
SESSION

SEMANTIC WEB

Chair(s)

TBA

Int'l Conf. Semantic Web and Web Services | SWWS'12 | 1

2 Int'l Conf. Semantic Web and Web Services | SWWS'12 |

Semantic Discovery and Retrieval of Relevant Medical

Knowledge

A. Asmita Rahman
1
, B. Budak Arpinar

1
, and C. Singaram Sundar

1

1
Computer Science Department, University of Georgia, Athens, Georgia, USA 30602

Abstract - In the fast growing world of information, the

amount of medical knowledge is growing at an exponential

level. It has now become a very difficult task for an ordinary

person to keep up with all the new discoveries and updates in

this domain. This paper describes an approach to

semantically discover and retrieve relevant medical

data/information for respective health records (people). This

system comprises of sample Electronic Health Records

(EHRs) and Health Publications from PubMed. Our system

implements a semantic matchmaking algorithm to find the

relevant publications in PubMed for any particular health

record (profile) using BioPortal Ontologies and UMLS. It

then displays the results to the user. Our system empowers the

users and enables them to discover hidden but relevant

information. The result of the evaluation clearly proves that

our system retrieves the relevant information better than

syntactic searches.

Keywords: Semantic Matchmaking, Matchmaking algorithm,

Knowledge Discovery, Electronic Health Records, Health

Publications, Ontology.

1 Introduction

 We all know that today the knowledge in the medical

domain is growing at a very fast pace. It is becoming harder

and almost impossible for a normal person to keep up with all

the updates in this field. Every day there are several new

drugs coming to market, several new treatment options are

being introduced, many old medications are being replaced,

several new discoveries are being made etc. In this fast

moving world, there is barely any time left for a normal

person to read and research about the new updates in the

medical industry. Our research is going to contribute in this

field by making relevant information easily available.

1.1 Motivating Scenario

 Mr. Burton is a patient of Dr. Brown. Mr. Burton has

had a heart attack in 2005. Dr. Brown has prescribed the drug

Plavix to reduce the risk of future heart attacks. As Plavix

leads to acid reflux, the doctor has also prescribed the drug

Prilosec to lower acidity. Note that until recently this has been

the standard treatment regimen for patients with heart attack

histories. In March 2009, a study appeared in the Journal of

American Medical Association, which indicated that

combination of drugs Clopidogrel (Plavix is the brand name

of Clopidogrel) and proton pump inhibitor (PPI) Prilosec is

one of the PPIs) in patients with previous histories of heart

attacks can actually double the risk of second heart attack.

This research finding has direct implication on the treatment

regimen of Mr. Burton as it puts him in high-risk category for

a second heart attack. Currently, there are a few ways in

which Dr. Brown can learn about the discovery: (a) searching

and browsing relevant web sites (e.g., PubMed); (b) attending

a conference/ professional meeting where recent research

findings are discussed; or (c) through colleagues who may

have knowledge about the new discoveries. However, in all of

these methods, there could be significant delays between

publishing of new information and Dr. Brown becoming

aware of the information. Even after Dr. Brown becomes

aware of the study, his staff has to search through patients’

medical records to identify the patients who are on Plavix and

Prilosec simultaneously which can be difficult process [20].

Here is the diagram that illustrates this scenario:

Figure 1: Test case scenario diagram.

 Since the matchmaking in our system is done on the

semantics rather than the syntax, the knowledge discovery

enables the system to find such relevant publications and

provide the results to the patient.

2 Related Work

 Related works include research done in the field of health

and science for clinical trials. It also includes researches that

use semantic graphs and relationships for retrieval of

information.

 TrialX: It is a system, a third party tool that is built for

recruiting related health records for clinical trials. As one must

realize that before any medication becomes available to the

market, there are clinical trials performed to measure the

efficiency and side effects of the same. However, this process

Int'l Conf. Semantic Web and Web Services | SWWS'12 | 3

of clinical trials currently takes over years due to the fact that

finding appropriate people for testing the drug is a laborious

process. However, TrialX makes it easier for the people to

find the clinical trials related to their health record. It performs

a matchmaking algorithm and finds the related clinical trials

for any particular health record.

 Semantically Connected Named Entities and

Relationships (SCOONER): Domain specific searches

comprises of knowledge about the domain which serves as the

basis of the search. However, there are three major concerns

about such available knowledge: (1) exists only for few well

known broad domains; (2) is of a basic nature: either purely

hierarchical or involves only few relationship types; and (3) is

not always kept up-to-date and is missing insights from

recently published results. Kno.e.sis at WSU developed a

framework addressing the above concerns. Their

implementation provides an up-to-date knowledge based

search system called SCOONER. The knowledge is extracted

from recent bioscience abstracts. It uses a populated ontology

(also called knowledge base) for semantic metadata extraction.

 Retrieval of Similar Electronic Health Records Using

UMLS Concept Graphs [17]. Physicians are often faced with a

decision making challenge, in which case they can use the

information available to them about the previous clinical trials.

However, since the amount of information in this field is large,

exhaustive search is unfeasible. This paper proposes an

approach to deal with this issue. They propose an approach for

the retrieval of similar clinical cases, based on mapping the

text onto UMLS concepts and representing the patient records

as semantic graphs. They also did a thorough evaluation of the

proposed method and the results show that their method

correlates well with the expert judgments and outperforms

remarkably the traditional term-vector space model.

3 Our Approach

 This system consists of the following two major parts;

semantic Matchmaking and Semantic Ranking. This research

paper focuses on the semantic Matchmaking. The

matchmaking performs all the core operations of finding the

relevant publications for any particular health record. Once

the results are found, the Semantic Ranking provides us a way

of calculating the relevance of the publications to a particular

record.

 The matchmaking and the ranking process are performed

semantically where the system uses ontology mappings,

synonyms calculation and hierarchy verification for

calculating relevant results. Here is a diagram showing the

overview of the functionality of our system:

 Figure 2: Overview of the System.

 Our health record consists of the following personal

information: (1) Name, (2) Address, (3) ID, (4) Age, (5)

KnownDisease, (6) Medications (7) Gender, (8) Symptoms,

(9) PrimaryPhysician, (10) PhysicianId, (11)

PrimaryPharmacy and (12) PrimaryPharmacyId.

 A sample template was used for generating test health

records for our system. Since there was no standard found for

generating health records, we used Google health’s format as

the reference. The health record information is then parsed to

create a patient profile with all the pertinent information.

Once the profiles have been generated, all the data is

populated into ontology for semantic matchmaking. On the

other hand, the PubMed publications were downloaded and an

ontology was populated with all the information about the

medical papers. Once both the ontologies have been

populated with health records and medical publications

information respectively, the system can begin the

matchmaking procedure.

 One of the most important parts of matchmaking is to be

able to annotate the unstructured text. We need annotations

for populating both the ontologies. The publications from the

PubMed including their title and abstract would be annotated.

Also, the same process would be followed to annotate the

information in the health records. Once both the annotations

are received, both the ontologies are updated with the

respective annotations and matchmaking procedure advances

to the next step.

4 Building Blocks

 In order to understand the matchmaking process

completely, we must examine the following building blocks of

the system. These components played a key role in the

implementation of the system; (a) Electronic Health Records

(b) PubMed (c) UMLS (d) NCBO BioPortal.

4 Int'l Conf. Semantic Web and Web Services | SWWS'12 |

4.1 Electronic Health Records

 In order to be able to test the system, one must realize

the need of health records. However, due to the sensitivity of

health records and the information within, it is nearly

impossible to be able to work with real records. In order to

deal with this shortcoming, sample health records were

created for testing purposes based on Google Health’s format

(Google Health is discontinued now). Here is a sample of the

Google Health Record [9]:

Figure 3: Google Health Samples [9]

 Sample health records (75) in XML format, similar to

Google Health records for testing purposes were generated.

These sample health records would enable the application to

work properly even when fed with real health records. Here

are a few samples of the health records that were generated:

<Patient>

<Name>Robin Woods</Name>

<Address>1563 South Milton st</Address>

<City>Tuscon</City>

<State>AZ</State>

<Zip>92009</Zip>

<Country>United States</Country>

<Id>1235</Id>

<Age>25</Age>

<KnownDisease>Asthma</KnownDisease>

<Medications>Aerobid, Alvesco</Medications>

<Gender>Male</Gender>

<symptoms>Vomiting</symptoms>

<PrimaryPhysician>Dr Smith</ PrimaryPhysician>

<PhysicianId>dc1247</PhysicianId>

<PrimaryPharmacy>Walgreens</PrimaryPharmacy>

<PrimaryPharmacyId>247Phar</PrimaryPharmacyId>

</Patient>

4.2 PubMed

 PubMed comprises more than 21 million citations for

biomedical literature. The sources of these citations are

MEDLINE, life science journals, and online books. These

citations are a combination of both links to full-text content

from PubMed Central and from publisher web sites [10].

PubMed is maintained by the National Center for

Biotechnology Information (NCBI), at the U.S. National

Library of Medicine [11].

 PubMed is a free resource and it provides an easy to use

search interface to search the publications via the title, journal

name, names of authors, specific citations, keywords etc. We

have used PubMed as the knowledge resource in this research.

About a couple hundred research publications (Abstracts)

were downloaded, annotated and then the knowledgebase

(Ontology) was populated. This allows the system to do

accurate matchmaking and display relevant results.

4.3 UMLS

 UMLS stands for Unified Medical Language System and

it is a system that brings together health vocabularies,

biomedical terms and standards. It enables to enhance and

develop applications with use of such information and

promotes interoperability. It is a source of a large number of

national and international vocabularies and classifications

(over 100) and provides a mapping structure between them

[13]. The UMLS can be used to design information retrieval

for patient record systems, to facilitate the communication

between different systems, or to develop systems that parse

the biomedical literature. UMLS consists of three knowledge

sources [14]: (a) Metathesaurus, (b) Semantic Network and

(c) SPECIALIST Lexicon and Lexical Tools.

4.4 NCBO BioPortal

 NCBO (National Center for Biomedical Ontology)

offers a BioPortal, which can be used to access and share

ontologies that are actively used on the biomedical

community. By using the BioPortal, one can search the

ontologies, search biomedical resources, obtain relationship

between terms in different ontologies, obtain ontology based

annotations of the text etc. Bio portal is a web- based

application [4]. It can be used for browsing, finding, filtering,

searching ontologies. It can also be used for submitting new

ontologies and for exploring mapping between ontologies.

 BioPortal provides access to one of the largest

repositories of biomedical ontologies. We can access these by

web browsers or via web services (RESTful services). The

BioPortal library consists of the following:

Total number of ontologies: 173

Number of classes/types: 1,438,792

4.4.1 NCBO Annotator:

 The NCBO annotator provides us with a web service

that we can use to process text, to recognize relevant

biomedical ontology terms. The NCBO Annotator annotates

or “tags” free-text data with terms from BioPortal and UMLS

ontologies. It can be accessed via the browser or via the web

Int'l Conf. Semantic Web and Web Services | SWWS'12 | 5

service. The web service is flexible enough to allow for

customizations particular to any application[5]. For example

we can limit results to a particular ontology (e.g. Anatomical

entity Ontology) or to a certain UMLS semantic type (e.g.

T017 for ‘Anatomical Structure’).

 The annotations are performed in two steps; first is the

direct annotations by matching the raw text with the preferred

name and then expanding the annotations by considering the

ontology mappings and hierarchy. The expanded semantic

annotations are obtained by considering the transitive closure,

semantic distance and ontology mappings. Here is the

workflow of the annotator web service:

Figure 4: Annotator Workflow [16]

5 Semantic Matchmaking

 Matchmaking is a process by which we calculate or

compute the related results with respect to a certain entity. For

example, if the entity in question was entity A, by applying a

matchmaking algorithm, we would search and obtain all the

entities and resources related to entity A. This list of results

should be calculated based on the semantics of the entity A as

well as the semantic annotations of the resulting resources.

With respect to our domain, our purpose of matchmaking in

this paper is to obtain relevant publications to a particular

patient (health record). We perform the matchmaking between

the health record and paper publications to obtain relevant

results. Semantic matchmaking is different from any other

matchmaking in a way that the results are obtained in light of

a shared conceptualization for the knowledge domain at hand,

which we call ontology.

 In order to obtain relevant results, we must ensure that

the semantic annotations are accurate. Also, the underlying

ontology used should be appropriate, relevant and should

provide us with all the possible outputs. One can also use

more than a single Ontology to obtain better results. In our

matchmaking process we are using UMLS for obtaining the

annotations.

5.1 Health Record Ontology

 This ontology contains all the patients information with

all the results obtained after the annotation process as follows:

(a) Name, (b) ID (unique), (c) Age, (d) Gender, (e) Known

disease, (f) Medications, (g) Symptoms, (h) Annotations

results for known disease (with synonyms), (i) Annotations

results for medications (with synonyms), (j) Annotations

results for symptoms (including synonyms)

5.2 Paper Publication Ontology

 This ontology contains all the paper publications

information. About 150 publication abstracts were

downloaded from PubMed for testing purposes. Since the

entire paper consists of figures, images, calculations etc.

which results in excessive and/or unnecessary annotations, we

choose to use only the abstracts for the annotations. This

enabled us to get precise annotations and thus better results.

Similar to the health records; annotations were obtained to

supply better results for the matchmaking. This ontology

contains the following information:

(a) Title, (b) Abstract, (c) Publication date, (d) Authors

names, (e) Annotations for title, (f) Annotations for abstract

6 Matchmaking Algorithm

 As seen in the Figure 5, the matchmaking algorithm

starts from the two ontologies. One is for health records and

the other one for PubMed Publications. Once the ontologies

are populated, matchmaking is performed based on the data

and annotations obtained. Here is the workflow indicating the

flow of information and the matchmaking process:

 Figure 5: Matchmaking Workflow

 The system performs matchmaking of the health records

and publications based on the following information:

For the Heath Records: (a) Disease name, (b) Annotations and

synonyms of the disease names, (c) Medications, (d)

Annotations and synonyms of the medication names, (e)

Symptoms and (f) Annotations and synonyms of the

medication names.

6 Int'l Conf. Semantic Web and Web Services | SWWS'12 |

For the Publications: (a) Title of the paper, (b) Abstract of the

paper, (c) Annotations of the title (Considering semantic

hierarchy. i.e. strength of the concepts), (d) Annotations of the

abstract (Considering semantic hierarchy i.e. strength of the

concepts)

 Our system now performs the matchmaking and provides

the results accordingly. In this process, the system not only

performs the keyword matching, but also takes into

consideration the semantic hierarchy, transitive closure,

ontology mappings, semantic distance, synonyms, annotations

etc.

 Once the matchmaking is done semantically, it goes

above and beyond the keyword matches. This enables the user

to get the relevant results regardless of the “word” or the

“term” they enter. For example, a person has a symptom of

vomiting, however, is unaware of the disease. Suppose that

there is a new discovery about people having symptoms of

Bilious attack and this discovery is found in one of the new

research publications. However, if that person were to search

a normal keyword search from their symptoms they would not

be able to locate the paper, which discusses about the new

discovery with symptoms of Bilious attack. However, with

this system and with the underlying ontologies that person will

get the results of this new discovery even if the paper does not

have the word “vomiting” in it.

7 Testing the Matchmaking Algorithm

 Let us consider motivating scenario mentioned in

Motivation section. Our system performs the semantic

matchmaking and thus provides the following results. It

clearly identifies the semantic relationship between the two

drugs and thus shows the paper indicating the effects of both

drugs when taken together.

Results: Here are the results related to: Mathew burton

Patient Record Number: 1284

Disease: Heart Attack

Rank is: 8

Link is: http://www.ncbi.nlm.nih.gov/pubmed/22053225

Rank is: 7

Link is: http://www.ncbi.nlm.nih.gov/pubmed/22053219

Rank is: 6

Link is: http://www.ncbi.nlm.nih.gov/pubmed/21944415

Rank is: 6

Link is: http://www.ncbi.nlm.nih.gov/pubmed/21573267

Rank is: 5

Link is: http://www.ncbi.nlm.nih.gov/pubmed/21884023

Rank is: 4

Link is: http://www.ncbi.nlm.nih.gov/pubmed/20729752

Here is a Snapshot of the User Interface results:

Figure 6: Snapshot of results of test case

8 Comparison with Syntactic

Matchmaking

8.1 Advance Ontological Search

 The semantic matchmaking enables the system to perform

advance search based on the ontology concepts and hierarchy,

which is not possible by a syntactic matchmaking process.

This enables the user to be able to discover and retrieve

results that would not be found by a simple keyword search.

This is an efficient way to discover hidden but important

information.

8.2 Discovery of Medication Side Effects

 Our system enables a user to not only get the related

publications based on the disease that they are suffering from,

but also enables them to discover any side effects of the

medications and drugs they are taking. The results are not just

limited to the disease’s name because of using UMLS and 173

ontologies during the matchmaking process. For example if a

person is on some medication for a long time and if that drug

or medication has some long term side effects; such

publications should be displayed to the user. Our system does

the same. It gives the user, publications related to the effects

of the drugs or medications they are on. For example; a query

that was ran on a record suffering from breast cancer, the

following result was not only retrieved but also given a good

rank:

Rank is: 8

Link is: http://www.ncbi.nlm.nih.gov/pubmed/21993405

Title: Second cancer after radiotherapy 1981-2007

 In our system, the side effects of drugs are discovered

whether they appear directly or indirectly as it checks the

annotations, synonyms etc. This is something that cannot be

achieved by syntactic matchmaking.

8.3 Extended Search via Profile

 Our system enables the user to retrieve publications that

are not only related to his current disease or medications but

also papers, which may have some synonyms of the current

Int'l Conf. Semantic Web and Web Services | SWWS'12 | 7

http://www.ncbi.nlm.nih.gov/pubmed/22053225
http://www.ncbi.nlm.nih.gov/pubmed/22053219
http://www.ncbi.nlm.nih.gov/pubmed/21944415
http://www.ncbi.nlm.nih.gov/pubmed/21573267
http://www.ncbi.nlm.nih.gov/pubmed/21884023
http://www.ncbi.nlm.nih.gov/pubmed/20729752
http://www.ncbi.nlm.nih.gov/pubmed/21993405

medications or symptoms. This search goes beyond the

keyword search and retrieves the papers semantically. For

example, if we like to conduct matchmaking for someone with

the symptoms of vomiting. Also, let’s suppose that the patient

does not suffer from any disease currently. In a syntactic

search we will be able to receive all the results related to

vomiting. However, with the help of semantic matchmaking

the user will get results pertaining to vomiting including

Haematemesis, Bilious attack and Throwing up etc. This

enables the user to retrieve complete results regardless of the

search term. When searched for symptoms “vomiting” we get

the following results:

Rank is:6

Link is: http://www.ncbi.nlm.nih.gov/pubmed/12207199

Title: Vomiting

Rank is:6

Link is: http://www.ncbi.nlm.nih.gov/pubmed/21573267

Title: The patient with haematemesis and melaena

Rank is:6

Link is: http://www.ncbi.nlm.nih.gov/pubmed/21359665

Title: Gastric duplication cysts as a rare cause of

haematemesis

8.4 Knowledge Discovery without Specific

Input

 Our system allows a user to discover the papers related

to them without having particular information about the

disease that they might be suffering from. Since the search can

be done with any one of the parameters (medications, disease,

symptoms etc.), the complete information is not mandatory. A

person might search based on his symptoms without knowing

the name of the disease or a person might just search without

having any symptoms but on some particular medication. This

enables them to retrieve and discover hidden knowledge. For

example with our test case scenario number 2, the two drugs

together had side effects which we were able to detect since

we took the semantic relationship of both the drugs into

consideration.

9 Preliminary Evaluation

 In order to evaluate the functionality of our system, we

compared our results with the results of PubMed. PubMed

provides a user interface to search for publications related to

the terms entered. We use the same interface to enter the

disease name, symptoms or medications and retrieve results.

On the other hand, we use our system and find related papers

to a particular record (patient), who is suffering from the same

disease, symptoms and takes the same medications. This

allowed us to do a comparison on both the results obtained

and conclude the results. We used our test scenario number 2

that was explained in the above section for the evaluation

purposes. Here is snapshot of the results obtained from

PubMed:

User Profile:

Name: Mathew Burton

Known Disease: Heart Attack

Symptoms: Arm pain, Acidity

Medications: Prilosec, Plavix, Alprenolol

Query 1: PubMed Input: Heart Attack, Arm pain, Acidity,

Prilosec, Plavix, Alprenolol

PubMed Output: No items found.

Query 2: Prilosec, Plavix, Alprenolol

PubMed Output: No items found.

Query 3: Heart Attack, Arm pain, Acidity

PubMed Output: No items found.

Query 4: Heart Attack

PubMed Output:

 Figure 7: PubMed Results

Here is snapshot of the results obtained from our system:

Figure 8: Results Snapshot

 We can see that our system, gave the results of papers

discussing the combined effects of both the drugs Prilosec and

Plavix together, while there was no implicit information

given. Our system was able to discover the semantic

8 Int'l Conf. Semantic Web and Web Services | SWWS'12 |

http://www.ncbi.nlm.nih.gov/pubmed/12207199
http://www.ncbi.nlm.nih.gov/pubmed/21573267
http://www.ncbi.nlm.nih.gov/pubmed/21359665

relationship between the two drugs and thus showed the

related papers in the result, which were not found in the

PubMed results.

 From the above example it is evident that our system

performs better than the searches done at PubMed. Our

system not only allows us to search based on the profile or

keyword, but it also takes the semantic relationships between

the provided information into consideration. Thus in the

above example, we did not get results related only to Heart

attack, but also results related to symptoms, medications, side

effects of medication, combined effect of two medications etc.

10 Conclusions and Future Work

 The amount of knowledge in the medical domain is

growing exponentially. With this growth, it is becoming a

very hard for physicians or the patients to keep track of all the

new discoveries. Our system addresses this issue and makes

this knowledge discovery easier. Our system performs

semantic matchmaking for knowledge discovery. This can be

used by physicians or by patients to discover resources related

to their Personal Health Record. Since the system performs

semantic matchmaking, the results are more precise and

accurate. As seen in the above two motivating examples; our

system enables the user to discover papers/knowledge that

would not have been possible to discover via syntactic

matchmaking.

 Future works on this system might include an extended

evaluation in form of usability studies can be done with the

help of doctors and physicians to identify the accuracy of the

results.

11 References

[1] Tommaso Di Noia, Eugenio Di Sciascio, Francesco M. Donini. “A

Non-Monotonic Approach to Semantic Matchmaking and Request

Refinement in E-Marketplaces” International Journal of Electronic

Commerce, 2008.

[2] Jonquet, Clement. “Semantic Annotations of BioMedical Data”.

http://www.slideshare.net/jonquet/semantic-annotation-of-biomedical-data-

7281656. March 2011.

[3] Good, Benjamin. “NCBO Annotator versus MetaMap on GO concept

detection”. http://i9606.blogspot.com/2010/12/ncbo-annotator-versus-

metamap-on-go.html. December 02, 2010.

[4] Jonquet, Clement. Musen, Mark A and Shah, Nigam. “A System for

Ontology-Based Annotation of Biomedical Data”. Proceedings of the 5th

international workshop on Data Integration in the Life Sciences.

“http://bmir.stanford.edu/file_asset/index.php/1316/Article-

DILS08_Jonquet_Musen_Shah_published.pdf.” 2008.

[5] Patricia L. Whetzel, Nigam H. Shah, Natalya F. Noy, Clement

Jonquet, Adrien Coulet, Nicholas Griffith, Cherie Youn, Michael Dorf and

Mark A. “Ontology Web Services for Semantic Applications”. Stanford

University, Stanford CA, USA.

“http://www2.lirmm.fr/IC//Supports/FMIN113-

ProjetTutore/2010_11/ExemplesPosters/CJ2.pdf.” 2008.

[6] U.S. National Library of Medicine. “MetaMap”.

“http://www.nlm.nih.gov/research/umls/implementation_resources/metamap.

html” . September 2011.

[7] Alan R. Aronson, PhD and François M. Lang, MSE. “The Evolution

of MetaMap, a Concept Search Program for Biomedical Text”. Lister Hill

National Center for Biomedical Communications.

“http://www.lhncbc.nlm.nih.gov/lhc/docs/published/2009/pub2009041.pdf”.

2009.

[8] Aronson, Alan R. Lang, François-Michel. “An overview of MetaMap:

historical perspective and recent advances” J Am Med Inform Assoc

(JAMIA).“http://www.lhncbc.nlm.nih.gov/lhc/docs/published/2010/pub2010

033.pdf”. 2010

[9] Google Health Samples.

“http://code.google.com/p/googlehealthsamples/source/browse/trunk/CCR_s

amples/”. Retrieved on September 2011.

[10] PubMed.com “http://www.ncbi.nlm.nih.gov/pubmed/” 2011.

[11] PubMed Quick Start. U.S. National Library of Medicine National

Institutes of Health.

“http://www.ncbi.nlm.nih.gov/books/NBK3827/#pubmedhelp.PubMed_Quic

k_Start”. Retrieved on Aug 2011.

[12] PubMed FAQS. U.S. National Library of Medicine National Institutes

of Health.

“http://www.ncbi.nlm.nih.gov/books/NBK3827/#pubmedhelp.FAQs”.

Retrieved on Aug 2011.

[13] UMLS. Open Clinical Knowledge Management for Medical Care.

“http://www.openclinical.org/medTermUmls.html “ Retreived on Aug 2011.

[14] UMLS. Wikepedia.

“http://en.wikipedia.org/wiki/Unified_Medical_Language_System”

Retrieved on Aug 2011.

[15] Chintan Patel, Sharib Khan, and Karthik Gomadam. “TrialX: Using

semantic technologies to match patients to relevant clinical trials based on

their Personal Health Records”. In Proceedings of the 8th International

Semantic Web Conference, 2009.

[16] OBA Service Workflow. BioOntology Wiki.

http://www.bioontology.org/wiki/index.php/File:OBA_service_workflow.pn

g” retrieved on Sep 2011.

[17] Laura Plaza, Alber Diaz. “Retrieval of Similar Electronic Health

Records Using UMLS Concept Graphs”. Proceedings of the Natural

language processing and information systems, 2010.

[18] Barbara Hayes, William Aspray. “Fighting Diabetes with Information:

Where Social Informatics Meets Health Informatics”. iConference, 2010.

[19] Semantic Network, U.S. National Library of Medicine National

Institutes of Health. “http://www.ncbi.nlm.nih.gov/books/NBK9679/”.

Retrieved on Nov 2011.

[20] L. Ramaswamy, and I. B. Arpinar, "Semantics-enabled Proactive and

Targeted Dissemination of New Medical Knowledge", CSHALS 2011:

Conference on Semantics in Healthcare and Life Sciences, Feb 2011,

Cambridge/Boston MA.

Int'l Conf. Semantic Web and Web Services | SWWS'12 | 9

The Role of Semantics in Testing Semantic Web Services

Hazlifah Mohd Rusli1, Suhaimi Ibrahim2, Mazidah Puteh1 and Naz’ri Mahrin 2
1Faculty of Computer Science & Mathematics, Universiti Teknologi MARA, Terengganu, Malaysia

2 Advanced Informatics School, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia

2 Suhaimi Ibrahim and Naz’ri Mahrin are supported by Research University Grant Vot 00H68

Abstract – Semantic Web Services are Web Services that are
semantically annotated in order to make the services machine
understandable, thus allowing service discovery, selection,
composition, and invocation to be done automatically or with
minimum human intervention. The Semantic Web services
research community has been focusing on how these
semantics can facilitate service discovery, selection,
composition, and invocation. As of late, there have been some
growing research interests in the area of Semantic Web
services testing. However, it is not stated how the semantic
annotations in the Web services description can help improve
testing and how different it is from testing normal Web
services. This paper discusses current ongoing research on
testing Semantic Web services and classifies how testing uses
the semantics of the Semantic Web services description.

Keywords: A Semantic Web Service; Software Testing;

1 Introduction
 More and more web based applications are being
developed according to the service oriented architecture
(SOA) framework. It is estimated that by the year 2015, 80%
of web based applications will be developed using this
architectural strategy [1]. One way of implementing SOA is
by using Web services. Web services are service providing
web applications whose service descriptions are advertised in
a repository such as Universal Description, Discovery and
Integration Protocol (UDDI) registry. Web service enables
interoperability between heterogeneous web applications by
leveraging on standards such as Extensible Markup Language
(XML), Web Service Definition Language (WSDL), Simple
Object Access Protocol (SOAP) and, UDDI. While these
standards allow interoperability between applications
developed using different languages and on different
platforms, they do not facilitate the automation of Web
services tasks such as service discovery, selection,
composition, and invocation. Semantic Web services (SWS)
were introduced to provide solutions to the automation of
these tasks. Adding semantics to the Web service descriptions
enables the descriptions to be understood by machines, thus
allowing automation of Web services tasks. Although there
are many research conducted in the area of SWS discovery,
selection, composition and, mediation, research in the areas of

Web services testing, particularly, SWS testing is still new
and starting to garner interest.
 This paper will focus on Semantic Web services testing
and offers an overview and classification of state-of-the-art
approaches. The question is how semantics in the service
description is used in testing Semantic Web services?
Therefore the objective of this article is to find out the role of
semantics in testing Semantic Web services and to provide a
classification of the testing approaches used. It is hoped that
the result of this paper will be able to provide an essential
perspective on how testing of Semantic Web services differ
from that of normal syntax based Web services.
 The remainder of this paper is organized as follows. A
brief overview of current syntax based Web services testing is
discussed in Section 2. Section 3 briefly describes current
prominent Semantic Web services approaches as well as the
rule language used. A classification of the SWS testing
approaches is presented in Section 4. Section 5 summarizes
and discuses the testing approaches. Section 6 concludes the
review.

2 Web Services Testing
 At the very basic, testing a Web service consists of
generating SOAP message request to be sent to the service
provider from the service client. The SOAP message response
is then analyzed to determine whether it is the same as what is
expected of it. Testing a Web service involves having a test
data generator, SOAP message generator, message executor,
test oracle generator and, a test analyzer at the very least.
Generating test cases based solely on the WSDL files have
been researched by Sneed [2] and Bartolini [3]. For composite
services, several approaches [4, 5] have been proposed for
testing using Business Process Execution Language (BPEL)
[6].
 Both WSDL and BPEL are syntax based Web service
description. Syntax based description lacks the necessary
information to facilitate the automation of tasks such as
selection, discovery, composition and, mediation. Semantic
Web services were introduced to provide solution to the
problem. While numerous researches catered to finding
solutions to service selection, discovery, composition, and
mediation, not many were focused on Web services testing.
Only recently, there has been a growing research interest in
testing Semantic Web services. This paper will discuss several

10 Int'l Conf. Semantic Web and Web Services | SWWS'12 |

Semantic Web services testing approaches and classify them,
but before that, a brief description on Semantic Web services
approaches is provided in the following section.

3 Semantic Web Services Approach
 Semantic Web services are Web services that are
semantically annotated using ontology and rule languages.
The word semantics itself means meaning and the semantic
annotations provide meaning to the Web service description.
Several initiatives have been proposed to implement Semantic
Web services such as OWL-S [7], WSMO [8] and, WSDL-S
[9]. This section briefly discusses the initiatives, focusing on
the elements of the initiatives that are used in testing.

3.1 OWL-S

 OWL-S is an ontology for describing Web services,
hence the name Web Ontology Language for services. OWL-
S ontology includes three primary sub-ontologies which are
service profile, process model and grounding. The profile
ontology describes what the service does, the process model
ontology describes how the service is used, and finally the
grounding ontology describes how to interact with it. While
the service profile provides a way to describe the services
offered by the providers and the services needed by the
requesters, the process model describes the interaction
protocol between a Web service and its client. It is organized
as a workflow of processes where each processes is described
by three components which are inputs, preconditions and
results. Results specify the output and effect based on the
process condition. The inputs and outputs use Web Ontology
Language (OWL) [10] as representation whilst the
precondition and postcondition use rule languages such as
Semantic Web Rule Language (SWRL) [11].

3.2 WSMO

 WSMO stands for Web Service Modeling Ontology.
WSMO identifies four main top level elements which are
ontologies, Web services, goals and mediators. Ontologies
provide the terminology used by the other elements of the
WSMO. Web services are computational entities that provide
some value in a specific domain. Goals describe a user’s
desire or objectives when consulting Web services. Mediators
describe elements that handle interoperability problems
between WSMO elements. Web services and goals have two
main sub-elements which are capability and interface. The
capability of the service contains a set of axioms that
describes the precondition, postcondition, assumption and
effect. The interface of a service describes how to interact
with the web service (choreography) and how the service
provides its functionality by making use of other services
(orchestration). Both choreography and orchestration are
defined in terms of their state signature and transition rules. A
state signature defines the state ontology and the transition
rules change the state according to the given condition.

3.3 WSDL-S

 WSDL-S or Web Service Semantics is a semantic web
services approach that builds on existing Web services
standards by annotating WSDL with ontological information
for the domain model along with pre-conditions and effects
for each operation in the service. Unlike OWL-S and WSMO,
it does not duplicate descriptions in the existing WSDL, but
rather enhances it. WSDL-S also allows developers to use any
semantic language of their choice and not fixed to just OWL,
WSML or UML. In WSDL-S the WSDL operations, input
and output are annotated with semantics. The Web service
operations are associated with pre and post conditions using
modelReference annotation on WSDL portType. Similar to
OWL-S, the preconditions and postconditions can be
described using rule languages such as SWRL [11] and
Object Constraint Language (OCL) [12].

