
SESSION

UNIFIED MODELING LANGUAGE (UML),
OBJECT ORIENTED METHODS, AND CASE

STUDIES

Chair(s)

TBA

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 1

2 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

UML Model Based Design of the Claw Car Robot

Andre Layne
1
, Adria Mason

1
, Yujian Fu

1
, Mezemir Wagaw

2

1
Department of Electrical Engineering & Computer Science,

2
Department of Food & Science,

Alabama A&M University, Normal, AL, United States

Abstract - Robots are intricate systems and applied in many

aspects of today’s society. It is highly desirable to design and
develop robust robotics systems. This paper aims at

developing an autonomous robotic system using object-

oriented software development (OOSD) methodology – UML –

to ensure the quality of the system. Unified Modeling

Language (UML), a typical OOSD method, is a standard

visualization language for object-oriented system development

that has been widely used in the design of safety critical and

mission critical systems (e.g. aeronautic systems, missile

defense systems, etc). In this paper, the UML class diagram is

used to represent the static structure and relations of objects.

The dynamic behavior is modeled in the state machine

diagram. A case study is performed in the LEGO NXT tool kit,
a low cost highly integrated educational robot setting, in Java

programming language. In this case study, a Claw Car Robot

is designed and assembled with the function of continuously

moving forward and stop on the color definition. The robot

can close the claw and clasp the object in its path once an

object is detected. The LEGO NXT tool kit includes multiple

sensors and supported by several platforms including Java

and C++. This LEGO NXT tool kit is very convenient for the

design and implementation of robotics systems, and has been

widely adopted in institutions for educational and initial

research purposes.

Keywords: UML; Autonomous; NXT; Object-Oriented

Programming Language

1 Introduction

 The robot population is doubling every few years.
According to IEEE Spectrum [6], the world population of
robots had reached over 4.5 million at the end of 2006 and 8.5
million at the end of 2008. The size and growth of these
numbers show that robots contribute to a very important role
in our society today. These robots use various types of
integrated technologies to achieve specific goals in various
types of environment. Therefore, reliability and quality of the
robotics system is becoming more and more important.
However, there is not enough research on the building of
reliable robot systems. In this research work, we developed the
UML model of the robotics system, and then implemented in
Java, based on the assembled LEGO NXT tool kit.
 A typical feature of robotic systems is multiple interfaces
and multiple objects. To provide flexible functionality, a robot

usually integrates with several different types of sensors to get
the data from its environment as well as multiple devices for
different purposes such as arms, claws and some other tools.

 All these integrated sensors and devices apply their own

way to read and handle information, which is defined by

various APIs. Therefore, designing and the programming of

the multiple interfaces, and also integrating them to the system

smoothly, are challenges for the robotics design. Any

miscommunication between controller and sensors or devices

may cause unexpected results and huge losses. It is key to

build and develop reliable and quality software for the robotics

systems.
 Object-oriented software development (OOSD)

methodology has been widely used in the design of safety

critical and mission critical systems (e.g. aeronautic systems,

missile defense systems, etc). Unified Modeling Language

(UML) [9, 10, 11], a typical OOSD method, is a standard

visualized language for object-oriented system development.

In this paper, we proposed a UML 2.0 model that includes the

class diagram and state machine diagram on the robotics

systems to specify the system design requirements, and use

Object Constraint Language (OCL) to define the desired

properties. Therefore, the object-oriented design model of a
robotics system includes three components in general – static

structure, dynamic behavior, and property specification. This

paper presented the UML based model of the robotics system

that is represented by the above three components.
 This work is implemented in an assembled claw car
using LEGO NXT tool kit and implemented with the Java
programming language. The Mindstorm NXT brick uses a 32-
bit ARM processor as its main processor, with 256 kilobytes
of flash memory available for program storage and 64
kilobytes of RAM for data storage during program execution.
To acquire data from the input sensors, another processor is
included that has 4 kilobytes of flash memory and 512 bytes of
RAM. Two motors can be synchronized as a drive unit. To
give the robot the ability to “see,” the ultrasonic sensor, which
is accurate to 3 centimeters and can measure up to 255
centimeters, and the light sensor, which can distinguish
between light and dark, can be attached to the brick. Finally,
the two touch sensors give the ability for a robot to determine
if it has been pressed, released, or bumped, and react
accordingly [12].
 This paper is organized as follows. Section 2 introduces
the background knowledge used in this work. Section 3
presents the hardware assembly and functions for the LEGO
robot. Section 4 shows the UML model of the robotics

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 3

systems. Section 5 presented the Java implemented with the
LeJOS package. Section 6 discusses the results and the
conclusion.

2 Background

 In the Object-Oriented Software Development (OOSD)

approach, the system is viewed as a collection of multiple

objects and with various interfaces definitions. The

functionality of the system is achieved by the interaction and

communication among these objects through messages. The

Unified Modeling Language – UML – is developed on the

above principles and widely used in the complex embedded

system and large scale software intensive system development.

In this paper, we presented a UML based model driven

architecture for the robotics design that includes three
components – static structure (class diagram), dynamic

structure (state machine diagram) and property specification

(OCL). Therefore, we simply introduce each component in the

UML syntax.

 UML defines twelve types of diagrams which fall into

three categories [9, 10]: (i) Structural Diagrams which include

the Class Diagram, Object Diagram, Component Diagram, and

Deployment Diagram, focus on the static organization of

instance of the system; (ii) Behavior Diagrams which include

the Use Case Diagram, Activity Diagram, Communication

Diagram, and State Machine Diagram, focus on the functions
and collaborations among instances; and (iii) Model

Management Diagrams which include Packages, Components,

and Subsystems, focus on the packaging and setting of

diagrams. UML has been used across a wide variety of

domains, from computational to physical, making it suitable

for specifying systems independently of whether the

implementation is accomplished via software or hardware.

Since UML was initially introduced in the software domain,

most commercial tools based on UML descriptions have the

ability of generating software code, such as Java and C++.

 However, no such tools are commercially available that
can design and synthesize UML models into a model for

robotics system model directly, thus imposing a limitation for

the usage of UML in robotics system design. Additionally, it is

also observed that assuring correct functional behavior is the

dominating factor of a successful hardware design. It shows

that up to 80% of the overall circuit design costs are due to

verification tasks. Assurance of quality of robotics is a key

issue now.

 To complement the UML diagrammatic notation, the

Object Constraint Language (OCL) [14, 15] can be used to

express constraints and specify the effect of operations in a

declarative way. In each predicate of OCL, the logical
statements must be satisfied by all valid instances of the

system that are represented by constraints.

 The OCL [15, 14, 13] is a textual, declarative language

based on first-order logic and set theory. In addition to

expressing constraints on class diagrams, OCL can also be

used to specify the effect of the execution of an operation,

using pre and post conditions. A pre condition is an OCL

statement that has to evaluate to true before the execution of

an operation, while a post condition is a statement that has to

evaluate to true when the operation terminates.

3 Lego Robot & Functionalities

 The LEGO Mindstorm tool kit is composed of five
external sensors and three motors except for many other pieces

that give the physical design and construction of the robot

flexibility. In this section, we introduce the assembly and

functionalities of the LEGO robot claw car design as well as

the challenge issues during the development.

3.1 Functionalities

 The Claw Car Robot needs to move forward on the color
- white. However, once the color - black is detected, the robot

will close the claw and clasp the object in its path. The robot

will also slow down once black is detected and the claw is

closed. As the Claw Car Robot passes over white again, the

robot continues in this same state until the color - black is

detected again. Once black is detected again, the robot will

open the claw and release the object. In addition, almost

simultaneously, the Claw Car Robot will end its program, as

designed. In this work, each sensor has its own API. The NXT

needs to be able to work with the sensors properly to realize a

stable and reliable system. All these factors point to a strong
need to maximize software and system development

productivity through the use of embedded system platforms,

reuse, and synthesis methods driven from system-level

models.

3.2 Hardware Development

 In the robotics community, most robots manipulate

objects using what is called an End of Arm Tool (EOAT) [5].
The most common type of EOAT is the robotic gripper. These

grippers come in various shapes and sizes. There are two

different categories of robotic grippers which are friction and

encompassing robotic grippers. Friction robotic grippers are

used to hold objects by using force only. Encompassing

robotic grippers surround objects to grasp them and do not use

much force at all. To make a decision on which type of gripper

we would use, we had to take into consideration the material

we would build the object with as well as the type and size of

the objects this robot would manipulate. Since our Robot has

been built with light-weight materials, it will be used to pick

up light-weight and flexible objects. An encompassing style
gripper shown in figure 1 would be the best type to use.

Figure 1. A robotic gripper from NXTPrograms.com

4 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

3.3 Challenge Issues

 It is not hard to build a mobile robot with the above

expected functionalities using the LEGO NXT Mindstorm

toolkit. The challenge issue is how to build a reliable robot to

satisfy the expected properties and maintain the stable

behaviors as required. For instance, a light sensor is used to

detect light values given off from the surface beneath the

robot. One problem is how to make sure the claw car can

detect specific light values efficiently, and manipulate objects

in its environment according to the light values detected. We

needed an approach that can efficiently respond to light values
of the terrain beneath the robot, and perform object

manipulation based on these values. In sum, the key issue is

how to develop a robotics system with respect to the user

requirements, minimize risk, maintain correct behavior, and

improve quality.

 The unreliability issue comes from two aspects in the

LEGO robot design from our study. One is from the

imprecision of the sensors. The LEGO kit is used for the

educational purpose and many sensors do not have high

precision to reflect the required value. For instance, the

responded value for white color and light yellow color can
vary between 49 to 52, depending on the lighting condition.

Another major issue is from the control software design,

which is the one this research focuses on. For instance, even

though we give enough space for the white value to be

changed, the system may still do not maintain stable status due

to internal or external stimuli. For instance, the light sensor

may stop working. If there is no other way to fix this sensor,

the robot will fail the duty. To solve that problem, we included

an alternative light sensor and require the system to continue

working with the same behavior, if one of these two sensors

fails.

3.4 Redundancy Design

 We needed a redundant sensor that will be able to

perform the work needed if the default sensor was down. To

mitigate this concern we added a secondary, or back up sensor

that will become active if the default or primary sensor isn’t

available. This back up sensor is working during the robot

running time. Which means the back up sensor is detecting
color, responding to the NXT brick, and maintains the same

duty as the default sensor. Once the default light sensor is

unplugged, the back up sensor can automatically resume duty

without any interruption of the system. Figure 2 displays the

image of the robot with redundant sensors. In Figure 2(a), the

robot is driving with both sensors working. In Figure 2(b), the

default sensor is unplugged and the back up sensor is taking

control after the primary sensor isn’t functioning.

4 UML Based Robotics Architecture &

System Design

 Initially proposed as a unifying notation for object-

oriented design, UML has added a semantic underpinning that

makes it possible to build platform independent descriptions

that can be used by designers and architects to make informed

decisions about hardware/software tradeoffs. We present UML

based architecture for the robotics system design to ensure the

quality of the robot. The architecture is composed of three

components (Figure 3.) – static structure (represented by class
diagram), dynamic structure (represented by communication

diagram or state machine diagram), and system properties

(specified by OCL).

 The OCL specification can describe all desired

constraints on the static structure and dynamic structure. From

Figure 3, we can see that is the OCL properties are not

satisfied, we can go back to the model architecture and find

out what is the problem. After the properties and constraints

are ensured, then the system can be implemented based on the
model. The verification of OCL properties can be done by

software testing tools or model checking techniques.

 In the following, we use the LEGO claw car robot to

illustrate the UML architecture model.

4.1 Class Diagram

 According to Michael Blaha and James Rumbaugh [1], a

“class diagram provides a graphic notation for modeling

Robotics System

Static Structure

Dynamic

Structure

OCL

Constraints ?

NO

Figure 3. UML based robotics system architecture

YES

 (a) (b)

Figure 2. View of default & secondary light

sensor

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 5

classes and their relationships, thereby describing possible

objects. Class diagrams are useful both for abstract modeling

and for designing actual programs.” The class diagram of this

LEGO claw car robot is shown in Figure 4.

 The Claw Car Robot is a robot that drives forward, and is

composed of aggregate parts; motors, a light sensor, and a
backup light sensor. To represent the above function, the Class

diagram shows this relationship as a model with each one of

the real world objects represented appropriately. The

FinalClawCar Class is the container class for the remaining

classes. Therefore, Figure 3 shows the FinalClawCar Class

with an aggregation relationship to the other classes.

4.2 State Machine Diagram

 The dynamic behaviors are represented by the State
Diagram, which includes state, transition and events. A state is

an abstraction of the values and links of an object. An event is

an occurrence at a point in time. Events represent points in

time. States represent intervals of time. [1]. Before

implementing our actual code, it was necessary to first provide

a full description of what each object would do in response to

different events.

 The possible states, transitions, and events of the Claw

Car Robot are shown in Figure 5. The black dot represents the

entry into the diagram. In this case, the object is originally in

the idle state until the Enter button is pressed on the NXT
Brick, and the robot begins to drive forward. While the robot

is in the ‘Moving Forward’ state, it responds to two possible

events. In this diagram, either the robot detects black for the

first time, which in this case, it moves into a claw close state.

If the color black is detected a second time the claw opens,

releasing any obtained object. The challenge issue here is the

claw cannot close if there is no object in hand. However, how

to detect the claw holding the object is a challenge. Therefore,

we reduce the question to a simple case – a) first, detect the

object; b) once the object is detected, the car moves and pick

up the object; and the claw closes. From the state machine

diagram in Figure 5, you can see the car releasing the object

without detecting if there is object holding. But, the robot will
check the line color before releasing the object (Figure 5).

Figure 5. State machine diagram of the Claw Car Robot

4.3 Quality Of Robot – Object Constraint

Language

 UML provides a formal language to specify and express

the constraints within a system, named the Object Constraint

Language (OCL) [8]. A constraint restricts the values that

elements can assume. We utilized the OCL 2.0 version to

specify the constraints within this system. Several constraints

are defined for the system on classes. For example, for the

class Motor, we define an invariant as if the speed is larger

than zero, then the robot is moving (shown in formula (b)). As

discussed before, the claw open and close checking is critical

to grab the object. Therefore, we have defined the invariant for

the claw close checking (shown in formula (f)).

Context: Motor

INV: Motor.forward implies Motor.isMoving (a)

INV: Motor.setSpeed()>0 implies Motor.isMoving (b)

Pre: Motor.stop() (c)

Post: Motor.isMoving = false (d)

Context: LightSensor

 INV: LightSensor.getLightValue() >330 implies
 LightSensor.isWhite (e)

Context: FinalTheClaw

Figure 4. Class Diagram of the Claw Car Robot

6 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

INV: FinalTheClaw.isClosed= = 0 implies

FinalTheClaw.isOpen (f)

5 Robot Implementation In Java

 This robot is implemented in Java, a typical object-
oriented programming language (OOPL). There are several

reasons to choose Java as the choice coding language.

 First, Java is considered a pure OOPL with typical OO

features, including encapsulation, inheritance, polymorphism,

besides objects and classes. In Java, object communication is

defined by response to classes on messages. When a certain

method is executed in response to a message to another object,

this method can generate new information that can be a

message. Therefore, Java is a perfect implementation language
of UML model. Secondly, currently, there is not enough

LEGO NXT projects that are implemented in Java. Most of

LEGO projects are used for the motivation of high school

students and the demonstration of robotics. Therefore, the

implementation is mainly reduced to the simple diagram based

langauge such as LabView. However, there is no space for the

students to explore the design issues and quality assurance of

the software control systems. The last reason is LEGO

Mindstorm Kit provides free platform for Java applications

named LeJOS [16].

 Most robotics implementation uses Behavior
Programming (BP), which is supported by the LeJOS package.

The important aspect of BP is sequential ordering of the

concurrent behaviors issued from multiple objects of a robot.

In other words, BP uses sequence to implement concurrence.

The Behavior interface is located in a package called

Robotics.Subsumption. The Subsumption package also

provides a class that handles the Behavior objects called an

arbitrator. The Behavior interface provide three methods that

allow the code to work in a more logical manner than writing a

large amount of if-else statements, which

LejosSourceForge.com calls “spaghetti code”. Instead of our

code being tangled with all if-else statements, we were able to
take a behavioral approach and write the application so that

each method and function performed would work in a logical

sequence.

 The Behavior interface uses three methods to provide a

seamless, behavioral interaction between multiple objects. The

methods are; takeControl(), suppress(), and action(). These

three methods are described in further detail below:

 suppress() - The suppress method returns true whenever a

specific object doesn’t want to take control, or when the

object’s takeControl() method is false.

 takeControl() - An object’s takeControl() method returns
a Boolean value whenever it reaches a condition where it can

return a true value. When this occurs, the object’s action()

function will perform some action according to its priority

level. The suppress method is turned false, and all other

Behavior objects should remain suppressed.

 action() - when an object’s suppress() method returns a

false value and the takeControl condition returns true, the code

that is within the action() method is performed.

 The implementation of the robot is based on the UML

model and maintains the constraints defined in the OCL. In

this section, we illustrate the Java implementation on the

LEGO NXT Mindstorm tool kit on each class. All the classes

are defined in Robotic.Subsumption package and Behavior

Interface and discussed in the following.
 The FinalDriveBot2 Class (Figure 6) is responsible for

controlling how and when the claw car robot drives. Since the

robot should always want to drive, we initially set the suppress

and takeControl functions to false. Although the

FinalDriveBot2’s suppress() method is set to false, if any

higher level priority object’s takeControl() method returns

true, the FinalDriveBot2’s suppress() method will set to the

true value. Once all other object’s takeControl() method

returns false, FinalDriveBot2 will resume.

 The FinalSurfaceDetection Class (Figure 7) utilizes the

LightSensor Class. Through a method called

readNormalizedValue, the FinalSurfaceDetection Class will
detect light values reflected from the surface beneath the

Robot. This class is set to take control if it detects the color

black or a light value above 330. Once this class takes control,

it will check the value of a static variable named

FinalTheClaw.isClosed. If isClosed is set to 0, the robots claw

will close and change the value of FinalTheClaw.isClosed to

1. If black is detected and the value of FinalTheClaw.isClosed

is 1, then the claw will open. The logic behind this is to

provide the robot with a flag to indicate whether the claw is in

an opened or closed state.

 The FnalSurfaceDetectectionBackup Class (Figure 8)
provides a 2nd LightSensor object for the default sensor. The

code is very similar to the FinalSurfaceDetection Class since it

will be checking for most of the same conditions. This will

allow redundancy between the two sensors. The design is set

up so that if one sensor stops working, the other sensor will

resume the work without any downtime. The takeControl()

method for this class is set so that it will only takeControl if

black is detected and sensor1 is returning 0(indicating sensor 1

is not functioning). Since there is a static variable set up in the

FinalTheClaw Class, to represent the state of the claw, the

second sensor will know the current state of the claw, and

therefore will be able to make a logical decision on the next
state of the claw.

 The FinalDriveBot2 class consists of only one static class

variable. This variable is isOpen(). The isOpen variable is

used by the FinalSurfaceDetection and the

FinalSurfaceDetectionBackup class to determine whether the

claw is in an open, or closed state.

lejos.nxt.Motor;

import lejos.robotics.subsumption.Behavior;

public class FinalDriveBot2 implements Behavior{

private boolean suppressed = false;

 public boolean takeControl() {return true;}

 public void suppress() {suppressed = true;}

 public void action() {

 suppressed = false;

 Motor.A.forward();

 Motor.C.forward();

 while(!suppressed) Thread.yield();
Motor.A.setSpeed(100);

 Motor.C.setSpeed(100); } }

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 7

Figure 7. The code of class FinalSurfaceDetection

Figure 8. The code of class FinalSurfaceDetectionBackup

5.1 Integrated Technologies

 This robot was integrated with different technologies to
make it successful in its proposed goal. Light Sensor
technology was used to sense and determine light values. The
Robotic Motor, or mechanical motor technology, was used to
mobilize our robot as well as give the gripper functionality.
Lego’s NXT brick was used as a processor to perform logical
decisions and calculations commanded by the downloaded
software application. Each one of these technologies worked
together in this robot to perform each required action as
efficient and seamless as possible.

5.2 Robot Behavior Validation

 The system validation is done by checking if the robot
meets all requirements and constraints specified. Initially,
there were some problems observed. Some of the issues were
caused by the design and some were introduced in the
implementation. For instance, the robot could not resume the
duty when one sensor was down during execution of the
robotics system. This was caused by the off-the-shelf light
sensor. The back up light sensor was originally built as an off-
the-shelf light sensor. Therefore, it wasn’t able to resume
functionality after the default sensor was down. After
examining the design, we found that it can be solved by fixing
a variable declaration. To realize the runtime back up sensor, a
static variable is introduced and is updated during the sensor
switch. To validate the OCL properties, we use the LCD to
display the information that is consistent with the robot
moving. During implementation, the display is consistent with
the robot movement and we found that all constraints are
maintained.

6 Conclusion

 This paper presented UML based robotics system design

architecture on the three components – static structure,

behavior structure, and OCL constraints. The approach to

building correct and reliable robotics is validated in a LEGO

NXT Mindstorm tool kit on a well developed claw car robot.

During the study, we have carefully developed the UML

robotics architecture model, design, assembly, and

implemented the software code in the Java platform.

Afterwards, a system validation was conducted to validate the
OCL constraints of the robotics system.

 From the study on the LEGO NXT tool kit, we can

conclude the following: First, the fundament diagrams of

UML model with the OCL constraints are suitable for the

design and development of reliable robotics systems.

Secondly, the UML based robotics architecture can be used for

the general robotics system design. Finally, the LEGO NXT

tool kit can be used for the fundamental design and

implementation research study.

public class FinalSurfaceDetectionBackup implements

Behavior{

 LightSensor light1 = new

LightSensor(SensorPort.S1);

LightSensor light2 = new

 LightSensor(SensorPort.S3);

 boolean suppressed = false;

 public boolean takeControl(){
boolean control2=false;

if(light2.readNormalizedValue()< 330 &&

light1.readNormalizedValue() ==0)

{ control2 = true;}

 return control2; }

 public void action() {

 suppressed = false;

 if(FinalTheClaw.isClosed == 0){

… …

 } else {

 … …
 while(Motor.B.isMoving())

 Thread.yield();

 } } }

Figure 6. The code of class FinalDriveBot2

public class FinalSurfaceDetection implements Behavior {
 LightSensor light = new LightSensor

 (SensorPort.S1); //default light Sensor object

 boolean suppressed = false;

 public boolean takeControl(){

 // this function will take control

 //if a light value is returned less than 330

 //but not equal to 0

 boolean control1=false;

 if(light.readNormalizedValue() < 330

&& light.readNormalizedValue()> 200){

 control1=true;}
 return control1; }

 public void action() {

 suppressed = false;

 if(FinalTheClaw.isClosed == 0){

 Motor.B.backward();// close claw

 FinalTheClaw.isClosed = 1; //flag

//used to indicate if and object has been

//grabbed

 while(Motor.B.isMoving())

 Thread.yield(); }

 else { Motor.B.forward();//open claw
 Motor.A.stop();

 Motor.C.stop();

 System.exit(0);// exit program

 while(Motor.B.isMoving())

 Thread.yield();

 }

 }

8 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

 For the future work, we expect two aspects – one is the

real time embedded system specification. The other aspect is

developing model checking on the OCL constraints. The UML

based robotics system architecture can be used to describe the

real time system architecture. OCL is suitable for the

specification of timing constraints if the class diagram and
behavior diagrams include the timing concerns. Secondly, the

constraints can be validated in two other ways – a) model

checking and b) assertion implementation.

 UML robotics architecture model allows the system

analyst and developer to focus on front end conceptual issues

before implementation. Using this architecture, we are able to

develop reliable robotic controller code that performed all

specifications and requirements. It is worth to note that LEGO

NXT tool kit is a good set for the low cost robot design.

However, the imprecision of the accessories causes some

problems during actual implementation.

 This study shows that combining the use of UML and
OCL, the flexibility of the Lego NXT kit, and the robustness

of Java LeJOS, we were able to build a robot that met

requirements. Although there were specific hardware parts

necessary for these abilities to be realized, the use of UML

gave us the ability to use a clear, concise method in the

software development process to reach each one of the robot’s

projected goals.

7 Acknowledgements

 We would like to extend our thanks for valuable

comments from reviewers.

8 References

[1] Blaha, M. and Rumbaugh, J., Object-Oriented Modeling and
Design with UML Second Edition. Pearson Prentice Hall, 2005

[2] The Association for Computing Machinery, Inc. A list of Implicit
Subject Descriptors in ACM CCS (N.D.) Available from:
http://dl.acm.org/lookup/CcsNoun.cfm

[3] The Association for Computing Machinery, Inc. Copyright 2011

Retrieved on November 26, 2011 available from: www.acm.org

[4] Dave Parker, LEGO MINDSTORMS NXT! Gives fun projects
and building instructions using LEGO MINDSTORMS NXT robotic
kit. Copyright 2007-2011, available from www.nxtprograms.com

[5] Robotic Equipment Spotlight, January, 2011. Available from:
http://www.robots.com/blog.php?tag=496

[6] Guizzo, Erico IEEE Spectrum Inside Technology, World Robot
Population Reaches 8.6 Million Wed, April 14, 2010 Available from
http://www.robots.com/blog.php?tag=496

[7] A. Brown, Robot Population Expansion, ASME, February 2009,
http://www.asme.org/kb/news---articles/articles/robotics/robot-
population-explosion

[8] Document Associated With Object Constraint Language, version
2. http://www.omg.org/spec/OCL/2.0/. May 2006.

[9] Jacobson, I., G. Booch and J. Rumbaugh, 1999. The Unified
Software Development Process, Addison-Wesley.

[10] Gomaa, H., 2000. Designing Concurrent, Distributed and Real-

Time Applications with UML. Addison-Wesley.

[11] Maciaszec, L., 2001. Requirements analysis and system design,
Addison-Wesley.

[12] Bagnall, B., 2007. Maximum Lego NXT: Building Robots with
Java Brains. Variant Press.

[13] JosWarmer and Anneke Kleppe. The Object Constraint

Language: Getting Your Models Ready for MDA. The Addison-
Wesley object technology series. Addison Wesley, Reading, Mass., 2
edition, 2003.

[14] JosWarmer and Anneke Kleppe. The Object Constraint
Language : Precise Modeling with UML. Addison-Wesley, 1998.

[15] OMG. OCL Version 2.0, 2006. Document id: formal/06-05-01.

[cited April 2008]. Available from: URL: http://www.omg.org.

[16] LEGO Team. NXJ API. Available from:
http://lejos.sourceforge.net/nxt/nxj/api/index.html.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 9

http://dl.acm.org/lookup/CcsNoun.cfm
http://www.acm.org/
http://www.nxtprograms.com/
http://www.robots.com/blog.php?tag=496
http://www.asme.org/kb/news---articles/articles/robotics/robot-population-explosion
http://www.asme.org/kb/news---articles/articles/robotics/robot-population-explosion
http://www.omg.org/

UML Based Design of LEGO Robots

Lorenzo Jones, Janise Fowler, Samuel James, and Yujian Fu
Department of Computer Science, Alabama A&M University, Normal, AL, USA

Abstract— Robots are often used to increase human produc-
tivity and decrease human error. It is a key to build a reliable
and correct robot that does not contain bugs and errors
and demonstrate fault behaviors. In this paper we design
and develop an intelligent, multifunctional robot using object
oriented software development (OOSD) approach - a UML
(Unified Modeling Language) based robotics architecture
that uses the UML diagrams and Object Constraint Lan-
guage (OCL). UML is a standard graphical-based design
language that has been widely used in the software-intensive
system design. However, there is not enough research work
that has been done in the reliability modeling and analysis of
robotics. In this paper, the robotics architecture is described
by three components - the static structure (class diagram),
the dynamic behavior (state machine diagrams) and the
property constraints (OCL) on the static and dynamic com-
ponents. To validate the approach, a robot was built from
LEGO Mindstorm NXT tool kit and implemented in the Java
platform. The built robot is tested against the OCL properties
to validate the required properties. LEGO Mindstorm NXT
tool kit is a low cost, multiple platforms, and high integrated
setting that mainly used for educational and research robot.
Behavior Programming is used in the Java LeJOS platform
to sequence the concurrent behaviors in an interleaving
way by prioritizing each behavior defined in a class. In
conclusion, through our case study robot on the LEGO
Mindstorm NXT tool kit, we found that the UML based
robotics architecture can be used to successfully design and
develop correct and reliable robotics systems.

Keywords: UML model, class diagram, state machine diagram,
object oriented design, Java

1. Introduction
In the past several years the interest in robots and au-

tonomous systems has risen. Although robots date back to
as early as the 1400’s the actual term "robotics" was not
used until 1940 by Issac Asimov. While introducing this
term Asimov developed the Three Robot Laws: (1) A robot
may not injure a human being, or, through inaction, allow
a humanity to come to harm (2) A robot may not injure
humanity, or, through inaction, allow humanity to come
to harm, unless this would violate a higher order law, (3)
A robot must protect its own existence as long as such
protection does not conflict with the First or Second Law
[11].

After decades past, these Three Robot Laws are not
enough to build a robotics system. More and more rules
are added upon these Three Robot Laws. On the other hand,
to maintain and obey these three laws, a lot of challenges
of robotic development are issued, more techniques are
desired to meet more requirements for a dynamic mobile
robot to develop a multifunctional, robust, and reliable robot.
The goal of this work is to study a new framework on
the UML model for the robotics system to investigate the
suitability of using the object oriented software develop-
ment process (OOSD) in the robot development. Unified
Modeling Language (UML) is used on the robotics system
design and implementation. UML is a standard graphical
based language that has been widely used in the software-
intensive design and specification. In this paper, we pro-
posed a robotics system modeling framework based on the
UML diagrams by structuralizing the system into three
components - static structure (represented by class diagram),
dynamic behaviors (represented by state machine diagram)
and property description (OCL constraints). State machine
diagram is associated with the classes defined in the class
diagram or the system, and represents the observable state
transitions during event stimuli. OCL constraints are a set
of formulae based on the set theory and first order logic and
used to ensure the correctness and reliable behavior of the
robot.

Autonomous control requires the ability of flexible in-
teraction of system elements autonomously. Therefore, it is
very important to handle the dynamics and complexity due
to the greater flexibility and autonomy of decision making
in the robotic systems. With this study, we show that this
process modeling framework for the autonomous control is
suitable for the quality assurance of mobile systems.

LEGO Mindstorm NXT tool kit is used to implement
the above modeling framework and validate the design
requirement specified in OCL. The LEGO Mindstrom NXT
robot system is codified in JAVA using Eclipse, which is
plugged into the java API’s for LEGO Mindstorm NXT
package.

The paper is outlined as follows. Section 2 will give a brief
discussion of object oriented software development (OOSD)
process, a short introduction of UML model and OCL. Sec-
tion 3 will present the related works of robotics and complex
embedded system design using OOSD and UML. Section 4
presents the UML model of the robot and system constraints
that the robot is expected to satisfy after an introduction
of primary function of the robot. Two case studies on the

10 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

LEGO Mindstorm NXT toolkits are presented in Section 5
with the illustration of UML framework application. Section
6 discusses the implementation of the above robotics system
in JAVA with Behavior Programming (BP) and some of
the limitations and malfunctions of the system. Section 7
concludes the work and discusses the future work.

2. Preliminaries
This section will introduce the preliminary concepts used

in this project - Object Oriented Software Development
(OOSD), Unified Modeling Language (UML), and Object
Constraint Language (OCL).

2.1 Object Oriented Software Development
(OOSD)

The object oriented software development (OOSD) pro-
cess has five major steps which are requirement gathering
and analysis, system design, implementation, integration,
operations, and maintenance. OOSD views the system as a
collection of objects resulting in a more complex system than
other models. The functionalities of the system are defined
by the interactions and messages between objects.

Unlike other development processes, like the waterfall and
spiral processes, OOSD requires the developer to place more
thought and emphasis into the analysis and design phase of
the model. This project uses OOSD methodology (UML)
to model the robot and realize the system in JAVA, an
object oriented programming language (OOPL). Some of the
key concepts of object oriented development are the usages
of classes, polymorphism, and, inheritance, which are all
reflected and implemented in JAVA.

During the design phase the developer is able to plan and
analyze different design models and decide which models to
implement to satisfy the requirements of their system. When
the design models are selected the developer must take into
account the complexity and functionality of the system. This
process is very selective but it is imperative in order to have
a correct and reliable robot. For our project we will be using
UML to ensure that our robot is both correct and reliable.

2.2 Unified Modeling Language (UML)
UML is a standard graphical-based design language that

has been widely used in the software-intensive design [12].
Although there is few work of modeling robotics systems
in UML, many works has been done in the modeling and
specification of embedded systems using UML. Several key
attributes of UML are important for modeling embedded
systems. Several key features are included in the UML
such as profile and real time for embedded system design.
Supporting for OOSD and appealing to the software com-
munity is another key feature. Besides, UML support for
state-machine semantics which can be used for modeling
and analysis. Finally, UML supports object-based structural
decomposition and refinement.

To describe and specify the functionality of the robot and
the interactions between the object, we use class diagram to
model the static structure of the robot, and state machine
diagram to represent the dynamic behavior of the system.
Class diagrams represent relationships between classes that
are represented by boxes with three sections, the top section
indicates the name of the class, the middle section lists the
attributes of the class, and the third sections of the diagram
lists the methods [3]. State machine diagrams describe the
interactions and states of different objects within and outside
the system, as well as, with each other. States are graphi-
cally represented by a rounded rectangle that represents the
elapsed time an object is in a state or waiting. There are three
sections to the state machine diagram, from top to bottom,
the sections are: name of the state, variables, and triggered
operations.

2.3 Benefits of Object Oriented Development
and Design

Object oriented development is vastly growing. One of
the reasons of this growth are the benefits object oriented
development provides. One reason why the OOSD approach
is becoming popular is reusability. OOSD allows you to
reuse objects and place them in other codes. With this
usability it also allows the developer to add on and make
changes to a particular object without making any changes to
the entire system. Besides reusability OOSD has a number of
other benefits, these are simplicity, flexibility, extensibility,
and maintainability, and cost.

OOSD models real world objects reducing the complexity
of the system but also presenting the program structure in a
very simple way that is easily to understand. The real world
objects are organized into classes of objects and are able to
associate with other objects through behaviors. In order to
describe these associations and behaviors OOSD uses class
diagram which are a part of UML.

Unlike other developments, OOSD gives you a great and
wide range of flexibility. By using objects one can build
a new behavior from an existing object. This object can
be called and/or created at any time within the system.
This characteristic is important especially within our robot
because we use several different behaviors in order to
perform different functionalities of the robot. OOSD also
provides extensibility. If requirements, costumer needs, or
any other issues occur were a feature must be added OOSD
gives you that extensibility to easily add the new feature.
During our project there was several times that we had to
add new features. However, by adding this new object to
satisfy the additional feature the current objects were not
affected. Another major advantage of OOSD is maintain-
ability. In OOSD maintaining an object can be done both
separately and in different locations, and remotely, making
maintainability a lot easier.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 11

2.4 Object Constraint Language (OCL)
To complement the UML diagrammatic notation, the

Object Constraint Language (OCL) [10], [6] can be used
to express constraints and specify the effect of operations
in a declarative way. In each predicate of OCL, the logical
statements must be satisfied by all valid instances of the
system that represented by constraints.

The OCL [10], [1] is a textual, declarative language based
on first-order logic and set theory. In addition to expressing
constraints on class diagrams, OCL can also be used to
specify the effect of the execution of an operation, using pre
and post conditions. A pre condition is an OCL statement
that has to evaluate to true before the execution of an
operation, while a post condition is a statement that has to
evaluate to true when the operation terminates.

3. Related Work
Currently there is few work in the UML design of robotics

systems. However, recently there is a trend to implement
LEGO Mindstrom NXT using JAVA. JAVA allows the devel-
oper to write a wide range of applications, as well as, access
to different devices like Bluetooth, cameras, mp3 players.
API’s provide JAVA with its wide range of communication
resulting in a simple framework. Many works have been
done in the modeling of embedded systems using UML
model. UML is very popular because it makes for an easy
transition from design to implementation.

There are many works in the embedded system design
using UML models. Authors in [8] presented an approach for
modeling embedded systems using extended UML as well
as generating SystemC code from UML class and object
diagrams. Damasevicius and Stuikys [4] examined system
level design processes that are aimed at designing a hardware
system by integrating soft IPs at a high level of abstraction.
They combine this concept with object-oriented hardware
design using UML and meta-programming paradigm for
describing generation of domain code.

However, none of the above approaches use OCL with
UML diagram to describe the system constraints for the
purpose of verifying the functional correctness of the synthe-
sized system. Our work aims at modeling and validating the
system properties to ensure the quality of robotics systems.
OCL is used in the framework to specify the constraints of
the static structure and dynamic behaviors of robotics UML
model.

4. UML Based Object Oriented Robotics
Framework

UML consists of a combination of data modeling, busi-
ness modeling, object modeling, and component modeling
[7], [5], [2]. UML diagrams can be categorized as three
groups - structure diagrams, behavior diagrams, management
package. Structure diagrams represent the organization of

the classes in the system in a static view and emphasize
relations among classes. Behavior diagrams describe the
state changes, communications among objects and instances,
which capture the varieties of interaction and instantaneous
states in the systems. Management Diagrams include Pack-
ages, Components, and Subsystems, focuses on the pack-
aging and setting of diagrams. Behavior diagrams, focuses
on the functionality of the system. They describe how the
system is going to operate. Structural diagrams are widely
used to describe the architecture and organization of a
software system. While behavior diagrams are used for the
dynamic operations during runtime.

In this paper, we presented a UML based architecture for
the robotics system design to ensure the quality of the robot.
The architecture is composed of three components (Fig. 1)
- static structure (represented by class diagram), dynamic
structure (represented by communication diagram or state
machine diagram) and system properties (specified by OCL).

The OCL specification can describe all desired constraints
on the static structure and dynamic structure. From Fig. 1, we
can see that is the OCL properties are not satisfied, we can
go back to the model architecture and find out what is the
problem. After the properties and constraints are ensured,
then the system can be implemented based on the model.
The verification of OCL properties can be done by software
testing tools or model checking techniques. In the following,
we present two case studies using the LEGO NXT toolkit
to realize the framework – object detection robot and claw
strike robot.

Fig. 1: The UML Framework for Robotics Systems

5. Case Studies – LEGO Robots
There are two case studies shown in this paper using the

UML Robotic Framework (1). First, we introduce a on-path
object detection robot. The sequence of functions of this
robot are:

1) Identify the start point and ending point by color.
2) Following path by defined color.

12 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

3) Two ways of starting are: started by the button (in
NXT brick), and start by clap (voice driven). The
default is clap starting.

4) Picking up object on the path.
5) Dropping the object in the destination (after the ending

point).
The second robot is a claw strike robot. The robot is able

to realize following functions:
1) Identify the object during moving.
2) Stop and back for a short distance if object is found.
3) Rotate the motor to throw the strike and hit the object.
In the following, we discuss the application of UML

framework in this two LEGO robot design. Three compo-
nents are presented in the following – class diagram, state
machine diagram and OCL constraints.

5.1 Class Diagram
We first present the class diagram of the path following

object detection robot, after that, we will show the class
diagram of claw strike robot.

On-path Object Detection Robot The class diagram
(Fig. 2) for the object detection robot is a graphical descrip-
tion of class relation. It also describes how the light, sound,
and ultrasonic sensor will react and communicate with each
other and the NXT brick.

Fig. 2: The class diagram of on-path object detection robot

In the development of the software for the object De-
tection Robot a total of six classes were used. (Figure
2) Robot is the main class consisting of various objects

of the systems, which are objects of classes Stop, Grab,
CalibrateColor, FindLine and OnLine. A crucial behavior
array was used to represent a series of actual behaviors of
the robot. Four behaviors - findLine, online, Grab, and stop
- are defined in a corresponding class. The order that the
behaviors appear in the array are decided by the priority
which can be assigned as an integer number. This priority
is used to control the instance of behaviors to be activated
at the runtime. Therefore, each time there is one behavior is
taken and executed.

Fig. 3: The class diagram of claw strike robot

In this project, the robot’s first behavior is finding line (in
class findLine). Class FindLine contains three methods take-
Control(), suppress(), and action().the method takeControl()
returns a Boolean value to indicate is this behavior should
become active. The method action() starts when the behavior
becomes active. This method should exist when the action
stops. Besides, the action() method also exists promptly is
suppress() is invoked. When the action() method exits, we
need to make sure to leave the robot in a safe state for the
next behavior. The action that it will take will be to look for
the path light value. Once the lightvalue for the path is found
the motors will rotate and the robot will start on the path/line.
Online class makes sure the robot stays on the path with two
light values, a light value for the path, and a light value for
the board. The action of this class is to set the speed of the
motor. The action of the Grab class is to collect and release
the object on the obstacle course. While on the path, the
robot will use the ultrasonic sensor to detect an object. The
motor on the claw will rotate to open then rotate to close the
claw in order to grab the object. The Stop class is to stop
the rotation of the motors to stop the robot from moving and
rotate motor on the claw to release the object. In order for
the Stop class to take control the lightvalue must be equal to
stopLightvalue. StopLight, boardLight, and lineLight values
are collected and calibrated in the CalibrateColor class right
before the sound sensor collects input. This class is not in
the behavior array but its values are used throughout the
other classes in the program.

Claw Strike Robot The claw striker is a robot that detects
an object within its perimeters then strikes the object once

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 13

detected. The robot not only need to know when the target is
in range. Also, it should be able to detect when it is either too
close or too far from the target itself. UML the class diagram
(3) were initialized to show a visual display of the design for
programming the robot. In Fig. 3, a partial design of class
diagram is shown to ensure the above behavior. Four classes
were implemented the Ultrasonic class, Motor A, Motor B,
and Motor C classes respectively. The Ultrasonic class was
a public class used to code the Ultrasonic sensor. In this
part of the code, the range was an integer data type, two
operations detect(), and objectfound() were implemented in
this class. Once the object is found, the object needs to be
in range; otherwise, the robot will move forward, backward
and/or turn around to rotate the motors and move the robot
to be in range.

Fig. 4: The state diagram of the on-path object detection

5.2 State Machine Diagram
On-path Object Detection Robot In the on-path object

detection robot, three typical states are identified - idle,
active, and end states. The robot will be running on the
line before reach the object. This period of time, the robot
is in the idle state. After detecting the object, the robot
will pick up the object and keep following the line before
stops. The robot is in the end state when it stops in the
specified position. Any actions taken during active state will
be represented as the internal states (Figure 4.).

Six states are considered in the active state - GetLight-
Values, DetectSounds, FollowPath, GrabObjects, ReleaseOb-
ject, and NXTBrickStarts - to illustrate the complexity of the
Object Detection Robot. The robot is designed to have two
starting ways - sound driven and NXT brick starts. Sound
driven is the default one. Before starts, the robot will read
the light value of the background (floor), the path value and
the end point value into the variables. After reads into those

values, the robot can start to follow the path line based on
the values.

The state FollowPath is defined as super state with three
concurrent states - detectObject, detectPath, follow, which
indicates that this super state needs to take care these three
states simultaneously. The robot will enter into GrabObject
state if the object with the defined color is identified by
ultrasonic sensor. The key is when the robot entering into
GrabObject state, the robot needs to return back to the
FollowPath state.

Claw Strike Robot The state diagram of claw strike is
shown in 5. There are four active states are identified except
for the initializing state – moving, detecting, adjusting, and
throwing. A synchronization bar is used to indicate that
the robot will detect during moving status. The condition
of object found must be validated before the robot throw
the strike to assure that the ultrasonic sensor has the data
return positively. Otherwise, the robot will keep moving and
detecting.

Fig. 5: The state diagram of the claw strike robot

5.3 System Constraints
To ensure the quality of the object detection LEGO robot,

we use OCL to define system constraints. The system is
expected to hold all the constraints as well as maintain the
functionalities.

On-path Object Detection Robot A system invariant can
be expressed as when an object is detected on the path during
robot is moving, the robot must pick up the object (Formula
i)). Another invariant is once an object is picked up, the robot
must take the object to the destination, which is indicated
by the end line of yellow color (Formula ii)).

Context:
Grab
Inv: If Grab.Grab() then

setHasObject() hasObject i)

Context:
Grab
Inv: If Grab.hasObject then getCalibrateLine()=yellow

takeControl()=clawopen ii)

In addition, each class has a set of associated OCL
constraints that specifies the requirements of the class. the
requirements are specified by pre-condition, post-condition
and invariant of the class. Each state machine diagram has a

14 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

set of associated OCL constraints with pre-condition, post-
condition and invariant specified. Due to the space limitation,
we only show some of the OCL constraints in the Formulae
iii) to Formula viii).

Context:
FindLine
Pre: if FindLine.findLine=true then takeControl() iii)
Post: suppressed=true action() = following line iv)

Context:
Stop
Pre: CalibrateColor.stopLightValue = yellow v)
Post: Stop.takeControl() Stop.action() vi)

Context:
OnLine
Pre: on = online stopLightValue = 0 vii)
Post: on = online OnLine.action() viii)

Claw Strike Robot The key class in the claw strike robot
is Ultrasonic class. There are two conditions need to be met
to ensure the correct behavior: a) the object is found, and b)
the object is within the range. This can be specified in the
following

Context:
Ultrasonic
Pre: if objectfound=true then checkrange ix)

if objectfound=true and range< then throwStrike x)
Post: motorc.rotate xi)

6. Java Implementation of UML Model
in LEGO Toolkit

In this section, we present how to implement LEGO robots
based on the UML model shown in above and discuss the
issues that were found during experimental.

The on-path object detection robot is a multifunctional
and reliable object detection robot. LEGO NXT Mindstorm
Tool Kit sensors are used to implement the robots func-
tionality and make the robot more complex and intelligent.
LEGO Mindstorm NXT tool kit has been widely used in the
classroom for educational and research purposes. The robot
will have several main functions: staying on the predefined
path with the light sensor, being able to detect objects with
the ultra sonic sensor, determine the color of the object with
the light sensor, and collect input from user with the sound
sensor. The final build of the robot is shown in Fig. 6.

The important feature we want to identify is the fault-
tolerance using redundancy. Considering if the sound sensor
is broken due to some unknown reason, the system is
not able to starts normally. To make sure the system can
start with the defined the functionalities, the NXT starts
is designed and the brick will be automatically resumed if
sound sensor stops working. This feature is reflected in the
UML diagrams (Fig. 4).

Fig. 6: The on-path object detection robot

An implementation feature of this LEGO robot is using
Behavior Programming (BP) [9]. Behavior programming
(BP) is imperative in the use of LEGO NXT API’s and
introduces the theory of priority. The key concept of BP
is serializing all behavior by assigned priority: only one
behavior can be active and in control of the robot at any
time, each behavior has a given value named "priority", the
controller can determine if a behavior should take control
based on the behavior queue by priority, the active behavior
has higher priority than any other behavior that should take
control [9]. Three methods – takeControl(), void action(),
and void suppress() – need to be overridden in the BP.
The method take control() is used to indicate if a particular
behavior should be active. For our project it would indicate
that that the robot will perform an action when an object is
detected. The method action() performs the actions when
takeControl() is true. This action might be to move the
motor forward or backwards. The method suppress() is
used to terminate the implementation of the action code.
Finally, an Arbitrator is an array that regulates when each
behavior should become active. The arbitrator regulates the
behaviors by using priority with the zero element of the array
representing the lowest priority. The Robot class also has the
test for the sound sensor by using if statements. If the sound
sensor receives a frequency reading frequency>80 then the
robot is able to proceed to findLine. If the robot receives
a frequency ≤ 80 the sound must loop through again until
sound frequency is greater in 80. If this statement is true,
the sound sensor is down, user must press orange button on
NXT Brick.

In the claw strike robot, the robot not only need to know
when the target is in range. Also, it should be able to detect
when it is either too close or too far from the target itself.
As shown in the class diagram (Fig. 3), The Ultrasonic
class was is associated with three motor classes. In this
part of the code, the range was an integer data type, two
functions detect(), and objectfound() were initialized in this
class. Once the button was pushed on the brick the ultrasonic
sensor will use the detect() to start looking for any particular
object within a range of 50cm. If the range was below 50
the classes of Motor A,B ,and C will be initialized. Motor A
controls the striker which will only strike if the target is at

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 15

a range of equal to 40 cm. If the target is less than or equal
to 39cm, motors B, and C move backward. if the range is
between 49 to 41 cm the Motors B and C will move forward.
If the ultrasonic sensor detects an object close to it but, not
in front of it, motor B, and C will rotate. The problem that
occurred was Motor A went forward but, did not proceed
backwards once the target was struck by the claw. Also, the
claw did not react quicker in striking the target as expected.
The solution to these problems was adding a time delay. The
time delay was set at 50ms meaning once the robot detects
the robot and strikes the claw will autonomously return to
its previous position. The final build of the claw strike robot
is shown in Fig. 7.

Fig. 7: The claw strike robot

6.1 System Malfunction and Limitations
While we admit that LEGO NXT Mindstorm tool kit

is a highly integrated lost cost robot set, some sensors
do not have enough precision to maintain some required
performance. This caused a lot of time of code revision
and validation. If the robot is unable to receive a frequency
input from the sound sensor the on-path object detection
robot will still be able to operate. Instead the robot will be
able to communicate with the user through the LCD screen
on the NXT Brick. Although the on-path object detection
robot consists of many functions it does have some system
limitations. The robot cannot distinguish between different
objects it can only determine the color of the objects.
Because we are using a light sensor and not a color sensor,
colors that have close together in the spectrum light white
and yellow are hard for the light the sensor to distinguish
between. The sound sensor can only recognize frequencies
greater than 80. The robot cannot detect objects less than
3cm away. This can be improved in the version 2 of LEGO
NXT Mindstorm tool kit.

7. Conclusions and Future Works
This paper presented a UML based robotics system mod-

eling framework that is composed of three components -
static structure, static structure (represented by class dia-
gram), dynamic behaviors (represented by state machine
diagram) and property description (OCL constraints). State

machine diagram is associated with the classes defined in the
class diagram or the system, and represents the observable
state transitions during event stimuli. OCL constraints are a
set of formulae based on the set theory and first order logic
and used to ensure the correctness and reliable behavior of
the robot. The purpose of this work is to develop a reliable
and correct, intelligent, multifunctional robot using OOSD
approach. After the testing and validation of the robot, we
can confidently ensure that the robot maintains the required
function with the correct behaviors.

Future work for this project falls in two aspects. First,
the current framework will be extended with verification
component that include model checking technique. In that
case, the static structure (class diagram) and dynamic be-
havior (state machine diagram) will be converted to the
programming language that can be read by model checker.
We will run this model against the OCL constraints to check
if the model meets the constraints specified in OCL. The
model checking technique is able to detect the problems in
the model with meaningful feedback. Secondly, as a typical
real time embedded system, timing concern is a key for
the robotics systems. We will extend the current model to
describe the timing issue of the robot.

Acknowledgment
The authors would like to thank all reviewers for the

kindly comments and suggestions on this work.

References
[1] Uml 2.0 ocl specification. Available from

http://www.omg.org/docs/ptc/03-10-14.pdf.
[2] Unified modeling language (uml), version 2.0. Available from

http://www.omg.org/technology/documents/formal/uml.htm.
[3] O. Andriyevska, N. Dragan, B. Simoes, and J. I. Maletic. Evaluating

uml class diagram layout based on architectural importance. In
Proceedings of the 3rd IEEE International Workshop on Visualizing
Software for Understanding and Analysis, VISSOFT ’05, pages 9–,
Washington, DC, USA, 2005. IEEE Computer Society.

