a N wide by N2 deep dual port memory to
store the N3 lattice, with the whole row of spin states
along the z-dimension bit-packed into a single memory
word. By pipelining memory access and processing, one
complete z-row can be read from memory, another com-
plete z-row processed to update the spin states and another
one written back to memory in a single clock cycle. z-

Fig. 2: The movement of z-rows from memory, through
the processing stages of the pipeline and back into mem-
ory.

rows are read and processed in ascending order along the
x-dimension (see Figure 1), which has the effect that z-
row (x+ 1, y) trails row (x, y) in the pipeline.

However, due to the constraint that neighbouring cells
cannot be updated at the same time, our architecture only
processes half of the elements in the z-row at a time,
by separating the processing into two pipelined stages.
This means that when the z-row at (x, y) is in processing
stage 1 of the pipeline, which processes all cells with
an even index in the vector, the z-row at (x − 1, y)
is in stage 2, which processes all cells with an odd
index. Figure 2 illustrates this process. The pipeline is
in full use at clock cycle i + 3 in the diagram, where

Fig. 3: Architecture of the 3D Ising model compute module: 2 banks of dual-port memory to store the spin states,
2-stage processing pipeline to update odd and even spins separately and the control logic. See text for a detailed
explanation.

74 Int'l Conf. Computer Design | CDES'13 |

Fig. 4: Each processing element consists of a D-type flip-
flop to store the current spin state, a 24-bit random number
generator and combinational logic to compute the next
state.

z-row (x, y) has been processed and is being written to
memory, (x + 1, y) is in processing stage 2, (x + 2, y)
is in processing stage 1 and (x + 3, y) is being read
from memory. It remains fully utilised until the end of
the x-row is reached, at which point three flush cycles
are needed to move the remaining z-rows through the
pipeline and write the results to memory. Similarly, when
processing begins at the start of the new x-row, three
prime cycles are necessary to place the required data
into the correct stages of the pipeline for z-row (0, y)
to begin processing. This differs from traditional parallel
implementations that utilize the checkerboard pattern, as
some neighbouring elements for each cell have already
been updated for this generation and some have not been
updated.

One advantage of processing an entire z-row of data
within the pipeline is that neighbours z+ and z− have
also been read from memory and can be made available to
the appropriate processing elements from the same stage
with simple buffering. The right hand side of Figure 3 de-
picts the architecture of the processing pipeline, showing
processing elements (PE) being interleaved with storage
elements (SE) that buffer these values. Spins x+ and x−

can be accessed from the earlier and later stages of the
pipeline respectively. To access neighbouring spins y+

and y−, the respective z-rows (x, y + 1) and (x, y − 1)
are loaded into and moved through collections of storage
elements (running in parallel to the processing pipeline)
as (x, y) moves through the pipeline. In order to be able
to read these two extra z-rows into the y+ and y− buffers,
as well as read a new z-row into the processing pipeline
and write a processed z-row into the memory in a single
clock cycle (4 separate memory accesses) we split the
memory into 2 banks with bank0 storing only elements
with even y value and bank1 storing elements with odd y
value. Now each bank either reads a new z-row into the
processing pipeline using port A and writes a processed
z-row using port B or alternatively reads (x, y + 1) and
(x, y − 1) z-rows into the y+ and y− buffers. This is
controlled by the least significant bit of the y coordinate,
as can be seen in Figure 3.

Fig. 5: Combinational logic implementing the Metropolis
update algorithm. The number of unlike states xµ drives
a multiplexor that either unconditionally flips the current
state (xµ = {3, 4, 5, 6}) or flips the current state with
probabilities p0, p1 or p2 (for xµ = 0, 1 or 2 respectively).

The design of the processing elements is illustrated
in Figure 4 consisting of a single D-type flip-flop to
store the current state, a 24-bit pseudo-random number
generator and the combinational logic that implements
the Metropolis update algorithm. This logic is shown in
Figure 5 and represents the direct implementation of the
look-up table detailed in Table 1.

A 63-bit linear-feedback shift register (with XNOR
feedback from last and next to last taps) has been em-
ployed for the generation of pseudo-random numbers.
This was selected because of its efficient FPGA imple-
mentation using the shift register primitives (see [36] for
detail) - it can be implemented using a single CLB. Each
PE contains 24 of these LFSRs connected in parallel to
produce a new 24 bit random number every clock cycle.

To take care of the periodic boundary conditions, z-
row (l − 1, y) has to be fed into the pipeline before
(0, y) without being processed and this is accomplished
during the pipeline priming with the use of the ’Enable
Processing’ signal (seen in Figure 4), which can turn off
the state update logic as necessary. The ’writeEnable’
signal (seen in Figure 3) is also used during priming to
stop garbage outputs from being written to the memory.

4. Results
The design was described using Verilog HDL and

implemented on two Xilinx FPGA development boards.
One hosting a Virtex-6 family device (xc6vlx240t) and
one hosting a Virtex-7 family device (xc7vx485t). The
advantage of using these development boards is the pres-
ence of an on-board PCIe interface that can be used for
exchanging the data between the host PC and the FPGA.
We have used Xilinx ISE Design Suite 14.3 for HDL

Int'l Conf. Computer Design | CDES'13 | 75

Fig. 6: Percentage resource utilization for each device

design entry, synthesis and implementation and Xilinx
ISIM for behavioural simulations.

The available resources on the two FPGAs are summa-
rized in Table 2. It was our original intention to implement
a 2563 Ising model, but unfortunately the Virtex-6 device
did not have enough on-chip memory for this and we
opted for a 2003 model on Virtex-6 and a 2563 model on
Virtex-7.