4 Classification of SWS Testing
 Literature search on Semantic Web services testing
resulted in the discovery of sixteen research papers with the
earliest publication in 2005. The research papers were
searched from IEEE Xplore, Springer Link, Science Direct as
well as Google scholar using search strings “Semantic Web
services testing”, “OWL-S and testing”, “WSMO and testing”
and “WSDL-S and testing”. Once a research paper has been
identified as a SWS testing paper, other relevant papers were
also discovered by looking at the references of the identified
paper as well searching for other papers that have cited the
identified paper. Based on the issues discussed in the selected
papers, we have classified the papers into three categories
which are test case generation (12 papers), mutation testing (3
papers) and, test selection (1 paper). The research papers
worked on SWS initiatives or specification languages such as
OWL-S (8 papers), WSMO (3 papers) and WSDL-S (3
papers). The remaining two papers did not specify the exact
SWS used but rather, they used the general notion of Input,
Output, Precondition and Effect (IOPE) that is inherent in
OWL-S, WSMO and WSDL-S. Table 1 describes the test
issues addressed by the papers as well as the description
language used. The following section will further discuss the
issues highlighted in Table 1.

Table 1: SWS Testing Research Paper Breakdown

Test Issues

SWS Approach

O
W

L-
S

W
S

M
O

W
S

D
L-

S

G
en

er
al

IO

P
E

Test Case Generation 4 3 3 2

Mutation Testing 3 - - -

Test Selection 1 - - -

Int'l Conf. Semantic Web and Web Services | SWWS'12 | 11

4.1 Test Case Generation

 Test cases are a set of test inputs and expected results
created to exercise a particular program path or to verify
compliance to a specification. Manually creating test cases
can be tedious as well as time consuming. Furthermore,
creating test cases manually does not support the Semantic
Web services objective which is to facilitate the automation of
Web services usage. Generating test input data from web
services description is done by selecting data from a database
that corresponds to the input parameter type. The intelligence
of the test generator can be improved by selecting data that
not only corresponds to the parameter type, but also satisfy
the precondition of the Web service [13].

Table 2: SWS Test Case Generation Techniques

Test Case Generation
Technique

SWS Approach

O
W

L-
S

W
S

M
O

W
S

D
L-

S

G
en

er
al

IO

P
E

EFSM based - - 1 1

Petri-Net based 3 - - -

Model Checking 1 2 - -

Planner based - - - 1

Decision Table - - 1 -
Equivalence Partition &
Boundary Condition
testing

1 1 - -

Pair Wise Testing - - 1 -

 Several testing techniques have been employed in
generating test cases such as Extended Finite State Machine
(EFSM) based, Petri-net based testing, model checking,
planner based, decision table, equivalence partitioning and
boundary condition testing and, pair wise testing. Table 2
shows the number of research done for each test generation
techniques as well as the semantic web services approaches
used. The following section will discuss the different
techniques in generating test cases using different semantic
web services approaches.

4.1.1 Extended Finite State Machine Based (EFSM)

 Finite state machines (FSM) are behavioural model used
in designing computer programs and is often used for defining
the temporal order of Web service interaction. However it is
not sufficient to describe all aspect of a Web service as Web
service have input and output messages with data parameter.
In order to better describe Web service behavior, EFSM
extends FSM with variables, statements and conditions [14].
Semantic Web services testing based on EFSM involves
creating an EFSM representation of the Web service
behaviour and applying existing EFSM test case generation to
the created EFSM model [15, 16].

 Sinha and Paradkar [15] proposed an algorithm that
translates WSDL-S behavioural specification of a single Web
service into its equivalent EFSM representation. The
preconditions and effect of the WSDL-S operations are
expressed using SWRL. Sinha and Paradkar suggested several
EFSM based test generation techniques that can be applied
such as Full predicate coverage, BZ-TT method and mutation
based techniques. However there was no further elaboration
on which test generation was selected and applied. Ramollari
[16] did not focus on any particular SWS description but
rather described how IOPE elements of SWS operations
encoded in Rule Interchange Format–Production Rule Dialect
(RIF-PRD) and OWL could be used to generate Stream X-
machine model (SXM), which is a type of an EFSM.

4.1.2 Petri-Net Based

 In testing composite Web services, it is not sufficient to
just evaluate the preconditions and postconditions of the
service operations, as the internal execution process needs to
be tested as well. Dai [13] and Wang [17] proposed the use of
Petri-Net model to represent the structure and operational
semantics of composite Web services due to its ability to
analyze and verify properties such as reachability, liveness
and deadlocks. The Perform construct in OWL-S process
model is represented by Petri-Net transition, the input and
preconditions mapped to Petri-Net input places and output
and effects mapped to Petri-Net output places. The Petri-Net
model is then traversed and test cases are generated to cover
all branches of the Petri-Net. A Petri-Net ontology that
catered for the IOPE semantics was created to enhance the
modeling capability of the derived Petri-Net model. The
derived Petri-Net ontology can be used to generate test data
based on ontology reasoning.

4.1.3 Model Checking

 Model checking technique has been used in generating
test cases based on semantic web services description by
Huang [18] and Jokhio [19, 20]. The issue in using model
checking approach for generating test cases for semantic web
services is how to convert or translate the existing
specification language into the input language of the model
checker, taking into account the semantic description. Another
issue is the derivation of trap properties. In all approaches the
trap properties are embedded into the input specification
language as assertions. In [19], mapping rules were created to
map the goal capability and interface into B elements in order
to create a B specification. Like WSMO, B language is based
on abstract state machine, The state signatures are mapped to
B variable types, transition rules are mapped to B operations
and state ontology is mapped to sets in B machine. Huang
[18] converted the OWL-S process model control construct
and IOPE logical formulas expressed in Planning Domain
Definition Language (PDDL) into BLAST’s C-like
specification input language.

12 Int'l Conf. Semantic Web and Web Services | SWWS'12 |

4.1.4 Planner Based

 Planning, or more specifically AI (artificial intelligence)
planning is a process that chooses and organizes actions by
anticipating the expected outcomes in order to change the
state of the system. The final result of planning is a plan.
Given the initial state of the world and a goal state, the
planner is able to come up with a plan that consists of a
sequence of actions that corresponds to a sequence of state
transitions. Paradkar [21] created a planner that is able to
generate a sequence of web service invocations as a test case.
The test goals are generated by refining the preconditions
from each Web service using a set of fault models. These
goals are then fed into the planner, together with the initial
state of the world and web service definitions in order to
generate test cases. Similar to Ramollari’s approach [16],
Paradkar does not state the actual SWS used in the approach.

4.1.5 Decision Table

 Decision table is a black box testing technique used to
represent complex logical relationship, where a number of
combinations of actions are taken based on varying sets of
conditions. A decision table has four portions, which are
condition stub, action stub, condition entries and action
entries. A column in the entry portion is a rule. Each rule
indicate actions to be taken for the conditional circumstances
inidicated in the condition part of the rule. Generating test
cases from decision tables involves indentifying the input
conditions (causes) and action (effect), generating a cause-
effect graph and converting it into a decision table and finally
convert the decision table rules into test cases. Noikajana [22]
used this technique to generate test cases from WSDL-S
where the preconditions and effects of the operations in
WSDL-S were described using SWRL. The idea is to
automatically populate the condition and action entries using
SWRL’s antecedent and consequents. Conditions are obtained
from antecedents of precondition and post-condition whilst
actions are obtained from consequents of precondition and
post-condition.

4.1.6 Equivalence Partitioning & Boundary Condition
Testing

 In equivalence partition testing, the program’s input
domain is divided into sub-domains where the sub-domains
have properties that cause that program under test to either
produce incorrect answer for every input element in the sub-
domain or correct answers for every input element in the sub-
domain. One of the issues of equivalence partitioning testing
is the generation of equivalence class. It is mostly performed
manually based on heuristics. Bai [23] tries to provide a
solution to this problem by using the ontology information of
the input parameter in OWL-S to generate input partitions.
The input partitions are derived by analyzing the relationship,
property and restriction of the input parameter class.
Similarly, Jokhio [24] proposed to identify equivalence class
using the transition rules of WSMO goals.

 The guarded condition of the transition rules are
obtained from the goal’s choreography interface. Jokhio [24]
also proposed the use of precondition’s logical predicate to
identify boundary condition for test data generation.
Boundary value condition testing is an extension of
equivalence partition testing in which values at the
equivalence class boundaries are selected as test input.

4.1.7 Pair-Wise Testing

 Exercising a set of all possible input combination of
software under test is not practical as the test case would be
too large to be executed exhaustively. Pair wise testing is an
economical alternative to testing all possible input
combinations, based on the observation that most faults are
caused by interactions of at most two factors. In pair-wise
testing a tester needs to first select data values for the system
input variables, after which test cases are generated by
covering all combinations of the selected test data values for
each pair of input variables. As is it is very tedious to generate
these reduced test cases combinations by hand, several pair
wise testing algorithms exists to automate the process.
 Noikajana [25] uses OCL to specify pre and post
conditions of Web services operations described in WSDL-S.
Based on the service rules and operations definitions derived
from both WSDL-S and OCL file analysis, an input parameter
model (IPM) is generated. The IPM consist of a set of input
parameters and a set of values for each parameter. A pair-wise
testing technique is then applied to the IPM. However, it is
not stated which pair-wise testing technique is used.

4.2 Mutation Testing

 Mutation testing is a technique where two or more
mutant programs are executed together with the same test
cases in order to determine the ability of the test cases to
detect the mutants. Lee [26] proposed mutation testing based
on OWL-S specification where the typical errors that might
occur are incorrect use of ontology class in the input/output
parameter, mistake in the rules defining the precondition and
postconditions, control flow and data flow error in the OWL-
S composite process. Based on these possible errors, Lee have
identified four categories of mutants which are input/output
data, condition, control flow and data flow mutation. The
input/output data mutant operators were generated from two
perspectives which are input type and ontology class
definition, and they were the only mutants discussed in the
paper.
 Similar to Lee’ work [26], Wang [27] and Wang [28]
also conducted research on mutation testing based on OWL-S.
However, instead of using existing specification in OWL-S,
the authors proposed extensions to OWL-S to accommodate
interaction requirements in terms of the temporal, invocation
time, application data and response time properties. The
mutation operators were then generated from these extensions
which use Future Time Linear Temporal Logic (FTLTL) and
SWRL to describe the extended properties.

Int'l Conf. Semantic Web and Web Services | SWWS'12 | 13

4.3 Test Selection

 Although comprehensive testing is necessary to ensure
the quality of a software system, executing all possible test
cases can be expensive as it takes up valuable time, machine
and tester resources. Bai [29] proposed an ontology based risk
assessment approach to test selection where test cases for
service features with high risks are given priority. Software
risk assessment identifies crucial parts of the system which
have a high failure probability rate or which causes serious
consequences due to its failure. Thus the service features’

risks are assessed based on their failure probability and
importance. Bai [29] estimates the failure probability of
ontology class and service’s interface which is obtained from
domain experts or historical data. The failure probability for
ontology class is adjusted according to the failure probability
of its dependencies (parent and property class) whilst the
failure probability of service’s interface is adjusted according
to its input and output parameters. Failure probability of a
composite service can be estimated based on the control flow
analysis obtained from the process model of OWL-S.

Table 3: Summary of SWS Testing Approaches

Reference Year Semantic Description Utilization Approach
SWS

Description
Rule Langugae

Sinha [15] 2006 Describe service behaviour EFSM WSDL-S SWRL

Ramollari [16] 2009 Describe service behaviour EFSM General IOPE RIF-PRD

Dai [13],Wang [17] 2007 Describe service orchestration Petri Net OWL-S Not mentioned

Huang [18] 2005 Describe service orchestration Model Checking OWL-S Not mentioned

Jokhio [19, 20] 2009 Describe service behaviour Model Checking WSMO Axioms

Paradkar [21] 2007 Generate test goals for test planner input Planner Based General IOPE Not mentioned

Noikajana [22] 2008 Determine test partitions for test data selection Decision Table WSDL-S SWRL

Bai [23] 2008 Determine test partitions for test data selection
Equivalence Partition &

Boundary Condition
OWL-S Not mentioned

Jokhio [24] 2009 Determine test partitions for test data selection
Equivalence Partition &

Boundary Condition
WSMO Not mentioned

Noikajana [25] 2009 Determine test partitions for test data selection Pair Wise WSDL-S OCL

Lee [26] 2008 Generate test mutants Existing semantic desc. OWL-S Not mentioned

Wang [27, 28]
2008,
2009

Generate test mutants Extension to OWL-S OWL-S Not mentioned

Bai [29] 2009 Calculate service feature risk Test selection OWL-S Not mentioned

5 Discussion
 A summary of the test issues discussed in the previous
section has been provided in Table 3. As mentioned
previously, a majority of the test issues involves test case
generation, which involves test data generation and for
composite services, test process generation is included as
well. In the approaches, the semantic elements of the services
description were utilized for 1) describing the service
behavior in terms of a test model 2) describing the service
behavior of a composite service in terms of a test model 3)
determining test partitions for test data selection 4)
calculating service feature risks 5) generating test mutants.
 Sinha [15], Ramollari [16] and Jokhio [19, 20]
developed test models to represent behavior of single services
and used the developed test models to generate test cases
using existing testing tools associated to the test models. The
test cases developed consist of a sequence of input and
outputs that goes through all possible state transitions. All
four approaches focused on how to create formal
representation of the service behavior using the IOPE
information, a task which normally requires a developer’s or
tester’s intuitive, experience as well as understanding of the
system under test.
 Similarly, Dai [13], Wang [17] and Huang [18] also
focused on the creation of formal test models using semantic

descriptions. However, the generated test model represents the
orchestration of a composite service instead of a single service
behavior. Apart from using the IOPE information, these
approaches also utilizes the OWL-S process model
information in order to generate test cases. The generated test
cases consisted of a test process that contains a sequence of
service invocations as well as the input and output from one
service to another in the composite service. Paradkar [21] also
generated a sequence of service invocations as test cases.
However, unlike Wang [17] and Huang [18], no formal test
model were generated. Instead, test goals were generated by
refining the service preconditions using a set of fault models
which was eventually fed into a planner based test generator.
 Preconditions and postconditions allow test generators to
generate test input data and expected output that not only
conforms to input and output parameter type, but also satisfies
rules associated with them. Approaches such as those of Bai
[23], Jokhio [24] and Noikajana [25] are also able to
systematically select test data from a data pool according to
some partition criteria such as equivalence partitioning and
boundary condition testing. Again, the task of determining
these partitions are usually based on tester’s heuristic and
understanding of the system under test. Fortunately this task
can be automated to some extent via the use of input
parameter ontology information, rules in IOPE, and guarded

14 Int'l Conf. Semantic Web and Web Services | SWWS'12 |

condition of transition rules. Semantic descriptions of Web
services have also been used in calculating risks associated
with a service failure [29]. The result is used to select and
prioritize test cases such that test cases will be tested
according to their priority whenever there is limitation in
testing time.
 All the approaches we have discussed so far have shown
how semantic descriptions of Web services can be used to
improve test generator’s intelligence for generating test
models, determining test data partitions and calculating
service feature risks. However, approaches by Lee [26], Wang
[27] and Wang [28] tries to verify the proper use of the
semantics elements by creating mutants out of the ontology
class, rules defining preconditions and postconditions, as well
as control and data flow error in composite process model.
 Based on the discussions, semantic description of Web
services is able to assist in increasing automation of Web
service testing by enhancing the intelligence of the test
generator such as deriving test model, determining test data
partition, generating ontology based mutants and, calculating
ontology risks. Normally these testing tasks require the
experience and knowledge of a human tester in order to
perform them. We believe the use of semantics can minimize
human efforts in performing testing tasks. However, most of
the approaches are still in their early stages with many of them
only reporting results of early findings. More work needs to
be done to enhance research in this promising area of
Semantic Web services testing.

6 Conclusion
 In conclusion, this paper has provided a review on
Semantic Web services testing with the aim of understanding
how testing of Semantic Web services differ from testing
normal Web services and what are the advantages of using
semantic descriptions of Web services in testing SWS. An
introduction to syntax based WS testing is presented. This is
followed by a brief description of the Semantic Web services
approaches focusing on the elements of each Semantic Web
services approach that are used in testing. The most
prominent approaches of testing Semantic Web services are
then presented and classified into several categories which are
test case generation, mutation testing and test selection, yet it
is not possible to claim that the list is exhaustive. A summary
of the approaches are presented and the results are discussed.
Result of the literature study indicates that semantic
annotations of Semantic Web services can improve test
intelligence by assisting with tasks that normally require
human tester’s experience and knowledge. We are currently in
the process of studying how these semantic annotations can be
used to describe the interaction behavior of Semantic Web
services in order to support interaction testing of composite
Web services.

7 References
[1] J. Vaughan: "Gartner: SOA will be like electricity for
architects looking toward cloud computing," SOA News,
http://searchsoa.techtarget.com/news/article/0,289142,sid26_
gci1523670,00.html, [27 October 2011]

[2] H. M. Sneed, and S. Huang, "The design and use of
WSDL-Test: a tool for testing Web services," Journal of
Software Maintenance and Evolution: Research and Practice,
vol. 19, September/October 2007, pp. 297-314, doi:
10.1002/smr.v19:5.

[3] C. Bartolini, A. Bertolino, E. Marchetti, and A. Polini,
"WS-TAXI: A WSDL-Based Testing Tool for Web
Services," Proc. International Conference on Software Testing
Verification and Validation (ICST'09), IEEE Computer
Society, 1-4 April 2009, pp. 326 - 335,
doi:10.1109/ICST.2009.28

[4] S.-S. Hou, L. Zhang, Q. Lan, H. Mei, and J.-S. Sun,
"Generating Effective Test Sequences for BPEL Testing,"
Proc. 9th International Conference on Quality Software
(QSIC'09), IEEE Computer Society, 24-25 August 2009, pp.
331-340, doi:10.1109/QSIC.2009.50

[5] T.-D. Cao, P. Felix, and R. Castanet, "WSOTF: An
Automatic Testing Tool for Web Services Composition,"
Proc. Fifth International Conference on Internet and Web
Applications and Services (ICIW), IEEE Computer Society,
9-15 May 2010, pp. 7-12, doi:10.1109/ICIW.2010.9

[6] Oasis: "Web Services Business Process Execution
Language Version 2.0," http://docs.oasis-
open.org/wsbpel/2.0/Primer/wsbpel-v2.0-Primer.pdf, [27
October 2011]

[7] W3C Working Group: "OWL-S: Semantic Markup for
Web Services " http://www.w3.org/Submission/OWL-S/, [27
October 2011]

[8] W3C Working Group: "Web Service Modeling
Ontology (WSMO),"
http://www.w3.org/Submission/WSMO/, [27 October 2011]

[9] W3C Working Group: "Web Service Semantics -
WSDL-S," http://www.w3.org/Submission/WSDL-S/, [27
October 2011]

[10] W3C Working Group: "OWL Web Ontology
Language," http://www.w3.org/TR/owl-features/, [27 October
2011]

[11] Protege: "SWRL Language FAQ,"
http://protege.cim3.net/cgi-bin/wiki.pl?SWRLLanguageFAQ,
[12 October 2011]

Int'l Conf. Semantic Web and Web Services | SWWS'12 | 15

[12] Object Management Group: "Object Constraint
Language," http://www.omg.org/spec/OCL/2.0/PDF, [27
October 2011]

[13] G. Dai, X. Bai, Y. Wang, and F. Dai, "Contract-Based
Testing for Web Services," Proc. 31st Annual International
Computer Software and Applications Conference
(COMPSAC 2007), IEEE Computer Society, 24-27 July
2007, pp. 517-526, doi:10.1109/COMPSAC.2007.100

[14] C. Keum, S. Kang, I.-Y. Ko, J. Baik, and Y.-I. Choi,
"Generating Test Cases for Web Services Using Extended
Finite State Machine," Proc. The 18th IFIP International
Conference on Testing Communicating Systems (TestCom
2006), Springer, 16-18 May 2006, pp. 103-117,
doi:10.1007/11754008_7

[15] A. Sinha, and A. Paradkar, "Model-Based Functional
Conformance Testing of Web Services Operating on
Persistent Data," Proc. Workshop on Testing, Analysis, and
Verification of Web services and Applications (TAV-
WEB'06), ACM, 17 July 2006, pp. 17-22,
doi:10.1145/1145718.1145721

[16] E. Ramollari, D. Kourtesis, D. Dranidis, and A. Simons,
"Leveraging Semantic Web Service Descriptions for
Validation by Automated Functional Testing," Proc. 6th
European Semantic Web Conference (ESWC 2009), Springer,
31 May - 4 June 2009, pp. 593-607, doi:10.1007/978-3-642-
02121-3_44

[17] Y. Wang, X. Bai, J. Li, and R. Huang, "Ontology-Based
Test Case Generation for Testing Web Services," Proc. Eighth
International Symposium on Autonomous Decentralized
Systems (ISADS '07), IEEE Computer Society, 21-23 March
2007, pp. 43-50, doi:10.1109/ISADS.2007.54

[18] H. Huang, W.-T. Tsai, R. Paul, and Y. Chen,
"Automated Model Checking and Testing for Composite Web
Services," Proc. Eighth IEEE International Symposium on
Object-Oriented Real-Time Distributed Computing (ISORC
2005), IEEE Computer Society, 18-20 May 2005, pp. 300-
307, doi:10.1109/ISORC.2005.16

[19] M. S. Jokhio, G. Dobbie, and J. Sun, "A Framework for
Testing Semantic Web Services Using Model Checking,"
Proc. Fourth South-East European Workshop on Formal
Methods (SEEFM), IEEE Computer Society, 4-5 December
2009, pp. 17-24, doi:10.1109/SEEFM.2009.11

[20] M. S. Jokhio, "Goal-Based Testing of Semantic Web
Services," Proc. 24th IEEE/ACM International Conference on
Automated Software Engineering (ASE '09), IEEE Computer
Society, 16-20 November 2009, pp. 707-711,
doi:10.1109/SEEFM.2009.11

[21] A. M. Paradkar, A. Sinha, C. Williams, R. D. Johnson,
S. Outterson, C. Shriver, and C. Liang, "Automated
Functional Conformance Test Generation for Semantic Web
Services," Proc. IEEE International Conference on Web
Services (ICWS 2007), IEEE Computer Society, 9-13 July
2007, pp. 110-117, doi:10.1109/ICWS.2007.48

[22] S. Noikajana, and T. Suwannasart, "Web Service Test
Case Generation Based on Decision Table," Proc. The Eighth
International Conference on Quality Software (QSIC '08),
IEEE Computer Society, 12-13 August 2008, pp. 321-326,
doi:10.1109/QSIC.2008.7

[23] X. Bai, S. Lee, W.-T. Tsai, and Y. Chen, "Ontology-
Based Test Modeling and Partition Testing of Web Services,"
Proc. IEEE International Conference on Web Services (ICWS
'08), IEEE, 23-26 September 2008 pp. 465-472,
doi:10.1109/ICWS.2008.111

[24] M. S. Jokhio, G. Dobbie, and J. Sun, "Towards
Specification Based Testing for Semantic Web Services,"
Proc. Australian Software Engineering Conference
(ASWEC'09), IEEE Computer Society, 14-17 April 2009, pp.
54-63, doi:10.1109/ASWEC.2009.38

[25] S. Noikajana, and T. Suwannasart, "An Improved Test
Case Generation Method for Web Service Testing from
WSDL-S and OCL with Pair-Wise Testing Technique," Proc.
33rd Annual IEEE International Computer Software and
Applications (COMPSAC'09), IEEE Computer Society, 20-24
July 2009 pp. 115-123, doi:10.1109/COMPSAC.2009.25

[26] S. Lee, X. Bai, and Y. Chen, "Automatic Mutation
Testing and Simulation on OWL-S Specified Web Services,"
Proc. 41st Annual Simulation Symposium (ANSS 2008),
IEEE Computer Society, 3-16 April 2008, pp. 149-156,
doi:10.1109/ANSS-41.2008.13

[27] R. Wang, and N. Huang, "Requirement Model-Based
Mutation Testing for Web Service," Proc. 4th International
Conference on Next Generation Web Services Practices
(NWESP '08), IEEE Computer Society, 20-22 October 2008,
pp. 71-76, doi:10.1109/NWeSP.2008.20

[28] X. Wang, N. Huang, and R. Wang, "Mutation Test
Based on OWL-S Requirement Model," Proc. IEEE
International Conference on Web Services (ICWS 2009),
IEEE Computer Society, 6-10 July 2009, pp. 1006-1007,
doi:10.1109/ICWS.2009.129

[29] X. Bai, and R. S. Kenett, "Risk-Based Adaptive Group
Testing of Semantic Web Services," Proc. 33rd Annual IEEE
International Computer Software and Applications
Conference (COMPSAC'09), IEEE Computer Society, 20-24
July 2009, pp. 485-490, doi:10.1109/COMPSAC.2009.180

16 Int'l Conf. Semantic Web and Web Services | SWWS'12 |

Benchmarking Bottom-Up and Top-Down Strategies
for SPARQL-to-SQL Query Translation

Andrey Kashleva, Artem Chebotkob,c, John Abrahamb, Pearl Brazierb, and Shiyong Lua

aDepartment of Computer Science, Wayne State University, Detroit, Michigan, USA
bDepartment of Computer Science, University of Texas - Pan American, Edinburg, Texas, USA

cCorresponding Author. E-mail: chebotkoa@utpa.edu

Abstract— Many researchers have proposed using conven-
tional relational databases to store and query large Semantic
Web datasets. The most complex component of this approach
is SPARQL-to-SQL query translation. Existing algorithms
translate SPARQL queries to SQL using either bottom-up
or top-down strategy and result in semantically equivalent
but syntactically different relational queries. While it can be
expected that relational query optimizers produce identical
query execution plans for semantically equivalent bottom-
up and top-down queries, is this usually the case in prac-
tice? And if not, which strategy yields faster SQL queries?
To address these questions, this work studies bottom-up
and top-down translations of SPARQL queries with nested
optional graph patterns that yield SQL queries with left
outer joins whose reordering is not always possible. This
paper presents: i) a bottom-up nested optional graph pat-
tern translation algorithm, ii) a top-down nested optional
graph pattern translation algorithm, and iii) a performance
study featuring SPARQL queries with nested optional graph
patterns over RDF databases created in Oracle, DB2, and
PostgreSQL.

Keywords: SPARQL; SQL; translation; query; bottom-up; top-
down; Semantic Web; RDF; query optimization; query performance

1. Introduction
Semantic Web technologies are finding more and more

applications in solving challenging problems of intelligent
data and computing resources search, discovery, sharing, and
integration. Numerous RDF [1] datasets, such as UniProt,
GeoNames, WordNet, DBpedia, and hundreds of others1,
have become available over the Web for use and exploration.
The rapid growth of semantic datasets brings forward a new
challenge - efficient management of RDF data that is crucial
for supporting new semantics-enabled applications.

Many researchers have proposed using conventional re-
lational databases to store and query large Semantic Web
datasets [2]. Emerged systems, called relational RDF
databases, share a common design pattern that uses a schema

1W3C SWEO Linking Open Data community project, http://www.
w3.org/wiki/SweoIG/TaskForces/CommunityProjects/
LinkingOpenData

mapping algorithm to generate a relational database schema,
a data mapping algorithm to insert RDF data into the
database, and a query mapping algorithm to translate RDF
queries into equivalent SQL queries. SPARQL-to-SQL trans-
lation is not only the most complex mapping in a relational
RDF database, but also very critical to overall querying
performance. Existing algorithms translate SPARQL queries
to SQL using either bottom-up or top-down strategy and
result in semantically equivalent but syntactically different
relational queries.

To illustrate the difference between bottom-up and top-
down SPARQL-to-SQL translations in the context of nested
optional graph patterns, we use a sample RDF graph G in
Fig. 1 that describes academic relations among professors
and graduate students in a university. The graph is presented
both graphically and as a set of triples. The RDF schema
defines two concepts/classes (Professor and GradStudent)
and two relations/properties (hasAdvisor and hasCoadvisor).
Each relation has the GradStudent class as a domain and the
Professor class as a range. Additionally, two instances of
Professor, two instances of GradStudent and relations among
these instances are defined as shown in the figure.

We design an RDF query that returns (1) every graduate
student in the RDF graph; (2) the student’s advisor if this
information is available; and (3) the student’s coadvisor if
this information is available and if the student’s advisor
has been successfully retrieved in the previous step. In
other words, while the query attempts to find students and
as many advisors as possible, there is no point to return
a coadvisor if no advisor is assigned to a student. The
SPARQL representation of this query is as follows:
SELECT ?s ?a ?c
WHERE {

?s type GradStudent . /* R1(s) */
OPTIONAL {
?s hasAdvisor ?a . /* R2(s,a) */
OPTIONAL {

?s hasCoadvisor ?c . /* R3(s,c) */
} } }

The query has three variables: ?s for student, ?a for
advisor, and ?c for coadvisor. There are two OPTIONAL
clauses, where the innermost one is the nested OPTIONAL
clause. For the purpose of illustration, let’s assume that
each individual triple pattern in the query is translated into

Int'l Conf. Semantic Web and Web Services | SWWS'12 | 17

G = { (John, type, Professor),
(Artem, type, Professor),
(Andrey, type, GradStudent),
(Nathan, type, GradStudent),
(Andrey, hasAdvisor, Artem),
(Andrey, hasCoadvisor, John),
(Nathan, hasCoadvisor, Artem) }

Professor

Artem

Andrey

John

GradStudent

rdf:type
hasAdvisor

Nathan

In
sta

nc
e

Sc
he

m
a

hasCoadvisor

hasAdvisor

hasCoadvisor

Fig. 1: Sample RDF graph.

SQL and represented by a virtual relation that captures the
corresponding variable bindings: R1(s) ← (?s type Grad-
Student), R2(s,a) ← (?s hasAdvisor ?a), and R3(s,c) ←
(?s hasCoadvisor ?c). Then, SQL queries generated for
this SPARQL query using our bottom-up and top-down
translations presented in [3] and [4], respectively, are:

/* Bottom-up query */
Select R1.s As s, a, c
From R1
Left Outer Join

(Select R2.s As s, a, c
From R2 Left Outer Join R3
On (R2.s = R3.s)) R4

On (R1.s = R4.s Or R1.s Is Null
Or R4.s Is Null)

and

/* Top-down query */
Select R4.s As s, a, c
From

(Select R1.s As s, a
From R1 Left Outer Join R2
On (R1.s = R2.s)) R4

Left Outer Join R3
On (R4.s = R3.s And R4.a Is Not Null)

Both bottom-up and top-down SQL queries have two
left outer joins, however the join order and conditions are
different. The evaluation of these queries produces the same
resulting relations as shown in Fig. 2.

The research that we report is motivated by the following
two questions: While it can be expected that relational
query optimizers produce identical query execution plans for
semantically equivalent bottom-up and top-down queries, is
this usually the case in practice? And if not, which strategy

R1 R2

R1.s = R2.s

R3

R4.s = R3.s And
R4.a Is Not Null

s

Andrey

Nathan

s c

Andrey John

Nathan Artem

s a

Andrey Artem

Nathan NULL

s a c

Andrey Artem John

Nathan NULL NULL

R4

Result

s a

Andrey Artem

(b) Top-down query evaluation

R1

R2

R2.s = R3.s

R3

R1.s = R4.s Or
R1.s Is Null Or
R4.s Is Null

s

Andrey

Nathan

s c

Andrey John

Nathan Artem

s a c

Andrey Artem John

Nathan NULL NULL

R4

s a

Andrey Artem

(a) Bottom-up query evaluation

s a c

Andrey Artem John

Fig. 2: Evaluation of top-down and bottom-up queries.

yields faster SQL queries? In our search for the answers, in
this paper, we present i) a bottom-up nested optional graph
pattern translation algorithm, ii) a top-down nested optional
graph pattern translation algorithm, and iii) a performance
study featuring SPARQL queries with nested optional graph
patterns over RDF databases created in Oracle, DB2, and
PostgreSQL.

The organization of this paper is as follows. Related
work is discussed in Section 2. Notation and preliminary
definitions are introduced in Section 3. Our algorithms
for bottom-up and top-down nested optional graph pattern
translations are presented in Sections 4 and 5, respectively.
Finally, our performance study and conclusions are reported
in Sections 6 and 7.

2. Related Work
In recent years, a number of relational RDF database

systems have been developed to support large-scale Seman-
tic Web applications [2]. Representatives of such systems
include Jena, Sesame, 3store, KAON, RStar, OpenLink
Virtuoso, PARKA, DLDB, DBOWL, RDFSuite, RDFBroker,
RDFProv, and S2ST (see [2] or [3] for a survey). While
they share a common design pattern, they differ in employed
database schemas, inference support and algorithms that map
RDF data and queries to the relational model.

One of the most complex mappings in relational RDF
databases is the SPARQL-to-SQL query mapping or trans-
lation [3], [5], [6], [4], [7], [8]. Existing algorithms translate
SPARQL queries to SQL using either bottom-up or top-down
strategy and result in semantically equivalent but syntacti-
cally different relational queries. To our best knowledge, this
work is the first to compare bottom-up and top-down query
translations in the context of complex nested optional graph

18 Int'l Conf. Semantic Web and Web Services | SWWS'12 |

patterns. The importance of such a comparison is twofold: it
gives insights to the query optimization problem of choosing
a “good” translation strategy for a particular query and
motivates future research on a potentially hybrid translation
strategy where both bottom-up and top-down approaches are
employed. While we present this work in the context of
relational RDF databases, its insights are also beneficial for
query optimization in non-relational RDF databases, such as
emerging Hadoop and HBase based RDF data management
systems in the cloud environment [9], [10].