[4] R. Damasevicius and V. Stuikys. Application of uml for hardware
design based on design process model. In Proceedings of the 2004
Asia and South Pacific Design Automation Conference, ASP-DAC ’04,
pages 244–249, Piscataway, NJ, USA, 2004. IEEE Press.

[5] H. Gomaa. Designing Concurrent, Distributed, and Real-Time Appli-
cations with UML. Addison-Wesley Professional, 2000.

[6] M. Richters. A Precise Approach to Validating UML Models and OCL
Constraints. PhD thesis, University at Bremen, Bremen, Germany,
2001.

[7] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling
Language Reference Manual. Addison-Wesley Professional, July 2004.

[8] V. Sinha, F. Doucet, C. Siska, R. Gupta, S. Liao, and A. Ghosh. Yaml:
A tool for hardware design visualization and capture. In in Proc. Int.
Symp. on System Synthesis, pages 9–16, 2000.

[9] L. Team. Nxj technology. http://lejos.sourceforge.net/nxj.php.
[10] J. Warmer and A. Kleppe. The Object Constraint Language: Precise

Modeling with UML. Addison-Wesley, 1998.
[11] Wikipedia. Three Laws of Robotics.

http://en.wikipedia.org/wiki/Three Laws of Robotics.
[12] O. Wongwirat, T. Hanidthikul, and N. Vuthikulvanich. A formal

approach in robot development process using a uml model. In
Control, Automation, Robotics and Vision, 2008. ICARCV 2008. 10th
International Conference on, pages 1888 –1893, dec. 2008.

16 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Model-based Generation of Workunits,
Computation Sequences, Series and

Service Interfaces for BOINC based Projects
Christian Benjamin Ries

Computational Materials Science
and Engineering (CMSE)

University of Applied Sciences
Bielefeld, Germany
www.visualgrid.org

Christian Schröder
Computational Materials Science

and Engineering (CMSE)
University of Applied Sciences

Bielefeld, Germany
Christian.Schroeder@fh-bielefeld.de

Vic Grout
Creative and Applied Research for

the Digital Society (CARDS)
Glyndŵr University, United Kingdom

v.grout@glyndwr.ac.uk

Abstract—Berkeley Open Infrastructure for Network Com-
puting (BOINC) is a popular Grid Computing (GC) frame-
work which allows the creation of high performance computing
installations by means of Public Resource Computing (PRC).
With BOINC’s help one can solve large scale and complex
computational problems. A fundamental element of BOINC is
its so-called workunits (WUs), each computer works on its own
WUs independently from each other and sends back its result
to BOINC’s project server. Handling of WUs is a challenging
process: (1) the order of used input files is important, (2) even
more contributory components has to know how these input files
are structured and on which data format are they based for an
accurate WU processing. Small modifications can have a high im-
pact to a BOINC project. Indeed scientific applications, BOINC’s
components, and third-party applications all have to be adjusted
to have a correctly running project with desired the functionality.
This can be a highly error-prone and time-consuming task. In this
paper we present a Unified Modeling Language (UML) model to
give a high abstraction for BOINC’s WU handling. Only a model
description and a corresponding code-generator are necessary to
construct a WU handling infrastructure with less development
and implementation effort: (a) one model to fit most WU cases
and (b) essential interfaces for WU access.

Keywords—BOINC, Code Generation, Modelling, UML, Work

I. I NTRODUCTION

SEt-up of a Berkeley Open Infrastructure for Network
Computing (BOINC) project can be a challenging and

sophisticating task. Despite the fact that it is necessary to
implement a scientific application (SAPP) [10] and to establish
a fully operable server infrastructure [7], moreover it is neces-
sary to describe how SAPP and all BOINC components han-
dle computational jobs. Here, participating clients retrieve a
project specific SAPP from a BOINC project (BP) server along
with so-called workunits (WUs), i.e. a number of parameter
usually provided in data files of ASCII or binary format that
are optionally needed by the application to perform specific
tasks. The idea in this paper is to have a Unified Modeling

This project is funded by the German Federal Ministry of Education and
Research.

Language (UML) model and code-generation (CG) facilities,
which have to support developers with the ability to generate
all required WU configurations, interfaces for opening and
accessing WUs, and creating one or more computational series
and sequences, i.e. different computational jobs with varied
runtime configurations.

A. Unified Modeling Language & Object Constraint Language

One of the primary goals of UML is to advance the
state of the industry by enabling object visual modeling tool
interoperability [15]. Since version 2.2, UML has 14 different
diagram types subdivided in three categories: (1) structure
diagrams, (2) behavior diagrams, and (3) interaction diagrams.
In this paper we use theClassand State Machinediagrams.
Class diagrams are used to specify system related elements,
e.g. a class can describe a SAPP. An instantiated class element
is seen as an object and mostly it is an executable instance.
UML state machines help to model discrete behavior through
finite state-transitions systems. It can be used to visualize the
current state of one system, and orthogonal regions allow to
model client-server state-machines where each side is working
independently. The Object Constraint Language (OCL) is used
to express constraints and properties of UML model elements
[16].

B. BOINC’s Workunit System

BOINC uses a fine-grained file based system to set-up
WUs for a BOINC project (BP). WUs are packages with
descriptions of input and output data needed by the SAPP
to perform specific tasks [1]. Before a WU can be added to
a BP, it is necessary to create several input files with planned
to use datasets for one computation. Two additional template
files are required: (1) an input template to describe which files
are used as input, how they are ordered and which flags for
them are set, and (2) a result template to describe how output
files must be named by the SAPP, or how big in bytes they
can be [3].

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 17

C. Research Topics

To make the handling of WUs easier some questions arise
and we will work on them within this paper.

• Which UML elements are necessary to create a model
for WU creation?

• How can we model a sequential queue for WU progress-
ing? The answer to this question should make it possible
to have WUs with the need of pre-processed results by
one or more other WUs.

• How can BOINC’s validator and assimilator access re-
sult’s data on a higher abstraction level? In addition,
is it possible to have only one interface or description
which makes it possible to allow access by all BOINC
components? Here, BOINC’s validator is responsible for
validating a WU and developers of a BP can implement
their own validator routines. The default behavior of
BOINC’s assimilator is storing of results within a file
system.

• How can we track the lifetime of WUs when they are
used in different scenarios, e.g. one WU is used within a
sequential performed queue?

This paper can be seen as the conjunction of previous work
[6], in which BOINC’s services are described with UML to
be deployable on server farms. This is why «Application» is
added in Fig. 1 where previous work is followed in this paper.

The remainder of this paper is organised as follows. Section
II describes the problematic of BOINC’s architecture to handle
different defined WUs for varied kinds of computations. Next,
Section III proposes our idea as to how we can fill the gap
of BOINC’s problematic to utilize it with an easier and less
vulnerable interface. In Section IV we use our UML model
and apply it to a small case-study. Finally, Section V concludes
this paper and Section VI suggests future work.

II. PROBLEMATIC OF BOINC’S ARCHITECTURE

WUs are packages with descriptions of input and output
data [1]. These WUs are fundamental pieces for BOINC
and contain information on how these data are defined and
formatted, i.e. binary data or plain text and functionalities to
describe how several data items can be used. The flexibility
to define arbitrary structured WUs and input files can be a
complex issue. It has been shown, that WUs within a BP are
crucial elements and are essential for the BP success [9], [11].
At the time a BP is being established it must be defined how
all BOINC components have to handle WUs, otherwise WUs
will stop immediately wrongly configured and, as a result,
without proper working components. A BOINC administrator
needs answers to several questions before a BP can be set-
up as a fully operable system. Certainly we think about our
computational concern and how we can solve this problem
firstly. In this paper we will not discuss this difficulty, previous
work has focused on this field of activity [5], [10]. In this paper
we will discuss a solution for the following questions:

• Is all information about WU’s structure available at the
beginning of it’s use or are they gathered continuously

during BOINC’s runtime? Here, it is also important to
define how continuously created WUs differ from each
other. It is necessary to know if their content differs and
if they must be restructured or not, e.g. if different sigma
values have to be set for statistical computations.

• How should WUs be opened and how should all poten-
tially contained sub-elements be handled by a SAPP? Are
the nested data defined as plain-text, or as encrypted text,
or maybe a binary format?

• It is not only the WU input files that are important.
The result files are also essential for the success of a
computation. In the later BOINC process they must be
validated and subsequently stored by an assimilator to
make results usable for particular later cases.

• The assimilation process is used to store results, but what
if one WU does not have enough results? E.g. one WU
is distributed to three hosts, a minimum of two results
must be returned but in one scenario two hosts are too
late — deadline is reached — and only one result is
available. In this case, BOINC’s transitioner will flag the
missing results asoverdue, then directly flagged asready
for assimilationby BOINC’s validator [2] and after this
the assimilation process could create a duplicated WU
for a retry. This can be done periodically until the WU is
completely returned and successfully validated, or after
some failed tries the available results can be stored in a
database or on the file system which can be defined for
failed results.

• Under some circumstances a computation relies on dif-
ferent sets of runtime parameters or they must adhere to
a sequence of different runs, i.e. a result of a WU must
be used as input for another WUs. In this case, the results
must be converted to the right format of a new WU and it
can be necessary to modify mentioned attributes for the
different purposes of a WU, e.g. an unit conversion can
be required before a WU result is usable for subsequent
computations.

BOINC’s architecture relies heavily on a fragile methodology;
if one or more software components are misconfigured or
disabled the WU handling chain will be stopped on the
failed element, i.e. if the validator is not working properly
no validation of returned WU results is executed and as a
consequence the WU will never complete.

BOINC’s WU consists of two template files, additional input
files and, during computation, created output files. Template
files are based on an XML [12] format and therefore they are
not really human readable and XML-tags can be misspelled
very easily. More important is the fact that all input files must
be described within this template file and must have a specific
order. In the header of the input template the numbering of
input files is defined. After this part each file has optional
attributes, e.g. a file is sticky and will not be deleted after one
computation on one host. A similar approach is used for the
description of result files. These files and the part of BOINC’s
framework for WU creation are elementary and every BOINC

18 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Fig. 1. Unified Modeling Language (UML) class diagram to abstract workunit structures. In the top area differentRangesfor values withinInput’s Datafields
can be assigned. On the right hand-sideDatafield allows to configure an arbitrary format for input and output files, the enumerationFileTypesprovides
different standard formats. In case oneDatafield has#File as value fortype no associatedattributesor fields are allowed. Three stereotyped interfaces helps
to access input and output files: (1) «InterfaceDataset», (2) «InterfaceValidate», and (3) «InterfaceAssimilate». Associations enable one to set-up different
workunit processing scenarios: (1) static processing, (2) continuous processing, and (3) dynamic processing as seen in Fig. 2.

administrator or developer must give attention to this process.
Several steps are required to add WUs for one BP: (1) one
or more input files must be copied to BOINC’s download
hierarchy, (2) mentioned template files must be created, and
(3) all input files must be arranged in the right order when
BOINC’s functionalities for WU creation are called. Each
change within one of these steps has an impact on the other
steps and must be adapted.

III. M ODELING OF WORK PACKAGES FORBOINC

For computations with BOINC it is necessary to have one
or more WUs which contain descriptive information on how
to execute these computations. WUs could contain several
files, e.g. additional configurations, data sets, definitions of
algorithms and arbitrary extra files. Fig. 1 shows one part of
our UML definition for WU definition. Here, we can define
WU’s input and output files and multiple data fields for these
files.

The three stereotypes «Workunit», «Input», and «Output»
are directly based on BOINC’s WU system. All tag-values
of these three stereotypes are directly mapped to attributes of
BOINC’s templates, the only exception is tag-valueunique. If
uniqueis true all input files are renamed to be unique within
a BP. The other presented stereotypes are extensions to fulfil
our UML model.

«Workunit» must be associated by «Series» and that must
be associated to «Application» [6]. This association unites
previous work with this paper.

A. Input-/Output Files and Datafields

«Input» is used to describe input files and «Output» de-
scribes result files. A WU can own several file instances and
each of them can have distinct «Datafields». «Datafields» are
used to describe data for input files, the data format is not
restricted and for this reason two methods are defined: (1)
open() is used to access data, and (2)store() is used to add
datasets. The reason for these methods is, that the embedded
data can have different formats, i.e. values have to be encrypted
during saving or specific embedded function calls must be
used during data access in case a file is packed as a ZIP-
archive [18]. These functions can set by a developer to supply
special opening and storing methods for currently unknown
data types. There is no reason to allow a «Datafield» to be used
by «Input» and «Output» at the same time, as a consequence
only one owner of the root «Datafield» is allowed. This root
and all other instances of «Datafield» have two associations
which can be used to create tree structures with several pieces
of information for a WU embedded in a «Input» file. With
this methodology different structures are possible, e.g. a XML
structure can be created as shown in Listing 1. The use of these
associations is restricted, if one «Datafield» is associated by
attributes, then it can not have additional associations. Each
«Datafield» has the tag-valuesname, type, data, andoptional.
Namemust be user-defined at any time when a «Datafield» is
used, the other tag-values are optional and their use depends on
the task. Listing 1 shows the use of the first three tag-values:

name person, interests, and topicsare names,

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 19

Fig. 2. Our UML model allows us to define «Series» in three different ways:
(1) all WUs must be available before a BP is started, (2) during runtime WUs
are created and added continuously, and (3) a mix of the first and second;
some WUs are available at the beginning and during runtime additional WUs
are added to one BP.

Fig. 3. First part of our UML statechart diagram to monitor instances of
«Workunit» and «Series». State’s top region is responsible for WU monitoring
and creates new WUs when data is available or next WU in a sequence has to
be performed. The bottom region monitors a «Series» and handles canceling
events for a «Series» instance or if its finished and results can be merged.

Fig. 4. Second part of our UML statechart diagram for WUs. During
computation of one WU, clients can decide to cancel current WU, and
therefore it has a changed WU state. When it is finished it will be validated,
if this validation failed the exit pseudostate is used. The followed assimilation
state can decide to retry this WU and a new WU is created with same «Input»
values. If this WU is in a sequence, “Next” is used otherwise the statechart
is finished.

type “C.B.Ries” and “Research, Sport”are of the enu-
meration typeFileType::String, and

data mentioned string values are the real embedded infor-

mation.

<person name="C. B . Ries ">
< i n t e r e s t s t o p i c s=" Research , Spor t " / >

</ person>

Listing 1. Example of «Datafield» usage to define a XML structure.

B. Rule-based Creation of Datafield Values

During WU creation data fields of input files or the input
files themselves can be specified by «Range». Therefore values
can be generated by «Range» specializations: (a) «RangeRule»
and (b) «RangeSimple». With «RangeRule» a rule-set for
value creation can be defined. For this purpose the tag-value
rule can be filled with a user-defined rule, e.g. each WU
within a specific «Series» can have a corresponding mode for
algorithms. «Range» defines an operationgetValue()which is
used to query the related «Datafield» value. As shown in Fig.
1 each rule can only modify one «Datafield». «RangeSimple»
is used to have a range-loop for one specific «Datafield»,
for this reason three tag-values are defined: (1)start, (2)
stop, and (3) step. In combination with different additional
rules each call ofgetValue()can increment the lower-bound
valuestart by stepto the upper-boundstop. One «Range» can
be owned by several «Series», as a consequence it must be
possible to retrieve which «Series» is callinggetValue(). For
this reason tag-valueactivated is specified. When this tag-
value is valued bytrue, the association between «Range» and
«Series» can be used to query the currently used «Series».
This allows «Range» to access all information of a «Series»
with associated «Workunits».

C. Continuous Creation of Workunits for Series

As seen in Fig. 2 a BP can have different scenarios for WU
creation:

• Static All WUs are created before a «Series» will be
created. Only these known WUs are handled by a BP.

• Continuous This configuration has no WUs at the be-
ginning of a «Series». WUs are created on demand, e.g.
when new data packages are available or when a time
slot is reached.

• Dynamic In this configuration the previous two possibil-
ities are merged.

These three approaches are supported by our model. «Inter-
faceDataSource» (IDS) is an interface which is implemented
by a «Service» component for WU creation [6]. This com-
ponent could have several connections to data sources. When
these data sources signals new available data packages, IDS
provides with the help ofgetPath()a file path which is usable
for «Input» and a corresponding «Datafield» has#File astype.

Fig. 3 shows the first statechart diagram for our mod-
elling approach. Depending on your BOINC scenario you can
define how WUs are created. For all mentioned scenarios
the statechart will always start at the initial point in the
top-left corner. Immediately the process is subdivided into
two parts with two transitions stereotyped by «Scatter» and
«Detach». The BOINC’s WUs are independently processed on

20 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

the client side from other processes. In addition to this WUs
are structure elements and that’s why they are not conceived
to have a behavior. Other components have to deal with them
and as a consequence these components can have behaviour
definitions. While all WUs are public within BOINC’s domain
any component has access and can modify them.

«Detach» creates two orthogonal regions for the lifetime
monitoring of one «Series» and all associated WUs. The top
region is responsible for WU monitoring and the bottom region
monitors the current «Series». The transition between “Idle”
and “Process” is triggered bydataAvailableandnextSequence.
In this transitiondataAvailableis called by the IDS, and there-
upon the file path is used to define a new WU. Fig. 4 shows the
statechart of a single WU. In that statechart “Assimilation” has
a “Next” named exit pseudostate andnextSequenceis triggered
when this exit is entered. As a result a new WU is created. It
is defined that this exit pseudostate can only be used when a
WU is part of a sequence as described in the next section. As
at the initial point of this statechart, all available and new WUs
are scattered and within this statechart are monitored. The top
region is left when no more WUs are in process. The bottom
region monitors the lifetime of a «Series» and “Processing”
is only left under two circumstances: (1) the «Series» has to
be canceled and (2) processing is complete and all results can
be merged, which can be done in “Finishing”, e.g. an average
over all results of a monte-carlo simulation can be calculated.

D. Sequences of Workunits

In [4] a system for remote creation of chained WUs is
shown, where one result can be used as input for other WUs.
In our model we can handle a similar task. «WorkunitAssoci-
ation» enables one to define a «Series» with sequential com-
putations. «InterfaceAssimilate» delegates these computations
and can have an association to «WorkunitAssociation». As
mentioned in the previous section the “Next” exit pseudostate
in Fig. 4 is used when one WU is assimilated and has
additional WUs to be performed. The following pseudocode
demonstrates how the assimilation process can decide if one
WU is in a sequence and if a WU follows:

Let ws As w o r k u n i t A s s o c i a t i o n . workun i t . w o r k u n i t S t a t e
I f ws . s e q i d < ws . maximum_sequenceThen
For ro In Output

Set w o r k u n i t A s s o c i a t i o n . i n p u t = ro
Where

w o r k u n i t A s s o c i a t i o n . i n p u t . name = ro . useAs . name
EndFor

EndIf
ws . s e q i d = ws . s e q i d + 1

A new WU is filled with «Datafield» values of one «Output»
when they are associated byuseAs. As a consequenceuseAs
must only be set when «Output» is used for one «Input»
configuration. The fact is, when nouseAsis available then
it makes no sense to check for a sequence.

In the case when all results of a WU are required, BOINC’s
assimilator can create additional WUs with a duplicated con-
figuration, e.g. a WU is missed to complete a sequence and is

too often canceled by BOINC clients or WU’sdelay_bound1

is reached. For this occurrence the WU can be copied and
added to a «Series».

When a WU is part of a sequence, the WU’s name has
a special format to distinguish WUs. A similar approach for
rBOINC is used [4]. rBOINC defines a specialized WU name
and we modify this format to“NNN-SEQ-XX-YY” :

• NNN is the name of the WU, and
• SEQ is a start pattern for a sequence description.

Here the embedded string"-XX-YY-" is defined as follows:
XX is the current sequence id andYY is used for the maximum
number of sequences. This WU name format is used to select
sequenced WUs in section III-F.

E. State of Workunit Computation

«WorkunitState» is associated by «Workunit» (WU) and
from the beginning of its existence the state of a WU can
be queried at any time. The tag-valuestateholds the current
state and can be valued with the following variables:

• CREATED WU is created.
• FAILED WU has failed and can not be finished.
• COMPUTATION WU is in progress and one or more

clients work on it.
• DONE Enough clients have worked on one WU and it

can be moved to the validation and assimilation process.
• VALIDATION WU has to be validated.
• ASSIMILATION WU has to be assimilated.
• CANCELED WU is canceled by an administrator or by

other processes, e.g. when sequenced WUs have failed or
are canceled.

• FINISHED WU is finished and ready for later use, e.g.
to create a new «Series» or to use their computational
results.

For the UML model it is important what the state of a WU is,
as a matter of fact the state value is responsible for deciding
which actions are performed during the WU processing, i.e.
when a WU fails the assimilation process has to decide if
it should be performed again. The accessory methodcheck()
is used to query the current state of a WU and returns
a descriptive text value, i.e. the string contains the current
state with additional more precise information such as the
timestampof the last check or how long a WU is currently
processing. The other two tag-valuesmaximum_sequenceand
seqid are used for the «WorkunitAssociation» in the next
section.

F. Cancelation of Series and Workunits

A WU can be canceled at any time. This is done by
InterfaceWorkunit::cancel()and it is necessary to cancel WUs
which are related to a cancelled WU, i.e. when the current
WU is cancelled and has associated WUs, these must be also
cancelled because they can never be processed with missing
«Input» values. «WorkunitAssociation» has an additional OCL
operation to query which WUs are in the current sequence:

1Deadline of one workunit.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 21

W orkun i tAsso c i a t i o n : : querySequencedWorkun i t s (
se q i d : In teger , name : St r ing) : Set(I n p u t) ;

querySequencedWorkun i t s =
s e l f . s e r i e s−> s e l e c t (s | s . workun i t−>s e l e c t (

w | w. w o r k u n i t S t a t e . s e q i d > s e q i d
AND
−− NNN−SEQ−XX−YY

w. name . s u b s t r i n g (1 ,
w. name . s t r p o s ("−SEQ")) = name

)
)

With this OCL statement, WUs can be selected which are
later defined within a sequence and as a consequence they
can be cancelled. Following cancelled WUs can have other
associated WUs and they must be cancelled. The call of
Workunit::cancel()is used to cancel one WU. «Series» can
be cancelled with this concept, it is enough to callcancel()
during the iteration of all associated WUs.

G. Service Interfaces

BOINC has several components which need to access «In-
put», «Output» and their embedded «Datafield» fields. Fig. 1
shows three interfaces to access them: (1) «InterfaceDataset»,
(2) «InterfaceValidate» and (3) «InterfaceAssimilate». With
the help of this structure all functionalities can be generated
and this makes the access more comfortable. Changes in the
model are automatically resolved and interfaces are always
valid for use.

IV. CASE-STUDY

Our case-study modifies a movie, i.e. a movie is fragmented
in single image sequences and basic image processing al-
gorithm are applied to these sequences, some results could
be seen on the project website [8]. Fig. 5 shows our use-
case where one video is added byC.B.Ries, with the help of
inotify [13] one BP is triggered bydataAvailableand WUs
are created on demand. During WU adding it has to be clear
which kind of data format is used, i.e. in our use-case we
add a complete movie and subsequent implementations has
to prepare this movie for WU creation. In this scenario we
create ZIP-archives automatically and fill them with a number
of image sequences.

Five «Series» are defined, in this case only the first fourth
can be processed immediately. As shown in Equation 1 the
fifth «Series» needs the result of the first four «Series».

Series 1 (normalize)
Series 2 (painting)
Series 3 (negate)
Series 4 (edge)

⇒ Series 5 (merge) (1)

All «Series» instances have a different runtime configuration,
e.g. in «Series» number four the image is manipulated by
an edge algorithm. The fifth «Series» merges all previous
results where for each image sequence they are added to
a 2 × 2 raster image. On the right-hand side of Fig. 5
these different configurations are shown where the bottom
configuration shows the mode “edge” for image manipulation
and in the top configuration “merge” is assigned.

The fifth «Series» is not started until the other «Series»
has finished. It is important to notice that the SAPP is always
the same, only the input files are changed. In the first four
computations only two files are necessary: (1) configuration
for the mode of configuration and (2) the mentioned ZIP-
archive with movie sequences. The last computation is altered
and needs five files: (1) configuration as before with different
values and (2) all four input files which are created by the
other four computations.

This use-case describes adynamic serieswhere some WUs
available on BP’s start and additional WUs created during
runtime. In the case that one of the first four series is canceled,
the fifth series can never be started because of missing input
data. This is solved by our statechart construction in Fig. 3
where the “Cancelation” state is responsible for cancelling all
related WUs and «Series» instances.

V. CONCLUSION

In this paper we describe a UML model for WU creation
and how the lifetime of WU series and individual WUs can be
monitored. We have shown that only one model description is
necessary to allow BOINC related components to access WU’s
input and output files, i.e. BOINC’s validator and assimilator
must not be changed to access the WU, all necessary code
elements can be generated with one model description. With
our model it is possible to set-up different computational
scenarios where WUs are generated statically, continuously
or mixed by these two approaches. WUs can be added to a
process before a BP is started or they can be added on-demand
during the runtime of a BP. With the help of UML statechart
diagrams we can set-up a BP configuration where we can
define howoverdueor absentWUs are handled. It is possible
to recreate them or if it is wished, the related computational
series and related WUs are aborted.

The proposed UML modeling approach can help to reduce
errors during administration of BPs. As a matter of fact, in
traditional BPs it is necessary to reconfigure and reimplement
several parts when only one configuration is changed, i.e. if
the format of computational results is changed then all related
components such as BOINC’s validator and assimilator have
to be similarly changed. Furthermore, adding or removing
input files for one computation has an impact on several
BOINC parts: (1) non well readable XML input files must
be changed, (2) the call of BOINC’s WU creation tools has
to be altered, (3) altered files has to be copied to BOINC’s
download hierarchy, and (4) (maybe) input files have to be
generated or prepared. Our modeling approach solves all these
problems with the help of UML and OCL.

VI. FUTURE WORK

WU’s performance can have restrictions, e.g. the use of
floating-point operations or allocation of hard disk space can
be limited. Currently it is not clear if UML can help to detect
perfectly fitted values for this purpose. During our use-case
tests we noted a large number of failed WUs because of

22 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Fig. 5. Use-case to modify a movie:C.B.Riesadds a new movie to one server, running applications prepare this movie and fragment it into image sequences,
thereupon these images are zipped into ZIP-archives.DataSourcenotifies a BP which automatically adds all announced WUs to this BP. Adding of one
ZIP-archive implies four added WUs to this BP but with different configurations, each «Series» instance has a different mode for computation:normalize,
painting, negate, and edge. These WUs are processed and the computational results are used as input for a fifth «Series», again with a changed mode for
computation:merge.

wrongly adjusted boundary values for the restrictions men-
tioned. The set-up of this values has to be more precise and at
best automatic. In future work we will work on this objective.

During the writing of this paper implementation with the
support of this model are hard-coded and can not be changed
— they are not flexible during runtime. One idea is to add a
Domain-specific language (DSL) to describe WUs, series and
sequences of computation. It could be possible to interpret this
DSL during the runtime of a BP, to change the behavior of
this BP and to generate code for all necessary components for
WU handling on-demand.

Additional thought should also be spent on how our pre-
sented model can be used for conventional supercomputers,
where other technologies like Message Parsing Interface (MPI)
[14] or OpenMP [17] are used. It should be clear that MPI has
to process workunits like BOINC, although admittedly with
less input files; instead it uses more numerical values which are
communicated between all involved computation nodes. The
fact is that BOINC can be perfectly used to solve embarrassing
parallel computational problems with less communication be-
tween all involved nodes. MPI enables one to use a distributed
computing environment with several autonomous interacting
nodes to achieve a common goal.

REFERENCES

[1] D. P. Anderson, C. Christensen, and B. Allen. “Designing a Runtime
System for Volunteer Computing.” inProc. ACM/IEEE SC, 2006, Article
No. 126

[2] BOINC. “Backend program logic,” Internet: http://boinc.berkeley.edu/-
trac/wiki/BackendLogic [Version 2]

[3] BOINC. “Submitting jobs,” Internet: http://boinc.berkeley.edu/trac/wiki/-
JobSubmission [Version 19]

[4] T. Giorgino, M. J. Harvey and G. De Fabritiis. “Distributed computing as
a virtual supercomputer: Tools to run and manage large-scale BOINC

simulations”. Computer Physics Communications, vol. 181, February,
2010

[5] C. B. Ries. “BOINC - Hochleistungsrechnen mit Berkeley Open Infras-
tructure for Network Computing.” Berlin Heidelberg: Springer-Verlag,
2012

[6] C. B. Ries, C. Schröder, and V. Grout. “Approach of a UML Profile
for Berkeley Open Infrastructure for Network Computing (BOINC),” in
Proc. ICCAIE, 2011, pp. 483-488

[7] C. B. Ries, C. Schröder, and V. Grout. “Generation of an Integrated
Development Environment (IDE) for Berkeley Open Infrastructure for
Network Computing (BOINC),” inProc. SEIN, 2011, pp. 67-76

[8] C. B. Ries and C. Schröder. “Public Resource Computing mit Boinc.”
Linux-Magazin, vol. 3, pp. 106-110, March 2011. Internet: lm-
boinc.sourceforge.net

[9] C. B. Ries and C. Schröder. “ComsolGrid - A Framework For Per-
forming Large-Scale Parameter Studies Using Comsol Multiphysics and
Berkeley Open Infrastructure for Network Computing (BOINC),” in
Proc. COMSOL Conf., Paris, 2010

[10] C. B. Ries, T. Hilbig, and C. Schröder. “A Modeling Language Approach
for the Abstraction of the Berkeley Open Infrastructure for Network
Computing (BOINC) Framework,” inProc. IEEE-IMCSIT, 2010, pp.
663-670

[11] C. B. Ries. “ComsolGrid - Konzeption, Entwicklung und Implemen-
tierung eines Frameworks zur Kopplung von COMSOL Multiphysics
und BOINC um hoch-skalierbare Parameterstudien zu erstellen.” M.Sc.
thesis, University of Applied Sciences Bielefeld, Germany, 2010.

[12] W3C. “Extensible Markup Language (XML) 1.0 (Fifth Edition),” Inter-
net: http://www.w3.org/TR/REC-xml/

[13] J. McCutchan, R. Love, and A. Griffis. “inotify - monitoring file system
events,” Linux man pages(7)

[14] Message Passing Interface. “The Message Passing Interface (MPI)
standard,” Internet: http://www.mcs.anl.gov/research/projects/mpi/ [18th
February 2012]

[15] Object Management Group. “OMG Unified Modeling Language (OMG
UML) Superstructure.” formal/2010-05-05, May, 2010.

[16] Object Management Group. “Object Constraint Language.” Version 2.2,
Feb., 2010

[17] OpenMP. “The OpenMP API Specification for Parallel Programming,”
Internet: http://www.openmp.org [18th February 2012]

[18] PKWARE. “APPNOTE.TXT - .ZIP File Format Specification.” Version
6.3.2, Sept., 2007

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 23

Automatic Driving System Using LEGO

Chuanxi Zhou
1
, Yujian Fu

2
, and Mezemir Wagaw

2

1
Department of Computer Science, Alabama A&M University, Normal, AL, USA
2
Department of Food & Science, Alabama A&M University, Normal, AL, USA

Abstract - LEGO is not only a toy, but also a tool for

education. By analyzing and solving the all sorts of problems

with LEGO, students have better preparation for a career in

science and engineer. Our LEGO-robot is built to pick up a

ball, find its way to follow a color curved line, put down the

ball at the destination, and show the sound values on the

NXT screen. A touch sensor, light sensor, sound sensor,

Ultrasonic sensor and three motors are used for the robot to

complete this challenge. Our LEGO-robot automatic driving

system is designed with UML. UML as a graphical modeling

language is a standard way for visualizing, specifying,

constructing, and documenting an Object-oriented software

system. A class diagram in the UML is used to describe the

information and relations about seven classes, including the

CorrectingDirection class, the LegoMotor class, the

SoundSensor class, the UltrasonicSensor class, the

LightSeonsor class, and the TouchSensor class. A use case

diagram is also used to describe our robot system’s behavior

as it responds to a request from the outside of the system. A

state diagram is used to describe the internal behavior in a

class with natural states. This project is implemented using

Java with leJOS. The system works steady with expected

design functionalities, which indicates that we have

successfully designed the LEGO-robot automatic driving

system using UML.

Keywords: UML, class diagram, use case diagram, state

machine diagram, LEGO robot, software design

1 Introduction

 LEGO is not only a toy, but also a tool for education.

With LEGO, students can build models, utilize motors and

sensors, learn how to design, program and control models.

By analyzing and solving the all sorts of problems with

LEGO, students move forward for a better preparation for

science and engineer career.

Every year, the First LEGO League (FLL) sponsors a

challenge tournament around the world. It is an international

robotics team competition for children aged from 9 to 16.

Today, FLL tournaments take place in more than 40

countries worldwide with participation of over 10,000 teams

[4]. The tournament challenges vary in each year with the

basic skills and concepts hold the same. For example, the

challenge of following color line appeared in both “The

Smart Move Robot Game” (2009) and “The Body Forward

Challenge” (2010). Therefore, in this project, we will focus

on this challenge. Our LEGO-Robot moves forward

following a color line, picks up a ball when the touch sensor

is pressed, adjusts the direction if it needed, determines the

terminus by pre-programmed distance, puts the ball down

when it arrives the terminus, and detects the sound value and

shows the value on the NXT screen. Our robot and the mat

are shown in Fig 1.

Figure 1, LEGO-Robot and LEGO-pad

This LEGO-Robot Automatic Driving System is designed

with the Unified Modeling Language (UML). UML is a

graphical modeling language which has been widely

recognized as a standard way for visualizing, specifying,

constructing, and documenting the artifacts of an Object-

oriented software system [6]. It can also be applied for

defining Software Architecture, modeling of business

processes and their design, managing complexity, etc.

The remainder of this paper is organized as follows. We

discuss the related works in Section 2. After that, the system

design of automatic driving system (ADS) is presented in

Section 3. The implementation in Java using LEGO NXT

toolkit is shown in Section 4. Conclusion and future

investigations are discussed in the Section 5.

24 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

http://www.google.com/url?sa=t&source=web&cd=1&ved=0CBYQFjAA&url=http%3A%2F%2Fwww.firstlegoleague.org%2F&ei=lD7sTNOTLJLAsAOShOWFDw&usg=AFQjCNHGcmefJKrf_Kq17rAyegfpP0przg

2 Related Works

 LEGO NXT tool kit is widely used for the educational

and research purposes in academic now [2]. The Mindstorms

NXT brick uses a 32-bit ARM processor as its main

processor, with 256 kilobytes of flash memory available for

program storage and 64 kilobytes of RAM for data storage

during program execution. To acquire data from the input

sensors, another processor is included that has 4 kilobytes of

flash memory and 512 bytes of RAM. Two motors can be

synchronized as a drive unit. To give the robot the ability to

“see, the ultrasonic sensor, which is accurate to 3 centimeters

and can measure up to 255 centime ters, and the light sensor,

which can distinguish between light and dark, can be

attached to the brick. A sound sensor that can be adjusted to

the sensitivity of the human ear can be used to give the robot

the ability to hear and react, if programmed, to noises.

Finally, the two touch sensors give the ability for a robot to

determine if it has been pressed, released, or bumped, and

react accordingly [2].

Although LEGO NXT is a highly integrated and low cost

educational settings, currently, there is not much work has

been done for the designing of a reliable LEGO robot to

realize the expected functionalities in literature. There are

several approaches available for the software intensive

design, UML is one of the most popular methods that is

currently widely used in both industry and academic. In this

section, we discuss some existing works on design of

embedded systems using UML.

Grady Booch et al. [6], [1] introduced the UML 2.0 concepts

and notations. Its advantages of allowing users to model

everything from enterprise information systems and

distributed Web-based applications to real-time embedded

systems.

Saxena et al. [7] presented a UML model of multithreaded

programs on a Dual Core processor. Performances of the

programs in JAVA and C# on the basis of UML design were

compared and evaluated.

João M. Fernandes [5] demonstrated the utilizing of UML to

Figure 2 – Class Diagram for the LEGO-Robot Automatic Driving System

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 25

http://portal.acm.org/author_page.cfm?id=81361593377&coll=DL&dl=ACM&trk=0&cfid=115935928&cftoken=73746700

model industrial embedded systems. Using a car radios

production line as an example, this study illustrated the

modeling process following the analysis phase of complex

control applications. The authors used some guidelines to

transform the use case diagrams into a single object diagram

to guarantee the continuity mapping of the models.

Our work is different from above works in following aspects:

a) This work aims at developing a reliable robotics system

using object oriented methodology – UML. Robotics systems

are complex, concurrent embedded systems that include

multiple objects and multiple interfaces. Our work has

demonstrated that it is important to produce reliable robots

for using UML design method. b) Our work applied UML

design on the LEGO NXT settings, which provides a new

successful application of UML on the embedded system

design.

3 System Design – UML Model

In this section, we present our approach to design

LEGO-Robot Automatic Driving System with UML.

3.1 Class Diagram

 A class diagram in the UML is used to describe static

information about classes, with operations and data

(attributes), and to describe relations (including inheritance,

aggregation, association, etc.) between different classes. As

mentioned by Michael Blaha and James Rumbaugh [3], a

“class diagram provides a graphic notation for modeling

classes and their relationships, thereby describing possible

objects. Class diagrams are useful both for abstract modeling

and for designing actual programs.”Class diagrams are the

mainstay of object-oriented analysis and design.

Fig. 2 shows the class diagram of our LEGO-robot automatic

driving system. The NXT is the brain of a LEGO-robot. It’s

an intelligent, computer-controlled LEGO brick that makes a

LEGO-robot alive and perform the programmed activities.

The NXT has three output ports to attach motors and four

input ports to attach sensors. The three motors are grouped

into the LegoMotor class, which including the LightSensor

class, The TouchSensor class, the UltrasonicSensor class,

and the SoundSensor class corresponding to the light sensor,

the touch sensor, the Ultrasonic sensor, and the sound sensor,

respectively. For detecting and correcting the moving

direction of the robot, the light sensor and motors are

grouped into the CorrectingDirection class. The

AutomaticDriving class is consisted of the

CorrectingDirection class, the LegoMotor class, the

SoundSensor class, the UltrasonicSensor class, and the

TouchSensor class.

3.2 Use Case Diagram

 A use case is a description of a system’s behavior as it

responds to a request that originates from outside of that

system. In other words, a use case describes "who" can do

"what" with the system in question [1]. The use case diagram

of our LEGO-Robot Automatic Driving System is shown in

Fig. 3. This figure clearly shows that a person can turn on

the NXT, find certain program, run certain program, and

turn off the NXT.

3.3 State Machine Diagram

A state diagram has states, events and guards. They are

used during the design phase to describe internal behavior in

a class with natural states. State diagrams are used to give an

abstract description of the behavior of a system. This

behavior is analyzed and represented in series of events, that

could occur in one or more possible states [1].

Fig. 4 shows the state diagram of our LEGO-robot Automatic

Driving System. When the actor presses run on NXT, the

LEGO-robot will firstly wait 5 seconds and let the actor to

adjust the robot to the right location. After that, the robot is

programmed to move forward. When the touch sensor is

pressed along its way forward, the robot will firstly move

backward to pick up and hold the ball. Then the robot will

continue follow the color line which includes a half circle in

the middle of the mat. The light sensor is used here for the

robot to find the correct way to follow the curve. Here is how

it does that, if the light sensor detects a different color value

from the previous one, that means the robot is in the wrong

direction, the robot will then turn around to look for the

Figure 3 – Use Case Diagram for the LEGO-

Robot Automatic Driving System.

26 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

http://en.wikipedia.org/wiki/Behavior
http://en.wikipedia.org/wiki/System

previous color value. If the light sensor cannot find the same

value after turning a certain degree (here we set it as 3400),

the robot will then simply stop. The Ultrasonic sensor is used

to find the destination of the robot. When the Ultrasonic

sensor detects the pre-programmed distance, the robot will

just put the ball down and stop. During the whole moving

activity, the sound sensor is detecting the sound values in the

environment and shows them on NXT screen.

4 Implementation in Java

Java/leJOS is used in this project to implement our

program. leJOS is a tiny Java Virtual Machine [8],[2]. LeJOS

NXJ supports the NXT brick which allows us to code the

LEGO-robot Automatic Driving System with the Java

programming language. The Java coding gives the LEGO-

robot a lot of abilities. Characteristics of Java are utilized in

the coding, e. g., object-oriented, distributed, interpreted,

robust, secure, architecture-neutral, portable, high-

performance, multithreaded, and dynamic.

There are some issues that should be pay additional attention

to when coding the program. 1) The robot will pick up the

ball only when the touch sensor is pressed for the first time.

The touch sensor could be pressed many times if the mat is

not flat or something stuck underneath. But only the first

time pressing will allow the ball to be picked up. 2) The light

value for the light sensor should be set as a region not a

single number. Because the color values on the line are not a

constant number. There may have a place where is slightly

darker or lighter than other places. In addition, under

different illuminating conditions could influence the light

sensor to define different values for the color line. 3) When

the robot moves to a region that has a different color value

from the previous one, we programmed to let the robot turn

left at a small angle, then right at a small angle, and so on,

until the previous value is found. Or, the robot will stop if no

correct way is found.

5 Conclusions

 In this project, a LEGO-robot automatic driving system

is designed with UML. This robot is built to pick up a ball,

find its way to follow a color curved line, put down the ball

at destination, and show the sound value on the NXT screen.

A touch sensor, light sensor, sound sensor, Ultrasonic sensor

and three motors are used for the robot to complete this

challenge. The system is designed with UML. A class

diagram in the UML is used to describe the information and

relations about seven classes, including the

Figure 4 – State Diagram for the LEGO-Robot Automatic Driving System.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 27

http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/Java_(programming_language)

CorrectingDirection class, the LegoMotor class, the

SoundSensor class, the UltrasonicSensor class, the

LightSeonsor class, and the TouchSensor class. In this

project, a use case diagram is also used to describe our robot

system’s behavior as it responds to a request from people. A

state diagram is used to describe the internal behavior in a

class with natural states. UML as a graphical modeling

language is a standard way for visualizing, specifying,

constructing, and documenting an Object-oriented software

system. This project indicated with an example that UML

can be used to design a system independently. This project is

implemented using Java with leJOS. The system works

steady, which indicates that we have successfully designed

the LEGO-robot automatic driving system using UML.

In this project, the robot is designed to complete some basic

activities. For more complex activities, the robot system can

be upgraded with more equipment. For example, we also can

use two light sensors to detect the correct direction for the

robot. A camera can be used to detect a terminus. We can

also add parts to control the activities of the LEGO-robot by

sound commands.

Acknowledgements

We would like to thank Joseph Shi and Cheng Zhou for

helping us to build the LEGO-robot. We would like to thank

for all valuable comments of reviewers.

6 References

[1] Unified modeling language (uml), version 2.0. Available

from http://www.omg.org/technology/documents/formal/

uml.htm.

[2] B. Bagnall. Maximum Lego NXT: Building Robots with

Java Brains. Variant Press, 2007.

[3] M. R. Blaha and J. R. Rumbaugh. Object-Oriented

Modeling and Design with UML. Prentice Hall,

December 2004.

[4] LEGO development team. LEGO education. Available

from: http://www.lego.com/education/competitions/

default.asp.

[5] J. A. M. Fernandes, R. J. Machado, and H. D. Santos.

Modeling industrial embedded systems with uml. In

Proceedings of the eighth international workshop on

Hardware/software codesign, CODES ’00, pages 18–22,

New York, NY, USA, 2000. ACM.

[6] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified

Modeling Language Reference Manual. Addison-Wesley

Professional, July 2004.

[7] V. Saxena and M. Shrivastava. UML modeling and

performance evaluation of multithreaded programs on

dual core processor. International Journal of Hybrid

Information Technology, 2, July 2009.

[8] LEGO Team. LEGO NXJ technology. LEJOS APIs.

Available from: http://lejos.sourceforge.net/nxj.php.

28 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

ClipBits – A Case Study in Model-Driven Software Engineering

Thomas D. Lovette, Devon M. Simmonds, Michelle A. Wilcox, Yuli Bonner

University of North Carolina Wilmington

601 South College Road, Wilmington, NC 28403

{ tdl6020, simmondsd, maw3067, myb7721 }@uncw.edu

Abstract

Model-driven software engineering is an approach

to software development that centralizes the use of

models and transforms the software lifecycle from a

code-centric to a model-centric undertaking. This

paper reports on use of a model-driven approach in

the development of ClipBits – a lightweight clipboard

management application, designed to support data

reuse and increase user productivity by extending the

functionality of the Operating System clipboard.

ClipbBits provides a dockable, lightweight, user-

friendly interface that is intuitive and unobtrusive.

The application allows a user to easily store text,

images, and files in the form of ClipButtons that can

be restored back to the system clipboard. In addition,

these ClipButtons can be readily organized by storing

them in user-defined Button Sets. Results and

inferences are presented.

Keywords: software engineering, model driven

engineering, software architecture, UML,

clipboard.

1. Introduction

 Software reuse [1] is an importance and pragmatic

discipline in software engineering. Software reuse can

lead to lower development costs and lessen time spent

on deployment [2]. However, reuse of software is hard

to achieve without some form of generalization [2].

The concept of generalization involves taking

something that is a specific concept, and allowing it to

be applied to wider and general principles. Software

reuse can be approached from either data-centric or

code-centric viewpoints.

 From a data-centric viewpoint, the everyday use of

computers and related technologies, provide many

opportunities for generalization and reuse as

mechanisms for increasing productivity. Indeed,

whether using a mobile device or a more traditional

PC, application end-users often require the repeated

storage and reuse of numerous types of data. Typically,

users accomplish this task by copying data to the

clipboard and pasting it where needed it as many times

as necessary to meet the desired end. When the users

have the ability to store more than one item on the

clipboard, they are able to refer back to the generated

clipboard history and reuse data more efficiently

[3](Frakes).

 In using the clipboard, a problem arises when there

are multiple pieces of data that require replication in a

nonconsecutive way. In such a case users are forced to

refer back to some source to copy the data back onto

the clipboard before they can continue the process of

repeatedly pasting it. This process of referring back to

a previous source every time a user wishes to access

the data is tedious and time consuming. Furthermore,

when a user quits working on a project for any

duration, it is unlikely that any data to which repeated

access is needed will still be on the clipboard.

 Several clipboard management [4 – 11] software are

currently available. Such software may be evaluated

using two basic features: how clips are stored and

flexibility – a measure of the number and types of data

that the software stores and the range of programs with

which the clipboard software can interact. Some

available clipboard management applications have

limited storage features and support only text while

others allow for images and other types of data. Three

examples of clipboard management software are

Microsoft Office 2000 Clipboard [8], xNeat Clipboard

Manager [4] and Ditto [5].

 Microsoft Office 2000 Clipboard was an early

attempt at clipboard management software. A clear

limitation of Microsoft Office 2000 Clipboard is that it

only works among the programs included in the MS

Office suite. Another limitation of the software is that it

can only store 12 past entries (later expanded to 24 in

Office XP). xNeat Clipboard Manager [4] is an

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 29

example of a more recent clipboard management

system. Concerning the storage of clip data, XNeat

allows the user to define the number of clip entries that

will be stored. The number of entries can vary from 1

to 99. Additionally, xNeat lets a user “sticky” entries

which makes it so that those entries are always

available for access. While these features are a

welcome inclusion, beyond “stickying” xNeat does not

offer any way to navigate through the list of entries.

And with up to 99 entries trying to find the right entry

can be a chore.

 Finally, Ditto [5] is a third example of a clipboard

manager. This software offers some improvements over

xNeat but also suffers from similar shortcomings. Like

xNeat, Ditto allows multiple data types and can be used

in any environment and, also like xNeat, it can only be

accessed through the system tray or with a hotkey

command. While this may not be hindrance to some

users, it may prove unintuitive for other and could be

improved by allowing the option for a persistent GUI.

One of the most significant improvements that Ditto

has over xNeat is the ability to search through the clip

history by entering a term in a search box. This might

seem like an ideal way to navigate through the list of

clip entries, especially since there is no limit to the

number of entries in Ditto. However, the name that is

generated for clip data is not always indicative of the

content of that data and there is no way to rename the

clip. Thus, the search term may not yield the desired

results.

 The paper reports on design and development of

ClipBits – a lightweight clipboard management

application that supports data reuse by offering features

that complement the system clipboard in any

environment in which it might be used. The application

is designed with an intuitive, user-friendly graphical

user interface through which users can access an

unlimited set of past clipboard entries. A model-driven

engineering (MDE) [12 – 14] approach was used for

the project. MDE was used because while software

may be inherently complex [15], MDE provides

mechanisms and tools that are better able to address

complexity by removing some accidental complexities

associated with code-centric development. Our goal is

both to encourage use of models as well as provide

case study data that may be used by others in the

scientific community.

 One of the main goals of the ClipBits application is

to keep it as unobtrusive as possible. Its purpose is to

enhance the user’s productivity while they

simultaneously work on other applications. As such,

ClipBits is developed to be as unobtrusive and non-

distracting as possible, so that disrupting or inhibiting a

user’s workflow is minimized.

2. Software Design

ClipBits

<<Software>>

OS Clipboard

User

Rename

ClipButton

Use ClipButton

Create

Button Sets

Use Button

Sets

Figure 1. ClipBits Use Case Diagram

 ClipBits was designed using a Model-Driven

approach, which includes UML [16] models such as

use case (See Figure 1), activity diagram (see Figure

2), architectural diagram (see Figure 3), and Class

diagram (see Figure 4).

 The Use Case Diagram (Figure 1) demonstrates

typical actor interaction with the ClipBits software.

Actors include the end User and the Operating System

Clipboard, both of which interact with the application.

However, the methods through which they interact are

slightly different. The end User interacts with ClipBits

through the use of Clip Buttons and UI components,

whereas the OS Clipboard interacts with the

application via Windows messaging.

30 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

The Activity Diagram above (see Figure 2)

demonstrates a high-level overview of user interaction

with the ClipBits software. The only available entry

point into the application is through a typical program

launch, and the only intended way to exit the

application is to click “Exit” in the UI. All operations

Figure 2. ClipBits Activity Diagram

proceed from the program in a loaded state, and all

interactions ultimately terminate in an updated User

Interface and Stack Window.

2.1. Architectural Design

Figure 3. ClipBits Layered Architecture

Of the numerous architectural styles in use today, the

relative merits of two styles were evaluated: a

traditional Layered Architecture and the Model-View-

Controller (MVC) pattern. Each style offers features

that, while similar, differ enough to warrant a closer

look. Both styles were found to be compatible with the

implementation of the ClipBits architecture, but a

layered approach presented a best-fit for this type of

application given its desktop-based nature.

 As Figure 3 demonstrates, a layered architectural

style allows for a clear separation of concerns. In this

model the different areas into which the program is

divided include the UI layer, the logic layer and the

data layer. Each of these layers encapsulates a set of

concerns with little to no overlap of functionality

between these sets. Furthermore, the points of contact

between these layers are clearly defined.

 The enhanced modularity afforded by the layered

architectural approach lends adaptability and

expandability to ClipBits, making it easier to support.

New modules can be added to a layer without directly

affecting the functionality in the other layers. This

means that any bugs introduced by an addition would

be isolated from the other layers, preventing large scale

instability due to expansion.