The implementation results are summarized in Table 3,
showing the resource utilization (the number of utilized
flip-flops and look-up tables and also the total number
of used CLBs), the maximum clock frequency in mega-
hertz and the compilation time in minutes for the two
model sizes. As expected, the resource utilization ratio
between the two devices is 30% (Virtex-6 has 200 PEs
in the pipeline vs 256 on Virtex-7). A large difference
in the maximum frequency can be partly attributed to
the manufacturing process: 40 nm for Virtex-6 and 28
nm for Virtex-7. The resulting throughput is 24 and 51.2
billion individual spin updates per second for Virtex-6 and
Virtex-7 respectively, equivalent to around 3,000 full 3D
field generation updates per second. Figure 6 shows that
logic and register utilization is very small, whereas the
BRAM utilization is at 96% for Virtex-6 and 50% for
Virtex-7.

Our first implementation attempt on Virtex-6 resulted
in fairly poor timing because of large routing delays. To
improve this, each bank of memory was implemented
using BRAMs configured as 1 bit wide by 32768 deep
and 200 of these were used in parallel to store a single
z-row at each address. This configuration was selected
to associate each bit of the pipeline output with a single
BRAM (all of the spins with the same z-coordinate are
stored in the same BRAM). This allowed for placement
of the storage and processing elements associated with
the computation of each bit relatively close to the BRAM
where those bits are stored (as Figure 7 demonstrates).
This has improved the timing somewhat, however, there
were still large delays associated with memory address
and write-enable signals that are shared by all BRAMs in
one bank. Compare the relatively short nets connecting
processing pipeline outputs to BRAMs with the very large
net connecting one bit of the memory address register to
all of the BRAMs in Figure 8. Pipelining these signals,

Fig. 7: White arrows indicate the relative location of each
of the 200 bits of pipeline output and their associated
BRAM on the Virtex-6 device.

Fig. 8: Left image shows a very large net connecting
memory address register (bit 3) to BRAM blocks. Right
image shows relatively short nets connecting every 20th

bit of the pipeline output to corresponding BRAM blocks.

xc6vlx240t xc7vx485t
Flip-flops 301,440 607,200
LUTs 150,720 303,600
CLBs 37,680 75,900
36Kb bRAM 416 1,030

Table 2: FPGA resource summary.

as well as register replication has helped to achieve the
frequency of 120 MHz. Further low-level optimisations
are possible, but they come at a big cost of time and
not being able to modify the design at higher level, as it
would undo all of the low-level optimisations.

76 Int'l Conf. Computer Design | CDES'13 |

2003 2563

Flip-flops 17,563 22,314
LUTs 20,781 25,548
CLBs 8,673 9,842
BRAMs 400 512
Max clock (MHz) 120 200
Compilation Time (min) 30 98

Table 3: Resource utilization for different size simula-
tions. Note: 2003 implemented on xc6vlx240t and 2563

implemented on xc7vx485t.

5. Discussion
We have shown how a 3D Ising model can be im-

plemented on an FPGA system with encouraging perfor-
mance results.

There are a number of strategies that could be em-
ployed to obtain useful statistical results to attempt better
estimates of the critical properties of the model. One
is to deploy FPGA accelerators on a large scale cluster
with independent statistical jobs farmed out to processors
and their slave FPGA units. This can be analysed using
conventional techniques based upon the Binder cumu-
lant and other moments [37]. Another is to attempt a
renormalisation group calculation using a still larger Ising
system size that can be block-averaged and analysed using
techniques such as [15], [38].

In both cases it will be desirable to have model systems
be as large as possible which is constrained by available
memory on the FPGA units at present. It may be required
to deploy external memory units to support the FPGA
processing elements, but this would significantly reduce
the available bandwidth from the current 200 Gb/s to
around 7.5 Gb/s for quad-bank DDR3 SDRAM and
dramatically increase the hardware costs.

Beyond applying these techniques to the simple Ising
model there is also scope to address variants of the model
for which less is known and for which smaller simula-
tion systems are necessary as lower numerical precision
of critical temperature and exponents are needed. Such
system include the dilute or damaged Ising model where
some bond links are removed to mimic crystal defects,
or the frustrated Ising model where some links have a
reverse in the sign of the coupling J to mimic impurities
or mixtures at the atomic level.

6. Conclusions
We have shown that it is possible to implement a 2563

lattice of Ising model spins on a modern FPGA device
using on-chip memory. Using a pipelined implementation
of the Metropolis Monte Carlo algorithm, our design is
capable of 3000 full system updates per second.

We found the system size to be limited by the amount
of available on-chip memory and the maximum frequency
to be mostly limited by routing propagation delays, which
can be optimised using standard digital design techniques;
however, at a high manual labour cost. Alternatively,
the computational throughput may be increased through
further parallelisation. Additional processing elements can
be easily added as the current logic resource utilization is
low.

Another use for the available logic resources could be
the implementation of a true-random number generator to
seed the pseudo-random number generators initially and
at regular intervals to increase average entropy per bit.

This approach has great scope for investigations to
obtain greater precision on the critical properties of the
Ising model itself but also variations of it such as dilute
and frustrated magnetic systems.

References
[1] Oldfield, J.V., Dorf, R.C.: Field programmable gate arrays -

Reconfigurable logic for rapid prototyping and implementation of
digital systems. Number ISBN 0-471-55665-3. Wiley (1995)

[2] Chu, P.P.: FPGA Prototyping by VERILOG Examples. Number
ISBN 978-0-470-18532-2. Wiley (2008)

[3] Herbordt, M.C., Gu, Y., VanCourt, T., Model, J., Sukhwani, B.,
Chiu, M.: Computing Models for FPGA-Based Accelerators.
Computing in Science & Engineering 10(6) (November/December
2008) 35–45

[4] Leist, A., Playne, D.P., Hawick, K.A.: Exploiting Graphical
Processing Units for Data-Parallel Scientific Applications. Con-
currency and Computation: Practice and Experience 21(18) (25
December 2009) 2400–2437 CSTN-065.