Other related works on RDF query optimization that
are complimentary to our research include containment
and minimization of RDF/S query patterns [11], SPARQL
query rewriting [12], and various RDF data indexing tech-
niques [13], [14], [15], [16].

3. Notation and Preliminary Definitions
Let I , B, L, and V denote pairwise disjoint infinite sets

of Internationalized Resource Identifiers (IRIs), blank nodes,
literals, and variables, respectively. Let IB, IL, IV , IBL,
and IV L denote I∪B, I∪L, I∪V , I∪B∪L, and I∪V ∪L,
respectively. Elements of the set IBL are also called RDF
terms. In the following, we formalize the notions of RDF
triple, RDF graph, triple pattern, basic graph pattern, and
nested optional graph pattern.

Definition 3.1 (RDF triple and RDF graph): An RDF
triple t is a tuple (s, p, o) ∈ (IB)× I × (IBL), where s, p,
and o are a subject, predicate, and object, respectively. An
RDF graph G is a set of RDF triples.

Definition 3.2 (Triple pattern): A triple pattern tp is a
triple (sp, pp, op) ∈ (IV L)× (IV)× (IV L), where sp2, pp,
and op are a subject pattern, predicate pattern, and object
pattern, respectively.

Definition 3.3 (Basic graph pattern): A basic graph pat-
tern bgp is a set of triple patterns {tp1, tp2, . . . , tpn−1, tpn},
also denoted as tp1 AND tp2 AND · · · AND tpn−1 AND
tpn, where AND is a binary operator that corresponds to
the conjunction in SPARQL and n is the number of triple
patterns in bgp.

Definition 3.4 (Nested optional graph pattern): A nested
optional graph pattern nogp has the form bgp1 OPT{ bgp2
OPT{ · · · {bgpn−1 OPT{ bgpn}} · · · }}, where OPT
corresponds to the OPTIONAL construct in SPARQL, curly
braces {} denote nesting of graph patterns, and n ≥ 3
represents the number of basic graph patterns in nogp.

Formal semantics of RDF and SPARQL are described
in [17], [5], [3]. In this paper, to achieve the semantic
equivalence of SQL queries that result from bottom-up and
top-down SPARQL-to-SQL translations, we require nested
optional graph patterns to be well-designed [5], such that

2Note that a triple pattern can have a literal as a subject pattern, while an
RDF triple cannot have a literal as a subject. This inconsistency between
current RDF [1] and SPARQL [17] specifications does not affect our work
and most likely will be resolved by W3C.

for any sub-pattern {bgpi−1 OPT{ bgpi · · · }} in nogp, if a
variable ?v occurs both outside this sub-pattern and inside
bgpi, then ?v also occurs in bgpi−1.

In order to support a generic translation of SPARQL
graph patterns into equivalent SQL queries over different
database schemas, we need a generic representation for
a relational RDF storage scheme, in which the following
information will be modeled: (1) which relation is used to
store RDF triples that can potentially match a triple pattern,
and (2) which relational attributes of the relation are used
to store the components (subjects, predicates, and objects)
of triples. To capture this information, we formalize the
relational RDF storage scheme as the following two RDF-
to-Relational mappings α and β.

Definition 3.5 (Mapping α): Given a set of all possible
triple patterns TP = (IV L) × (IV) × (IV L) and a set of
relations REL in a relational RDF database, a mapping α
is a many-to-one mapping α : TP → REL, if given a triple
pattern tp ∈ TP , α(tp) is a relation in which all the triples
that may match tp are stored.

Definition 3.6 (Mapping β): Given a set of all possible
triple patterns TP = (IV L)× (IV)× (IV L), a set POS =
{sub, pre, obj}, and a set of relational attributes ATR in
a relational RDF database, a mapping β is a many-to-one
mapping β : TP × POS → ATR, if given a triple pattern
tp ∈ TP and a position pos ∈ POS, β(tp, pos) is a
relational attribute whose value may match tp at position
pos.

Examples of different storage schemes captured with α
and β can be found in our prior work [3].

In addition to mappings α and β, our translation uses
three auxiliary functions: (1) a function alias that generates
a unique alias for a relation, (2) a function vars that returns
a set of all variables in a graph pattern, and (3) a function
name that generates a unique name for a variable in V , such
that the generated name conforms to the SQL syntax for
relational attribute names (e.g., a variable can be “renamed”
by simply removing initial ‘?’ or ’$’).

Finally, for the brevity of our presentation, we assume
the existence of an algorithm that translates SPARQL basic
graph patterns into fully flat SQL queries. We denote such an
algorithm as function BGPtoFlatSQL; a similar algorithm
is presented in [18].

4. Bottom-Up Nested Optional Graph
Pattern Translation

The bottom-up approach to SPARQL-to-SQL query trans-
lation is well-studied in the literature [3] and implemented
in many relational RDF databases. This section presents
an algorithm that implements one of our translation rules
described in [3]. It should be noted that, while this paper
assumes that nested OPTIONAL clauses contain basic graph
patterns, which is sufficient for our study, in the general

Int'l Conf. Semantic Web and Web Services | SWWS'12 | 19

case, other graph patterns, such as sequential optional graph
patterns and alternative graph patterns, are possible. The
algorithm uses the translation rule for the general case with
an additional simplification that eliminates the call of the
Coalesce function for some attributes in projection lists.
The use of Coalesce is redundant with only basic graph
patterns assumed in OPTIONAL clauses; however, other
simplifications on join conditions are not applied.

Our bottom-up translation function NOGPtoSQL-BU is
outlined in Algorithm 1. It visits each basic graph pattern in
a SPARQL nested optional graph pattern nogp starting from
bgpn and going up to bgp1. Each basic graph pattern is trans-
lated to SQL using function BGPtoFlatSQL producing a flat
SQL query. During the first loop iteration, the translation of
bgpn is assigned to variable sql and the translation of bgpn−1

is assigned to variable sqli. A new SQL query that computes
a left outer join between virtual relations sqli and sql is con-
structed. This query contains: “($sqli) $a1 Left Outer
Join ($sql) $a2” in its From clause, where a1 and a2
are unique aliases; a join condition “$a1.$ra = $a2.$ra
Or $a1.$ra Is Null Or $a2.$ra Is Null” in its On
clause, which requires common relational attributes in a1 and
a2 to be equal or one of them to be Null; and a projection
list in its Select clause of all attributes in a1 and all
other unique attributes in a2. This newly constructed query
is assigned to variable sql, overwriting its previous value.
The following loop iteration repeats the procedure but with
a new value of sql as previously described and a new value
of sqli that now holds the translation of bgpn−2. After the
final iteration, a value of sql represents a fully generated
query and is returned.

5. Top-Down Nested Optional Graph
Pattern Translation

One of the first top-down SPARQL-to-SQL query transla-
tions found in the literature is described in our unpublished
report [4]. This section summarizes our solution for the
case when only basic graph patterns are used in OPTIONAL
clauses.

Our top-down translation function NOGPtoSQL-TD is
outlined in Algorithm 2. The logic of this algorithm is
similar to the logic described for NOGPtoSQL-BU. One
obvious difference is that function NOGPtoSQL-TD visits
each basic graph pattern in a SPARQL nested optional graph
pattern nogp starting from bgp1 and going down to bgpn.
The other difference lies in how a join condition is generated.
It encodes the following semantics: before a nested optional
graph pattern can succeed, all containing optional graph pat-
terns must have succeeded. Therefore, a join condition must
check that a basic graph pattern in a containing OPTIONAL
clause has a solution. This is achieved via a Not Null
check on a relational attribute with special properties: this
attribute must appear in the Select clause of sql, since the

Algorithm 1 Bottom-up translation of SPARQL nested
optional graph patterns to SQL queries

1: function NOGPtoSQL-BU
2: input: nested optional graph pattern nogp; mappings α and β;

functions alias, vars, and name
3: output: bottom-up SQL query

4: Let nogp = bgp1 OPT{ bgp2 OPT{ · · · {bgpn−1 OPT{ bgpn}}
· · · }} and n ≥ 3

5: //Construct a bottom-up SQL query:
6: sql = BGPtoFlatSQL(bgpn, α, β, alias, vars, name)
7: for i = n− 1; i ≥ 1; i = i− 1 do
8: //Construct the SQL From clause:
9: sqli = BGPtoFlatSQL(bgpi, α, β, alias, vars, name)

10: a1 = alias(); a2 = alias()
11: from = “($sqli) $a1 Left Outer Join ($sql) $a2”

12: //Construct a join condition:
13: cond = “True ”
14: for each relational attribute ra that appears in the Select clause

of both sqli and sql do
15: cond += “And ($a1.$ra = $a2.$ra Or $a1.$ra Is

Null Or $a2.$ra Is Null)”
16: end for
17: //Construct the SQL Select clause:
18: select = “”
19: for each relational attribute ra that appears in the Select clause

of sqli do
20: select += “$a1.$ra As $ra,”
21: end for
22: for each relational attribute ra that appears in the Select clause

of sql but not sqli do
23: select += “$a2.$ra As $ra,”
24: end for
25: sql = “Select $select From $from On($cond)”
26: end for
27: return sql
28: end function

translation of the containing graph pattern is part of sql, and
it must correspond to a variable that first occurred in a basic
graph pattern of the containing OPTIONAL clause and not in
any preceding basic graph pattern. If such an attribute is not
readily available, a new attribute for a “dummy” variable
can be introduced in a basic graph pattern to perform the
check. Further details on this solution can be found in [4].

6. Performance Study
This section reports our query performance study con-

ducted using the WordNet dataset and test SPARQL queries
that were translated to SQL using the proposed bottom-up
and top-down query translation algorithms and evaluated in
three relational database management systems.

6.1 Experimental Setup
The experiments were conducted on a server with two

2GHz Intel Xeon E5504 Nehalem CPUs, 32GB RAM and
6TB disk array running Ubuntu 9.02 Jaunty x64. Three
different database management systems, namely Oracle 10.2
Express Edition, DB2 9.7 Express-C and PostgreSQL 8.3.12,
were installed on the server.

20 Int'l Conf. Semantic Web and Web Services | SWWS'12 |

Algorithm 2 Top-down translation of SPARQL nested op-
tional graph patterns to SQL queries

1: function NOGPtoSQL-TD
2: input: well-designed nested optional graph pattern nogp; mappings

α and β; functions alias, vars, and name
3: output: top-down SQL query

4: Let nogp = bgp1 OPT{ bgp2 OPT{ · · · {bgpn−1 OPT{ bgpn}}
· · · }} and n ≥ 3

5: //Construct a top-down SQL query:
6: sql = BGPtoFlatSQL(bgp1, α, β, alias, vars, name)
7: for i = 2; i ≤ n; i = i+ 1 do
8: //Construct the SQL From clause:
9: sqli = BGPtoFlatSQL(bgpi, α, β, alias, vars, name)

10: a1 = alias(); a2 = alias()
11: from = “($sql) $a1 Left Outer Join ($sqli) $a2”

12: //Construct a join condition:
13: Let v be a relational attribute that (1) appears in the Select

clause of sql, (2) v = name(?v) corresponds to a variable
?v, and (3) variable ?v ∈ vars(bgpi−1) − (vars(bgp1) ∪
vars(bgp2)∪· · ·∪vars(bgpi−2)) first occurs in bgpi−1 but not in
bgp1, bgp2, · · · , bgpi−2. If sql has no attribute that satisfies these
conditions, a dummy attribute must be introduced as discussed
in [4].

14: cond = “$v Is Not Null”
15: for each relational attribute ra that appears in the Select clause

of both sql and sqli do
16: cond += “ And $a1.$ra = $a2.$ra”
17: end for
18: //Construct the SQL Select clause:
19: select = “”
20: for each relational attribute ra that appears in the Select clause

of sql do
21: select += “$a1.$ra As $ra,”
22: end for
23: for each relational attribute ra that appears in the Select clause

of sqli but not sql do
24: select += “$a2.$ra As $ra,”
25: end for
26: sql = “Select $select From $from On($cond)”
27: end for
28: return sql
29: end function

Our algorithms were implemented in Java 6 within the
S2ST3 system; generic schema and data mapping algorithms
supported by S2ST were used to generate identical database
schemas in Oracle, DB2 and PostgreSQL, and to store the
RDF dataset into the databases, respectively.

6.2 Dataset and Test Queries
The OWL representation of WordNet4 was chosen for

our experiments. WordNet is a lexical database for the
English language, which organizes English words into
synonym sets according to part of speech (e.g. noun,
verb, etc.) and enumerates linguistic relations between
these sets. In the WordNet.OWL, each part of speech is
modeled as an owl:Class, and each linguistic relation is

3S2ST: Next-Generation Relational RDF Database Management System
(RRDBMS), http://www.s2st.org

4WordNet (version 1.2), a lexical database for English, http://
wordnet.princeton.edu

Table 1: Properties and Resources in WordNet 1.2

Property Count Resource Count
type 251,726 WordObject 140,470
wordForm 195,802 Noun 75,804
glossaryEntry 111,223 Verb 13,214
hyponymOf 90,267 AdjectiveSatellite 11,231
similarTo 22,494 Adjective 7,345
antonymOf 7,115 Adverb 3,629
Others 36,225 Others 33
Total 714,852 Total 251,726

modeled as an owl:ObjectProperty, owl:DatatypeProperty,
owl:TransitiveProperty, or owl:SymmetricProperty. The rel-
evant statistics for the WordNet dataset is shown in Table 1.
For example, WordNet.OWL contains 251,726 triples involv-
ing rdf:type as the predicate, and 140,470 of them have
wn:WordObject as the object.

Table 2 shows 22 SPARQL queries over the WordNet
dataset that were carefully selected for our experiments. In
the table, W stands for WHERE and O stands for OPTIONAL;
the SPARQL SELECT clause is omitted for brevity, and the
projection includes all distinct variables of a query. Queries
Q1-Q6 are constructed as all possible permutations of the
three triple patterns occurring outside and inside OPTIONAL
clauses. These queries have one nested OPTIONAL clause.
Queries Q1′-Q6′ and Q1′′-Q6′′ are obtained from respective
queries Q1-Q6 by restricting variable values in the first
and second triple patterns, respectively. The rationale for
such restrictions is to reduce cardinalities of intermediate
relations resulting from first left outer joins in the queries.
In particular, in terms of the intermediate relation size, Q1′-
Q6′ favor the top-down approach and Q1′′-Q6′′ favor the
bottom-up approach. We chose not to restrict variable values
in the third triple pattern of the nested OPTIONAL clause
in any of queries Q1-Q6 because the relation that results
after matching the third triple pattern is always used as the
right operand of a left outer join and therefore can only
marginally influence the join result for the given dataset and
queries. Finally, queries Q7, Q8, Q7′, and Q8′ are interesting
because they only include triple patterns of the same form
with the same predicate and variables as subject and object
patterns. From the viewpoint of bottom-up and top-down
translations, these queries are “symmetric”.

6.3 Bottom-Up and Top-Down Query Perfor-
mance

The S2ST system was used to generate database schemas
with property relations [3] and load WordNet.OWL into
Oracle, DB2 and PostgreSQL. The test SPARQL queries
were translated to SQL using algorithms NOGPtoSQL-
BU and NOGPtoSQL-TD. The resulting SQL queries were
evaluated by RDBMSs. To prevent an unintentional com-
parison of the three RDBMSs, Fig. 3 reports the ratio of
a bottom-up query evaluation time to a top-down query
evaluation time for each test query. In the figure, if ratio

Int'l Conf. Semantic Web and Web Services | SWWS'12 | 21

Table 2: Test SPARQL Queries

Q# SPARQL
Q1 W{?a rdf:type :Adjective O{?a :wordForm ?c

O{?a :glossaryEntry ?b}}}
Q2 W{?a rdf:type :Adjective O{?a :glossaryEntry ?b

O{?a :wordForm ?c}}}
Q3 W{?a :wordForm ?c O{?a rdf:type :Adjective

O{?a :glossaryEntry ?b}}}
Q4 W{?a :glossaryEntry ?b O{?a rdf:type :Adjective

O{?a :wordForm ?c}}}
Q5 W{?a :wordForm ?c O{?a :glossaryEntry ?b

O{?a rdf:type :Adjective}}}
Q6 W{?a :glossaryEntry ?b O{?a :wordForm ?c

O{?a rdf:type :Adjective}}}
Q7 W{?n1 :hyponymOf ?n2 O{?n2 :hyponymOf ?n3

O{?n3 :hyponymOf ?n4}}}
Q8 W{?n1 :hyponymOf ?n2 O{?n2 :hyponymOf ?n3

O{?n3 :hyponymOf ?n4 O{?n4 :hyponymOf ?n5
O{?n5 :hyponymOf ?n6 O{?n6 :hyponymOf ?n7}}}}}}

Q1′-Q6′ Same as respective queries Q1 - Q6 but with one variable in the
first triple pattern (the W clause) restricted to a URI or literal

Q1′′-Q6′′ Same as respective queries Q1 - Q6 but with one variable in the
second triple pattern (the first O clause) restricted to a URI or literal

Q7′ Same as Q7 but with ?n1 and ?n4 restricted to URIs
Q8′ Same as Q8 but with ?n1 and ?n7 restricted to URIs

> 1, a top-down query was faster; if ratio < 1, a bottom-
up query was faster; and if ratio = 1, both top-down and
bottom-up queries showed the same execution times.

Our first observation was that bottom-up and top-down
queries generally showed different execution times. This
observation gave the definite “No” answer to question “While
it can be expected that relational query optimizers produce
identical query execution plans for semantically equivalent
bottom-up and top-down queries, is this usually the case
in practice?” in the case of SPARQL queries with nested
optional graph patterns.

Our second observation was that different database man-
agement systems showed quite different and sometimes even
“contradicting” query evaluation ratios. For example, Oracle
showed much less contrast between bottom-up and top-down
approaches than DB2 and PostgreSQL. Some queries, such
as Q1′′, Q3, Q4, Q5′′, and Q6′′, showed different classes
of ratios (> 1, < 1, and = 1) in different databases. For
example, for Q6′′, the bottom-up approach was slower than
the top-down approach in Oracle, equivalent to the top-down
approach in DB2, and faster than the top-down approach in
PostgreSQL.

Our third observation was that selectivities of participating
triple patterns and their occurrence in a SPARQL query had
a significant impact on which SPARQL-to-SQL translation
strategy won, which could be explained by a similar effect of
cardinalities of join participating relations and intermediate
relations on corresponding top-down and bottom-up SQL
queries. In particular, top-down queries Q1 and Q2 were con-
sistently faster in all experiments, given that the first triple
pattern ?a rdf:type :Adjective yielded the smallest result set
of 7, 345 triples (the other two triple patterns yielded over 10
times larger results), and therefore the intermediate relation
in the top-down queries was also small and over 10 times

(a) over an RDF database instantiated in Oracle

(b) over an RDF database instantiated in DB2

(c) over an RDF database instantiated in PostgreSQL

Fig. 3: Bottom-up and top-down query performance.

smaller than the intermediate relation in the corresponding
bottom-up queries. When ?a rdf:type :Adjective occurred in
the first OPTIONAL clause of Q3 and Q4, the situation was
opposite: the intermediate relation in the bottom-up queries
was over 10 times smaller than the intermediate relation
in the corresponding top-down queries. However, while
all three systems showed that the ratios decreased when
compared to Q1 and Q2, only Oracle showed the advantage
of the bottom-up approach, and DB2 and PostgreSQL still
ran top-down queries faster. Moving ?a rdf:type :Adjective
to the nested OPTIONAL clause in Q5 and Q6 did not favor
one or the other translation strategy since the last triple
pattern did not influence the size of an intermediate relation.
Top-down queries Q5 and Q6 were consistently faster in all
experiments. Next, restricting selectivities of the first triple
pattern in Q1′-Q6′ to 1 or 2 triples, which was favorable for
the top-down approach, showed that the top-down queries

22 Int'l Conf. Semantic Web and Web Services | SWWS'12 |

were faster or as fast as the corresponding bottom-up queries.
Interestingly, Oracle showed identical performance for both
top-down and bottom-up queries Q1′-Q6′. Finally, Q1′′-Q6′′,
which restricted selectivities of the second triple pattern
and favored the bottom-up approach, showed a consistent
performance pattern only for PostgreSQL, where bottom-
up queries were faster. For Oracle and DB2, some queries
showed a similar pattern: top-down queries Q1′′ and Q5′′

were faster and bottom-up queries Q3′′ and Q4′′ were faster;
in addition, both bottom-up and top-down Q6′′ showed
identical times in DB2, top-down Q6′′ was faster in Oracle,
bottom-up query Q2′′ was significantly faster (the smallest
ratio in our experiments) in Oracle but as fast as top-down
query Q2′′ in DB2.

Our fourth observation was that “symmetric” queries Q7
and Q8 (and similarly Q7′ and Q8′), which are neutral to
both top-down and bottom-up translation strategies, showed
better performance of the top-down queries. The ratios were
significantly larger for DB2 and PostgreSQL, while only
from 1.19 to 2.12 times larger in Oracle. These “symmetric”
queries showed that, in a general (with no particular bias
towards one or the other translation strategy) case, the top-
down approach is superior to the bottom-up approach.

Our last, fifth observation was that a choice of a translation
strategy could have a tremendous impact on a resulting query
performance. In one case of Q2′′ for Oracle, the bottom-up
query was over 600 times faster than the top-down query. In
12 other cases (all occurred in experiments with DB2 and
PostgreSQL), the ratios were greater than 1, 000 in the favor
of top-down queries.

6.4 Summary
The performance study gives the answers to the two

questions of this paper. For the first question, our results
imply that, in a general case, a relational RDF database
designer cannot rely on a relational query optimizer to
produce identical or close to identical query execution
plans for semantically equivalent SQL queries resulted from
bottom-up and top-down translations of SPARQL queries. To
answer the second question, neither of the two approaches
is universally better than its sibling. The performance of
queries produced by bottom-up and top-down translation
strategies depends on many factors, including selectivities of
triple patterns, their order and location in a SPARQL query,
and even a relational engine that evaluates translated queries.
A number of important observations are made that suggest
directions for choosing the best translation strategy for a
particular query by a SPARQL query optimizer; the choice
can have a tremendous impact on query performance.

7. Conclusions and Future Work
In this paper, we studied the bottom-up and top-down

SPARQL-to-SQL translation strategies and compared them
empirically in the context of SPARQL queries with nested

optional graph patterns. We proposed bottom-up and top-
down nested graph pattern translation algorithms and com-
pared their resulting SQL queries in Oracle, DB2, and Post-
greSQL. Our performance study suggested that the choice
between bottom-up and top-down translation algorithms can
have dramatic performance implications on the resulting
SQL queries. This choice depends on many factors, includ-
ing selectivities of triple patterns, their order and location in
a SPARQL query, and even a relational engine that evaluates
translated queries. In the future, we will research a formal
framework for optimizing SPARQL queries and defining
heuristics for choosing a “good” translation strategy for a
SPARQL query.

References
[1] W3C, “Resource Description Framework (RDF): Concepts and Ab-

stract Syntax. W3C Recommendation, 10 February 2004. G. Klyne,
J. J. Carroll, and B. McBride (Eds.),” 2004.

[2] A. Chebotko and S. Lu, Querying the Semantic Web: An Efficient
Approach Using Relational Databases. LAP Lambert Academic
Publishing, 2009.

[3] A. Chebotko, S. Lu, and F. Fotouhi, “Semantics preserving SPARQL-
to-SQL translation,” Data & Knowledge Engineering (DKE), vol. 68,
no. 10, pp. 973–1000, 2009.

[4] A. Chebotko, S. Lu, H. M. Jamil, and F. Fotouhi, “Semantics
preserving SPARQL-to-SQL query translation for optional graph pat-
terns,” Wayne State University, Tech. Rep. TR-DB-052006-CLJF, May
2006, available from http://www.cs.wayne.edu/~artem/main/research/
TR-DB-052006-CLJF.pdf.

[5] J. Perez, M. Arenas, and C. Gutierrez, “Semantics and complexity of
SPARQL,” ACM Transactions on Database Systems (TODS), vol. 34,
no. 3, pp. 16:1–16:45, 2009.

[6] R. Cyganiak, “A relational algebra for SPARQL,” Hewlett-Packard
Laboratories, Tech. Rep. HPL-2005-170, 2005, available from http:
//www.hpl.hp.com/techreports/2005/HPL-2005-170.html.

[7] F. Zemke, “Converting SPARQL to SQL,” Tech. Rep., October 2006,
available from http://lists.w3.org/Archives/Public/public-rdf-dawg/
2006OctDec/att-0058/sparql-to-sql.pdf.

[8] S. Harris and N. Shadbolt, “SPARQL query processing with con-
ventional relational database systems,” in Proc. of SSWS, 2005, pp.
235–244.

[9] M. F. Husain, L. Khan, M. Kantarcioglu, and B. M. Thuraisingham,
“Data intensive query processing for large RDF graphs using cloud
computing tools,” in Proc. of CLOUD, 2010, pp. 1 – 10.

[10] C. Franke, S. Morin, A. Chebotko, J. Abraham, and P. Brazier,
“Distributed Semantic Web data management in HBase and MySQL
Cluster,” in Proc. of CLOUD, 2011.

[11] G. Serfiotis, I. Koffina, V. Christophides, and V. Tannen, “Containment
and minimization of RDF/S query patterns.” in Proc. of ISWC, 2005,
pp. 607–623.

[12] O. Hartig and R. Heese, “The SPARQL query graph model for query
optimization,” in Proc. of ESWC, 2007, pp. 564–578.

[13] A. Harth and S. Decker, “Optimized index structures for querying
RDF from the Web,” in Proc. of LA-WEB, 2005, pp. 71–80.

[14] O. Udrea, A. Pugliese, and V. S. Subrahmanian, “GRIN: A graph
based RDF index,” in Proc. of AAAI, 2007, pp. 1465–1470.

[15] C. Weiss, P. Karras, and A. Bernstein, “Hexastore: sextuple indexing
for Semantic Web data management,” Proc. of PVLDB, vol. 1, no. 1,
pp. 1008–1019, 2008.

[16] G. H. L. Fletcher and P. W. Beck, “Scalable indexing of RDF graphs
for efficient join processing,” in Proc. of CIKM, 2009, pp. 1513–1516.

[17] W3C, “SPARQL Query Language for RDF. W3C Recommendation,
15 January 2008. E. Prud’hommeaux and A. Seaborne (Eds.),” 2008.

[18] A. Chebotko, S. Lu, X. Fei, and F. Fotouhi, “RDFProv: A relational
RDF store for querying and managing scientific workflow prove-
nance,” Data & Knowledge Engineering (DKE), vol. 69, no. 8, pp.
836–865, 2010.

Int'l Conf. Semantic Web and Web Services | SWWS'12 | 23

Supporting Meaningful Data Mediation Using Semantic

Mediator Description

Kanmani Munusamy
1
, Suhaimi Ibrahim

2
, Mohd Sapiyan Baba

1
, Norbik Bashah Idris

2
, Mohd Naz’ri

Mahrin
2
 and Hazlifah Mohd Rusli

2

1
Faculty of Computer Science & Information Technology, Universiti Malaya (UM), Kuala Lumpur,

Malaysia
2
Advanced Informatics School (AIS), Universiti Teknologi Malaysia (UTM), Kuala Lumpur, Malaysia

Abstract - Data mediation plays an important role in

ensuring successful interaction between a service requestor

and a provider in Web services. Web service messages must be

interpreted by the machines that reside at the service

requester and provider in order to send and receive their

messages correctly. The Semantic Web Service vouches for

automation in discovery, selection and composition still faces

great challenges in providing mediation actions in Web

service interaction. This paper examines the existing data

mediation approaches in Semantic Web Services and presents

the lack of accuracy in the existing mapping techniques that

support data mediation. The paper also proposes the use of

Semantic Mediator Description (SMD) to provide specific

semantic descriptions that support mediation actions. The

SMD allows the machines to understand the content of the

messages and mediate them correctly according to the

ontology mapping provided.

Keywords: Semantic Web Service; Data Mediation; Process

Mediation; Message Mismatches; Semantic Knowledge

Representations

1 Introduction

 At present many approaches use ontology as an important

element to explicitly describe Web service. Ontology has

helped the development of the Semantic Web Service (SWS)

frameworks such as the Web Service Modelling Ontology

(WSMO) [1], OWL-S [2], and the SAWSDL [3] which has

been accepted by W3C. These SWS frameworks have

enhanced automation in Web service discovery, selection,

composition and testing by providing semantic descriptions to

Web services. Approaches that have adopted these

frameworks have shown proven results on how semantic

descriptions can be useful in discovering, selecting and

composing Web services automatically at runtime.

 However, the existing semantic descriptions are unable to

assure that these matched services can interact correctly

during the actual invocation phase. Incompatibility in the

selected Web services can lead to the termination of the Web

service composition and invocation if they are not detected

and corrected before the actual execution.

Data mediation handles most common type of mismatches

that occur due to the usage of different terminology, format

and data representation in messages that are sent or received

by different Web services [4]. M. Nagarajan has classified the

data level heterogeneity into three levels of incompatibility,

namely the attribute, the entity, and the abstraction level of

incompatibility [5]. This paper focuses on the incompatibility

of the entity level that addresses semantically similar entities

that may have a number of different attributes which are also

known as the scheme isomorphism conflicts [5].

Data mediation is an important element in ensuring a

successful interaction between Web services as well as

identifying behavioural incompatibility and choreography

mismatches. There are several research works [6-8] in

behavioural incompatibilities that have classified the process

level mismatches into five basic mismatches, namely extra

messages, missing messages, one to many messages, many to

many messages, and wrong order messages. In order to solve

the identified mismatches, five types of mediation actions have

been proposed such as stop, merge, split, generate, and reorder

[7, 9]. The original messages are split, merged, or reordered

according to the required communication pattern. New

messages may even be generated from the original messages

in order to conform to the required communication pattern.

Systematic literature review on process mediation in

previous work conducted [10] shows that data level mapping

and data mediation in Web services interaction needs further

research work to ensure a successful invocation. It has also

been highlighted that knowledge representations of the

messages need to be defined clearly to transform the original

messages into target messages by using mediation actions such

as merging, splitting and generating new messages [10].

The existing works in data mediation [11, 12] only focus on

utilizing the domain ontology in generating the mapping

between the different ontologies used by service requestors

and providers, and show little interest in them utilizing

semantic descriptions to expose the knowledge required for

data mediation between messages.

In this paper, the existing role of semantic descriptions in

Web services that could be useful in increasing the level of

automation during service configuration by the client is

analysed. A new framework using Semantic Mediator

Descriptions (SMD) to increase correctness in the existing

24 Int'l Conf. Semantic Web and Web Services | SWWS'12 |

data mediation effort to support process mediation at runtime

is proposed. It is believed that this research would be very

useful in enhancing data mediation at runtime for the existing

SWS initiatives.

The WSMO Semantic Web Service Framework is selected

to realize this approach. The WSMO Framework [13]

provides rich descriptions on all the related aspects of Web

services through four important components which are the

goal, the Web service, the ontology, and the mediator. WSMO

uses Web Service Modelling Language (WSML) to describe

all the components and also provides a modelling tool called

Web Service Modelling Toolkit (WSMT) to assist the

developer in developing the service descriptions.

The later part of this paper is organized as follows:- Section

II illustrates a motivating scenario. Section III describes the

related work in data mediation in Web services and provides

an overview of the state-of-art research contribution in data

mediation to support process mediation. Section IV describes

the limitation of the related works and the proposed approach.

Section V describes how Semantic Mediator Descriptions are

able to provide data mediation knowledge to the illustrated

scenario. Finally, Section VI presents the conclusions.

2 Motivating Scenario

 A simple scenario is presented here to illustrate the need

for data interoperability for Web service interaction. In

examining the process of Bibliographic Scholarly Database

(BSD) organizations such as SciVerse Scopus and ISI

Thomson’s interaction with Higher Learning Institutions

(HLI), it has been found that in order to retrieve the

publication records of an individual academician via Web

services, it is necessary that publication records are found

existing in the HLI. By assigning publication records to each

individual academician the calculation and retrieval of citation

counts and HIndex data from the BSD is allowed. Therefore,

it is essential for the BSD and HLI to interact correctly.

The process begins when BSD organizations publish their

Web services that allow HLI to send their publication data and

retrieve information on the citation counts. The BSD

organizations will be addressed as the service provider

hereafter in this paper. Most public universities have their own

publication systems developed in-house or bought over the

shelf. In this paper, such systems addressed as University

Publication System (UPS).

For the above scenario the Web service provided by ISI

Thomson Reuters was studied as the BSD service provider

and a local public university was chosen as a client that

accesses the service provided by ISI Thomson Reuters.

2.1 Service description provided by the

provider

In taking into account of the service description that is given

by service providers, the WSDL file describes the requested

format of the publication data in terms of the reference-type,

the contributors, the titles, the pages, the volume, and other

details. Due constraints in space, we only mediation is

discussed as an effort in restructuring the UPS name of

authors according to the needs of the service provider. The

listing below shows the XML data scheme that describes the

contributor’s or author’s requirement format.

It is clear that the service requestors need to provide the names

of authors in three fields namely; the first-name, the last-name,

and the middle-name. The service requestor also needs to

ensure that the size of each field does not exceed the

maximum length specified in the XML scheme.

2.2 Requestor’s data that need mediation

 The publication data resides in the database of the UPS

system, which is the service requester. All the names of

authors for each publication records are stored in a field that is

named as ‘authors’. Table 1 provides an example the names

of authors for a publication record that is stored in the UPS

database.