 The clear separation of concerns provides an ideal

strategy for distributing development tasks among

developers. In the initial construction of the system,

the layered architecture allows developers to work on

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 31

different layers concurrently without experiencing

major conflict. This will increase the speed at which

the system can be developed as well as assist in the

minimization of bugs introduced during the integration

process.

 With the potential for increased development speed

and enhanced bug mitigation, the layered architecture

presents an excellent framework for any system that

can be easily separated into areas of functionality.

Figure 4. ClipBits Class Diagram

A layered architecture provides many benefits. One

such benefit is the clear definition of boundaries

between different functionalities (see Figure 15). These

boundaries along with well-defined points of contact

enhance the modularity of design as well as providing

for separation of concerns.

2.2. Design Constraints

 Using the Object Constraint Language (OCL) [16],

we were able to define fairly standardized constraints

which were applied to various structures within the

application. The diagram below demonstrates a sample

of such constraints.
 The Object Constraint Language provided several benefits

during the identification of design classes. For instance, it

was useful to define the Button Stack Window (class from

Figure 4) as an OCL context containing pre-and post-

conditions on operations such as user interaction with UI

elements. One such case involves the user’s interaction with

the “viewSetButton” control. When the proper delegate

method (viewSetButton_click(…)) is executed, the

subsequent operation should be designed in such a way as to

conform to the constraints specified by the “post:” attribute.

In this case, a UI window named “SetMenuWindow” is

visually activated.

3. Results

 The Model-Driven development of ClipBits

produced excellent results. User Interface designs were

easily implemented, test cases were largely successful,

and concerns regarding security, ethicality, and societal

impact were addressed effectively. The results of

development are expounded in the following sections.

3.1. User Interface

Figure 6. ClipBits User Interface

Figure 6 depicts all of the UI Windows with which a ClipBits

user may interact: the Main Window, Add All Buttons to

Button Set Window, Button Set Menu Window, and finally

the individual Button Set window displaying the ClipButtons

contained in the Button Set.

3.2. Description of Implementation and

Testing Process

 Once the test cases were decided upon, the

integration of each team member’s functions

commenced. The clipboard monitor functions, Button

Set serialization functions, and user interface design all

needed to be put together and meet all of the software’s

functionality requirements. Once all of the class files

were integrated into one project, the immediate task

that arose was making all of the class functions

compatible with other class functions through

integration and systems testing. This was accomplished

by executing the test cases and correcting errors as they

arose. Multiple problems surfaced throughout this

testing phase and with the team member who had

written the code for which the bug was found leading,

the modification process went fairly smoothly.

32 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

3.3. Addressing Ethical, Legal, Security, and

Societal Implications

 Several ethical issues [18-24] arise when dealing with

the copying and transmission of data, including the

legality of the entire process. Illegal copying of data

such as music, images, and written works carries stiff

fines throughout most of the world, and the threat of

misuse by a user of an application that allows for the

copying of data is always pertinent. The right of

musicians to publish their own works is of special

importance in this day and age. Cockburn reminds us

that “the recent spate of lawsuits against individuals

accused of sharing music files attest to the

seriousness…[of] these rights [24].” With digital piracy

on the rise, great care must be taken to ensure that any

application dealing with the copying and/or

retransmission of intellectual property re thoroughly

secured. There is, however, a fine line between what is

considered to be fair use and outright piracy [18].

 Copyright issues are of prime concern to ClipBits, as

the application allows users to generate Button Sets

representing data that is of recurring utility. In and of

itself, the creation of a personal, archival copy presents

neither an infringement nor a violation of copyright

law, as the Audio Home Recording Act of 1992

explains [20].

 The important question for this project, is whether

ClipBits is liable for any damages caused by

unauthorized redistribution of copyrighted material via

its software features? The answer lies in a little-

considered but very important aspect of nearly every

software package in existence today: the End User

License Agreement (EULA). End User License

Agreement are often used “…to impose restrictions on

consumers regarding what they can legally do with

their purchases” [21]. Therefore, the final deployment

of ClipBits includes a legally-binding EULA specifying

that users may not use this software to redistribute

copyrighted materials without express permission from

the copyright holder.

 One of the many functions of technology is to

increase productivity. Technology can help to

accomplish this by making work easier and faster.

Indeed as a result of information technology

productivity has continued a trend of steady

improvement for some time [25]. And as technology

becomes more and more ubiquitous the impact it has on

production may become incalculably large.

 It is testament to the impact benefits of technological

tools that many fields such as business or banking have

integrated a technological framework intimately into

the work environment. In many circumstances where a

software system once aided in a particular job, the job

is now wholly encompassed by a software system. In

order to increase productivity in these instances, we

need secondary software tools that augment or enhance

the primary software environment of the workplace. It

is into this class of software designed to enhance other

software into which ClipBits falls.

 When used with other productivity software such as

software development environments or desktop

publishing suites, ClipBits can help to trim down the

amount of time it takes to complete tasks. Over the

course of many hours of work what may seem at first to

be a marginal time savings can accumulate in to

something substantial that directly translates into

business savings.

 As software enhancing products become more widely

developed and more ways in which they can be applied

become identified, they could very easily help to propel

the trend of continued increase in productivity into the

foreseeable future. And such an increase in

productivity can help to strengthen the economy and

thus, have a positive bearing on society as a whole.

 It may seem a little odd to suggest that a niche

product like ClipBits could have an impact on society,

and taken as an isolated product such a suggestion

probably would be absurd. However, taken with other

similar products, the collective impact could be every

bit as substantial as the introduction of primary

productivity software such as word processors or

spread sheets. In a world where human tasks are

growing more and more specialized, it only seems

appropriate to develop software for more and more

specialized tasks, even when those tasks are to be

performed using other software.

3.4. Lessons Learned

 There were many challenges in the process of

developing ClipBits. Along the way there were various

mis-estimations and other unexpected hurdles. We did

our best to adapt to unforeseen circumstances and

persevere through the stress of tight deadlines. From a

managerial standpoint, the implementation of ClipBits

produced many opportunities for learning. Budgeting

of time played an immense role in the process of

development, as the team oftentimes had to work

within the confines of a mere three hours together each

week. This, however, encouraged greater

communication within the team outside of scheduled

meeting times, as problems were often discussed

through email, and resolutions were proposed.

 An early challenge was unexpected behavior from the

IDE while developing the clipboard monitor.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 33

Whenever the prototype was run from the IDE the

messages that signaled that a clipboard event had

occurred were being duplicated. The source of the

anomaly was not obvious and ferreting out the cause

was quite a challenge. Another issue that was of some

concern was the compatibility between the different

components that we were developing. Some of the core

components, which we had originally assumed to be

compatible, proved to be completely incompatible and

required some conversion in order to work together

properly. While the discovery of this incompatibility

came as something of a shock, the rectification was not

as difficult as it might have been.

 The original cost and effort estimates for ClipBits

were slightly misjudged. Original estimates called for

5,407 lines of code, but the final product contained far

less: approximately 2,000. This is due largely to

uncertainty about the extent to which Windows

Presentation Foundation would be used in

development. At the project’s inception, WPF was

intended for use in a strictly UI fashion, but as the

project progressed, it assumed a more prominent role,

as its declarative syntax showed it to be ideal for data-

binding scenarios. Thus, operations that would have

taken many lines of code to implement (such as UI

updates) were relegated to the framework, drastically

reducing the amount of necessary coding.

 Implementation of ClipBits’ Data Access Layer

proved to be more difficult than originally expected.

Though the final implementation differed only slightly

from the original concept, the task of integrating

prototypical work with the complete solution presented

numerous problems, many of which were related to the

use of WPF and data-binding. For instance, the

maintenance of data-bound lists proved to be somewhat

difficult, as WPF reserves a copy of whatever data is

being bound to a list (such as a UI representation of a

ClipButton) for a specific UI thread, which effectively

locks it from other windows. Care was required to

ensure that these memory references did not overlap.

However, all problems were, in the end, effectively

solved.

 In general, the difficulties our team faced were not as

bad as they might have been because our members

were capable and hardworking. Indeed, the importance

of the team itself cannot be overestimated, because

ultimately any resulting success was a direct product of

the people involved.

4. Conclusion and Future Work

 The creation of the ClipBits software solution

demonstrated a number of important lessons regarding

the use of a model-driven development methodology.

First, the use of models during the requirements phase

gave a clear direction to the team concerning the

decided course of action, and provided an excellent

visual resource from which to draw ideas during later

iterations. The design phase greatly benefited from the

model-driven approach; UML class diagrams

combined with OCL constraints allowed the team to

visualize patterns between program elements in ways

that could not be readily achieved otherwise. Finally,

the models presented a useful reference for the

implementation and testing phases; code development

was facilitated by the granularity of feature explanation

in class and architectural models, and testing greatly

benefited from such items as the OCL diagrams in

terms of pre-and post-condition evaluation. Testing

also was made easier by the inclusion of activity

diagrams, which enabled the team to validate the

agreed-upon and established workflow.

 The future of ClipBits is very bright. While the

development team is busy using the software in

separate personal endeavors, important information is

being gained with regard to usability, architectural

optimizations, and overall utility. Future versions may

include far more advanced features, but the guiding

principles of simplicity and ease of use will still apply,

as will the guidance of the models outlined herein.

References

[1] Iam Sommerville. Software Reuse in Software

Engineering 8
th

 Ed., Chapter 18, pp 241 – 265,

Addison-Wesley, 2007.

[2] Damasevicius, Robertas. “Analysis of Components

for Generalization using Multidimensional

Scaling.” Fundamenta Informaticae 91.3/4 (2009):

507-522. Academic Search Premier. Web.

[3] Frakes, Dan. “Clipboard Managers.” Macworld

27.7 (July 2010): 36-37. Web.

[4] xNeat.com. xNeat Clipboard Manager. 2011. Web.

5 Nov. 2011.

[5] http://ditto-cp.sourceforge.net/. Ditto Clipboard

Manager. Web, Nov. 2011.

[6] Stone, David “The Office Clipboard.”PC Magazine

21, Dec. 2001: 83-86. Print.

[7] Zardetto, Sharon. “Two Quick Copy and Paste

Tricks.” Macworld 27.4 (April 2010): 53. Web.

34 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

[8] Microsoft.com. How to use the office 200

clupboard. Web, Nov. 2011, URL:

http://support.microsoft.com/kb/221190/en-us.

[9] Li, Shaobo, Lv, Shulin, Jia, Xiaohui, and Shao,

Zhisheng. “Application of Clipboard Monitoring

Technology in Graphic and Document Information

Security Protection System.” Intelligent Information

Technology and Security Informatics (April

2010):423-6. IEEE. Web.

[10] Pomeroy, Bryony and Wiseman, Simon. “Private

Desktops and Shared Store.” Computer Security

Applications Conference, Annual (December 1998):

190-200. IEEE. Web.

[11] Birss, Edward W.. “The Integrated Software and

User Interface of Apple’s Lisa.” National Computer

Conference (1984):319-28. IEEE. Web.

[12] R. France and B. Rumpe. Model-driven

evelopment of complex software: A research

roadmap. In FOSE '07: 2007 Future of Software

Engineering, pages 37.54,Washington, DC, USA,

2007. IEEE Computer Society.

[13] B. Selic. The pragmatics of model-driven

development. IEEE Software., 20(5):19.25, 2003.

[14] Simmonds, D. M., Reddy, Y. R., Song, E. and

Grant, E. “A Comparison of Aspect-Oriented

Approaches to Model Driven Engineering”, in

Proceedings of the International Conference on

Software Engineering Research and Practice,

(SERP), 2009.

[15] Fred Brooks, “No silver bullet: Essence and

accidents of software engineering,” IEEE Computer,

20(4):10-19, April 1987.

[16] The Object Management Group (OMG). Unified

Modeling Language: Superstructure. Version 2.2,

Final Adopted Specification, OMG,

http://www.omg.org/uml, February 2010.

[17] The Object Management Group (OMG). Object

Constraint Language 2.0, URL:

http://www.omg.org/spec/OCL/2.0/, May 2006.

[18] "Copyright And Fair Use." ASHE Higher

Education Report 34.4 (2008): 31-52. Academic

Search Premier. Web. 2 Nov. 2011.

[19] Collins, Steve. "Digital Fair Prosumption And The

Fair Use Defence." Journal Of Consumer Culture

10.1 (n.d.): 37-55. ISI Web of Knowledge - Web of

Science. Web. 2 Nov. 2011.

[20] Gaffney, BJ. "Copyright Statutes That Regulate

Technology: A Comparative Analysis Of The Audio

Home Recording Act And The Digital Millennium

Copyright Act." Washington Law Review 75.2

(n.d.): 611-641. ISI Web of Knowledge - Web of

Science. Web. 2 Nov. 2011.

[21] Langenderfer, Jeff. "End-User License

Agreements: A New Era Of Intellectual Property

Control." Journal Of Public Policy & Marketing

28.2 (2009): 202-211. Business Source Premier.

Web. 2 Nov. 2011.

[22] Pomeroy, Bryony and Wiseman, Simon. “Private

Desktops and Shared Store.” Computer Security

Applications Conference, Annual (December 1998):

190-200. IEEE. Web.

[23] Rubenking, Neil J.. “Windows Security: This

Time for Sure!” PC Magazine 24.15 (September

2005): 108-184. Business Source Premier. Web.

[24] Cockburn, Brian. "Music And Copyright

(Review)." Notes 62.1 (n.d.): 104-106. Project

MUSE. Web. 2 Nov. 2011.

[25] Champy, James. “Productivity Promise.”

Financial Executive. Oct. 2003: 35. Print.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 35

http://support.microsoft.com/kb/221190/en-us

Virtual Platform Generation Tool for Embedded Systems

Design.

S. Villa, J. Villa, J. Yepes, J. Aedo
ARTICA, Microelectronic and Control Research Group

Electronics Department, Universidad de Antioquia,
Medellín, Colombia

Abstract – With the increasing complexity of embedded

systems, to increase productivity in the design process

has become a research area of great interest. For this

reason, in recent years the literature has developed a

series of strategies or methodologies to obtain

dependable and flexible models in a short time. To

support these design methodologies will be presented a

rapprochement between the model of an embedded

system and its corresponding executable model, based on

model transformation and code generation from UML to

SystemC code. It was found that transformation process

will provide the exploration and system functional

verification before being implemented.

Keywords - UML, MARTE, SystemC, Embedded System,

Wireless Sensor Network, Code Generation, Simulation,

Automatic Generation.

1. INTRODUCTION

he complexity of embedded systems has been

increasing steadily in recent years. Currently, there

is an increase in the complexity of the designs

approximately 60% each year [1]. Moreover, has faced

the growing complexity in the design by combining

methodologies, skills of the designer and tools. Process

led by the electronic design automation (EDA), which

has achieved an increase in design efficiency by 21%

over the same period of t ime [1]

Since the rate at which increases productivity is lower

than the growth of complexity, it is increasingly difficu lt

to achieve dependable designs, with development times

and costs reasonable. This productivity gap in system

design is due to design methodologies do not take full

advantage of current technological advances offered by

the integrated circuits industry.

In order to make optimal design, embedded systems

modeling and simulation are becoming an important area

of research. Also, for greater productivity in the design

process, the literature has proposed the System Level

Design (SLD) methodology, which suggests that the

initial design stages are made at h igh level of abstraction,

omitting the implementation details [2][3]. Th is involves

specifying the functionality of the system without having

defined how it will implement.

This research supports the SLD methodology,

proposing an approach for modeling an embedded

system from the requirements. In this context, the

Unified Modeling Language (UML) has been introduced

to support the specificat ion, design, and verification

stages in the development process, describing both

structure and functionality. A software for automatically

generating code from UML models to SystemC

executable models has been presented.

This paper is organized as follows: Section II

presents the related work. Sect ion III describes the

transformation process. Section IV illustrates the process

through a case study. Finally, Section V presents

conclusions and future work.

2. RELATED WORK

In order to perform complex system designs, the

software community has selected UML as standard

modeling language. Moreover, system simulat ion is

carried out by system description languages such as

SystemC. Thus, a design trend is the integration of these

two modeling languages, to obtain models based on

HW/SW from h igh abstraction levels, appearing the

automatic code generation between UML and SystemC.

Previous works in the transformation of code ([4] [5])

present a comparison between UML and SystemC. The

purpose of the comparison is to find and motivate the

mapping rules for automatic SystemC code from UML,

which is one of the major steps in this investigation. The

focus is on concepts that are equivalent in both

languages, and the concepts and constraints that are

present in each of the two languages. These works

presents a series of formal rules between UML to

SystemC for system platform (not functional model), but

these do not present a modeling of an embedded system

and the corresponding behavior transformation at high

level of abstraction.

Seeking to improve the model transformation from

UML to SystemC, works like [7] present a strategy to

T

36 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

exploit the capabilit ies of both languages by creating a

profile UML/SystemC. This profile allows you to

capture the structural characteris tics such as system

functional. However, this project only is possible to

model the behavior of not very complex systems.

Currently, this research seeks to describe the behavior of

systems using various UML d iagrams such as state

diagrams and/or activity diagrams to allow for greater

flexib ility.

In [8] shows a way to convert the models developed

in UML to SystemC simulat ion models. In itially, they

developed a model with SysML sub-profile, bringing

them closer through a series of restrictions. They

performed a transformation 1 to 1 (d iagram/code)

between the models. Although this research presents an

interesting approach in the process of transformat ion,

which leads directly to the implementation models, it

does not focus on embedded systems.

Trying to correct this, in [9][10][11][12], authors

perform real-t ime systems models using SysML and

MARTE profiles and employing Papyrus tool [13] (an

open source tool based on Eclipse environment for

modeling using UML2.0) and SC2 (based code generator

models). The code transformation is divided into two

parts, both based on the SystemC language. The first one

models the behavior by sc_methods providing

functionality. The second one the model structure by

sc_modules connected by sc_ports. This research

develops an innovation over others, allowing the

insertion of code using Scripts. But the use of two

profiles for the description of real-t ime systems, mean

that the model is somewhat complex. Moreover, the

embedded system behavior is modeled only by state

machines, limit ing the code generation.

Finally, [14] a design environment called Gaspard2

was presented. The process starts from a model made in

MARTE, which represents a high-level model. This

model is directly converted to a specific domain model.

Then, this is transformed into a polyhedron model, in

which the application is reconfigured and divided into

different processing units. This derived model is

transformed into a cycle model, where the applicat ion is

represented according to a traditional pattern of nested

loops. After these transformat ions, the simulation level is

specified, such as SystemC TLM level. This environment

focuses on MPSoC (Multiprocessor System-on-Chip),

but not in WSN.

As illustrated by the literature, it is possible to adapt

UML for modeling embedded systems. And although

UML lacks real-time features, it has profiles that limit

the domain of application according to the designers

needs. Thus, in comparison with existing efforts, the

approach this research approximates the modeling

language (UML) to target language (SystemC) through

the UML/SystemC profile; while real-t ime requirements

are modeled through the MARTE profile. In this way,

models that approximate the real system and are easily

adjustable to the SystemC code are obtained.

Therefore, this study develops a tool to automatically

generate code from UML to SystemC models, aimed at

the functional simulation of embedded systems.

3. METHODOLOGY

As mentioned above, there are studies that seek to

transform UML models to SystemC code. Many of these

studies perform an incomplete system model; some of

them focus on the system structure without addressing

the behavior, while others only seek to represent the

behavior regardless the system physical architecture; and

those which try to cover both fronts are not able to model

complex systems.

In this research the solution to these problems by

implementing the transformation process shown in

Figure 1 was sought. It started with the system

specification using the UML 2.0, and then there were the

automatic generation of SystemC code through a series

of analysis. Finally a simulation and validation model

was obtained.

Figure 1. Transformation Process.

3.1 Modeling System
The transformation process begins with a system

description at a high level of abstraction. Functional

model (application model) and physical structure

(platform model) are separately described. Thus, it is

possible to make a platform independent application,

obtaining a greater flexib ility in designs.

The physical structure describes platform execution

including processing units (such as CPU), storage units

(such memories), and communication modules. In the

physical structure the platform is empty, since the CPU

does not execute any instructions and components are

not connected with logic yet.

The functionality describes the application with real-

time constraints. The functions are synchronized through

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 37

events, exchange of variables and message queues. The

application model has two aspects: the structural aspect

responsible for encapsulating the various functions

which provides paths for exchanging data among them;

the behavioral aspect provides flow used in data

processing and sync functions.

Finally, a virtual system is the result of the mapping

stage, which involves the functions allocation on the

various modules of the platform; i.e. the application

model is projected on the model platform to add physical

constraints, such as scheduling, communicat ion rate and

memory size. The assignment can be deemed as a model

itself.

3.1.1 UML diagrams selection

Due to UML is a really broad language, it is

necessary to make a d iagrams subset selection for the

research domain. It was found that the diagrams that best

fit the research objectives are: package diagram, class

diagram, composite structure diagram, state diagram,

activity diagrams.

3.1.1.1 Package Diagram

Package diagram is used to group elements,

providing an order in the system modeling. This diagram

reflects the separation between application models and

platform. Thus, functional package contains the system

behavior. And component package contains the elements

of the platform model, which can be reused.

3.1.1.2 Class Diagrams

These diagrams are used to model the static system

structure, which defines its elements, relationships, ports

and interfaces. The elements describe two aspects:

 Components for platform model that will be part

of physical system structure, these describe the basic

SystemC entities (such as modules and channels).

 Structures for application model which

encapsulate the behavior of the system, declaring

attributes and methods of a function, they also

represent the elements hierarchy.

3.1.1.3 Composite Structure Diagrams

These diagrams describe the internal structure of

models. There diagrams show the modules, channels,

ports and connectors, and how the communication takes

place among them. This communication is carried out

through ports, which provide/require a service. Also

allowing improving the research designs and facilitating

the generation of code.

3.1.1.4 State Diagrams

State diagrams are used in the functional architecture,

modeling the system dynamic aspects. The transition

among states is triggered by events (sensitive signals).

These diagrams define the system behavior at a high

abstraction level.

3.1.1.5 Activity Diagrams

Activity diagrams can describe the internal workings

of the methods made by state diagrams; that is, they offer

the possibility to specify more thoroughly the system

operations. Additionally, these diagrams allow bringing

the application model to SystemC methods.

3.1.2 UML profile
To extend the capabilit ies of research tool a set of

extensions called profiles was selected. In particular two

profiles –UML/SystemC and UML/MARTE– have been

applied.

3.1.2.1 SystemC profile

This profile is disposed to map UML models

developed in SystemC code. It defines a set of

constraints and similarit ies between both languages, as

shown in Table 1.

UML SystemC Stereotypes
STRUCTURAL

Class Module <<sc_module>>

Class Primitive Channel <<sc_prim_channel>>
Class Hierarchical channel <<sc_channel>>

Class Signal <<sc_signal>>
Class Fifo <<sc_fifo>>

Port Port <<sc_port>>

Port Input/Output <<sc_in/out>>
Connector Connector <<sc_connector>>

Interface Interface <<sc_interface>>

BEHAVIOR
State machines Method <<sc_method>>

State machines Thread <<sc_thread>>
Operation Constructor <<sc_constructor>>

Operation Event <<sc_event>>

Table 1. SystemC Profile

This table shows that the SystemC profile has been

divided into two parts: the first one it related to model

physical arch itecture (structural) and the second one to

their behavior.

3.1.2.2 MARTE pro file

MARTE profile will allow modeling some hardware

devices and real-time constraints. For modeling hardware

components, MARTE has the Hardware Resource

Modeling (HRM) sub-profile, with which can represent

certain resources, such as: a set of processing resources

(<<HwComputing>>), devices involved in the

communicat ion process (<<HwCommunication>>),

memory resources (<<HwStorage>>), assistive devices

that are not so critical (<<HwDevice>>) [15].

MARTE also offers another subprofile to behavior

model called Software Resource Modeling (SRM). This

sub-profile can represent entities that compete for

computing resources by <<SwConcurrency>>,

synchronization mechanisms to control the flow of

execution by <<SwInteraction>>, interfaces between

peripherals and software implementation support

<<SwBroking>> [15]. Furthermore, it allows adding

time’s constraints and events to the functional model

38 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

3.2 Code Generation
The next step in the transformation process is the

code generation and definition ru les between UML and

SystemC models. This is accomplished through a series

of analysis to different system representations. The first

representation is described by UML d iagrams with

MagicDraw tool [16]; this makes it possible to generate a

second code representation XMI (XM L Metadata

Interchange). XMI is a standard language which allows

the easy exchange of data among modeling tools,

specializing in models based on UML [17]. This XMI

code is captured by our tool, which is integrated in the

Eclipse environment, where it applies a XSLT Stylesheet

(eXtensible Stylesheet Language Transformations) by

Saxon-B open source processor which performs a

filtering code, and changes it to another XMI document.

The new document contains only XMI informat ion,

eliminating irrelevant data and providing continuity in

the next step.

Then, within the same working environment, a data

structures generator, called DOM was applied. It

transforms the XMI document to a tree-like structure in

Java. With this representation, the model hierarchy is

captured, obtaining the structured elements (hardware,

attributes and methods). This structure is organized into

arrays with predefined classes.

Thus, the data structure fits into a SystemC template

using the template engine Freemaker. This is an engine

to generate HTML output, but can also be used to

generate the standard text code [17]. The data structure

defines the model, while the template indicates how this

model should be organized in a format source. Thus, the

data structure, the template and the java application

produce the output source code in specific language,

which in this case is SystemC. A template with

Freemaker syntax based on the system data structure and

target language, which allows expressing the system in

SystemC code was created. For the sake of simplicity, in

Figure 2 shows a small part o f the template.

Figure 2. Freemaker template.

3.3 Simulated model
Finally, system model in SystemC language was

obtained. This model allows the simulat ion to validate

platform architecture and application. This simulation is

carried out under the same Eclipse environment, which

should include the SystemC-2.2.0 library [18].

Additionally, more features to generated code to make

measurements of any of the quality factors mentioned at

the beginning can be manually added.

4. CASE STUDY: WIRELESS SENSOR NETWORK

This case study aims to model a wireless sensor

network. It consists on a series of small s mart devices,

called nodes, which are spatially distributed on body; it

communicates wirelessly with other nodes; it has the

ability to sense vital signs and some computing power.

Figure 3. Wireless Sensor Network Model.

#include "${SubMod}.h"
class ${modelo.NAME}: public ${modelo.IDENT}{
public:
// module port declaration
${port.TYPE}<${port.INTERF}<${port.SIZE}>>${port.NAME};
//submodule declaration
${SubMod.CLASS} *${SubMod.NAME};
//process declaration
${(Funct.VISIBILITY)}:
${(Funct.RETURN)}${Funct.NAME}(${par.TYPE}${par.NAME});
private:
${(Funct.RETURN)}${Funct.NAME}(${par.TYPE}${par.NAME});
 . . .
// constructor
SC_HAS_PROCESS(${modelo.CLASS_NAME});
${modelo_.CLASS }(sc_module_name name:sc_module(name){
 //module local channel implementation
 ${Channel.NAME}=new${Channel.TYPE}(${Channel.DATA});
 //submodule port binding
 ${SubMod.NAME}.${SubMod.PORTS} (${SubMod.BINDING});
 . . .
}

//member variables
private:

${var.type}<${var.size}> ${var.name}=${var.value};
 . . .

};

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 39

This model system consists in 3 nodes and a wireless

channel (Figure 3). A node called Sink, which is in

charge of gathering informat ion. The other node will

sense the oxygen saturation (OXI Node), and last one

sense the cardiac activity (EKG Node). Also, the node

behavior can be change by sense motion (Accelerometer

Node) or blood pressure (Pressure Node).

The code generation process followed in this research

begins by modeling the system components. Then, this

section lists each of the diagrams used to specify the

elements of the platform and the system behavior.

Each node is modeled by means of: Central

Processing Unit (CPU), a radio unit, a serial

communicat ion channel, a memory, and an analog-

digital converter a sensing module (ADC), among others.

Each module is represented by a class, which

contains attributes, methods, and ports. Figure 4 shows

the CPU class.

Figure 4. CPU Class.

This module was stereotyped as

<<HwComputingResource>> using the MARTE profile

and it was stereotyped as <<sc_module>> using the

SystemC profile. Also, the module methods can be

stereotyped with the SystemC profile, as simulation

processes (sc_thread or sc_method). These processes are

functions within the modules that are "registered" in the

simulation kernel [19]. Furthermore, a method to be the

class constructor (<<sc_constructor>>) can be

stereotyped.

The connection among the internal modules of a node

is performed by the composite structure diagram.

Communicat ion is done through ports, which either

provide or require interfaces. Figure 5 shows the internal

structure of the accelerometer node.

Figure 5. Node Composite Structure Diagram.

Therefore, Figure 6 shows an example of CPU model

in SystemC language as a result of automatic code

generation derived from UML diagrams. This figure

describes the CPU module header file (CPU. h file). In

the first lines, the modules that compose CPU module

were indicated. Lines 10 to 12 declare module ports

stereotyped with SystemC profile, which allow the data

flow among modules. Lines 13 to 16 instances of the

modules were declared. The functions were defined in

lines 19 and 20, which can be public or private, and their

functionality were modeled using state diagrams and

activity diagrams as shown in Figure 8 and Figure 9. The

constructor is declared between the lines 22 and 36 it

carried out registration functions in the simulation

kernel, and it also carried out the interconnections among

modules. And on lines 38, 39, and 40 module private

variables were declared.

Figure 6. CPU SystemC code generated.

Figure 7 shows the general nodes behavior. The

behavioral model is developed using state diagrams.

Model was applied to some restrictions on MARTE such

as: <<TimeDomain>> which defines a time limit on

states to implement its processes; <<GaEventTrace>>

1 #ifndef MSP430_H
2 #define MSP430_H
3 #include "systemc.h"
4 #include "ADC.h"
5 #include "Clock.h"
6 ...
7 class MSP430: public sc_module {
8 public:
9 //Module Port Declaration
10 tlm:tlm_b_initiator_socket< > RF_socket;
11 tlm:tlm_b_initiator_socket< > led_socket;
12 ...
13 //Submodule Declaration
14 ADC *adc1;
15 Clock *clock1;
16 ...
17 //Functions
18 public:
19 signed int conv_scuint(sc_uint<16> conv);
20 void memoryRW(int &data, tlm::tlm_command cmd);
21 ...
22 //Constructor
23 SC_HAS_PROCESS(CPU);
24 CPU(sc_module_name name):sc_module(name){
25 sc_constructor(CPU);
26 sc_thread(processor);
27 ...
28 //Submodule Implementation
29 adc1 = new ADC("adc1");
30 clock1 = new Clock("clock1");
31 ...
32 //Sub-Module Port Binding
33 adc1.ADC_init_socket(ADC_target_socket);
34 clock.time_init_socket(time_targer_socket);
35 ...
36 }
37 //Attibutes
38 private:
39 tlm::tlm_dmi dmi_data;
40 sc_uint<16> regBank;
41 ...
42 };
43 #endif

40 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

which indicates signals are activated by external events;

and <<ResourceUsage >> which specifies that state

makes use of physical resources.

Figure 7. NodeBehavior - StateDiagram .

As mentioned earlier, the model of the behavior of an

embedded system could be described by state machines

and/or activity diagrams. This second diagram, allowing

to easily manipulate data, is mainly used to specify in

detail the functions within the states. Figure 8 shows an

example of how it can be an activity diagram and Figure

9 shows the corresponding code translation.

Figure 8. Internal State – Activity Diagram.

After completing the system models using UML, the

transformation process suggests the generation of code,

in order to get the virtual model of our sensor network.

The generation begins by describing the code obtained

from the hardware platform. This is achieved searching

various structural diagrams (class and composite

structure) and selecting the attributes, methods,

connections between modules, among others.

Also, the code generation for system behavior is

carried out by the state machines and activity diagrams.

The figure shows the generation obtained from the

activity diagram shown above (figure).

Figure 9. SystemC behavior.

Finally, the final step of code generation tool is the

implementation of the model in SystemC Figure. The

model simulation is shown below. This can be visualized

that node 1 captures the input signal and generates a

request to the node sink. This, to be available, responds

to the node can send the captured data. Node 1 sends the

data and displays it sink. This process is repeated each

time a signal is generated. To display these messages on

screen, the model allows the designer to enable debug

mode, facilitating the correction of the model.

Figure 10. CPU SystemC code generated.

1 SystemC 2.2.0

2 Node: 0 capturing… value:732mV (NODE)

3 Event node: 0 waiting... (SINK)

4 Node: 0 sending... (NODE)

5 Data: 732mV (SINK)

6 Node: 1 capturing… value:684mV (NODE)

7 Event node: 1 waiting... (SINK)

8 Node: 1 sending... (NODE)

9 Data: 684mV (SINK)

10 Node: 0 capturing… value:661mV (NODE)

11 Event node: 0 waiting... (SINK)

12 Node: 0 sending... (NODE)

13 Data: 661mV (SINK)

14 ...

1 void CPU_NODE::internal (void) {

2 sc_int<16> dato;

3 int state = 0;

4 while(true){

5 switch(state){

6 case 0:

7 #if _DEBUG

8 cout<<"s0 Node:"<<num<<endl;

9 #endif

10 out->write(num);

11 dato = in->read();

12 state++;

13 break;

14 case 1:

15 if (ACKin->read()==true){

16 out->write(dato);

17 state = 0;

18 }

19 break;

20 }

21 }

22 }

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 41

5. CONCLUSIONS

In this paper, a design process for automatic code

generation, to improve productivity and quality in system

design was followed. It was necessary to merge the

capabilit ies’ UML to model systems with the power to

simulate of SystemC language. In this process designs

flexib le designs due to its modularity, and the separation

between platform model and application model was

achieved. UML allows modeling through graphical

notations and approach our models to a specific domain,

due to the profiles that can handle this language, making

language UML valuable for the design of embedded

systems and real-time systems.

The code generation tool was developed so that he

can accept hierarchical models of the system on both

fronts: platform (Class diagram and composite structure)

and behavior (activity diagram and state machines). This

feature allows the designer obtain modular system,

leading to the reuse of models and facilitating their

maintenance.

Furthermore, due to the implementation of two

diagrams for describing the behavior (state machine

diagram and activity diagram), expanded the number and

complexity of applications that can be modeled and

generated.

As future work it has been pretended to study the

restrictions that MARTE profile offers to perform

modeling real time systems. Also, it is intend to continue

improving the rules for both modeling and code

generation, in order to ensure the right transformation to

SystemC models.

6. ACKNOWLEDGMENT
Research supported by COLCIENCIAS, TIC

Ministry at Colombia, and ARTICA (excellence research

center) with the project “Design Methodology of

Embedded Systems with High Reliability and

Performance Focused on Developing of Crit ical

Applications,” Colombia.

7. REFERENCES

[1] W. Wolf. “High–Performance Embedded

Computing: Architectures, Applications and

Methodologies”. Morgan Kaufmann. 2007.

[2] Alberto Sangiovanni-Vincentelli “Quo Vadis, SLD:

Reasoning About the Trends and Challenges of System

Level Design”, Proceedings of the IEEE, Vol. 95 No. 3,

March 2007.

[3] A. Sangiovanni-Vincentelli. “Is a Unified

Methodology for System-Level Design Possible?”. IEEE

Design and Test of Computers Special Issue on Design

in the Late and Post-Silicon Era, 25(4):346-358, Ju ly

2008.

[4] Per Andersson, Martin Höst. “UML and SystemC –

A Comparison and Mapping Rules for Automatic Code

Generation”, Embedded Systems Specificat ion and

Design Languages, Chapter 14, Ed itioral Springer, 2007.

[5] P. Andersson, M. Höst, M. Bergström. “UML to

SystemC Transformation in the MARTES Project”.

Embedded Systems Specificat ion and Design Languages

– FDL’07, 2007.

[6] E. Riccobene, P. Scandurra, A. Rosti, and S.

Bocchio. “An HW-SW Co-design Environment based on

UML and SystemC”. 2008

[7] Correa B.A., Eusse J.F., Múnera D., Vélez J F.,

Aedo J.E. “High Level System-on-Chip Design using

UML and SystemC”. Electronics, Robotics and

Automotive Mechanics Conference (CERMA).

[8] J. Vidal, F. de Lamotte, G. Gogniat, Ph ilippe

Soulard, Jean-Philippe Diguet: “A co-design approach

for embedded system modeling and code generation with

UML and MARTE”. Design, Automation & Test in

Europe Conference & Exhibition, 2009.

[9] M. Mura, A. Panda, M. Prevostini. “Executable

Models and Verificat ion from MARTE and SysML: a

Comparative Study of Code Generat ion Capabilit ies”.

Workshop, 2008.

[10] L. Murillo, M. Mura, M. Prevostini. “Model-based

Design Space Exploration for RTES with SysML and

MARTE”. Forum on Specification, Verificat ion and

Design Languages, 2008.

[11] L. Murillo, M. Mura, M. Prevostini. “Bridging the

Gap between Model Driven Engineering and HWSW

Codesign”. Master Thesis, 2009

[12] M. Mura, M. Prevostini. “Code Generat ion from

Statecharts: Simulat ion of Wireless Sensor Networks”.

Conference on Digital System Design Architectures,

Methods and Tools, 2008.

[13] Open source Tool for graphical UML2 Modelling

www.papyrusuml.org

[14] É. Piel, R. Ben Attitalah, P. Marquet, S. Meftali, S.

Niar, A. Etien, J.Dekeyser, and P. Boulet. “Gaspard2:

from MARTE to SystemC Simulat ion”. DATE 08,

Munich, Germany, March 2008.

[15] “A UML Profile for MARTE: Modeling and

Analysis of Real-Time Embedded systems, Beta 2”.

OMG Adopted Specification. June 2008.

[16] Visual UML modeling tool www.magicdraw.com

[17] “MOF 2.0/XMI Mapping, Version 2.1.1”. OMG

Available Specification. December 2007

[18] The Open SystemC In itiative (OSCI).

www.systemc.org

[19] D. Black, J. Donovan, B. Bunton, A. Keist.

“SystemC: From the Ground Up”. Springer

Science+Business Media, LLC. 2010.

42 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

http://www.papyrusuml.org/
http://www.magicdraw.com/
http://www.systemc.org/

An Object-Oriented Social Networking to Link People
with Similar Interests and Activities

Ching-Cheng Lee, Prachi Garg

Department of Computer Science, California State University at East Bay, Hayward, California, USA

Abstract - Social Networking sites have become increasingly
prevalent in the society as a medium to socialize and connect
with friends. These websites have changed the way we
communicate and share our thoughts and experiences with
other people. However, most social networking websites lack
in connecting people over common activities or interests.
Users often befriend other users with the objective to swap
profiles and increase their friend list. Overtime, these
connections become meaningless since there is no common
interest or activity to bind them. This research proposes an
effective approach to find users' interests and suggest friends
by implementing object-based features in a social networking
application. Object centered sociality is suited for most social
networking sites since it provides users a means to connect
with other users who have similar level of interest.

Keywords: MyBook, MVC, JSP, Apache Tomcat, J2EE

1 Introduction
 Most social networking sites focus primarily on building
friends list and are more useful for contacting and locating old
friends or make new ones. They allow users to create profiles,
swap messages, and share photos – all with the goal of
expanding their circle of online friends. These websites are
good at representing links between people, but it does not
explain what connects those particular people and not others
[1]. They provide little attraction for repeated visits and
therefore after some point become boring. Connecting content
and people would provide a meaning to social networking [2].
Associating social networking site members with others who
have similar values and topical interests are more likely to be
friends, and therefore lead to an effective communication.
Developing an Object-Centered sociality can facilitate
focused interactions among online communications.

1.1 Object-Oriented Sociality

 Social networking sites provide features to find people
with similar interests. However, they only use interests that
are already specified by users in their profile and therefore are
very static in nature. Often times users search for people on
social networking sites by specifying their interests for
example, cooking, in the search bar. The result shows a list of
people who have mentioned cooking either in their interest

section or somewhere in their profile name. But there is no
information about their (users) level of interest in cooking.
Object-centered sociality on the web emphasizes on linking
people dynamically through shared objects of interests like
jobs, workplaces, sports and hobbies. This technique involves
analyzing content posted by a user on his/her homepage.
Content analysis will provide the system with information
about user’s interest level in various fields. When users post
blogs, upload files or pictures they can annotate them via tags.
Similar annotations are then searched through the system that
determines the interests of other users. The result is further
analyzed to determine the interest level of those users in that
particular subject and create a compatibility meter. A friend
list is then prepared and suggested to the user.

2 Background
 The possibility to publish and gather personal
information has been a major factor in the success of the Web
from the beginning. Remarkably it was only in the year 2003
that the Web has become an active space of socialization for
the majority of users [3]. That year has seen the rapid
emergence of a new breed of Web sites, collectively referred
to as social networking services (SNS). The first-mover
Friendster attracted over 5 million registered users in the span
of a few months [4] which was followed by Google and
Microsoft starting or announcing similar services. Many
popular Web applications are now exploiting user-driven
information networks built by means of social
annotations[5][6]. Social annotations are freely established
associations between Web resources and metadata (keywords,
categories, ratings) performed by a community of Web users
with little or no central coordination. A mechanism of this
kind, which has swiftly become well established is that of
collaborative tagging[7][8], whereby Web users associate
free-form keywords – called “tags” – with on-line content
such as Web pages, digital photographs, bibliographic
references and other media. The product of the users’ tagging
activity is an open-ended information network – commonly
referred to as “folksonomy” – which can be used for
navigation and recommendation of content, and has been the
object of many recent investigations across different
disciplines[9][10][11].

Most Social Networking Sites focus on helping users create as
many friend connections as possible, but provide limited

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 43

means of sustaining connections or keeping the friends
interested in each other. Users of socializing sites typically get
friend invitations also from authors they don’t necessarily
know, or know very little about. These often include bands,
communities or people wanting to network because of various
reasons. All this is an effective way to encourage people to
socialize more and to get connections, but the profile data in
the sites needs to be discovered either manually or by
proactive recommendation systems discussed e.g. in[12][13].
Several social networking, social bookmarking and blogging
websites are being actively researched. While these SNSs
allow searching for people with similar interest and make a
friend connection, they do not provide any mechanism to
determine a user’s interest level in a particular activity or
subject. All past research acknowledge the challenge in
connecting people on web and increasing their network of
friends, and sought similar solutions by suggesting them
mutual friends.

2.1 The Future of Social Networks

 The future of social networks on the Internet [2]
suggests semantic web for linking and performing operations
on object-related data gathered from different social
networking websites. Friend-of-a-Friend8 project lets people
share and use information about their activities and transfer
information between websites. It describes people, the links
between them and the things they create and do. Leveraging
Social Networking Services to Encourage Interaction in
Public Spaces[6] propose a system that utilizes the user
generated content on socializing websites and displaying
flashes of uploaded digital content on a large public display
situated in the public or semi-public space like an airport or
café. They do not, however, propose any methodology for
making friends with similar interest level in an activity as that
of the user’s. The success of any SNS is directly proportional
to how they can keep their users interested. [15] suggests that
tags that are used to organize resources or find related
resources can now potentially serve as objects around which
the users can form tight connections. Research in recent years
have proposed developing an object-oriented sociality on the
web that links people based on shared objects of interests like
jobs, sports, hobbies etc., and therefore keep the users
interested.

3 Architecture

3.1 System Architecture Overview

 The system consists of the following components: User
Management, Blog Management, Picture Management,
Interests Management, Friend management, Friend
Suggestion.

User Management – Facilitates adding users to the system
authenticating users.

Blog Management – Facilitates a user to retrieve, upload or
modify blogs in the system. To add new blog, user clicks on
the 'Add New Blog' link, adds the desired text and a title for
the blog. The blog is then stored in the system. The user can
later modify Blogs.

Picture Management – Facilitates a user to retrieve, upload or
modify pictures in the system. To upload picture, user clicks
on ‘Upload Picture link. Picture can be uploaded from the
desired location on the computer. A copy of the picture is
then stored in the system.

Interests Management - Retrieves all interest in the system
and display them in a tag cloud based on its usage. Searching
an interest would display all blogs, files pertaining to that
interest. It will also display interested users in a cloud form. A
larger font size would mean more results were found for that
user.

Friend Management – Facilitates a user to add a friend.

Friend Suggestion - The system matches a particular user’s
interests with other users in the system and suggests friends to
user. Users are displayed in cloud form. A larger font size
would mean more similarity between the user and the
suggested friend..

3.2 Friend Suggestion Algorithm

 The implementation of the friend suggestion algorithm is
a key component of this research. The following describes the
major steps of the algorithm for building the Friend
Suggestion List.

• Step 1. GetListOfUsersFromDB
Get all the Users from the database that has the same tag
names as the current user.

• Step 2. BuildTagInfoFromDB
For a list of users that have the same tag names as the
current user, extract all the tag names and tag count from
the database and build the List<TagInfo> data structure.
List<TagInfo>:=
List<TagCount,TagName>

• Step 3. ComputeUserMatrix
Compute the User Matrix from the List<TagInfo>

• Step 4. NormalizeUserMatrix
Compute the Normalized Matrix from the User Matrix

• Step 5. ComputeUserSimilarity
Compute User Similarity from NormalizedUserMatrix

• Step 6. BuildFriendSuggestionList
Build Friend Suggestion List from User Similarity in the
previous step: List<FriendSuggester>:=
List<userName, Similarity, Rank>
Sort FriendSuggester by user Name.

44 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

4 Implementation
 The implementation of our algorithms together with the
presentation layer is called MyBook. A Spring framework
based on MVC architecture is used to build this application.
The following are the main pages provided by the presentation
layer of the application:

Login Page: This page allows the users to enter Username and
Password.
Home Page: This page shows the users’ friends, blogs, files
and popular tags. It also lets the users navigate to other pages
like – AddBlog, UploadPicture, etc.
All the above modules are designed and developed using
Java, JSP, Apache Tomcat, Spring Framework, and other
open source technologies in the J2EE realm.

5 Experiments
 Two experiments were carried out to illustrate the
effectiveness of our design and implementation as follows.

5.1 Experiment 1

 As shown in Figure 1, the user logins and enters blogs
and tags them. The system looks into the user’s interests and
suggests potential friends. As soon as the user enters more
blogs and tags, the system updates the friend suggestion list.

 Figure 1 – Friend Suggestion

5.2 Experiment 2

 Following are the steps for step Experiment2. In this
experiment, we create N users and generate M Tags. For each
user, we create blogs with tags. Then we run the Friend
Suggestion Algorithm.

1. Create N Users for the MyBook (u1..uN)
2. Generate M tags (t1..tM)
3. For each user, create [M/2 + Random(0,M/2)] blogs with

Each blog a tag in [Random(1, M)]
4. For each of the user, run the Friend Suggestion Algorithm

and calculate the average response time in milliseconds.

In the following, Table 1 shows the time taken in generating
the friend suggestion list in different scenarios such as the
number of Users and number of Tags.

 Table 1 – Time in Generating the Friend Suggestion List

6 Conclusion
 The system proved 100% efficient in finding a user’s
interest and suggesting friends based on his/her interest during
each browser session. It also updates the friend suggestion list
as soon as any new blog or file is entered into the system. A
manual search for friends with similar interests is not
required. Friendships established by manual search may or
may not lead to meaningful connection since the interest level
of users in an activity cannot be determined beforehand. The
system is efficient in automatically suggesting friends to a
user based on his/her interest. In comparison to MyBook, most
social networking sites suggest friends based on friend of a
friend system. Facebook, MySpace and Orkut suggest mutual
friendship. They also allow searching for people based on
their interest but the results shown do not tell the interest level
in that particular activity. It is therefore, not a viable solution
to the issue addressed in this research. Delicious provides
tagging and searching for data under the same tag name. It
gives usernames who created that tag, but does not have
profile information. It cannot be used as a utility to connect
with people and socialize.

Users Tags
Generate the Friend

Suggestion List Average
Time (ms)

100 10 37.39

500 10 115.59

1000 10 233.81

100 50 103.34

500 50 506.76

1000 50 1001.19

100 100 185.37

500 100 954.41

1000 100 1934.12

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 45

7 Future Work
 As an extension to this work, we propose the scheme of
auto-generation of Tags/Objects. The current implementation
relies on user-entered tags to identify interest. In fact,
Keyword search can be performed on the user-generated
content (blogs, files etc) to auto-generate tags/objects. That
can then be fed into the friend suggestion algorithm. Keyword
search engine can either be run periodically on the user-
generated content (blogs, files etc) to generate tags or can be
performed immediately at the time the user-content gets
saved. Implementation will require use of stand-alone text
search engines like Lucene or full-text search operations
provided by database engine (MySQL).

8 References.
[1] K. Knorr Cetina “Sociality with Objects: Social
Relations in Postsocial Knowledge Societies”, Theory Culture
and Society, 1997, Vol.14

[2] John Breslin, Stefan Decker, “The Future of Social
Networks on the Internet: The Need for Semantics”, IEEE
Internet Computing, November 2007, pp. 86-90

[3] P. Mika. "Flink: Semantic web technology for the
extraction and analysis of social networks," Journal of Web
Semantics, vol. 3, pp. 211-223, October 2005.

[4] L. Kahney, "Making friendster in high places," The Wired
News, July 2003.

[5] X, Wu, L, Zhang, Y. Yu “Exploring social annotations
for the semantic web” ACM, 2006, pp.417–426.

[6] T, Hammond, T, Hannay, B, Lund, J, Scott “Social
Bookmarking Tools (I): A General Review”, D-Lib Magazine
11, 2005.

[7] A., Mathes “Folksonomies – Cooperative Classification
and Communication Through Shared Metadata” 2004.

[8] S, Golder, B. A, Huberman “The Structure of
Collaborative Tagging Systems”, Journal of Information
Science, 2005, 198–208.

[9] C, Marlow, M, Naaman, D, Boyd, M, Davis, HT06
tagging paper, taxonomy, Flickr, academic article, to read
ACM, pp. 31–40.

[10] C, Cattuto, V, Loreto, L,Pietronero “Semiotic Dynamics
and Collaborative Tagging”, Proc. Natl. Acad. Sci. USA,
2007, 1461–1464.

[11] Ciro Cattuto, Alain Barrat, Andrea Baldassarri, Gregory
Schehr,Vittorio Loreto, “Collective dynamics of social
annotation”, hal-00361199, version 2 - 30 Apr 2009.

[12] J., Donath “Identity and deception in the virtual
community”, Kollock P and Smith M (Eds): Communities in
Cyberspace, Routledge, London, 1998.

[13] Simo Hosio, Hannu Kukka, Jukka Riekki, “Leveraging
Social Networking Services to Encourage Interaction in Public
Spaces”, ACM, December 2008.

[14] Friend of a Friend Project http://www.foaf-project.org/

[15] Gene Smith, “Tagging: People-Powered Metadata for the
Social Web” Publisher: New Riders, December 2007.

46 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Comparison of software development productivity based
on object-oriented programming languages

Cuauhtémoc López-Martín1, Arturo Chavoya2, and María Elena Meda-Campaña3
1, 2,3 Information Systems Department, CUCEA, Guadalajara University, Jalisco, Mexico

1 cuauhtemoc@cucea.udg.mx, 2 achavoya@cucea.udg.mx, 3emeda@cucea.udg.mx

Abstract - The reasons for measuring software productivity
are to identify how to reduce software development costs,
improve software quality, and improve the rate at which
software is developed. In this paper, a data set of 572 software
individual projects developed from 2005 to 2010 with
practices based on a process specifically designed to
laboratory learning environments (Personal Software
Process) is used to know if there is any statistically
significance difference between the productivity of developers
whose projects were written using the object oriented
programming languages C++ and Java. Results suggest that
there is difference between projects developed in these two
programming languages when software projects have been
developed in a disciplined way in a laboratory learning
environment.