[5] Preis, T., Virnau, P., Paul, W., Schneider, J.J.: GPU accelerated
Monte Carlo simulation of the 2D and 3D Ising model. Journal
of Computational Physics 228(12) (2009) 4468–4477

[6] Danese, G., Leporati, F., Bera, M., Giachero, M., Nazzicari, N.,
Spelgatti, A.: An accelerator for physics simulations. Computing
in Science and Engineering 9(5) (September 2007) 16–25

[7] Anan’ko, A.G., Lysakov, K., Shadrin, M.Y., Lavrentiev, M.M.:
Development and application of an fpga based special processor
for solving bioinformatics problems. Pattern Recognition and
Image Analysis 21(3) (2011) 370–372

[8] Gribbon, K.T., Bailey, D.G., Bainbridge-Smith, A.: Development
issues in using fpgas for image processing. In: Development Issues
in Using FPGAs for Image Processing?, Proceedings of Image and
Vision Computing New Zealand 2007, Hamilton, New Zealand
(2007) 217–222

[9] Bailey, D.: Design for Embedded Image Processing on FPGAs.
Wiley (2011) ISBN 9780470828496.

[10] Huang, Q., Wang, Y., Chang, S.: High-performance fpga imple-
mentation of discrete wavelet transform for image processing. In:
Proc. 2011 Symposium on Photonics and Optoelectronics (SOPO),
Wuhan (16-18 May 2011 2011) 1–4

[11] Chen, E., Lesau, V.G., Sabaz, D., Shannon, L., Gruver, W.A.: Fpga
framework for agent systems using dynamic partial reconfigura-
tion. In: Proc. 5th Int. Conf on Industrial Applications of Holonic
and Multi-Agent Systems (HoloMAS). Number 6867 in LNAI,
Toulouse, rance (29-31 August 2011) 94–102

[12] Metropolis, N., Ulam, S.: The monte carlo method. J. American
Statistical Association 44(247) (September 1949) 335–341

[13] Ising, E.: Beitrag zur Theorie des Ferromagnetismus. Zeitschrift
fuer Physik A Hadrons and Nuclei 31(1) (1925) 253–258

[14] Onsager, L.: Crystal Statistics. I. A Two-Dimensional Model with
an Order-Disorder Transition. Physical Review 65(3-4) (1944)
117–149

[15] Baillie, C., Gupta, R., Hawick, K., Pawley, G.: Monte-Carlo
Renormalisation Group Study of the Three-Dimensional Ising
Model. Phys.Rev.B 45 (1992) 10438–10453

[16] Hawick, K., Poon, W.C.K., Ackland, G.: Relaxation in the
Dilute Ising Model. Journal of Magnetism and Magnetic Ma-
terials 104-107 (1992) 423–424 International Conference on Mag-
netism,Edinburgh 1991.

[17] Lin, Y., Wang, F., Zheng, X., Gao, H., Zhang, L.: Monte carlo
simulation of the ising model on fpga. Journal of Computational
Physics 237 (2013) 224–234

[18] Svenson, P.: Damage spreading in small world Ising models.
Physical Review E 65(3) (2002) 036105

[19] Newell, G.F., Montroll, E.W.: On The Theory Of The Ising Model
Of Ferromagnetism. Reviews of Modern Physics 25(2) (1953)
353–389

[20] Potts, R.B.: Some Generalized Order-Disorder Transformations.
In: Proceedings of the Cambridge Philosophical Society. Vol-
ume 48. (1952)

[21] Barrat, A., Weigt, M.: On the properties of small-world network
models. The European Physical Journal B 13(3) (2000) 547–560

Int'l Conf. Computer Design | CDES'13 | 77

[22] Herrero, C.P.: Ising model in small-world networks. Physical
Review E 65(6) (2002) 066110

[23] Herrero, C.P.: Ising model in scale-free networks: A Monte Carlo
simulation. Physical Review E 69(6) (2004) 067109

[24] Binney, J.J., Dowrick, N.J., Fisher, A.J., Newman, M.E.J.: 2
Statistical mechanics. In: The Theory of Critical Phenomena -
An Introduction to the Renormalization Group. Oxford University
Press (1992) 33–53

[25] Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H.,
Teller, E.: Equation of State Calculations by Fast Computing
Machines. Journal of Chemical Physics 21(6) (1953) 1087–1092

[26] Glauber, R.J.: Time-Dependent Statistics of the Ising Model.
Journal of Mathematical Physics 4(2) (1963) 294–307

[27] Swendsen, R.H., Wang, J.S.: Nonuniversal Critical Dynamics in
Monte Carlo Simulations. Physical Review Letters 58(2) (1987)
86–88

[28] Wolff, U.: Comparison Between Cluster Monte Carlo Algorithms
in the Ising Model. Physics Letters B 228(3) (1989) 379–382

[29] Marinari, E., Parisi, G.: Simulated Tempering - a New Monte-
Carlo Scheme. Europhysics Letters 19(6) (July 1992) 451–458

[30] Hastings, W.K.: Monte-Carlo Sampling Methods Using Markov
Chains And Their Applications. Biometrika 57(1) (1970) 97–107

[31] Parisi, G.: Statistical Field Theory. Paperback edn. Westview Press
(1998) ISBN 978-0738200514.

[32] Manousiouthakis, V.I., Deem, M.W.: Strict Detailed Balance
is Unneccessary in Monte Carlo Simulation. J. Chem. Phys.
110(2753) (1999)

[33] Hawick, K.A., Leist, A., Playne, D.P.: Regular Lattice and Small-
World Spin Model Simulations using CUDA and GPUs. Int. J.
Parallel Prog. 39(CSTN-093) (2011) 183–201

[34] Leist, A., Hawick, K.A., Playne, D.P.: Hybrid update algorithms
for regular lattice and small-world ising models on graphical
processing units. In: Proc. Int. Conf. on Scientific Computing
(CSC’12), Las Vegas, USA, CSREA (16-19 July 2012) 228–234

[35] Gilman, A., Hawick, K.A.: Field Programmable Gate Arrays
for Computational Acceleration of Lattice-Oriented Simulation
Models. In: Proc. International Conference on Computer Design
(CDES’12), Las Vegas, USA (16-19 July 2012)

[36] George, M., Alfke, P.: Linear Feedback Shift Registers in Virtex
Devices. Technical report, Xilinx (2001)

[37] Binder, K., ed.: Monte Carlo Methods in Statistical Physics. 2
edn. Topics in Current Physics. Springer-Verlag (1986) Number
7.