Table 1: An Example of a Publication Record Stored in a UPS

Database

Fields Instance

ID 101

Title
Semantic Description that Supports Data

Mediation in WSMO

Authors
K. Munusamy, C.S. Cheong, S. Ibrahim, S.

Nallusamy, M.N. Mahrin and H. Mohd Rusli

The developers who are involved in the task of

implementing the Web Service in the university need to

understand the required data and the format that is specified in

the WSDL file provided by the service provider. Then, they

conduct detail analysis of their internal publication system’s

data structure and format in order to create middleware

<xs:complexType name="authorType" >

 <xs:attribute name="title-name" >

 <xs:restriction base="xs:string">

 <xs:minLength value="1"/>

 <xs:maxLength value="20"/>

 </xs:restriction>

</xs:attribute>

 <xs:attribute name="first-name" >

 <xs:restriction base="xs:string">

 <xs:minLength value="1"/>

 <xs:maxLength value="20"/>

 </xs:restriction>

</xs:attribute>

 <xs:attribute name="last-name">

 <xs:restriction base="xs:string">

 <xs:minLength value="1"/>

 <xs:maxLength value="35"/>

 </xs:restriction>

</xs:attribute>

 <xs:attribute name="middle-name" >

 <xs:restriction base="xs:string">

 <xs:minLength value="0"/>

 <xs:maxLength value="20"/>

 </xs:restriction>

</xs:attribute>

</xs:complexType>

Int'l Conf. Semantic Web and Web Services | SWWS'12 | 25

applications that modify the data scheme and structure in the

UPS.

This middleware applications need to be developed

according to the existing UPS system in each university and

service description given by the providers. This process

requires lots of guidance from the service providers to ensure

that each of the university’s development team understands the

required data structure and format. The team also needs to

provide additional files and descriptions to the clients, apart

from the Web service WSDL files. On the other hand, the

developer that resides at HLI needs to have knowledge of the

author’s name structures and how it can be mediated into the

required structure.

The role of the developer is very limited during the Web

service composition and invocation at runtime and the role of

the automatic data mediator is very important in supporting

automation in service discovery, selection, process mediation

and composition. Therefore, it has been found that the

mediation knowledge of the developer’s needs to be

interpreted semantically to ensure correctness and automation

in the Web service data mediation.

3 Related Works

Related work on data mediation was analysed in the existing

SWS Frameworks namely WSMO, OWL-S and SAWSDL.

Early data mediation effort in Web services is found in [14]

which introduces the mapping rules between RDF scheme in

Triple Space Computing. This effort is extended by WSMO

data mediation initiatives which focus on ontology alignment

[12, 15, 16].

The WSMO initiatives generate mapping rules in the form

of axioms based on the abstract mappings identified by the

developers at the time of design. It demonstrates that source

instances can be transformed into target instances via posting

query and retrieving answers from the mapping rules at the

time of execution. However, the data mediation effort is found

to focus only on the generating alignment between attributes

that are placed at different levels within the ontology. It

describes implicitly the data mediation effort that involves

splitting and merging messages during process mediation.

Secondly, in OWL-S, data mediation that supports the

process mediation is not explained in detail and is only

mentioned as an external service [17]. However, the

researchers have concluded on the need of better support for

data mediation in order to allow real life Web service

mediation [18]. Finally, data mediation efforts in SAWSDL

introduces the use of context-based data type ranking

algorithm to generate scheme mapping between Web service

messages [19]. However further discussion on data mediation

to support process mediation actions is not provided by the

researchers [20].

Apart from SWS Frameworks, it also necessary to create

mapping between target and source attributes in their

mediation effort [21]. There are various techniques [22] and

tools that support message mapping at design time which are

implemented during Web service invocation at run time [11].

These approaches focus on creating the mapping

automatically; and only provide limited discussion on

mediating the actual instances. On the other hand, the

approach introduced in this paper, focuses on executing the

provided mapping by understanding the content of the

attributes. Figure 1 shows an example of ontology mapping for

one-to-many message mismatches that can be generated by the

existing approaches. In Figure 1, the Authors and Contributors

have similar ontologies that need to be mapped but they

contain different attributes. The Authors’ ontology contains

only one attribute which is the Full Name, while the

Contributors’ ontology contains three attributes which are the

First Name, the Middle Name and the Last Name.

4 Proposed Approach

It can be seen that ontology mapping alone is insufficient to

mediate the data messages correctly at run time as it only

provides the connection between the sourced messages to the

targeted messages that have different data representations.

However, it does not provide any knowledge to the mediator

about the content of the sourced message and how it can be

split or merged correctly to targeted messages as specified in

the message mappings. As shown in Figure 1, the existing

approaches can provide precise matches between the Full

Name from the Author’s ontology to the First Name, the

Middle Name and the Last Name in the Contributors ontology.

Figure 2. Semantic Mediator Description that supports data

mediation

However, as to how the content of the Full Name is to be

mapped remains unclear. Moreover, the developer’s task does

not stop at the mapping level but needs to be extended to the

actual mediation task at run time. The research objective for

Figure 1. Ontology Mapping that support Data

Mediation

26 Int'l Conf. Semantic Web and Web Services | SWWS'12 |

this paper is to provide an understanding of the content of the

Full Name attribute in order to correctly map its content to the

attributes of the First Name, the Middle Name, and the Last

Name. For example, in a given full name “Hazlifah binti

Mohd Rusli”, the mediator would have to know how to split

the full name into the first name, the middle name, and the last

name as illustrated in Figure 2.

Within the scope of Web service, the existing approaches

still require the developer’s presence at run time to understand

the content of the messages and execute the mediation actions

such as splitting or merging the messages correctly onto the

map. The approach used in this paper, adds a Semantic

Mediator Descriptions component to the existing ontology

mapping so as to mediate the data correctly according to the

developer’s mediation knowledge. Figure 2 illustrates the role

of Semantic Mediator Descriptions in mediating the full name

“Hazlifah Binti Mohd Rusli” correctly into the provided

mapping attributes.

4.1 Semantic Mediator Description

The Semantic Mediator Descriptions (SMD) component

contains the semantic descriptions of the message content,

related rules and execution steps. Although a simple example

that manipulates the author’s name to illustrate the data

mediation problem in this application but however, it is a

common problem in various scenarios that involve content

such as address, location, price, rate and others underlying

factors. Therefore, further research on data mediation in Web

services is needed to ensure successful interaction during

service invocation. Figure 3 illustrates an overview of the

approach described in this paper.

An additional component is proposed to the existing data

mediation framework in WSMO (refer to Figure 3). The

mediator can be described as another SWS that is to be

discovered and selected during service invocation. The

mediator functionalities are realized by using the service

capability and interface. Both the service capability and

interface are defined by basing them on the SMD that are

created at design time with the developer’s assistance.

Figure 3. Overview of Our Approach

SMD semantically present the developer’s mediation

knowledge in the form of concepts, rules and the steps that are

required for mediation actions. It uses existing ontology

mapping techniques and domain ontology. The following

section describes the data collection activities that interpret the

developer’s mediation knowledge into related concepts,

relationship, and rules.

4.2 Identifying related concepts

It is required that a reference is made to the author’s table

that contains the full name and other details of each author, in

order to provide the authors’ name in the format that is

requested by the service provider. Each author’s short name is

retrieved by splitting the data at every “,” symbol. Then, the

author’s short name is used to map onto the author’s table to

retrieve the full name and other details as shown in Table 2.

Table 2 : Result of Retrieving the Full Name, Gender and

Race using the Author’s Short Name

Short Name Full Name Gender Race

K. Munusamy Kanmani A/P Munusamy Female Indian

C. S. Cheong Chong Suh Cheong Male Chinese

S. Ibrahim Suhaimi Bin Ibrahim Male Malay

S. Nallusamy Sugumaran A/L Nallusamy Male Indian

M. N. Mahrin Mohd. Nazri Bin Mahrin Male Malay

H. Mohd Rusli Hazlifah Binti Mohd Rusli Female Malay

4.3 Identifying relationship and concepts

The author’s full name has been identified in relation to the

other fields such as gender and race. Below are the rules that

are helpful in understanding the formation of the author’s

name.

4.3.1 Full name and detail description

The formation of full name of an author can be defined in

many ways as preferred by the system developer or it could be

extracted from existing data resources. The full name of an

author can consist of the title name, the first name, the middle

name, and the last name. These detailed descriptions of an

author’s name can be presented in different sequences and

combination, depending on the country, region, race, and

gender.

a) Title name: A word or abbreviation that is used before a

person’s name to show the person’s profession or a social

status. In this paper only two category of titles have been

described namely; formal social titles and academic titles.

Example of formal social titles are Mr, Ms, Miss and Mrs and

academic titles are restricted to Dr, Associate Professor,

Associate Professor Dr, Professor Dr and Professor.

b) First Name: First name refers to author’s individual name.

Int'l Conf. Semantic Web and Web Services | SWWS'12 | 27

c) Last Name: Last name is also referred to as surname or

family name. Generally, the last name refers to the family

name that is passed down from generation to generation such

as within the Chinese and European communities. In some

races or ethnics groups, the last name refers to the author’s

‘father’s first name.

d) Middle Name: Generally, middle name is not defined as

clearly as the first name and the last name. However, in some

races, middle name can be useful to in indicating the gender of

the author.

4.3.2 Name descriptions and the rules applied

It has been explained earlier of the rules that are applied in

order to mediate author information among Web services.

These rules are important to proceed with mediation actions

such as splitting, merging and generating new data during the

Web service interaction.

a) Title Name: These are defined as the formal social title for

each author by assigning Mr as the title for all the male

authors and, Ms for female authors who do not provide

information on their marital status. Female authors with

married marital status are assigned the title Mrs. Single female

authors are assigned the title of Miss.

b) First Name: With reference to Table 2, the author’s full

name, gender and ethnic group or race is retrieved by using

the author’s short name. The short name consists of the first

letter of the author’s name and the family name (or in some

cases, the father’s name). In general, the first name is defined

according to the following rules:

Rule 1: Some ethnic groups or races, such as Malays and

Indians, use a separator to separate the first name from the last

name. Words such as “Bin”, “Binti”, “A/L” or “A/P” which

means “son of” or “daughter of” are often used as the

separators. In this rule all elements that come before the

separator is the first name. Below is an example:

Short Name Full Name First Name

K. Munusamy
Kanmani A/P

Munusamy
Kanmani

H. Mohd Rusli
Hazlifah Binti Mohd

Rusli
Hazlifah

Rule 2: In some situations, the full name of authors from the

Malay and Indian ethnic groups also appear without any

separators as explained in Rule 1. The names appear as

individual names with their fathers’ names. Thus, for names

that only contain first names and the last names, and that do

not match their fathers’ names are defined as the authors’ first

names.

Rule 3: For authors of the Chinese ethnic group, both rules

given above are not applicable since their last names or family

names are placed as the first word in their names. Therefore, it

is defined here that any words after the first word are regarded

as their first name. Below is an example of the first name for

authors from the Chinese ethnic group:

Short Name Full Name First Name

C. S. Cheong
Chong Suh

Cheong
Suh Cheong

c) Middle Name: Similar to the rules defined for the first

name, for ethnic groups such as the Malays and Indians, the

middle names are the separators used in the full name, i.e.

“Bin”, “Binti”, “A/L” or “A/P”. However, no rules are found

to define the middle name as in the Chinese authors’ names.

d) Last Name: Last names are also known as surnames or

family names. The last name is defined according to the

following rules:

Rule 1: For the Malays and Indians ethnic group, the last

names are all the elements that come after the separators Bin”,

“Binti”, “A/L” or “A/P”.

Rule 2: For names without separators, the element that

matches the father’s or family name is the author’s last name.

However, for authors of Chinese origin, the first word in the

full name is regarded as the last name.

5 Semantic descriptions that supports the

Data mediation

There are three main components of the Semantic Mediator

Descriptions; concepts, rules and the mediation steps. The

advantage of declarative knowledge representation is

exploited in order to describe the content of the Web service

messages. The main objective in this context is to translate the

mediation knowledge of a developer into semantic

descriptions which can be read and processed by machines.

Therefore, the semantic mediation knowledge is expressed in

WSML ontology language using Web Service Modelling

Toolkit (WSMT).

5.1 Domain Ontologies

In this approach, two simple ontologies were created and

these are the requester ontology and the provider ontology.

The requestor ontology is built based on the publication

records that are stored in the UPS system and named termed

as the PublicationOntology. The structure of the Publication

Ontology is as follows:

ontology PublicationOntology

concept Gender

concept Religion

concept MaritalStatus

concept Authors

hasName ofType _string

NameContent impliesType NameDescription

hasGender impliesType Gender

28 Int'l Conf. Semantic Web and Web Services | SWWS'12 |

hasEthnic impliesType Ethnic

hasShortName ofType _string

hasNationality impliesType Nationality

hasMaritalStatus impliesType MaritalStatus

instance Married memberOf MaritalStatus

instance Single memberOf MaritalStatus

instance Divorced memberOf MaritalStatus

instance Malay memberOf Ethnic

instance Chinese memberOf Ethnic

instance Indian memberOf Ethnic

instance Male memberOf Gender

instance Female memberOf Gender

instance Malaysian memberOf Nationality

The requestor ontology describes all the important elements of

an author. In addition, the content of the author’s name as a

separate concept is also described and listed below.

concept TitleNames

concept NameDecription subConceptOf Authors

hasTitleName impliesType TitleNames

hasFirstName ofType _string

hasMiddleName ofType _string

hasLastName ofType _string

instance Ms memberOf TitleNames

instance Miss memberOf TitleNames

instance Mrs memberOf TitleNames

instance Mr memberOf TitleNames

The instances of each authors is also extracted from the

existing data from the UPS system. An example of the

generated instances as follows.

instance Kanmani memberOf Authors

hasName hasValue "Kanmani A/P Munusamy"

hasGender hasValue Female

hasEthnic hasValue Indian

hasShortName hasValue "K. Munusamy"

hasNationality hasValue Malaysian

hasMaritalStatus hasValue Married

The provider ontology is also defined by extracting the

important complexType and the related attribute from the

XML data scheme as specified in the WSDL file and is termed

as IndexedPublication. Figure 4 illustrates the concept of

Contributor in the IndexedPublication.

Fig. 4 Concept of Contributor in IndexedPublication

5.2 Axioms that define the rules

Rules and relation that describe the content of name are

translated into axioms and the listing below shows the excerpt

of axioms that describe the relationship between the middle

name with the other concepts like Gender and Race. In this

rule, the relationship of the concept of Nationality, have been

included since all these rules are true among Malaysians.

axiom FemaleMalayDef

definedBy ?a memberOf FemaleMalay :- ?a memberOf

Authors and

?a[hasGender hasValue Female] and

?a[hasEthnic hasValue Malay].

axiom FemaleMalayMiddleDef definedBy

?x memberOf FemaleMalay and ?x[hasNationality

hasValue Malaysian]

implies ?x[hasMiddleName hasValue "Binti"].

axiom MaleIndianMiddleDef definedBy

?x memberOf Authors and ?x[hasGender hasValue

Male] and

?x[hasEthnic hasValue Indian] and

?x[hasNationality hasValue Malaysian]

implies ?x[hasMiddleName hasValue "A/L"].

5.3 Testing the Semantic Mediation

Descriptions and mediation steps

The provider ontology and axioms are tested to ensure that

the all the developer knowledge that required for mediating

the Web service messages is represented correctly into

semantic descriptions. The IRIS Reasoner is used to execute

the queries and to generate the middle name and the title for

each author based on the provided descriptions and rules.

Figure 5 shows a simple query that retrieves the middle name

of the described authors. These queries are called in termed as

transition rules that describe the steps involved in the

mediation action. The transition rules are not explained further

due to the space limitations.

Figure 5 Executing Queries using IRIS Reasoner

Int'l Conf. Semantic Web and Web Services | SWWS'12 | 29

6 Conclusions

 In this paper, the importance of understanding the content of

the messages in order to mediate the messages correctly

according to the provided mapping has been discussed. A new

component which is termed as the Semantic Mediator

Description that expresses developers’ mediation knowledge

in the form of semantic knowledge representations has been

proposed. Moreover, it has been illustrated in the proposed

framework and further explained that each element in the

Semantic Mediator Description component uses a real life

scenario. In this research, generating the rules that define

content of messages tends to be very challenging. The rules

and relations between the concepts require all the possible

descriptions of a message from various perspectives. The rules

and mediation steps that are created at design time with the

developer’s assistance must be tested using large data sets

before the actual Web service invocation to ensure its

accuracy.

7 References

[1] Bruijn, J.d., et al. Web Service Modeling Ontology

(WSMO). 2005 3 June 2005 [cited 28 June 2011];

Available from:

http://www.w3.org/Submission/WSMO/.

[2] Martin, D., et al. OWL-S: Semantic Markup for Web

Services 2004 22 Nov 2004 [cited 28 June 2011];

Available from:

http://www.w3.org/Submission/OWL-S/.

[3] Farrell, J. and H. Lausen, Semantic Annotations for

WSDL and XML Schema (SAWSDL), in W3C

Recommendation. 2007.

[4] Fensel, D., M. Kerrigan, and M. Zaremba,

Mediation, in Implementing Semantic Web Services.

2008. p. 211-231.

[5] Nagarajan, M., et al., Ontology driven data

mediation in Web services. International Journal of

Web Services Research, 2007. 4(4): p. 104-126.

[6] Fensel, D. and C. Bussler, The web service modeling

framework WSMF. Electronic Commerce Research

and Applications, 2002. 1(2): p. 113-137.

[7] Motahari Nezhad, H.R., et al. Semi-automated

adaptation of service interactions. in 16th

International World Wide Web Conference,

WWW2007. 2007. Banff, AB.

[8] Wei, S., et al. Toward a model-based approach to

dynamic adaptation of composite services. in

Proceedings of the IEEE International Conference

on Web Services, ICWS 2008. 2008. Beijing.

[9] Li, X., et al., A pattern-based approach to protocol

mediation for web services composition. Information

and Software Technology, 2009. 52(3): p. 304-323.

[10] Munusamy, K., et al., A Comparative Evaluation of

State-of-Art Web Services to Support Protocol

Mismatches. International Journal on Web Service

Computing (IJWSC), 2011. 2(3).

[11] Euzenat, J., A. Mocan, and F. Scharffe, Ontology

Alignments, in Ontology Management. 2008. p. 177-

206.

[12] Mocan, A., E. Cimpian, and M. Kerrigan, Applying

Reasoning to Instance Transformation, in 5th

European Semantic Web Conference (ESWC). 2009:

Tenerife Spain.

[13] Fensel, D., M. Kerrigan, and M. Zaremba, WSMO

and WSML, in Implementing Semantic Web Services,

D. Fensel, M. Kerrigan, and M. Zaremba, Editors.

2008. p. 43-65.

[14] Shafiq, O., et al. Data Mediation Support for Triple

Space Computing. in 2006 International Conference

on Collaborative Computing: Networking,

Applications and Worksharing, CollaborateCom.

2006. Atlanta, GA, United states: Inst. of Elec. and

Elec. Eng. Computer Society.

[15] Mocan, A. and E. Cimpian, An ontology-based data

mediation framework for semantic environments.

Semantic Web and Information Systems, 2007. 3(2):

p. 69-98.

[16] Mocan, A. and E. Cimpian. WSMX Data Mediation.

2005 11 Oct 2005 [cited 28 June 2011]; Available

from:

http://www.wsmo.org/TR/d13/d13.3/v0.2/20051011/.

[17] Vaculin, R., R. Neruda, and K. Sycara, The process

mediation framework for semantic Web services.

International Journal of Agent-Oriented Software

Engineering, 2009. 3(1): p. 27-58.

[18] Vaculin, R. and K. Sycara. Towards automatic

mediation of OWL-S process models. in Proceedings

- 2007 IEEE International Conference on Web

Services, ICWS 2007. 2007. Salt Lake City, UT.

[19] Wu, Z.X., et al., Automatic composition of semantic

web services using process mediation, J. Cardoso, J.

Cordeiro, and J. Filipe, Editors. 2007, LSDIS lab,

University of Georgia. p. 453-461.

[20] Gomadam, K., et al., A Declarative Approach using

SAWSDL and Semantic Templates Towards Process

Mediation, in Semantic Web Services Challenge.

2009. p. 101-118.

[21] Zhe, S., A. Kumar, and P. Grefen. Towards

Integrated Service Adaptation A New Approach

Combining Message and Control Flow Adaptation.

in Web Services (ICWS), 2010 IEEE International

Conference on. 2010.

[22] Euzenat, J.r.m. and P. Shvaiko, Classifications of

ontology matching techniques Ontology Matching.

2007, Springer Berlin Heidelberg. p. 61-72.

30 Int'l Conf. Semantic Web and Web Services | SWWS'12 |

http://www.w3.org/Submission/WSMO/
http://www.w3.org/Submission/OWL-S/
http://www.wsmo.org/TR/d13/d13.3/v0.2/20051011/

Abstract— Search engines help us mine the web and get what

we are looking for. But the problem with today’s search engines is

that, it gives us most reputable results but not really the most

relevant ones. The search criteria of these traditional web search

engines is based on keyword matching or to some higher extent

(like in Google), matching words similar or in the same context to

the query word and then ranking the matched pages with

PageRank Algorithm, based purely on link analysis. PageRank

despite being quiet efficient in sorting the results to be presented

to the user, still results in a number of irrelevant pages. To

overcome this problem and provide relevant results, the Relation

Based Page Ranking Algorithm has been introduced recently. In

this paper, we evaluate the performance of the Relation Based

Page Ranking Algorithm on some academic web pages annotated

with an Ontology specifically built for the web page’s domain.

Ranking of web pages through this algorithm is based upon a

probability measure that checks the relevancy of a page to the

query. Finally, we compare the results of our experiments with

that of Google’s results generated for the same query.

Keywords: Semantic web, PageRank, Ontology, Relevance Ranking,

Annotations.

1. INTRODUCTION

Search Engines are developed to help the users search for what

they are looking for in the web’s data repository. Search

Engines work with the help of predefined automated software

programs that are known as Spiders or bots and are used for

crawling, that is, going through the entire website (all the

pages) and records down the content in the form of databases

known as indexes. These search engine indexes are invoked to

display the webpage content, when the user defines a query in

the search engine interface and the query is parsed and checked

against the search engine database to get the best results

possible [1]. The matching criteria of the existing search

engines is usually based on keyword matching, that is,

matching the query keywords with the web page’s keywords

stored in the indexes of the search engines. There is no

architecture on the web 2.0 [14] to store the relations a user has

in mind while typing the query [2]. At the time of query

processing, the relations are lost and the given keywords are

treated as individual keywords, hence creating the major

problem of isolated keyword matching. Even the ranking of the

retrieved web pages has no account for relations and is purely

based on link analysis like in Google’s PageRank [3][4] and

some on page relevance factors [5]. There should be some way

to measure these relations and to make keywords search more

meaningful that is, incorporating Semantics into the search

engines working. Though Google has injected some of the very

important semantic web technologies [6] such as latent

semantic indexing [15] and displaying rich snippets [16], but it

still processes and displays some irrelevant results on the very

first page.

In this paper, we prove that the Relation Based Page Ranking

Algorithm proposed in [8] is a solution to the above mentioned

inconsistencies of the existing search engines. The Ranking

strategy is based on the ontology data, user query and the page

annotations, which will be exploited to measure the relevance of

a web page to a given query. The Ranking criterion proposed

specifically for the Semantic Search Engines, in no ways

eliminates the use of the existing ranking algorithms like

PageRank, which checks for the repute of pages. In fact, this

Relation Based Ranking Algorithm can be used in conjunction

with the PageRank algorithm to give most reputable and most

relevant results on a semantic search engine.

2. RELATED WORKS IN RANKING ALGORITHMS FOR THE

SEMANTIC WEB

The aim of this paper is to make use of the relations embedded

as annotations within a web page and the query concepts for

creating a ranking strategy capable of assigning a ranking score

better than the ones done in today’s search engine’s ranking

algorithms. This idea of making use of the ontology based

semantic meta data for ranking web pages is not new [9] [10]

[11]. How ever, these previous approaches did not consider the

semantic relations which are said to be the key component of the

Semantic Web. To make optimum use of the Semantic Web

content marked up, there should be approaches available that

takes into account the relations and the semantic web

associations between content in annotated web pages that can be

used for ranking and retrieving data [2][12][13].

The most relevant work with respect to this paper would be [8]

and [2]. The basic idea of [2] is that if a graph based web page

annotation can be provided, where concepts and relations are

modeled as vertices and weighted edges, respectively, it becomes

possible to define a series of cuts removing less relevant

concepts from the graph. This allows for the generation of a so

PERFORMANCE EVALUATION OF A RELATION BASED PAGE

RANKING ALGORITHM USED FOR IMPROVING SEARCH RESULTS

Sumera Hayat
1

MS CS, Nadeem Qazi
2
 Associate Professor

1

2
Faculty of Engineering, Sciences & Technology. IQRA University, Karachi, Pakistan.

Int'l Conf. Semantic Web and Web Services | SWWS'12 | 31

called candidate relation –keyword set (CRKS) to be submitted

to the annotated database, which can reduce the presence of

uninteresting pages in the result set. How ever, the effectiveness

of this approach is strongly limited as there is no kind of ranking

strategy involved. In [8] we see an extension to this approach

which relies on the assumption that for providing effective

ranking, the search engine logic should only need to know the

structure of the underlying ontology and the web page to be

ranked in order to compute the relevance score.

3. OVERVIEW OF THE RANKING STRATEGY

For the Semantic web to work optimally and give the results

actually anticipated by the users, we need to not only add in the

so called semantic web plug ins, but to change the entire

infrastructure of the current web search engines. The Relation

Based Page Ranking Algorithm for the Semantic Search Engine

is proposed to solve the issues related to the ranking techniques

of today’s web 2.0, like PageRank used by Google. To prove that

this Algorithm works better than the existing search engines

ranking systems we have created a data set to reproduce the

ranking results generated by Relation Based Page Ranking

Algorithm in [8]. We first present the real time environment in

which this algorithm will be applicable in future.

3.1 Infrastructure of a Semantic Search Engine

The Relation Based Page Ranking Algorithm cannot be used

along with the current web search engines infrastructure as the

current search engines lack to store the relations between query

keywords and the annotated web documents which are the basis

of Relation Based Page Ranking Algorithm. In order to

understand the ranking algorithm itself, we first need to

understand the environment where it will actually function in

real time scenarios. The prototype of the Relation Based Page

Ranking Algorithm presented in [8] is shown in figure 3.1.

In this paper, we have not focused on how to create this tiny

Semantic web environment, but to evaluate the performance of

the Ranking Logic of this Semantic Web, hence limiting our

focus to the Ranking Module of the figure below.

Figure 3.1 Prototype Architecture for the Relation Based Page Ranking

Algorithm

3.1 Scenario for the Evaluation of the Algorithm

When searched through Google (on 12 January 2012, at 3:44

pm) about Dr Alam Raza’s Research work who is working at

IQRA University with the following keywords, “Dr Alam Raza”

“Research” “IQRA University”, the search results displayed the

web page (Faculty Web page of IQRA university) on top of the

list and gives the profile page on 7
th

 position in the list, which

actually had the research details of Dr Alam Raza. The third

page which is also less relevant than the profile page but is much

closer to the query than the faculty web page is ranked 3
rd

 and

the least relevant page that contains nothing about Dr Alam

Raza’s Research work is ranked 2
nd

 by Google. The keywords

were merely matched on the basis of keywords density and latent

semantic indexing, with no importance given to the relations in

between the keywords which a user had in mind. For instance in

this case, the relations in our mind were Dr Alam Raza has

Research some Research, who is working at IQRA University.

The ranking of these web pages was based of the link analysis

PageRank Algorithm which gave no importance to the relations.

The faculty web page having a PageRank 4/10 [18], was ranked

first as the other pages had PageRank less than this.

3.2 Creating OWL ontology

Ontology is a way of representing things of the world, called

entities, into a concept based method which defines a kind of

taxonomy or hierarchy. It gives a common vocabulary for the

people and machines to share knowledge of a particular domain

[19]. So we created an ontology using Protégé 4.1[20][21] for

manually annotating some web pages of IQRA University. The

ontology shown by a graphical option (Ontoviz) in Protégé 4.1

can be seen in figure 3.2.

Figure 3.2 IQRA University Ontology Onto viz view in Protégé 4.1

The above graphical representation of the ontology can be

written in an ontology language [22] understood by machines,

which will be the language for annotating the web pages as well.

We have extracted the RDF/XML code of this ontology written

in a web ontology language [23] from Protégé 4.1 after its

creation and verification by a reasoner. A portion of the

RDF/XML code of the IQRA University ontology can be seen in

figure 3.

32 Int'l Conf. Semantic Web and Web Services | SWWS'12 |

3.3 Manual Annotation of web pages
The task performed to make web page data available and

readable to the machines is known as Annotations or Semantic

Markup. The term annotate simply means to attach data to some

other piece of data [24]. Semantic annotations can be given to a

web document in many ways. The traditional way is with the

help of the tools like OntoMat annotizer[25], Annotea [26],

SMORE [27] etc. Other ways are through Semantic Wikis,

Semantic blogs, tagging with the help of RDFa , microformats

and embedding RDF [7] meta data with the help of ontology

vocabulary. With the help of our IQRA University Ontology we

manually annotated 4 web pages of IQRA University and the

RDF/ XML code generated for one of these web pages using

Protégé Ontology RDF/XML code is shown in figure 3.4.

Figure 3.3 Part of the IQRA University Ontology in RDF/XML Syntax

Figure 3.4 Part of annotations of web page 1

3.4 Graph Based Notation and Methodology

Starting from the ontology defined for a domain, a graph

based representation can be designed where OWL classes are

mapped into graph vertices and OWL relation properties are

mapped into graph edges. A link between concepts in the graph

shows a relation between the concepts and has some weight on

the basis of the given relations. Like wise, we formulate the

query and annotated web pages into their respective graphs

using the graph based notations given below in table 3.1. Given

an ontology graph G and a query sub graph GQ, it is possible to

define a ranking strategy capable of assigning each page

including queried concepts a relevance score based on the

semantic relations available among concepts within the page

itself (thus neglecting the contribution of the remaining Web

pages). The proposed ranking strategy assumes that given a

query Q, for each page p, it is possible to build a page sub

graph GQ,p using a methodology that is similar to the one used

for G and GQ and exploiting the information available in page

annotation A. All these graphs will help us implement the

Relation Based Page Ranking Algorithm.

Table 3.1 Showing definitions of symbols used.

3.5 Graph Based Formulization

So now using the graph theory we formulate the ontology

graph for the IQRA University ontology created in section 3.2.

We start with the ontology graph to be built over the part of

IQRA University Ontology shown below in figure 3.5 (a)(b):

Int'l Conf. Semantic Web and Web Services | SWWS'12 | 33

Figure 3.5 (a)(b) Part of IQRA University ontology and its Graph. (c)

Web page 1 annotations graph. (d) query sub graph. (e) page sub graph

Assuming a Semantic Search Engine, we pass a query containing

three keywords and three concepts associated with it. Keywords:

“Dr Alam Raza” “Research” “IQRA University” and the

associated Concepts: “Teaching_Staff” “Research”

“Universities”. So now we formulate the query sub graph based

on the query and web page 1’s sub graph based on the query sub

graph in figure 3.5 (d) and (e).

3.6 Page Relevance Score and Ranking

For each page sub graph, all the possible spanning forests

[28][29] (both constrained and unconstrained) are generated

with either progressively removing edges of all the spanning

forests to get constrained forests or by adding new edges to all

the constrained forest of length 1 until a spanning forest is

obtained [30]. We use the first approach for our experiments.

Total number of spanning forests can be identified with the

Cayley’s formula [31] = nⁿ⁻². Considering page 1’s sub graph

in figure 3.5 (e) , we find out the total spanning trees of this sub

graph, nⁿ⁻²= 3³¯² = 3

So we have total 3 spanning trees for page 1’s sub graph with

edges n-1 =2 edges.

Figure 3.6 All possible spanning trees of Page 1 Sub graph

With the help of the original page spanning forest we can

generate all the constrained page spanning forests. The

constrained page spanning forests has edges less than the

original spanning forest and if equal than it will be a spanning

forest not a constrained forest. So all the possible constrained

page spanning forests with edges = Ɩ = 1 are in figure 3.7.

Figure 3.7 All possible constrained page spanning forests

We find the probability P(Q, p, Ɩ) of a web page with

constrained page spanning forest of length Ɩ in the following

way:

Constrained Page Relevance Score of Page 1

P (Q,p, Ɩ) =

 P(Q, p1, 1) = P(ṝ₁₂, р₁).P(SF¹ǫ,р₁ (1)) + P (ṝ₁₃,р₁).
P(SF²ǫ,р₁ (1)) + P(ṝ₂₃,р₁). P(SF³ǫ,р₁ (1)) =

Similarly, we compute the relevance score for the other web

pages as well. The results of the ranking are presented in the

table below with each page showing its ranks of Google and the

34 Int'l Conf. Semantic Web and Web Services | SWWS'12 |

Relation Based Page Ranking Algorithm, along with the

constrained page relevance score.

Google
Ranking

Our
Ranking

Web page details Relevance
Score

1 3 Faculty | Iqra University
www.iqra.edu.pk/?page_id=1
210
... University Ranking. Click
here for details Business
School's Research Ranking of
Pakistan ... Dr. Alam Raza.
PhD, (Eco). MSc (Eco.) Iqra
University, Karachi ...