Keywords: Software development productivity, Object
oriented programming languages, Empirical software
engineering.

1 Introduction

The abstraction describes on which level the measurements

software projects are carried out; there exist the following five
abstraction levels [8]: organization, process, project,
individual and task. This study is related to the individual
level once software projects were individually developed by
practitioners.

There are at least the following four options to collect as
well as to report software production data [16]: developer self
report, project or team manager, outside analysts or observers,
and automated performance monitors. This study was related
to the first option. In order to reduce bias, each developer used
the same personal practices based upon Personal Software
Process (PSP). The PSP was selected because the levels of
software engineering education and training could be
classified in the small as well as in the large software projects
[1]. In the case of small software projects, the PSP whose
practices and methods are used for delivering quality products
on predictable schedules can be useful [6]. Moreover, it has

been suggested that a higher productivity over the entire
system life cycle use to be associated with the use of a
disciplined programming methodology [2]; even, productivity
increases when extensive use of modern programming
practices are applied (as top-down design, modular design,
design reviews, code inspections, and quality-assurance
programs) [17].

In accordance with the use of PSP for gathering data,
some previous researches have approached their efforts to PSP
automate [9] [14] and yet others have incorporated PSP
concepts into their programming courses [11].

There have been diverse measures of productivity ([5] [16]
[18]), in them have been indicated that the measure of
productivity most commonly used is that of size over effort
productivity = size / effort. That is the one used in this study;
the size is measured using number of lines of code developed
by unit of effort.

There have been two main directions on the study of
productivity in software engineering literature [18]: (1)
researches have been focused on the measure or estimation of
productivity, and (2) emphasis has been laid on the discovery
of methods or significant factors for productivity
improvement. The approach of this study is related to second
direction.

Because of the type of programming language is one of the
two main factors found having significantly influence on the
productivity [7], the sample of this study integrates those
projects coded in C++ or Java. The hypotheses of this research
are the following:

H1: There is a statistically significant difference in the
development productivity between the projects coded
in C++ and those coded in Java when the projects are
developed in a disciplined way in a laboratory
learning environment.

H2: There is not a statistically significant difference in
the development productivity between the projects
coded in C++ and those coded in Java when the
projects are developed in a disciplined way in a
laboratory learning environment.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 47

1.1 Software measurement

 Measures of source code size can be classified in physical
source lines and in logical source lines [13]. The count of
physical lines gives the size in terms of the physical length of
the code as it appears when printed. Lines of code have been
used by previous researches focused on productivity analysis
of large projects [3] [4] [10] [16] [17] and even more recently
when productivity has been related to individual projects [15].

In this study, the independent variable in the prediction
models is New and Changed (N&C) code and it is considered
as physical lines of code (LOC). N&C is composed of added
and modified code [6]. The added code is the LOC written
during the current programming process, while the modified
code is the LOC changed in the base software project when
modifying a previously developed project. The base project is
the total LOC of the previous project while the reused code is
the LOC of previously developed projects that are used
without any modification.
 A coding standard should establish a consistent set of
coding practices that is used as a criterion when judging the
quality of the produced code [6]. Hence, it is necessary to
always use the same coding and counting standards. The
software projects developed of this study followed such
guidelines.

2 Experimental design
 Because measuring software productivity presupposes an

ability to construct a measurement project comparable to those
employed in experimental designs for behavioral studies, it is
necessary to insure that the measures employed are reliable,
valid, accurate, and repeatable. It means that to measure
software production implies understanding of the relationship
between measurement and instrumentation employed to
collect and measure data [16]. Hence, in this paper data
collected were related to the same instruments (logs), phases,
and standards suggested by PSP.
 The experiment was done inside a controlled environment
having the following characteristics:

1. All of the developers were experienced, working on
software development inside their enterprises at which they
were working; however, no one of them had received a course
related to personal practices for developing software at
individual level.

2. All developers were studying a postgraduate program
related to computer science.

3. Each developer wrote seven project assignments.
However, only four of them were selected from each
developer. The first three projects were not considered
because they had differences in their process phases and logs,
whereas in latest four projects phases are the same: plan,
design, design review, code, code review, compile, testing and
post-mortem, and they are based upon the same logs.

4. Each developer selected his/her own programming
language whose code standard had the following

characteristics: each compiler directive, variable declaration,
constant definition, delimiter, assign sentence, as well as flow
control statement was written in a line of code.

5. Developers had already received at least one formal
course about the object oriented programming language of
their choice and they had good programming experience in
that language. The sample of this study reduced the bias
because it only involved developers whose projects were
coded in C++ or Java. One reason for selecting these kinds of
languages is because object-oriented languages facilitate high
productivity [16].

6. As this study was an experiment with the aim to reduce
bias, we did not inform developers about our experimental
goal.

7. Developers filled out an Excel sheet for each task and
submitted it electronically for examination.

8. Each PSP course had a group of fifteen developers or
less.

9. All of developers coincided with the counting standard
depicted in Table 1.

10. Developers were constantly supervised and advised
about the process.

11. The code written in each project was designed so to be
reused in subsequent projects.

12. The developed projects had complexity similar to
those suggested in the original PSP [6]. From a set of 18
individual projects, a subset of seven was randomly assigned
to each of all developers. A brief description by project is the
following:

• Estimating the mean of a sample of n real numbers.
• Estimating the standard deviation of a sample of n

real numbers.
• Matrix addition integrated by real numbers.
• Summing the diagonal of a real numbers square

matrix.
• Translating from a quantity to letters.
• Calculating the correlation (r) between two series of

real numbers.
• Computing the linear regression equation parameters

a and b (y=a+bX).
• Calculating z-values from a sample of real numbers.
• Calculating the size of a sample.
• Calculating the y-values from a sample of real

numbers using the normal distribution equation.
• Calculating the estimation standard error (from

y=a+bX).
• Calculating the coefficient of determination (r2) from

a linear regression equation.
• Calculating both upper and lower limits from a

sample of real numbers based upon its standard
deviation and mean

• Calculating the coefficient of variation from a
distribution.

• Estimating the values based upon statistical empirical
rule.

48 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

• Counting the physical lines of code of a software
project omitting comments and blank lines.

• Both storing and searching records from a file.
• Both deleting and modifying records from a file.
• Data used in this study belong from those developers,

whose data for all seven exercises were correct,
complete, and consistent.

Table 1. Counting standard
1) Count type Type

Physical/logical Physical
2) Statement type Included
a) Executable Yes
b) No executable

Declarations Yes, one by text line
Compiler directives Yes, one by text line
Comments and Blank lines No

3) Clarifications
{ and } Yes

3 Data analysis
 Data from 572 individual software projects developed
by 143 practitioners between the years 2005 to 2010 were
used to be compared in this study (Appendix A). Once the
sample of 572 software projects was developed with C++
(288 projects) and Java (284 projects), we analyzed if there
was any statistical difference in their productivity values.
Table 2 shows that since the p-value of the F-test is less than
0.05, there is a statistically significant difference between the
productivity of the two languages at the 95.0% confidence
level. This difference result can graphically be observed in the
means plot of Figure 1, which shows that those projects coded
in Java had a better productivity that those coded in C++ with
(28 versus 25 N&C lines of code by hour).

Table 2. ANOVA for productivity by programming language

Source
Sum of
squares

Degrees of
freedom

Mean
square

F-ratio P-value

Between groups 1689.47 1 1689.4 8.15 0.0045
Within groups 118136. 570 207.25
Total 119825. 571

Figure 1. Plot of means for programming languages

 The validity of an ANOVA is based on the analysis of the
following three assumptions of residuals [12]:
 1) Independent samples: Each project was developed
independently and by a single practitioner, so the data are
independent.
 2) Equal standard deviations: In a plot of this kind the
residuals should fall roughly in a horizontal band centered and
symmetric about the horizontal axis (as shown in Figure 2),
and
 3) Normal populations: A normal probability plot of the
residuals should be roughly linear (as shown in Figure 3).
 Hence, the three assumptions for residuals in the
productivity data set were considered as met.

Figure 2. Equal standard deviation plot from programming
languages

Figure 3. Normality plot from programming languages

4 Conclussions
Owning that there are relevant reasons for measuring

software productivity and based upon the assumption that the
programming language has influence in the software

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 49

development productivity, this study compared software
projects code in two object-oriented programming languages.
The software projects were developed following a disciplined
process in a controlled environment.

After an statistical analysis based upon ANOVA, the
accepted hypothesis is the following:

H1: There is a statistically significant difference in the
development productivity between the projects coded
in C++ and those coded in Java when the projects are
individually developed in a disciplined way in a
laboratory learning environment.

After ANOVA, a plot of means showed that projects coded
in Java showed a better productivity than those coded in C++.
This result was validated based on the three assumptions of
residuals.

Future research is related to comparison between these two
programming languages when they are used in industrial
software projects.

5 References
[1] Bagert D. J., Hilburn T. B., Hislop G., Lutz M., McCracken

M., Mengel S. "Guidelines for Software Engineering
Education". CMU/SEI-99-TR-032, ESC-TR-99-002, Software
Engineering Institute, Carnegie Mellon University. 1999

[2] Bailey, J., Basili, V. "A Meta-Model for Software
Development Resource Expenditures". 5th. Intern. Conf. Soft.
Engr., IEEE Computer Society, pp. 107-116. 1981

[3] Boehm B., Abts Ch., Brown A.W., Chulani S., Clarck B. K.,
Horowitz E., Madachy R., Reifer D. & Steece B. "COCOMO
II ", Prentice Hall. 2000

[4] Cusumano M., Kemerer, C.F. "A Quantitative Analysis of
U.S. and Japanese Practice and Performance in Software
Development", Management Science. Pages 1384-1406. 1990

[5] Fenton N.E. & Pfleeger S. L. “Software Metrics: A Rigorous
and Practical Approach". PWS Publishing Company. 1997

[6] Humphrey W. "A Discipline for Software Engineering".
Addison Wesley. 1995

[7] Jiang, Z., Comstock C. "The Factors Significant to Software
Development Productivity". World Academy of Science,
Engineering and Technology. Pages 160 – 164. 2007.

[8] Kai, P., 2011. Measuring and predicting software
productivity: A systematic map and review. Information and
Software Technology, Elsevier, Volume 53, Issue 4, pages
317-343

[9] Johnson, P.M, Kou, H., Agustin, J., Chan, Ch., Moore, C.,
Miglani, J., Zhen, S., & Doane, E.J. "Beyond the Personal
Software Process: metrics collection and analysis for the
differently disciplined". Conference on Software engineering
education and training: process and methodology. Pages 641 –
646. 2003.

[10] Lawrence, M.J. "Programming Methodology, Organizational
Environment, and Programming Productivity", Journal of
Systems and Software, Elsevier. Vol. 2, Pages 257-269. 1981

[11] Maletic J.I., Howald, A., Marcus A. "Incorporating PSP into a
traditional software engineering course: an experience report".
International Conference of Software Engineering Education
and Training. Pp. 89 – 97. 2001.

[12] Montgomery D. C.. "Design and Analysis of Experiments".
John Wiley, 2009.

[13] Park, R.E. "Software Size Measurement: A Framework for
Counting Source Statements". Software Engineering Institute,
Carnegie Mellon University. CMU/SEI-92-TR-020. 1992.

[14] Postema, M. Dick, M., Miller, J., Cuce, S. “Tool Support for
Teaching the Personal Software Process". Computer Science
Education, Vol. 10, No. 2, Pages 179-193. 2000.

[15] Rombach D., Münch J., Ocampo A., Humphrey W.S., Burton
D. "Teaching disciplined software development". Journal
Systems and Software, Elsevier, pp. 747- 763.. 2008.

[16] Scacchi, W. "Understanding Software Productivity".
International Journal of Software Engineering and Knowledge
Engineering. Revised and reprinted in Advances in Software
Engineering and Knowledge Engineering, D. Hurley (ed.),
Pages 37-70. 1995.

[17] Vosburg, J., Curtis, B., Wolverton, R., Albert, B., Malec, H.,
Hoben S., Liu, Y. "Productivity Factors and Programming
Environments", Proc. 7th. Intern. Conf. Soft. Engr., IEEE
Computer Society, Pages 143-152. 1984

[18] Zhizhong, J., Naudé, P., Comstock, C. An Investigation on the
Variation of Software Development Productivity,
International Journal of Computer and Information Science
and Engineering, Pages 72-81. 2007.

50 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

SESSION

SOFTWARE ARCHITECTURE, DESIGN
PATTERNS + PETRI NET

Chair(s)

TBA

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 51

52 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Enterprise Architecture and Organizational Transformation: The Human

Side of Information Technology and the Theory of Structuration

 Dominic M. Mezzanotte, Sr. and Josh Dehlinger

Department of Computer and Information Sciences

Towson University

{dmezzanotte, jdehlinger}@towson.edu

Abstract
Enterprise architecture (EA) transforms the

structure, culture, and social environment of an

enterprise by introducing new processes and

technologies into the workplace altering the roles,

duties, responsibilities and organizational position of

stakeholders. This transformation frequently affects

stakeholder behavior and leads to either acceptance

or rejection of an EA. Existing EA frameworks fail to

recognize the significance of human behavior and its

effect on EA. Therefore, a more holistic approach

that includes sociologically-oriented provisions is

needed. This paper advances our earlier work by

exploring three factors that influence EA:

organizational transformation, stakeholder

resistance to change, and elicitation/use of erroneous

EA requirements. Each of these issues can be

addressed by implementing a sociologically-oriented

approach designed to remove barriers that limit

stakeholder action. The proposed approach focuses

on a socio-communicative process that establishes an

environment where stakeholder involvement in the

decision-making aspects of EA is central.

Keywords: Enterprise architecture, organizational

change, stakeholder behavior.

1. Introduction

Enterprise architecture (EA) embodies the

business objectives, processes and technology

infrastructure reflecting the desired incorporation and

standardization requirements of an enterprise’s

operating environment [9]. In today’s business

climate, an EA represents a continuously evolving

architecture aimed at improving operational

efficiency and effectiveness. In the development of

an EA, an EA Plan (EAP), documents the

requirements that drive EA focusing on the

architectural design, alignment, implementation, and

deployment of new and/or enhanced technology

[13][20]. EA requirements are predicated on

gathering, analyzing, and validating explicit and tacit

organizational knowledge. Thus, the EA focuses on

the information technology (IT) processes, related

artifacts, platforms, software applications, and

business and strategy to support and accomplish IT

operations [12][20][28].

However, the implementation of an EA poses

several potential problems requiring organizational

management and an Enterprise Information Architect

(EIA) to address and resolve: EA redefines the way

and manner in which an enterprise functions [22]

and, therefore, affects either positively or negatively

stakeholder behavior.

First, EA changes the enterprise’s structure,

characteristics, culture and political climate of the

workplace [1][22]. As a result of this transformation

process, two outcomes for the EA are possible:

 It can be accepted as the new norm for the

enterprise, in which case the enterprise

simply moves on.

 It can have a negative effect on stakeholders

and be rejected and/or modified to meet their

personal goals and objectives. In this

situation, the behavior of all involved in the

process may be altered, and in some cases, it

may literally tear the enterprise apart

influencing the potential life of the enterprise

by introducing factors into business

operations that management may or may not

be able to cope [14][15].

Second, the impact of these outcomes can

produce behavioral patterns that can jeopardize the

viability of the EA ending with the EA being

improperly aligned with the enterprise’s strategic

business plan and operating model to either being

partially implemented or completely abandoned [22].

The question then becomes: why didn’t the changes

brought about by EA work?

Answering this question is difficult as causal

factors differ. For example, in our previous work

[19], we identified several causes for failed EA, such

as insufficient top management support, and which

states that between 60% and 84% of all EA projects

fail in one manner or another. This paper adds to that

list by including other sources and statistics which

cite causal factors such as [11]:

 Sixty-six percent of project failures are

attributed to poorly defined applications (i.e.,

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 53

mailto:schakraborty%7d@towson.edu

miscommunication between stakeholders and

IT technical staff).

 Sixty to eighty percent fail because of poor

requirements gathering, analysis, and

management.

An analysis of these failures found that [11]:

 Fifty percent of the projects had to be rolled

back out of production.

 Forty percent of the problems were identified

by end-users.

 Twenty-five to forty percent of project cost

was wasted on re-work.

 Up to eighty percent of budgets were

consumed on fixing self-inflicted problems.

This latter group of statistics is supported by other

literature attributing failure directly to erroneous

requirements (i.e., organizational knowledge)

[5][6][7][25], which we will collectively label

hereafter as simply “poor architecture.” However, we

look at the problem and resolution from a different

point of view: human behavior and the impact

technology has on that behavior. From this position,

EA can be defined as being influenced by two

separate and distinct perspectives which we will

categorize as: 1) the context or environment in which

EA functions; and, 2) the processes it symbolizes.

EA context is made up of sociological,

organizational, and psychological elements such as

stakeholder attitudes and behavior, and

organizational norms, policies, politics, standards,

and resources. EA frameworks (EAF), on the other

hand, take on the more techno-centric aspects of EA

design that consist of methods for developing the EA

[5][20]. Yet, the interactions between the context of

EA and its process are dependent. However, if not

properly managed, they can pose a conflict in EA

design in deciding the weight that should be

apportioned to either context or process, potentially

jeopardizing the success of the EA.

EA focuses on engineering principles and

practices as a means to synchronize organizational

activities and engineering modeling schemes to

develop and test the architecture. The reality here lies

in the fact that stakeholder requirements drive EA

design [5][20][26][28]. However, the EAFs used to

do the work are formulated around highly techno-

centric processes and procedures based on the

modalities of traditional computer oriented and

computer science theories [10][12][24]. Existing

EAFs aim at solving business problems from a purely

technical perspective and do not include stakeholder

behavior as a significant influence on EA design.

Given this perspective, each enterprise has its

own characteristics, culture, and social structure

which the enterprise information architect (EIA) must

understand and include in the development of an EA.

For example, stakeholders are expected to adapt to

new environmental conditions imposed by the EA.

This influences stakeholder behavior with the

assignment of new roles, duties, and responsibilities

which, in some cases, they are expected to assimilate

unquestionably [2][3][22]. This works well in

enterprises that routinely function in a tightly

controlled environment, it will not in others.

[8][14][15]. In most cases however, stakeholders

typically perceive these changes as a diminution of

influence within the enterprise.

Therefore, the lack of continuity between EA

context and process has the potential to cause

conflicting views of the EA, altering the previously

known stable state most enterprises and stakeholders

strive for in the workplace. From this, the integration

of sociologically-oriented principle with the existing

techno-centric EAFs becomes a viable solution to EA

design. Failure to implement such an approach leads

to negative stakeholder behavior which may be

observed in one of two ways [2][8]:

 They may resist the EA either overtly or

covertly by exhibiting their reluctance to

follow new norms, rules, and policies

established by the enterprise.

 They may intentionally or unintentionally

miscommunicate, mislead, and/or provide

erroneous requirements as input to and thus

sabotage the EA.

In either case, the EA may be jeopardized such that

the enterprise reverts to the previous architecture.

Reversion to the previous state is detrimental in that

more efficient and effective technology is subverted

and therefore enterprise growth is inhibited.

In earlier work, [17][18][19], we described

several of the causal factors leading to EA failure. In

this paper, we address two additional factors leading

to failure: stakeholder resistance to change and “poor

architecture.” These issues can be directly tied to the

organizational transformation that takes place as a

result of EA and the new technology it introduces.

This work raises the level and significance of the

impact of human behavior as a major input to EA and

how that behavior is affected by technology. We

examine Giddens’ Theory of Structuration and its

application to this process [8][22].

The remainder of this paper is organized as

follows. Section 2 assesses the activities used in

existing EAF methodologies, their approach to and

contribution to EA design, and their relationship to

stakeholder behavior. Section 3 examines EA,

organizational theory, human behavior, and the

Theory of Structuration and their relationship to EA.

Section 4 discusses the ramifications of not properly

coordinating and controlling EA effort and concludes

with some remarks.

54 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

2. Enterprise Architecture Frameworks

and Stakeholder Behavior

The adoption and use of EA in large enterprises

and development of complex, large-scale systems

now places it at the forefront of IT and organizational

business strategy [5][12]. The process aspect of EA is

inclusive in its approach formulating a design and

implementation plan for the project. The

methodologies used in existing EAFs to describe the

EA typically propose ontology for both viewing and

analyzing the enterprise’s current information

architecture and operating environment. The focus of

this effort is on how best to use technology and align

it with the enterprise’s strategic business plan and

operating model [20].

The responsibility for developing the EA design

has been that of an EIA. Until now, the requisite skill

set for the EIA typically consists of a practical

knowledge of technology and business practices [20].

Today, possessing just these skills alone are not

enough to address a workplace environment where

stakeholders no longer accept change without

question but more routinely question the need for EA

and the organizational transformation it brings about.

Of the many EAFs used since EA’s inception,

four stand out as de facto standards within the

industry: the Zachman Enterprise Architecture

Framework (Z|FA) [30], The Open Group

Architecture Framework (TOGAF) [21], the Federal

Enterprise Architecture Framework (FEAF) [4], and

the Department of Defense Architecture Framework

(DoDAF) [1]. Each of these EAFs feature distinct

and unique approaches to EA design embodied with

their own set of processes and procedures. In some

cases, taxonomy defines the EAF (e.g., Z|AF) process

while in the others listed above ontology describes

the process [27]. Regardless of their methodologies,

the strengths of the frameworks are that each imposes

a disciplined regimen of processes and procedures

guiding documentation of the EAP [19]. However,

the weaknesses of current EAFs are that they fail to

take into account [2][8][14][15]:

 The cultural effects on human behavior

caused by the environment of the enterprise

and the cognitive aspects of stakeholder

behavior.

 The behavior and influence an individual has

singularly or on and within a group.

 The social change within the enterprise

resulting from the EA.

 The changes to the enterprise’s political and

economic systems caused by the EA.

 The social conflict that might result from the

EA.

Each of these forces plays a significant role in

stakeholder behavior and thus influences their

capacity to contribute to the EA. For example, if we

examine the cultural environment of an enterprise,

stakeholder behavior mirrors organizational behavior

learned over time and manifests itself based on their

past and present work experiences within the

enterprise [8][14]. Continuing, group behavior cannot

be understood solely as the aggregate behavior of an

individual though an individual may significantly

influence the group’s behavior or be influenced by

the group [2][15]. Social change, on the other hand,

is evolutionary and can occur in two opposing

fashions: opened or constrained and is internally the

by-product of technology and/or change in the

political structure of the enterprise. External forces

can also induce social change but are beyond the

scope of this paper.

In an EA, the forces that affect social change are

twofold: technology including the new processes

introduced by the technology, and the new roles,

duties, and responsibilities assigned to stakeholders

[22]. These forces alone usually result in the

transformation of the enterprise’s political and

economic structure. This force singularly can produce

one salient, potent and counter-productive possibility

in that it can evoke conflict within the enterprise

[8][14][15].

As can be seen, EA alters stakeholder

perceptions of the enterprise and as such changes

their behavior which can seriously jeopardize the EA.

Given this perspective, we can conclude that the

techno-centric methodologies espoused by existing

EAFs are deficient in neither providing mechanisms

that recognize human behavior in their approach to

EA nor contain any tools or processes that would

mitigate adverse behavior in EA implementation

[17][18][22]. Thus, the aggregation of these forces on

EA elicits behavior that constricts, discourages, and

limits stakeholder action and, at the same time, stifles

their capacity to offer more innovative and creative

approaches to problem-solving [17].

Though comprehensive from a technical point-

of-view, the EAFs fail to provide for the kinds of

humanistic based principles and practices such as

communication, education, and training programs we

believe essential to deal with stakeholder

relationships, interactions, and behavior.

3. Enterprise Architecture and Human

Behavior

Top-management behavior permeates through all

layers of an enterprise influencing the enterprise’s

work environment and social structure [1][14][15].

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 55

Stakeholders, on the other hand, are purposeful

systems which exhibit will which may act in concert

with or oppose organizational goals and objectives

and that the addition of technology to this equation

[2][14][15][22]:

 Forces stakeholder to accept and adapt to

new EA processes and procedures.

 Diminishes their influence and position

within the enterprise.

 Alters the way in which they function within

the enterprise from a consistent pattern of

individual and social behavior to new ones

that are less desirable.

However, enterprises must respond to competitive

and shifting environmental demands by changing

their existing operating environment and altering it to

one focused on the use of technology to take

advantage of the economic benefits to be derived

from a project such as EA [12][20]. The resultant

organizational transformation requires stakeholders

to willingly or unwillingly accept and adapt to new

ways of doing work which in turn changes their

perception of the environment in which they function

[2]. New rules, policies, standards, processes and

procedures dictated by management to be followed

and used by stakeholders typically results in new

stakeholder behavioral patterns [14][15]. In many

situations, organizational transformation is difficult

to achieve because of these new behavioral

tendencies. From a negative point of view, we can

explore the effect of two candidates that can seriously

affect and influence the success or failure of change,

including stress and the need for EA stakeholders to

learn, adapt and accept something new [14]. Stress is

nothing new in any organizational setting to either

stakeholders or the enterprise. However, it can take

on a life of its own where technology is the prime

motivation for change.

Stress caused by change is evident and easily

recognized in stakeholders by their actions and

behavior. Both stakeholder and organizational

behavior tends toward a point where inputs,

processes, and outputs remain stable with change

viewed as a potential threat to the equilibrium and

known state of the enterprise. Stakeholder resistance

to accept change typically follows any movement

away from this known state. In some cases, the

stakeholder may even resort to sabotage to revert to

the previous known state of equilibrium [13].

The rationale for this behavior traces to varying

views of technology by people reacting to it

accordingly, and for several legitimate reasons

[8][14][15]:

 Low tolerance for change – the stakeholder

believes the new is worse than the known.

 Misunderstanding - the stakeholder doesn’t

understand the reason for change.

 Power – the stakeholder has the power to

ignore, obstruct, and avoid the new.

 Distrust – the stakeholder doesn’t trust the

enterprise’s motivation for the change.

The transition to something new forces

stakeholders to learn new ways to do work:

processes, procedures, software, and other IT artifacts

[3][22]. In most situations, this is accompanied with

assignment of new roles, duties, and responsibilities

[2][22]. This relearning process, in many cases, is

simply beyond the day-to-day ability of some

stakeholders to accept and adapt. Their tolerance

level and threshold for change is limited. This results

in a loss of productivity and, more importantly,

negative changes in their behavioral patterns. When

the change is involuntary, and imposed by internal

and/or external forces (i.e., management), the change

becomes emotional with stakeholders feeling a sense

of disempowerment and loss of control, all adding to

their feeling of stress [14][15]. Thus, these factors

must be addressed by incorporating a dynamic and

behavior driven approach to EA.

An appropriate theoretical lens that would enable

an EA to be aligned with such an objective is

Giddens’ Theory of Structuration (ST) [8]. In ST,

structure is understood to be an abstract property of

social systems and in this context is not something

concrete, situated in time and space, but lacks

material characteristics. Structure does not and

cannot exist apart from the human actors who enact

and interpret its dimensions existing only in a virtual

state. People, however, readily allow their actions to

be constrained and limited by these shared

abstractions of social structure suggesting that

behavior can be strongly influenced and sometimes

induced even by vague simulations of authority

relationships and other organizational settings. The

ability of organizational structures to elicit

compliance and conformity in the absence of material

constraints attests to the power of those socially

constructed abstractions.

Given this perspective, structuration articulates a

process-oriented theory that treats enterprises as both

a product of, and a constraint on, human action.

Giddens attempts to bridge the gap between the

deterministic, objective and static notions of

structure, on one hand, and voluntary, two realms of

social order and focusing attentions on the subjective

and dynamic views on the other, by positing points of

intersection between these two realms. Giddens

termed these as the Institutional Realm and Realm of

Human Action [8]. The former represents the existing

framework of rules in an enterprise derived from a

56 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

cumulative history of actions and interactions. Such a

framework of rules is characterized by dimensions of

signification, domination and legitimization.

Signification schemes are modalities for

communication within an organization and constitute

organizational structures of signification. Structures

of significance represent organization rules that

define and inform interaction. Resources are

modalities through which power is exercised in an

organization and may be authoritative (i.e., extending

over people) or allocative (i.e., extending over

material/property). Norms are modalities that define

appropriate behavior and constitute organizational

structures of legitimization using which a “moral

order within an organization is articulated and

sustained through rituals, socialization practices and

tradition” [8].

On the other hand, the Realm of Human Action

refers to the social interaction of the humans under

the aegis of the institutions. The institutions’

properties are encoded into the human actor’s stock

of knowledge through the modalities of interpretive

schemes, resources and norms, and influence how

people communicate, enact power and determine

what behavior to sanction and reward. The crux of

Giddens’ theory is that this relationship is not

directional but recursive. Organizational structural

properties (i.e., the Institutional Realm) are drawn on

by humans in their on-going interactions even as such

use in turn reinforces or modifies the institutionalized

structures. Such a recursive relation is termed as the

duality of structure.

ST does not merely provide a means to

understand the nature of an organization but can be

applied to gain insight on the impact of the use of

technology. Orlikowski proposed the Structurational

Model of Technology (SMT) to provide a more

complete model of understanding of how technology

affects organizations [22]. This theory is based on the

perceptions of the Duality of Technology and the

Interpretive Flexibility of technology. The former

posits that the socially created view and the objective

view of technology is not exclusive but rather

intertwined and are differentiated because of the

temporal distance between the creation of technology

and usage of the same. Interpretive Flexibility defines

the degree to which users of a technology are

engaged in its constitution (physically and/or

socially) during its development. SMT has three

components – the Human Agents, Technology and

Institutional Properties of Organization. The model

specifies an interactive relationship among these

components that are essentially recursive in that each

of these components influences and is at the same

time influenced by the others. Technology is

proposed to be the product of human action in that it

is created and exists through ongoing human action.

Humans constitute technology by using it, while at

same time making it an outcome of human actions

such as design, development, appropriation and

modification. However, once technology is

implemented it facilitates and constrains human

action through the provision of interpretive schemes,

facilities and norms.

From the organizational perspective, institutional

properties influence humans in their interaction with

technology through: professional norms; rules of use

– design standards and available resources. There is,

however, a consequence of the institutional

interaction with technology. They are manifested by

impacting the institutional properties of an

organization through reinforcing or transforming

structures of signification, domination and

legitimization that characterize the Institutional

Realm.

In summary, the theoretical premise of these two

theories is an acknowledgement that organizational

structures, technology and human action are not

distinct but are intertwined such that each is

continually reinforced and transformed by the other

[8][22]. A logical conclusion can therefore be made

that an initiative such as the formulation of EA

remains incomplete if it does not explicitly take into

account human action. ST provides a framework,

which if adopted could form a basis of a behavioral

and inclusive approach towards formulating an EA.

Specifically these theories provide a lens for the EIA

to understand the dynamics of an enterprise and use

that information to formulate an EA that is

contextualized to that particular enterprise and

advocated by its stakeholders.

The issue confronting the EIA is that of taking

advantage of these circumstances recognizing that

stakeholders are able to provide reasons for their

activities, including perhaps even lying about them.

However, this behavior can be managed by

promoting an environment that encourages

stakeholder participation in the decision-making

process. EIAs are faced with three behavioral issues:

the introduction of technology into enterprises,

changes in stakeholder behavior resulting from

technology and resistance to change with enterprises

seeking equilibrium at the same time. The end-result

of this behavior may result in “poor architecture”.

Successful implementation of new technology is

the product of successfully navigating stakeholder

behavior and the resultant influence on organizational

change. For example, management practices often

negatively influence stakeholder behavior because of

inadequate knowledge being passed down and across

enterprise boundaries. These issues can be addressed

by implementing an open-ended communication’s

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 57

system where there are no boundaries, either

horizontally or vertically, for sharing of knowledge,

knowhow, ideas, potential problem solutions, and it

provides a forum for “brainstorming.” This in effect,

solves other issues such as poor communication and

lack of understanding as to the rationale for EA and

organizational change. It also serves as a mechanism

to mitigate stress and a willingness to share and

provide quality design requirements to the EA. As

such, management behavior, attitudes, rules, and

policies can avoid maintaining an ingrained

mechanistic view of technology and approach EA

from a more humanistic venue.

In this context, the actions of management and

EIAs lead to changes in the way stakeholders behave.

In a business context, stakeholder behavior and

organizational factors contribute more to the success

or failure of an EA than technical factors. Simply

stated, stakeholders can be affected by IT change and

are unlikely to be invested in the change if it is forced

upon them without warning and input from them.

We envision an approach that highlights the

impact of change on an enterprise relative to human

behavior that can be utilized to enhance and extend

the capabilities of well known architectural

framework models used in an EA project. The

approach fosters stakeholder ownership of the EA

while building relationships through a coupling of

EA and structuration.

4. Discussion and Closing Remarks

To manage and govern the complexity of an

enterprise requires the coordination and control of

activities embedded in the complex networks of

techno-centric relations and boundary spanning

exchanges. EA and the introduction of new and/or

enhanced technology into an enterprise often results in

a sociological and a political change in the hierarchical

structure of the enterprise. This is evidenced by a

dynamic shift in internal and perhaps external

perceptions of the enterprise. Stakeholder roles,

responsibilities, and duties invariably change because

of new rules, policies, procedures and processes

introduced by new technology Therefore, the manner

in which the EA design takes place can seriously

affect acceptance and alignment of the EA by different

stakeholders.

Among the many factors associated with EA

failure are:

 Poor communication

 Lack of leadership

 Lack of top-management support and

sponsorship

 Underestimating the importance of change

and change management

 Lack of technical and business knowledge

 Poor project management

These factors are counter-productive yet they can be

minimized and mitigated by providing an

environment where stakeholders are involved with

and are active participants in and are receptive to

change. Such an environment fosters collaboration

and information-sharing where stakeholders

communicate both horizontally (i.e., peer-to-peer)

and vertically (i.e., up and down the hierarchical

organization chart) whenever and however they need

to in order to solve problems and exchange knowhow

and knowledge. The possibility and prospect

becomes realizable if an enhanced working

environment where participation in the design,

decision-making, and implementation of new EA

technology is welcomed and not perceived as a threat

to stakeholder well–being. The benefits from such an

environment can only improve workforce morale and

productivity. In our increasingly digitally encoded

environment, EIAs hold the potential to become

major players who can assist enterprises achieve their

respective goals and objectives.

In conclusion, the Theory of Structuration

provides a means of understanding human behavior

and its relationship to organizational change. SMT, on

the other hand, addresses the effects of technology on

human behavior [14]. Taken together, they

conceptualize the unique opportunities for an EIA to

implement an EA.

 This paper progresses our earlier work

[17][18][19] by expanding our exploration into the

possibilities extant and the potential contribution

gained as the result of using the Theory of

Structuration along with SMT and thus improve on

and enhance the EAF process. We consider a

communication process based on human behavior the

prime motivational element in behavior modification

and offer it as a means to augment existing EAFs.

Coupled with the communication process, future

work includes expanding our research into two areas:

 To obtain a better understanding of human

behavior and the influence it has on EA so as

to provide a better platform to manage and

govern the design process.

 To explore EA modeling schemes to assess

their ability to cope with human behavior in

their respective approach to requirements

modeling. The focus of this effort is to better

ensure the quality and reliability of design

requirements input to EA.

Modifying human behavior to more readably accept

organizational change represents a major component

requiring design and implementation of tools and

58 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

mechanisms that facilitate stakeholder willingness to

share knowledge. Quality requirements are essential

to EA success. Therefore, we plan to expand our

research and explore EA modeling schemes to assess

and better ensure EA quality through the requirement

elicitation, analysis, and specification phases of EA.

5. References

[1] “The DoD Architecture Framework Version 2.0, DoD

Deputy Chief Information Officer.” Department of

Defense, May, 2009.

[2] M. Beer. Organizational Behavior and Development.

Harvard Business Review, Harvard University, 1998.

[3] M-C. Boudreau and D. Robey. “Enacting Integrated

Information Technology: A Human Agency

Perspective.” Organization Science, 16(1):3-18, 2005.

[4] Chief Information Officers Council. Federal

Enterprise Architecture Framework, CIO Council,

Version 1.1, August 5, 1999.

[5] C. Ferreira and J. Cohen. “Agile Systems

Development and Stakeholder Satisfaction: A South

African Empirical Study.” Proceedings 2008

Conference of South African Institute Computer

Scientists and Information Technologists on IT

Research in Developing Countries, pp. 48-55, 2008.

[6] D. Galoraith. Software Project Failures Costs

Billions: Better Estimation & Planning Can Help.

Filed under Project Management, June 7, 2008.

[7] R. Gauld. “Public Sector Information System Failures:

Lessons from a New Zealand Hospital Organization.”

Government Information Quarterly, 24(1):102-114,

2007.

[8] A. Giddens. The Constitution of Society: Outline of the

Theory of Structuration. University of California

Press, 1984.

[9] B. Iyer and R. Gottlieb. The Four-Domain

Architecture: An Approach to Support Enterprise

Architecture Design. In IBM Systems Journal,

43(4):587-597, 2004.

[10] M. Lankhorst & H. von Drunnen. Enterprise

Architecture Development and Modeling, Via Nova

Architecture. March, 2007.

[11] B. Lawhorn. More Software Project Failures. CAI,

March 31, 2010.

[12] A. Lindstrom, et al. A Method to Assess the

Enterpriese-wide IT Resource for Performance and

Investment Justification. Dept. of Industrial

Information Systems and Control Systems, Royal

Institute of Technology, KTH, SB-100, 44 Stockholm.

Sweden, 2005.

[13] R. Lewin and B. Regine. “Enterprise Architecture,

People, Process, Business, Technology.” Institute for

Enterprise Architecture Developments [Online],

Available: http://www.enterprise-

architecture.info/Images/Extended

Enterprise/ExtendedEnterpriseArchitecture3.html.

[14] A. Maslow. Motivation and Personality. Harper

Collins, 1987.

[15] D. McGregor. The Human Side of Enterprise.

McGraw-Hill, 1960.

[16] N. Melville, K. L. Kraemer, and V. Gurbaxani. 2004

Review: Information Technology and Organizational

Performance: An Integrative Model of IT Business

Value. MIS Quarterly, Volume 28, Number 2, pp.

283-322, June 2004.

[17] D. M. Mezzanotte, Sr., J. Dehlinger, and S.

Chakraborty. “Applying the Theory of Structuration to

Enterprise Architecture Design.” 2011 World

Conference in Computer Science, Computer

Engineering, and Applied Computing,

IEEE/WorldComp 2011, SERP 2011, July, 2011.

[18] D. M. Mezzanotte, Sr., and J. Dehlinger, “Enterprise

Architecture: A Framework Based on Human

Behavior Using the Theory of Structuration.”

International Association of Computer and

Information Science, 2012 IEEE/ACIS 10th

International Conference on Software Engineering

Research, Management, and Applications, 2012.

[19] D. M. Mezzanotte, Sr., J. Dehlinger, and S.

Chakraborty. “On Applying the Theory of

Structuration in Enterprise Architecture.” Computer

and Information Science, 2010 IEEE/ACIS 9th

International Conference on Software Engineering

Research, pp. 859-863, 2010.

[20] D. Minoli. Enterprise Architecture A to Z. CRC Press,

New York, 2008.

[21] The Open Group. TOGAF Version 9. 2009.

[22] W. Orlikowski. “The Duality of Technology:

Rethinking the Concept of Technology in

Organizations.” Organization Science, 3(3):398-427,

1992.

[23] M. S. Poole and G. DeSanctis. Structuration Theory in

Information Systems Research: Methods and

Controversies. Handbook for Information Systems

Research, M. E. Whitman and A. B. Wosczcznski

(eds.), Hershey, PA., Idea Group Publishing, 2004.

[24] R. S. Pressman. Software Engineering: A

Practitioner’s Approach. 7th Ed., McGraw-Hill Series

in Computer Science, New York, NY, 2010.

[25] Roeleven, Sven and J. Broer. “Why Two Thirds of

Enterprise Architecture Projects Fail.” ARIS Expert

Paper [Online], Available: http://www.ids-

scheer.com/set/ 6473/EA_-_Roeleven_Broer_-

_Enterprise_Architecture _Projects_Fail_-

_AEP_en.pdf.

[26] N. Rozanski and E. Woods. Software Systems

Architecture. Addison-Wesley Professional, 2006.

[27] R. Sessions. A Comparison of the Top Four

Enterprise-Architecture Methodologies. MSDN

Library, May 2007.

[28] I. Sommerville, Software Engineering, 8th Ed.

Addison-Wesley Publishers, Harlow, England, 2007.

[29] B. Travica. Information View of Organization. Journal

of International Technology and Information

Management, 14 (3), 2005.

[30] J. Zachman, Concepts of the Framework for

Enterprise Architecture. Information Engineering

Services, Pty, Ltd., 1987.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 59

http://www.enterprise-architecture.info/Images/Extended%20Enterprise/ExtendedEnterpriseArchitecture3.html
http://www.enterprise-architecture.info/Images/Extended%20Enterprise/ExtendedEnterpriseArchitecture3.html
http://www.enterprise-architecture.info/Images/Extended%20Enterprise/ExtendedEnterpriseArchitecture3.html
http://www.ids-scheer.com/set/
http://www.ids-scheer.com/set/

SOAs factors, criteria and metrics. SERP 2012

R. Belkhatir1, M. Oussalah1, and A. Viguier2
1Department of Computer Science, University of Nantes, Nantes, Loire Atlantique, France

2Research and Development Department, BeOtic, Rezé, Loire Atlantique, France

Abstract – The current paper presents a semi-automated
method for evaluating SOAs called SOAQE. This method
corrects defects observed so far such as lacks of pertinence
and accuracy for evaluation results. SOAQE takes as a
starting point the McCall model, describing software quality,
which led to an international standard for the evaluation of
software quality (ISO 9126). This model is organized around
three types of quality attributes (factors, criteria and metrics).
The method consists in decomposing the whole architecture
and evaluating it according to the McCall model, i.e. a list of
quality factors arising from business needs, grouping criteria
composed by metrics. Our experimentations led us to quantify
numerically a first determining factor for SOAs, the
‘dynamism’ and some attributes of its structure: namely the
‘loose coupling’ criterion and its constituent metrics
(‘physical, semantic and syntactic’).

Keywords: SOA, quality, evaluation, factor, criteria, metric.

1 Introduction
An architectural paradigm defines groups of systems in

terms of models of structures; component and connector
vocabularies and rules or constraints on relations between
systems [1]. We can distinguish a few architectural paradigms
for distributed systems, and, among the most noteworthy ones,
three have contributed to the evolution of the concerns. These
are chronologically object oriented architectures (OOA),
component based architectures (CBA) and Service oriented
architectures (SOA). First developers were quickly aware of
code repetitions in applications and sought to define
mechanisms limiting these repetitions. OOA provides great
control of the reusability (reusing a system the same way or
through a certain number of modifications) which paved the
way to applications more and more complex and consequently
to the identification of new limits in terms of granularity.
These limits have led to the shift of the concerns towards the
composability (combining in a sure way its architectural
elements in order to build new systems or composite
architectural elements). Correlatively, the software
engineering community developed and introduced CBA to
overcome this new challenge and thus, the CBA reinforces
control of the composability and clearly formalizes the
associated processes. By extension, this formalization
establishes the base necessary to automation possibilities. At

the same time, a part of the software community took the
research in a new direction: the dynamism (developing
applications able to adapt in a dynamic, automatic and
autonomous ways their behaviors to answer the changing
needs of requirements and contexts as well as possibilities of
errors) concern as the predominant aspect. SOA has been
developed on the basis of the experience gained by objects and
components, with a focalization from the outset on ways of
improving the dynamism. Developing an SOA involves many
risks, so much the complexity of this technology is notable
(particularly for services orchestration) [2]. First and
foremost among these, is the risk of not being able to answer
favorably to expectations in terms of quality of services
because quality attributes directly derive from business
objectives. As these risks are distributed through all the
services, the question of evaluating SOA has recently arisen.
This is to identify and correct remaining errors that might
have occurred after the software design stage and, implicitly,
to reduce subsequent risks. Lots of tools have been created to
evaluate SOAs but none of them clearly demonstrated its
effectiveness [3]. The SOAQE method presented in this paper
allows evaluating SOAs by combining the computerized
approach and the human intervention to eliminate lacks
identified with past methods. The main idea resides in
automating the process to avoid time-wasting evaluations. The
process consists in three principal stages detailed later in this
paper. In the current paper, we first relate in the section 2 the
interests of the evaluation and we also analyze the existing
works. We present the SOAQE method and the stakeholders
participating to the evaluation in the section 3. We finally
relate the experimentation which has been done by the lab
team in the section 4. We conclude this paper with a
discussion comparing the SOAQE method to past ones.

2 State of the art
 The SOA evaluation relates to qualitative and
quantitative approaches, load prediction associated with
evolutions and theoretical limits of a given architecture.

2.1 Related works on SOA evaluation
 From this perspective, tools and existing approaches
have shown their limitations for SOA [3]. We are currently
attending the development of a new generation of tools
developed by industrialists in a hand-operated way [4]. The

60 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

scale of the task has brought the academic world to tackle
these issues and to try to develop a more formal and generic
approach than different existing methods (ATAM, SAAM) to
evaluate SOAs [3].

In any software architecture evaluation, three activities
are critical to success:
1. Specifying the quality attributes deriving from the

commercial needs.
 The current paper focuses on a finite set of technical

attributes having significant impacts on the global
quality, from the development process to the system
produced as outcome [5].

2. Selecting a representative assembly of stakeholders for the
evaluation.

 In this paper, we work with a restricted and technical
assembly of stakeholders listed in section three.

3. Describing the architecture in a clear, expressive and
understanding way.
 The present paper does not treat this part of the

problematic because it has always been covered by the
lab team in a previous paper [6].

2.2 Evaluation Results
In concrete terms, SOA evaluations product a report

which form and content vary depending on the method used.
But, in general terms, the evaluation generates textual
information and answers two types of questions [3]:

-1- Is the architecture adapted to the system for which it has
been conceived?
-2- Is there any other architecture more adapted to the system
in question?

-1- It could be said that the architecture is adapted if it
favorably responds to the three following points:

i. The system is predictable and could answer to the quality
requirements and to the security constraints of the
specification.

ii. Not all the quality properties of the system result directly
from the architecture but a lot do; and for those that do, the
architecture is deemed suitable if it makes it possible to
instantiate the model taking into account these properties.

iii. The system could be established using the current resources:
the staff, the budget, and the given time before the
delivery. In other terms, the architecture is buildable.

This definition will open the way for all future systems
and has obviously major consequences. If the sponsor of a
system is not able to tell us which are the attributes to manage
first, well, any architecture will give us the answer [3].

-2- A part of SOA evaluation consists in capturing the quality
attributes the architecture must handle and to prioritize the

control of these attributes. If the list of the quality attributes is
suitable in the sense that at least all the business objectives are
indirectly considered, then, we can keep working with the
same architecture. Otherwise, it is time work with architecture
more suitable for the system.
These quality attributes may be conflictive for achieving
business objectives. In such a case, the project manager must
take the decision to focus on a limited set of attributes,
especially if the evaluation of the architecture gives a positive
result in a sector and a poor one in another sector [7].
However, provided that it is still able to favorably answer to
non-functional and functional requirements of the
specification, the architecture is able to exist with these rare
failures. Moreover, since each sector is linked to a list of
objectives and, these latter are pursued by focusing on certain
quality attributes; the best way to reinforce the neglected
sectors is to produce a more robust work on attributes
correlated to the sector in question. The evaluation will help
to indicate where the architecture fails, but the balance
between the cost of the evaluation and the help it provides to
ameliorate the project remains relative to any architecture.
Then, an architecture evaluation does not provide answers to
whether or not the architecture is adapted; if it is "good" or
"bad" or if it is rated "seven out of ten"; it only tells us where
the danger is. The evaluation could be applied to a single
SOA or to a group of several SOAs competing to be chosen
for the final system. In this last case, it first identifies the
relevant business objectives needed in the comparison and
then, examines available documentation for each architecture
candidate. Then, it finally scores the fitness of the candidate
architecture, summarizes the analysis results and provides a
recommendation for the decision-making process.

2.3 Measuring the quality
It has been suggested that software production is out of

control because we cannot quantitatively measure it. As a
matter of fact, Tom DeMarco (1986) stated that "you cannot
control what you cannot measure" [8]. The measurement
activity must have clear objectives and a whole set of sectors
need to be measured separately to ensure the right
management of the software. For example, we know that the
administrator must measure the software quality in order to
compare projects, make previsions and set reasonable
improvement objectives. In order to bring these operations to
fruition, the scientific community utilizes models of quality
introducing what we call software attributes decomposition.

2.3.1 Mc Call model
 One of the models that have been published is the

McCall model in 1977 decomposing quality attributes in three
stages. This model led to the IEEE standard: ISO/IEC 9126.
A certain number of attributes, called external (applicable to
running software), are considered as key attributes for quality.
We call them quality factors [3] (for example, the reliability:
ability of a system to keep operating over time).These

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 61

attributes are decomposed in lower level attributes, the
internal attributes (do not rely on software execution), called
quality criteria (for example, the testability is one of the
"maintainability" criteria). And each criterion is associated to
a set of attributes directly measurable and which are called
quality metrics (for example, the testability criterion is
measured by the statement coverage: evaluation of the
achievable instructions percentage exerted, the connections
coverage: evaluation of the active connections percentage,
etc.).

Figure 1: Mc Call model applied to the "Maintainability".

2.4 Lack of precision
Current methods of evaluation stop the quality attributes

decomposition at the “quality factors” step and thus remain
too vague when it comes to giving accurate measures. These
methods are not precise because they cannot go further in the
decomposition and consequently they cannot be automated to
the point of defining a finite value for each attribute. They
lead inevitably to the establishment of a brainstorming
between stakeholders (see section 3.2.4) for the purpose of the
institution of a utility tree. Because stakeholders do not have
tools to quantitatively measure each quality factor chosen, they
shall set up scenarios aiming to respectively solicit separately
each criterion, and factor. An approximated evaluation of the
architecture is then realized after having studied the system
behavior while carrying out the scenarios set.

3 SOAQE
 It is precisely where our work differs from those existing
insofar as we wish to obtain a precise quantitative
measurement for each quality factor with the SOAQE method.
We especially aim to automate the process in order to avoid
hand-operated evaluations pushing to solicit stakeholders for
the whole evaluation.

3.1 Principle of the model
The process consists in three principal stages.

 Each corresponds to a decomposition step of our quality
attributes. We first identify decisive quality factors for our
architecture. Then we isolate the quality criteria defining
them. And finally we define quality metrics composing each
criterion in order to quantify them numerically.

3.2 Steps in more details
The main idea of the SOAQE process is to evaluate in

three steps the whole architecture from every metric to the set
of quality factors obtained after having previously identified
the business objectives. Our work is based on the architect
point of view and the attributes selected are the ones
considered as the most relevant among all existing.

3.2.1 Quality factors
Some authors have defined the CBA with reusability and

composability [9]. Basing on previous analysis, we define the
SOA with the Reusability, the Composability and the
Dynamism.

These three attributes, that we identified as quality
factors for SOA represent the qualitative quintessence which
has directed the definition of the object, component and
service paradigms. The figure 2 illustrates this analysis and
offers a high-level vision of the SOA interest points.