[38] Pawley, G.S., Swendsen, R.H., Wallace, D.J., Wilson, K.G.:
Monte-Carlo renormalization group calculations of critical be-
haviour in the simple cubic Ising model. Phys. Rev. B 29(7) (Apr
1984) 4030–4040

78 Int'l Conf. Computer Design | CDES'13 |

Redundancy + Reconfigurability = Recoverability

Simon Monkman1, and Igor Schagaev2
1 ITACS Ltd, 157 Shephall View, Stevenage, SG1 1RR, England

2Faculty of Computing, London Metropolitan University, 166-220 Holloway Road, London, N7 8DB,
England

Abstract - An approach to consider computers and connected
computer systems using structural, time and information
redundancies is proposed. An application of redundancy for
reconfigurability and recoverability of computer and
connected computer systems is discussed, gaining
performance, reliability and power-saving in operation. A
paradigm of recoverability is introduced and, if followed,
shifts connected computer systems toward real-time
applications. Use of redundancy for connected computers is
analysed in terms of recoverability, where two supportive
algorithms of forward and backward tracing are proposed
and explained. As an example, growth of mission reliability is
formulated.

Keywords: redundancy; reconfigurability; recoverability;
performance-reliability-energy-wise systems

1 Why Recoverability: Instead of
Introduction

 The human world evolves and progresses by applying
knowledge derived from observations of and familiarity with
repeatable aspects of nature. Our perceptions, understanding,
and ability to model reality enables us to develop the policies,
processes, and products required, in order to attempt to
control the behaviour of natural phenomena, or human-made
objects.

 Nature tends to achieve stable and reliable progress
(sustainable growth) and avoid regression and degradation.
Sustainable growth can be considered as a fundamental
descriptor of living matter, while regression and degradation
are descriptors of dead matter. A clear differentiation between
live and dead is required, but, so far, there has been no
substantial research, or projects, on it.

 The authors of this paper believe that the fundamental
distinction and difference between living processes and dead
matter is recoverability.

 Essentially, recoverability in the system is based on the
ability to use available redundancy to recover from
environmental, or internal impacts and shocks. Two things
are worth mentioning here: first—redundancy is necessary for
recoverability, and second—redundancy must be deliberately

introduced into systems, policies, and processes to make them
resilient and efficient.

 The recoverability approach and its analysis,
application, and conceptual development in the domain of
computers is one of the aims of this paper. The second aim is
the analysis of the phases required for the implementation of
recoverability for stand-alone and connected computers.

 Usually, connected computer systems display
fluctuations due to changes in the underlying systems.
Reasons for this may include, for instance, workload,
software completeness, consistency, and size of applications,
or changes and shocks emanating from their environment. So
far, networks sporadically and inconsistently exploit
recoverability phenomena to tolerate these various
fluctuations.

 Connected computer (further CC) systems can be
considered in terms of time, i.e., as a process of operation.
Recoverability can then be applied to keep this process within
a restricted set of properties, “smoothing” the process. We
can apply and investigate various recovery algorithms
implicit in such systems and tune the underlying parameters,
reducing the extent of fluctuations and hence, reducing the
cost they impose in structure, information, or performance.

 Natural recoverability phenomena exist in almost any
natural system, but we do not understand them. Hence, we
cannot specify how the algorithm works and therefore, use it
properly. This is exactly the purpose of the methodology
proposed in this paper. In a practical sense, an understanding
of recoverability enables us to advocate for the re-design of
the whole world of CC systems, making them resilient to
internal and external fluctuations.

1.1 Why Reconfigurability: An Example
 Let us consider a case: an element is deformed by
environmental impact. Destructive deformation of the
element could cause the loss of its properties.

 Let’s assume an element has internal structural
resources (redundancy). Redundancy of the element structure
might enable the element to return to its previous state, or
condition, after impact. The external impact does not change
the element, if redundancy is applied and sufficient. A second

Int'l Conf. Computer Design | CDES'13 | 79

impact might occur and be tolerated in exactly the same way.
Let us now consider a situation where the element has
properties of being alive, such as amoeba.

 If an amoeba has sufficient resources available to it to
use and to protect itself from the destructive energy of the
environment or an impact, it will recover and continue to
live—the amoeba exhibits redundancy in order to survive.

 If the external event is repeated, the amoeba can self-
tune and be able to react to the impact faster, tolerate the
event for longer, and as a consequence, suffer less long-term
damage. The external event itself might be periodic heat from
the sun, cold water, fire or gas, electric discharge, etc.

 Having sufficient internal redundancy to tolerate
repeated external impacts caused by various events makes
recovery possible. Live matter differs from man-made
systems in terms of the time required for recovery and the use
of available redundancy. The speed of recovery increases
when the impact is the same. Here, “recovery training” takes
place and either the level of redundancy, or speed of recovery,
or both increase. A sequence of impacts and element recovery
is presented in Figure 1.

Figure 1. Periodic impacts, element’s time to recover

 The circles show the state of an element over time,
where green indicates an element in a good, or acceptable
steady state and red indicates an element under recovery.
Figure 1 indicates an element that adapts to the periodic
external stimulus, can decrease the time for its recovery.

 Where the element may be considered alive, such as in
the case of the amoeba, using redundancy for recovery can
reduce the time it takes to react to the same event, provided
the event is periodic. Thus, life might be defined as the
following:

An element is called alive, if in repeatable conditions, it is
able to recover progressively, using internal redundancy
actively.

 The adaptability of the live element has its limits. Figure
2 shows, for example, an element approaching the limit of its
adaptability and the role of its ability to recover. Whilst
wildlife evolution may be seen as similar to the lower curve,

the evolution of “smart” species should be smoother and
faster to reach the same, or higher, limit of adaptability—the
shortened curve in the diagram.