0.5555

2 4 Program Teams | Iqra
University
www.iqra.edu.pk/?page_id=2
070
Click here for details Business
School's Research Ranking of
Pakistan ... Dr. Alam Raza; Mr.
Muhammad Ahsan ullah Khan
Durrani; Mr. Faisal K Qureshi

0.1111

3 2 IURC Organogram | Iqra
University
www.iqra.edu.pk/?page_id=1
667
Latest University Ranking.
Click here for details Business
School's Research Ranking of
Pakistan ... DR. ALAM RAZA,
Social Sciences. DR.
ASADULLAH LARIK ...

0.6111

7 1 IU Learning Management
System
iulms.edu.pk/profile/publicpr
ofile.php?UserId=353-08-1005
Picture of Dr. Alam Raza ... At
present, working at Iqra
University, Defence View
Campus (Business
Administration Department),
Karachi, Pakistan, as an ...

0.6666

 Table 3.2 Accuracy of the Ranking Algorithm checked over 4 web pages

4. Conclusion

It can be clearly seen that the profile page which had the

research details about Dr Alam Raza has been ranked 1
st
 by the

Relation Based Page Ranking Algorithm applied. Hence it is

proved that using the relations between concepts embedded in a

web page (as semantic annotations) a ranking criterion

formulated known as the Relation Based Page Ranking

Algorithm, results in much more accurate results than Google

and matched user needs to a greater extent.

To benefit from the accuracy of Relation Based Page Ranking

Algorithm, we need to opt for the Semantic Web Environment,

which needs to be built on top of the existing web and not by

just adding the semantic web technologies into the existing

web. The search engines today are becoming more and more

semantic and are trying to provide users with accurate results.

But in order to implement this novel Ranking Strategy, the

existing search engines would require this module to be

implemented in a Web 3.0 environment, as it’s the best

platform for this ranking strategy to work to its full potential.

REFERENCES

[1] Searching the Web. Arvind Arasu Junghoo Cho Hector

Garcia-Molina Andreas Paepcke Sriram Raghavan Computer

Science Department, Stanford University.

[2] A Relation-Based Search Engine in Semantic Web Yufei Li,

Yuan Wang, and Xiaotao Huang.

[3] The Anatomy of a Large-Scale Hypertextual Web Search

Engine. Sergey Brin and Lawrence Page.

[4] L. Page, S. Brin, R. Motwani, and T. Winograd, “The

PageRank Citation Ranking: Bringing Order to the Web,”

Stanford Digital Library Technologies Project, 1998.

[5] Search Engine Ranking Variables and Algorithms. Sean A.

Golliher – Publisher, SEMJ.org

[6] Google Rolls out Semantic Search Capabilities By Juan

Carlos Perez, IDG News.

http://www.pcworld.com/businesscenter/article/161869/google_r

olls_out_semantic_search_capabilities.html

[7] A Developer's Guide to the Semantic Web. Liyang Lu

[8] A Relation-Based Page Rank Algorithm for Semantic Web

Search Engines. Fabrizio Lamberti, Member, IEEE, Andrea

Sanna, and Claudio Demartini, Member, IEEE

[9] XSEarch: A Semantic Search Engine for XML. Sara Cohen

Jonathan Mamou Yaron Kanza Yehoshua Sagiv

[10] Swoogle: A Semantic Web Search and Metadata Engine. Li

Ding, Tim Finin, Anupam Joshi, Yun Peng, R. Scott Cost, Joel

Sachs, Rong Pan, Pavan Reddivari, Vishal Doshi

[11] Semantic Search. R. Guha, Rob McCool, Eric Miller

[12] SemRank: Ranking Complex Relationship Search Results

on the Semantic Web. Kemafor Anyanwu, Angela Maduko,

Amit Sheth.

[13] Semantic Association Identification and Knowledge

Discovery for National Security Applications. Amit Sheth,

Boanerges Aleman-Meza, I. Budak Arpinar, Chris Halaschek,

Cartic Ramakrishnan, Clemens Bertram, Yashodhan Warke,

David Avant, F. Sena Arpinar, Kemafor Anyanwu, Krys Kochut.

[14] Web 2.0 http://en.wikipedia.org/wiki/Web_2.0

[15] An Overview of Latent Semantic Indexing. Jason Hong,

University of California, Berkeley.

[16] Introducing Rich Snippets.

http://googlewebmastercentral.blogspot.com/2009/05/introducin

g-rich-snippets.html

[17] H. Knublauch, Protégé, Stanford Medical Informatics,

http://protege.cim3.net/file/pub/ontologies/travel/travel.owl

[18] Page Rank Checker.

http://www.prchecker.info/check_page_rank.php

[19] Ontology Development 101: A Guide to Creating Your First

Ontology. Natalya F. Noy and Deborah L. McGuinness

[20] what is protégé? http://protege.stanford.edu/overview/

[21] A Practical Guide To Building OWL Ontologies Using

Protégé 4 and CO-ODE Tools Edition 1.1

Int'l Conf. Semantic Web and Web Services | SWWS'12 | 35

Matthew Horridge, Simon Jupp, Georgina Moulton, Alan

Rector, Robert Stevens, Chris Wroe

The University Of Manchester.

[22] Choosing an Ontology Language. Anna V. Zhdanova, Uwe

Keller

[23] Web Ontology Language: OWL. Grigoris Antoniou₁ and

Frank van Harmelen₂ Department of Computer Science,

University of Crete, ga@csd.uoc.gr₁ Department of AI, Vrije

Universiteit Amsterdam₂ ,

[24] What are Semantic Annotations?? Eyal Oren₁ , Knud

Hinnerk M¨oller₁ , Simon Scerri1, Siegfried Handschuh₁ , and

Michael Sintek₂ . ₁ Digital Enterprise Research Institute,

National University of Ireland, Galway {eyal.oren, knud.moeller,

simon.scerri, siegfried.handschuh}@deri.org ₂ German Research

Center for Artificial Intelligence (DFKI) sintek@dfki.uni-kl.de

[25] Onto Mat Annotizer

http://annotation.semanticweb.org/Members/cobu/AnnotationTo

ol.2004-07-28.1138

[26]Annotea.http://annotation.semanticweb.org/Members/lago/A

nnotationTool.2003-08-25.1258

[27] SMORE.

http://annotation.semanticweb.org/Members/lago/AnnotationToo

l.2003-08-25.4401

[28] Spanning trees and Spanning forests

www.cafed.sssup.it/~giulio/software/spanntree/spanning_tree.ht

ml

[29] Spanning Trees and Optimization Problems. Bang Ye Wu,

Department of Computer Science and Information Engineering,

Shu-Te University, Yen-Chau, Kaohsiung County, Taiwan 824.

Kun-Mao Chao, Department of Computer Science and

Information Engineering, National Taiwan University, Taipei,

Taiwan 106.

[30] RELATION BASED SEMANTIC WEB SEARCH

ENGINE S. Raja Ranganathan1, Prof. M. Sadish Sendil2, Dr. S.

Karthik3

[31] A. Cayley. A theorem on trees. Quart. J. Math., 23:376–378,

1889.

36 Int'l Conf. Semantic Web and Web Services | SWWS'12 |

Integration of Semantic Web and Knowledge
Management for creating dynamic environment

Molood Barati1 ,Seyedjamal Zolhavarieh 1

1 Faculty of Creative Multimedia (FCM), Multimedia University, Cyberjaya, Malaysia

Abstract - The Semantic Web is organized in a semantic
direction so that it is significant to computers as well as to
humans. The principal purpose of Semantic Web is to
encrypt semantic repositories in computer language
framework due to obtaining or sharing knowledge anytime
and anywhere. Connectivity, accountability, and liability of
knowledge management systems are the main component to
the future generation of web services. The challenge of
semantic web is the arrangement of distributed valid
information and knowledge with well-defined meaning
which could be applicable for different portions. Supplying
semantic Web services based on the Web service modeling
and semantic web ontology which has capability to
dynamically explore and invoke is one of the conventional
topic in Semantic Web technology. The main purpose of
this paper is to present the relatedness challenge of
Semantic Web Service (SWS) technologies to Knowledge
Management System (KMS) by preparing dynamic
environment. Additionally we argue about how to unite
Knowledge management methods to SWS in order to create
dynamic architecture in web.

Keywords: Ontology modeling, Collaborative
environment, Semantic Web Service (SWS), semantic gap,
Content Management System, knowledge based

1 Introduction

Information retrieval (IR) has revealed several
techniques to make human search easier in resources. The
field of this study involved in searching for metadata in
documents, observing structured storage and preparing
optimized connection between various databases [9].
Additionally Semantic Web supplies collaborative
environment that enlarges in frequent formats in World
Wide Web. The Semantic Web disposes to convert
unstructured information into a "web of data" that is
constructed on the Resource Description Framework (RDF)
[8].

In semantic web technology a knowledge base is a
special form of database for knowledge management. A
knowledge base is a basic section of each semantic web

repository to collect, sorted, distributed, and search
information and terms. Machine-readable knowledge bases
are a term about collecting information and knowledge in a
computer readable form that should be in a logical coherent
structure. Some machine readable knowledge bases are
exploited with artificial intelligence [3]. Combining
information in the form of object attribute value is called
triplets. These triplets can be semantically processed,
adapted, analyzed and systematically arranged by machine
agents. In addition, the agent can exploit this information
with other machine agents due to create Semantic Web
more real [10].

The first semantic classifier is Latent semantic
analysis (LSA) that has technical method in processing and
analyzing associations between repositories of information
and knowledge in the web. LSA structure builds on this
hypothesis that words which are close in meaning will
happen close together in text documents [15]. A matrix
containing word counts per paragraph (rows expresses
unique words and columns expresses each paragraph) is
built from a large part of text and mathematical method
called Singular Value Decomposition (SVD). SDV declines
the number of columns with comparable structure between
rows. Words are compared by taking the cosine of the
angle between the two vectors formed by any two rows.
Values near to 1 express very similar word while values
near to 0 show very dissimilar words in context [5].

Corporate Semantic Web (CSW) elucidates the
application of Semantic Web technology and Knowledge
Management methodology to unify environments. The
initial framework of a Semantic Web encounters to many
problems such as scalability, lack of stimulus to annotate
sources, and comprehensive adoption of shared ontologies
(Corby & Faron-Zucker, 2002). Moreover privacy
qualification and trust issues are the other essential of a
perfect Semantic Web Service (SWS) [1]. CSW regards to
semantic improvement of information which is conveyed to
subscribers as well as semantic applications. CSW is aimed
to promote the unification of information in heterogeneous
sources, improving information retrieval by reducing
information overload, providing decision making support,
dispersing ambiguities in terminology association, and
identifying relevant information [14].

Int'l Conf. Semantic Web and Web Services | SWWS'12 | 37

 CSW is constructed based three fundamental
areas: ontology engineering, semantic applications, and
collaboration. The web life cycle of Corporate Semantic is
illustrated in figure 1. Ontology engineering considers to
efficiency and effectiveness of ontology extension toward
ontology growth and maintenance. Semantic application
analyzes applications to evaluate what range could attain
benefit from semantic technology. Collaboration
emphasizes on the human centered aspects of knowledge
management in corporate concepts. Extracting explicit
knowledge from the amateur user activities in building
collaborative ontology could be one of the examples of
collaborative environment [14].

Fig.1: The web life cycle of Corporate Semantic

Providing dynamic distributed semantic web that
has the capability to support difference possibilities has
created many issues in computer science world. In this
paper we present how to unify new knowledge
management method into SWS to create dynamic
environment.

2 The review of Dynamic
environment in SWS

The concept of Semantic web Service in Dynamic
Environments pertains to exploring, arguing, classifying,
executing and handling dynamically to realize development
steps of workflow. Methods which are suggested in this
area include in many various concepts. Dynamic Semantic
Wed (DSW) is based on the techniques, methods and
paradigms of the emerging Semantic Web movement and
its applications. DSW has the structure of reducing inter-
ontological transactions (translations, mappings,
navigation) among various ontologies and taxonomies.
What is required to extensive and perfect framework are
the ability to manage Virtual Organizations workflow
processing, to change organization workflow due to collect
service-oriented tasks, and alters these tasks from
accessible services, manage new information and
knowledge and accomplish new service [2].

2.1 Knowledge-based Dynamic Semantic Web
Services Framework

Knowledge-based Dynamic Semantic Web
Services (KDSWS) Framework instructs in an integrated
mode. The life cycle of activities involved in preparing,
creating, requesting, exploring, selecting, changing, and
delivering Semantic Web Services. Figure2 clarifies the life
cycle of KDSWS framework [7].

Fig. 2: The KDSWS framework life cycle

The KDSWS Processes illustrate the steps to
deliver functionality by web services and threads as global
layer of functionality. KDSWS Specifications are built on
two models the KDSWS Meta-Model, and the KDSWS
Process Model which are based on the Knowledge/Data
Model. Features Specification to increasing the semantic
web services is the responsibility of this section. The
KDSWS Functional Architecture presents the execution
components to affirm the Framework. A central component
of the KDSWS Functional Architecture is the KDSWS
Functional Agent Services Architecture to manage services
into specialized liabilities [7].

2.2 The importance of Dynamic Semantic Web

The most necessities to creating a system for
dynamic semantic web services are:

· In wireless environments, minimizing resource
such as bandwidth to prevent receiving too many
responses to queries. For resolving these barriers
we can have a completely decentralized topology
that have the capacity to quick update without
need to republish and reproduce any new services
[7].

· Minimizing manual configuration to automatic
registry discovery on LANs and WANs [7].

38 Int'l Conf. Semantic Web and Web Services | SWWS'12 |

· Explore the best correlated services for task
accessibility, and selection of the best services
among many others based on semantic
descriptions [7].

Need to create Content Management System
(CMS) for evaluating the dynamic data in dynamic
environment is a new controversial issue to decline the
recent problems. CMS procedures could be manually or
computer based. A CMS allows creating, revising, and
altering content as site maintenance from a central page. It
supplies a set of procedures to manage workflow in
collaborative environments. Furthermore CMS regards to
resource management, transaction control, evolution of the
virtual organization, and management of workflow [6].

3 Semantic Web and Knowledge
Management systems

For being successful in KM we require to be
equipped to several techniques which are related to KM
such as Groupware, expert systems, decision support
systems and various forms of collaborative systems,
Because this field is combined of difference professional
sciences. The efficient and effective management of
knowledge resources need to dynamic communication
among departments and members due to quick respond to
change. Capturing, sharing, supplying and managing are
the factors of effective knowledge-based organization.

There are so many technologies that prepare
environment for people to share information and
knowledge, use them for enhancing their skills and
abilities, and enrich experiences in all over the word.
Hence, by Increasing advances in technologies time by
time and reusing knowledge for getting high performance,
people require to have up-to-date and dynamic environment
in order to managing knowledge in knowledge
environment. As information and knowledge needed and
used continually, searching for way to supply dynamic
knowledge environment required [12].

Data accuracy and up-to-date information and
knowledge are unavoidable elements in each organization
with dynamic infrastructure. Combining KM with SWS
would supply dynamic environment to corroborate
immediate situation. According to recent studies the
semantic web is a web of data that is directly or indirectly
adapted by agent systems. HTML technology supplies
static environment in WWW, but by interfering Semantic
Web technology we will be able to overwhelm these
barriers. SWS is constructed on the environment with
software agent to affirm fast decision making. SW
technologies exploit taxonomies and ontologies to prepare
web content. With SW tools such as Protégé and
knowledge representation models, the development has
covered sharply. SW is formed on distributed and
collaborative environment that ontologies will engage.

Evolution of shared inter organizational ontology is a new
area in this field that has attempted to produce integrated
collaborative environment [12].

4 Using CMS for KMS due to create
dynamic environment

Knowledge management system is the collection
of information technologies used to expedite the collection,
organization, and distribution of knowledge among users
and individuals. An information management system
massages data to create information and knowledge. A
knowledge management system is an information
management system with all the tools required to help
individuals turn information into knowledge which could
be useful for decision making [11].

One of the main issues in some of the knowledge
bases in knowledge management system is to be up-to-date.
Nowadays knowledge base systems are based on the static
knowledge and they should examine for updating of
knowledge bases time by time. If the knowledge
management system provides one collaborative
environment for data and knowledge in order to distribute
data dynamically, some of the barriers in up-to-dating data
will be resolved. The environment which prepares
collaboration between knowledge bases is called
collaborative environment. We propose to apply CMS for
creating dynamic knowledge bases [12].

A CMS is a computer application utilized to
create, edit, supervise, and share content in a website.
CMSs are frequently exploited for sharing industry-specific
documentation such as operators' manuals, blogs, articles,
sales guides, technical manuals, news, and marketing
brochures. The content managed may contain computer
files, image media, audio files, video files, electronic
documents, and web content. Most of tasks that they do
exist in the following [13]:

· Allow for the large number of people to contribute
and share knowledge

· Control access to data, information and knowledge
according to user accessibilities (defining which
information and knowledge users and user groups
can view, edit, publish, etc.)

· Aid in easy storage and retrieval of information
· Control of knowledge validity and compliance
· Reduce repetitive duplicate input
· Improve the ease of report writing
· Improve communication between users

Content is necessary, any type or 'unit' of digital
information. It can be: text, images, graphics, video,
sound, documents, records and etc. In other words anything
that is probably to be managed in an electronic format.
Content Management is efficient management of the

Int'l Conf. Semantic Web and Web Services | SWWS'12 | 39

content depicted above, through combining rules, process,
procedures and/or workflows in a way that its electronic
storage is supposed to be 'managed' rather than 'un-
managed' [11].

5 Discussion
Staying on up-to-date and dynamic situation for

knowledge bases is one of the critical issues in recent
KMSs. DKMS need dynamic data, dynamic information
and dynamic knowledge. Todays, KMSs are based on the
static knowledge bases and they should check for updating
version of knowledge bases time by time. If the knowledge
management system prepares one dynamic knowledge
environment or on the other meaning collaborative
environment in order to share data dynamically some of the
problems in up-to-dating and dynamic environment have
been solved. It means when KMS create collaborating
environment for share and collaborate knowledge between
knowledge bases, some knowledge base collaboration
produce, then dynamic environment can occur. For solving
this issue, using CMS and create connection between it and
KMS is offered. CMS can control version of knowledge
bases and keep versions up to date dynamically rather than
statically. It can prepare accessibility for each of user in
different areas by producing CMS user interface.

CMS is the system which is defined as a tool or
combination of tools that promote the efficient and
effective production of the desired 'output' using the
managed content. Additionally CMS is a tool that enables
an assortment of centralized (technical) and de-centralized
(non-technical) user accessibility to create, edits, manages
and finally publish number of formats in different variety
of content such as text, graphics, video, documents, and
etc. In addition being constrained by a centralized set of
rules, process and workflows that ensure coherent,
validated electronic content is required for any
management system.

Fig. 3: CMS for KMS

As it is determined in figure 3, there are different
files in CMS for managing and embedding in knowledge

bases. In this figure, variety of sections can be structured,
un-structured and semi-structured in whole of the system.
For accessing to this system and managing files in dynamic
environment we need to implement interface and create
Application Programming Interface (API) due to help users
to extract new knowledge. CMS supplies versioning and
prepares up-to-date knowledge and information and also it
provides the ability to its users due to use new knowledge
anywhere and anytime. In addition, extra new knowledge
can be added to this dynamic architecture.

Joomla (with php programming language) and
Plone (with Python programming language) are two types
of content management system that works with different
programming languages. Plone has higher security in
compare of Joomla, because Plone utilizes Python. Python
is management programming language with high security,
while Joomla is more popular content management system
which is written by php that is web base language. By
creating connection between CMS and KMS, dynamic
knowledge management system can appear.

6 Conclusion
Rapid growth in web size and quick change in

its application has been appeared in different layers of
web. In complicated and dynamic web
environment, SWS of information becomes critical
issue due to search, share, manage knowledge, and also
automatically communicate among software agents,
web services and human. The semantic web and
automatic processing of semantic information has
defined as a controversial issue. In this paper we
mention to CMS method as a way to improve dynamic
environment in semantic web technology.

7 References
[1] Ankolekar, A., Burstein, M., Hobbs, J., Lassila, O.,

Martin, D., McDermott, D., . . . Payne, T. (2002).
DAML-S: Web service description for the
semantic web. The Semantic Web—ISWC 2002,
348-363.

[2] Benatallah, B., Sheng, Q. Z., & Dumas, M. (2003). The
self-serv environment for web services
composition. Internet Computing, IEEE, 7(1), 40-
48.

[3] Berners-Lee, T., & Hendler, J. (2001). Scientific
publishing on the semantic web. Nature, 410,
1023-1024.

[4] Corby, O., & Faron-Zucker, C. (2002). Corese: A
corporate semantic web engine.

[5] De Lathauwer, L., De Moor, B., & Vandewalle, J.
(2000). A multilinear singular value

40 Int'l Conf. Semantic Web and Web Services | SWWS'12 |

decomposition. SIAM Journal on Matrix Analysis
and Applications, 21(4), 1253-1278.

[6] Han, Y. (2004). Digital content management: the search
for a content management system. Library Hi
Tech, 22(4), 355-365.

[7] Howard, R., & Kerschberg, L. (2004). A Framework for
Dynamic Semantic Web Services Management.
International Journal of Cooperative Information
Systems, 13(4), 441-485.

[8] Klyne, G., Carroll, J. J., & McBride, B. (2004).
Resource description framework (RDF): Concepts
and abstract syntax. W3C recommendation, 10.

[9] Korfhage, R. R. (2008). Information storage and
retrieval.

[10] Martín-Recuerda, F. (2006). Application integration
using conceptual spaces (CSpaces). The Semantic
Web–ASWC 2006, 234-248.

[11] McKenna, F. (2008). A Knowledge Management
System: A Discourse. Online im Internet
unter:http://www.knowledgeonecorp.com/news/pd
fs/A% 20Knowledge% 20Management, 20.

[12] Muthaiyah, S., Raman, M., & Dorasamy, M. (2010).
Knowledge Evolution System for Dynamic
Emergency Planning and Response.

[13] Quadri, S. A. (2011). Developing, Managing and
Maintaining Web Applications with Content
Management Systems: Drupal and Joomla as case
study.

[14] Tempich, C., Simperl, E., Luczak, M., Studer, R., &
Pinto, H. S. (2007). Argumentation-based
ontology engineering. IEEE Intelligent Systems,
52-59.

[15] Wiemer-Hastings, P., Wiemer-Hastings, K., &
Graesser, A. (2004). Latent semantic analysis.

Int'l Conf. Semantic Web and Web Services | SWWS'12 | 41

http://www/

42 Int'l Conf. Semantic Web and Web Services | SWWS'12 |

SESSION

ONTOLOGIES

Chair(s)

TBA

Int'l Conf. Semantic Web and Web Services | SWWS'12 | 43

44 Int'l Conf. Semantic Web and Web Services | SWWS'12 |

Towards a Hybrid Ontology Design and Development

Life Cycle

Rishi Kanth Saripalle and Steven A. Demurjian

Department of Computer Science & Engineering, University of Connecticut, Storrs, CT, USA

Abstract: Ontologies are artifacts employed for defining

and sharing domain and semantic conceptualization which

may involve stakeholders with disparate backgrounds.

These ontologies are created, imported, exported, and

reused utilizing different frameworks, tools, and

techniques. In order to build a robust shared ontology

conceptualization, the ontology development process needs

to consider an approach that mirrors the software

development process (SDP), allowing ontologies to be

constructed in a more structured and organized process.

Towards this goal, this paper proposes a Hybrid Ontology

Design and Development Life Cycle or HOD
2
LC, where

each phase is characterized to find the best fit design

technique for it role in the life cycle as compared to typical

SDP phases. Next, we explore, compare, and contrast the

existing ontology design and development alternatives with

respect their phases as related to varied SDP models, and

use this as basis to compare and contrast those alternatives

with HOD
2
LC.

1 Introduction

An ontology can be defined as “formal specification of

conceptualization” [1], a composition of concepts which

represents a class or entity identified by their unique

attributes, relationships, or associations including the

interaction between the concepts and axioms which are

rules or constraints on classes or attributes or relationships

(and in that sense properties of relations are kinds of

axioms). The axioms guide users (both human and agents)

to definitely interpret the semantic meaning of the

concepts. Ontologies are being extensively used in research

communities such as knowledge engineering [1], domain

modeling [2], database analysis [3], natural language

processing [4, 5], bioinformatics [6] etc. Further,

ontologies serve as the basis for the Semantic Web in order

to allow semantics to be attached to data that augments the

static information with domain meanings.

Ontologies are conceptual models intended to capture

both the structure and semantics of the domain and in

general they can be categorized based on the formalness of

the knowledge captured. A Top-Level Ontology [1]

describes generic concepts such as space, time, events, etc.

which are independent of any domain. A Domain Ontology

[1] describes the vocabulary related to a domain such as

medicine, automobiles, people, education, etc. or a task or

activity, by specializing the terms introduced in the top-

level ontology. Lastly, an Application Ontology [3]

describes the concepts of a focused domain, which are

often specializations of both the above categorized

ontologies such as International Classification of Diseases

(ICD) codes [28] for the medical domain and friend of a

friend (FOAF) ontology [29] to describe individuals and

their social network connections. To demonstrate, in Figure

1, Time (top-level ontology) can be used by Medicine

(domain ontology) for time-stamping medical entries,

which is later utilized for building ICD Codes (application

ontology). Based on the requirements of the information

system, the developers can modularize and hierarchically

organize their ontologies.

Time Space Event

Medicine People

FOAF
ICD

Codes

Top –Level

Ontology

Domain

Ontology

Application

Ontology

Figure 1: Dependency between ontologies based on their

knowledge formalness

K
n
o
w

le
d
g
e

F
o
rm

al
n
es

s

The process of creating a set of ontologies for an

application is predominately, with specific ontology details

defined to conceptualize the semantics of the domain by

stakeholders from varied backgrounds (ranging from

ontology engineers to end uses) that work together towards

a consensus. During this conceptualization, a general

conceptual theory is developed which is later converted

into a formal theory to yield a set of schemas or domain

modes that represents the intended ontologies. The issue is

that this process is often conducted in an ad-hoc fashion,

either without or with at most a partial utilization of

anything akin to a software development process (SDP)

that would be able to work towards this conceptualization

of multiple ontologies for an application with a more

structured approach. Our main question in this paper is to

ascertain whether a SDP can be applied to ontology design

and development to result in a solution is thought-out,

consistent, and well-structured in terms of modularity,

reusability, and efficiency.

Historically, SDPs can be leveraged via varied

systematic methodologies to take an application from its

Int'l Conf. Semantic Web and Web Services | SWWS'12 | 45

inception to deployment. SDP models include waterfall,

spiral, iterative, incremental, and agile development [7-10].

Many of these SDP models share a well accepted set of

phases: requirements to capture the capabilities the

software; specification to provide a description components

and their inter-connections; design to propose varied

conceptual models; analysis to verify if the proposed

design meets requirements; implementation of components

and the entire integrated solution; testing of correctness and

comparison against requirements and specification; and

maintenance to track system performance, identify bugs,

updates etc.

Our first objective in this paper is to propose a Hybrid

Ontology Design and Development Life Cycle (HOD
2
LC)

borrowing concepts from SDP models while

simultaneously clarifying the differences and additions, in

order to narrow the gap between ontology development and

software development process. To assist in this discussion,

we utilize our work on model extensions to OWL from

varied perspectives in terms of attributes, schemas, and

profile that leverage the UML metamodel [2]. Using

HOD
2
LC as a basis, the second objective in this paper is to

explore, compare, and contrast the existing approaches to

ontology design and development [11, 12, 13, 14, 15, 16,

17] against HOD
2
LC. This results in a further justification

of the phases of HOD
2
LC by understanding the way that

our proposed approach measures against the competition.

The rest of the paper is organized as follows: Section 3

details the proposed Hybrid Ontology Design and

Development Life Cycle (HOD
2
LC) with a set of 9 phases

as compared to the SDP process. Section 3 introduces and

reviews six alternatives to ontology development

processes. Section 4 compares and contrasts HOD
2
LC with

the ontology methodologies of Section 3. Finally, Section

5 concludes the paper.

2 Proposed HOD
2
LC Model

This section details our work on a Hybrid Ontology

Design and Development Life Cycle (HOD
2
LC) model that

leverages various software engineering methodologies and

capabilities of various ontology approaches to arrive at a

process approach that is more structured and

comprehensive than the current traditional ontology

development approaches (as we will discuss in Section 3).

The HOD
2
LC model has a number of phases that represent

different aspects of the ontology design and development

process. The phases involved in the proposed model are as

follows:

Phase 1: The Problem Analysis phase identifies and

analyzes the problem faced in the information system

leading to the development of new ontology and/or

extending an existing ontology. Problem analysis is similar

to SDP’s requirement phase, but utilizes different

methodologies such as abstraction techniques from

heuristic classifications [31] to identify domain or domain

concepts or instances. Generally the problems faced are

related to instance data of the domain ontology or a state of

the ontology which are commonly represented using

competency questions or UML usecase diagrams from

which an abstract domain problem has to be formulated.

For example, List all the symptoms of Radiation

Chemotherapy on Breast Cancer; Find symptoms of

acetaminophen on patient suffering from bronchitis with

pre-condition of Asthma; Injuries which can cause Internal

Bleeding etc. When the abstraction techniques is applied

the domains symptoms, treatment and diseases are

identified along with concepts Asthma, Chemotherapy,

Cancer, Breast Cancer etc. The problem analysis is to

identify the domains involved and may also identify

abstract meta-concepts (detailed in Design Phase), domain

model concepts of the domain from the instance data.

Phase 2: The Integration Phase allows designers to search

for existing ontologies meeting the problem criteria

identified in the Problem Analysis Phase (Phase 1). For

example, we can reuse RxNorm [19] vocabulary which

provides normalized names for clinical drugs and UMLS

semantic network which is composition of semantic types

and relationships [13] to support various medical concepts.

For the domain of Symptoms, Injuries, Procedure we can

use ICD vocabulary [13] and LONIC for laboratory codes.

Phase 3: In Knowledge Acquisition, designers interact with

domain experts (providers, researchers etc.) searching

multiple resources (medical records, data, ontologies etc.)

to identify the concepts and domain vocabulary required to

develop the complete ontology. For the domain vocabulary

a Glossary of Terms (GT) can be defined to encompass

instances of various classes defined in the conceptual

model, associations and values of the classes attributes.

The GT identifies and gathers all the useful and potentially

usable domain knowledge and its meanings. The GT can be

built by reusing methods proposed by Mariano Fernandez

et al.[11] or Asunción Gómez-Pérez et al.[12]. This phase

can be performed in parallel with Specification, Design

and/or Analysis phases.

Phase 4: In the Specification phase, the designer defines

the scope of various domains and functionality of the

ontology and its concepts. For instance, Phase 1 identified

disease and symptoms as one of the domains, but this phase

defines boundaries on what kinds of diseases are to be

conceptualized such as: The diseases under consideration

are Immune Disease, Respiratory Disorders and Digestive

Disorders; All the diseases must be associated with a

symptom(s), any injury causing it, Procedure, and Test; A

Procedure must be associated with a Disease and

Symptoms for capturing side effects; A Test must be

associated to a Disease or a Symptom; All the entities must

have a unique ID, name and scientificName Etc.

Phase 5: In the Design Phase, the concepts in the

domain(s) are identified, which can be classified into Meta

concepts and Domain Model concepts as shown in Figure

4. The term concept encompasses classes, associations and

attributes. To illustrate Meta-Concepts, consider the UML

Class diagram in Figure 2 which acts as data model for

domain information. The Circulatory System Diseases

46 Int'l Conf. Semantic Web and Web Services | SWWS'12 |

class is a parent for Acute Rheumatic Fever, and

Hypertensive Disease classes; General Symptoms is a

parent class for Cardiovascular Symptoms and Skin

Symptoms. The two parent classes are associated using a

causes association while inheritance connects the

subclasses to the parent class. Similarly other diseases and

symptoms such as Respiratory Disease, Nervous Diseases,

Reproductive Diseases, Respiratory Symptoms, and

Reproductive Symptoms etc. can be defined. From the class

diagram, further abstraction can be achieved to define

domain specific yet generic concepts. For example, the

Circulatory System Diseases (and its subclasses),

Respiratory Diseases, Cardiac Diseases, Reproductive

Diseases etc. are all of type Disease and General Symptoms

(and its subclasses), Respiratory Symptoms, Reproductive

Symptoms etc. are all of type Symptoms. Similarly, we can

consider Medication, Procedure, Treatment, Injury etc.

These abstracted concepts which are related to a given

domain (medicine) yet generic in nature for that domain of

disclosure are called meta-concepts. These meta-concepts

can be identified and inter-connected to form a conceptual

abstract theory upon which a domain model can be built.

As shown in the Figure 3, extracted meta-classes (Disease,

Symptom, Treatment, Procedure and Medication) can be

connected to each other using meta-association

(hasSymptom, hasProcedure, hasMedication and

hasTreatment). The meta-classes can be associated with

meta-attributes (such as Id, name, scientificName etc.).

Once, the meta-concept are captured, we can use these

concepts to build the domain model and impose the meta-

concepts onto the domain model[27]. For example,

Circulatory System Diseases a domain class is-of-type

Disease meta-class. In software engineering, the process of

defining concepts at various levels and using the concepts

from the top-level to develop the bottom-concepts is called

Meta Process Modeling. As show in Figure 4, meta-

concepts (MC1, MC2. MC3) can be used to develop domain

model concepts (DC1, DC2. DC3) which can later be

instantiated (is-a) to build instance data (ID1, ID2. ID3).