Figure 2: SOA interest points

The first step of the SOAQE method consists in
choosing a first quality factor to study in depth and there exist
a lot which could come out after the analysis of the business
objectives. But we have naturally chosen to work on those
identified as the qualitative quintessence for SOA. These three
quality attributes (dynamism, composability and reusability)
define each of our three paradigms to varying degrees.
Moreover, there exist a hierarchical ranking propelling
“dynamism” on top of SOA concerns, and this is precisely

62 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

why, we chose to especially focus deeply on this quality factor.
We may record that each of the two others attributes is of
major importance for the three paradigm considered (object,
component or service oriented architectures).

3.2.2 Quality criteria and quality point of views (QPV)
With regards to our work and after having identified the

determining factor quality for SOA (i.e. the dynamism), we
were interested in the second step of the SOAQE process,
namely discovering the criteria defining the factor on which
we have gone through.

Further down the road, any factor is composed by a lot of
criteria that could be looked at as part of our work.

There exist quality points of views (QPV) which group
together criteria according to their characteristics. The QPV
notion is fundamental because it allows company to target
their evaluation on selected families of criteria and these
families of criteria are common to all existing architectures.

We deliberately concentrated our work on a technical
QPV (see figure 3) grouping technical criteria because we
adopted the point of view of an architect (a technical
stakeholder). In this light, we identified six criteria common to
each of our three factors. These technical criteria gather
elements having significant impacts on global quality, from
the development process to the system produced.

Figure 3: McCall model applied to the quality factor

"dynamism".

Loose coupling: Potential of dependences reduction between
services and dependences between processes.
Explicit architecture: Paradigm ability to define clear
architectural application views, i.e. providing the means of
identifying and clarifying functionalities associated to services
composing the system.
Expressive power: Potential of paradigm expression in terms
of creation capacity and optionalities. It is based on the
number of processes provided to specify, develop, handle,
carry out and implement services.
Communication abstractions: Paradigm capacity to abstract
services functions communications.
Upgradability: Paradigm ability to make evolve its services
(based on processes supporting these evolutions).
 Owner's responsibility: Corresponds to the responsibilities
sharing out between services providers and consumers. These
responsibilities are focused on the software entity re-used in
terms of development, service quality, maintenance,
deployment, execution and management. This distribution
expresses the degree of freedom granted to service consumers
by the service provider.
Each of these quality criteria is given varying degrees of
consideration according to the quality factor in question. Our
previous works [5] allowed organizing hierarchically (under
three distinct levels) these quality criteria for each of the three
quality factors (dynamism, reusability and composability).
Consequently, we obtain the triptych of the figure 4 while
considering all paradigms.

Figure 4: Expression of reusability, composability and

dynamism perspectives.

While focusing on the dynamism, identified earlier as being
the key quality factor for SOA, our previous work [5] allowed
to conclude that the “loose coupling” criteria is of biggest
importance for this factor (see figure 4), this is why we chose
to concentrate in depth, on it whereas, the criterion
“expressive power” is of less importance.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 63

3.2.3 Quality metrics
The coupling is relatively well known by the community,

and thus, our lab team members decided to look into the
matter [5]. Correlatively, we found three quality metrics for
the latter which must be considered for the third and final
step of the SOAQE process, that is to say, the quantification
and the evaluation of all the metrics (The semantic coupling:
based on the high-level description of a service defined by the
architect, the syntactic coupling: measures dependencies in
terms of realization between abstract services and concrete
services and the physical coupling: measures dependencies
between concrete services really utilized, in collaboration and
in execution). In this light, we can draw a triptych clearly
presenting the metrics extracted and levels of acceptance for
each of them (see figure 5).

Semantic coupling
High coupling: The service takes part in an essential
functionality of the composite.
Low coupling: The service takes part in a nonessential
functionality of the composite. The global quality is not
guaranteed anymore if one or more from these functions are
withdrawn. We pose that if all these nonessential functions
disappear the composite becomes unusable.
Non-predominant coupling: An abstract service and a
composite are in non-predominant coupling if this service
takes part in a nonessential function of the composite and if
the withdrawal of this function does not have any significant
impact on the global quality.
Syntactical coupling
High coupling: An abstract service is in high syntactical
coupling with its concrete solution if this solution (a concrete
service or a composition of concrete services) represents the
single possibility of realization.
Weak coupling: An abstract service and a concrete service are
in weak coupling if there are several concrete alternatives to
the realization of this abstract service.
Physical coupling
The physical coupling focuses on the implementation of the
service. This implementation corresponds to a particular
instance of the service where a choice has been made
concerning concrete services to use. A unique solution has
been chosen to fulfill each of the needs expressed by abstract
services. It reuses existing researches [10] and it is based on
measurements such as methods calls, messages exchanged, the
number of linked services, commune objects and so forth.
These metrics shall make it possible to identify physical
dependencies between concrete services.

3.2.4 Stakeholders
Further down the road, each of the SOAQE method steps

require the intervention of external evaluators (called
stakeholders) to set the coefficients prioritizing factors, criteria
and metrics considered. The categories of stakeholders are
often the same for the SOA systems, especially when we work

with criteria from the same family. Here is a technical list of
stakeholders chosen for evaluating technical attributes.

Figure 5: Loose coupling metrics

 We have the software architects which main
responsibilities include experimenting with and deciding
between different architectural approaches, the developers
which main responsibilities include implementing the
architectural elements of the system according to the
architecture specification; the integrators which main
responsibilities are to ensure that the architecture and
implementation conform to open and widely accepted
standards; the maintenance developers which main
responsibilities include modifying the software to correct
defects and adapting the software when environmental
changes occur (e.g., hardware or operating system changes).
We also have the developers of service users: these external
developers may provide input on application program
interface (API) design and desired quality of service and
finally the external developers of service providers: they
may contribute requirements for interaction with their
services, as well as knowledge of qualities and limitations of
their systems.

3.2.5 Coefficients
Concerning the first step of SOAQE, coefficients

assigned to the factors will depend on the company needs.
Our works led us to conclude that for SOA and the three
factors we worked with, we would allocate, according to our
hierarchical ranking, a coefficient of ‘3’ for the “dynamism”
whereas we would affect the value ‘2’ for the “reusability” and
the “composability”.

With regards to the second step, our works led to list the
six technical quality criteria chosen under three distinct levels
of acceptance, α, β and γ at which we assign respectively the
values ‘3, 2 and 1’, consequently, the “loose coupling”, the
“upgradability” and the “communication abstraction” will be

64 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

allocated the value ‘3’. The coefficient ‘2’ goes for the
“owner’s responsibility” and “explicit architecture” criteria
and ‘1’ for the “expressive power”.

And finally, the three metrics studied may be all assigned
to the value ‘1’ meaning that they are equally important for
calculating the global coupling of SOAs.
These coefficients will be used as a basis for the following
section (Experimentation). They have been affected to quality
attributes as an example; however, these latter have been
chosen according to the principle of proportionality validated
by the lab-team. We can select other impact coefficients
providing that we keep the same proportionality between the
quality-attributes considered.

4 Experimentation
For the experimentation, we tempted to quantitatively

measure the key quality attributes discussed in the previous
sections of this paper; notably, the quality factor “dynamism”,
the “loose coupling” criteria and the “physical, syntactic and
semantic coupling” metrics. That being said, it is important to
note that the SOAQE method must be reproduced for every
quality factor identified after having analyzed the objectives of
the company and the set of criteria and metrics belonging to
that quality factor.

4.1 Loose Coupling
Taking as a starting point an existing formula of the field

of “Preliminary analysis of risks” (see formula 6.1) [11], our
works led to the identification of a mathematical formula (see
formula 6.2) combining the three couplings studied: semantic,
syntactic and physical.

NB: The simplified formula (see formula 6.1) usually used
in the automotive industry, makes it possible to measure the
default risk of a car component A is the Criticality of the car
component, B is the Probability of occurrence of a failure on
this component and C is the Probability of non-detection of
this failure.

We associate this concept of risk with our vision of the
coupling. Correlatively, the quintessence of the coupling is the
expression of the dependences which can exist between two
elements and the principle of dependence defines that one
element cannot be used without the other. Reducing the risk
that the role defined by a service cannot be assured anymore is
decreasing the dependence of the application in relation to this
service and thus reducing its coupling. The calculation of this

risk takes into account all the characteristics influencing the
coupling by redefining the three variables A, B and C
according to the semantic, syntactic and physical couplings.
The global coupling corresponds to the sum of the three
couplings calculated individually beforehand. The lower this
result is, the more the coupling is weak.

NB: The criticality A[(a),(b),(c)] is affiliated to the
semantic coupling. ‘a’ if the service is only associated to non
predominant couplings, ‘b’ for non predominants and low
couplings and ‘c’ for non predominants, low and high
couplings, while ‘Ps’ is the probability of failure of a service.

This generic coupling formula can directly be used to
quantify the quality of an architecture by weighting up each of
the attributes concerned by means of the coefficients isolated
after having hierarchised the attributes according to their
importance. Indeed, as we already specified in section 2, we
cannot automate this operation and define continuously the
same coefficients for all the architectures considered because
this operation is specific to the business objectives of the
company.

Figure 7: SOA attributes tree weighted with means of

coefficients
By applying to known quality attributes the coefficients

determined in the section 3.2.5, we obtain the tree of the
figure 7. According to this tree, we can establish that the
quantitative measure of the quality of an SOA corresponds to
the sum of the quality factors dynamism, reusability and

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 65

composability, all three affected by their respective
coefficients. The formula hereinafter allows calculating the
whole quality of an SOA.

NB: the lower the loose coupling result is, the more the
coupling is weak. Conversely, the higher the architecture
quality result is, the more the quality is good.
The result of each criterion is expressed in percentage, this is
why we subtract to 1 the result found.

For any architecture considered, we are able to determine

a finite value for the loose coupling criteria, the remaining
work consists in defining a way to calculate the five others
criteria in order to isolate a finite value for the quality.

5 Discussion
Because SOA implies the connectivity between several

systems, commercial entities and technologies: some
compromises regarding the architecture must be undertaken.
Forasmuch as the decisions about SOA tend to be pervasive
and, consequently, have a significant impact on the company;
setting an evaluation of the architecture early in the life of the
software is particularly crucial. During software architecture
evaluations, we weigh the relevance of each problematic
associated to the design after having evaluated the importance
of each quality attribute requirement. The results obtained
when evaluating software architectures with existing methods
(ATAM, SAAM) are often very different and none of these
latter carries out it accurately [12]. We know the causes of this
problem: most methods of analysis and automatic quality
evaluation of software systems are carried out from the source
code; whereas, with regard to evaluation cases of architectural
models, the analysis is conducted based on the code generated
from the model. From this code, there exist calculated metrics,
more or less complex, associated with algorithms, methods,
objects or relations between objects. From an architectural
point of view, these techniques can be indicated of low level,
and can be found out of step with projects based on new
complex architectures. The evaluation concerns qualitative
and quantitative aspects, the prediction of the load associated
to evolutions and on the theoretical limits of a given
architecture. These architectures evaluations can be made as
well on architectures under development as on existing ones.

6 Conclusion
The finality of our work is to design a conceptual

framework and, in fine, a semi-automated prototype (based on

past methods, such as ATAM or SAAM) which could quantify
with an accurate value the quality of the whole service
oriented architecture. Another pursued goal consists in
bringing to the customer "less abstract" documents than those
proposed today. The quality concept remaining a relative one,
we will target the sectors requiring a special attention by
directly addressing the various development lab teams charged
with the relevant functions.

7 References
[1] D. Garlan and M. Shaw, An introduction to software
architecture, CMU/SEI-94-TR-21, ESC-TR-94-21, 1994.

[2] S. Mazumder. SOA: A Perspective on Implementation
Risks. SETLabs Briefings publication (eg. Oct 2006).

[3] P. Clements, R. Kazman and M. Klein, Evaluating
Software Architectures: Methods and case studied, published
by Addison-Wesley Professional, 2001.

[4] A. Sangroya, K. Garg and V. Varma. SAGE: An
Approach to Evaluate the Impact of SOA Governance
Policies. 2010. AINA Workshops 2010: 539-544.

[5] A. Hock-Koon, “Contribution à la compréhension et à la
modélisation de la composition et du couplage faible de
services dans les architectures orientées services” Thesis
(PhD). University of Nantes, 2011.

[6] M. Oussalah and A. Smeda. COSABuilder : an
Extensible Tool for Architectural Description, 2008. ICTTA
2008, pages 1–6.

[7] O. Lero, P. Merson and L. Bass. Quality Attributes and
Service-Oriented Architectures, 2007. SDSOA 2007

[8] T. Demarco, Controlling software projects: management,
measurement and estimates, Prentice Hall, 296 pages, 1986.

[9] I. Crnkovic, M. Chaudron and S. Larsson, “Component-
based development process and component lifecycle”
ICSEA’06, International Conference on Software Engineering
Advances, 2006

[10] M. Perepletchikov, C. Ryan, K. Frampton, and Z.Tari.
Coupling metrics for predicting maintainability in service-
oriented designs, 2007. ASWEC:329–340

[11] Y. Mortureux, Preliminary risk analysis. Techniques de
l'ingénieur. Sécurité et gestion des risques,
SE2(SE4010):SE4010.1–SE4010.10, 2002

[12] M.T. Ionita, D.K. Hammer and H. Obbink, “Scenario-
based software architecture evaluation methods: an overview”,
ICSE 2002, 2002

66 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Scalability Architecture For Processing

using Microsoft .Net Remoting

Seth Nielsen and Dr. Yuke Wang

School of Computer Science, University of Texas at Dallas, Richardson, Texas, U.S.A.

Abstract - Microsoft .Net Framework provides intrinsic

capabilities for distributed computing but does not provide

prioritization and scaling services. As more applications and

database systems convert from mainframe systems to

Microsoft .Net Framework, a framework to provide these

services is needed. Microsoft provides for some of these

services with more advanced offerings, but with increased

operational requirements and licensing costs.

This paper will define the architecture for a software-based

solution that will require only .Net Framework and SQL

Server to provide scaling, scheduling, prioritization, logging

and load balancing services. This solution provides for

horizontal scaling of defined processes that can further break

themselves into sub-processes and submit these to be run on

additional physical servers without the calling application

being aware. The load balancing solution described here will

not only attempt to locate the best fit server for the requested

process, it will allow for processes to be assigned only to

servers defined as capable to run the process.

Keywords: Software Architecture, Web-based Applications,

Distributed and parallel systems

1 Introduction

 Microsoft .Net Framework is a common software

solution and provides many higher level functions. However,

these solutions do not naturally provide many of the services

available to mainframe systems. This includes scaling,

scheduling, prioritization, logging and load balancing

services. Microsoft and other vendors provide large-cost

solutions, but these require large expenditures of hardware

and pre-built software solutions that have large annual fees

and maintenance fees. As companies move away from

mainframe systems where process scaling is handled

intrinsically, modern software solutions need to provide these

same services.

1.1 Objectives

 This paper will provide a mission-critical process scaling

architecture that utilizes only Microsoft .Net Framework and

Microsoft clustered SQL Server. This will allow more

software systems to provide scaling and load-balancing

services for CPU, memory and query intensive processes with

quick turn-around for fast and short processes at the same

time.

1.2 Why is this important?

 Many smaller to mid-size companies have found that the

mainframe implementations are too expensive to purchase and

maintain. Microsoft has provided a relatively inexpensive

software solution that does not provide standard mission-

critical solutions for their growing needs. This paper will

describe a solution that can be implemented by the typical

software development team utilizing the tools they are most

familiar – Microsoft .Net Framework and Microsoft SQL

Server.

1.3 Brief Summary of Existing Approaches

 There are several third party solutions that currently

provide scalability services, but they are either high priced or

do not meet the mission critical needs of high availability.

Microsoft provides several solutions in this regard. Network

Load Balancing (NLB) Services are offered as an extension of

Windows Server 2008 [14]. NLB offers fault tolerance and

will allow scaling to 32 servers per segment, but does not

ensure that the destination server is running the service

needed [16]. With no load balancing mechanism built in, the

solution does not offer enough benefit for the software team

not already using NLB for other purposes.

Microsoft also offers SQL Service Broker (SSB) as part of

Microsoft SQL server tools. SSB provides a messaging and

queuing solution that uses the same transactions utilized in

data modifications to provide distributed processing [11].

However, the message queue allows communication in a first-

in, first-out order so does not easily provide for the

prioritization services that are needed for a scalable solution.

The SSB solution also requires most of the communication

logic to be stored in stored procedures on the SQL Server,

which makes debugging more difficult.

Microsoft MQ (MSMQ) [17] and IBM WebSphere MQ [12]

are also solutions for scalability. The intent of message

queuing systems is to break down processing into very small

pieces and handle each item individually within the queue.

This requires a significant amount of work to then collate all

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 67

returned information together and does not work well when

significant amount of preparation/data access is needed to

complete the processing. Both MSMQ and WebSphere MQ

are expensive solutions which require a significant amount of

management and oversight [17].

1.4 Summary of the Remaining Paper

 The remainder of the paper will include the following

sections. Section 2 briefly describes the Microsoft solutions to

be utilized by this solution and an overview of scalability.

Section 3 describes the Process Scaling Architecture solution

and shows how it meets the needs as discussed here. Section 4

will show the results and Section 5 provides the conclusions.

2 Background

2.1 Microsoft .Net Framework

 Microsoft .Net Framework developed by Microsoft

Corporation provides a consistent object-oriented

programming environment using a common language runtime

(CLR) and automatic garbage collection [18]. The framework

provides a substantial amount of tools for development teams.

2.2 Clustered Microsoft SQL Server

 Microsoft SQL Server 2008 provides data storage and

retrieval for mission-critical applications that require high

levels of availability and performance. Failover clustering

provides protection against planned and unplanned downtime

[7]. Microsoft SQL Server clustering provides for two

separate physical machines to be utilized for handling all

incoming requests. If one server fails, all of its services are

transferred to another machine without the calling

applications being aware of the transfer [15].

2.3 Microsoft .Net Remoting

 Microsoft .Net Remoting provides an abstraction layer

to the developer so processes can be run on remote servers

without significant involvement in this communication [8].

The .Net Remoting service provides the serialization

(marshaling) of data prior to sending the request to the remote

machine and then performs the deserialization at the remote

server before the remote process begins its processing. The

remote process will run solely at the remote server performing

the logic of the remote object and utilizing the resources of

the remote server.

2.4 Scalability

 Scalability is the ability of a software application or

software systems to be able to perform in expected ways with

reasonable performance as the demands of the software and

systems are increased. There are two main approaches to

allow for applications and systems to scale.

Vertical scaling (or scaling up) requires the hardware

components of the server(s) to be upgraded or improved. This

can involve upgrades to processors, memory, disks, and

network adapters [10] to reduce bottlenecks to the overall

application as demands increase. Vertical scaling works best

when the application is limited to run on the currently defined

servers.

Horizontal scaling (or scaling out) requires additional servers

to be added to the environment. This spreads the application

and its processing across more resources. These

improvements allow for growth to happen gradually and

utilize less expensive servers [10]. Applications that can

handle horizontal scaling also allow for these servers to be

taken off-line during maintenance without impact to the

system and help provide for mission-critical demands to keep

the applications running during hardware failure.

3 Possible Solution

 This paper is focused on a design to provide a cost

effective solution to the many needs of mission-critical

process intensive applications. These applications will

generally be required to fulfill requests for the following

conflicting needs:

1) Long running processes with significant data access that

will utilize the available resources

2) Short running processes to fulfill a single request for the

user that expects results immediately

3.1 Indiscriminate Scaling Solution

 One way to fulfill these differing requests is to make

them both function in the same way. Adjusting long running

processes into many short running processes could make them

both the same, but this would cause some negative side

effects.

Indiscriminately forcing all processing to be short running

processes will significantly increase the overhead of long-

running processes that used to share the preparation work of

accessing SQL data optimized for long running processes.

Running all work as short running processes could

significantly increase network bandwidth and increase context

switching on each server. In addition, the long running

processes need to provide a single aggregated response to the

application. This proposed solution would not provide for this

collation of data.

3.2 Process Scaling Architecture Solution

 A better solution is to create a structure that can run both

the long running processes and the short running processes in

a way that best fits their needs. The short running process

needs to be given priority over the long running process and

available resources must be reserved for these requests. The

68 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

long running process needs to be able to intelligently break

itself into smaller sub-sets in a structure that can provide a

single logging mechanism and a pre-defined structure for

collating results back to the main process.

The Process Scalability Architecture (PSA) solution provides

this staged scaling solution that allows the long running

processes and short running processes to both run to their

differing needs. The main calling application will simply

request for the process needed to be run and PSA will submit

the process to be run on the best fit server and with the

scheduling and priority as requested.

The staged scaling occurs within the long running processes

as it can utilize the same process request structure as utilized

by the main application to request sub-process to be run for

the main process. These sub-processes, called worker threads,

are pre-defined to be grouped together with the main process

in terms of logging and result storage.

This grouping allows the worker threads to store their results

in the same structure as the main process allowing the main

process to collate this information and provide a single

response back to the calling application. This grouping also

allows for the main process and each worker thread to report

any errors, warnings or informational data into a single

logging location for the end user.

Figure 1. Process Queue Log

The logging mechanism, as is shown in Figure 1, will provide

for all messages related to the main process to be displayed

together (using the same Root Process Queue ID) but still

allow the end user to see the details of which worker thread

performed the process (based on Process Queue ID).

The Process Scalability Architecture is a complete solution

that provides all of the services needed by mission-critical

applications:

1) Horizontal scaling of processing

2) Load balancing to best fit servers

3) Higher prioritization of immediate requests

4) Scheduling to run processes at non-peak times

5) Consistent logging for viewing and monitoring

Figure 2. Architecture Configuration

3.3 PSA Configuration

 As is shown in Figure 2, the solution involves three

different physical groups of servers. The process server farm

includes servers able to perform the processing needs of the

application. The clustered SQL Server provides the data

storage for process information and process server status. The

Client is any software application utilizing the Process

Request Agent to run a process. This could be a web farm,

stand-alone application and the process servers themselves.

3.4 Process Server Service

 The Process Server Service will be deployed to each

Process Server and will be responsible for listening for

requests to run defined processes. The Process Server Service

will be responsible for knowing which processes are allowed

to run on the server and any restrictions on how many

processes of each type can be run.

3.5 Process Manager Service

 The Process Manager Service will be deployed to a sub-

set of the available Process Servers and will be responsible for

locating the best Process Server to utilize for any pending

requests. The Process Manager will poll the SQL Server for

both requests that are scheduled to run immediately and

requests that are deferred.

3.6 Request Listener Service

 The Request Listener Service will be deployed to all

servers and will be responsible for communicating between

the Process Manager and the application that has requested to

run a process. This service is critical as it gives the Process

Manager a single access point to each server even if the server

is running multiple applications.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 69

Figure 3. Process Scalability Architecture

3.7 Process Flow Overview

 The Process Scalability Architecture, as shown in Figure

3, is separated into four logical groups: The Process Server,

the SQL Server, the Load Balancer (Process Manager) and

the Client. It is not represented in this diagram, but the

Process Server can also play the role of the client – this is how

it breaks its running process into smaller requests and scales

to other process servers.

The diagram above is utilizing arrows to show all paths of

communications between the entities. This communication is

performed using .Net Remoting (for any communication

between services) or transactions on the SQL Server (for all

communication with the SQL Server).

This process flow will show the initialization of all servers,

the initial request to run a process, the determination of where

to run the process, and the completion of the process.

3.8 Initialization

 As each service is started, it is responsible for registering

itself with the SQL Server. During this registration process, it

will record information about itself on the SQL server and

collect information on all other servers available in the

environment. This helps the service know which servers to

attempt communication with, but the process flow will also

handle the scenarios when new servers are added or when

existing servers fail or are taken off-line.

3.9 Process Request Agent

 The Process Request Agent (PRA) is utilized by any

client application to request a process to be run. The PRA is a

middleware object that performs the necessary .Net Remoting

calls to request a reservation on a process server and then runs

the process for the calling application. All .Net Remoting calls

are abstracted by using the Broker design pattern [6] that

creates a client proxy and a server proxy for the methods

utilized by the development team.

The Process Request Agent provides a single interface to

allow the application to request a process to be run, define

when it should be run and the parameters needed to run the

process. With this information, the PRA will determine the

priority of the process and submit this request to be run by

recording the request in the SQL Server. If the process is

scheduled to be run at a later time, then the PRA will let the

application know that the request has been submitted. If the

process is to be run immediately, the PRA must then remote

to the Request Listener Service to await the determination on

which process server to run the process.

3.10 Process Manager

 The Process Manager (PM) manages both the queue of

requested processes and the status and load of each process

server. This queue is stored within the ProcessQueue table as

shown in Figure 4. In combination with ProcessQueueStatus,

it determines the available processes and their scheduled start

time. The PM will periodically query these tables and sort the

processes based on Priority and the original submission time.

70 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Figure 4. Process Queue Storage

Once the Process Manager locates a process to be run, it will

attempt to find the best-fit server to run the process. To do

this, the PM must know which servers are online and

available, which servers are able to run the process, the

available resources on each server and what processes are

currently running on each server.

These needs are handled by creating an open channel of

communication between the Process Managers and Process

Servers. The Process Server uses this channel of

communication to update all Process Managers with its status

and processing load when it starts, each time it picks up a new

process and periodically while running each process. If the

Process Managers or Process Servers cannot communicate

with each other due to network issues or otherwise, the

communication failure is logged but does not impact the

processing. The Process Server status and load information is

also stored in SQL tables, as is shown above, so the Process

Managers can reset their status periodically or during

initialization.

Of the available process servers that can run the process

requested, the Process Manager will find the Process Server

with the least activity and most available resources. This

determination can be made by comparing the available

resources of the server against the utilized resources. This

paper will not detail the load balancing mechanism utilized,

but the data required to make this determination is managed

within the current solution.

Once the Process Manager determines the best fit server, it

will request a reservation from the Process Server. This

reservation allows the Process Server to have the final

determination of whether to run the process and allows time

for the Process Manager to communicate back to the calling

application. Once a reservation is returned from a Process

Server, the Process Manager communicates this back to the

Request Listener Service which helps the Process Request

Agent to run the requested process on the best fit Process

Server.

3.11 Process Server

 The Process Server’s (PS) main role is to run the

requested process. Along with that role is the responsibility to

ensure that only the allowed processes are run on the server

and within the allowed limits defined for the server. The

Process Server makes this determination based on its

configuration that is stored within SQL tables, as is shown in

Figure 5.

Figure 5. Process Server Storage

The Process Server can be constrained to only pick up a

certain number of each process type (defined by

ProcessServerCapability) or can be defined to not accept any

new processes once available resource levels are low. It can

also reserve resources and available process capability for the

short running processes so these can run at any time. As the

Process Manager requests a reservation, the Process Server

can still decline and the Process Manager will look to the next

best server to run the process. If the reservation is granted,

then the Process Server will reserve the resources or

processing limits for a limited time before the reservation

expires.

For each process run by the Process Server, the process can

determine if and when it needs to allocate some of its work to

other worker threads. Once determined, the sub-elements of

the process are requested to be run by another Process Server

in the same way that the main calling application requested a

process to run – repeating the same process again. The only

difference is that these worker threads will be linked to the

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 71

root process so all logging and activity is linked to the initial

request.

While the Process Server is running the process from the

calling application (or from another process), it will store all

of its running information into the shared ProcessQueue,

ProcessQueueStatus and ProcessQueueLog tables as

discussed above. This unified storage location allows all

logging information to be viewed together for the root Process

requested by the end user. This allows the user to view each

process’s status and performance across all available servers.

3.12 High Availability

 As the PSA is intended for mission-critical applications,

it provides high availability. First, all elements of the

architecture besides the calling application are built using

Windows Services. This allows the process itself to run faster

as it does not need to handle windows messaging that occurs

for applications. It also allows the operational teams to

configure the services to automatically start when the machine

turns on and automatically restart any time the service fails

due to SQL failures, etc.

Second, each of the Process Servers and Process Managers

are built to handle the addition and deletion of servers without

any impact to the end users’ request to run a process. Each

server will broadcast their status to all other servers in the

environment each time they start or stop offering services.

Additionally, the Process Manager attempts to maintain the

status of all Process Servers in memory for faster service, but

will periodically rebuild its in-memory data from the SQL.

Third, there is no single point of failure as the structure allows

for multiple Process Servers and multiple Process Managers

to be running at the same time. This allows the operational

team to add and remove servers from deployment as needed.

For any mission-critical application using SQL Server, the

operational team will already have handled deploying the

SQL Server as a clustered service with a possible second hot

data center that will automatically become active on failure.

4 Validation

 The implementation of this solution has shown very

positive results. The end product provides a high available

solution that can run short processes quickly, run long

processes efficiently, and provide a standard mechanism to

scale these long processes without any significant impact to

the end user.

4.1 Case Example

 Prior to this implementation, users were struggling with

a process that would take 24 hours to run to completion

(assuming no failure occurred). This timing was not sufficient

for their needs, so they would need to manually split out the

processing into multiple submissions of lesser size. This

would allow the process to complete in six hours but require

an additional two hours of manual effort to split up the

processing. In addition to the time required, the user could

create issues by not splitting up the process correctly.

With this improvement, the user can submit the full process

and the built-in scalability allows all of the initial data work to

occur in the main process and allocation of 12 different

worker threads to complete the process. This allows the whole

process to complete in a little over 3 hours with no extra

involvement of the end user. Even if there is a problem with

one of the worker threads (by user error or system error), the

user can then rerun a single worker thread and the logging of

the rerun is included with the original process submission.

4.2 Validation By Bottlenecks

 Another way to validate the success of the

implementation is by reviewing the processor utilization on

the Process Server before and after the implementation of this

improvement. Prior to this implementation, the long running

process and the manually created smaller processes would

spend a significant amount of time waiting for responses from

SQL requests. The queries were efficient with good execution

plans, but there were a significant amount of requests. Due to

this waiting time, the overall processor utilization would

rarely go above 20% utilization. With these improvements,

the utilization now peaks to 80%.

In addition, the SQL Server interaction increased so much

with this improvement that the query and connection time out

settings for the Process Server and the SQL Server had to be

adjusted as the application was now making SQL Server work

harder. This shows that the application and the software are

no longer the bottleneck and operational improvements to

hardware can now make improvements to the overall

performance of the system.

4.3 Other Issues Identified

 There are other possible issues in this implementation

that should be reviewed when utilizing this solution.

First, remember that a 32-bit installation is still restricted to

1.5G for a single Process Server service. This means that

deploying to 64-bit servers is the preferred deployment.

Second, this solution does not automatically protect against

deadlocks from occurring. The Process Server Capability

configuration must ensure that there are as many worker

threads available as the number of main threads available.

This will ensure that each main process will always have at

least one worker thread to perform its work and eventually

complete.

72 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Third, starvation protection has not been built into this

solution. This was not a significant enough issue for the initial

implementation, but this can be added later by having the

Process Manager increase the priority of all pending Process

Queue records each time it does not have an available Process

Server to run it.

5 Conclusions

 This paper has defined a Process Scalability

Architecture to be used in mission-critical applications with

processor-intensive needs. This solution provides efficient

solutions for common needs of these applications including:

horizontal scaling, high availability, load balancing,

scheduling, prioritization, consistent interfaces, and unified

logging of all activity. The horizontal scaling mechanism also

provides the ability for each process to also break out its

processing to sub-processes on different servers. This solution

has been implemented and validated against a mission-critical

application and the identified issues have been corrected.

6 Acknowledgement

 The authors would like to thank Craig Burma for his

help and support during this work. They are also very

appreciative of Ben Horstman, Daniel Wells, Mark Lansford

and all of Seth’s co-workers who helped to work through the

issues related to this solution and to validate the design.

7 References

[1] Ying Chen Lin, Sy-Yuan Li, Yuan-Shin Hwang.

“Dynamic Load-Balancing of Jini and .NET Services,” icppw,

pp. 257-265, 2006 International Conference on Parallel

Processing Workshops (ICPPW’06), 2006.

[2] Erik Putrycz. “Design and Implementation of a portable

and adaptable load balancing framework,” pp. 238-252,

Proceedings of the 2003 conference of the Centre for

Advanced Studies on Collaborative research, 2003.

[3] Rubén Mondéjar, Pedro García, Carles Pairot, Antonio

F. Gómez Skarmeta. “Building a distributed AOP

middleware for large scale systems,” pp. 17-22, Proceedings

of the 2008 workshop on Next generation aspect oriented

middleware, 2008.

[4] Simon Malkowski, Markus Hedwig, Calton Pu.

“Experiemental Evaluation of N-tier Systems: Observation

and Analysis of Mult-Bottlenecks,” pp. 118-127, Workload

Characterization, 2009. IISWC 2009. IEEE International

Symposium, 2009.

[5] Yong-Cai Wang, Qian-Chuan Zhao, Da-Zhong Zheng.

“Bottlenecks in Production Networks: An Overview”, JSSSE

2005.

[6] David Trowbridge, Dave Mancini, Dave Quick, Gregor

Hohpe, James Newkirk, David Lavigne. “Distributed Systems

Patterns”, pp. 191-264, Enterprise Solution Patterns Using

Microsoft .Net Version 2.0, Microsoft Corporation, 2003.

[7] David Trowbridge, Dave Mancini, Dave Quick, Gregor

Hohpe, James Newkirk, David Lavigne. “Performance and

Reliability Patterns”, pp. 311-336, Enterprise Solution

Patterns Using Microsoft .Net Version 2.0, Microsoft

Corporation, 2003.

[8] Ingo Rammer. Advanced .Net Remoting, Springer-

Vering, New York, 2002.

[9] Microsoft Corporation. A Guide to Building Enterprise

Applications on the .NET Framework,

http://msdn.microsoft.com/en-us/library/ms954601.aspx,

2003.

[10] Microsoft Corporation. How to: Scale .NET

Applications, http://msdn.microsoft.com/en-

us/library/ff650667.aspx, May 2004.

[11] Microsoft Corporation. SQL Service Broker,

http://msdn.microsoft.com/en-us/library/bb522893.aspx,

2011.

[12] IBM Software. WebSphere MQ: Features and benefits,

http://www-01.ibm.com/software/integration/wmq/features/,

2011.

[13] Microsoft Corporation. Microsoft System Center

Essentials. http://technet.microsoft.com/en-

us/systemcenter/essentials/default.aspx, November 2010.

[14] Microsoft Corporation. Network Load Balancing

Deployment Guide. http://technet.microsoft.com/en-

us/library/cc754833(WS.10).aspx, November 2010.

[15] Microsoft Corporation. Microsoft SQL Server 2008:

SQL Server 2008 Failover Clustering.

http://download.microsoft.com/download/6/9/D/69D1FEA7-

5B42-437A-B3BA-

A4AD13E34EF6/SQLServer2008FailoverCluster.docx, June

2009.

[16] Carol Bailey. MSCS vs. NLB: Evaluating the pros and

cons, http://www.techrepublic.com/article/mscs-vs-nlb-

evaluating-the-pros-and-cons/1058353, November 2002.

[17] Michael Jones. Nine Tips to Enterprise-proof MSMQ,

http://www.devx.com/enterprise/Article/22314/1954, 2010.

[18] Microsoft Corporation. .Net Framework Conceptual

Overview, http://msdn.microsoft.com/en-

us/library/zw4w595w.aspx, 2011.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 73

Rejuvenation Modeling in Safety Critical Real Time

Systems using Stochastic Petri Nets

Bharati Sinha, Dr. Santanu K. Rath

Department of Computer Science and Engineering,

National Institute of Technology,

Rourkela-769008, India.

Abstract — The main idea behind the increase in use of real

time systems is that their performance is measured in terms

of clock time and not on the basis of logical time which

imposes timing constraints on the performance evaluation

of such systems. It is a fact that any software with aging

becomes prone to failure. Mostly the complex systems are

safety critical systems whose reliability is the most

important performance measure. Such systems need to be

safeguarded from the effects of aging. This could be done

either by debugging the errors or through preventive

maintenance like rejuvenation. Although the downtime cost

due to rejuvenation may make it appear expensive, but it

enhances the reliability of the software. This paper studies

the effect of rejuvenation on a real time system from the

estimated values of performance measures based on SPNP

tool.

Keywords – Real time system; rejuvenation; stochastic

petri nets; reliability; efficiency

1 Introduction

The safety and reliability of software systems could
either be independent or related. When they are independent
the system enters fail-safe state whenever it fails i.e. failure
causes no damage. However when they are related, the
systems become safety critical systems where failure can
cause severe damage. Real time software systems generally
have safety critical application where a single flaw or
disruption could result in huge monetary loss; such
applications need an almost perfect run where the chances of
error are minimal even with continuous usage. A real time
system has to consider real clock time in its functioning i.e.,
the behavior of the system is time dependent [1]. These
systems are used in places where the performance of the
system is analyzed based on actual quantitative time e.g.,
computerized air traffic control, where a delay in signal
beyond permissible limit is equivalent to failure. The main
factor in assessing performance is reliability rather than cost,
associated during whole software life cycle.

The present day system failures are mostly due to
software failure rather than hardware failure [2], which could
be due to design anomalies, improper usage by users or
deployment in changing environment. Such faults could be
corrected either by debugging them when they occur or

through preventive measures. The former involves transient
fault recovery which is corrective in nature but it results in
incurring huge cost as the recovery starts only when fault
occurs. It brings much overhead on time, cost and effort, so it
needs to be reduced. The later method is preventive in nature
which preemptively stops the continuously running
application to avoid failure, called as rejuvenation [2]. When
any system works continuously for a longer period of time,
errors might creep in or it may require adaptive changes
which require fault recovery. As real time systems are very
sophisticated and have to deliver high performance; such
periods of revival also needs to be considered for the overall
system reliability estimation. Rejuvenation involves stopping
the system in a periodic manner, freeing it from bugs that
might have crept in and restart it from the initial state. This
planned shutdown of system to prevent failure would be
more economical in terms of cost to crash failure.

Rejuvenation could be best explained considering two
basic concepts i.e., time based and prediction based
rejuvenation [4]. Time based rejuvenation is considered
when rejuvenation interval is of predetermined discrete
value. Prediction based rejuvenation is done when the
system enters a state of vulnerability where it is prone to
failure and is rejuvenated.

The system could be modeled either as a discrete time
Markov chain (DTMC) or continuous time Markov chain
(CTMC) depending upon the case whether the system is
absorbing or irreducible. Absorbing systems are those which
have terminating execution. Irreducible systems are those
which are continuously running applications. The system
initially is considered fault free with all the modules working
properly. The underlying Markov chain of the system has to
be generated from the SPN model of the system for which
reward function has to be incorporated in the structure of
SPN Model. The SPNP tool [20] is used to define reward
function after which it can be transformed to Markov model.
The performance of the system may be analyzed in both
steady as well as time variant states. This paper studies the
effect of rejuvenation when it becomes vulnerable to
estimate the reliability of the system. For reliability
computation the probability of failure is calculated and from
it, the reliability of the system is estimated.

The outline of the paper is as follows: section II describes
the foundations of proposed methodology by explaining

74 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

basics of real time system, software reliability, need for
rejuvenation and Stochastic Petri Net. Section III describes
the experimental system where a system is considered
initially with complete functioning to represent its
functioning normally and then with rejuvenation interval.
The reliability models with rejuvenation using various SPN
models for different situation are discussed. Thereafter
section IV describes the result which shows the effect of
rejuvenation on reliability. Section V concludes the paper
with scope for future work showing the effect of
rejuvenation on reliability of the whole system.

2 Basic concepts

2.1 Real Time System

Real time systems are those in which system behavior is
described by quantitative time; time being considered as
clock time [1]. The performance of real time systems
depends heavily on deadlines in terms of time. Real time
systems have wide applications in digital and control
systems. Based upon the type of task, real time system could
be classified into hard, firm or soft real time system.

 Hard real time systems are those which have to
perform within certain fixed time interval else they
are considered failed e.g. robot.

 Firm real time systems also have fixed time for
performance but the system does not fail in case of
delay just the results are discarded e.g. video
conferencing.

 Soft real time systems also have timing constraint
but the time interval here is not an absolute value
rather the average value which is why the systems
efficiency lowers when more tasks have delayed
completion time e.g. web browsing.

As time plays crucial role in the working of real time
systems certain timing constraints are imposed on the system
which could be classified as:

 Performance constraints: being imposed on the
system in its response to the user.

 Behavioral constraints: being imposed on user’s
interaction with the system.

These two constraints behave differently based on the
following criteria:

 Delay: This defines the minimum time difference
required between two events.

 Deadline: This defines the maximum time interval
which is permissible between two events.

 Duration: This defines period over which system
must perform; it could be of minimum or maximum
kind where either the system should have a longer
duration than the specified minimum or shorter
duration than the specified maximum.

Real time tasks are classified as:

 Periodic task: These tasks are repeated over fixed
interval of time known as the period of the task.
Periodic task may exist either from the instant of
system initialization or during system application.

 Sporadic task: These tasks occur at random instants.
Sporadic tasks can be denoted by

 T i= (ei,gi,di) (1)

Where for any task Ti, ei is its worst case execution
time, gi is the minimum time difference between
two instances of Ti while di is relative deadline of
Ti.

 Aperiodic task: Aperiodic tasks are similar to
sporadic as they too can arise at random instant.
The difference between them is that there need not
be any time interval between two instances of an
aperiodic task also the deadline is not an absolute
value but average value or is expressed statistically.

Scheduling is the process of appropriate sequencing of
jobs in order to get the optimal results. Real time scheduling
represents the process of sequencing of real time tasks in
proper order so as to meet the deadline. The time instants at
which the scheduler has to decide upon the next task for
execution are known as scheduling points. Schedulers are
activated at these scheduling points to determine the next
task. They can be classified on the basis of scheduling point
as:

 Clock driven scheduling: In these schedulers the
scheduling point is determined from clock interrupt.

 Event driven scheduling: In these schedulers the
scheduling point is determined from occurrence of
certain events.

 Hybrid scheduling: These schedulers use both clock
interrupt and events to determine their scheduling
points.

Another manner of classification is based upon how the tasks
are selected for scheduling. The types of schedulers are

 Planning Based: This accepts the task only if it can
meet its deadline and not interrupt the execution of
other tasks.

 Best effort: This accepts the task without any test
and makes a best effort to meet its deadline.

The other category of classification is based upon the kind of
processor used and could be of following types:

 Uniprocessor based

 Multiprocessor based

 Distributed based

To meet the timing constraints of real time systems, tasks
require efficient scheduling. The timing constraints can be
modeled using stochastic petri nets.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 75

2.2 Software rejuvenation

Software systems are being used in critical areas where
study of reliability is quintessential for researchers as well as
practitioners. However when any software is run for longer
time, certain errors tend to creep in with time which is due to
aging. Huang et.al [2] detected the effect of aging in
telecommunication billing applications. Avritzer and
Weyuker [3] reported aging in telecommunication switching
software causing gradual performance degradation. The
errors which are not debugged in the testing phase are mostly
transient in nature whose root cause cannot be determined.
They can be rectified either with a reactive approach or
through preventive measures. In the reactive approach the
error is rectified only when it occurs and might cause
crashing of the system in critical applications. The
preventive measure is to resurrect the fault before it occurs.
Software rejuvenation was proposed by Huang et.al. [2]
where the system is stopped for certain time interval, revived
and then allowed to run again.

Various modes of rejuvenation have been proposed
related to the criteria on which rejuvenation interval should
be determined [10]. Huang et.al [2] considered the
continuous time Markov chain (CTMC) to model system
behavior for rejuvenation. They considered failure model in
which the system could move from its initial state to a
vulnerable one. It may either cause failure or it could
undergo rejuvenation. The system could be restored in its
initial state either after rejuvenation or after its recovery from
failure. Garg et.al [4] introduced periodic rejuvenation and
modeled the system using Markov regenerative stochastic
petri nets to represent interval between successive
rejuvenation of model. The fine grained software
rejuvenation model [13] considers the degradation to be
made of a sequence of failures that causes crashing when it
exceeds threshold value.

Rejuvenation could be done in following ways depending
upon the rejuvenation interval [6]:

 Time Based Rejuvenation: This is the simplest form
of rejuvenation where the system is rejuvenated
after fixed intervals of time. Here the system is
stopped cleaned and restarted after fixed intervals of
time irrespective of other consideration. This
concept works well under normal circumstances but
could cause severe problems if the system is
executing some critical tasks.

 Load and Time based Rejuvenation: The system
could be rejuvenated after its rejuvenation interval
but only if it is free. This policy could be modified
to consider the various conditions under which
system cannot be rejuvenated even after the
rejuvenation interval. As in case of clustered
systems [14], where rejuvenation is either delayed
in peak time or carried out during initial peak time
but delayed later on.

In this paper the effect of rejuvenation is being considered.
The system is put under rejuvenation when it enters a
vulnerable state. It is modeled using Stochastic Petri Net
(SPN) with SPNP tool [25] to estimate its reliability in case
of time based and load and time based rejuvenation.

2.3 Software reliability

Software reliability gives an estimate of the probability of
the system functioning properly under various
circumstances. It is estimated by calculating the failure
probability of the system, and then taking its complement.
When a system is modeled using SPN, the reliability of the
system is calculated by first estimating the failure probability
due to various reasons and then summing them up for all the
failure probabilities. Its complement is found out for
estimating reliability.

The reliability of a system can be computed from the
value of failure rate γ(t), which is random and follows
exponential distribution. The reliability of the system would
be

R(t) = ℮
-γ(t)

 (2)

While modeling the system with SPN the failure rate is
modeled by associating firing times with each timed
transition. When any software is identified to be fault free,
the state associated with it is assigned a reward rate of value
equal to “1”. For reliability computation the expected
instantaneous reward rate is to be computed [5]. The
expected reward rate in steady state is given as:

 E[X] = ∑kετ rkπk (3)

Where τ is the set of tangible marking, πk is steady state

probability of tangible marking and rk is the reward rate in
marking k.

The expected instantaneous reward rate at time t is given as:

E[X(t)] = ∑kετ rkπk (t) (4)

where πk (t) is the probability of marking k at time t.

2.4 Stochastic Petri Nets

Stochastic Petri Nets (SPN) is used for modeling
performance of complex software systems [20]. They are a
variant of Petri nets. They are represented as bipartite graphs,
but have the time consideration which makes them suitable
for performance and reliability modeling. Like Petri nets
they also consist of sets of places and transition; but unlike
simple petri nets the transition here could be timed or
immediate. Any transition is enabled when there is at least
one token in each of its normal set of input places and no
token in any of its inhibitor places. The firing of enabled
transition transfers resources from input places to output
places depending on weights associated with the
corresponding arcs. The transition in SPN could be of three
types:

 Immediate with no time delay.

 Timed with exponentially distributed firing time.

 Timed with generally distributed firing time.

When the SPN consists of either immediate transition or
timed transition with exponentially distributed firing time, it
is said to be Markovian in nature where the future events
depend only upon the present state and not on the past. It
could then be used to generate underlying Markov chain and
solve it for computing various performance measures [21].
However if it consists of even one timed transition with

76 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

generally distributed firing time, the Markov property does
not hold well. To solve this problem certain instances of time
are needed where the past state may not be considered. These
instances are known as regeneration points where the future
events depend only on the present state.

Timed transitions are used to signify events which are
time consuming where the enabling of transition denotes the
beginning of the activity while the firing of the transition
denotes its completion. Immediate transitions are used to
represent instantaneous events which occur with no delay.
Immediate transitions thus have a sort of precedence over
timed transitions. When a system is modeled as SPN, its
various performance characteristics can be obtained as a time
average limit of markings of the net [22]. SPN is suitable for
modeling applications which involve randomness and
probability as well as time consideration. So these are
efficient for modeling real time applications. There are
various functionalities [21] in stochastic petri nets which
make them more suitable for real time system modeling:

 Variable cardinality arc: The cardinality of an
arc could be varied so as to denote the minimum
number of tokens to be present in input places
for a transition to be enabled.

 Priorities: The priority of transition could be
defined to establish priority relationship
between them the one having higher priority
will be preferred to that with lower priority.

 Guard: A transition could have an associated
guard function. It is evaluated only if there is
possibility of the transition being enabled in that
marking. Then transition is enabled only if the
guard function is evaluated to be true. It is used
for representing constraints which are difficult
to be represented graphically in terms of input,
inhibitor and output arcs.

The stochastic process is calculated by a marking process
{M(t),t>0} which is obtained by constructing the reachability
graph of the net[23]. First of all the reachability set has to be
determined i.e., the set of possible future states in the system.
Then from the initial marking M0, reachability graph can be
constructed by connecting arcs when a transition enabled in
one marking reaches another marking. Even if one
immediate transition is enabled the marking is said to be
vanishing otherwise tangible.

3 Rejuvenation model

To consider the effect of rejuvenation on reliability an
example of safety critical system i.e. Air traffic control
(ATC) system is being considered. The various activities
related to aircraft functioning are modeled using SPN. The
reliability of ATC is computed first without considering the
case of rejuvenation and then subsequently the case of
rejuvenation. Table 1 gives the description of places in the
model and Table2 gives the description of each transition.

Table I. Place description

Place Description

P0 Aircraft

P1 ATC

P2 Source ground controller

P3 Source local controller

P4 Departure controller

P5 Radio controller

P6 Approach controller

P7 Destination local controller

P8 Destination ground controller

P9 System down

P10 System rejuvenation

Table II. Transition description

Transitions Description

T0 Flight plan sent

T1 Secondary clearance issued

T2 Flight progress strip(FPS) sent to ground

controller

T3 Undock

T4 Runway assigned

T5 Local controller called

T6 Taxi Aircraft

T7 Clearance issued

T8 Transponder signal sent

T9 Tracked on radar

T10 Radio controller called

T11 Radio controller contacted

T12 Radio controller updated about positions

T13 FPS sent

T14 FPS transferred

T15 Request to land

T16 Parameters adjusted

T17 Local controller called

T18 Clearance awaited

T19 Clearance issued

T20 Ground controller called

T21 Runway requested

T22 Runway assigned

T23 Aircraft landing

T24 Taxi and dock aircraft

T25 Vulnerability in flight plan

T26 Failure on rejuvenation

T27 Success on rejuvenation

In Figure 1 Air Traffic Control system(ATC) is
modeled where intially the mechanically checked aircraft
sends it flight plan to the air traffic controller. They on
verifying the flight plan issues secondary clearance to flight
and sends Flight Progress Strip(FPS) to ground controller.
The aircraft then contacts ground controller for undocking

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 77

who assigns specific runway upon request. The ground
controller calls local controller. Aircraft requests for taxi to
local controller and when clearance is issued taxies on
runway for passengers to arrive. Aircraft sends transponder
signal to departure controller who tracks it on radar.
Departure controller calls the radio controller. Aircraft then
cotacts the radio controller who regualrly updates the flight
postion as tracked on radar. Accordingly flight sends FPS to
Radio when it is approaching the destination. The radio
controller sends updated FPS to flight. Aircraft then requests
approach controller for landing. Approach controller sends
the adjusted parameters to flight and calls local controller.
Aircraft request local controller for clearance of landing,
when granted local controller calls ground controller.
Aircraft requests ground controller for runway when runway
is assigned it lands. The local controller then asks the aircraft
for taxi and dockiing. However if the flight plan is faulty
aircraft may become vulnerable to failure and move to down
state.