 Thus, our design of information processing systems,
computers, especially complex systems such as connected
computers, can be measured in terms of efficiency of
recovery/resilience in comparison with wildlife phenomena,
where available redundancy is used and adaptability grows. In
other words, how good we are at designing our systems to be
adaptable can be checked against living objects.

 What is the point of this? Without external repeatability
of events, evolution is hardly possible; having internal
redundancy to recover is not enough. Evolution depends on
the repetition of the same external events—i.e., no repetition,
no evolution.

Figure 2. The adaptability of a live element to a repeated
external stimulus has its own limits

 It means, for example, that the merit of sending a NASA
probe searching for advanced forms of life on asteroids is
worth questioning. An asteroid does not have the repeatability
of environmental events during its flight. Even if life forms
were there initially, their redundancy was spent for nothing in
attempting to tolerate sporadic impacts.

1.2 Organization of the paper
 How is this two-part introduction about recoverability
and reconfigurability related to CC systems? At first, nature-
made living systems are much more reliable and resilient than
human-made ones. Therefore, some of the key principles of
“mother nature designs” are good to adapt for CCs. Secondly,
an analysis of existing technologies and applications, even if
it is brief one, might highlight what is required to make our
designs smarter.

 Further, commercially and technologically speaking, we
will address recoverability and other properties that might be
required for connected computer systems. Why do we need to
make this clear? Market segmentation in computer and CC
systems might be reduced, or eliminated, enabling unified and
modernized technologies to be applied.

S
pe

ed
 o

f a
da

pt
ab

ili
ty

Limit of adaptability

Number of repetitions

Periodic impacts

Recovery Recovery Recovery

80 Int'l Conf. Computer Design | CDES'13 |

 We will discuss properties such as reliability and some
ways to achieve it, using deliberate redundancy and
recoverability when required. We extend redundancy from
fault tolerance to PRE-smart system design. PRE here stands
for Performance-, Reliability-, and Energy-smart systems.
Later, we will be able to estimate the efficiency of
redundancy use for reconfigurability and recoverability for
CC systems, balancing the trade-off between PRE properties.

2 Connected computers: technologies
and applications

CC technologies in general are divided into two almost
independent clusters: Communication and Computer, as
Figure 3 shows.

Figure 3. Connected computers - technologies and
applications

CC
Technologies

Ether- / inter-
net

CC
Applications

Distributed
computing

Computer
(zones)

Communication

Active
systems:

ACT, military,
medical,
control

Grid,
cloud, ...

RISC,
SIMD, MIMD,

CISC, ...

SRAM,
DRAM,

Flash, ...

Active

Interfacing Passive

Wireless

Wired

FiberMetal

Digital
Power

Local cell

Satellite

 The Communication cluster deals with various media
(wired, wireless) using different signal carriers (copper, fibre,
air). The cluster faces problems of complexity and the
volume of data that needs to be transferred, together with
requirements of timely data delivery over complex
interconnected networks.

 The Computer cluster addresses all three zones of
information processing to make them faster and
technologically feasible. The zones differ semantically. The
Active zone is the one where information is transformed and
is currently known: in the form of complex instruction set
computers (CISC), reduced instruction set computers (RISC),
single instruction multiple data (SIMD) architecture and
multiple instructions multiple data (MIMD) architectures.
Flynn’s [1] classification was used to reference these
architectures. The Passive zone is known in the form of static
and dynamic memories, flash memory, disks, etc. The

Interfacing zone deals with data transfer between zones and
getting them in and out from environment.

 Historically, computer systems were not really fit for
purpose for working within CC systems, which reduces our
expectations when addressing the aspect of distributed
computing by design. Attempts, such as a transputer, also
prove that introducing distributiveness into CC is challenging
and not an easy task. CC systems such as the Internet and
Ethernet are expanding enormously in terms of data transfer,
video, audio and e-mails and are moving in a strange
direction, allowing home-makers, young people, financial
sector operatives and bureaucrats communicate and “deliver
their messages and instructions”.

 All of the aforementioned applications are not critical in
terms of real-time operation; VOIP requires some traffic
shaping to deliver packages with time and other constraints,
known as Quality of Service. This is what the vast majority of
CC systems are using. At the moment, according to various
sources, around two billion IP addresses are allocated
permanently. This prodigious amount of data requires
handling procedures that need to be much more effective, as
everyday life becomes dependent on the “health” of CC
systems. There is a visible shift in the distributed computing
paradigm (using distributed, connected computers to solve
large-scale tasks), toward distributed databases, financial
services such as ATM, and so-called “cloud computing”.
Putting scepticism aside and leaving other papers and
researchers to discuss what is the real technological progress
of cloud computing, we note here only that the efficiency of
large-scale applications, including cloud computing, depends
on the algorithmic skeleton—graphs of data, control and
address dependencies [4] and their use, in order to prepare
flexible, reconfigurable and resource-efficient algorithms for
distributed computing.

 To be effective, distributed computing requires a
periodic “tuning” of the CC topology and computers as the
elements in that topology. These tunings of application
software, system software, topology, and internal structure of
the computers should be handled statically, before execution
and supported dynamically, during execution.

 So far, there has been no visible progress in this
direction, in spite of substantial investment under the flag of
cloud computing. At the same time, there is a segment of
human life that really requires attention and the involvement
of CC: safety-critical, real-time active control systems,
military applications, health monitoring, etc. All these
applications should benefit from CC, but they require the
integrity of a CC system, in terms of hardware, system and
application software, user and system data, and the billions of
connected computers to be applied much more efficiently,
following the maxima:

Remark 1. Technology must help people to become better, not
to be more comfortable.

Int'l Conf. Computer Design | CDES'13 | 81

 Therefore, safety critical applications (military, health
monitoring, emergency management, air-traffic control,
traffic control at large) should emerge and exploit existing
connected computers. Two approaches to making CC useful
are becoming obvious: the application of existing CC to wider
and more challenging areas and the use of specially-built,
safety-critical systems for “common” applications, as a part
of the family of CC.