Circulatory

System

Diseases

General

Symptoms

Skin

Symptoms

Cardiovascular

Symptoms

Acute

Rheumatic
Fever

Hypertensive

Diseases

causes

Figure 2: Sample UML Class Diagram

Phase 6: Analysis is another important step that has to be

executed before implementation of the design model(s). In

this phase, the developers and the end users revisit the

specification phase to validate the design models

developed in the Design Phase. The end users will validate

to see if all the required system requirements can be solved

using the design models and developers will look back into

to the models to check for modularity, reusability,

efficiency and any other software metrics according the

development environment. A feedback loop involving

specification, design and analysis phases will bolster

incremental learning process, where the developers and end

users can learn from the previous cycle. This loop will also

allow flexibility in adding/modifying any user-defined

specifications. For instance, for querying symptoms of

pneumonia, we would involve say General Symptoms and

Respiratory Symptoms class with a select query.

Disease

Symptom

ProcedureTreatment

Medication

Figure 3: Sample Meta-Concepts

hasMedication hasSymptom

hasProcedurehasTreatment

Meta-Concepts

(Level 1)

Domain Concepts

(Level 2)

Instance Data

(Level 3)

Figure 4: Hierarchical organization of

concepts

MC1
MC2

MC3

DC1 DC2

DC3

ID1

ID2 ID3

type

isa

Phase 7: The Implementation phase provides the transition

from conceptual model (UML Class Diagram or ERD

diagram) to concrete implementation using KIF, OWL DL,

OWL Lite, Frames etc. This phase requires decisions to be

made regarding the particular ontology language, tool and

API framework for the implementation. For example, the

ontology can be realized in a formal language such as KIF,

frames, OWL, RDF or even as a simple database schema

for is-a type vocabulary. Alternatively, via our layered

approach (Figure 4), frameworks such as UML profile [26]

or OWL Domain Profile (ODP) [2] or DOGMA [22] can be

utilized. The choice of the language will also depend on

the usability, performance and availability of the language.

Phase 8: The Testing phase carries out a technical

judgment of the ontologies, their software environment and

Int'l Conf. Semantic Web and Web Services | SWWS'12 | 47

documentation with respect to a frame of reference (in our

case, the requirements, specification document) during

each phase and between phases of the life cycle, using

techniques such as Ontolingua [24] or a framework for

evaluating knowledge sharing technology (software,

ontologies, documentation) [25]. If the ontology is realized

in OWL, the OWL ontology debugger [30] can be used for

circling on inconsistent concepts and axioms that are

causing them. Other frameworks such as UML, frames, and

the entity relationship diagram model can be mapped to an

OWL framework to utilize the OWL debugger for testing

ontology consistency.

Phase 9: The Maintenance and Documentation phase is

where the developed ontology has to be monitored for

smooth and efficient performance of the system

(maintenance) backed by a detailed narrative report of the

ontology concepts, its axioms and usage (documentation).

This phase can start with knowledge acquisition and run in

parallel with subsequent phases.

Figure 5 illustrates the Hybrid Ontology Design and

Development Life Cycle (HOD
2
LC) model involving the

aforementioned phases and its iterative process through

Phase 2 to Phase 7.

`

Phase 1

Problem

Analysis Phase

Phase 2

Ontology

Integration

Phase 3

Knowledge

Acquisition

Phase 4

Specification

Phase 5

Design Phase

Phase 7

Implementation

Phase 6

Analysis

Phase 8

Testing

Phase 9

Maintenance &

Documentation

Data Abstraction:

Ex. Heuristic

Classification

Search for Previous

Ontology Models.

Ex: RxNorm, UMLS

Knowledge or

Vocabulary gathering

from multiple resources
Meta- Modeling

Processing and

FDD Methodology

Documentation

Documentation

Documentation

Figure 5: HOD2LC Model

User Developer

The iterative approach assists developers to take advantage

of what was learned during previous phases. There is also a

need of two feedback loops: one, between Analysis phase

and Specification phase, helping developers have to

validate the ontology model to check if the specifications

have been fulfilled and flexibility in editing specifications

so as to make necessary changes to the ontology model

without go through the whole cycle; and another between

Implementation phase and Testing phase helping

developers resolve any implementation errors. These loops

are represented using dotted line differentiating it from the

life cycle’s solid line. The Knowledge Acquisition phase

can be executed in parallel with other phase until the

Implementation phase which is responsible for developing

the vocabulary of the domain from the information

gathered from the Knowledge Acquisition phase. The

Documentation of the ontology can also be executed in

parallel starting from Analysis phase.

To support the iterative process employed in the

Design phase, we utilize Feature Driven Development

methodology (FDD) [23], a model driven agile software

development process. FDD is a model driven agile

software development process comprising of five activities:

overall model where a high-level walkthrough of the

domain scope of the system and its context is performed;

Build Feature List (feature can either be a whole class or a

method call on a class) where a detailed domain

walkthroughs are performed to decompose the domains

into small groups which are presented for discussions; Plan

By Feature where the generated features are prioritized for

further the development plan; Design and Build By Feature

where a programmer selects a small group of features that

are to be developed within two weeks. Abstracting out the

steps from FDD and applying it to our approach (Figure 6),

we have the following steps. Step 1, a higher-level

walkthrough of the domains involved in the domain

problem should be performed to identify meta-concepts.

For example, meta-classes such as disease, treatment,

symptom, medication, and treatment etc.; meta-attributes

such as uid, name, etc.; and meta-associations such as

hasSymptom, hasTreatment, hasMedication, hasParent, isa

etc. This step is equivalent to identifying profile concepts at

the metamodel level. In Step 2, once there is agreement on

the meta-concepts, they are decomposed into smaller

domain concepts by multiple groups. For example, classes

such as Respiratory Diseases, Cardiac Diseases can be

defined which are of type Disease; Cardiac Symptoms and

Mental Disorder Symptoms etc. of type Symptom. The

respective attributes and associations are also identified.

Finally, in Step 3, as the concepts that have been identified

the attributes can be assigned to classes and associations

can relate classes forming the meta-conceptual model and

domain model of the ontology at different layers.

Once the respective models have been built, the

modular models can be interconnected for network of

Step 1 : Develop the Overall Model

Form the Team

Domains Involved

MC 1

Disease

MC 2

Symptom

MC 3

Medication

Step 2: Develop the Domain Model

DC 2

Respiratory

Disease

DC 3

Microorganism

DC 4

Cardiac

Symptoms

DC 5

Penicillin

DC 1

Cardiac

Disease

MM 1 MM 2

MM 3MM 4

DM 1

DM 5

DM 3DM 2

DM 4

Figure 6: Feature Driven Development of Meta-Concepts and

Domain Concepts.

Schema Associations

MM – Domain Meta Model

DM – Domain Model

Step 3: Schema Associations between modules

48 Int'l Conf. Semantic Web and Web Services | SWWS'12 |

ontology models (Figure 6, Step 3). The iterative nature of

the cycle will help developers learn from the previous

phase and incremental nature shows the sign of progress

and partial output to the end users. The cycle is stopped

once an agreement has been reached on structural and

semantic aspects of the ontology. The work presented in

this section is our initial effort to quantify an ontology

design and development process; our work is ongoing in

this area to fine tune the process and apply to more

complex, realistic examples.

3 Ontology-Based Alternatives

In this section, we will discuss six prominent ontology

development processes [11-17] which employ alternative

design and development approaches. Our intent is to

understand the way that each of these alternatives uses

similar and/or different concepts than HOD
2
LC and/or

SDP. In terms of SDP, we consider some of the more

dominant models: waterfall which flows from phase to

phase with each with each phase being completed finished

before moving to the next phase [7]; spiral [7, 8] that

focuses on a continuous refinement of determining

objectives, identifying and resolving risks, development

and testing, and planning the next cycle; and an iterative

[7] that allows waterfall phases to be revisited; and Agile

development [10] for self-organized, cross disciplinary

teams that follow an iterative and incremental process. By

reviewing these six alternatives in this context, we can then

effectively compare them in Section 4 to HOD
2
LC.

The first alternative, the Methontology [11] model

composed of the following phases: specifications (similar

to Phase 4 in HOD
2
LC); knowledge acquisition (similar to

Phase 3 in HOD
2
LC); conceptualization where designers

define the domain vocabulary and a conceptual model for

the ontology, integration (included in Phase 3 of

HOD
2
LC); and implementation and evaluation (similar to

Phases 7 and 6, respectively). Methontology opts for an

evolutionary SDP instead of waterfall and Spiral since they

believe it will more easily facilitate expanding the ontology

as needed. Methontology lacks HOD
2
LC’s Phases 2, 5 and

8 with respect to integration of conceptual models, design

for defining associations, and testing that exceeds its

evaluation.

A second alternative, by Fernandaz et al. [12]

proposed a method not a complete methodology or

development cycle for an ontology with the following steps:

develop a requirement document (similar to phases 1

HOD
2
LC); conceptualize the domain terminology via a

Data Dictionary which identifies domain classes and

instances; create a Concept Classification Tree which

groups the identified concepts; and, create tables of

Constants of the domain, Instance and Class Attributes of

the domain, and Formulas which are used to infer

numerical values of attributes. The dictionary, trees, tables,

and formulas will all occur, in Phases 3 and 5 of HOD
2
LC.

Note that the steps enumerated in the method are similar to

waterfall model where the methodology phases are

executed sequentially without feedback loop thus inherits

the drawbacks of the waterfall model.

A third alternative, the Enterprise Ontology (EO)

project [13, 14] consists of four phases: purpose of the

ontology, building the ontology via coding, capture, and

integration, evaluation to check the ontology against

requirements, and documentation to clearly relate all

ontology concepts (similar, respectively to HOD
2
LC’s

Phases 1, 2, 6, 7 and 9). The purpose phase is equivalent to

SDP’s requirements phase. The building phase is

equivalent to combination of SDP’s implementation phase.

The evaluation phase is similar but not as extensive as

SDP’s Analysis phase. One drawback of EO project is that

there is no model as indicates the way that the phases are

connected and no guidelines provided to achieve the

building phase.

A fourth alternative, the TOVE project [15], has a

primary goal is to answer enterprise queries to existing or

future usecase scenarios. Based on these scenarios, a set of

questions named informal competency questions are raised

that for which ontology has to be developed to answer. The

motivating scenario and competency questions provide the

designer with the information necessary to decide on

whether to develop a new or extend and existing ontology,

i.e., the set of questions form the requirement phase

(similar to HOD
2
LC’s Phase 1). The next step is to specify

the terminology of the ontology by using first-order logic

forming the conceptualization and implementation phase

(similar to Phases 3 and 7 of HOD
2
LC). TOVE defines the

various phases an ontology design has to address for

building ontology, but doesn’t provide a life cycle or a

model connecting them with one another.

The fifth alternative by Uschold [16] presents a unified

methodology by combining methodologies EO and TOVE

projects. The first step is to define the purpose of the

ontology which can be done in several ways, e.g., to

identify the intended users, or as in the TOVE project with

motivating scenarios and competency questions, to form

the user requirements document (similar to Phases 1 and 3

in HOD
2
LC). In the conceptualization phase, the developer

should decide what level of formality the ontology must

have and identify the concepts and the relations among

them (similar to Phase 5 in HOD
2
LC). The work describes

four different approaches for constructing the ontology: use

an ontology editor to define terms and axioms; perform the

previous steps and then begin a formal encoding; produce

an intermediate document that consists of the terms and

definitions that appeared in the second step which may

result in a specification of the formal code or its

documentation; and identify and differentiate the formal

terms from the set of informal terms. The work also

includes an evaluation or revision cycle, where the

developed ontology is compared to the competency

questions or the user requirements. Similar to the EO

Project [13, 14], this work also doesn’t provide any model

interconnecting the phases.

Int'l Conf. Semantic Web and Web Services | SWWS'12 | 49

The sixth alternative by Noy and McGuinness [17]

describes a way to develop an ontology iterative

methodology starting with a rough concept and then

revising and filling in the details; this could correspond to

both an iterative or spiral SDP. The first step in their

methodology is to determine the domain and the scope of

the ontology fulfilling the requirements phase (similar to

portions of HOD
2
LC’s Phases 1 and 4). Their next step is

to explore the use of existing ontologies, akin to Phase 2 of

HOD
2
LC. A list of all the terms that could be needed or

used is then produced, mirroring some of the activities in

Phase 3 of HOD
2
LC. The next step involves the design of a

class hierarchy that represents an “is-a” relation where

siblings should have the same level of generality, and also

guidelines regarding when to introduce new classes or

instances. This also includes the classes to be defined, the

terms and the relations, the properties of the classes

(attributes), relations among classes and attributes

(including if the relations are inverses), default attribute

values, and class properties such as cardinality, domain and

range (similar to Phase 5 in HOD
2
LC). These steps satisfy

the Design and Conceptualization phase of SDP. The final

step in the process is the creation of individual instances

which corresponds to portions of the latter phases 7 of

HOD
2
LC.

4 HOD
2
LC vs. Ontology

Methodologies

This section presents our proposed HOD
2
LC and its

nine phases (see Section 2) compared and contrasted with

the six ontology alternatives (see Section 3). We

acknowledge that this comparison is somewhat biased

towards HOD
2
LC which has all of the phases as compared

to the six alternatives. While all of these alternatives are all

sufficient to their own degree, they are primarily focused

on the ontology development. HOD
2
LC seeks to expand

this to design and development to provide a broader

process that is more comprehensive and considers a larger

range of requirements in order to effectively define

ontologies from model to schema to instance levels. To

compare, we define three qualitative criteria for each

phase: None – the alternative does not support the phase;

Partial – the alternative may have partial implemented the

phase; and Full – the alternative has the phase in its life

cycle. Table 1 summarizes alternatives vs. HOD
2
LC

phases.

From Table 1, all alternatives fulfill the problem

analysis phase either through requirements generation,

usecase scenarios, formulating competency questions [13,

14, 15] or through instance data abstraction. The ontology

integration phase is not given prominence in any

alternatives except TOVE which is primarily responsible

for reuse of existing ontologies. The knowledge Acquisition

phase is the most focused phase in all alternatives; they all

maximize the ontology domain vocabulary. The

alternatives either combine the specifications with other

phases or assume they are given to build the ontology, with

only Methonotology with dedicated phase for defining

concrete specifications. HOD
2
LC also has a focused

specification phase primarily for defining boundaries and

additional for analyzing the developed ontology domain

model. The Design phase has varied importance across

alternatives, achieved in Methonotology, EO Project, and

TOVE, primarily centered on developing domain models

only by using metamodels such as UML, RDF/RDFS,

OWL, etc., HOD
2
LC uses a layered architecture (Figure 4)

and FDD (Figure 6) for designing domain models. Analysis

phase, a high priority in HOD
2
LC to validate the domain

model with specification phase, has limited consideration

by other the alternatives. The implementation phase is not

taken into consideration in all but Uschold and Noy with

the ontology realized at some point, without a

consideration of timing. All alternatives have no formal

testing, while HOD
2
LC uses various frameworks for

evaluating and testing the realized ontology. Various

alternatives take different approaches for maintaining and

documenting the developed ontology, as there are no set

standards for executing them.

Table 1: Comparison of Ontology Alternatives vs. Phases.

Phases

Six Ontology Process Alternatives

Methontology Fernandaz
EO

Project
TOVE Uschold Noy HODLC

Problem

Analysis
Partial Full Full Full Full Full Full

Ontology

Integration
None None Partial Full None Partial Full

Knowledge

Acquisition
Full Full Full Full Full Full Full

Specification Full None Partial None None Partial Full

Design Partial Partial Full Full Full Full Full

Analysis None None Partial None None None Full

Implementation Full None Full Partial Partial Full Full

Testing None None None None None None Full

Maintenance/

Documentation
Partial None Partial None None None Full

5 Conclusion

In this paper, we have outlined a robust software

engineering development life cycle model to build

ontology models and its vocabulary by studying the various

phases of Software Development Process (SDP) models

and assessing them to find the best fit methodology. Using

this work, we have proposed Hybrid Ontology Design and

Development Life Cycle (HOD
2
LC) model in Section 2

that contains nine phases in an iterative and incremental

development process, leveraging concepts from SDP

models and other techniques, e.g., Heuristic Classification

in Phase 1, MPM model and FDD Methodology in Phase 4

and analysis phase as Phase 5 To more fully understand

HOD
2
LC, in Section 3, we presented five alternative

research efforts [11-17] on ontology design and

development and studied and evaluated them against both

SDP models and phases, and our own HOD
2
LC. The end

result is a detailed qualitative comparison of the five

alternatives vs. HOD
2
LC which is summarized in Table 1

of Section 4. We believe that HOD
2
LC as presented

50 Int'l Conf. Semantic Web and Web Services | SWWS'12 |

herein represents an encompassing ontology design and

development process that transcends existing alternatives

through a leveraging of SDP process concepts that results

in an approach that creates ontology solutions in a more

structured and rigorous manner.

6 References

[1] F. Baade, D. Calvanese, D. L. McGuinness D. Nardi

and P. F. Patel-Schneider, “The Description Logic

Handbook: Theory, Implementation, and

Applications”, 1
st
 Ed., 2003.

[2] R. Saripalle, S. Demurjian, and S. Berhe, “Towards

Software Design Process for Ontologies,” Intl. Conf.

on Software and Intelligent Information (ICSII 11),

Puerto Rico, October, 2011.

[3] L. Pazzi, “Three Points of View in the

Characterization of Complex Entities”, Formal

Ontology in Information Systems. IOS Press, 1998.

[4] K. Knight and S. Luk, “Building a Large Knowledge

Base for Machine Translation”. Proc. of American

Association of Artificial Intelligence Conference

(AAAI-94), Seattle, 1994.

[5] K. Mahesh, “Ontology Development for Machine

Translation: Ideology and Methodology”, 1996.

[6] S. Demurjian, R. Saripalle and S. Berhe, “An

Integrated Ontology Framework for Health

Information Exchange,” Intl. Conf. on Software

Engineering and Knowledge Engineering (SEKE 09),

August, 2009.

[7] M. Docherty, “Object-oriented Analysis and Design:

Understanding System Development with UML 2.0”,

1
st
 Ed., 2005.

[8] B. Boehm, "A Spiral Model of Software Development

and Enhancement", ACM SIGSOFT Software

Engineering Notes, Vol. 11(4), pp. 14-24, 1986.

[9] C. Larman, V. R. Basili, "Iterative and Incremental

Development: A Brief History", IEEE Computer

Society, Vol. 36 (6), pp. 47–56, 2003.

[10] L. Craig, “Agile and Iterative Development: A

Manager's Guide”, Addison-Wesley, 1
st
 Ed., 2003.

[11] M. Fernández-Lopez, A. Gomez-Perez and N. Juristo,

“METHONTOLOGY: from Ontological Art towards

Ontological Engineering”, Proc. of AAAI Spring

Symposium, pp. 33-40, 1997.

[12] A. Gómez-Pérez, M. Fernández and A. J. de Vicente,

“Towards a Method to Conceptualize Domain

Ontologies”.

[13] M. Uschold and M. King, “Towards a Methodology

for Building Ontologies”, In Workshop on Basic

Ontological Issues in Knowledge Sharing.

International Joint Conference on Artificial

Intelligence, 1995.

[14] Uschold M, “The Enterprise Ontology”, Knowledge

Engineering Review, Vol. 13(1), 1998.

[15] M. Grüninger, M. Fox, “Methodology for the Design

and Evaluation of Ontologies”, Proc. of IJCAI95’s

Workshop on Basic Ontological Issues in Knowledge

Sharing. 1995.

[16] M. Uschold, “Building Ontologies: Towards a Unified

Methodology”. 16th Annual Conf. of the British

Computer Society Specialist Group on Expert Systems,

pp. 16-18, 1996.

[17] N. Noy and L. McGuinness, “Ontology Development

101: A Guide to Creating Your First Ontology”.

Stanford Knowledge Systems Laboratory Technical

Report KSL-01-05, 2001.

[18] W. J. Clancey, “Heuristic classification”, Journal in

Artificial Intelligence, Vol. 27(3) pp. 289-350, 1985.

[19] S. Liu W. Ma, R. Moore, V. Ganesan and S. Nelson,

“RxNorm: prescription for electronic drug information

exchange”, IT Professional, Vol.7(5), pp. 17-23, 2005.

[20] V. Kashyap and A. Borgida, “Representing the UMLS

Semantic Network Using OWL: (Or "What's in a

Semantic Web Link?")”, Second Intl. Semantic Web

Conf., 2003.

[21] C. Rolland, and N. Prakash and A. Benjamen “A

Multi-Model View of Process Modeling”. Journal of

Requirements Engineering, Vol. 4 (4), pp. 169-187,

1999.

[22] M. Jarrar, J. Demy and R. Meersman, “On Using

Conceptual Data Modeling for Ontology Engineering.”

Journal on Data Semantics Special issue on Best

papers from the ER/ODBASE/COOPIS 2002

Conferences, Vol. 1(1), pp. 185-207, 2003.

[23] S. R. Palmer and J. M. Felsing, “A Practical Guide to

Feature-Driven Development”, Prentice Hall, 1
st
 Ed.,

2002.

[24] A. Gomez-Porez, N. Juristo and J. Pazos, “Evaluation

and Assessment of Knowledge Sharing Technology”,

Towards Very Large Knowledge Bases, pp. 289-296,

1995.

[25] A. Gomez-Porez, “A Framework to Verify Knowledge

Sharing Technology”, Expert Systems with

Application, Vol. 11(4), pp. 519-529, 1996.

[26] UML Profile,

http://www.omg.org/technology/documents/profile_cat

alog.htm

[27] P. Clark, J. Thompson, and B. Porter, “Knowledge

Patterns”, Handbook of Ontologies, pp. 191-207,

Springer, 2003.

[28] ICD Codes, http://icd9cm.chrisendres.com/index.php

[29] FOAF Ontology, http://www.foaf-project.org/

[30] Aditya Kalyanpur, “Debugging and Repair of OWL

ontologies”, PhD Thesis, University of Maryland,

2006.

[31] W. J. Clancey, “Heuristic classification”, Journal in

Artificial Intelligence, Vol. 27(3), pp. 289-350, 1985.

Int'l Conf. Semantic Web and Web Services | SWWS'12 | 51

Two-step Role-Based Access Control method

for Ontology Storage

Sukhoon Lee
1
, Jangwon Kim

1
, and Doo-Kwon Baik

1

1
 Dept. of Computer Science and Radio Communications, Korea University, Seoul, Republic of Korea

leha82@korea.ac.kr, ikaros1223@korea.ac.kr, baikdk@korea.ac.kr

Abstract - Because of the advance of ontology technology

and the explosion of web ontology, ontology repository has

become a necessity. As the information security issue,

research for adapting access control to the ontology storage

has been studied, and there are two approaches which are

model-driven approach and query rewriting approach. To

solve the problems which these approaches have, this paper

proposes two-step Role-Based Access Control method and

describes a system architecture applying proposed method.

The proposed method is efficient and reliable compared by

the typical approaches.

Keywords: Access Control, Ontology Storage, Role-based

Access Control

1 Introduction

 the concept of Semantic Web was appeared by Tim

Berners-Lee, ontology technology has been advanced to

represent some knowledge or information [1]. Especially by

W3C, the web ontology has been developed to represent

ontology for web pages such as OWL/RDF [2, 3], and an

amount of web ontology is increased explosively like web

pages does. Due to processing and managing more ontology

fast, the ontology storage which uses database system has

been developed such as Jena [4], KAON [5].

Meanwhile, the web ontology has security issues like, is it

validate that some information could access for a user?

Because access control could not only restrict some systems,

but also some information, it is suitable technology for the

ontology storage of security issues that some information

has to restrict to some users[6].

The researches for adapting access control techniques to the

ontology storage have two approaches such as Model-

driven approach and Query rewriting approach.

First, Model-driven approach executes SPARQL query in

the ontology storage. As a result of query execution,

ontology model is created. After inference of this model, the

access control policies are adapted [7, 8]. This approach

builds ontology model in memory as the result of query. It

cause much cost and time because some ontologies are

useless so that the ontologies are filtered in access control

process. If a huge amount of ontology is loaded in memory

as a query result and most of them are filtered in access

control process, it takes much cost and time.

Query rewriting approach is a method of rewriting the

SPARQL query before query execution in the ontology

storage. The query rewrites to allow the information to user

by authority [9-11]. This approach just rewrites query, so it

is easy to adapt to any type of ontology storage which is

able to SPARQL query. But after the query execution, the

access control process is not supported about inferred

ontology. Although this approach does not load useless

ontology, it does not completely guarantee the privacy after

ontology inference.

There are several the access control techniques. As one of

them, Role-based Access Control (RBAC) divides users by

roles, pairs objects with operations (access or deny) as

permission, and define policies to pair of roles and

permissions [12]. Because RBAC identifies users in web

ontology and makes available access not only systems but

also information, it is suitable technique to define policy for

access control.

To solve pre-mentioned two problems, this paper proposes

two-step role-based access control for ontology storage,

implements and adapts to the ontology storage.

After this section, Section 2 describes two-step role-based

access control method, and Section 3 describes the system

architecture. Finally, Section 4 presents conclusion with

evaluation.

52 Int'l Conf. Semantic Web and Web Services | SWWS'12 |

2 Two-step Role-Based Access

Control Method

 The proposed method uses two-step access control

process to deal with limitation of typical access control

methods.

In the first step, it uses query rewriting method adapted

policies by roles before query is executed in ontology

storage. This step prevents loading the useless ontology in

memory.

In the second step, it processes second access control after

ontology model is expanded by inference. Without the

second step, it does not guarantee the privacy about

expanded ontology by inference, so the second step is

necessary for reliability.

Figure 1 shows two-step Role-Based Access Control

process as a proposed method.

2.1 Policy list creation

 This process validates the policies which role of user

has using user ID, and makes policy list consist of the

policies which role of user has.

2.2 Query rewriting

 This process rewrites given SPARQL query for

adapting policy list which is made by previous process. As

the first access control process, the inaccessible information

from user is filtered in query level. So it is able to use

resource efficiently because the useless ontology is filtered

before model creation.

2.3 Query execution

 This process creates ontology model by execution

rewritten query. The ontology model is created in memory.

2.4 Model reasoning

 This process expands the ontology model using

inference. At this time, the inferred ontology may include

inaccessible information from user.

2.5 Information restriction

 This process does the second access control work

using policy list which is made in first process. Because this

process checks the policies about an expanded part of

information, it guarantees the privacy about the inferred

ontology.

2.6 Information representation

 This process represents the ontology model which is

formed by graph type in memory as ontology language like

OWL/RDF due to supporting.

3 System Architecture

 Figure 2 shows proposed system architecture. The

proposed system consists of a proposed system and a

database system. The proposed system inputs a SPARQL

query from user, and communicates with database system to

process the information.

3.1 Database System

 Database system includes RBAC which works access

control based on role and Ontology Storage which

administer and store ontologies. Figure 1 – 2-step Role-Based Access Control process

Int'l Conf. Semantic Web and Web Services | SWWS'12 | 53

Figure 3 shows database model of RBAC. The policy

defined in the RBAC consists of a pair of role and

permission. Each user has a role and a permission defines

whether some object is able to be accessed (operation) or

not by user.

Figure 4 shows database model of Ontology Storage. The

Ontology Storage is constructed to store triple statement.

The triple statement consists of Subject, Predicate, and

Object.

3.2 Proposed System

 The proposed system consists of every modules in

Figure 2 for input queries from user and two-step RBAC

method.

 User Interface module: a module for user

input/output. It receives user ID and SPARQL

query from users, and return ontology in OWL/RDF

type.

 User management module: a module for

administration of user login and user information. It

defines relation associated by User_Role in RBAC.

 Policy definition module: a module for defining a

policy about a role. It defines relation associated by

Permission in RBAC.

 Policy list module: a module for building policy

list as searching policies which have role and

permission pair by role of user.

 Query rewriting module: a module for rewriting

SPARQL query. It rewrites query using policy list

built in pre-process.

 Ontology module creation module: a module for

executing query, creating ontology model, and

reasoning the model. The ontology model loads in

memory.

 Information restriction module: a module for the

second access control of the ontology model using

policy list in memory
Figure 3 – RBAC model

Figure 2 – Proposed System Architecture

Figure 4 – Ontology Storage model

54 Int'l Conf. Semantic Web and Web Services | SWWS'12 |

 Information representation module: a module for

representing ontology as ontology language like

OWL/RDF to support ontology model to user.

4 Conclusions

 This paper proposed and implemented the two-step

RBAC method for overcoming the limitation of typical

access control methods.

Table 1 shows a qualified evaluation of the two-step RBAC

method compared with typical access control methods. The

proposed method can faster and more efficient access

control work than Model-driven access control method.

And the proposed method have additional process as the

second access control work for guarantee reliability about

inferred ontology after query rewriting method.

Table 1 – Qualified evaluation of Two-step RBAC mehtod

 Model-driven Query

Rewriting

Two-step

RBAC

query performance slow fast fast

resource usage high low Low

reliability reliable unreliable reliable

As the result, in an environment that administers and

represents web ontology explosively increasing, the

proposed method efficiently and reliably supports

information when access control works.

In further works, we experiment useful dataset for

implementing the proposed method, and determines

performance and reliability for a qualified evaluation

between the proposed method and the typical methods.

5 Acknowledgement

 This study was supported by Second Brain Korea 21

Project and by the National IT Industry Promotion Agency

(NIPA) under the program of Software Engineering

Technologies Development. The corresponding author is

Doo-Kwon Baik.

6 References

[1] Tim Berners-Lee, James Hendler, and Ora Lassila.

“The Semantic Web”; Scientific American Magazine,

March 26, 2008.

[2] http://www.w3.org/2004/OWL/. “Web Ontology

Language (OWL)”. W3C, 2004.

[3] http://www.w3.org/RDF/. “Resource Description

Framework (RDF)”. W3C, 2004.

[4] Jeremy J. Carroll, Ian Dickinson, Chris Dollin, Dave

Reynolds, Andy Seaborne, and Kevin Wilkinson. “Jena:

Implementing the Semantic Web Recommendations”;

Technical Report HPL-2003-146, Hewlett-Packard Labs,

2003.

[5] E. Bozak, M. Ehrig, S. Handschuh, A. Hotho, A.

Maedche, B. Motik, D. Oberle, C. Schmitz, R. Studer, G.

Stumme, Y. Sure, S. Staab, L. Stojanovic, N. Stojanovic, J.

Tane, R. Volz, and V. Zacharias. "KAON - Towards a large

scale Semantic Web”; in Proc. of EC-Web 2002, LNCS,

2002.

[6] Amit Jain and Csilla Farkas. “Secure Resource

Description Framework: an Access Control Model”; in Proc.

of the eleventh ACM symposium on Access control models

and technologies (SACMAT '06), 2006.

[7] Wei-Tek Tsai, and Qihong Shao. “Role-Based

Access-Control Using Reference Ontology in Clouds”;

2011 Tenth International Symposium on Autonomous

Decentralized Systems, pp121-128, 2011.

[8] Lorenzo Cirio, Isabel F. Cruz, and Roberto Tamassia.

“A Role and Attribute Based Access Control System Using

Semantic Web Technologies”; in Proc.of the 2007 OTM

Confederated international conference on On the move to

meaningful internet systems, Vol.2, 2007

[9] Fabian Abel, Juri Luca De Coi, Nicola Henze, Arne

Wolf Koesling, Daniel Krause, and Daniel Olmedilla.

“Enabling Advanced and Context-Dependent Access

Control in RDF Stores”; in Proc. of the 6th international

The semantic web and 2nd Asian conference on Asian

semantic web conference (ISWC'07/ASWC'07), 2007.

[10] Giorgos Flouris, Irini Fundulaki, Maria Michou, and

Grigoris Antoniou. “Controlling Access to RDF Graphs”;

Third Future Internet Symposium (FIS 2010), LNCS 6369,

pp. 107–117, 2010.

[11] Alban Gabillon and Léo Letouzey. “A View Based

Access Control Model for SPARQL”; 2010 Fourth

International Conference on Network and System Security,

pp105-112, 2010.

[12] David F. Ferraiolo. "Proposed NIST Standard for

Role-Based Access Control"; ACM Transactions on

Information and System Security, Vol. 4, No. 3, pp.224–

274, 2001.

Int'l Conf. Semantic Web and Web Services | SWWS'12 | 55

56 Int'l Conf. Semantic Web and Web Services | SWWS'12 |

SESSION

WEB SERVICES AND APPLICATIONS

Chair(s)

TBA

Int'l Conf. Semantic Web and Web Services | SWWS'12 | 57

58 Int'l Conf. Semantic Web and Web Services | SWWS'12 |

A Platform for Discovery and Execution of Semantic Web Services Compositions

Guilherme C. Hobold

Department of Informatics and Statistics

Federal University of Santa Catarina

Florianópolis, SC – Brazil

guich@inf.ufsc.br

Frank Siqueira

Department of Informatics and Statistics

Federal University of Santa Catarina

Florianópolis, SC – Brazil

frank@inf.ufsc.br

Abstract— Semantic descriptions provide more accurate

information related to operations supported by Web services,

enabling their dynamic discovery and execution without

human intervention. Furthermore, semantic descriptions allow

Web services to be automatically combined by using discovery

mechanisms able to identify composed services. These

compositions can also be described and published as if they

were a single service, allowing service consumers to discover

and invoke a composition transparently. This paper presents a

platform for automatic discovery and execution of semantic

Web services compositions. A composer mechanism identifies

semantic Web services compositions based on the information

annotated on service descriptions using SAWSDL (Semantic

Annotations for WSDL). The identified service compositions

are described and published as a single service. The interaction

among services is described using WS-BPEL (Web Services

Business Process Execution Language) and executed by a

BPEL engine.