 In Figure 2 rejuvenation is considered once the
system become vulnerable the system on rejuvenation may
come to its initial state or to down state. The two models
are simulated to estimate system reliability. A flawless flight
is considered to be one where the aircraft taxiies on the
destination runway safely. First the simulation is done for the
model in Figure 1 and its reliability is computed. Then
simulation is done on the model in Figure 2 and its reliability
is estimated. The results show the reliability estimates in
both the models. In these models only one reason of failure
has been considered when the flight plan is not right, the
system may become vulnerable and fail moving to down
state. If rejuvenation is considered a vulnerable system upon
rejuvenation has greater chances of being corrected and
moved to its initial state or may even then fail. Rejuvenation
is considered to improve system reliability.

Figure 1.Model for reliability estimation of ATC

Figure 2.ATC model considering rejuvenation

4 Results

 The graph in Fig. 3 shows variation in reliability

over time. The system is said to have successfully

completed flight if it lands at the destination airport with

permission from the ground controller i.e. T24 is enabled.

This is possible only when the flight plan is correct

otherwise the system enters a state of vulnerability and fails,

moving to down state. When rejuvenation is considered, the

vulnerable system may move to its initial state rather than

moving to down state which is why reliability is improved

when rejuvenation is considered in system modeling.

Reliability of the system in both cases is compared. Table

III indicates the variation in reliability values, under both

the circumstances.

78 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Table III. Result comparison

Sl.no Time Reliability value

without

rejuvenation

Reliability value

with

rejuvenation

1 1 0.160454904396 0.162636016104

2 10 0.14499093067 0.153886816717

3 20 0.142916906879 0.15139063949

4 30 0.142821837245 0.151310725531

5 40 0.142804328654 0.151308373726

6 50 0.142789410231 0.151308304329

7 60 0.142774578066 0.151308301708

8 70 0.142759750211 0.151308301331

9 80 0.142744923987 0.151308301301

10 90 0.142730099305 0.151308301301

11 100 0.142715276163 0.151308301325

Figure 3.System Reliability

5 Conclusion

Research indicates reliability estimation is a core area of

software performance engineering and for safety critical real

time application; it becomes even important as stakes are

very high. Any software with aging needs to be revived

periodically to satisfy the newer requirements in order to

make the system compatible. Hence the effect of

rejuvenation on reliability is of prime importance. Here the

results show that the reliability of the system improves

when system is rejuvenated after which it tends to assume a

constant rate. These results are from preliminary research

and need to be probed further.

 These models consider a single reason for failure

but more accurate estimates could be obtained if other

factors are considered. These models could be extended to

include sensitivity analysis for fault tolerance and for

modeling more complex systems considering dependencies

between the modules of the system.

References
[1] Jane W.S.Liu, Real-Time Systems, Pearson Publication 2006.

[2] Huang, C.Kintala, N.Kolettis and N.D.Funton, “Software
Rejuvenation: Analysis, Module and Application”,In Proc. Of IEEE
Int’l Symp.on Fault Tolerant Computing,IEEE Computer Society
Press,1995,pp.381-390.

[3] A.Avritzer and E.J.Weyuker,”Monitoring Smoothly Degrading
Systems for Increased Dependability”, Empirical Software
Engineering, 1997, pp.59-77.

[4] S.Garg, A.Puliafito, M.Telek and K.S.Trivedi, ”Analysis of Software
Rejuvenation using Markov Regenerative Stochastic Petri Net”,In
Proc.- Int’l Symp. On Software Reliability Eng., 1995,pp.24-27.

[5] S.Garg, Y.Huang, C.Kintala, and K.Trivedi, “Time and Load Based
Software Rejuvenation: Policy, Evaluation and Optimality”, In Proc.-
1

st
 Fault-Tolerant Symp., 1995, pp. 22-25.

[6] S.Garg, A.Puliafito, M.Telek and K.S.Trivedi ”On the Analysis of
Software Rejuvenation Policies“, In Proc. Annual Conference on
Computer Assurance (COMPASS), June 1997.

[7] Vibhu Saujanya Sharma and Kishore.S.Trivedi “Quantifying software
performance reliability and security” In: Elsevier 2006 , pp.493-508.

[8] Jogesh.K.Muppala “Stochastic reward net for reliability prediction”
In:research paper sponsered by National Science Foundation.

[9] M. Grottke and K. S. Trivedi “Fighting Bugs: Remove, Retry,
Replicate, and Rejuvenate “, IEEE Computer, , 2007, pp. 107-109.

[10] T. Dohi., K. Goseva-Popstojanova and K. S. Trivedi ,”Analysis of

Software Cost Models with Rejuvenation”, In Proc.- IEEE Intl.

Symposium on High Assurance Systems Engineering, November
2000.

[11] R.Chillarege, S.Biyani and J.Rosenthal,”Measurement of failure rate
in commercial software”In Proc. Of 25th symposium on fault tolerant
computing , June 1995.

[12] S. Garg, A. Puliafito, M. Telek, K.S. Trivedi,”Analysis of preventive
maintenance in transactions based software systems”, In IEEE
Transactions on Computers, 1998, pp. 96–107.

[13] A.Bobbio, and M.Sereno, “Fine Grained Software Rejuvena-tion
Models”, Proc.3r d IEEE Int’l Computer Performance &
Dependability Symp., IEEE Computer Society Press, 1998, pp. 4-12.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 79

http://shannon.ee.duke.edu/Rejuv/compass97.ps
http://shannon.ee.duke.edu/Rejuv/compass97.ps
http://srejuv.ee.duke.edu/FightingBugs.pdf
http://srejuv.ee.duke.edu/FightingBugs.pdf
http://shannon.ee.duke.edu/Rejuv/dohi1.ps
http://shannon.ee.duke.edu/Rejuv/dohi1.ps

[14] D.Wang, W.Xie and K.S.Trivedi “Performability analysis of clustered
system with rejuvenation under varying workload”, In:Elsevier,2006,
pp.247-265.

[15] M.Grottke, L.Li, K.Vaidyanathan and K.S.Trivedi “Analysis of
software aging in a web server” In:IEEE transactions on reliability
September 2006, pp.411-420.

[16] Rivalino Matias, Jr., Paulo J. F. Filho, K. S. Trivedi, and Pedro A.
Barbetta ”Accelerated Degradation Tests Applied to Software Aging
Experiments”, IEEE Transactions on Reliability, Vol. 59, Issue 1,
March 2010, pp. 102-114,.

[17] K. Vaidyanathan, R. E. Harper, S. W. Hunter and K. S. Trivedi.
“Analysis of Software Rejuvenation in Cluster Systems”, In Proc. of
the Joint Intl. Conference on Measurement and Modeling of
Computer Systems, ACM sigmetrics 2001/performance 2001,
Cambdrige, Massachusetts,June 2001.

[18] KalyanramanVaidyanathan,Richard.E.Harper,Steven.W.Hunterandad,
Kishore.S.Trivedi, “Analysis and implementation of software
rejuvenation in cluster systems”Research paper supported by IBM.

[19] A.Avritzer, A.Bondi, M.Grottke, K.S.Trivedi and E.J.Weyukur
“Performance assurance via software rejuvenation: monitoring
statistics and algorithm”, In proceedings of International Conference
on Dependable Systems and Network,2006 , pp.435-444.

[20] M.Marson,.Balbo, G.Conte, S.Donatelli, G.Franceschinis,”Modelling
with Generalised Stochastic Petri Nets”.

[21] V.G. Kulkarni, Modeling and Analysis of Stochastic Systems,
Chapman & Hall, 1995.

[22] Peter.J.Haas, Stochastic Petri Nets Modelling,Stability,Simulation,
Springer, 2002.

[23] M.Ajmone.Marsan,S.Donatelli and F.Neri, GSPN model on multi
servermultiqueue system, In:IEEE Computer society press,December
1989,pp.19-28.

[24] G.Chiola “A software package for the analysis of generalised
stochastic petri net models” In Proc.of international workshop of
timed petri nets,July 1985, pp.136-143.

[25] G.Ciardo,J.Muppala, K.S.Trivedi, ”Stochastic petri net package” In
Proc.of international workshop on petri net and performance models”,
December 1989, pp.142-150.

80 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

http://srejuv.ee.duke.edu/IEEETR_2010.pdf
http://srejuv.ee.duke.edu/IEEETR_2010.pdf

Efficient Design Pattern Selection and
teaching by BPL technique.

S.Sarika Dr.T. SasiPraba

Research Scholar Dean-Publications & Conferences

Computer Science & Engg Sathyabama University

Sathyabama University Chennai.

 Chennai.

sarish_sar1@yahoo.co.in

Abstract:

 Design patterns are a proven way to build high-quality

software. A pattern is a named abstraction from a concrete

form that represents a recurring solution to a particular

problem. The number of design patterns is rising rapidly,

while training and searching facilities seems not to catch

up. Code reuse has attracted lot of attention but design

patterns are knowledge reuse. In this paper we discuss

several problems in teaching design patterns and also an

experiment prototype to adopt design patterns with the

help of users’ previous history. The effective training can be

achieved by using PBL approach. Software agents will be

used to extract information from the WWW. These services

will be given as web service to the user for their

convenience in learning and adopting design patterns.

Key words: Design patterns, design pattern adoption,

PBL approach.

I. INTRODUCTION

 In all engineering disciplines it is important to

develop new systems from existing, already proven

reusable elements. This will enable the engineers to

use well known approaches and best practices.

Reuse has become an essential and important

strategy and software development area is not

different. The reuse of concrete software elements

such as functions, classes and components is already

well established and practiced on a daily basis. But

if we observe reuse at higher levels of abstraction

i.e. software patterns, the reuse is still not well

established. Patterns are not code reuse instead,

solution/strategy reuse and sometimes, interface

reuse. The field of software design patterns has seen

an explosion in interest since 1995 with the

publishing of the book “Design Patterns: Elements

of Reusable Object- Oriented Software”, written by

GoF. Nowadays, design patterns are widely used in

software development and have become a

fundamental skill that is required for all Software

Engineering professionals. Design Patterns is

generally regarded as a difficult area to learn as well

as teach because it is too abstract to comprehend. A

survey conducted by the MS Patterns and Practice

Group indicated a low adoption of design patterns

among practitioners – respondents estimated that no

more than half of the developers and architects in

their organization use software patterns. Therefore

bridging the gap between the pattern expert

communities and the typical pattern user is critical

for achieving the full benefits of software patterns.

Several hundred software patterns have already been

published. With the increasing size of software

system, the understanding and maintenance is more

difficult and time consuming. And the development

document does not exit, or there is no up to date.

The source code has become the only resource for

understanding software system which is a structured

organization of the source code. A design pattern

needs to be instantiated before its use. To be able to

instantiate the pattern and to attain its intended

benefits, designers are expected to have a good

understanding and experience with design patterns,

which is not evident to acquire [10].

 Design patterns are too abstract; they are difficult

for students to understand [1]. If we use conventional

spoon-feed teaching strategy in the teaching process

of this subject, the knowledge of design patterns will

become fragile knowledge, and will not help to form

real application capability for students. As we

mentioned above, it is an urgent and tough task for us

to give full considerations of the characteristics of

students, to choose appropriate textbook, and to adopt

proper teaching strategy to improve the teaching

effect of the software design patterns subject. This

paper concentrates on the discussion of the teaching

strategy for software design patterns subject. We

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 81

mailto:sarish_sar1@yahoo.co.in

adopt problem-based learning (PBL) teaching

strategy with a variation in our teaching process.

II. SOFTWARE DESINGS PATTERN

Design patterns reside in the domain of modules and

interconnections. At a higher level there are

architectural patterns that are larger in scope,

usually describing an overall pattern followed by an

entire system.

Algorithm strategy patterns addressing concerns

related to high-level strategies describing how to

exploit application characteristic on a computing

platform Computational design patterns addressing

concerns related to key computation identification.

Execution patterns that address concerns related to

supporting application, including strategies in

executing streams of tasks and building blocks to

support task synchronization.

Implementation strategy patterns addressing

concerns related to implementing source code to

support program organization, and the common data

structures specific to parallel programming.

Structural design patterns addressing concerns

related to high-level structures of applications being

developed.

III. INTERACTION DESIGN PATTERN

Interaction design patterns are a way to describe

solutions to common usability or accessibility

problems in a specific context.
[1]

 They document

interaction models that make it easier for users to

understand an interface and accomplish their tasks

Elements of an interaction design pattern

 For patterns to be helpful to the designers and

developers who will make use of them, they need to

be findable and readable.

Common Elements

 Though pattern descriptions vary somewhat, many

pattern libraries include some common elements:

Pattern Name: Choosing a clear and descriptive

name helps people find the pattern and encourages

clear communication between team members during

design discussions.

Pattern Description: Because short names like "one-

window drilldown" are sometimes not sufficient to

describe the pattern, a few additional lines of

explanation (or a canonical screenshot) will help

explain how the pattern works.

Problem Statement: Written in user-centered

language, this communicates what the user wants to

achieve or what the challenge is to the end-user.

Use When: "Context of use" is a critical component

of the design pattern. This element helps people

understand situations when the design pattern

applies (and when it does not.)

Solution: The solution should explain "how" to

solve the problem, and may include prescriptive

checklists, screenshots, or even short videos

demonstrating the pattern in action.

Rationale: Providing reasons "why" the pattern

works will reinforce the solution, though time-

pressed developers may prefer to ignore this

explanation.

Optional Elements

 Pattern libraries can also include optional

elements, depending on the needs of the team using

them. These may include:

Implementation Specifications: A style guide with

detailed information about font sizes, pixel

dimensions, colors, and wording for messages and

labels can be helpful for developers.

Usability Research: Any supporting research from

usability tests or other user feedback should be

captured. This can also include feedback from

developers, customer service, or the sales team

82 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

http://en.wikipedia.org/wiki/Interaction_design_pattern#cite_note-0#cite_note-0

 Related Patterns: The pattern library may include

similar patterns, or it may be organized into a

hierarchy with parent and child patterns.

Similar Approaches: Since there are likely to be

many possible solutions to this problem, teams may

want a place to capture similar alternatives.

Source Code: If the code is modular enough to be

reused, then it can be included in the library as well

IV. RELATED WORK

 Since 1995, when design patterns are introduced

there are lot of works done to improve the design

patterns adoption. In general there are three main

categories of descriptions: informal representations,

semiformal representations based on graphical

notations such as UML and various formal

representations which also include notations using

semantic web technologies. There are plenty of attempt

made to ease the selection of design patterns. Still

Design Patterns are selected by the architects with the

help of their expert knowledge manually.

 Design patterns are well explained in the book

“Design Patterns: Elements of Reusable Object-

Oriented Software”, which is respected as the Bible of

object-oriented designers. Many other books related to

software design patterns have the same kinds of

problem. Some of them have made explanation of each

kind of design patterns, thus are easier to understand,

but still lack good teaching cases. They are more

suitable for reference materials than textbooks. Design

patterns are too abstract and so it is difficult for the

beginners to understand.

V. PROBLEM BASED LEARNING APPROACH

 Problem-based learning (PBL) as a teaching

strategy and curricular design was pioneered at Case

Western Reserve University in the early 1950s and

in the 1960s by Howard Barrows at McMaster

University in Canada. It is a deep “learn by doing”

approach and is conducted successfully in the

medical discipline. Kaufman asserts that “PBL has

been one of the most successful innovations in

medical education and has established its

credibility.” PBL is a good teaching approach that

was verified by many teachers of other disciplines

around the world. The fundamental principle

supporting the concept of PBL is that the problem is

the driving force that initiates the learning. This way

of learning encourages a deeper understanding of

the material rather than superficial coverage.

 The Six core characteristics of problem based

learning are [1]:

1. Consists of student-centred learning

2. Learning occurs in small groups

3. Teachers act as facilitators or guides (referred to

as tutors)

4. A problem forms the basis for organized focus

and stimulus for learning

5. Problems stimulate the development and use of

problem solving skills

6. New knowledge is obtained through means of

self-directed learning

Within the PBL environment the problem acts as the

catalyst that initiates the learning process.

VI. IMPLMENTATION WITH HELP OF SOFTWARE

AGENT

 A software agent is a piece of software that acts

for a user or other program in a relationship of

agency, which derives from the Latin agere (to do):

an agreement to act on one's behalf. Such "action on

behalf of" implies the authority to decide which (and

if) action is appropriate

Fig 1: Agent Interaction with Environment

Agents are not strictly invoked for a task, but

activate themselves.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 83

Agents may reside in wait status on a host,

perceiving context.

Agents may get to run status on a host upon starting

conditions.

Agents do not require interaction of user

Agents do may invoke other tasks including

communication

Design issues

 Interesting issues to consider in the development

of agent-based systems include:

Fig 2: Agent Interaction with Environment

How tasks are scheduled and how synchronization

of tasks is achieved.

How tasks are prioritized by agents.

How agents can collaborate, or recruit resources.

How agents can be re-instantiated in different

environments, and how their internal state can be

stored.

How the environment will be probed and how a

change of environment leads to behavioral changes

of the agents

Functionalities and design

 The design patterns adoption and teaching can be

improved with the following three modules.

1. Search module

2. Proposing module (Recommendation approach)

3. Training module (PBL approach)

4. User and data maintenance module.

Search Module

 Search module is a fully indexed text based search

service which will give details about 23 Design

patterns given in GoF and this is open to the other

open source patterns too. This will be a user friendly

text search. All the users can be allowed to

consume this service. The search will be done in a

repository where the patterns will be present with

pattern name, wheretouse, benefits, and related

patterns, example code. Search can be implemented

using ORM (Object Relation mapping) which will

be more efficient.

Training Module

 Training module is a help service which will

contain real time examples with diagrams to teach

design patterns. This module will also have a chat

application which will enable PBL based design

patterns learning. The chat application enables the

novice programmers to communicate with the

experts present online. This will eliminate the

abstract of design pattern concepts. Also this service

will contain the detailed information about the

design pattern which includes Pattern name and

classification, intent, Also known as, Motivation,

Applicability, Structure, Participants,

Collaborations, Consequences, Implementation,

sample code, Known uses, Related patterns.

Fig 3: System Architecture

84 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Proposing Module

 Proposing module is a proposing service which

will help in selecting patterns for the application.

This will suggest the design patterns to the user

depending upon the scenario given by the user. The

user scenario will be searched in the repository and

the results will the design patterns’ name along with

the rank given to the design pattern by the users.

This suggestion is done by using modified Page

Ranking algorithm. If the users’ scenario is not

found in the repository then a notification will be

send to the expert user group. There is provision

given to the experts to add the appropriate design

pattern for the requested user scenario. Once the

requested design patterns’ detail is added in the

repository then an email notification will be given to

the user regarding the update.

Modified Page Ranking algorithm

 PageRank is a probability distribution used to

represent the likelihood that a person randomly

clicking on links will arrive at any particular page.

But here we slightly modified the algorithm to

suggest the design patterns for the novice

programmers. The algorithm will be as follows:

 Initially all the Design Patterns will be given a

rank of 1.

R (DPi) = 1 for i=1, 2, 3...23

 The Rank of the design patterns will be increased

by the number of positive feedback given by the

user on the basis of relevance they encounter while

searching with the scenario. Every time the user gets

satisfied with the result suggested then the rank of

the particular design pattern (Rn) will be

incremented by 1.

R n (DP) = R (DP) + 1

 The rank of the design patterns will be considered

when suggestion is made. The design pattern with

the highest rank among suggested list of result will

be shown in the top of the suggestion.

User and data maintenance Module

 This is the module which is responsible for

maintain responsible for maintaining the user and

data repository. Here repositories will be maintained

to hold the information about design patterns. This

module also describes the authentication for the

users who are all consuming this web service. The

admin will usually add and remove the design

pattern related information in the repository.

VII RESULTS AND DISCUSSION

 The search module will be used by the users

Fig: 2: Search Module showing search results

search details about the standard design patterns.

The proposing module will be suggesting the design

patterns depend upon the scenario given. The

accuracy of the suggestion will increase as the web

service is used more.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 85

 The PBL based training will be done through the

chat application where chat room will be created for

discussing exclusively about the design patterns.

This is entirely different from the traditional method

of learning and will be more useful to the new

programmers.

VIII FUTURE WORK

 It would be reasonable to develop additional

component that would enable user to verify if

particular candidate was well selected. Service of

that kind might help developers capable of selecting

design patterns on their own to verify their

selections. The design patterns can be documented

into formal representations so that it can be

processed automatically by the system in the future.

Plug-in can be given to the user in their

development IDE itself. Plug-in architecture is a

well-known which got lot of attention by the

developers across the world. Plug-in will be

developed by invoking the above said services for

Eclipse IDE to make sure the design patterns

adoption and learning tool is readily available to the

novice programmers in their hands. The plug-in will

be helpful to programmers in learning the design

patterns with the help of real world examples and

also allow the users to interact with the experts from

their IDE itself.

IX CONCLUSION

 This will reduce the gap between the software

developers and the usage of design patterns. The

search and finding the design patterns for the

software development will be readily available to

the novice programmer. The PBL method is really a

deeper learning method as it says “learn by doing”.

So the power of Design patterns can be utilized to a

greater extend.

REFERENCES

[1] Barrows, H.S. (1996). Problem-based learning in

medicine and beyond: A brief overview. In

Wilkerson, L & Gijselaers, W.H. (eds). New

directions for teaching and learning, no.68. Bringing

problem-based learning to higher education: Theory

and practice, 3-13. San Francisco: Jossey –Bass

[2] Core J2EE Patterns,

http://java.sun.com/blueprints/ corej2eepatterns.

[3] Improving Design Pattern Adoption with

Ontology-Based Design Pattern Repository, Luka

Pavli_, Marjan Heri_ko, Vili Podgorelec University

of Maribor, Faculty of Electrical Engineering and

Computer Science Smetanova 17, SI-2000 Maribor,

Slovenia {luka.pavlic, marjan.hericko,

vili.podgorelec}@uni-mb.si

[4] L. Rising, “Understanding the Power of

Abstraction in Patterns”, IEEE Software,

July/August 2007, Vol. 24, No. 4., pp. 46-51.

[5] T. Jenkins, “A participative approach to teaching

programming”, Proceedings of the 6th annual

conference on the teaching of computing and the 3rd

annual conference on Integrating technology into

computer science education: Changing the delivery

of computer science education, ACM New York,

NY, US, 1998,

pp.125-129.

[6] Woods, D. R., Problem-based Learning: how to

gain the most from PBL, Waterdown, Ontario, 1996.

[7] Ignacio Navarro, “A recommendation system to

support design pattern selection”, IEEE symposium

on visual Language and Human-centric Computing,

2010.

[8] Niklas Pettersson, Welf Lowe, and Joakim

Nivre, “Evaluation of Accuracy in Design Pattern

Occurrence Detection” IEEE TRANSACTIONS

ON SOFTWARE ENGINEERING, VOL. 36, NO.

4, JULY/AUGUST 2010.

[9] Cheng Zhang and David Budgen, Member,

IEEE, “What do we know about the effectiveness of

Software Design Patterns?” IEEE

TRANSACTIONS ON SOFTWARE

ENGINEERING.

[10] Nadia Bouassida , Afef Kouas, Hanene Ben-

Abdallah, “A Design Pattern Recommendation

Approach”, IEEE TRANSACTIONS, 2011.

86 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

http://java.sun.com/blueprints/

[11] B. Huston, “The effects of design pattern

application on metric scores,” Journal of Systems

and Software, vol. 58, pp. 261–269, Sept. 2001.

[12] K. Schelfthout, T. Coninx, A. Helleboogh, T.

Holvoet, E. Steegmans, and D. Weyns. Agent

implementation patterns. In Proceedings of the

OOPSLA 2002 Work- shop on Agent-Oriented

Methodologies.

[13] A. Blewitt, A. Bundy, and I. Stark, “Automatic

verification of Java design patterns,” Automated

Software Engineering, 2001. (ASE 2001).

Proceedings. 16th Annual International Conference

on, pp. 324–327, 26–29, Nov. 2001

[14]Y. Aridor and D. Lange. Agent design patterns:

Elements of agent application design. pages

108.115. ACM, 1998.

15] E. Billard. Patterns of agent interaction

scenarios as use case maps. IEEE Transactions on

Systems, Man, and Cybernetics, Part B:

Cybernetics, 34(4):1933.1939, 2004.

[16] F. Buschmann, R. Meunier, H. Rohnert, P.

Sommerlad, and M. Stal. Pattern-oriented software

architecture: a system of patterns, volume 1. Wiley

India Pvt. Ltd., 2008.

[17] M. Cossentino, P. Burrafato, S. Lombardo, and

L. Sabatucci. Introducing pattern reuse in the design

of multi-agent systems. Agent Technologies,

Infrastructures, Tools, and Applications for E-

Services, pages 107.120, 2002.

[18] A. Drogoul, T. Chu, E. Amouroux, V. An, and

N. Doanh.Agent based simulation: de_nition,

applications and perspectives.2008.

[19] J. Ferber. Multi-agent systems: an introduction

to distributed arti_cial intelligence. Addison-

Wesley, 1999.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 87

Application of Petri Nets to XPDL Workflow

Optimization

L. Osuszek

Institute of Informatica, Silesian University, Sosnowiec, Poland

Abstract - This paper describes the conversion of XPDL

workflows into Petri Network Modeling Notation. The result of

such operation is analyzed for time consumption optimization.

This shows how performing such operation results in tangible

savings and economical benefits.

Keywords: Business Process, Workflow, XPDL, BPM, Petri

Network, PNML, Petri Network Modeling Notation,

optimization, P8 Business Process Management, P8 BPM

1 Introduction

 This article presents the potential of the Petri Net model

used for the optimization of business processes. There are

several alternatives to model business processes. One

modeling alternative is the Business Process Modeling

Notation (BPMN).

For each company and organization, business processes and

the related decisions are the key element which provides the

momentum for their operations. The management of workflow

and information within process paths has a major impact on

the speed, flexibility and quality of decision-making

processes. This is why the acceleration and optimization of

processes is decisive for the success of any organization.

Processes involve people, systems and information. The

maximum efficiency is possible only if all of these elements

interoperate in an automated environment. Note also that

optimized processes enable a faster response to the changing

market situation and to new customers’ demands while

guaranteeing compliance with applicable regulations. In short,

better processes contribute towards continuous improvement

of the efficiency of company’s operations, and therefore,

allow gaining competitive advantage in the industry. One of

the factors which make these tools increasingly popular is the

tracking, analysis and simulation of processes. With the

monitoring of work progress, with in-depth analysis of current

and historical processes, and with the verification of changes

to processes prior to their implementation in a production

system, these functionalities guarantee more accurate business

decisions. Additionally, they enable fast implementation of

best business practices, guarantee unified processing, and

reduce the total cost of system ownership with reusable

process definitions.

Usually, such business processes are developed with a

graphical tool which allows easily defining, designing and

administering business processes for business and IT users. It

offers a powerful process definition environment enabling

accurate implementation of complex, interrelated processes

with broad functionalities.

The aforementioned advantages of Business Process

Management (BPM) are widely spoken of, but not enough

attention is paid to the optimization problem. Today’s tools

offer the functionality of business process optimization.

However, expert knowledge is required to use them

efficiently. With their experience backed up by software-

based simulations, the consultants who operate such tools are

able to specify the way of optimization of the process

concerned. The weakness of the BPM description language is

the inadequate description model.

Only few business process description models enable the use

of process map optimization methods and analyses (process

paths in the form of a graphical map) to improve the

timeliness (accelerate), to ensure the optimum use of

resources, or to save money.

The apparatus for modeling communications with automatons

[1], introduced by Carl Petri in 1962, is a tool perfectly suited

for the optimization of business processes. In the simplest

version, the Petri Net comprises of “places,” “transitions,” and

directed arcs. Such a net may only be used to describe a

system as a static connection of possible states. The graphical

representation of the net is a bipartite graph in which the

nodes represent places (signified by circles) and transitions

(signified by bars).

Figure 1. Petri Net diagram

88 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

The Petri Net is a 4-tuple C=(P,T,I,O), where P = { p1 , p2 , ...

, pn } is a finite set of places, T = { t1 , t2 , ... , tm } is a finite

set of transitions, I : T → P
*
 is the input function, and O :

T → P
*
 is the output function. The sets of places and

transitions are disjoint: P ∩ T = Φ.
The value of the I (tj) function is the collection of input

places of the tj transition.

The # (pi , I (tj)) notation means the number of occurrences

of the pi place in the I (tj) collection.

The value of the O (tj) function is the collection of output

places of the tj transition.

The # (pi , O (tj)) notation means the number of occurrences

of the pi place in the O (tj) collection.

The nodes of the graph are connected with directed arcs so

that no two places and no two transitions are connected

directly. The reachability tree, the matrix equations and the

invariants of places are the methods of Petri Net analysis

which enable optimization of business paths.

2 Business process optimization

2.1 Definition of the workflow path

 The example of the path optimized in this article is a

sub-process of the map of handling a settlement request

supported by BPM tools. Figure 2 below shows a part of the

business process handling procedure: the presented sub-

process of handling the electronic request comprises of six

steps. Some of them are performed automatically.

Figure 2. Diagram of the process map with general properties

of a process step

(e.g. the Auto-completion of Data where the connection with

customer’s external systems is established to retrieve the

information, while others are handled manually by specific

actors [process participants]). The BPML model significantly

differs from the mathematical model. It focuses on the

definition and description of tasks assigned to participants,

and on the making of appropriate decisions. However, that

model does not enable the exact analysis in terms of the

optimization of resources, time or costs involved in

performance of the concerned process. On the presented sub-

map, the first step (Submitting the Request) is performed by

the Office participant. The task of that participant is to

complete the corresponding process data and to transfer the

current instance of the process to the next step.

The data necessary to handle the business process, and the

logic of transitions between specific steps, are defined with

task flow variables.

Figure 3. The definition of process variables, process

properties available in the specific step, and definitions of

conditional transitions between the steps

2.2 Conversion to the Petri Net model and

optimization

 The graphical map of the process is stored as a definition

in an XML file. The open structure of the standard of the

description of business paths allowed for the construction of a

tool which translates the aforementioned structure to PNML

(Petri Network Modeling Language). That tool uses the

intermediate form which provides a metadata description of

the map of the source business process.

Figure 4. Intermediate form of the source map of the process

The conversion of information on steps, transition sequence,

resources and variables included in the BPM map resulted in

an equivalent notation based on Petri Nets. The basic PNML

model was used [10].

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 89

Article includes tool for conversion between XPDL maps

created in P8 Process Designer and PNML languages. Maps

saved in Petri Network Modeling Notation could be open

Yasper editor (one of the most popular Petri Network graph

editor www.yasper.org).

The mathematical model developed as described above was

subject to a simulation of flow enabling the optimization of

transitions. The experiment resulted in a Petri Net map

presenting the optimized BPM model:

Figure 5: Process map presented in the PNML Petri Net

notation

Tools like Yasper gives powerful capabilities of simulation

and optimization of Petri graph. The following property was

used in the example analyzed above:

(1) a1 -> a2, p* output parameters a1, p* input parameters a2

(2) a2 does not depend on p*

a1 -> a2, a1||a2

The program analyzed the relationships between specific

steps. It has examined the dependencies between the sequence

of steps and the data necessary for the performance of tasks

specified in various steps, and indentified the steps which may

be performed in parallel. BPML imposes a specific manner of

acting/thinking of the process. The conversion of the map to

the Petri Net model allows for optimization of the business

process. The resulting optimization of process timeliness

provides measurable business advantages (acceleration,

economies).

3 Experiments

 The translation of the original process map to the

equivalent PNML-based Petri Net model enabled

performance of a complex analysis to determine the process

steps which may be handled in parallel [11, 15]. The

optimization algorithm was as follows:

Arranging the elements into groups,

Parallel performance of steps within the groups

Reunification of groups

 The conversion of the PNML-based process map to a

definition readable by business process management systems

resulted in a BPM path optimized for the performance time

with steps handled in parallel. Optimized in Yasper map

shows P8 process designers exact places where optimization

could be applied. In this particular scenario, renders where to

apply parallel processing for speeding up the process

execution.

90 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Figure 6: The optimized output process map

4 Conclusions

The experimental research presented in this article

demonstrates that the Petri Net model may be efficiently used

to map business processes used in BPM software, and to

subsequently analyze and optimize these processes. Previous

scientific studies on the aforesaid matter included only a few

theoretical attempts to translate some processes described in

BPMN 1.2 to the Petri Network Modeling Notation (PNMN)

which corresponds to the standard Petri Net model. This

document demonstrates the feasibility of the translation of

process maps to the Petri Net model, and of the sophisticated

optimization of business processes.

The paper presented an idea for applying Petri Network based

optimization to business process designs. By developing a

formal business process model and orienting it to Petri

Modeling Notation, the generation of optimized business

process map was facilitated and demonstrated using the real

example. What make the business process optimization

problem distinctive is its highly constrained nature and the

fragmented search space that has a significant impact on

locating the optimum solutions. It is shown that state-of-the-

art Petri Network based optimization algorithms produced

satisfactory results by generating and preserving optimal

solutions on process designs. That provides an adequate

alternative optimized process designs for the business analyst

to decide the trade-offs between the different objectives. The

results presented here are indicative and encouraging for

further research in the area of business process optimization.

This series of articles presented approach differs significantly

from the typical process optimization model. As opposed to

the traditional approach of optimization, according to which

the expert-matter knowledge is necessary - methods described

in the articles is more automatic. With the use of traditional

optimization methods it could bring significant values to

business..

5 References

[1] Harald Störrle Models of Software Architecture -

Design and Analysis with UML and Petri-Nets, ISBN 3-8311-

1330-0.

[2] R. Dijkman, M. Dumas, B. van Dongen, R. Kaarik, and

J. Mendling. Similarity of business process models: Metrics

and evaluation. Working Paper 269, BETA Research School,

Eindhoven, The Netherlands, 2009.

[3] Best, Eike, Devillers, Raymond, Koutny, Maciej. "Petri

Net Algebra".2001, XI, 378 p. 111 illus., Hardcover ISBN:

978-3-540-67398-9

[1] B. F. van Dongen, R. M. Dijkman, and J. Mendling.

Measuring similarity between business process models. In

Proc. of CAiSE 2008, volume 5074 of LNCS, pages 450–464.

Springer, 2008.

[2] Suzana Donatelli, H C M Klejn, APPLICATION AND

THEORY OF PETRI NETS 1999. Lecture Notes in

Computer Science, 1999, Volume 1639/1999, 7

[3] H. Chen and A. Mandelbaum, “Discrete flownetworks:

Bottleneck analysis and fluid approximations,” Math. Oper.

Res., vol. 16, pp. 408–446, 1991.

[4] Tadao Murata: “Petri Nets: Properties, Analysis and

Applications” Proceedings of the IEEE, vol. 77, No. 4, April

1989.

[5] A. Giua and E. Usai, “High-level hybrid Petri nets: A

definition,” in Proc. 35th Conf. on Decision and Control,

Kobe, Japan, Dec. 1996, pp.148–150

[6] W.M.P. van der Aalst. Verifcation of Workfow Nets. In

P. Az´ema and G. Balbo, editors, Application and Theory of

Petri Nets 1997, volume 1248 of Lecture Notes in Computer

Science, pages 407.426. Springer-Verlag, Berlin, 1997

[7] M. Jungel, E. Kindler, and M.Weber. The Petri Net

Markup Language. In S. Philippi, editor, Proceedings of

AWPN 2000 - 7thWorkshop Algorithmen und Werkzeuge f

¨ur Petrinetze, pages 47.52. Research Report 7/2000, Institute

for Computer Science, University of Koblenz, Germany,

2000.

[8] T. Murata. Petri Nets: Properties, Analysis and

Applications. Proceedings of the IEEE, 77(4):541.580, April

1989

[9] A. Hirnschall, S. Artishchev, Enabling e-Business

Transaction Support in a Petri-netBased Workflow

Description Language, Faculty of Technology and

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 91

Management, Department of Information and Technology,

P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands

[10] WIL M. P. VAN DER AALST ET AL, Workflow

Patterns: On the Expressive Power of Petri-net-based

Workflow Languages, h10_2004

[11] R. S. Aguilar-Saven, “Business process modelling:

Review and framework,”Int. J. Prod. Econ., vol. 90, pp. 129–

149, 2004.

[12] WIL M. P. VAN DER AALST ET AL, Pattern-Based

Analysis of BPML and WSCI, 2004.

92 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Modelling Rail-road Crossing Control using OPN

Arghya Ghosh
1
, Ranjan Dasgupta

 2

1Student, Dept. of Computer Science and Engineering,

 National Institute of Technical Teachers‟ Training and Research, Kolkata, West Bengal, India
2
 Dept. of Computer Science and Engineering,

 National Institute of Technical Teachers‟ Training and Research, Kolkata, West Bengal, India

Abstract - This paper deals with Object PetriNet to model

the ‘rail-road crossing’ problem. Here we discuss the rail-

road crossing problem from two perspectives - one from the

level crossing side and the other from light signal control.

Both the issues are modelled by using Object PetriNet and

safeness condition has been identified.

Keywords: PetriNet,Object PetriNets, Safeness conditions,

Traffic signal control.

1 Introduction

 Modelling of complex systems is a fundamental

requirement for understanding the complexity of the system

and also helps in designing appropriate solution for the

system. PetriNet [1][2][11] is one of such graph based tools

used by the researchers in this regard. Several variations of

PetriNets [12] are available to address problem of different

level of complexities.

 In this paper, we discuss the „Rail-road Crossing‟

problem and modelled it with the help of Object PetriNet

(OPN) [6][7][9]. OPN is very suitable here as the basic

logic of signal control for both rail & road are the same and

hence one can inherit the features of the others. Moreover,

as several functions need to be triggered at the same time,

like change of signal from green to red at the rail side need

to be passed to the road side to change the position of level

crossing to down state, the use of methods help in designing

such sequence of operations.

2 Rail-road Level Crossing problem

 One of the operational goals of the train control

system is the safe train movement through the crossing of a

railway and road traffic.

2.1 Spatial relationship of Rail-road Crossing

 In case of Automated Level Crossing Systems

(ALCS)[13][5], the spatial relationship, connecting the level

crossing with the train can be derived through analysis of the

regular behaviour. Figure -1 shows the pictorial view of the

railroad area. It is described by the following three

operational states (i) No train in influence area, (ii) train in

the approaching area and (iii) train is passing the

approaching area (i.e. passing the approaching level crossing

also).

Figure 1 Spatial relationship of railroad crossing

2.2 Operational view of Rail-road Level

Crossing

 When a train is in influence area, it switches on the

trackside control unit by radio communication.

Consequently, the level crossing control first switches the

traffic light for the road traffic to “yellow” and later to

“red”. After a predefined time, the lowering of the gate will

be started. When the gate has reached its down position, the

level crossing is at safety. In a sufficient distance to the

danger area, the train interrogates the status of the level

crossing. When the train gets the statement that the level

crossing is at safety, it passes the Approaching Area (AA).

After leaving the level crossing, the train activates a switch-

off contact and induces the annulment of the protection.

 This approach only ensures the monitoring of railway

track. It does not ensure the roadside monitoring. However,

there is always one possibility; at the time of closing the

level crossing gate [3] due to some unavoidable reason, one

vehicle can be trapped on the railway track between two

gates. Figure 2 shows pictorial scenario of the same.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 93

Figure 2 A typical scenario of railroad crossing

3 Control logic for Rail-road Level

Crossing

Let,

LTin :Number of Left side Train inside the Approaching

Area

RTin :Number of Right side Train inside the

Approaching Area

LTout :Number of Left side Train leaving out from the

Approaching Area

RTout :Number of Left side Train leaving out from the

Approaching Area

Now, whenever a train has reached the Influence Area (IA),

the communication between the train and the control station

is established and when the train leaves out from the

Approaching Area (AA) then also the control station is

informed.

 Within a particular time span (t) (i.e. time span starts

when train just reach the IA and ends with living out from

AA.) it can be said that –

m1 : (LTin + RTin) – (LTout + RTout) > 0 infers , there is at

least one train inside the AA.

In case of roadside:-

Let,

UVin : Number of Up side vehicles inside the road side

Approaching Area

DVin : Number of Down side vehicles inside the road

side Approaching Area

UVout : Number of Up side vehicles living out from the

road side Approaching Area

DVout : Number of Down side vehicles living out from

the road side Approaching Area

Then m2: (UVin + DVin) – (UVout + DVout) > 0 infers, there

is at least one vehicle inside the road side AA within the

time span t.

3.1 Safeness of Rail-road Crossing

 Whether there is at least one vehicle inside the road

side Approaching Area then definitely no train gets the

permission to enter the rail side Approaching Area and vice

versa .

 The collision avoidance constraints can be written as

(i) If m1 = 0 And m2 = 0 then Safe

(ii) If m1 > 0 And m2 = 0 then Safe [Assuming there is no

train vs. train collision]

(iii) If m1= 0 And m2 > 0 then Safe [Assuming there is no

vehicle vs. vehicle collision]

(iv) If m1 > 0 And m2 > 0 then Unsafe

3.2 Compatible issues of light signaling

 We also must take care of compatibility issues

between rail light signaling and road light signaling. In rail

light signaling [13], there are different states of light

signaling, in this paper, two states light signaling(red &

green) is considered, where Green light indicates- proceed

at line speed. Expect to find next signal displaying green.

Red indicates stop. The compatible matrix of different light

signaling is given bellow.

 Rt Gt

Rr 1 1

Gr 1 0

Yr 1 0

 Where R, G and Y indicate the Red, Green and

Yellow light respectively and the suffix r and t indicate the

roadside and train side signaling respectively. The Yellow

light of the roadside prepare to find next signal displaying

red.

 In the compatible matrix, one (1) represents the

possibility of occurrence of the states of lights for both road

side & rail side. That is, when the road side signal is Red

then there is the possibilities of Red or Green signal in rail

side. On the other hand zero (0) means there is no

possibility of occurrence. i.e. when Green light is in the road

side then the train side signal cannot have the green light

signal high.

4 Object Petri Nets (OPNs)

 Object Petri Nets belongs to the class of high level

Petri Nets. OPNs extend CPNs in number of significant

ways. In Object Petri Nets the Petri Nets or subnets [10][14]

are defined by a class, which can be instantiated in a number

of different contexts. Each class can contain data fields,

functions and transitions. The objects of a class can

represent tokens. Methods or functions share the transition,

and they have bindings of variables and evaluated at a

particular point in time. OPNs are capable to explain the

definition of a method of a class. It supports inheritance

property[8], and reusability, which reduce the designing

complexity as well as effort at design level. The ability to

94 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

define function with read-only access to the current state of a

subnet is another significant extension of OPNs over CPN.
Formal definition [6] of OPNs is in bellow.

OPNs An OPN is an 11-tuple

OPN =(P, T, F, NPF, T , I, G, C, AE, NPAE, TO),where

(i) P is a finite set of places

P = OP ∪ NP where

– OP is a set of (ordinary) places

– NP is a set of named places,

where a mapping name : NP → PlaceId is defined

(ii) T is a finite set of transitions, P ∩ T = Ɵ

(iii) F is the set of arcs (the flow relation),

F = DF ∪ NF where

– DF is a set of (deterministic) arcs,

DF ⊆ (P × T) ∪ (T × P)

– NF is a set of non-deterministic arcs,

NF ⊆ (P × T) ∪ (T × P)

(iv) NPF is a set of arcs which are adjacent to the place

name of a named

place,

NPF ⊆ (NP × T) ∪ (T × NP)

(v) T is a set of object types

(vi) I is an initialization function,

I : P → Ɛ such that ∀ p ∈ P : Var(I(p)) = Ɵ

(vii) G is a guard function,

G : T −→ Ɛ(Bool)

(viii) C is a code function,

C : T −→ ƐMS

(ix) AE is an arc expression function,

AE : F → Arc(Ɛ)

(x) NPAE is a arc expression function for arcs ∈ NPF,

NPAE : NPF →Ɛ(PlaceId)

(xi) TO is a timeout function,

TO : T → IN

where

–Ɛ denotes the set of all expressions, Ɛ(T) the set of all

expressions E ∈ Ɛ

such that Type(E) = T;

– Arc(Ɛ) the set of multiset expressions .

wrapper function AAE : F ∪ NPF −→ Arc(Ɛ), where

AAE(f ∈ F) = AE(f) and AAE(f ∈ NPF) = NPF(f)

5 OPNs model for Rail-road Level

Crossing

 To achieve the safeness rules of railroad level crossing

and non conflicting operations of the different light signal

control, OPNs models are divided in two section (i) OPN

models of level crossing system and (ii) OPN models of

light signal system.

 Transitions are drawn as rectangles, (in one transition

there are more than one methods can be called.) and ovals

are representing the places. Data field generalizes Petri Net

places and are therefore drawn as ovals. Their annotation

indicates the type, the identifier, an optional initial value

(preceded by a character „=‟) and an optional guard

(preceded by a character „|‟). Functions are drawn as

rectangles to emphasize that they share transition semantics.

The exporting of fields and functions are indicated by

drawing them with a double outline.

5.1 OPN models of Level Crossing System

 To implement the safeness rule of the railroad

crossing, two classes are modeled (i) LevelCrossing class

and (ii) RailRoad Level Crossing control class.

5.1.1 Level Crossing class

 In this class two data members are used, -

String data | “UP” || “DOWN” :- „data‟ of String type with

only two possible value “UP” or “DOWN” to store the value

of the current state of the level crossing gate.

Int Counter:- A integer type counter variable to count the

number of vehicles inside the Approaching Area of road

side or the number of trains inside the Approaching Area of

rail side.

And four methods are used, -

insideAA(String info): Method insideAA(string data) used

to inform of incoming and outgoing vehicles or train in

Approaching Area of the both traffic side or road side. If the

argument value of the method is “IN”, then it increases the

value of the counter variable. If the argument value is

“OUT”, then it decreases the value of the counter variable.

Boolean insideIA(): The method insideIA() is informed of

incoming and outgoing vehicles or trains in Influence Area

of the both traffic side or road side. It returns Boolean type,

if the returned value is TRUE, then there exists a vehicle or

train in the Influence Area of road side or train side

respectively, else there is no vehicle or train inside the

Influence Area.

Figure -3 LevelCrossing class.

String sendData(String):Method sendData(String) is used to

send the information of the outside of the class to

communicate with the other objects of the same or different

class.

getData(String data): This method is used to receive the

information of the other objects of same or different

classes.Figure -3 shows the description of the LevelCrossing

class.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 95

Figure -4 RailRoad Level Crossing Control class

5.1.2 RailRoad Level Crossing Control class

 In this class two data members are used. -

LevelCrossing ts: Level Crossing type object variables to

represent road side control.

LevelCrossing rs: Level Crossing type object variables to

represent rail side control.

And, four methods are used.-

levelCrossingUp(): To change the state of level crossing

gate from close (Down) to open (Up).

levelCrossingDown(): To change the state of level crossing

gate from open (Up) to close (Down).

String sendData(String): To send the information of the

level crossing state (i.e., “UP” or “DOWN”) to

communicate with other object(s) of the same or different

class and return that state as string.

getData(String): To get the information of the states of the

different light signaling (such as, road light signaling &

train light signaling)

 RailRoad Level Crossing Control class is responsible

for operating the level crossing gates safely (i.e. gate can

only be opened when no train is inside the train side

Approaching Area. And must be closed when train is inside

the train side Approaching Area and no vehicle is inside the

road side Approaching Area). Following constraints are

considered for maintaining the safeness of the level crossing,

in the model of the RailRoad Level Crossing Control class.

1) The level crossing gate can move in upward direction,

only when rs.count = 0, (i.e., there is no train in the AA of

the rail side) and the “Red” light status of the rail side light

signaling (i.e., getData(rs.sendData(“RED”)) must be in

high state where rs representing the object of the Train Light

Signal class).

2) If the level crossing gate status is open and rs.count = 0

(i.e. no train in AA of the rail side), then only it is possible

for entering vehicles inside the AA of the road side and fire

the transition t2 to call ts.insideAA(“IN”) and increases the

value of ts.count by one.

3) If there is at least one vehicle inside the road side AA

then only transition t4 is fired to call the method

ts.insideAA(“OUT”) for each leaving out vehicle from the

road side AA and decrease the value of ts.count by one.

4) The level crossing gate can move in downward

direction, only when ts.count = 0,(i.e., there is no vehicles in

the road side AA) and the “Red” light status must be in high

state of the road side light signaling (i.e.,

getData(ts.sendData(“RED”)) where ts representing the

object of the Traffic Light Signal class).

5) If the state of the railroad level crossing gate is closed

and ts.count = 0 (i.e. no vehicles in AA of the road side)

then only it is possible for entering trains inside the AA of

the train side and fire the transition t5 to call

rs.insideAA(“IN”) and increases the value of ts.count by

one.

6) If there is at least one train inside the road side AA then

only transition t6 is fired to call the method

rs.insideAA(“OUT”) for each leaving out train from the rail

side AA and decrease the value of rs.count by one.

 Figure – 4 shows the description of the RailRoad Level

Crossing Control class. For example :-

96 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

 Let, initial states of the level crossing gates are closed

(i.e. the gates are in down position). Then definitely the

“Red” light signal of the road side traffic is in high state and

also the train side light signal can have the “Green” state

high. Now to change the state of the level crossing gates,

there must be required the “Red” light signal to be in high

state at the rail side light signaling (i.e.

getData(rs.sendData(“RED”)), where rs represent the rail

side traffic signaling object) and also rs.count=0 (i.e., no

tran is in trai side AA). Then only the transition t1 can fire

and levelCrossingUp() method is called and send the

current state (using sendData(“UP”)) after the up operation

of the level crossing gate has been performed. In this class,

to communicate with the other objects of same or different

classes, two transitions variable rs and ts are used. Now, to

move vehicles inside the AA of the road side the places p2

and p7 must be required to be in active state, i.e., transition

t2 can be fired only when the level crossing gate is in open

state and no train is in AA of the rail side. After firing the

transition t2, for each vehicle inside the road side AA,

ts.insideAA(“IN”) method is called and ts.count is increased

by one. The transition t4 can fire if the vehicle is leaving out

from the road side AA and then calls the method

ts.insideAA(“OUT”) for each leaving out vehicle from road

side AA and also decrease the value of ts.count.

 On the other hand, if the level crossing gate is required

to change the state from open to close for giving clearance

to the train(s). Then there must be required the “Red” light

signal is in high state at the road side light signaling (i.e.

getData(ts.sendData(“RED”)) where ts represent the road

side traffic signaling object) and also rs.count=0, then only

the transition t3 can fire and levelCrossingDown() method

is called and send the current state (using

sendData(“DOWN”) method) after the close operation of

the level crossing gates. Now to fire the transition the places,

t5, p5 and p4 must be required to be in active state, i.e.,

there is no vehicles inside the road side AA and the level

crossing is in closed state and for each train the method

insideAA(“IN”) is called and also increase the value of

rs.count by one. Transition t6 is fired for each leaving out

train from the rail side AA and also decrease the value of

rs.count by one.

5.2 OPN models of Light signal system

 To design with non conflicting conditions of different

light signaling (road side / train side), in this paper three

classes are defined, (i) „Traffic Light Signal‟ class, (ii)

„Train Light Signal‟ class which inherits the properties of

the class „Traffic Light Signal‟, and (iii) Light Signal

Control class.

5.2.1 Traffic Light Signal class

 In this class, four data members are used. –

Boolean Red: it can take only true/false to represent state

(ON/OFF) of the Red light.

Boolean Yellow : it can take only true/false to represent

state (ON/OFF) of the Yellow light.

Boolean Green: it can take only true/false to represent state

(ON/OFF) of the Green light.

String Colour: it is used to hold the name of the current high

state (ON) of a particular light.