 Ignoring any of theses approaches will lead to bigger
market clustering and industry segmentation, resulting in the
communication between entities becoming less efficient and
which contributes to increased energy and ecological
overheads - an unforgivable waste of resources for human
race.

2.1 Problems and properties
 To avoid this segmentation in technology and market
clustering a CC system should be redesigned to have new
properties. In addition to the requirement for trustworthy CCs
(security of hardware, system and application software and
user data), widening CC adoption in terms of application use
requires the development of recoverability. Recoverability
requires an implementation of a generalized algorithm of fault
tolerance (GAFT). Note also that recoverability is practical,
if it is invisible for the application software. GAFT assumes
the execution of several sequential steps related to hardware
(HW) and software (SW), in terms of proving the integrity of
the system, (step A), detection of a fault and determination of
its type (step B), defining the “level of damages” Permanent
of malfunction (step C), location of faulty element (step D)
and reconfiguration of the hardware (step E) and proof of
correctness of integrity of software (step F) and determination
of correct state (step G) and software to correct in order to
continue operation. GAFT has two main phases - one for
hardware (steps A-E), another for software (steps F and G).
GAFT is initiated if a fault of CC, or any other deviation, has
been detected. During the first step, it recognizes fault type in
order to gauge location and tolerance.

Figure 4. Redundancy application for GAFT

 As Figure 4 shows the redundancy types application for
fault tolerance are based on the categories of structure “s”,
information “i” and time “t”. The white boxes show a possible
application of fault tolerance, using the described
redundancies.

 While we are capable of using redundancy for checking,
reconfiguration and recovery within a CC system, we should
ask ourselves:

 Could we use this redundancy for other purposes?

 Introducing system redundancy might allow us to
achieve recoverability. We need all the ingredients -
redundancy, reconfigurability and fault modelling - in order
to understand and analyse existing mutual dependencies at
every stage of the design and development process.

 At the same time, redundancy can be used for
reconfiguration of the CC system for other purposes such as
performance improvement, or power efficiency. Figure 5
illustrates how properties may be inherited for PRE-wise
systems. Thus, PRE-wise systems might be designed
rigorously, using reconfigurability and recoverability as
system features, if they are introduced at conceptual level.
The success of PRE designs for CC systems depends on the
careful balancing, or “trading-off”, of redundancy against the
desired PRE property.

Figure 5. Redundancy and reconfiguration application for
PRE systems

!

P

Performance

E

Energy

R

Reliability

PRE-smart CC

Recoverability?

P, R, E Trading?

FAULT TOLERANCE

Redundancy Reconfigurability Fault model

82 Int'l Conf. Computer Design | CDES'13 |

2.2 Trading P, R, E
 Structure, Information and Time, as the various types of
redundancy, might be weighted, say, in units or values, with
or without reference to the steps of GAFT, or any other
algorithm where redundancy has been applied to achieve
performance-, reliability- or energy-wise features. The
relative importance (and cost) of the redundancy type chosen
for the steps in the algorithms shown might be introduced as a
coefficient αi, related to the cell i (Figure 4). Similar
“valuations” of redundancy types might be applied for any
other algorithms designed for the implementation of PRE
properties.

 While time and information is understandable in units -
seconds and bits, the structure, especially structural
redundancy requires some extra effort. Note also that time,
information and structure are considered as independent
variables. Structural redundancy for our purposes might be
measured using the graph-related notation:

 dS : < dV , dE >

where dS denotes introduced structural redundancy, while dV
and dE denote extra vertices and edges added into the
structure in order to implement the steps of GAFT, or any
other algorithm.

 Then, our efforts toward the goal of PRE can be
measured quantitatively, as a vector of redundancy use:

 dR = < dT , dS, dI >

 In determining the cost of each type of redundancy used
and describing the steps of an algorithm to achieve
performance-, reliability- or energy-wise improvement, we
can quantify each solution, according to the redundancy types
applied.

 This approach explains and quantifies, for example, the
limitations of system software-based developments using
Java - it will always consume more time, hardware, software
and energy to store and process. In other words, we always
will waste much more energy than really required.

 Furthermore, the over-use of flash-based memory will
also add to the energy wastage, as the activation of one
memory cell in flash requires the application of power to the
bulk of a 64K, or 64M memory segment.

 The principles of PRE- design should be applied to the
CC system as a whole, using the redundancy- and
reconfigurability-wise approach for each of the goals. That
being the case, tables similar to those proposed above have to
be crafted individually for various purposes.

 A PRE-wise system design paradigm is the future.
When a computer, or CC system is designed with redundancy
and reconfigurability in mind, with possible smart
configurations and reconfigurations for PRE purposes, the
market segmentation of information computer technologies
(ICT) will be reduced dramatically. The combination of steps
in the sequence described above implementing the declared
properties is a simplification, as design of a system is not, in
fact, sequential. It most likely follows a pattern as illustrated
by Figure 6, where the various steps are dependent on and
have feedback loops with other steps.

 One approach to cope with these forms of dependencies
in the algorithm (or project) phases assumes the application of
a semi-Markov model to analyse the impact of these
feedbacks on design efficiency [2,5].

Figure 6. Dependencies of project phases

1 2 3 4 F

2.3 Recoverability in connected computer
systems

 Applying the same approach to CC systems to suit real-
time and safety-critical applications highlight differences
between stand-alone and CC structures:

• Redundancy in CC systems already exists (each
computer “deals” with neighbour);

• Latency of threat impact for CC systems is
unavoidable;

• Propagation of threat impact for CC systems is
similar to flooding.

Int'l Conf. Computer Design | CDES'13 | 83

 Let us look at a notional segment of a CC topology with
incoming and internal connections as Figure 7 presents.
Incoming and out-going edges are shown with arrows.
Threats here mean physical faults (permanent, or as a
malfunction) of hardware, incomplete or deliberately
damaged software, viruses, worms, etc. Thus, the
recoverability of a CC system might require more effort and
extend GAFT actions, namely:

• Find where threat propagates;

• Estimate damages;

• Stop propagation;

• Find source of the threat (internal, or external);

• Exclude, or block the source;

• Restore best-fit configuration of hardware;

• Restore best-fit configuration of system software;

• Restore best-fit configuration of applications.