Keywords- Semantic Web Services, Web Service Compostion,

Web Service Discovery, SAWSDL.

I. INTRODUCTION

The current hype around SOA (Service-Oriented
Architecture) and SaaS (Software as a Service), combined
with the ubiquity of the World Wide Web, have contributed
for the widespread availability of Web Services. This
technology, despite enabling the integration of computing
systems in heterogeneous environments, still requires human
intervention during the integration process, given that only
humans are able to infer the semantics behind data and
operations provided by different services.

In this context, combining two or more services is often
necessary in order to accomplish a required task. However,
the assembly of service compositions is not favored by the
syntactic nature of the description language employed for
service description – i.e., WSDL (Web Services Description
Language) [1] – which limits itself to associate keywords
with operations and messages exchanged by services.

The Semantic Web Services (SWS) technology has been
advocated as a solution for enabling system integration
without human intervention. Semantic languages such as
OWL-S (Web Ontology Language for Web Services) [2],
WSML (Web Service Modeling Language) [3] and
SAWSDL (Semantic Annotations for WSDL) [4] provide
resources for describing the semantic meaning of messages
and operations provided by Web Services. Furthermore, such
information may be explored to automatically discover,
compose and execute services.

This paper describes a platform for discovery and
execution of Semantic Web Service compositions. This
platform comprises a mechanism for dynamically identifying
compositions based on semantic descriptions of services, and
an engine for execution of compositions, which are invoked
transparently as a single service.

The remainder of this paper is organized as follows.
Section II discusses the use of semantic languages for Web
Services description, the processes of web service discovery
and composition, and the related work in this field of
research. Section III presents the platform for automatic
semantic web services discovery, composition and
execution. Section IV presents the prototype of the platform
and analyzes its performance. Section V concludes the paper,
summarizing the contribution brought by this work,
comparing the proposed platform with other research works
and describing potential improvements to this work.

II. STATE-OF-THE-ART

This section presents the available technology to describe
Semantic Web Services and to discover and execute
compositions, as well as recent research efforts in this area.

A. Semantic Description

Semantic description languages, such as OWL-S, WSML
and SAWDSL provide means for describing Web Services
based on ontologies. Both OWL-S and WSML create
semantic descriptions dissociated from the syntactic
description given by WSDL. On the other hand, SAWSDL,
which is the most recent W3C recommendation for SWS
description, allows annotations to be added to WSDL
elements in order to associate them with concepts defined in
a domain ontology.

SAWSDL is language-neutral, since it allows any
semantic-capable language to be employed for defining
domain ontologies. Besides, it is more flexible and easier to
use than the other languages, because it requires only the
addition of semantic annotations to WSDL descriptions [5].

SAWSDL also lets behavioral constraints to be specified
in ontologies and referenced by inputs and outputs through
annotations, in order to associate pre- and postconditions
with operations provided by a web service.

B. Discovery of Semantic Web Services

Semantic descriptions allow discovery mechanisms to
interpret the meaning of functionalities exposed by web
services. This process requires inferences to be performed
based on ontologies that describe elements contained in

Int'l Conf. Semantic Web and Web Services | SWWS'12 | 59

service descriptions. These mechanisms are able to compare
the functionalities exposed by the existing semantic services
with the requirements specified in a discovery procedure,
selecting services that semantically match the specified
requirements.

The matching process requires each operation under
analysis, as well as its inputs and outputs, to be compared
with the desired operation, including the available inputs and
the required outputs, which were specified in the discovery
procedure. This comparison is based on the concepts defined
in ontologies associated with operations, input and output
messages, in the aim of identifying semantic matches [6].

The similarity between two concepts may be evaluated
using the criteria proposed in [7], which specifies an
accuracy degree based on how similar concepts are. The
similarity analysis takes into account any existing
hierarchical relationship, as well as the existing properties
and other characteristics defined in the domain ontology [6].
During this evaluation, the concepts under analysis are
compared and classified into one of the similarity degrees
defined in table I.

TABLE I. SIMILARITY DEGREES

Class Description Value

Exact Concepts being compared are identical 0

Plugin A supertype of the concept is available 1

Subsume A subtype of the concept is available 2

Fail Concepts are not hierarchically related 3

C. Semantic Web Services Composition

A composition can be defined as a group of services that,
by working together, are able to cooperatively accomplish a
task, and therefore can be seen as a new service. A
composition is necessary when a single service that executes
the whole task is not available [8].

The assembly of compositions requires understanding
messages and operation semantics. Dealing with behavioral
constraints, requirements and results provided by each
service involved is also mandatory. [9]. The composition
process may rely on user interaction, resulting in non-
automated approaches, or on semantic technologies, which
allow the process to be partially or fully automated. During
this process, new services may be dynamically discovered
and added to the composition. This process is repeated as
many times as needed, until the result obtained by the
composition matches the required outputs and behavior. It is
also possible to give up searching based on a stop criterion
(e.g., reaching the maximum number of services allowed in a
composition) or when no more services able to take part in
the composition are found.

D. Execution of Composed Services

The execution of service compositions, either
semantically described or not, may be accomplished by
adopting two different strategies: orchestration or
choreography.

The first strategy relies on an orchestrator, which is
responsible for invoking each service in a composition and

for handling inputs and outputs. The WS-BPEL (Web
Services Business Process Execution Language) standard
allows compositions to be described and executed by
orchestration engines [10].

The second strategy, on the other hand, relies only on the
services themselves to collaboratively execute the composed
service. The WS-CDL (Web Services Choreography
Description Language) standard defines how choreographies
can be described and executed [11].

E. Related Work

 In the past few years, the research on semantic web
technologies has grown constantly. Different approaches for
semantic web service discovery and execution of
compositions have been proposed. A representative share of
these research works is described in this section.

Puntheeranurak and Tsuji [12] propose a discovery
mechanism that executes a matching algorithm which relies
on semantic information obtained through SAWSDL. The
idea behind the proposed mechanism is to compare the
functional requirements of the requested service with the
available services and identify levels of similarity among
them. The semantics associated with the description of the
services through SAWSDL is employed to make inferences.
Inputs and outputs are compared based on subsumption
reasoning. The algorithm proposed in [12] does not discover
compositions, but just individual services.

Prazeres et al [6] propose a solution based on OWL-S
and on an algorithm that implements a minimum cost policy
for discovery and composition of semantic web services.
Services published in a UDDI registry are associated with a
cost, which is calculated based on the amount of inputs and
outputs of the corresponding service. A graph is created in
order to allow compositions to be identified. The algorithm
does not take into account the inputs available at request
time. When a request is made, the graph is updated to take
into account the available inputs, and the cost is adjusted.
Discounts are given on the cost of a service if it has inputs
that are currently available. Finally, compositions that have
the minimum cost are selected. However, even with the
discounts, the selected compositions may require inputs that
the client does not have. Besides, the algorithm uses the
available inputs to select only the first service of the
composition, and does not combine them with outputs
produced by other services to be used as inputs to new ones.
This is done because the graph is not created at request time,
aiming to reduce the search time needed to find a
composition. Services with the same inputs and outputs but
different semantics are not distinguished by the algorithm.

Mehandjiev et al. [13] present a semi-automatic approach
based on templates for assisted web service composition.
Through a tool that abstracts the technical details and the
data flow between services, users select a template that
conforms to their needs and start building the composition.
The tool provides options for selecting services and
highlights those that are compatible through the analysis of
the semantics associated with the inputs, outputs, pre- and
post-conditions of each service. The discovery process
requires user assistance and occurs at design time.

60 Int'l Conf. Semantic Web and Web Services | SWWS'12 |

Finally, the work of Belouadha et al. [14] proposes an
approach for describing and composing semantic web
services based on UML (Unified Modeling Language). The
semantic description of services is given by a UML
language-independent semantic metamodel. Later, this
metamodel is transformed in a WSDL annotated with
SAWSDL using transformation rules. At last, the authors use
BPMN (Business Process Modeling Notation) for modeling
web services flows and for defining the execution plan of the
service composition. The authors create compositions
statically, and the process is not automatic with respect to the
creation of compositions.

III. COMPOSITION AND EXECUTION PLATFORM

This work targets the design and development of a
platform that allows automatic composition and execution of
semantic web services. In this platform, SAWSDL
annotations are extracted from WSDL files and employed to
build composition graphs, in which compositions are
discovered based on service semantics. The composition can
be invoked by clients through a single request, ignoring the
fact that the request will be fulfilled by multiple services.

A. Architecture

The platform was designed to be both programming
language and platform-independent. Its architecture has 9
components, which are shown in Fig. 1.

The Web Service component exposes 3 operations that
are invoked by clients to request a specific service, to publish
a new web service or to execute a service composition. As a
result, the first operation returns the discovered composition,
the second stores the service into the repository and the third
returns the response produced by executing the composition.

The Semantic Annotations Extractor Module is
responsible for extracting semantic annotations from WSDL
descriptions during the publishing process and for storing
them in a relational database model, represented by the
SAWSDL Repository. This strategy is adopted in order to
optimize the discovery process, since it is faster than parsing
WSDL descriptions every time a request is made. This
module is also responsible for retrieving annotations from
the SAWSDL Repository during the discovery process.

The Discovery and Composition Module is responsible
for actually discovering the web services compatible with the
request requirements. Based on the annotations extracted
previously and on the parameters specified in the request, the
semantic matching is performed to verify its similarity with
the requested service. This module builds a composition
graph based on the relationships among concepts associated
with inputs, outputs and operations. At the end of this
process, the discovered compositions are stored into the
Compositions Repository and returned to the client through
the Web Service.

The result of a request may contain none, one or multiple
paths leading to the desired outputs. Multiple paths will be
returned when each one meets part of the request. If two
paths that lead to the same output are found, just one will be
selected and returned based on a proposed criterion, which
will be described in section III.E.

Figure 1. Platform architecture.

As soon as they are discovered, compositions are
processed by a WS-BPEL Generator. This component
retrieves compositions stored in the Composition Repository,
generates WS-BPEL files that describe these compositions
and stores them in a WS-BPEL Repository.

Finally, the client can invoke a composition through a
single request directed to the Web Service. The request will
be dispatched by a Request Handler Module, which manages
the ongoing requests. This module activates the Orchestrator
Module, which executes the corresponding WS-BPEL file.
The outputs produced by the composition are then returned
to the client.

B. Discovery Request

To locate a service composition, the client must invoke
an operation exposed by the Web Service component. This
operation requires six parameters: availableInputs,
desiredOutputs, desiredOperations, maximumDepth, timeout
and allowRebuild. The availableInputs, desiredOutputs and
desiredOperations are lists of URIs (Uniform Resource
Identifiers) that refer to concepts defined in domain
ontologies. The maximumDepth determines how many
services that, sequentially, may be present in each path of the
compositions graph. A composition with a sequential
execution flow of three services has three depth levels. The
timeout parameter corresponds to the time interval the client
is willing to wait for the result of the request. Finally, the
parameter allowRebuild specifies whether previously found
compositions can be rebuilt or not (this will be further
explained in section III.F).

C. Discovery Algorithm

Fig. 4 shows the pseudo-code of the discovery algorithm,
which takes as input three lists of URIs: availableInputs,
desiredOutputs and desiredOperations. The services stored
into the repository are recovered and used with the available
inputs to match the startup services (lines 4-5). Next, the
target services are selected based on the desired outputs and
operations (lines 6-7).

Int'l Conf. Semantic Web and Web Services | SWWS'12 | 61

1 Function discoverComposition(availableInputs,
 desiredOutputs, desiredOperations)

2 Var startupServices, targetServices,

 singleServices, pathList, bestPaths :=

3 Foreach service serviceRepository Do

4 If semanticMatch(availableInputs, getInputs(service))

5 startupServices service

6 If semanticMatch(desiredOutputs, getOutputs(service))
 And semanticMatch(service, desiredOperations)

7 targetServices service

8 End Foreach

9 singleServices startupServices targetServices

10 Foreach output desiredOutputs Do

11 pathList := getBestService (singleServices, output)

12 pathList findPaths(startupServices, targetServices, output)

13 bestPaths getBestPath (pathList, output)

14 End Foreach

15 Return bestPaths

16 End.

Figure 4. Algorithm for Composition Discovery

Subsequently, the algorithm identifies single services that
are both startup and target services, i.e., are able to produce
desired outputs (line 9). Then, for each desired output, the
algorithm selects single services (line 11) and paths linking
startup and target services that produce the given output (line
12), and selects the best path or service leading to the output
(line 13). Finally, the best paths are returned as result of the
request (line 15).

D. Startup and Target Service Selection

The discovery algorithm described in the previous
section takes into account the semantic annotations
associated with inputs, outputs and operations of a WSDL. It
calculates the similarity between these requirements and the
available services via subsumption reasoning.

Annotations added to the operation element of a WSDL
description allow expressing the semantic meaning of each
operation provided by the corresponding service. Thus, it is
possible to distinguish web services that have the same
inputs and outputs, but have different semantic meaning.

Suppose, for example, an operation that informs the wine
brands manufactured in a given country, and another one that
returns the most sold wines in a country. Despite the fact that
their input and output messages match semantically, these
operations are functionally different. For this reason,
annotations associated with operations must be taken into
account during the matching process. In the given example,
each operation will be associated with a different ontological
concept that specifies its purpose, allowing the matching
process to distinguish each other.

Based on the classification proposed in [7], the semantic
match is given by:

 failsubsumepluginexactxxBAmatch ,,,|),(

From the result of the comparison between two concepts
A and B, the algorithm assigns a value given by Table I.

The semantic matching of startup services selects
services from the SAWSDL repository that require inputs
which semantically match the available inputs specified in
the discovery request. For being selected, all inputs of the
web service must be classified as exact or plugin. The
condition for service selection is given by:

1: xMInx

where:
 In: set of service inputs;

 Mx: value resulting from the match of input x of the
service, according to Table I.

The semantic matching of target services, on the other
hand, takes into account not only if the service produces
desired outputs, but also if it has at least one operation that
semantically matches one of the desired operations. First, the
outputs of the selected operations are compared with the
desired outputs. If in the list of requested outputs there is a
match with value lower or equal to 1, the web service is then
selected. Then, during the semantic matching of operations,
the algorithm selects services that have at least one operation
similar to one of the desired operations. Thus, the matching
is performed for each operation provided by services with
the desired operations. If the list of desired operations has
one with a similarity degree lower than or equal to 1, the web
service is then selected.

At the end of this step, only services that have operations
classified as exact or plugin, which also have outputs
classified as exact or plugin, will be selected as target
services. Therefore, the output is strictly related to the
operation semantics, since the web service must be selected
in the operation matching and in in the output matching.

After performing these steps, the algorithm checks if any

service was selected in both inputs and outputs matching. If
this occurs, a service that provides at least one of the desired
outputs based on the available inputs was found. In the
sequence, the algorithm tries to find paths linking startup
services to target services, building a composition graph.

E. Composition Graph

A composition is characterized by paths in the graph
linking a startup service to a target service, producing at least
one desired output. Thus, we know from where to start and
where to stop. Each node of the graph is represented by a
web service and the edges are the semantic links between
them.

Before starting to build the composition graph, the
outputs of the startup services, now used as inputs, are added
to the list of available inputs, initially composed by the
inputs sent in the request.

The algorithm uses layers of services, as shown in Fig. 2,
to represent the composition graph. The first layer is
composed by the startup services. The other layers emerge as
the algorithm iterates over the other services. Each iteration
compares semantically the inputs required by the available
services with the available inputs. The selected services form
a new layer and their outputs are added to the list of available
inputs for use in subsequent iterations. Thus, new paths may
be created in the graph at each iteration.

62 Int'l Conf. Semantic Web and Web Services | SWWS'12 |

Figure 2. Composition graph

Services of a layer are linked to services of the top layer
through the origin of their inputs. As illustrated in Fig. 3, the
inputs of service Z may come from service X or from inputs
specified in the request. Eventually, the inputs of a service
may come from one or more services, such as occurs with
service Z, depicted in Fig. 3.

As the algorithm progresses, there are several paths in the
graph that can result in different desired outputs. Each path
may or may not find an operation that meets the request.
Once services are selected to compose a layer, the algorithm
checks if any of them offer a desired operation and output. If
so, it means that a path to an output was found. Nevertheless,
the path of the graph continues being built looking for new
outputs. A path is interrupted only when it is not possible to
establish a semantic link with other services or when a
service appears repeatedly in the same path, featuring a loop,
or when the path reaches the depth specified in the request.

For the algorithm, each path in the graph leads to a single
output, even if multiple requested outputs are in the same
path in the graph. Fig. 3 shows such a situation, where
services Z and T provide requested outputs and, despite
being on the same path in the graph, the algorithm treats
them as two different paths – one composed by services

Y Z and the other by services Y Z T.
At the end of the graph construction, either by a timeout

or because all the requested outputs were found, the
algorithm examines whether two or more paths lead to the
same output. In this case, the following function is applied to
each path in order to select the one with the lowest semantic
mismatch degree:

 ***)(
11 s

Ns

i
c

s

Ns

i
MopMoutMinPSMD

where:

 SMD(P): Semantic Mismatch Degree of Path C;

 Ns: Number of services in the path.

 Mins: Value resulting from the semantic matching of
inputs of each operation in the path, according to
Table I;

 Moutc: Value resulting from the semantic matching
of the output of the path, according to Table I;

 Mops: Value resulting from the semantic matching
of each operation in the path, according to Table I.

Figure 3. Semantic link between web services.

 : Weight associated to the inputs;

 : Weight associated to the outputs;

 : Weight associated to the operations;

The SMD(P) function takes into account the result of the
matching inputs and operations of all services belonging to
the path, but only considers the matching of the output of the
last service of the path. This is because the outputs that serve
as inputs to others are already considered in the Min value.
Moreover, the function applies different weights to the
evaluated criteria. The weight distribution occurs according
to the importance of each criterion.

If after applying the function still exist two or more paths
with the same value, a fourth criterion is applied:

depthPSMDPCost)()(

where:

 Cost(P): Cost of path P;

 SMD(P): Semantic Mismatch Degree of path P;

 depth: Depth of the path.

In order to prioritize paths with better semantics, the
depth criterion is considered only in a second stage. The
depth is an important criterion of composition quality since
the larger the number of services that integrate the
composition, the greater is the probability of one of them
becoming unavailable and impeding the execution of the
composition.

Once calculated the cost of each path, the algorithm
selects the path with the lowest SMD leading to each output.
This means that the path that provides the best similarity
degree of their inputs, output and operations, along with the
lower depth, will be selected. This calculation is performed
only when there are two or more paths that provide similar
outputs. Otherwise, calculating these metrics is unnecessary
and the single path obtained is selected directly.

At the end, the SMD(C) function is applied to the final
composition, resulting from the union of all paths, in order to
calculate the global SMD according to the following
function:

N

i iPSMDCSMD
1

)()(

where:

 SMD(C): Semantic Mismatch Degree of
composition C;

 SMD(P): Semantic Mismatch Degree of path Pi;

 N: Number of paths in composition C.

Int'l Conf. Semantic Web and Web Services | SWWS'12 | 63

Figure 5. Composition resulting from the experiment.

F. Composition Repository

All compositions discovered as result of a request are
stored in the Compositions Repository for future requests.
Before making the whole discovery process when a request
for a new service is received, the platform verifies the
existence of any composition that meets the request needs. If
it exists, this composition is returned to the requester just
after a validation.

Validation of compositions consists in checking the
availability of services involved. This process is necessary
because web services can be removed from the repository. If
all services remain available, the composition is returned;
otherwise, a new discovery process begins.

There is also the case in which new web services become
available and, in some way, improve the existing
compositions. In such cases, when requesting a service that
already has a composition available, the algorithm checks if
any new service was published after the creation of the
composition and reexecutes the discovery process, in order
to identify any eventual improvement. However, this
reconstruction can be prevented through the allowRebuild
parameter sent in the request. If the value specified in this
parameter is true, the reconstruction of the composition is
performed; otherwise, the existing composition is returned.

IV. IMPLEMENTATION AND EVALUATION

The discovery algorithm was implemented in Java, using
JDK 1.6.0. Semantic annotations are extracted using the
EasySAWSDL API [15] and stored using the MySQL 5.5
database management system The Jena [16] and Pellet [17]
APIs are used to load and infer meanings of concepts defined
in the ontologies that are associated with WSDL elements.
The JUNG API [18] is employed to build the composition
graph based on the relationships among concepts.

To evaluate the performance, measure the response time
and validate the compositions selected by the discovery
algorithm, some experiments were executed and the obtained
results are presented in this section. The environment in
which the experiments were performed was composed of a
Intel® Core 2 Duo 2.10 GHz CPU, with 3 GB of RAM,
running the Windows 7 operating system.

Figure 6. Response time of the discovery algorithm

For the experiment, 1,000 semantic web services were
obtained from the www.semwebcentral.org repository, and
these were replicated until reaching 5,000 web services. On
average, services had one operation with two inputs and one
output. Each input, output and operation had a single
semantic annotation. Services were published and their
annotations were extracted and stored in the SAWSDL
Repository.

Different numbers of services were used during the tests
in order to compare the time needed to find the composition
as the amount of services increased. Several factors have
direct influence on the performance of the composition
algorithm, such as: the number of services involved; the
number of operations of a service; the number of inputs and
outputs of an operation; the number of semantic annotations
in operations, inputs and outputs; the number of ontologies
involved; the number of concepts and relations in an
ontology; and the length of the shortest path from a startup
service to a target service.

The SMD function was evaluated with different weights
in order to select the best combination of values. After
executing the composition process numerous times, the best
compositions in terms of semantic quality were obtained
according Table II.

TABLE II. WEIGHTS ASSOCIATED WITH EVALUATED ANNOTATIONS.

 Input Output Operation

Weight 0,3 0,35 0,35

Defined the weights, the web services were grouped into
sets of 1000, 2000, 3000, 4000 and 5000 services. The
request that had its response time evaluated was intended at
finding a composition that returned 3 given outputs based on
2 available inputs.

The graph obtained with the experiment is shown in Fig.
5 and the time resulting of each evaluation is shown in Fig.
6. As the amount of services grows, the response time grows
linearly, i.e., the response time is directly proportional to the
amount of available services. Furthermore, the results
presented confirm that the proposed approach is effective to
discovery and composition of web services, since the time
associated with the execution of the algorithm is polynomial.

64 Int'l Conf. Semantic Web and Web Services | SWWS'12 |

The discovery process comprises two different stages,
and the response time taken by each stage is shown in Fig. 6.
The first stage, labeled Service Discovery, identifies startup
and target services. Startup service selection requires the
analysis of each input of each operation of a service in order
to select it as a startup service. On the other hand, selecting
the target services requires just one compatible output for
service selection, resulting in a faster procedure. The second
stage, named Composition in Fig. 6, is responsible for
consuming the largest share of the time required to execute
the algorithm. This result was largely anticipated, due to the
successive matching operations to identify relationships
between services needed for building the composition graph.
In addition, this stage requires the calculation of the semantic
mismatch degree of each path identified in the graph for
selecting the composition that best fulfills the request.

The algorithm proves to be able to identify compositions
and to obtain all the desired outputs through services
available in the repository based on a list of inputs. Since the
quality of the obtained results depends solely and exclusively
on the matching between the parameters sent in the request
and the annotations associated with services, the more
detailed were the parameters and the services annotations,
the better is the quality of the obtained compositions.

V. CONCLUSIONS AND FUTURE WORK

Assembling web service compositions is not a trivial
task, specially with the large amount of services available
nowadays. Composition is needed when a single service is
not able to execute the required task. Semantic technologies
can play an important role in this process, allowing the
automation of the composition process.

In this context, this paper presented a platform to
automatically build compositions of Web Services at request
time based on the SAWSDL annotations. This platform
comprises also an execution engine, which allows clients to
invoke a composed service through a single web service
request. This is achieved by executing a WS-BPEL
description of the composed service.

Compared with related projects found in the literature
that have similar goals, which were described in section II.E,
compositions are obtained by the proposed algorithm at
request time without user assistance, and will never require
inputs that the client does not have. The results of the
experiments demonstrated that the algorithm is able to
combine single services to build compositions with a
response time directly proportional to the amount of services
available in the repository.

As a future improvement, the discovery mechanism will
be capable of identifying the same concepts represented in
different ontologies via ontology mediators. This is desired
because people and organizations often develop different
ontologies to represent the same domain, due to their
different points of view of the same scenario.

Improvements are also being made to the developed
implementation in order to allow the use of control structures
and parallelism during the execution of the discovered
compositions.

REFERENCES

[1] D. Booth and C. K. Liu, eds. Web Services Description Language

(WSDL) 2.0, 2006. Available at. http://w3.org/TR/2006/CR-wsdl20-

primer-20060327/

[2] A. Ankolekar. OWL-S: Semantic Markup for Web Services, 2003.

Available at http://www.daml.org/services/owl-s/1.0/

[3] J. Bruijn, H. Lausen, A. Polleres and D. Fensel. The web service
modeling language wsml: An overview. The Semantic Web: Research

and Applications, 4011/2006:590-604, 2006.

[4] J. Kopecký, T. Vitvar, C. Bournez and J. Farrell. SAWSDL: Semantic

Annotations for WSDL and XML Schema. IEEE Internet Computing,
vol. 11, no. 6, pp. 60-67, 2007.

[5] D. Oliveira, C. Menegazzo and D. Claro. Uma Análise Conceitual
das Linguagens Semânticas de Serviços Web focando nas

composições: comparação entre OWL-S, WSMO e SAWSDL, In

IADIS Conferência IberoAmericana WWW/Internet (CIAWI 2009).
Alcalá - Madrid, Spain, October 2009.

[6] C. V. S. Prazeres, C.A.C. Teixeira and M.G.C. Pimentel. Semantic

Web Services discovery and composition: paths along workflows. In
ECOWS'09: Proceedings of the 7th IEEE European Conference on

Web Services, pp. 58-65, Eindhoven, Netherlands, 2009.

[7] M. Paolucci, T. Kawamura, T. Payne and K. Sycara, Semantic
matching of web services capabilities, in: Proceedings of 1st

International Semantic Web Conference (ISWC), 2002.

[8] D. Martin, M. Burstein, D. McDermott, S. McIlraith, M. Paolucci, K.

Sycara, D. L. McGuinness, E. Sirin and N. Srinivasan. Bringing
Semantics to Web Services with OWL-S. World Wide Web 2007, pp.

243-277, 2007.

[9] Y. Charif and N. Sabouret. An Overview of Semantic Web Services
Composition Approaches. Electrical Notes Theory Computing

Science, Vol. 146(1), pp. 33–41, 2006.

[10] OASIS. Web Services Business Process Execution Language Version

2.0, May 2007. Available at http://www.oasis-open.org/committees/

download.php/23964/ wsbpel-v2.0-primer.htm

[11] W3C. Web Services Choreography Description Language Version

1.0, November 2005. Available at http://www.w3.org/TR/ws-cdl-10/

[12] V. Tran, S. Puntheeranurak and H. Tsuji. A new service matching

definition and algorithm with SAWSDL, 3rd IEEE International
Conference on Digital Ecosystems and Technologies (DEST'09),

pp.371-376, June 2009.

[13] N. Mehandjiev, F. Lecue, U. Wajid, A. Namoune. Assisted Service
Composition for End Users. In Proceedings of IEEE European

Conference on Web Services (ECOWS 2010), Ayia Napa, Cyprus,

pp. 131-138, December 2010.

[14] F. Belouadha, H. Omrana and O. Roudiès. A model driven approach

for Composing SAWSDL semantic Web Services, IJCSI International
Journal of Computer Science Issues, March 2010.

[15] N. Boissel-Dallier, J. Lorré and F. Benaben. Management Tool for
Semantic Annotations in WSDL. On the Move to Meaningful Internet

Systems: OTM 2009 Workshops, Springer, 978-3-642-05289-7, vol.

5872, pp. 898–-906, 2009.

[16] Hewlett Packard. Jena Semantic Web Framework, 2006.

Available at http://jena.sourceforge.net/

[17] Clark & Parsia, LLC. Pellet OWL Reasoner, 2006. Available

at http://pellet.owldl.com/

[18] J. O'Madadhain, D. Fisher, S. White, and Y. Boey, The JUNG (Java

Universal Network/Graph) Framework, UCI-ICS Tech Report 03-17,
October 2003.

Int'l Conf. Semantic Web and Web Services | SWWS'12 | 65

Towards the Automation of the Semantic Annotation

Process for Web Services

Leandro Ordóñez-Ante, Luis Antonio Rojas-Potosi, Luis Javier Suarez-Meza and Juan Carlos

Corrales

Telematics Department, Telematics Engineering Group (GIT), University of Cauca, Popayan, Cauca,

Colombia

Abstract- The large and growing amount of services

available in the current Web has placed the need for

developing efficient mechanisms for service discovery, in

order to meet either a particular user request or the

requirements of software agents. In this regard, a lot of work

has been addressed on adding semantics over service

descriptions to improve the accuracy of search engines.

Nevertheless, the adoption of semantic annotation models,

nowadays, has been restricted by service designers and

providers, since they require certain specialized knowledge –

related to formal knowledge representations–, and given that

their actual implementation is very resource intensive. In this

paper, we present an approach to overcome this latter issue by

automating the semantic annotation process. The approach we

propose, builds automatically and incrementally formal

representations of knowledge from a corpus of service

descriptors, by using text mining techniques and an

unsupervised learning approach.

Keywords: web services, automatic semantic annotation,

machine learning, LDA, FCA

1 Introduction

 The Service Oriented Architecture (SOA) emerged as a

means for heterogeneous, distributed and component-based

applications to work seamlessly, through the definition of

well-known standard interfaces, such as WSDL descriptors

for REST and SOAP Web Services. This way, whenever a

user or software agent requires consuming a service, it just

has to know the content of the service interface to bind and

implement its capabilities. However, due to the steady growth

in the number of current Web resources, the search of suitable

services for meeting some particular needs is an increasingly

challenging task. In this regard, the scientific community

behind this matter has proposed a way out to this problem,

aligned with Semantic Web Technologies, conceiving what

has been called Semantic Services Oriented Architecture

(SSOA) [1].

 The foundations of SSOA are laid on three key concepts

[2]: SOA –from which its features of separation of concerns,

standard interface provision, and capabilities discovery and

reuse are taken–, Semantic-Based Computing –that provides

sense to content, services and resources, using a formal and

machine readable specification–, and Standard Based Design

–that enable the integration of currently available applications

with novel or future technologies–. Thus, SSOA would allow

automatic service detection and selection (and consequently

the automatic service discovery and composition).

 Deploying SSOA requires, as stated, for resources and

services to be formally specified, in such a way that a

software agent can interpret and capture its functionalities in a

semantic level. Nonetheless, the poor adoption of

mechanisms for semantic description of services, by

developers and providers (given their high cost in terms of

time and resources) has inhibited the development and

effective implementation of such architectures.

 Researches documented in [3, 4, 5, 6] introduce

proposals aimed at the integration of Artificial Intelligence

technologies –specially, multiagent systems and planning-

and semantic web services technologies, in order to enable

automated service discovery and composition. Those works

however, demand for each service the existence of two

descriptors: the traditional (syntactical, e.g. WSDL) one, and

one that defines its semantics (OWL-S/WSML). Given the

complexity of such semantic descriptors, a large number of

existing services don’t meet the requirement of these works,

thus limiting their actual implementation.

 In order to overcome this limitation, currently some

approaches are considered to tackle the problem of semantic

service annotation, by applying knowledge discovery and

emergent semantics techniques over huge corpus of service

descriptors, which in some cases already contains annotations

made by consumers in a collaborative way. Those approaches

however, have failed in leave aside human intervention and

also lack of precision in search and selection processes.

Therefore it’s considered necessary developing mechanisms

that enable the automation of semantic service annotation

tasks.

 In this paper we present a research work in progress,

which aims to address the stated problem by applying un-

supervised machine learning techniques over a corpus of web

service descriptors. This work seeks to answer the question:

How to automate the semantic annotation of web services?

 The remainder of this paper is organized as follows: we

first outline the context into which our work is developed.

Then, we describe a review of the current approaches

regarding the stated problem. Next, it is depicted and defined

66 Int'l Conf. Semantic Web and Web Services | SWWS'12 |

the architecture of a platform for enabling automatic semantic

annotation of web services. Finally the conclusion and open

issues of our work are addressed.

2 Background and Motivation

 The work we are developing is framed around the

transition between the dominant paradigm of the Web, the so-

called social Web, and the establishment of the semantic Web

or Web 3.0, specifically in regards to semantic annotation of

services, which in turn is related to the subject of ontologies.

Currently there is no generalized notion of the ontology

concept; however in [7] it is formulated a conception that is

widely accepted, according to which ontology “is a formal,

explicit specification of a shared conceptualization”.

 The semantic annotation, core concept for the current

proposal, is the result of a procedure that aims to make

explicit for machines, the meaning (the semantics) of content

and resources available in large repositories of information.

This latter constitutes one of the requirements to meet to

finally materializing the Semantic Web. The semantic

annotation procedure is commonly supported in formal

representation of knowledge, as the aforementioned

ontologies, and for services, consists in associating

ontological entities to the terms defining the attributes of the

service in its descriptor document [8], allowing for instance,

for service search engines to effectively comprehend (on a

semantic level) both the services functionality as the service’s

clients requests, enabling them to accurately respond to

service inquiries.

 Traditionally, this semantic annotation procedure must

be performed by hand by service designers and developers or

in a collaborative way by service users (conceiving a sort of

folksonomy of services). In both cases, the large and growing

amount of services, along with the lack of knowledge

regarding semantic description methods for services and the

scarceness of suitable domain ontologies, has overwhelmed

the human ability for performing this semantic annotation

task. Additionally, the human intervention in marking up the

services descriptors with ontological entities involves a very

expensive process in terms of time, effort and resources.