 And three methods are used. -

getData(String) : It has no return type and takes one

argument as String type for getting the information from the

other objects.

String sendData(String Colour): It has one String type

argument and returns the String value to communicate with

other objects of the different classes.

changeTo(Boolean Colour, Boolean Colour): Method

changeTo(boolean, boolean) has two arguments of Boolean

type and it can change the state of the light signal

Figure-5 shows the description of the class.

Figure -5 Traffic Light Signal class

5.2.2 Train Light Signal

 In the train light Signal control, most of the properties

are similar of traffic signal control [4]. Therefore, Train

Light Signal class inherits the property of Traffic Light

Signal. The grey shading identifies those features or

components, which are inherited without any change; while

the black shading indicates components, which have been

introduced by this class or which overrides inherited

components. Here only changeTo method is overridden and

change the states of light Green/Red). Figure 6 shows the

description of TrainLightSignal class.

Figure 6 Train Light Signal class

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 97

5.2.3 Light Signal Control class

 In Light Signal Control class, the ts and the rs are two

objects of two classes Traffic Light Signal and Train Light

Signal respectively. Figure 7 shows the OPN model of the

class, where the traffic side yellow light is initiated with high

value (i.e. ts.Yellow = true). From that place there are two

possible transitions, viz -

(i) change Yellow(Y) to Red(R), - calls the method

changeTo(Y, R) which changes the Red (R) state value to

true(i.e. Red = true) and the states Green(G), Yellow(Y)

become low (i.e. ts.Yellow = False; ts.Green = False).

sendData(“RED”) method is also called for sending the data

to communicate with the object of class Train Light Signal

(i.e. rs).In this model, the transition variables are tr and rs.

(ii) change Yellow(Y) to Green, - calls the same method

with the different value. i.e. changeTo(Y, G).

sendData(“Yellow”) is also called to send the information of

the change. Same thing is applicable for changing the state

Red to Green.

 For example, once the Red gets high value,

rs.getData(“RED”) is called and it then change the rail

signal red to green (assuming no other constrains are there)

using rs.changeTo(G) method. At the same time

rs.sendData(“Green”) is called. Whenever the rs.changeTo

method is called the communication is required to inform

the states of the lights with the other objects of the different

classes and also avoiding the conflicting conditions. Here

the transition variable rs ultimately communicate with the

Level Crossing system and road side light signaling system.

Figure 7 Light Signal Control class

98 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

 Same things are happened when the

rs.getData(“GREEN”) method is called by firing the

transition. This transition is only fired when Red light signal

of the rail side become active (i.e getData(“RED”)) and

ts.Red=TRUE . In figure – 7, all possible transitions for

making the light signal control conflict free for both traffic

and rail side light signaling have been modeled.

6 Conclusions

 Applicability of OPN in Rail-road Crossing has been

shown in this paper. Model for both level crossing and light

signaling have been developed and use of Object Oriented

concept has been applied while designing the model. A

simple mathematical form for safeness condition has also

been proposed which in turn will help in understanding the

system. This can also be extended to parallel Rail-road

crossing by using the concept of inheritance.

7 References

[1] Yi-Sheng Huang; Ta-Hsiang Chung; Che-Ting Chen.

“Modeling traffic signal control systems using timed colour

Petri nets”.Systems, Man and Cybernetics, 2005 IEEE

International Conference, pp 1759 - 1764 Vol. 2, 2006.

[2] George F. List,“Modeling Traffic Signal Control

Using Petri Nets”; IEEE Transaction on Intelligent System,

Vol. 5, No.3, 2004.

[3] Tso-Hsien Liao, Guo-Shing Huang, Yi-Sheng Huang

“Modelling critical scenarios in parallel railroad level

crossing traffic control systems using statecharts”.
ROCOM'11/MUSP'11 Proceedings of the 11th WSEAS

international conference on robotics, control and

manufacturing technology, and 11th WSEAS international

conference on Multimedia systems & signal processing,

World Scientific and Engineering Academy and Society

(WSEAS), 2011

[4] George F. List,“Modeling Traffic Signal Control

Using Petri Nets”; IEEE Transaction on Intelligent System,

Vol. 5, No.3, 2004.

[5] Diana, F.; Giua, A.; Seatzu, C., “Safeness-enforcing

supervisory control for railway networks ”, Automation

Science and Engineering, IEEE Transactions, pp 99 – 104,

vol.1,2002.

[6] Tom Hovoet, Pierre Verbaeten,“Usng Petri Nets for

Specifying Active Objects and Generative Communication”,

Concurrent OOP and PN,LNCS 2001, Springer Verlag

Barlin Heidelberg, pp 38-72, 2001.

[7] Charles Lakos, “ Object Oriented Modelling with

Object Petri Nets”, Concurrent OOP and PN,LNCS 2001,

Springer Verlag Barlin Heidelberg, pp. 1-37,2001.

[8] Costa,S.A.D. ,Guerrero,D.D.S., deFigueiredo,J.C.A. ;Perkusic

h A.“Inheritance Issues in Object-Oriented Perti Net

Models” Systems, Man, and Cybernetics, 1998. 1998 IEEE

International Conference , Vol. 1, pp 196 – 201, 2003

[9] Bastide, R. ; Sibertin-Blanc, C. ; Palanque, P. “ Cooperative

Objects : A Concurrent, Petri-Net Based, Object-Oriented

Language”, Systems, Man and Cybernetics, 1993. 'Systems

Engineering in the Service of Humans', Conference Proceedings.,

International Conference,Vol. 3, pp 286 – 291, 1993.

[10] Perkusich, A. ; de Figueiredo, J.C.A. “ Design of Distributed

Track Vehicle Systems Applying a High-Level Object Oriented

Petri Net Methodology”,Systems, Man and Cybernetics, 1995.

Intelligent Systems for the 21st Century., IEEE International

Conference,Vol. 1 pp 389 – 394, 2002.

[11] Ballarini, P. ; Djafri, H. ; Duflot, M. ; Haddad, S. ; Pekergin,

N.“ Petri Nets Compositional Modeling and Verification of

Flexible Manufacturing Systems”,Automation Science and

Engineering (CASE), 2011 IEEE Conference, pp 588 – 593, 2011

[12] Watanabe, H.; Tokuoka, H.; Wu, W.; Saeki, M.“A

Technique for Analysing and Testing Object-oriented Software

Using Coloured Petri Nets”,Software Engineering Conference,

1998. Proceedings. 1998 Asia Pacific, pp 182 – 190, 1998.

[13] Wei Zheng ; Mueller, J.R. ; Slovak, R. ; Schnieder,

E. “Function modelling and risk analysis of automated level

crossing based on national statistical data”,Informatics in Control,

Automation and Robotics (CAR), 2010 2nd International Asia

Conference,Vol. 2, pp 281 – 284, 2010.

[14] Rodrigues, C.L.; Guerrero, D.D.S.; de Figueiredo, J.C.A.

“Model Checking in Object-oriented Petri Nets” Systems, Man

and Cybernetics, 2004 IEEE International Conference, Vol. 5, pp

4977 – 4982, 2004.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 99

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Costa,%20S.A.D..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.%20Guerrero,%20D.D.S..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Perkusich,%20A..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.%20de%20Figueiredo,%20J.C.A..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Ballarini,%20P..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.%20Djafri,%20H..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.%20Duflot,%20M..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.%20Haddad,%20S..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.%20Pekergin,%20N..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.%20Pekergin,%20N..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.%20Pekergin,%20N..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Wei%20Zheng.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.%20Mueller,%20J.R..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.%20Slovak,%20R..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9622
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9622
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9622

100 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

SESSION

BATTLESPACE REPRESENTATION FOR AIR,
SPACE, AND CYBER

Chair(s)

Dr. Vince Schmidt

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 101

102 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Battlespace Representation for Air, Space, and Cyber

James McCracken
1
, and Denise Aleva

2

1
The Design Knowledge Company, Fairborn, Ohio, U.S.A.

2
7Air Force Research Laboratory, 711

th
 Human Performance Wing, Human Effectiveness Directorate,

Battlespace Visualization Branch, Wright Patterson AFB, Ohio, U.S.A.

Abstract – We present a summary of a body of work

executed over the last eight years addressing battlespace

representations in the domains of air, space, and cyber. We

couch this presentation in an historical context and relate it

to design principles as well as user-centered design

processes. We summarize the work in each of the domains

and conclude with some thoughts about supporting real

work in applied settings.

Keywords: visualization, agile work environment, work-

centered support systems, air, space, cyber

1 Introduction

 Visualization has a long history. Its value is well

illustrated by the work of Dr. John Snow. Between 1831

and 1854, Great Britain suffered four major outbreaks of

cholera. Throughout this 20-year period, and despite

volumes of recorded data on casualties, the situation baffled

the local authorities as well as the scientific community.

Snow created an overlay of the victims in a single

neighborhood, and observed that the epicenter of the

epidemic converged at a water pump on the corner of Broad

Street and Cambridge Street. 1 The map can be viewed at

http://www.ph.ucla.edu/epi/snow/highressnowmap.html.

Similarly, battlespace representations have a long history of

evolution and use. One of the authors once worked with a

senior leader in the Cockpit Integration Office at Wright-

Patterson Air Force Base (WPAFB) who frequently declared

his NUTS theory: “Nothing under the sun.” The theory was

based on the notion that technology changes, but the ideas

stay the same. Thus, 3D displays, while a current

technology trend, were used in WWII; they were cardboard

models of targets carried in the bombers to allow

bombardiers to see how the target would look with current

shadows. See Figure 1 for an example.

Command and control has changed as well as targeting.

Figure 2 illustrates a WW II-era command center built in

tunnels near Dover, England. The plotting table was used to

keep track of aircraft movements as radioed in by spotters.

The concepts, in both cases, 3D models and command and

control centers are thus demonstrated to not be novel; the

concepts stay the same, but the technology to support them is

ever-changing. The ever-changing technology landscape

leads developers of Battlespace representations to both stay

abreast of current technology and to seek invariants that can

be used to shape or guide designs.

Figure 1. A cardboard model used by bombers.

Command and control has changed as well as targeting.

Figure 2 illustrates a WW II-era command center built in

tunnels near Dover, England. The plotting table was used to

keep track of aircraft movements as radioed in by spotters.

The concepts, in both cases, 3D models and command and

control centers are thus demonstrated to not be novel; the

concepts stay the same, but the technology to support them is

ever-changing. The ever-changing technology landscape

leads developers of battlespace representations to both stay

abreast of current technology and to seek invariants that can

be used to shape or guide designs.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 103

Figure 2. WWII plotting table in Dover tunnels 1.

.

2 Stable Design Principles

 What is invariant is the human perceptual and

cognitive apparatus that underlies the sense-making process

when using current display technology and techniques.

Thus, the relationship between and among displayed objects,

their color, texture, and contours and the use of those

relationships and properties in telling a story,

communicating a situation to the user or operator, is critical.

Display or graphics designers must be deeply aware of the

needs of their users.

Also invariant are the notions of visual momentum, visual

search, isomorphism, vernier acuity, Stroop effect, and

Gestalt closure. Graphic or interface design can either

induce or reduce visual search, dependent on the task at

hand and the relationship between and among display

elements. The Stroop effect, which manifests itself as

interference in the processing of the names of colors written

in colors other than those of the color being named,

illustrates verbal and visual conflicts in processing

information.

Strategies such as Shneiderman’s “Overview first, zoom

and filter, then details-on-demand.”2 or McCracken’s

progressive refinement in which the broad context is

conveyed in the upper left of the display, and successively

refined left to right and top to bottom, with the bridge

between context and data being appropriately designed

levels of abstraction/levels of detail.3

Yet another concept is the notion of surface structure vs.

deep structure of the interface. This concept addresses

issues such as system transport delays, which can manifest

themselves at the user interface and thus impact the user’s

experience. Ignoring the effect of time delays on the

delivery of data to dynamically updating displays can have

deleterious, even catastrophic results (think Ground

Collision Avoidance Systems) GCAS). All of these elements

(and more) are the underpinning of good display design. In

order to support “connecting the dots” or making

information available “at-a-glance” these human perceptual

and cognitive factors must be addressed. Their

consideration and integration in the interface development

process are critical for success. This was as true in Snow’s

day as it is today.

3 Air Force UDOP Family of Systems

The Air Force Research Laboratory (AFRL), 711
th

 Human

Performance Wing (711
th

 HPW), Battlespace Visualization

Branch (AFRL/RHCV) has sponsored a series of Small

Business Innovative Research (SBIR) efforts dating back to

2004 aimed at developing Command and Control (C2)

Battlespace Representations for Air, Space, and Cyber. The

Design Knowledge Company has won five of those

contracts. These include the Satellite Threat Evaluation

Environment for Defensive Counterspace (STEED),

Local/Distributed Operational Collaborative User-Centered

Support System (LOCUS), 4D NETcentric Framework For

OpeRational C2 Environments (4D NETFORCE), Air

Operations Community (AOC) System Engineering Toolkit

(ASET), and Air, Space and Cyber User-Definable

Operational Picture/Common Operational Picture (ASC&

U/C). These are summarized in Figure 3. Space Weather

Information Fusion Technology (SWIFT), Bridge for

Usable Collaborative Knowledge Integration (BUCK-I), and

Visualization of Information for Satellite Tactical

Applications (VISTA) are plug-ins to the core UDOP

technology and support battlespace operations in air, space,

and cyber. These capabilities have matured to the point of

being the work environment for the JMS program of record,

and being used in the 2011 Joint Expeditionary Force

Experiment and Advanced Concept Event. An overview is

provided in Figure 3.

Figure 3. Family of Agile Work Environments

4 User-Centered Design

 The United States Air Force has a long history of user-

centered design. Each of the projects described began with

an understanding of the user population. Cognitive task

104 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

analyses were performed, pertinent documents reviewed,

users interviewed, and work processes observed. The key to

our success is that TDKC cognitive and human factors

engineers work closely with our software development team

to ensure that we build a work environment that focuses on a

single, unified user interface to multiple systems that is

tailorable for individual users. This integrated team

approach is critical because our JMS experience has

demonstrated that legacy tools as well as many different

vendors may be contributing services to support diverse

functionality, each having different styles and thus requiring

the cognitive and perceptual integration task to be done in

close collaboration with the UDOP software development.

We next describe space, air, and cyber visualizations in the

form of Agile Work-centered Environments (AWEs)

developed for AFRL/RHC.

4.1 Space

 Space assets are critical to our military superiority, thus

making them targets for attacks. These attacks were difficult

to detect using current (2003) tools available at Space

Operations Squadrons (SOPS) or Joint Space Operational

Center (JSpOC) because the degradation effects may be

gradual and appear to be isolated. Improved user work-

centered technologies were needed to assist the operator in

detecting otherwise imperceptible trends and to rapidly

gather the information needed to report the incident. Neural

networks were being refined for counterspace operations and

could detect some trends, but this technology lacked the

flexibility needed for warfighters to perform their own

analyses. Current (2003) technology lacked advanced

collaboration methods to communicate results of analyses

across echelons; an example of this is communicating a

finding from SOPS to the 14th Air Force. To address this

problem, AFRL/RH sought innovative proposals to develop

a Work-Centered Support System (WCCS) that bridged the

gap between the analyst and the numerous information

sources available, as well as collaboration across echelons.

The resulting STEED project evolved through a series of

steps into the Joint Space Operations Center (JSpOC)

Mission System (JMS) UDOP. An example of one of the

JMS UDOP perspectives is shown in Figure 4. JMS is built

on a net-centric, Service-Oriented Architecture (SOA).

STEED employed a variety of visualization approaches to

build situation awareness support. These include 2D and 3D

geovisualizations using NASA WorldWind, standard

graphical user interface tools such as pick lists and tree

structures, task-customized small multiples, and various

time-based views, among others.

Figure 4. Using the Space Order of Battle Perspective to

select a GLOBALSTAR asset.

4.2 Air

 The 4D NETFORCE effort assessed the requirements

to transform the existing TDKC STEED into a Command

and Control (C2) environment to support work in Air

Operations Centers (AOCs), providing integrated 2D and 3D

spatial and temporal displays. The result of our

investigations, working with the AOC experts from

Teledyne-CollaborX, was that this goal was fully achievable.

We identified open source tools to integrate various

information sources such as InfoWorkSpace (IWS), email,

databases and electronic chat, and created an ability to run

Microsoft products such as Word, Excel, and PowerPoint

inside of the 4D NETFORCE framework; this is critical

because many AOC products are captured using Microsoft

(MS) tools. A sophisticated data loader supports the import

of data from a variety of data sources, including legacy

stove-piped systems, JSeries messages, and net-centric

services. 4D NETFORCE has been used at the 2011 Joint

Expeditionary Force Experiment (JEFX) and Advanced

Concept Event. It incorporates all of the UDOP core

technology found in JMS. A sample perspective from the

4D NETFORCE capability is shown in Figure 5.

Figure 5. Air picture with order of battle, map, timeline and

tasking views.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 105

4.3 Cyber

 Major General Ellen Pawlikowski, while Deputy

Director of the National Reconnaissance Office (NRO), was

asked at the 2009 AMOS conference about the biggest threat

to space assets. Her answer was “Cyber.”

Focusing on visualizations, data handling and design, and

operator aiding, the ASC&UC project is extending the

existing UDOP capability into a comprehensive command

and control (C2) visualization space and shared

collaboration space for Air, Space, and Cyber warfighters.

Meeting this challenge, The Design Knowledge Company

(TDKC) is building a principled framework for visualization

to ensure visual coherence over the three domains.

Developing new innovative collaboration and visualization

components that can integrate across space, air, and cyber

domains will yield a robust and adaptable framework for

lowering the cost of current and future developments and

provide a much-needed synergy across development. A

preliminary example of a cyber perspective is illustrated in

Figure 6.

Figure 6. Cyber perspective showing map, data, and small

multiple visualizations.

4.4 Cross Domain Work Environment

 TDKC has derived a toolkit and framework from the

components developed across all of the projects described

above. The Agile Work-centered Environment (AWE) core

contains the capability that is supported across all domains.

AWE allows us to very rapidly integrate domain-specific

data sources to develop tailored work environments. TDKC

cognitive engineering processes define the information and

knowledge required to support work4; our design knowledge

guides the structure of the user interface, and our software

development processes and usability testing ensure reliable,

usable end products.

Using the AWE toolkit and accompanying processes,

TDKC is building an AWE supporting situation awareness

for the nuclear arsenal. The AWE toolkit brings the

capability to develop what Lt. General Bob Elder, at the

time Commander, 8th Air Force, called game-changing

integration across domains, illustrated in Figure 7.5

Figure 7. General Elder’s Conception of Game-Changing

Integrated C2.

5 Conclusions

 Figure 8 borrows another graphic from Gen Elder’s

2007 NDIA presentation. This graphic shows the 2007

vision of moving our command centers from having a

multitude of stovepiped tools and data bases each with its

own display to a set of services that can share data and

present a single User Defined Operational Picture. In 2006-

2007, there existed in the AOC some 88 different stand-

alone tools. During a CTA conducted with JSpOC operators,

the authors identified more than 75 different tools in use.

Figure 8. Evolution from legacy stovepiped systems to

services-driven UDOP.

106 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

We’ve made considerable progress, particularly on the

technology side. SOA has allowed us to move away from

stovepiped tools and databases. However, this doesn’t make

decision maker’s task any easier unless the data is fused and

presented in a way that facilitates sensemaking. Bringing all

this data together requires much more than simply hanging

legacy tools or new applications on a SOA. Roth et al assert

that “In too many cases, the introduction of computer

technology has placed greater requirements on human

cognitive activity. …systems that provide access to more

data or that automate more processes do not necessarily

simplify the user’s task or guarantee improved

performance.”6 Somehow must get from an overabundance

of data to decision quality information. This requires

correlating data in time and space, putting the right data

together, dealing with conflicting data as well as metadata,

and presenting the data to the decision maker in a way that is

easily understandable.

Much of data fusion takes place in the grey matter of the

human. Understanding how humans fuse data to reach

conclusions is an important area of research. Visualizations

are for the purpose of allowing humans to understand

something – to get meaning. Designers must understand the

applied work space to know what meaning is needed; they

must have a deep understanding of the real work. Issues

include more than providing individual pieces of

information, but providing context and integrating the

information in a meaningful way. We must also consider

facilitation of shared understanding for collaboration.

Creating visual representations for individual applications is

easy; creating a holistic operator environment is difficult.

Operators and decision makers need the UDOP to be a

holistic information composition expressed thru interactive

visualization. The technology solution should amplify the

human cognitive expertise and minimize interaction

overhead.

6 References

[1] Summers, Judith. Soho -- A History of London's

Most Colorful Neighborhood. London: Bloomsbury, pp.

113-117. (1989).

[2] Shneiderman, Ben. The Eyes Have It: A Task by Data

Type Taxonomy for Information Visualizations. In

Proceedings of the IEEE Symposium on Visual Languages,

pages 336-343, Washington. IEEE Computer Society Press.

(1996).

[3] McCracken, James R. Unpublished internal training

manual. The Design Knowledge Company. Fairborn, OH.

(2011).

[4] McCracken, James R. Questions: Assessing the

structure of knowledge and the use of information in design

problem solving. Published doctoral dissertation. The Ohio

State University, Columbus, OH. (1990).

[5] Elder, Bob. Air Force Cyberspace Command NDIA

2007 DIB Infrastructure Protection Symposium. Found at:

http://www.ndia.org/Resources/OnlineProceedings/Pages/70

30_DIBCIPConference.aspx (2007).

[6] Roth, Emilie, Patterson, Emily, and Mumaw, Randall.

Cognitive Engineering: Issues in User-Centered System

Design. In J. J. Marciniak (Ed.), Encyclopedia of Software

Engineering, 2nd Edition. New York: Wiley-Interscience,

John Wiley & Sons. (2002).

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 107

http://www.ndia.org/Resources/OnlineProceedings/Pages/7030_DIBCIPConference.aspx
http://www.ndia.org/Resources/OnlineProceedings/Pages/7030_DIBCIPConference.aspx

Automated Streaming Imagery and Filter Selection

Brian P. Jackson and A. Ardeshir Goshtasby
Department of Computer Science and Engineering, Wright State University, Dayton, Ohio

Abstract— A method for consolidating video streams from
multiple visible and infrared cameras by analyzing their
information theoretic properties is proposed. The following
assumptions are made: 1) The videos are already registered
at the static background. 2) The videos can be in the
same or in different modalities. 3) Objects of interest are
known ahead of time. Various methods for analyzing different
modality images are discussed and compared. Experimental
results show that a method incorporating mutual informa-
tion, cascade classifier, and discrete wavelet transformation
can effectively fuse multiple video streams into a single
highly informative stream for a human observer or an
automated surveillance system.

Keywords:
Image fusion, mutual information, human detection, MASINT

1. Introduction and Background
Human observers or automated vision systems are some-

times required to make a decision based on information
received from multiple video streams. An abundance of
camera modalities makes it possible to overcome environ-
mental obstacles such as fog, smoke, or darkness, enabling
an observer to react to cues in any one of the video streams.
We require the ability to combine the most useful parts
of different video frames captured simultaneously into a
single frame for viewing or analysis. This capability can be
achieved by providing the following functions: comparison
of information in corresponding image regions, detection of
the presence of objects of interest in a region, and fusion of
image parts from different modalities.

In this paper, the objects of interest are considered to
be humans. The problem of human detection has been
addressed before. Of particular interest are techniques that
are conducted in real time and work on moving targets. Pai
et al. [5] detected pedestrian at crossroads in videos captured
by stationary cameras.

Viola and Jones [8] developed a technique for visual
object detection based on an adaptively boosted cascade
of Haar-like features. The method has been implemented
and used in face detection for various applications. Another
popular method proposed by Jia and Zhang [3] uses the
histograms of oriented gradients to detect pedestrians. Both
methods can be trained to detect objects of interest.

Gualdi et al. [2] proposed a method for detecting humans
in a video from a fixed-camera, focusing on areas in a
frame where motion is present to reduce the search space

for human detection. They used covariance descriptors to
train the presence of humans in an image.

When objects of interest are not present in an image,
a comparison should still be made between corresponding
areas in different video streams. Our method is influenced
by the work of Culibrk et al. [1], which compares different
salience features to assess video quality. Statistical and
information theoretic features were evaluated and used as
markers to measure the quality of a video.

Fusion of regions from different images has been ad-
dressed before. In particular, methods to fuse multi-focus and
multi-modal images based on wavelet transform have been
successful. Zhang and Blum [9] used the Discrete Wavelet
Transform (DWT) to fuse edges and regions in images in
order to detect concealed weapons. Lewis et al. [4] extended
this method to fuse image regions using semantic rules, each
emphasizing a particular property in source images.

A more simplistic approach attempts to highlight areas of
interest. Such an approach was analyzed by Rasmussen et
al. [6] for its effect on human performance in a wilderness
rescue setting. In an experiment, subjects were asked to
detect objects of interest while responding to audio cues. The
benefits of using a fused video scheme were compared to a
side-by-side display of multimodal imagery, concluding that
fused video has a smaller cognitive load on human operators.

The method discussed in this paper focuses on multimodal
registered images. First humans in an image are detected.
Then, a usefulness measure based on information gain and
foreground motion analysis is computed. Next, a selection
grid for image regions is generated. Finally, images are fused
in the wavelet domain, focusing on an implementation that
enables real-time use.

2. Experimental Design
2.1 Data

Two primary datasets were used in the experiments. The
first dataset contained twenty-five frames in visible and
IR modalities taken from the Octec dataset. The dataset
represents a scene containing smoke and a person running
behind the smoke. The second dataset contained two hundred
frames from a handheld camera, showing a person walking
in a snowy scene.

The two datasets represent different use cases. The Octec
set is an example of multimodal data containing intentionally
concealed human presence, during which the two modalities
contain dissimilar information. The handheld camera dataset

108 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

EO frames from the Octec dataset

IR frames from the Octec dataset

Frames from a handheld camera

Fig. 1: The two datasets used in the experiments.

is a much more simplistic use case, which is useful in
examining the output of the system in a more familiar
environment, containing no suspicious behavior.

2.2 Experimental Framework
A framework for processing video data was developed.

The framework is capable of computing video statistics and
information measures, carrying out filter operations, and
manipulating spatial and temporal intensity histograms.

2.3 Usefulness Measures
Many regions in an image do not contain humans. How-

ever, it is still required to compare and evaluate the use-
fulness of corresponding regions in different modalities to
decide which portions of an image to include in the fused
image. Scenes with complicated backgrounds may contain
information about structures and environment necessary for
the planning of an action. Moving objects that do not fall
into predefined objects of interest may also be relevant to
an operator. Rather than attempting to classify every object
in the image domain, a statistical measure is used to assess
the relative usefulness of individual image regions across
modalities.

Usefulness is defined in terms of statistical region-based
measures and object classification. If one modality contains

information about an object of interest, its information is
displayed to the user regardless of the statistical properties
of image regions containing it. In the absence of objects of
interest, the modality maximizing a combination of measures
defined by the user is displayed.

2.4 Region Comparison

One approach to comparing multimodal imagery is to
examine the information theoretic properties of correspond-
ing regions. For the initial experiment, mutual information
is computed between corresponding regions of neighboring
frames in each input video stream. Framesi and i + 1 are
divided into square tiles of2n×2n pixels. For each tile a joint
probability distributionp(X,Y) and marginal probability
distributions p(X) and p(Y) are computed from the two
tiles in framesi and i + 1. Then, mutual information from
one tile to the next is computed from

I(X;Y) =
∑

y∈Y

∑

x∈X

p(x, y) log
p(x, y)

p(x)p(y)
(1)

The modality with minimum mutual information (or,
equivalently, maximum information gain) represents the
most informative source video for a given location and time.
Other measures, including variance, range of intensities, or

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 109

contrast of regions can be computed, but such measures are
not very meaningful when comparing across modalities.

2.5 Object Detection
For detecting humans, an adaptively boosted cascade of

Haar-like classifiers is used. The implementation is similar
to Viola’s [8]. From a large bank of simple, wavelet-like
filters, a supervised training process adopts as small number
of filters that can recognize human shapes. Each filter is
scale-invariant, using a technique called Integral Images,
whereby a simple summation across intensities in the image
domain reduces the computation of filter responses to the
constant time. The filters are applied one at a time to regions
of interest that have been hypothesized to have humans,
and any negative responses cause the classifier to reject the
hypothesis. If all filters yield a positive response, then the
area is classified as positive for human presence.

Because the classifier can be applied rapidly in many
different scales and positions in each frame of a video,
the classifier is applied independent of the tiles examined
by the region comparison subsystem. The results of such
a classifier are returned as bounding rectangles for regions
containing object presence with a confidence at or above a
certain threshold.

The classifier is currently applied to only the visible
spectrum. The consequence of this limitation is examined
in Section 3.2.

2.6 Image Fusion
The result of region comparison and human detection

processes is a grid of stream selection or blending values
across the image domain. The final representation of these
values is dictated by the image fusion rules. Originally, the
fusion was to be accomplished by blending or selecting the
input streams according to their relative usefulness as given
by the region comparison subsystem, then highlighting the
humans in the output.

Because the meaning of an intensity value may be dif-
ferent in different modalities, the same object may be
represented with very different intensities in different video
streams. As a result, fusion by intensity blending was
replaced with a wavelet-based fusion scheme that combines
intensities based on spatial frequencies in images, as detailed
in Section 3.4.

3. Experimental Results
3.1 Mutual Information

Figure 2 shows heatmaps of the mutual information in
corresponding frames from the Octec dataset. In frames
containing smoke, the regions corresponding to the smoke
are predictably uniform, and their relative usefulness is
small. As a result, the regions of the heatmap with high
values represent regions of the image domain where the

visible modality is preferred by the system, but regions with
low values represent regions where the infrared modality is
selected.

The information content of each modality can be modeled
as a Gaussian distribution whose mean and variance can be
estimated. By normalizing the information content, a weight
factor is applied to control the relative a-priori importance
of certain cameras. The mutual information measure is made
more reliable by adding a linear combination of other statis-
tical features, yielding a more general usefulness measure.

3.2 Foreground Motion Analysis
Background subtraction is commonly applied to both

object detection and object tracking. If the system is to
allow camera motion, the video frames must be registered at
the background to enable background subtraction. Because
consecutive frames can contain translation and rotation, with
negligible scale, a simple registration can be applied using
the Fourier Transform-based method of Reddy and Chatterji
[7].

By reducing translation, rotation, and scale differences to
phase differences in the Fourier domain, the differences are
estimated from the cross power spectrum of the transformed
frames. By registering neighboring frames, a long sequence
of images is resampled into one common background for
analysis.

Inaccuracies in registration produce two types of artificial
motion: 1) motion noise due to sub-pixel inaccuracy, and 2)
high-frequency environmental motion, such as the movement
tree leaves and branches by wind. Highly complicated scenes
will have more noise of both types than simple scenes due to
the abundance of sharp intensity changes and the presence of
motion in the background. This problem is solved by finding
the average motion at each pixel and using that information
to distinguish object motion from the motion noise caused
by subpixel registration error and motions of trees, bushes,
and grass (Figure 3).

3.3 Human Presence Detection
A small training dataset is insufficient for recognizing

humans in all situations. Datasets for the adaptively boosted
cascade classifier are subject to many potential problems if
the dataset does not contain both a variety of poses and
a variety of lighting conditions related to the expected tar-
get environment. Insufficient training datasets exhibit over-
fitting. The datasets may also exhibit high sensitivity to
changes in pose (especially the changes caused by un-
usual target behavior, such as climbing, leaping, running, or
crawling, which are not frequently addressed in pedestrian
datasets). The datasets may also exhibit a low power of
discrimination, which may result in a large number of false
positives centered on tall, thin objects.

While more plentiful sources of data play a large part
in determining the adequacy of the training procedure for

110 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Fig. 2: Heatmaps of mutual information in the Octec dataset.

human detection, the problem of insufficient discriminatory
power may be partly addressed by limiting the regions
considered by the classifier to those that exhibit unusual
motion, as described in Section 3.2. By determining the
intersection of bounding boxes produced by the human
classifier with the areas of highly unusual motion highlighted
by the motion analysis subsystem, the contours representing
human motion may be exposed and displayed, as in Figure 4.
This novel approach provides two benefit: it reduces the false
positives created by the original classifier, and emphasizes
the object’s outline as it moves across the image domain.

3.4 Discrete Wavelet Fusion

Originally, a fusion method based on intensities was
developed. Given the tilewise mutual information in stream
i at pixel location (x, y) as Ii(x, y), a stream selection
function is defined as

fi(x, y) =

{

1 Ii(x, y) = min
j

Ij(x, y)

0 otherwise
(2)

By representing these functions as images, and performing
Gaussian blurring with a standard deviation proportional to
the size of the selection tiles, a blending function is obtained
which emphasizes one particular source at the center of each
tile, but blends between the streams at selection boundaries.

In many cases, merely blending the intensities of multi-
modal imagery is insufficient. Even after histogram manip-
ulation, visible and IR video streams are too dissimilar for a
weighted addition of intensities to be helpful to an operator
as shown in Figure 5.

A more effective fusion is achieved by wavelet fusion.
While, in general, wavelet fusion is a global approach, by
proper manipulation of the wavelet coefficient, local effects
are achieved.

Certain image properties can be emphasized by trans-
forming images by Discrete Wavelet Transformation (DWT),
manipulating the obtained coefficients, and inverting the
transformation (Figure 6). Particularly, contrast of the fused
video output can be adjusted for display.

By adjusting the low-frequency coefficients of an image,
its global intensity can be increased or decreased. By ad-
justing the high-frequency coefficients, an image’s contrast
can be amplified. Similarly, adding the wavelet coefficients
of two images produces an image containing contours and
regions belonging to both upon inversion of the transform
(Figure 7). This highlights objects not visible in the intensity-
based fusion results, such as the silhouette of the person
concealed by the smokescreen.

During processing of an image by DWT, decreasing-
frequency coefficients are generated at power-of-two scales
in various known locations of the image domain (Figure

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 111

(a)

(b)

(c)

(d)

Fig. 3: (a), (b) Two consecutive frames in a video, showing
a pedestrian. (c) Background subtraction of the frames. (d)
Detected motion after suppressing motion noise.

8). This allows each region to be adjusted in wavelet
space, despite the separation of different scales of wavelet
coefficients.

In this manner, local results of region comparison is kept
local. Our future research includes determination of descrip-
tive rules that can effectively guide fusion of multimodality
images for viewing and automated analysis.

4. Summary
A system for combining video imagery from multimodal

sources is proposed. Figure 9 represents the pipeline cur-

(a)

(b)

Fig. 4: (a) Human detection with a poorly-trained classifier.
(b) Human detection when aided by motion analysis.

rently employed by the system. The region comparison
subsystem produces both a selection grid aligned to regions
of wavelet coefficients in the fusion process and de-noised
motion for use by the human detection subsystem. The
human detection subsystem produces a set of unaligned
bounding boxes containing hypothesized humans, adding
to the selection grid guided by wavelet coefficient ma-
nipulation. After video frames are decomposed by DWT,
the selection grid and human presence values are used to
produce a set of combined wavelet coefficients, which are
then inverted to produce a fused output video.

Experimental results are shown demonstrating region
comparison and object detection using motion features. A
purely information theoretic approach to the comparison
of video streams is made more flexible by adding image
statistics and classification to the process. Insufficient classi-
fication power in object detection is mitigated via foreground
motion analysis.

5. Conclusions and Future Work
There are three challenges to overcome in this project: 1)

comparison of corresponding regions in dissimilar modali-
ties, 2) classification of objects of interest, some of which
may be concealed in one or more input streams, and 3)

112 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

(a)

(b)

(c)

Fig. 5: The results of an intensity-based fusion.

fusion of the results in a form that is easily interpreted by a
human operator.

Comparison of corresponding regions is achieved through
information theoretic measures. It may be useful to add
motion statistics to the region comparisons, giving the
usefulness measure a temporal dimension. Classification of
objects of interest according to unusual motion features
and a cascade of Haar-like classifiers is also believed to
be promising. The main difficulty will be in compiling a
training dataset that is both sufficiently large to allow for
accurate classification and diverse enough to address people
in various poses of interest.

Fusion of multimodality video streams is another chal-
lenging problem that has been examined in the past. The
challenges in our problem have not been adequately ad-

(a)

(b)

Fig. 6: Intensity and contrast adjustment via coefficient
modification.

dressed in the past. We believe the wavelet-domain fusion
should be modified to better adapt to the problem at hand.
We expect that as the classification and region comparison
procedures become more sophisticated, it will become possi-
ble to not only fuse information across modalities, but it will
become possible to present gesture and human motion to an
end user in an effective manner to allow quick responses to
observed events.

Acknowledgements
The authors would like to thank the Air Force Research
Laboratory (AFRL) and the Dayton Area Graduate Studies
Institute (DAGSI) for partial support of this project. The
authors also would like to thank Dr. Vincent Schmidt at
AFRL for insightful comments and guidance.

References
[1] D. Culibrk, M. Mirkovic, V. Zlokolica, M. Pokric, Vladimir S. Crno-

jevic, and D. Kukolj. Salient motion features for video quality
assessment.IEEE Transactions on Image Processing, 20(4):948–958,
2011.

[2] G. Gualdi, A. Prati, and R. Cucchiara. Covariance descriptors on
moving regions for human detection in very complex outdoor scenes.
2009 Third ACMIEEE International Conference on Distributed Smart
Cameras ICDSC, (102):1–8, 2009.

[3] H-X Jia and Y-J Zhang. Fast human detection by boosting histograms
of oriented gradients. InProceedings of the Fourth International Con-
ference on Image and Graphics, ICIG ’07, pages 683–688, Washington,
DC, USA, 2007. IEEE Computer Society.

[4] J J Lewis, R J O Callaghan, S G Nikolov, and D R Bull. Region-based
image fusion using complex wavelets.Image Rochester NY, 8(2):119–
130, 2007.

[5] C-J Pai, H-R Tyan, Y-M Liang, H-Y Mark Liao, and S-W Chen.
Pedestrian detection and tracking at crossroads.Pattern Recognition,
37(5):1025–1034, 2004.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 113

Fig. 8: An example of corresponding regions in the wavelet
space.

Fig. 9: The proposed motion detection and image fusion
system.

(a)

(b)

(c)

Fig. 7: The results of a DWT-based fusion.

[6] N. D. Rasmussen, B. S. Morse, M. A. Goodrich, and D. Eggett. Fused
visible and infrared video for use in wilderness search and rescue. In
WACV, pages 1–8. IEEE Computer Society, 2009.

[7] B. S. Reddy and B. N. Chatterji. An FFT-based technique for
translation, rotation, and scale-invariant image registration.IEEE
Transactions on Image Processing, 5(8):1266–1271, August 1996.

[8] P. Viola and M. Jones. Rapid object detection using a boosted
cascade of simple features. InProceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Hawaii, 2001.

[9] Z. Zhang and R. S. Blum. Region-Based Image Fusion Scheme For
Concealed Weapon Detection. InProceedings of the 31st Annual
Conference on Information Sciences and Systems, pages 168–173,
2002.

114 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

A Contagion Threat on a Social Network: A Graphical Approach

F. Ciardiello 1, J. Binner 2, V. Schmidt 3

1 Management school, University of Sheffield, Sheffield, England, UK
2 Management school, University of Sheffield, Sheffield, England, UK

3 Air Force Research Laboratory, Wright Patterson Air Force Base, Dayton, OH, US

Abstract— We propose an algorithm for computing main α-
stable sets introduced by (Ciardiello and Di Liddo, 2009) on
coalitional games modeled through a directed pseudograph.
We give a visualization of computed solutions in complex
game theoretical situations. The algorithm is based upon a
graph traversing method exploring extended paths minimal
in coalitions. Computation of stability concepts in coalitional
games in effectiveness form is of key importance in the
detection of fake players in social media. 1

Keywords: Algorithmic Game Theory, Data Representation, Sta-
ble Sets, Graph Theory.

1. Computational Cooperative Game
Theory: A Graph Approach

Coalitional game theory focuses on what groups of players
can achieve rather than on what individual players can do.
They were introduced in seminal papers [2], [3], [4]. A key
question in coalitional game theory is that of coalitional
stability, usually captured by the notion of the core– the
set of outcomes such that no subgroup of players has an
incentive to deviate. Here we present a theoretical sta-
bility solution concept associated with farsighted behavior
of players. Most classical solutions for cooperative games
prescribe myopic choices. Many applications of farsighted
stability solutions have been discussed in routing theory [5],
competitive markets [6], international agreements [7], voting
theory [8].

In many social situations, we observe the formation of
independent and sometimes competing groups, teams, clubs,
cooperatives (coalitions for short) each of them persecuting
the same goal whose benefit (or cost) is exogenously divided
between members of the group. The interdisciplinary aspects
between coalitional game theory and computing theory is
highly motivated by several scholars (see [9], [10], [11],
[12]). To compute a stability concept in the framework
of a cooperative game has an interesting appeal in per-
turbated social frameworks. Anomalous players can have
different maximization problems with respect the rest of the
community; they can have different behavioral assumptions
when they decide to join a coalition. Therefore, to study
the stability solution concept can have an impact on a
more deep definition of resilience index of a structured

1This Research Report Paper has been inspired by [1].

graph social situation. Apart from well known computational
problems, approaching cooperative games from a visualized
graph approach (endowed with underlying spatial networks)
makes these problems interesting in terms of Representation
of Data and their Geo Location. Loosely speaking we refer
to concrete situations where players are connected in terms
of a communication graph but they are topologically closed
with respect to spatial distances.

We discuss our computation for some input data or games
whose complexity is particularly high in terms of interactions
between outcomes or coalition structures. In Section 4 this
complexity is represented by
• multiple social loop situations
• same dynamics among coalition structures caused by

different coalitions’ moves.
We think that our approach is quite original because not

much attention has been devoted to this class of coopera-
tive games in terms of computation of farsighted solution
concepts. At the same time our basic way to face this class
of problems open the way to study new algorithmic choices
to define theoretical solution concepts incorporating realistic
assumption. For instance tractability of the computation of
a stability concept implies bounded rationality of players
which is quite often disregarded in theoretical formulation.

Against a plethora of algorithms traversing graphs (iter-
ation of adjoint matrix of a graph), our independent algo-
rithmic choices to compute our stability solution is mainly
associated with situational detail in games in effectiveness
form: the existence of coalitions labeling edges of graphs.
Most solution concepts in games in effectiveness form have
as input data a labelled graph they return as output data: a
set of nodes or a subset of sets of nodes as shown in [13],
[14] or paths as showed in [15]. In our case visualized output
data is a subset of sets of nodes.

1.1 Coalitional games in Effectiveness Form
We illustrate our coalitional game-theoretic environment

pointing out various concepts of farsighted dominance be-
tween coalition structures and the related stability notion.
Mathematically speaking, a coalitional game in effectiveness
form can be represented in such a way

a =
(
N ,Z, {≺i}i∈N , {→S}S⊆N ,S 6=∅, α

)
where

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 115

• N is the set of players; a nonempty subset S ⊆ N is
called coalition.

• Z is a subset of all the partitions of N whose elements
are disjoint coalitions. Any element of Z is called
outcome or coalition structure;

• ≺i is a strong preference relation defined on Z associ-
ated to player i;

• →S is a reflexive relation defined on Z associated to
S ⊆ N .

• α ∈ RN is a vector measuring the safety/risk level of
any player.

The family of preference relations ≺ := {≺i}i∈N can be
replaced by a value function V : Z → RN whose component
Vi(a) denotes the payoff obtained by player i if the coalition
structure a is formed. In addition, the family {→S}S⊆N is
called an effectiveness relation of a. The game is played
in the following manner: when the game begins, there is a
status quo outcome, say a. If the members of a coalition
S decide to change the status quo to an outcome b, then
the status quo becomes b. This means a →S b. From this
new status quo b, other coalitions might move to c (i.e.
b →T c) through T and so forth. If the game reaches an
outcome from which no coalition moves, the game ends and
this outcome has to be necessarily considered stable. Step
by step, any player i could prefer an outcome to another one
by using his preference relation ≺i or his value function Vi.
All actions are public. If a ≺i b for all i ∈ S, we write
a ≺S b. In Figure 1 an example of a coalitional game in
effectiveness form is given where a = {{1, 2}, {3}}, b =
{{1}, {2, 3}}, c = {{1}, {2}, {3}}, d = {{1, 2, 3}} are
coalition structures. Formation of the coalition {{1, 2}, {3}}
means that players 1, 2 are in the same coalition while player
3 forms a singleton.

a,V(a)

{1}
��

b,V(b)

{2,3}
��

{2} // c,V(c)

d,V(d)

Fig. 1: An example of game in effectiveness form with 3
players and 4 outcomes.

Chwe introduces a new dominance relation in a seminal
paper [16]. In such way, an outcome b is said to dominate
indirectly another outcome a if b can replace a in a sequence
of moves such that at each move the active coalition Si
prefers b to the alternative outcome ai it faces at that stage.
The indirect dominance captures the idea that coalitions can
anticipate other coalitions’ actions.

Definition 1.1 (Chwe): Let a, b two outcomes in Z . We
say that a is indirectly dominated by b, or a � b, if there
exists a sequence of outcomes a = a0, a1, . . . , am = b and a
sequence of coalitions S0, S1, . . . , Sm−1 such that ai →Si

ai+1 and Vj(ai) < Vj(b) for j ∈ Si, i = 0, 1, 2, ...,m− 1.
Some necessary definitions from [17] are now presented

about stability solution concepts on coalitional games in
effectiveness form.

Definition 1.2 (path-believable farsighted dominance):
Given a, b ∈ Z , we say that a is believable-path dominated
by b if and only if there exists a chain of coalitions
S0, S1 . . . Sm−1 and a chain of outcomes a0, a1 . . . am such
that a = a0 →S0

a1 →S1
a2 am−1 →Sm−1

am = b

Bh ⊆ Ph+1 h = 0 . . .m− 1 (1)

where

B0 = {c ∈ Z | b� c} 6= ∅ or

if {c ∈ Z | b� c} = ∅, Bk = {b} k = 0 . . .m− 1.
(2)

Bh =
{
c ∈ Z

∣∣ k � c ∀ k ∈ Bh−1
}
6= ∅ h = 1 . . .m− 1

orlet h the smallest integer such that (3){
c ∈ Z

∣∣ k � c ∀ k ∈ Bh−1
}

= ∅,
Bk = Bh−1k = h . . .m− 1. (4)
Ph = {c ∈ Z | Vi(c) > Vi(am−h) ∀i ∈ Sm−h }h = 1 . . .m.

We denote it by a�pbf b.
2

Definition 1.3 (pbf α-Stable Set): Let z ∈ Z , we denote
by D(z) = {x ∈ Z : z �pbf x}. A subset Y ⊆ Z is
path-believable farsightedly α-stable if for any a ∈ Y ∀S, d
such that a→S d, we have that
• if d 6∈ Y and D(d) ∩ Y = ∅;
• if d ∈ Y and D(d) ∩ Y = ∅ and ∃ i ∈ S : Vi(a) ≥
Vi(d);

• if D(d) ∩ Y 6= ∅. For each e ∈ D(d) ∩ Y :

∃ i ∈ S Vi(a) ≥ (1−αi) min
b∈Fd,e

Vi(b)+αi max
b∈Fd,e

Vi(b);
We recall a particular class of stable sets.
Definition 1.4 (Main pbf α-Stable Sets): A subset Y ⊆

Z is a main α-stable set if and only if
• Y is a α-stable set;
• each Y

′ ⊆ Z , Y ⊂ Y ′ is not a α-stable set.
Therefore, in this paper we provide an high overview of

an algorithm for computing main α-stable sets based upon a
graph traversing method ad we provide some visualization of
games. Our merit is to give an algorithm for the computation
of these solutions in coalitional game in effectiveness form.

In Section 2 games in effectiveness form are modeled
through a non-empty directed pseudograph, together with the
representation of farsighted dominancies and the associated

2Bh are sometimes denoted by Bha,b throughout the paper because they
depend on ordered pair (a, b).

116 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

stability concept: our solution approach embeds Chwe’s
algorithm for computing the largest consistent set. In Section
3, the algorithm is illustrated, followed by a discussion on
some computational issues. Section 4 illustrates the visual-
ization of data and related practical results obtained by the
algorithm when applied to some examples of effectiveness
coalitional games. In these games directed pseudographs are
meaningful with respect to peculiar graph-traversing issues,
in order to outline some positive aspects of our algorithm.
In Section 5, some conclusions and further research trends
are discussed.

2. Representation of Data
In our work a game is modeled through a non-empty

directed pseudograph3 D = (Z, E) [18] (simply named
digraph) where E =

⋃
S⊆N →S . Say e ∈ E if a coalition

S exists such that e ∈→S : S is the labelling coalition of
e. Digraph’s nodes are z ∈ Z and edges are e ∈ E . Let
e = (a, b); denote with η(e) its head a and τ(e) its tail b.
We give some useful definitions for clarity.

Definition 2.1 (Walk, Trail, Path, k−Cycle, Loop, Cycle):
A walk of length k ≥ 2 is a non-empty sequence of edges
e0e1 . . . ek−1 where τ(ej) = η(ej+1) j = 0..k − 2. A
trail e0e1 . . . ek−1 is a walk such that 0 ≤ i, j < k,
i 6= j ⇒ ei 6= ej . A path e0e1 . . . ek−1 is a trail such that
0 ≤ i, j < k, i 6= j ⇒ η(ei) 6= τ(ej). A k−cycle is a
walk e0e1 . . . ek−2ek−1 such that e0e1 . . . ek−2 is a path,
η(e0) = τ(ek−1) and whose lenght is k ≥ 2. A loop is an
edge e where τ(e) = η(e). A cycle is a k−cycle or a loop;
it is of length k if a k−cycle, or 1 if a loop.
Roughly speaking, in a trail no edge can be repeated. Note
that 0 ≤ i, j < k, i 6= j implies η(ei) = τ(ej) can be true
in a trail.

Definition 2.2 (e-path): An e-path (extended path)
e0e1 . . . ek−1 is a trail such that η(ei) = τ(ej) 0 ≤ i < j ≤
k − 1 implies j = k − 1.
Note that a path or cycle is an e-path, and an e-path can
include a cycle.

Definition 2.3 (Deviation, Sink): Let zi ∈ Z . We denote
∆i = {e ∈ E | η(e) = zi}. Its elements are called deviations
from zi. A sink is a node zi such that ∆i = ∅.

Definition 2.4 (em-path): An e-path p = e0e1 . . . ek−1

with corresponding labelling coalitions S0S1 . . . Sk−1 is an
em-path (extended path minimal in coalitions) if another e-
path p̄ = ē0ē1 . . . ēk−1 with corresponding labelling coali-
tions S̄0S̄1 . . . S̄k−1 does not exist such that η(ei) = η(ēi),
τ(ei) = τ(ēi) and S̄i ⊂ Si for some i = 0 . . . k − 1.
Let zi, zj ∈ Z . Note that there may be multiple em-paths
joining zi and zj . Given an e-path p between zi and zj , a
unique em-path p′ joining zi and zj exists such that each
labelling coalition of p′ is included in the corresponding

3In which nodes can be linked through multiple edges and loops are
admitted.

labelling coalition of p: p′ is the minimal em-path associated
with p. Discovering em-paths instead of e-paths improves
the efficiency of our algorithm because this does not alter
dominancies and consequently the main α-stable sets are
the same in both approaches. In fact, if there is a pbf
dominance between zi and zj along an em-path p then the
same dominance exists along any e-path q such that p is the
minimal em-path associated with q.