 To make a system of CC for real-time applications,
GAFT must be performed, together with an estimation of the
potential consequences for the topology of the CC, as well as
its elements. The speed of propagation of a threat through the
topology has to be addressed as a factor of performance for
recovery.

 The potential damages caused as a result of the threat
may differ in severity - sometimes substantial and
exponentially dangerous (gateway routers), if we do not react
accordingly.

Figure 7. Connected computers topology (fragment)

1 2

4

5

8

11

10

6

7

3

9

Existing solutions with local restarts and segmental switching
do not comply with the requirements of real-time, or safety-
critical applications. A CC system can be presented in the
form of probabilities of the propagation of a threat (or
symptom of a fault) through the topology, where thickness of
the edges defines the strength of dependency between
vertices. The dependencies between vertices are not
symmetrical: vertex 9 might have, say, a much higher impact
on vertex 6, than vertex 6 might have on vertex 9.

A propagation of a threat along the CC system might be
described as a vector P of predicates {pi} that define the
condition for each vertex:

P = p1 m1 v1 d1 t()()()(), p2 m2 v2 d2 t()()()(), ..., pk mk vk dk t()()()(){ } (1)

where m1,...,mk stand for models of vertices in terms of
vulnerability to threat; v1,...,vk are vertices, d1, ...,dk are
data available about each vertex condition.

 Data about each vertex might be accumulated using
checking (testing, or online checking, including historic
knowledge and their combination), as well as processed in
real time.

 Note that for a CC system, we assume flood-like threat
propagation; i.e. all adjacent vertices to the initial point,
namely for vertex 1, one has to consider adjacency with the
2nd, 6th and 9th vertices, vertex 11’s adjacency to vertex 3 and
10, etc. The role of the initial point that starts off the process
of recovery requires further discussion.

2.4 How this works
 The recoverability of CC systems assumes the
involvement of two algorithms: Forward Tracing and
Backward Tracing. When the symptoms of a threat are
manifested through the detection of a change in behaviour at
an element, the Tracing algorithm searches through a
Dependency Matrix for the subsequent propagation of that
threat along the system. The potential consequences to the
system can be hereby identified, starting from the vertex from
where the threat presence was first detected.

 Performing the Forward Tracing algorithm, a
cumulative probability is calculated along each possible path
(of edges) until a termination threshold ε is reached.
Threshold ε is defined empirically using engineering expertise
and considered as constant for a particular configuration of a
CC.

 Another termination condition for searching the path of
threat propagation is obvious - checking all dependent
vertices. When all elements have been traced, one can fully
guarantee 100% threat checking coverage. Unfortunately, this
termination condition becomes scale-dependent on CC
system size.

84 Int'l Conf. Computer Design | CDES'13 |

 Note here that the probabilistic matrix for a system from
Figure 7 is not Markovian, because the sum of probabilities
on the edges at each node may not be equal to 1; in contrast,
several edges of a single node may have significant
probabilities.

Figure 8. Forward tracing of possible consequences

 98

!"#$%&'()*Tracing*+,-*.+/0-.,-*1�+2,-30-*3 .,*4*0*

55* 6728'9* .:2:7;:7<=*)>'%&3* D(N)* ?&'(* N* :":):7',* $@* >* ?:&#(':;*

#%>2(*G=<V, E>*

55*6728'9*A(:*,'>%'*7$;:*,*>7;*'(:*%:><(&7#*7$;:*B*

55*C8'28'9**A(:*,:'*$@*7$;:,*Ds*?(:%:*x Ds*>7;*�(ps,x)> �***

55*C8'28'9**A(:*(&#(:,'*2%$D>D&"&'=*�(ps,j)*$@*7$;:*j*%:><(:;*D=*

7$;:*s*

E**55*>*2%&$%&'=*F8:8:*D>,:;*$7*'(:*(&#(:%*2%$D>D&"&'=*$@*7$;:,*

%:><(:;*D=*s*

G* * 55* '(:* ,:'* $@* 7$;:,* >"%:>;=* H&,&':;-* 8,:;* '$* >H$&;* '%><&7#*

"$$2,*

67&'&>"&I:+E0**55*&7&'&>"&I:*7$;:,*2%&$%&'=*F8:8:*'$*:)2'=*

J*K$%*:><(*7$;:*H*&7*L*;$*

M***2,-H*��N*55*,:'*;:@>8"'*2%$D>D&"&'=*'$*�*
O***67,:%'*+E-H-2,-H0*55&7&'&>"&I:*'(:*2%&$%&'=*F8:8:*

P***2,-,*�JN*67<%:>,:+E-,-2,-,0**5582;>':*2%&$%&'=*$@*,*?&'(*2,-,*
Q***.,�R)2'=*55*2%:,8):*>""*:":):7',*>%:*,>@:*
S***G�R)2'=**
T*@$%*&�U*'$*/VJ*;$*
W****>X�.:":':Y>3+E0**55;:":':*'(:*)>3&)8)*2%&$%&'=*:":):7'*

Z****?(&":*2&->X[�*

JU*****;$**

JJ*****.,�., 1*>X4NG�G 1*>X4N*�+2,->X0\2&->X**

JM*****@$%*:H:%=*7$;:*>*&7*LV*.,V*G*'(>'*&,*>;B><:7'*'$*>X*;$*

JO********&@*2,->X*X*.>X->[*2,->*'(:7**

JP********2,->**2,->X*X*.>X->N*

JQ********67<%:>,:+E->-2,->0*

JS******:7;*@$%*

JS****:7;*?(&":*

JT*:7;*@$%*

JW*A:%)&7>':**

Figure: 7.9: Tracing of possible consequences

<&!/U%1:9/!(&!.(=!2./!-#%7$&5!<95(#$2.1!=(#,*!$*!$990*2#%2/3!$&![$50#/!_OSF!=.$7.!*.(=*!