 In this regard, the focus of the present approach is on

leveraging current techniques taken from the fields of

machine learning, information retrieval and knowledge

discovery, for automating the semantic annotation of web

services. The next section will deal the revision of some

previous works regarding the problem being tackled herein.

3 Related Work

 This section explores some approaches that deal with

semantic annotation, not only for web services, but also for

content and other kinds of web resources.

 In [9, 10, 11] the authors explore alternative approaches

for semantic annotation of available services and resources in

the Web. Such an approach consists of recognizing the

information constructs from collaborative tagging systems

(folksonomies) as specifications of shared knowledge, which

can be suitable for semantically annotating service interfaces,

dispensing with the use of ontologies. The main goal of these

proposals, however, is to assist the process of semantic

enrichment, still requiring human intervention (developers,

users, providers, etcetera) for fulfilling the complete process.

 The authors of [12] and [13] address two works

regarding to semantic annotation of folksonomies, for various

kinds of online available resources. In contrast to

aforementioned works, the proposals of Angeletou in [12] and

the one described by Siorpaes in [13] argue that it is required

to formalize the knowledge generated within folksonomies,

by using ontologies, in order to overcome their limitations in

terms of organizing, searching and retrieving resources based

on tags.

 The work of Angeletou differs from the current

proposal, as long as the former is focused on an image

folksonomy. In turn, the project addressed in [13], although it

takes into account the services as part of its working

resources, its scope is limited to promote collaborative

tagging thereof. Furthermore, the development of that project

is still in an early stage, so the results from its implementation

are not yet conclusive.

 The approaches outlined in [14, 15, 16, 17] pose the use

of techniques of machine learning such as Formal Concept

Analysis (FCA) and most recently Relational Concept

Analysis (RCA), for extracting and representing the

knowledge covered by documental corpus, as conceptual

hierarchies or taxonomies. This way, the approaches

described in these works are suitable for composing formal

models of knowledge, such as core ontologies, avoiding the

intervention of domain experts. However, none of the

aforesaid proposals had considered the automation of such a

process.

 From observations made on related proposals, the

present work aims to automate the process of semantic

annotation of web services descriptors, through an approach

that combines techniques of text mining, unsupervised

machine learning (FCA) and others taken from the

Information Retrieval field (Latent Dirichlet Allocation–LDA

and Nearest/Normalized Similarity Score–NSS) for enabling

automatic and incremental generation of formal models of

knowledge from service descriptors. Such models are meant

to be used in annotating and categorizing services, through a

platform that implements the above techniques.

 Next section will address the description of our

proposal, by outlining the architecture of the platform for

automatic semantic annotation of service descriptors.

4 Overview of Our Approach

 According to [8] there exist four types of semantics

associated with web services: data semantics –formal

definition of data in input and output messages–; functional

semantics –formal definition of the capabilities of a Web

service–; non-functional semantics –formal definition of

quantitative or non-quantitative constraints–; and execution

semantics –formal definition of the execution flow of services

in a Process, or of operations within a service. Our proposal is

Int'l Conf. Semantic Web and Web Services | SWWS'12 | 67

Descriptor Processing

Descriptor
Parsing

Attribute
Filtering

Lexer

Stopwords
Removal

POS
Tagging

POS
Filtering

Service
Descriptor

Service
Descriptor

Taxonomy Building

Relatedness
Measurement

(NSS)

Taxomony Manager

Incremental
Categorization (LDA)

Taxonomy
Generation (FCA)

Data TaxonomyFunctional Taxonomy

Storage Layer

Service Model
Mapping

Functional
Taxonomy
Functional
Taxonomy

Data
Taxonomy

Data
Taxonomy

-locationURI : string
-qName : string
-wsdlFilePath : string

WebService

-id : long
-portName : string

Port

-ports1

-service1..*

-id : long
-bindingName : string

Binding

-binding

1

-port 1

-id : long
-portTypeName : string

PortType

-portType 1-bindings

1..*

-id : long
-operationName : string

Operation -portType

1..*

-operations 1

-id : long
-input : bool
-messageName : string

Message

-operation 1..*

-messages

1

-id : long
-input : bool
-dataName : string

DataElement

-dataElements1 -operation1..*

Abstract service
model

Figure 1. Platform Architecture

focused on the former two types of semantics, this way, our

platform enable composing two formal models of knowledge

for semantic annotating both capabilities and input/output

data from web services, by harvesting the information on

their descriptors. Figure 1 illustrates the components that

make up the annotation platform, which will be described

below.

 The platform we propose, receive as input a set of wsdl

service descriptors. For each of these descriptors a procedure

is performed in order to map its content into an abstract entity

model (which is then stored in a service registry), and to

extract their relevant attributes (i.e. service, operations and

input/output types). Such attributes are then categorized in

two arrangements: a functional taxonomy and a data

(input/output) taxonomy, which are built in an incremental

way as long as new services are entered to the platform or

new categories are detected. The annotation consists then in

automatically associating service attributes to corresponding

taxonomy categories, while these latter are made up. All the

outcomes of the above procedure are in turn saved in the

platform storage layer.

 The main components of the proposed platform are

explained next:

4.1 Descriptor Processing

 The purpose of this module is to extract the relevant

information from incoming service descriptors. This

component of the platform provides a procedure that allows

abstracting the information regarding the attributes that define

the service functionality (operation and input/output types) by

applying a set of text mining techniques (i.e. filtering,

tokenization, POS tagging) which are described and used in

[17] serving a similar purpose. The output of this module is

twofold: first it loads into memory the complete service

descriptor, outcome that is taken by another component of the

platform, in charge of mapping the content of the descriptor

into an abstract service model intended for further storage and

retrieval. The second outcome has to do with applying the

above text mining techniques on each of the service

descriptors. This output comprises the specification of tree

attributes of the service: service, operation and types, along

with its corresponding POS tagged values. As an example,

consider a service defined by
1
:

service: “CurrencyService”

operation: “GetExchangeRate”

(input)Type: “CurrencyISO”

(output)Type: “GetExchangeRateResult”

 For the previous example, the outcome of the Descriptor

Processing module will be:

(service, {“Currency:NN”})

(operation, {“Get:VBI”, “Exchange:NN”, “Rate:NN”})

(input,{“Currency:NN”, “ISO:SYM”})

(output, {“Exchange:NN”, “Rate:NN”})

 Where, NN (noun), VBI (verb), and SYM (symbol)

denote lexical categories (part-of-speech) for each of the

words defining the service attributes. Notice that, for the

service attribute, as well as for the output type, the descriptor

processing module has ruled out three words: Service (for

service), Get and Result (for output). This is due to these

words does not have any valuable information for these

particular attributes.

4.2 Service Model Mapping

 This module is responsible for processing the

information in service descriptors, to map it into the abstract

1
 Example from seekda, an online registry of web services.

(http://webservices.seekda.com).

68 Int'l Conf. Semantic Web and Web Services | SWWS'12 |

http://webservices.seekda.com/

service model shown in Figure 2. Such a model allows

capturing the services attributes –which are specified as the

UML entities WebService, Port, Binding, PortType,

Operation, Message and DataElement– along with the

relationships between such attributes, in order to ease its

storage, search and retrieval. This platform component, takes

the descriptor information loaded into memory by the

previous module, and instantiates the entities, in

correspondence to the referred model.

-locationURI : string
-qName : string
-wsdlFilePath : string

WebService

-id : long
-portName : string

Port

-ports1

-service1..*

-id : long
-bindingName : string

Binding

-binding

1

-port 1

-id : long
-portTypeName : string

PortType

-portType 1-bindings

1..*

-id : long
-operationName : string

Operation -portType

1..*

-operations 1

-id : long
-input : bool
-messageName : string

Message

-operation 1..*

-messages

1

-id : long
-input : bool
-dataName : string

DataElement

-dataElements1 -operation1..*

Figure 2. Abstract Service Model

4.3 Storage Layer

 This component of the architecture consists, first in a

service registry, whose relational model matches the service

abstract model. Thus, all of the incoming services to the

platform are stored and its information is maintained for

further retrieval. Secondly, this storage layer implements a

mechanism for storing the artifacts obtained as outcomes

from the taxonomy building module. Such mechanism allow

storing both taxonomies (functional and data) as RDF graphs,

as well as querying and manipulating such knowledge

structures by employing the SESAME Framework [18] along

with SPARQL, the widely used RDF query language.

4.4 Taxonomy Building

 This component takes as input the information generated

by the descriptor processing module, for incrementally

composing two taxonomies: one classifying the knowledge

related to the terms that define the service operations

(functional taxonomy), and one that is intended to arrange the

knowledge about its input/output types (data taxonomy). This

is a quite complex component as it is shown in the platform

architecture (see Figure 1). It comprises a set of subsystems

that are involved in the generation of the abovementioned

taxonomies. The first of such subsystems, receives the terms

supplied by the descriptor processing module and estimates

their semantic relatedness relative to the concepts/categories

previously classified in both taxonomies, by employing a

measure of semantic relatedness (MSR) referred to as

Nearest/Normalized Similarity Score (NSS), which is

explained in [19]. As long as the measure of semantic

relatedness between one of the terms of the service descriptor

and one of the taxonomy concepts exceeds a predefined

threshold, an association between these two elements (the

descriptor term and the taxonomy concept/category) is placed

and saved through the storage layer.

 Eventually, it may not have significant similarities

between the service attributes and taxonomy concepts,

suggesting the income of new, uncategorized content. In that

case, subsystems based on an online/incremental variant of

Latent Dirichlet Allocation (LDA) [20, 21], and Formal

Concept Analysis (FCA) [22] are involved. Jointly, these

subsystems allow identifying additional concepts/categories,

as well as their location within the taxonomy structure.

 The subsystems depicted above operate over a

taxonomy management component, which enables reading

and updating the taxonomies and serves as mediator between

both the taxonomy building and storage layer modules.

 The use of FCA in approaches regarding categorization

and knowledge representation of documental corpuses has

spread recently. However, as argued in [23], applying this

technique is constrained by the size of the corpus, due to the

computational complexity that involves building the

conceptual lattices, through which the information is

structured in FCA. In this regard, the architecture proposed

herein, applies a Latent Dirichlet Allocation (LDA) model –

which is considered as an extension of the widely used PLSA

in Information Retrieval applications [24] – as a mechanism

for reducing the complexity linked to the generation of FCA

formal contexts.

 The purpose of using LDA is to understand and uncover

the underlying semantic structure of a corpus of service

descriptors. Through the probabilistic model proposed by [25]

in LDA (which assumes each of the descriptors documents as

a bag-of-words), it is possible to find out a set of categories

(known as topics) covered by the descriptor documents, while

associating for each document a probability distribution over

all the categories/topics, i.e. a descriptor is conceived as a

mixture of various topics, so that it can belong to more than

one of them.

 As stated before our proposal seeks to incrementally

build representations of the information in the service

descriptions. Thus, the traditional LDA model isn’t suitable

since it requires a training step, which is performed over a

whole batch of documents. That is why the abovementioned

online/incremental variant of LDA is applied in this

component of the architecture. Such variant of LDA enables

the incremental identification of categories/topics, as new

services descriptors enter to the platform.

 This incremental model is applied on both the functional

(service, operations) and data (input/output types) service

attributes. Such a procedure generates as outcome, several

ranked sets of words (corresponding to the service attributes),

each of which defining a different category. The word order

in each of the ranked sets is determined by the probability of

occurrence of every single word in documents regarding the

Int'l Conf. Semantic Web and Web Services | SWWS'12 | 69

Table 1. Words by topic distribution obtained by applying LDA.

 Category/Topic 1 Category/Topic 2 Category/Topic 3

1 Currency Weather Coordinate

2 Convert Climate Locate

3 Rate Forecast Distance

4 Exchange Temperature Zip

category each set defines. Table 1 presents an example of the

output obtained by applying the incremental LDA model, for

the functional attributes of the services.

 From the example it is possible distinguishing three

ranked sets of attribute values, each related to one particular

topic: Currency Conversion, Weather Forecast, and Geo

Positioning. For the sake of space, in the example it is only

considered three categories, each one with four associated

service attribute values, however, there may be actually much

more categories than that, then a service could belong to

multiple categories, as long as its descriptor contains terms

from various categories.

 One of the key benefits of applying LDA over the

service descriptors entering the platform is the grouping of

service attributes in the aforementioned categories, which

leds to a dimensionality reduction of the space over which the

next subsystem in the taxonomy building component operates:

the lattice generator. Such subsystem applies FCA, a well-

known lattice-based technique for knowledge representation

and unsupervised machine learning, which allows identifying

groups of objects sharing common attributes. The formalism

posed by this technique is founded on the relation between

(formal) objects and its (formal) attributes or properties, from

which the triplet () is composed, referred to as

formal context. In this notation represents the set of formal

objects; denotes the set of formal attributes and states an

incidence relation between an object and an attribute

 (stands for “ has ”).

 The lattice generator subsystem applies this FCA

technique by configuring a formal context where the formal

objects are the set of services entered to the platform, and the

formal attributes are the categories extracted by LDA. This

way, consider S = {s1, s2, s3, s4} a set of services and C = {c1,

c2, c3, c4, c5} the set of categories to which the services of S

belong. The formal context () is built from making

explicit the membership relation () between services and

categories, which can be represented by a cross table, as

shown in Table 2.

 In the above formal context, the relationship between

services and categories are specified by the crosses, so for

example service s1 belongs to categories c1 and c5, service s2

belongs to categories c1 and c4, and so on.

 FCA defines a derivation operation () that links

services and categories:

Thus, having a set ,

 * | () + (1)

is the set of common categories shared between the services

in . Similarly, having the set ,

Table 2. Services Category Formal Context (K = (S, C, I)).

 c1 c2 c3 c4 c5

s1

s2

s3

s4

 * | () + (2)

denotes the set of common services for the categories in .

As an example, consider the formal context depicted above,

being * + and * +; then, * +
and * +.
 From this derivation operation stems the definition of

the FCA formal concept: a pair of sets () is called a

formal concept of the context K iff and ,

(being and the extent and the intent of the formal concept

respectively). So for instance, in our example, the pair

(* + * +) is a formal concept of the Services ×

Category formal context, while the pair (* + * +) is not.

 The whole set of formal concepts of K denoted by BK

are partially ordered by a specialization relation between

concepts. Thus, it is said that a concept () is subconcept

of () if . Having identified the set of formal

concepts, it is possible to arrange them into a so-called

concept lattice, which allows uncovering a hierarchical

structure (based in the above specialization relation) of

categories and the services they comprise. The concept lattice

for the given formal context is depicted in Figure 3.

Figure 3. Concept Lattice for the Services Category formal

context.

 A process similar as the explained above is performed

for both, operations and input/output service attributes. This

way, the taxonomy building module enables incrementally

building of both functional and data taxonomies, while stating

corresponding associations between the incoming web service

attributes (operations and input/output types) and the

categorized elements in such knowledge models.

70 Int'l Conf. Semantic Web and Web Services | SWWS'12 |

5 Conclusions

 Nowadays there is a huge amount of both resources and

services available online, so much so that it has overwhelmed

the search engines capability for meeting efficiently the

queries from users and software agents.

 Up to now there exists several research efforts aimed to

tackle this problem, but it is largely an open question. Part of

such efforts are focused on developing mechanisms for

indexing and categorizing service through collaborative

tagging applications, by using technologies of Web 2.0;

nevertheless, the lack of ordering and limited reliability of the

annotations on these resources, have hampered the benefits of

such approaches. Other studies seek to leverage formal

models of knowledge, such as ontologies, in order to attach

semantic components on service descriptors, and thus enable

automatic service discovery and composition. However, the

costs involved in building and maintaining these formal

models, as well as in the semantic annotation process had

constrained, not only the actual implementation of these

approaches, but also the deployment of the Semantic Web.

 In this paper, we have introduced a novel and suitable

approach to overcome the problem of semantic annotating

web services. Our work focuses on the extraction of relevant

information about services attributes, by applying some text

mining techniques on their descriptors, in order to compose –

in an automatic and incremental way – formal models of

knowledge regarding those attributes. Such models are

intended to specify two types of semantics of web services:

the functional (operations) and the data (input/output types)

semantics. The referred formal models are generated as

conceptual taxonomies by defining hierarchical relationships

between concepts, applying an online LDA model along with

a FCA technique. To the best of our knowledge, the joint use

of these two latter on tackling the problem we have stated,

has not been addressed in previous works, thus it is one of the

main contributions of our research. LDA allows uncovering

the underlying semantic structure of a corpus of service

descriptors as a distribution of relevant categories/topics,

while FCA enables identifying a hierarchical structure of

categories and the services.

 This way the proposed approach merges both formal

knowledge models generation, and a fully automatic semantic

annotation method for web services.

 The platform that implements this proposal also includes

a registry where processed services are stored (once they have

been mapped into an abstract model), as well as the above

formal knowledge models as RDF documents.

 The proposed approach is under development and as

complementary work it is considered taking into account

already annotated services, (i.e. services holding a semantic

descriptor, such as OWL-S or WSML), in conjunction with

web ontologies in order to enhance both the concepts and

relationships of formal knowledge models, as the semantic

annotations on services, which involves the use of semi-

supervised machine learning methods.

6 Acknowledgments

 The authors would like to thank University of Cauca,

Colciencias and TelComp2.0 project for supporting this

paper.

7 References

[1] Chance, S. 2009, "Semantic Service Oriented

Architecture: An Overview," Semantic Web Site,

[online]. (http://semanticweb.com/semantic-service-

oriented-architecture-an-overview_b10678).

[2] Scientific Research Corporation (SRC). 2006, "Semantic

Service Oriented Architecture - Case Study for OMG

SOA/MDA/WS Workshop," SRC, Atlanta GA., EUA.

[3] Carman, M.; Serafini, L.; Traverso, P. 2003, "Web

Service Composition as Planning," In ICAPS 2003

Workshop on Planning for Web Services.

[4] Hahn, C. et al. 2008, "Integration of Multiagent Systems

and Semantic Web Services on a Platform Independent

Level," In Proc. Of 2008 IEEE/WIC/ACM - WI-IAT '08

- Volume 02, Washington, DC, USA.

[5] García-Sánchez, F.; Valencia-García, R; Martínez-Béjar,

R.; Fernández-Breis J. 2009, "An ontology, intelligent

agent-based framework for the provision of semantic

web services," Expert Syst. Appl. 36, 2, 3167-3187.

[6] Sbodio, M.; Martin, D.; Moulin, C. 2010, "Discovering

Semantic Web services using SPARQL and intelligent

agents," Web Semantics Science Services and Agents on

the World Wide Web. Vol. 8, Issue 4 (November 2010),

310-328.

[7] Gruber, T. 1993, "A translation approach to portable

ontology specifications," Knowledge Acquisition -

Special issue: Current issues in knowledge modeling,

vol. 5, no. 2.

[8] Nagarajan, M. 2006, “Semantic Annotations in Web

Services,” in Semantic Web Services, Processes and

Applications, Jose Cardoso and Amit P. Sheth (Eds.),

Springer.

[9] Bouillet, E. et al. 2008, "A Folksonomy-Based Model of

Web Service Discovery an Automatic Composition," In

Proc. f 2008 IEEE SCC - Volume 1.

[10] Meyer, H. and Weske, M. 2006, "Light-Weight

Semantic Service Annotations through Tagging," in

ICSOC 2006, Lecture Notes in Computer Science.

[11] Loutas, N.; Peristeras, V.; Tarabanis, K. 2009,

"Rethinking the Semantic Annotation of Services," in

Int'l Conf. Semantic Web and Web Services | SWWS'12 | 71

ICSOC/ServiceWave 2009 Workshops, Lecture Notes in

Computer Science.

[12] Angeletou, S. 2008, "Semantic Enrichment of

Folksonomy Tagspaces," International Semantic Web

Conference, Doctoral Consortium, Proc. ISWC'08,

Karlsruhe, Germany.

[13] Siorpaes, K. and Simperl, E. 2010, “Incentives,

Motivation, Participation, Games: Human Computation

for Linked Data,” CEUR Proceedings of the Workshop

on Linked Data in the Future Internet at the Future

Internet Assembly, Ghent, Belgium.

[14] Ma, J.; Zhang, Y.; He, J. 2008, "Efficiently finding web

services using a clustering semantic approach," In Proc.

of CSSSIA.

[15] Yang, K. M; Hwang, S.-H.; Kang, Y.-K.; Yang, and H.-

S. 2009, "Folksonomy Analyzer: a FCA-based Tool for

Conceptual Knowledge Discovery in Social Tagging

Systems," 1st International Workshop On Mining Social

Media Programme.

[16] Azmeh, Z.; Huchard, M.; Tibermacine, C.; Urtado, C.;

Vauttier, S. 2010, "Using Concept Lattices to Support

Web Service Compositions with Backup Services," In

Proc. of (ICIW '10), IEEE Computer Society,

Washington, DC, USA, 363-368.

[17] Falleri, J. R.; Azmeh, Z.; Huchard, M; Tibermacine, C.

2010 "Automatic Tag Identification in Web Service

Descriptions," Valencia, Spain, April.

[18] Broekstra, J.; Kampman, A.; Van Harmelen, F. 2002,

“Sesame: A Generic Architecture for Storing and

Querying RDF and RDF Schema,” in Proc. of ISWC

2002, Number 2342 in Lecture Notes in Computer

Science (LNCS), Springer-Verlag, 54-68.

[19] Batra, S. and Bawa, S. 2009, "Semantic Categorization

of Web Services," International Journal of Recent

Trends in Engineering, Volume 2, No. 3.

[20] Hoffman, M.; Blei, D.; Bach. F. 2010, “Online learning

for latent Dirichlet allocation” In: Neural Information

Processing Systems.

[21] AlSumait, L.; Barbara, D.; Domeniconi, C. 2008,

“On-line LDA: Adaptive Topic Models for Mining Text

Streams with Applications to Topic Detection and

Tracking” In ICDM 2008, pp. 3–12.

[22] Priss, U. 2006, “Formal concept analysis in information

science,” in ARIST 40(1): 521-54.

[23] Codocedo, V.; Taramasco, C.; Astudillo, H. 2011,

"Cheating to achieve Formal Concept Analysis over a

large formal context," in CLA 2011, Nancy, France, pp.

349-362.

[24] Hoffman, T. 1999, "Probabilistic Latent Semantic

Analysis," in Uncertainity in Artificial Intelligence,

Stockholm.

[25] Blei, D.; Ng, A.; Jordan, M.; January, 2003, “Latent

Dirichlet Allocation”. Journal of Machine Learning

Research, 3 (4–5): pp. 993–1022.

doi:10.1162/jmlr.2003.3.4-5.993.

72 Int'l Conf. Semantic Web and Web Services | SWWS'12 |

Web Spider Performance and Data
Structure Analysis

Sadi Evren SEKER

Department of Computer Engineering, Istanbul University, Istanbul,

Turkey
academic@sadievrenseker.com

Abstract. The aim of this study is performance evaluation
of a web spider which almost all search engines utilize
during the web crawling. A data structure is required to
keep record of pages visited and the keywords extracted
from the web site during the web crawling. The paper first
goes into the detail of possible data structures for a web
spider and critics all possibilities depending on their time
and memory efficiencies. Furthermore the possibilities are
narrowed into tree variations only and a tree is selected
from each tree data structure family. Finally, a search
engine is implemented and all the tree alternatives from
each of the tree data structure family are also
implemented and the performance of each alternative is
benchmarked.

Keywords: Web Spider, Web Crawling, Web Indexing,
Benchmarking, Data Structures

 1 Introduction
In the date of this study, there are 2 kind of possible

web sources for the Internet surfers. A user trying to
access information on the Internet can either use the
directories or the search engines. Directories are
hierarchical index lists of sites; they list sites by topic.
They are widely used and in many cases offer an
extremely great source of information. However, they
have few problems: [1]

• Hierarchies are very vulnerable. Data and its
classifications change constantly. This also leads
to changes in hierarchy. A good example of this
is DMOZ [2], world’s largest directory. Several
subcategories are created, removed or deleted
each day.

• Most directories rely on human intelligence and
are manually edited. They can never compete
with search engines in amount of information.
However, quantity is never as important as
quality.

This paper concentrates on the search engine

architecture rather than the hierarchical indexing.
Anatomy of a search engine can be demonstrated as Fig.1.

Internet

Spider

Indexer

Index Database

User Interface

Fig. 1. A sample view of a web spider and its components

From the Fig.1 a spider gets connects to the Internet
and supplies information for indexer which is responsible
to keep the information for queries. This information can
be kept in a database or can stay in memory for faster
results. Finally, a user gets connect to the search engine
through a user interface and queries the data in the
indexer.

One of the most crucial points of a search engine is
the indexer and the data arrangement during the data
storage and querying.

Int'l Conf. Semantic Web and Web Services | SWWS'12 | 73

The indexer implemented during this study can do:

• Web Parsing: is extracting the pure text from
HTML tags,

• Extracting Keywords: is creating a set of
keywords and removing duplicates and also
cleaning stop words (which are the words does
not effect the search like “and, or, a, an, etc.”),

• Inverted Indexing: creating an index from the
keywords to the web site links instead of keeping
keywords in each web site.

The number of queries in an indexer is greatly

higher than the number of insertions or updates. This
requires a data structure with better query performance
required in the indexer. This paper critiques the data
structures just after discussing the alternative data
structures. In the first chapter this discussion will be
ignited and the narrowing alternatives and
implementation and benchmarking will go on to the next
chapters.

2 Data Structure of Indexer

Indexer is the core data structure in the whole
project. The most complex and the most critical point is
the implementation of the Indexer. There are several
implementation possibilities. It is possible to implement a
hash indexer or a tree as an indexer. The problem can be
separated into three parts the performance of lookup in
the data structure, the performance of update and the
performance of memory management. Besides the
memory issues, since it is the hardware update as a
second choice, we have to concentrate on the time
performance. The discussion gets the performance of
lookup or update of the tree.

In a real living search engine, the probability of
lookup queries would be much more than the queries of
the insert or update. Besides the number of queries, the
users are directly affected from the search queries, the
worst update or worst insert query is not felt by the search
engine users. So we have following assumptions in the
indexer data structure design phase:

• Memory effectiveness can be sacrificed to time
performance

Search queries are much more important than the
update or insert queries

So according to the above criteria, we have listed all
possible trees in the data structures world in the analysis
phase. This section covers the possible tree
implementations.

By the definitions on analysis phase, the trees can be
grouped into 3 categories.

• B-tree family

• Spatial Access family (a special form of
tree Access)

• Binary tree family

Besides the above tree families, in this study we
have also concentrated suffix trees because of their
importance and reputation on the search engines.

So this study will mainly cover these 4 type of tree
implementations. Also the special case of the tree
structures gives better results. For example, the AVL tree
implementation yields better result than the most of the
binary tree implementations. The reason of better results
from AVL is the balancing of the tree. For example
holding n nodes in an ordinary binary tree and AVL tree
yields same worst cases O(log n) in time complexity of
algorithm or the O(n) in memory complexity of the
algorithm. But the AVL tree uses memory more efficient
since the tree is kept in balance. So in the comparison of
the AVL tree and an unbalanced binary tree, AVL yields
always better results.

The same results can be applied to the k-d tree
versus b-tree relation. The k-d tree implementation gives
a great variety of indexing over the classical b-tree
implementation. The complexity of k-d tree in the search
is O(n1-1/d +k), where d is the number of dimensions and
the k is the number of reported points. On the other hand
the complexity of a classical b-tree query is only O(log n).
So most of the cases the performance of k-d tree yields
better results.

On the other hand the suffix tree implementations
are built over several tree implementations. Most of the
cases suffix tree can be built over a balanced search tree.
The balanced search tree implementation gives the best
result on the most of the cases. The complexity of suffix
tree implementation over a balanced search tree
implementation is O(log x) for the insertion and lookup
where x is the number of alphabets in the language. On
the other hand the complexity of traversal is O(1) which
is a great speed up for the indexer of the search engine. So
the next step would be an implementation of suffix tree
over k-d tree or AVL tree structures.

 2.1 Data structure of index database
Index database is responsible of managing huge

indexes in the memory. Since the amount of ram is
limited and the uptime of computers is not reliable, the
index database is responsible of keeping the index data
into the secondary storage (because of the limitations on

74 Int'l Conf. Semantic Web and Web Services | SWWS'12 |

the project). The primary focusing data unit is the indexer
in the search engine. The indexer database and other data
structures are classified as the secondary targets. For the
time being, the simplest solution for the index databases it
the implementation of a simple file database holding
objects in it.

Fig. 2. Deployment of indexer database

The stream structure gives the ability of keeping

serializable objects in the files. So the search engine will
dump the index file in the memory to the hard disk in
given time periods. The biggest problem about this
implementation is the difficulties in the dividing tree into
sub parts. This operation is extremely important while the
index size is greater than the primary memory. Besides of
dividing into sub parts the index database should keep a
track of the priorities in the memory and keep the higher
priority in the memory always while selecting between
low hit and high hit accesses.

Also another type of implementation is the division
of whole tree in to parallel or distributed computers. This
approach has many benefits besides the increasing
primary memory size. The computation and indexing can
be divided between the computers as well.

3 Test and Performance Evaluations

This section will cover the tests, debugging and also
the benchmarking and appropriate of several indexer
implementations.

The basic time measurement tool in JAVA is taking
the current system time by using the system library.
Unfortunately in my testing environment the results of
currentTimeMilis() function from the system library did
not yield good results for the time measurement. There

were lots of 0 results between the starting and ending time
of tree accesses.

Because of these unstable results I have switched to
the getting nano second function from the system library
again. This function is nanoTime() from the java.lang
package.

This second try resulted a valuable numbers and I
have added these outputs in 3 different global cumulative
variables. Each of these variables holds one of the tree
operations. The results are also displayed into the screen
when the print times button is clicked.

 long
temp=System.nanoTime();

 trie.addString(key,address)
;
 temp-=System.nanoTime();
 trieTime += temp;
 temp=System.nanoTime();
 avl.insert(key,address);
 temp-=System.nanoTime();
 avlTime += temp;
 keyURL a[]= new keyURL[4];
 temp=System.nanoTime();
 bpt.add(new
keyURL(key,address));
 temp-=System.nanoTime();
 bptTime+=temp;

Fig. 3. Coding of benchmarking

In Fig.3 code piece demonstrates the calculation of
running time of each of the tree operations. The variable
“temp” is created and filled up with the system time in the
first line. After the creation of this variable the add
function of the “trie“ tree is called. The return of the
function is also the calculation of the next system time
and getting difference from the temp variable. The same
operation is repeated for the “bplustree” and the “avl” tree
implementations.

Please note that the above code is in a function and
called every time when an insertion operation is needed in
the tree. So the variables in the above code will keep the
cumulative time of each of the tree insert operations.

Also similar to the above insertion operations, the
time for each search operation is calculated again. The
time measurement of the search operations is same and
the value of the search time is added to the cumulative
variables holding the time for each data structure.

Indexer on the
primary storage

A database
implementation
on secondary

storage
(possibly files

for this Project)

Serialize
d Stream

Writer/read
er

Int'l Conf. Semantic Web and Web Services | SWWS'12 | 75

Fig. 4. Time Efficiency of the data structures

Fig.4 holds the tests run over 21 sites with 5
keyword search from each site. The sites are tested by
time manner and the cumulative time value is displayed
on the y axis of the Fig.4. The dataset of the above graph
can be demonstrated as Table 1.

Table 1. A sample view of cse.yeditepe.edu.tr domain search
with 5 keywords.

SiteName / Keyword Time of
Trie

Time of
AVL

Time of
BPT

Site:
cse.yeditepe.edu.tr

539082176 552533245 483070
868

Keyword: Faculty +536991 +523530 +51961
Keyword: Exchange +5565055 +7971125 +28216
Keyword: Studying +7286401 +7262935 +31009
Keyword: Application +1673956 +1623670 +84926

The graph is built over the above tables for each of

the 21 web sites. So the web site is first indexed with
three different tree data structures and than the keywords
are tested as the above sample.

4. Conclusion

This project covers a basic web spider
implementation with various indexer possibilities. The
test results have shown us the best possible tree
implementation for the search engines is the Trie
implementation. Its nature also gives the signal of such a
result and I have tested this case via this project. Also the
bplus tree and AVL has yielded worse results than the
Trie but they are very close to each other.

Acknowledgement

This study was supported by Scientific Research
Projects Coordination Unit of Istanbul University. Project
number YADOP-16728.

References

[1] Koulutus- and Konsultointipalvelu KK Mediat, from
SEOGuy.com 2004

[2] Open Directory Project (Directory of Mozilla), 2007
[3] Main source for information on the robots.txt Robots

Exclusion Standard and other articles about writing well-
behaved Web robots. www.robotstxt.org , 2007

[4] Metasearch.com , a search engine working over the currently
implemented search engines. 2007

[5] Sergey Brin and Lawrence Page, The Anatomy of a Large-
Scale Hypertextual

Web Search Engine, Computer Science Department, Stanford
University, 1999

[6] National Institute of Standards and Technology nist.gov,
2007

[7] TUSSE (Turkish Speaking Search Engine) ,
http://www.shedai.net/tusse, 2008[8] G.M.

[8] Adelson-Velsky and E.M. Landis, An algorithm for the
organization of information, Soviet Mathematics 3 (1962),
pp. 1259–1263.

76 Int'l Conf. Semantic Web and Web Services | SWWS'12 |