%!5#%:.!4(#!N!/9/1/&2*!%&3!%!*/2!(4!2#%&*2(&*!)/2=//&!2./1!#/:#/*/&2$&5!2./!:#()%)$9$2;!

(4! 4%092! :#(:%5%2$(&!)/2=//&! 2./! #/9%2/3! /9/1/&2*O! ! -./! 9(=/#! :%#2! *.(=*! 2./! *%1/!

$&4(#1%2$(&! $&!1%2#$U! 4(#1O! ![$50#/!_OSS!*.(=*!.(=!2./! 2#%7$&5!:#(5#/**/*!*2/:!);!*2/:!

0*$&5!2./!*%1/!/U%1:9/O!!>/2!0*!%**01/!2.%2!&(3/!d1!1%&$4/*2*!2./!4%092C!$1:%72!(4!2.$*!$*!

/A%90%2/3!);!*/%#7.$&5! 4#(1!d1! 2(!%99! 3$#/729;!(#! $&3$#/729;! 7(&&/72/3!&(3/*! P/9/1/&2*QO!

2.5 Probability along the path
 In the tracing algorithm, the cumulative probability of
threat propagation from one element (vertex) to another along
the edges from the suspected node i to node j (possibly via a
series of other nodes), is defined as Π(pi,j).

 When several paths lead from node di to node dj, all
possible Π(pi,j) are ranked and nodes along the paths are
included into the set of suspected nodes. Starting from the
vertex, i, that manifests the threat, its impact is evaluated by
searching from d1 to all directly, or indirectly connected
nodes (elements). The result of this search is a ranked list of
the nodes most likely to be affected - the “consequence” of
threat propagation. As the threat paths from each node are
evaluated, only the edge with the highest probability is
followed at each node. At most, each node is only ever
included once in any path to ensure termination in a graph
which contains loops.

 The proposed Forward Tracing algorithm does not solve
the problem of threat elimination from CC systems and, at its
best, can only be part of the solution. The reason is explained
in Figure 9. The time gap between the appearance of a threat
at one vertex and the detection of it impact at another has
arbitrary duration. Above all, while the consequences are
being detected, threat propagation continues. Thus, the
Forward Tracing algorithm helps to localize damages, and
assist when possible, in order to block propagation, but does
not solve the whole problem.

 To locate the first damaged node and discover the real
reason for its changed behaviour, we need another algorithm
called Backward Tracing, Figure 10. This algorithm discovers
the source(s), or reason(s) from the sequences of exhibited
threat symptoms and defines areas where each element
(vertex) was involved. Thus, we search for the reason, not just
the symptoms.

 When the elements that are likely to be the cause of the
manifest discrepancies are detected, the recovery is initiated
from the vertex where the threat first appeared dealing with
the damaged area only, reducing the need for the brute force
of a restart, saving real-time mode for the whole CC system.
The results of the recovery process also need to be saved for
security improvement, monitoring of reliability and
maintenance efficiency.

Figure 9. Threat propagation timing along a CC system

Forward and backward tracing algorithms
are initiated

Threat
detected

Vertexes of CC system

Start

Threat
appeared

Threat
manifested

 The threat checking procedure over a CC system might
be activated, either by a signal indicating that there is a
discrepancy in behaviour of one or more elements (vertices),
or by a predefined sequence of maintenance, if necessary. For
the purpose of maintaining CC system integrity, the
procedures for condition checking might be initiated by
choosing any vertex of the CC system at random, or even in a
loop, covering all vertices, when it is convenient.

Int'l Conf. Computer Design | CDES'13 | 85

Figure 10. Backward threat tracing for a CC system

2.6 How much recoverability costs
 As shown above, recoverability requires the introduction
of several new processes into CC system management,
including online checking of CC conditions and the
implementation of two mentioned above algorithms. The
gradient of this change is a function of the quality of checking
(coverage), success of recovery (algorithms of tracing) and
quality of maintenance shifting it to the “light” mode with
preventive actions against threats.

 The gain from introduced and implemented
recoverability was recently measured using a comparison of a
standard CC system with a system that implements real-time
maintenance was analysed in details in recent book [3].

3 Conclusions and future work
• Recoverability supported by redundancy and

reconfigurability is introduced and analysed for
connected computer systems.

• A design concept of PRE-wise (Performance-,
Reliability- and Energy-wise) systems is proposed
as a unified approach.

• Shown that recoverability using Forward and
Backward Tracing algorithms makes connected
computer systems closer to real-time and safety-
critical applications.

• As a future development, it is suggested that the
development of a PRE framework, assuming
mutual dependencies of phases of design,
development and run time use using a semi-
Markov model.

4 References
[1] Flynn M. “Some Computer Organizations and Their
Effectiveness”; IEEE Trans. Comput., Vol. C-21, 948, 1972.

[2] Birolini A. “Reliability Engineering Theory and
Practice.” 6th ed., Springer-Verlag: Berlin, Heidelberg,
Germany, 2010.

[3] Carbone J., Schagaev I. "Active Conditional Control:
Analysis." Applied Cyber-Physical Systems, Springer, ISBN
978-1-4614-7335-0, 2013.

[4] Gutkneht J., Kaegi T., Schagaev I. “ERA: Evolving
Reconfigurable Architecture”; SNPD, 11th ACIS International
Conference on Software Engineering, Artificial Intelligences,
Networking and Parallel/Distributed Computing, London,
UK, 9–11 June 2010.

[5] Plyaskota S., Schagaev I. “Economic Effectiveness Of
Fault Tolerance”; Automatic and Remote Control, No. 7, 131-
143, 1995.

[6] Schagaev, I.; Kirk, B.; Schagaev, A. “Method and
Apparatus for Active Safety Systems”; UK Patent GB
2448351, INT CL: G05 9/02 (2006.01), Granted 21.09.2011.

86 Int'l Conf. Computer Design | CDES'13 |