2.1 High Level Data Structures
Let
• Pi the set of all em-paths with head zi
• Pi,j the set of all em-paths with head zi and tail zj
• P = [Pi,j] the connectivity matrix
• n the number of players of the game
• N the set of players
• m the number of outcomes = graph order ||D||

Note that the connectivity matrix P is an extension of the
classical adjacency list representation A = [aij] of a digraph,
in which aij is the number of edges from zi to zj . and the
following parameters, derived from above:

• MP =
m∑
k=1

k

(
n

bn2 c

)k
: the upper bound of |Pi| over zi

• ML = m: the number of effectiveness relation’s ele-
ments (edges) in the longest em-path

• MW = ML ·m ·
(
n
bn2 c
)
: the “deepness” of the working

stack (see Appendix)
• MS =

(
m
bm2 c

)
: the upper bound on the total number of

main α-stable sets found.
The data structures representing graph components are sub-
sequently described. These data structures are modeled after
the aforementioned constants and parameters. IDM is a
matrix whose generic element IDMi,j is true if zi � zj ,
false otherwise. BDM [b] is a matrix whose generic element
BDM [b]i,j is true if zi �b zj b ∈ {pbf, wpbf, w∗pbf, lpbf,
lwpbf, lw∗pbf }.

3. The Algorithm
The algorithm is based upon the following input data:
• Z: the set of the m outcomes (graph nodes) of the

game;
• V ∈ Rm×n: the m real-valued payoffs’ vectors, one for

each outcome;
• α ∈ Rn: the vector of safety/risk values, one for each

player;
• E ⊆ Z × Z: the set of all graph edges.
In our algorithm the hard part is to discover all e-paths

linking outcome pairs: this is done with a constructive
approach, exploring existing deviations from nodes until a
sink or a cycle is found. In general, a directed pseudograph
representing an effectiveness coalitional game is not a tree,
so it has been necessary to make use of a slightly modified

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 117

stack data structure for “discovering” any bifurcation starting
from a node. A better approach consists of exploring the
only deviations labelled by coalitions which are “minimal”,
in the sense that they are included in coalitions of some other
parallel (i.e. with same head and tail) edge, if it exists. The
algorithm proceeds starting from the “construction” of the
connectivity matrix P , then the dominance matrices are built;
finally, all main α-stable sets S∗α are generated. A high-level
overview of the algorithm is thus:

I. Build the connectivity matrix P
II. Build the indirect dominance relation matrix IDM

III. Build the farsighted dominance matrices BDM
IV. Compute the main α-stable sets S∗α

The algorithm is written according to different dominance
modalities b ∈ {pbf, wpbf, w∗pbf, lpbf, lwpbf, lw∗pbf }
which generate different pbf, wpbf, w∗pbf, lpbf, lwpbf,
lw∗pbf) α-stable sets. See [1] for a complete description. In
Section 1.1 we introduce only pbf dominance and the related
pbf α-stable sets and main pbf α-stable sets. Here we decide
to maintain the structure of the original algorithm and we
invite the reader to read this section just in case b = pbf . We
think that this detail does not affect the scientific aim of this
work; at the same time it shows a broad area of applications
of our algorithm. The detailed articulation of the algorithm
is subsequently described.

I. Build the connectivity matrix P
1. for each node (outcome) zi ∈ Z
2. find all em-paths with initial node zi
3. find and store in Pi,j all em-paths between zi

and zj , j = 1 . . .m
4. next zi

II. Build the indirect dominance matrix IDM
1. for each i, j = 1 . . .m
2. if zi � zj then IDMi,j := true else

IDMi,j := false endif
3. next j, i

III. Build the farsighted dominance matrices BDM [b]
1. for each b ∈ {pbf, wpbf, w∗pbf, lpbf, lwpbf,

lw∗pbf }, i, j = 1 . . .m
2. build the initial backward induction set

B0 = {zk : zj � zk}
3. BDM [b]i,j := false
4. for each p = e0 e1 · · · eh ∈ Pi,j
5. Θi,j,p[b] := B0, BDMi,j,p[b] := true

(hypotesize zi �b zj along p)
6. for each r from h down to 0
7. if b ∈ {wpbf, w∗pbf, lwpbf, lw∗pbf }

then
8. BDMi,j,p[b] := false (reset

hypothesis)
9. if b ∈ {w∗pbf, lw∗pbf } then

Θ∗i,j,p[b] := ∅ endif
10. endif
11. Set BDM [b]i,j,p and Θ∗i,j,p after the

appropriate b dominance criterion
12. if BDMi,j,p[b] = false then exit loop r
endif
13. if r > 1 then rebuild Θi,j,p[b] endif
14. next r
15. if BDM [b]i,j,p = true then
BDM [b]i,j := true endif
16. next p
17. next j, i, b

IV. Compute the main α-stable sets S∗α[b]
1. for each b ∈ {pbf, wpbf, w∗pbf, lpbf, lwpbf,

lw∗pbf }
2. Let X ⊇ F[b](X,Y) → 2Z , X, Y ∈ 2Z the

stability test function
3. if F[b](Z,Z) = Z then exit(S∗α[b] := Z)

endif
4. Q = Z\F[b](Z,Z) (isolate bad outcomes, i.e.

outcomes not in the initial stable set)
5. Q̄ = ∅ (Q̄ will be the set of all z ∈ Q for

which Z \Q ∪ {z} is F[b]-stable)
6. for each z ∈ Q
7. if F[b]({z},Z \ Q ∪ {z}) = {z} then

Q̄ := Q̄ ∪ {z} endif
8. next z
9. if Q̄ = ∅ then exit(S∗α[b] := Z \Q) endif

10. for each A ∈ 2Q̄ such that A is maximal
(search for all next possible stable sets)
11. if F[b](A,Z \Q∪A) = A then return(Z \
Q ∪A) endif
12. next A
13. next b
14. exit

We now illustrate the main computational issues related
to the algorithm.

Step I.
In line 1 all em-paths starting from current node zi are

explored and stored in Pi. If current node zi is a sink there
is no further processing to do for this step, otherwise E is
scanned until all edges with head zi have been examined.
Let ∆̄i a subset of ∆i such that the labeling coalitions of
its edges are minimal (see subsection 2). All deviations in
∆̄i are thus found and stored for subsequent processing in
LIFO (Last In First Out) mode [19].
Let e ∈ E ; τ(e) denotes the tail of edge e and η(e) its head.
Let δi,j0 ∈ ∆̄i and

δi,j0;j1···jr−1jr :=

∆̄

τ

. . .

∆̄

τ

∆̄
τ(δi,j0)

j1

. . .

jr−1

jr

118 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

where

j0 = 1 . . .
∣∣∆̄i

∣∣
j1 = 1 . . .

∣∣∣∆̄τ(δi,j0)

∣∣∣
. . .

jr = 1 . . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∆̄

τ

. . .

∆̄

τ

∆̄
τ(δi,j0)

j1

. . .

jr−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
If r = 0 then δi,j0;j1···jr−1jr = δi,j0 .

The generic em-path of length h+1 is built as the ordered
sequence

p := δi,j0 δi,j0;j1 · · · δi,j0;j1···jh−1
δi,j0;j1···jh−1jh

where τ(δi,j0;j1···jh−1jh) is a sink or a cycle is detected, i.e.
τ(δi,j0;j1···jk−1jk) = τ(δi,j0;j1···jh−1jh) for some k = 0 . . . h.
After all em-paths starting from node zi have been found,
they are stored in Pi.
In line 3 the set of em-paths Pi,j linking node zi to all
other nodes zj , j = 1 . . .m are found and stored in the
connectivity matrix element Pi,j . Processing for the current
node terminates if zi is a sink. For each em-path p ∈ Pi
of length |p| its edges δi,j0;j1···jr−1jr are examined descend-
ingly from h to 0 with respect to the index r, storing in
the matrix element Pi,tr all distinct (sub)em-paths of length
r + 1 linking zi to ztr = τ(δi,j0;j1···jr−1jr), tr = 1 . . .m.

Step II.
In this step the indirect dominance relation� on Z is built

and stored in the boolean matrix IDM , being IDMi,j =
true if a path p ∈ Pi,j exists such that it verifies conditions in
definition 1.1. Since � is not reflexive the matrix elements
on the main diagonal are all obviously set to false. Let p =
e0 e1 · · · eh a generic em-path in Pi,j , η(er) = zkr r = 0..h,
Sr the labelling coalition of er. IDMi,j is true if Vη(er),t <
Vzj ,t t ∈ Sr. Note that if IDMi,j is true (along p) then
IDMkr,j = true, too4.

Step III.
The generation of BDM [b] matrices is executed by find-

ing all em-paths (already stored in P) between outcomes
along which there is a dominance, and flagging them in the
corresponding BDM [b] matrix. The correct assignment to
element BDM [b]i,j,p and the construction of sets Θi,j,p and
Θ∗i,j,p in line 11 is carried out in the following manner. In
our case, our mode b = pbf

• pbf there is a dominance (i.e. BDM [b]i,j,p := true)
only if all payoffs are better for all em-path edges er,

4This is done to avoid unnecessary subsequent computations for already
known elements of the indirect dominance relation.

i.e. Vη(er),t < Vz,t t ∈ Sr with z ∈ Θi,j,p and Sr the
labelling coalition of er;

• wpbf, (w∗pbf) there is a dominance only if all payoffs
are better for all em-path edges er for at least one Θi,j,p

element, i.e. Vη(er),t < Vz,t t ∈ Sr for some z ∈ Θi,j,p

(z ∈ Θ∗i,j,p ⊆ Θi,j,p);
• lpbf there is a dominance only if all payoffs are better

or equal for all em-path edges er but at least one is
strictly better, i.e. Vη(er),t ≤ Vz,t and Vη(er),i < Vz,i
t ∈ Sr z ∈ Θi,j,p for some i ∈ Sr;

• lwpbf, (lw∗pbf) there is a dominance only if all payoffs
are better or equal for all em-path edges er but at least
one is strictly better, i.e. Vη(er),t ≤ Vz,t and Vη(er),i <
Vz,i t ∈ Sr for some z ∈ Θi,j,p i ∈ Sr (z ∈ Θ∗i,j,p ⊆
Θi,j,p).

Let Θ̄i,j,p = Θ∗i,j,p if b ∈{w∗pbf, lw∗pbf }, Θi,j,p other-
wise. In line 13 Θi,j,p is rebuilt for the new r iteration: it
will contain the outcomes dominating Θ̄i,j,p. If there is no
dominating outcome then Θi,j,p = Θ̄i,j,p.

Step IV.
α-stable sets 5 are built for each b ∈ {pbf, wpbf, w∗pbf,

lpbf, lwpbf, lw∗pbf } based upon the stability test carried out
by the function F[b] : 2Z × 2Z → 2Z . F[b](X,Y) ⊆ X is
the set of all outcomes in X which are stable with respect
to Y . Function F[b] is now explained in detail.

Let z ∈ X , e ∈ ∆z and S the labelling coalition of e.
Consider all the outcomes d ∈ Y dominating τ(e). Let the
set of final outcomes Φτ(e),d built as the union of Θτ(e),d,p

for em-paths p of minimum length joining τ(e), d. The
outcome z is added to the final result of function F[b](X,Y)
if Vz,i ≥ (1−αi) minw∈Φτ(e),d

Vw,i +αi maxw∈Φτ(e),d
Vw,i

for some i ∈ S.

4. Graph Visualization In a Complex So-
cial Environment

In this section, we introduce some results obtained through
a computer program implementing our algorithm. Each
example is presented for outlining how our algorithm has
a well-mannered behaviour with respect to games modeled
by different complex directed pseudographs.

4.1 An example with parallel edges

Game’s input data are n = 3, m = 4, α = (.5, .5, .5),
with effectiveness relation and payoff matrix:

5In the following three sub steps, we use the term stable as (pbf, wpbf,
w∗pbf, lpbf, lwpbf, lw∗pbf) α-stable.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 119

1 : e
{1}
1,2

2 : e
{2}
1,2

3 : e
{2,3}
1,2

4 : e
{2}
2,3

5 : e
{1}
2,3

6 : e
{3}
3,4

V =

0 0 1
1 0 1
0 1 0
1 0 1

where eSi,j denotes an edge with labelling coalition S, head
zi and tail zj . This game has a graph visualization with three
bifurcations from a node z1 to a node z2. From the last, two
other edges start labeled by two different coalitions. The
graph ends with a sink z4.

z1

2

BB

3

��1 // z2

5

BB

4

��
z3

6 // z4

Our algorithm selects all em-paths6 between z1 and z4:

P1,4 = {1 . 4 . 6, 1 . 5 . 6, 2 . 4 . 6, 2 . 5 . 6}

Note that there are two other e-paths 3.4.6 and 3.5.6 which
are discarded because they are not minimal in coalitions (due
to the labelling coalition of edge 3). So, our algorithm goes
on computing BDM [pbf] as shown in Table 4.1. 7

i \ j z1 z2 z3 z4

z1 true true

z2 true

z3

z4

Table 1: BDM [pbf]

The unique main pbf (.5, .5, .5)-stable set is {z3, z4}. This
example shows how our algorithm works well on computing
all em-paths starting from node z1 and ending with a sink.

4.2 An example with no sink
Game’s input data are n = 2, m = 4, α = (0, 0) with
effectiveness relation and payoff matrix:

1 : e
{1}
1,2

2 : e
{1,2}
1,3

3 : e
{2}
2,3

4 : e
{1}
3,4

5 : e
{2}
4,1

V =

1 2
2 3
0 4
4 1

6Which are strictly paths.
7BDM [pbf]i,j is true if zj dominates zi on at least one path.

This game has the following graph visualization

z1
1 //

2

 A
AA

AA
AA

AA
AA

AA
AA

A z2

3

��
z4

5

OO

z3
4oo

Dominancies are presented in Table 2. The initial pbf α-
stable set is {z2}. Main pbf (0, 0)-stable sets are {z2, z4}
and {z2, z3}.

i \ j z1 z2 z3 z4

z1

z2

z3 true

z4 true

Table 2: BDM [pbf]

4.3 An example with multiple cycles and a sink
Game’s input data are n = 3, m = 4, α = (.5, .5, .5),

with effectiveness relation and payoff matrix:

1 : e
{1,3}
1,2

2 : e
{1,2}
1,3

3 : e
{1,2}
2,3

4 : e
{1,3}
2,3

5 : e
{2,3}
2,4

6 : e
{1,2}
3,1

7 : e
{1,3}
3,4

V =

0 0 1
1 0 1
0 1 0
1 0 1

This game has a graph visualization which has multiple 3-
cycles, 2-cycles and no loop with a sink.

z1
1 //

2

99z2

3

&&

4
88

5

))

z3

7
pp

6

��

z4

Our algorithm captures all the em-paths which are or contain
cycles as follows: 2 . 6, 1 . 4 . 6, 1 . 3 . 6, 4 . 6 . 2, 4 . 6 .
1, 3 . 6 . 2, 3 . 6 . 1, 6 . 2, 6 . 1 . 4, 6 . 1 . 3 and paths
ending in the unique sink z4: 2 . 7, 1 . 5, 1 . 4 . 7, 1 . 3 .
7, 5, 4 . 7, 3 . 7, 7, 6 . 2, 6 . 1 . 5. It enables to find out
Pi,j represented at the (i, j) entry of Table 3 as a subset of
em-paths. All pbf main (.5, .5, .5)-stable sets coincide with
{z1, z2, z4}.

120 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

z1 z2 z3 z4

z1

2 . 6
1 . 4 . 6
1 . 3 . 6

1
2
1 . 4
1 . 3

2 . 7
1 . 5
1 . 4 . 7
1 . 3 . 7

z2
4 . 6
3 . 6

4 . 6 . 1
3 . 6 . 1

4
4 . 6 . 2
3
3 . 6 . 2

5
4 . 7
3 . 7

z3 6 6 . 1
6 . 2
6 . 1 . 4
6 . 1 . 3

7
6 . 1 . 5

z4

Table 3: Connectivity matrix P

5. Conclusions
We propose an algorithm for computing main α-stable

sets introduced by Ciardiello and Di Liddo (2009) on
coalitional games in effectiveness form modeled through a
directed pseudograph. Our algorithm can be used, with slight
adaptions, to compute other concepts of stability in effec-
tiveness coalitional games, such as standard behaviour, the
credible largest consistent set, the largest cautious consistent
set, the stability set and the uncovered set. We finally observe
that our algorithm may be further improved in the areas of
e-path exploration and the construction of the connectivity
matrix. These areas will be the subject of future research.

References
[1] F. Ciardiello and C. Gallo, “A graph-traversing algorithm for comput-

ing some stable sets in effectiveness coalitional games,” Tech. Rep.,
2009.

[2] R. Aumann and J. Drèze, “Cooperative games with coalition struc-
tures,” International Journal of Game Theory, vol. 3, pp. 217–237,
1974.

[3] R. Myerson, “Graphs and cooperation in games,” Mathematics of
Operation Research, vol. 2, pp. 225–229, 1977.

[4] P. P. Shenoy, “On a coalition formation: a game theoretical approach,”
International Journal of Game Theory, vol. 8, pp. 133–164, 1979.

[5] S. He, “Aspects of the bridge between optimization and game theory,”
Ph.D. dissertation, THE CHINESE UNIVERSITY OF HONG KONG
(HONG KONG), 2011.

[6] M. Nagarajan and G. Sosic, “Stable farsighted coalitions in competi-
tive markets,” Management Science, vol. 53, pp. 1–29, 2007.

[7] A. De Zeeuw, “Dynamic effects on the stability of international
environmental agreements,” Journal of Environmental Economics and
Management, vol. 55, pp. 163–174, 2008.

[8] E. Penn, “A model of farsighted voting,” American Journal of Political
Science, vol. 53, pp. 36–54, 2009.

[9] U. Faigle and B. Peis, “Zentrum für angewandte informatik,” Uni-
versität zu Köln Weyertal 80 D-50931 Köln, Germany, Tech. Rep.,
2006.

[10] M. Wooldridge and P. E. Dunne, “On the computational complexity
of qualitative coalitional games,” Artificial Intelligence, vol. 158, pp.
27–73, 2004.

[11] P. Herings, G. van der Laan, and D. Talman, “The average tree solution
for cycle free games,” Games and Economic Behavior, vol. 62, pp.
77–92, 2008.

[12] F. Grafe, E. Inarra, and A. Mauleon, “An algorithm for computing
the stable coalition structures in tree-graph communication games,”
Sociedad de Estadística e Investigación Operativa Top, vol. 7, pp.
71–80, 1999.

[13] A. Mauleon and V. Vannetelbosch, “Farsightedness and cautiousness
in coalition formation games with positive spillovers,” Theory and
Decision, vol. 56, no. 3, pp. 291–324, 2004.

[14] P. Herings, A. Mauleon, and V. Vannetelbosch, “Rationalizability for
social environments,” Games and Economic Behavior, vol. 49, no. 1,
pp. 135–156, 2004.

[15] L. Xue, “Coalitional stability under perfect foresight,” Economic
Theory, vol. 11, no. 3, pp. 603–627, 1998.

[16] M. S. Chwe, “Farsighted coalitional stability,” Journal of Economic
Theory, vol. 63, pp. 299–325, 1994.

[17] F. Ciardiello and A. Di Liddo, “Farsighted stable sets,” Dept. of
Economics, Mathematics and Statistics - University of Foggia, Italy,
Largo Papa Giovanni Paolo II, 1 - 71121 Foggia, Italy, Tech. Rep. 3,
Feb 2009.

[18] J. Bang-Jensen and G. Gutin, Digraphs Theory, Algorithms and
Applications. Springer-Verlag, New York, 2008.

[19] D. Knuth, The Art Of Computer Programming - Fundamental Algo-
rithms, 3rd ed. Addison-Wesley, 1997, vol. 1.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 121

122 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

SESSION

FORMAL METHODS, SPECIFICATION,
MODELING, AND APPLICATIONS

Chair(s)

TBA

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 123

124 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Z Formal Framework for Syntax-Based Module Level Software Metrics

Raouf Alomainy and Wei Li
Computer Science Department, University of Alabama in Huntsville,

Huntsville, AL 35899
{ralomain, wli}@cs.uah.edu

Abstract

This paper introduces a framework to formalize module-level structural metrics that quantify inter-module
dependencies in object-oriented software systems. We used a formal framework based on the Big Bang
Graph (BBG) modelling and the formal Z specification language to formalize a modularization-based
software metric as an example to demonstrate how the framework works. We have developed the Design
State Space toolkit (DSS) to extract the state space represented in the formalized object-oriented model.

Keywords: Module-level structural metrics, Z formal language; design state space; software metrics tools;

Introduction

 Modularization, as a feature of object-
oriented programming paradigm, addresses the
need for decoupled modules, each with a well-
defined and advertised functionality, in order to
achieve code reuse [5], separation of concerns
[4], and minimize overlapping and unnecessary
coupling among different modules [3]. Well-
structured and modular programs are less costly
to maintain than unstructured monolithic ones
[2].

This paper focuses on structural
metrics: quantitative measures of programs that
are based on syntactic structures. Such metrics
have been used to measure object-oriented
programs to predict system properties such as
class error probability and maintainability. An
example of class-level structural metric is the
Number of Children (NOC) metric [4] to
calculate the number of immediate subclasses
subordinated to a class in the class hierarchy in
order to measure how many subclasses are going
to inherit the methods of the parent class. An
example of module-level structural metric is the
Module Size Uniformity Index (MSUI) to assess
if all modules are roughly equal in size [10]. The
deviation from the module-size uniformity
would generally be an indicative of a poor
modularization.

Module-Level Structural Metrics

In building large systems, there is a
consensus on the need for well-defined and
structured architecture that is based on

modularized software components, in particular
for large-scale software system [13]. However, a
significant body of previous research work has
often considered a module and a class to be
synonymous concepts. Thus, most of the
research is focused on class-level metrics and
there is a lack of empirical studies on module-
level metrics and their influence on the
disorganization that exist today in many
commercial systems [10].

In this paper, we refer to a module as a
collection of classes that are grouped together to
serve a purpose in a large object-oriented system.

Several common software practices
contribute to the undermining of the original
purpose of modularization. Some examples of
such errors: a class extending another class from
a different module, a class in one module is
integrating, through instantiation, with a class in
another module, either as an attribute or as a
formal parameter in a method definition, the
messaging between methods that belong to
classes of different modules for local purpose
functionality, etc [10]. Module-level metrics are
meant to gauge well or poorly the modularity has
been constructed.

In this paper, we propose a formal
framework, based on the Z formal language [12],
that links structural module metrics to design
features in order to aid the precise definition and
better understanding of module-level metrics. Z
has the ability to prove properties in its
specification to formally validate the metric [7]. .

Sakar and colleagues proposed module
metrics that characterize large object-oriented
software systems with regards to the inter-
module dependencies created by associations,
inheritance, and method invocations [11]. In the

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 125

remainder of this paper, we present the
formalization of one of these metrics using our
proposed approach.

Formal Modelling of Object-Oriented
Design State Space

The formal framework is based on a
new graph modelling technique, Big Bang Graph
(BBG), for OO programs and the formalization
of the graph model using the Z formal language.
The formalized BBG model is the design state
space of the program.

The distinguished feature of BBG is its
simplicity: it uses only one graph to represent the
entire design state space that we are interested in
modelling structural metrics.

BBG is a colored, directed and
connected graph modelled as BBG= (E, V)
where V is the set of colored vertices and E is the
set of colored and directed edges. Vertices in
BBG represent design entities such as class,
object, object reference and method. Edges
represent the primitive associations of the
entities. BBG aims to model a program with the
primitive (atomic) design features. A design
feature is primitive or atomic if it cannot be
further divided into other design features. For
example, object read is a primitive design
feature whereas object access is not because it
consists of two primitive design features: object
read and object write. For more details on the
BBG modelling, please refer to [8].

An Example
We use a simple module-based Java

program (Listing 1) to illustrate how the formal
framework works. In Java, we equate a module
to a package. The sample program consists of
two Java packages: A and B, each with three
Java classes. Package A consists of classes
A1.java, A2.java, and A3.java. Package B
consists of classes B1.java, B2.java, and B3.java.

package A;
import java.util.*;
import B.*;

public class A1 {
 private Vector APublicMethods ;
 private Vector AProtectedMethods ;
 private Vector APrivateMethods ;

 public A1 () {}

 public void MA11(){ B1 obj_b1 = new B1 (); obj_b1.MB11(); }
 public void MA12 (){ }
 public void MA13 (){ B2 obj_b2 = new B2 (); obj_b2.MB21 (); }
 public Vector GetAPublicMethods(){ return APublicMethods ; }
 public void SetAPublicMethods (Vector vVal){ APublicMethods = vVal ; }
 protected Vector GetAProtectedMethods (){ return AProtectedMethods ; }
 protected void SetAProtectedMethods (Vector vVal){ AProtectedMethods =

vVal ;}
 private Vector GetAPrivateMethods (){ return APrivateMethods ;}
 private void SetAPrivateMethods (Vector vVal){ APrivateMethods = vVal ;}

}//end of class A1

package A;

import B.*;

public class A2 extends A1{
 public A2 (){ }

 public void MA21 (){ }
 public void MA22 (){ }
 public void MA23 (){ B2 obj_b2 = new B2 (); obj_b2.MB21 (); }
 public void MA24(String para1 , Integer para2, Float para3){}

}//end of class A2

package A;
import B.*;

public class A3 extends A2{

 public A3 (){ }
 public void MA31 (){ }
 public void MA32 (){ B3 obj_b3 = new B3(); obj_b3.MB31 (); }
 public void MA33 (){ }
 public void MA34(String para1 , Integer para2 , Float para3){}

}//end of class A3

package B;
import java.util.*;
import java.io.*;
import A.*;

public class B1 {

 private Vector BPublicMethods;
 private Vector BProtectedMethods;
 private Vector BPrivateMethods;

 public B1 () {}
 public void MB11 (){ A1 obj_a1 = new A1 (); obj_a1.MA12 (); }
 public void MB12 (){ }
 public void MB13 (){ A3 obj_a3 = new A3 (); obj_a3.MA31 (); }
 public Vector GetBPublicMethods (){ return BPublicMethods ; }
 public void SetBPublicMethods (Vector vVal){BPublicMethods = vVal ; }
 protected Vector GetBProtectedMethods (){ return BProtectedMethods ; }
 protected void SetBProtectedMethods (Vector vVal){ BProtectedMethods =

vVal ;}
 private Vector GetBPrivateMethods (){ return BPrivateMethods ;}
 private void SetBPrivateMethods (Vector vVal){ BPrivateMethods = vVal ;}

}// end of class B1

package B;
import A.*;
public class B2 extends B1{
 public B2 (){ }

 public void MB21 (){ }
 public void MB22 (){ A3 obj_a3 = new A3(); obj_a3.MA33(); }
 public void MB23 (){ }
 public void MB24(String para1 , Integer para2, Double para3){}

}//end of class B2

package B;
import java.io.*;
import A.*;

public class B3 extends B2{
 public B3 (){ }

 public void MB31 (){ }
 public void MB32 (){ }
 public void MB33 (){ A2 obj_a2 = new A2(); obj_a2.MA21(); }
 public void MB34(String para1 , Integer para2,Float para3){}

}//end of class B3

Listing 1: Java source code for classes in packages A and B

Table 1 shows the generated BBG relation sets
that will be used as the base types to support the

126 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Z formalization of the module-level metrics. For
more details on the complete list of BBG
relations sets, please refer to [8].

Table 1: Generated BBG relation sets

Once the BBG relation sets are created

from the Java example to represent the design
space, the design can be analyzed formally.
Syntax-based software metrics (structural
metrics) can be defined and extracted from these
sets, as shown in the next section using the Z
formal language.

Formalization of module metrics using Z and
BBG

The design state space makes it possible
to link a metric definition explicitly to the design
feature (or features) in BBG. These design
features are easy for programmers and analysts
to understand and they underline the metric’s
measurement objective. Linking a metric
definition to the design features in the formalized
metrics eliminates potential misunderstanding
and misinterpretations of the metrics.

We use the Module Interaction Index
Metric (MII) metric as an example to show how
to formalize module-level metrics. The MII
metric calculates how frequently the methods
listed in a module's APIs, both Service API (S-

APIs)1 and Extension API (E-APIs)2 , are used by
the other modules in the system. MII is defined
as follows [11]:

I(p) denotes all of the APIs for a module p. For
an API i I(p), let ExtCallRel(i) be the set of
calls made to any of the methods of i from
methods outside of the module p.

ExtCallRel(p) denotes the set of all

external calls made to all of the methods of all
classes in module p.

In an ideal state, all of the external calls

to module p should take place only through its
officially designated API methods. The MII(S)
value ranges from 0 to 1. A max MII(S) value of
1 indicates an ideal system where all intermodule
interactions are only through the officially
designated S-API methods. A min MII(S) value
of 0 is indicative of a system with very bad
intermodule interaction.
 A structural metric is denoted by a
characteristic set. The cardinality of the
characteristic set equals to the metric value. A
characteristic set contains syntactical elements
that share certain characteristics. For example,
the set of red buses is a characteristic set because
all the elements in the set are red buses. In other
words, the elements in a characteristic set are not
arbitrarily chosen. Table 2 introduces the basic
Z notations that are used to formalize the
module-level metric we used to validate our
formalized framework.

1

A Service API (S-API) declares the services that the module
provides to the rest of the software system [12][11].

2 Extension API: An Extension API (E-API) is a declaration
of what functionality needs to be provided by an external
plugin for the module.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 127

Table 2: Basic Z specification language notations

We define the characteristic sets of the

MII metric using the Z notations as follows:

[CLASS, METHOD]

CLASS is the basic set of all classes, METHOD
is the basic set of all methods in a program, and
MODULE is the basic set of all modules in a
program.

The ModuleClass is a basic relation set in BBG.
Table 1 shows the extracted ModuleClass set for
the Java example.

Z formalization

We will use the Java example (Listing 1) to
illustrate the Z formalization of the MII metric
based on the BBG relation sets.

1. First, we get all modules in the design, using

the BBG relation set ModuleClass, which is
the set of all module-class relations defined
in the design. We assign the extracted set to
the variable MoC. The MoC set for the
example returns: {(A, A1), (A, A2), (A,
A3), (B, B1), (B, B2), (B, B3)}

2. Then, we collect the API methods, defined
as public in the module. Formally defined
as ClassAPIMethod =
(ClassPublicInstanceMethod
 ClassPublicClassMethod). The two sets
involved in the union are basic BBG
relations. For our example,
ClassAPIMethod={(A1,GetAPublicMethods),
(A1,SetAPublicMethods), (A1,MA11),
(A1,MA12), (A1,MA13), (A2,MA21),
(A2,MA22), (A2,MA23), (A2,MA24),
(A3,MA31), (A3,MA32), (A3,MA33),
(A3,MA34), (B1,GetbPublicMethods),
(B1,SetBPublicMethods), (B1,MB11),
(B1,MB12), (B1,MB13), (B2,MB21),
(B2,MB22), (B2,MB23), (B2,MB24),
(B3,MB31), (B3,MB32), (B3,MB33),
(B3,MB34)}.

3. Next, we collect the method-to-method
messaging in each class. This is represented
by the BBG MethodToMethodMessage
relation set. In the example,
MethodToMethodMessage= {((A1,MA11),
(B1,MB11)), ((A1,MA13), (B2,MB21)),
((A2,MA23), (B2,MB21)), ((A3,MA32),
(B3,MB31)), ((B1,MB11), (A1,MA12)),
((B1,MB13), (A3,MA31)), ((B2,MB22),
(A3,MA33)), ((B3,MB33), (A2,MA21))}.

4. To calculate the external calls into the
module, we use these steps in the Z schema
definition:
a) “ran({module} MoC)” domain

restricts the set of modules in the design
by a specific module, then get the range
set. For our example, applying this on
module A would result in:

b) Get the methods in all classes,

represented by the set ClassAPIMethod
calculated before for our example.

128 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

c) Domain restrict ClassAPIMethod by
MC – in Z syntax this is formally
written as ClassAPIMethod MC- to
get the class methods pairs for the
module(s) that of interest to this
example. (ClassAPIMethod {A1, A2,
A3}) = {(A1,GetAPublicMethods),
(A1,SetAPublicMethods), (A1,MA11),
(A1,MA12), (A1,MA13), (A2,MA21),
(A2,MA22), (A2,MA23), (A2,MA24),
(A3,MA31), (A3,MA32), (A3,MA33),
(A3,MA34)}. The result set is assigned
to variable MIC.

d) Next, we get all of the external calls by
the methods in the set MIC. By domain
restricting the BBG relation set
MethodToMethodMessage by MIC
calculated in (c) above.
(MethodToMethodMessage MIC)
={((A1,MA11), (B1,MB11)),
((A1,MA1), (B2,MB21)), ((A2,MA23),
(B2,MB21)), ((A3,MA32),
(B3,MB31))}. Result is assigned to
variable MethodsExtCalls.

e) Then, we get only the range from the set
ran(MethodsExtCalls) = {(B1,MB11),
(B2,MB21), (B3,MB31)} with
cardinality value 3.

f) This represents ExtCallRef(p) in the
original MII definition, where p is the
module A under measurement in the
design.

5. To calculate the external calls to a single
method in a module, we use these steps in
another formal Z schema definition:
a) The input will be the class-method pair,

which we want to calculate the external
calls for. For example, we want to
know the external calls for (A1, MA11).

b) We get all external calls to the class-
method pair. By domain restricting
MethodToMethodMessage by the class-
method pair passed.
MethodToMethodMessage {(A1,
MA11)} = {((A1, MA11),
(B1,MB11))}. The result is assigned to
variable MethodExtCall (note: this is
different from the variable
MethodsExtCall used in 4.d before).

c) Then, we get only the range from the set
ran(MethodExtCalls) = {(B1, MB11)}
with cardinality value 1.

d) This represents ExtCallRef(i), where i is
an API method in a module p to
represent the external calls to this

method only, and not all of the methods
in the module. For the previous steps, i
represents the pair (A1, MA11).

The same steps 5.a to 5.d will be repeated

for the remaining class-method pairs in module
A. These are represent in this set
{(A1,GetAPublicMethods),
(A1,SetAPublicMethods), (A1,MA12),
(A1,MA13),(A2,MA21), (A2,MA22),
(A2,MA23), (A2,MA24), (A3,MA31),
(A3,MA32), (A3,MA33),(A3,MA34)}. And the
result would be {(B1,MB11), (B2,MB21),
(B3,MB31)} with cardinality 3.

Therefore, the set {(B1,MB11),
(B2,MB21), (B3,MB31)} represents the
characteristics set for the metric Module External
Access (MEA), which in our example was
applied to module A. The result represents the
frequency that methods in a particular module
are being accessed by methods in other modules.

And the set {(B1,MB11), (B2,MB21),
(B3,MB31)} represents the characteristics set for
the metric Method External Access (MHEA),
when applied to a particular method in a module,
to represent the frequency that this method is
being accessed by methods in other modules.
This completes the Z formalization of the MII
metric.

The Design State Space Toolkit

 We implemented a new toolkit called
the Design State Space (DSS) toolkit to validate
that the proposed framework is practical and
useful.

The DSS Parser utilizes the JavaCC
technology [9] and the SableCC compiler
compiler [6] to support the parsing and
extraction of the design state space. The DSS
Analyser serves two main purposes. First, it
provides the mapping of the parsed tree sets from
the source code into the BBG relation sets as the
intermediate representation. Second, it extracts
definitions, such as structural metrics, from the
BBG sets. These relations sets provide
convenience and flexibility for all kinds of
analyses and future plug-in modules to the tool.
For example, we can use these sets to extract
structural metrics, if the structural metrics are
formalized in the framework. If a new metric
definition is provided through the plug-in
interface, the tool can extract that metric without
changing anything else in the software design.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 129

Figure 1 : The Design State Space architecture

Figure 1 shows a high-level architecture
of the DSS toolkit. For a more detailed
discussion of the DSS toolkit and the different
modules, please refer to [1].

Conclusions and future research

In this paper, we presented the Z
formalization of an object-oriented module-level
metric. This formal framework links metrics
definitions to the design structures in a graph-
based design representation (BBG) that is
formalized by the Z specification language.
Using the proposed approach, we formalized the
module metric: Module Interaction Index (MII).
In the future, we plan to formalize more module-
level metrics of different complexity to further
validate the proposed framework.

References

[1] R. Alomainy, W Li, and M. Currie., "DSS: A
Software Tool to Extract Object-Oriented Design
State Space," 24th International Conference on
Computers and Their Applications in Industry
and Engineering (CAINE-2011), November
2011.

[2] M.H. Ammann, R.D. Cameron, "Measuring
program structure with inter-module metrics,"
Eighteenth Annual International on Computer
Software and Applications Conference, vol., no.,
pp.139-144, November 1994.

[3] E. Arisholm, L.C. Briand, A. Foyen,
"Dynamic coupling mea-surement for object-
oriented software," IEEE Transactions on
SE,vol.30, no.8, pp. 491- 506, August 2004.

[4] S.R. Chidamber and C.F. Kemerer, “A
Metrics Suite for Object Oriented Design,” IEEE
Transactions on Software Engineering, vol. 20,
no.186, pp. 476-493, 1994.

[5] W. Frakes, K Kang, "Software Reuse
Research: Status and Future", IEEE
Transactions on Software Engineering, pp. 529-
536, July 2005.

[6] É. Gagnon, “SABLECC: An Object-Oriented
Compiler Framework.” MSC thesis School of
Computer Science McGill University, Montreal
March 1998.

[7] W. Li and R. Alomainy, “An Experimental
Approach to Prove Metrics Properties,”
Software Engineering Research and Practice, pp.
408-413, 2009.

[8] W. Li, “The Big Bang Graph – A colored-
graph representation of software design,”
Computer Science Research Trends. Editor:
Casey B. Yarnall, pp. 377-388, June 2008.

[9] Oracle Corporation, “Java Compiler
Compiler (JavaCC),” Version 5.0,
http://java.net/projects/javacc.

[10] S. Sarkar, S.; Rama, G.M.; Kak, A.C.; "API-
Based and Information-Theoretic Metrics for
Measuring the Quality of Software
Modularization," IEEE Transactions on Software
Engineering, vol.33, no.1, pp.14-32, January
2007.

[11] S. Sarkar, A.C. Kak, G.M. Rama, "Metrics
for Measuring the Quality of Modularization of
Large-Scale Object-Oriented Software," IEEE
Transactions on SE, , vol.34, no.5, pp.700-720,
October 2008.

[12] M. Spivey, “The Z Notation: A Reference
Manual,” Prentice Hall International Computer
Press: Upper Saddle River, NJ, 1992.

[13] W.E. Wong, J.R. Horgan, M. Syring, W.
Zage, D. Zage, "Applying design metrics to a
large-scale software system," The 9th
International Symposium Proceedings on SE
Reliability, pp.273-282, November 1998.

130 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

eSQUARE: A Formal Methods Enhanced

SQUARE Tool

Hadil Abukwaik
1
, Cui Zhang

Computer Science Department, California State University Sacramento, CA 95819

hadeel.abukwaik@informatik.uni-kl.de, zhangc@ecs.csus.edu

1
 Currently in Computer Science Department, University of Kaiserslautern, Germany 67663.

Abstract - This paper presents a formal methods enhanced

tool named eSQUARE that supports the SQUARE security

requirements engineering methodology developed by CMU

SEI [7]. Development of security requirements has been

neglected for a long time in the software development

industry [9]. This has caused many errors and failures in the

delivered software products and increased the cost on defect

correction and product maintenance. Therefore it is

important to have precise and concise specification of

security requirements and have early integration of security

requirements in software development process. The tool

presented is aiming at helping practitioners to integrate the

specification of security requirements using formal language

Z [3, 6, 11] with the security requirement engineering

methodology SQUARE.

Keywords: Security Requirements, Requirements

Engineering, Formal Methods

1 Introduction

There is no doubt that software products are affecting

almost every aspect of our daily lives. Software is found in

electronic medical systems, online calls, bank ATMs,

controllers of spaceships and rockets, etc. In such products,

security requirements, including safety, gets a special

importance as failures in satisfying the requirements may lead

to a serious harm that can affect lives and money. However, if

we look at the implemented security in software projects, we

find only general mechanisms describing password

protection, firewalls, virus detection tools, etc. [8]. This

indicates the improper elicitation and inadequate development

of the system-specific security requirements.

Requirements engineering plays a vital role in

developing quality in software applications and in reducing

the cost for correcting the defects in the released products.

Generally, in order to meet software requirements

successfully, all requirements need to be specified at the

very beginning of the software development process.

Unfortunately, this is not the case for security requirements.

According to Mead et al. [7], “Studies show that upfront

attention to security saves the economy billions of dollars.

Industry is thus in need of a model to examine security and

quality requirements in the development stages of the

production lifecycle.” Therefore, a number of methods and

techniques have been developed to ensure meeting the

security requirements. One of these methods is the Security

Quality Requirements Engineering (SQUARE) [7] which

aims at integrating the security requirements engineering

with the requirements engineering phase.

In addition, the more complex the software systems

become the more precise and complete requirements

specification is needed. As pointed out by Clarck et al. [2],

“One way of achieving this goal is by using formal methods,

which are mathematics-based languages, techniques, and

tools for specifying and verifying such systems.” Using

formal methods will support the consistence and the

correctness of software systems. In other words, it solves the

ambiguity problem that can be faced when informal natural

languages are used by many requirements engineers in

eliciting and documenting requirements from the users and

stakeholders. Not only this, but formally specified

requirements are also absolutely better testable than informal

ones. Although, using formal methods will add a reasonable

advantage in expressing and testing the requirements it is not

a guarantee of correctness [9, 12].

This paper presents a web-based tool named eSQUARE

that fully supports the nine steps of SQUARE and uniquely

enhanced using the formal methods based language Z [3, 6,

11] for modeling and checking elicited security

requirements. The rest of the paper is structured as follows.

Section 2 is a review on SQUARE methodology, formal

methods based languages, and the related work. Section 3

illustrates the tool eSQUARE. Section 4 concludes the paper

and presents future work.

2 Background and related work

Security Quality Requirements Engineering (SQUARE)

is a methodology developed at Software Engineering

Institute (SEI) of Carnegie Mellon University (CMU) [7].

This methodology helps in engaging security requirements

in the early stages of the software development process

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 131

mailto:hadeel.abukwaik@informatik.uni-kl.de

where requirements engineering activities take place. It has

been proved to be useful for documenting and analyzing the

security aspects of already developed systems and can direct

the enhancements and the changes that can be applied to

these systems in the future [9]. SQUARE process is formed

by nine discrete steps [7]: (1) agree on definitions, (2)

identify security goals, (3) develop artifacts, (4) perform risk

assessment, (5) select elicitation techniques, (6) elicit

security requirements, (7) categorize requirements, (8)

prioritize requirements and (9) requirements inspection.

There are many formal methods based languages that can

be used to specify the requirements of software systems.

Representative formal languages include Z, VDM, Larch,

and LOTOS [12]. As pointed out by Mead et al. [9], “Some

useful techniques are formal specification approaches to

security requirements, such as REVEAL and Software Cost

Reduction (SCR), and the higher levels of the Common

Criteria.” Automated tools that combine both a security

requirements engineering methodology and a formal

methods based language will be of great help in the

development of secure software systems. We believe that

developing a tool that can support the usage of a formal

methods based language in the SQUARE methodology can

provide a high confidence in the security of the developed

software. This is the motivation of the development of the

eSQUARE tool.

Although there are many methodologies and tools that

support the security requirements engineering, the interest of

this paper is particularly on supporting the SQUARE

methodology and enhancing it with the formal methods.

There are two existing tools serving the same focus.

mySQUARE was the first tool developed to support

some steps of the SQUARE methodology to ease the

management and administration of the process [14]. It

enables tracking the progress of the work for each of the

nine steps of the methodology, generating reports for users

with the least time and effort, and using the XML

technology to provide users with the portability of their files

from one place to another. In spite of the great benefits

mySQUARE offers, it has the following limitations: it is a

stand-alone application that cannot be accessed from

anywhere; it does not provide a built-in support for common

techniques related to requirements elicitation, categorization

and prioritization; and it does not provide import/export

features for the project documents which many users may

need [14].

In 2008, in conjunction with CyLab, SEI CMU

developed and released the SQUARE prototype tool,

workshop, tutorial, and educational materials which are

useful in understanding the methodology [7, 10]. A number

of papers present a light version of SQUARE called

SQUARE-Lite and case studies about projects used it [4].

SQUARE-Lite is a five-step process taken from SQUARE.

The technical approach of introducing SQUARE as part of

the standard software life-cycle models is described in [10].

The team in CyLab built the SQUARE tool that supports

the nine steps of SQUARE with a managerial interest. It

takes care of managing the contributions among multiple

requirement engineers and stakeholders. The SQUARE tool

can be used in large companies working on large projects

with a team for requirements engineering, however, it does

not provide any formal methods based support for the

specification of security requirements. Until the research

stage for eSQUARE in early 2012, there are no official

documentations or published papers for this type of tools.

3 The eSQUARE tool

3.1 The eSQUARE functionality

One of the vital factors of successful software

projects is the effective cooperation between the

stakeholders and the developers in general and the

requirements engineers in particular. However, these two

groups can be based in miles apart or even in different

continents. In addition, the larger the project requirements

the harder the management becomes and the more effort it

needs to take. Many reports and documents are produced in

following the SQUARE methodology which means more

time, space and management are needed. In response,

eSQUARE has been developed to support the nine steps of

the SQUARE methodology to overcome these challenges

with a unique enhancement that introduces the usage of the

formal language Z [3, 6, 11] for the specification of elicited

security requirements. Starting a project in eSQUARE, users

benefit from interfaces that enable them to:

 Go through the nine steps of the SQUARE with the

preferred order along with the online help which can be

accessed at any time.

 Add, edit and delete the following units: project terms,

business goals, security goals, risks, elicitation

techniques, requirements categories and inspection

techniques. These units are the base of the SQUARE

methodology. As the units can be repeated in different

projects, eSQUARE enables reusing them by users who

created them to save their time and effort.

 Set up the project scale components’ value, each risk

likelihood, consequences, source and impact. These

entries will be used by eSQUARE to calculate the risk

value automatically and present it to users.

 Upload project security artifacts like security use cases

and Z files and enable users to download or preview

them as needed.

 Select the preferred formal methods based language

from the four options offered: the standard Z, the Object

Z, Circus or Z Rules.

132 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

http://www.praxis-his.com/reveal/index.htm
http://www.softwaretechnews.com/stn3-4/scr.html
mhtml:file://C:/Users/Hadeel/Desktop/cui%20research/Security%20Requirements%20Engineering.mht!https://buildsecurityin.us-cert.gov/daisy/bsi/articles/best-practices/requirements/239-BSI.html / The Common Criteria
mhtml:file://C:/Users/Hadeel/Desktop/cui%20research/Security%20Requirements%20Engineering.mht!https://buildsecurityin.us-cert.gov/daisy/bsi/articles/best-practices/requirements/239-BSI.html / The Common Criteria

 Select the preferred markup from the four options

offered: Latex, UTF8, UTF16 and XML.

 Parse, check and export Z files that formally specify

their security requirements. By this feature, eSQUARE

offer a high confidence in the consistency and

correctness of secure software systems.

 Un-check the type checking option if they do not want it.

 Get the structure of the Z sections that is written in the

parsed Z files.

 Rank requirements based on categories and risk

assessment results that have been computed by

eSQUARE.

 Produce a summary for users’ projects.

In addition to all the mentioned functionalities,

eSQUARE improves users’ experience in practicing the

SQUARE methodology as they do not need to be

professional requirements engineers to follow the nine steps.

Users have the online help at each step where they can learn

how to make progress in the process. This can reduce the

project cost dedicated to security requirements engineering

experts.

eSQUARE is a web-based tool designed to be flexible

and user friendly so that users are capable of performing the

steps in the order they prefer without restrictions. Another

major advantage of the eSQUARE is the ability to upload

the project’s artifacts in a central database. In this way, users

are able to view their uploaded artifacts from any computer

connected to the internet.

3.2 The eSQUARE architecture

The web-based eSQUARE tool is a thin-client program

that receives users’ requests, performs all the processing on

the server side and sends results to users as HTML. As

shown in Figure 1, the multi-tier architecture pattern is

chosen for eSQUARE as it provides good quality attributes

to the system that will be described in the rest of the section.

As seen in Figure 1 there are three basic components for the

system:

 The client machine: This is where the web browser is

hosted to enable users to start using the web-based tool.

 The application server: This server hosts the entire

application files including HTML files, JSP files, Java

files and the Community Z Tools (CZT) components’

files [3, 6].

 The database server: This can be the same application

server or any other server where the MySQL database of

the application is hosted.

One of the advantages in a multi-tiered application is that

users are able to work on the application data without

knowing where the data is stored at the build time. Another

advantage is the modularity of the application’s components

with loose coupling and high cohesion characteristics. In

other words, this architecture provides better modifiability

and extensibility for the application in the future. Also, the

code is easier to read, understand, and re-use. In addition,

this architecture has advantages in the performance of the

system. That is, hosting components of the layers on

different machines decreases the work load and increase the

speed of response compared to applications having all the

components hosted on one machine dealing with requests for

all components. This is noticed when the application usage

grows up and its traffic increases. Furthermore, the multi-tier

architecture results in a robust application. From one point,

whenever a change needs to be made in a tier it does not

affect the other tiers and is independent. This again helps in

re-using the components of the software application.

Figure 1. eSQUARE software architecture

3.3 The eSQUARE implementation

eSQUARE is implemented using the iterative life cycle

model. In each iteration, a part of the requirements was

selected based on its importance to the project, then

implemented and tested. This approach has helped in

monitoring the progress and planning in a simple and

reliable way. eSQUARE is built using JSP (Java Server

Pages) technology as it is portable (can be hosted in any

operating system), easy to write and modular.

Like all technologies, JSP has its disadvantages too. The

one identified during the implementation of eSQUARE is

that there is a noticeable delay when we access the JSP page

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 133

for the first time. In fact, JSP files are compiled on the server

when they are accessed for the first time. This compilation

causes a delay.

It’s important to mention that the open source CZT

package [3] consists of many classes that build the Z tool

which users can launch in the security requirement

elicitation step provided by the eSQUARE tool. Despite of

the number of tools available for the Z specification

language, most of them do not support the ISO standard for

this language [6]. Andrew Martin found that the many tools

developed by school and academic were not complete and

were not robust enough [6]. Based on that in 2001, he

proposed the idea of the Community Z Tools to be a useful

open source that supports the ISO specification of Z

language. Integrating part of the CZT in the eSQUARE tool

is of great advantage that allows the usage of existing tools

to enhance the SQUARE methodology.

3.4 Example

In this section, the eSQUARE web-based tool is used to

examine its efficiency in supporting the SQUARE

methodology and in enhancing it with the formal methods

based language Z in specifying the security requirements.

All the data used in this example are taken from an in-depth

case study performed by graduate students in Carnegie

Mellon University under the supervision of Nancy Mead

where the SQUARE methodology was applied on a product

called Asset Management System (ASM) [1, 5]. Data are

entered into eSQUARE to show how the tool can be used for

managing the nine step process and how to use the

integrated Z tool for writing the security requirements

specification.

First of all a new project “ASM” is created to be used in

our example. Terms that have been used in the ASM project

were entered into eSQUARE under the first step of the

process. These terms are available for users to use in other

projects as they are associated to their accounts not to the

project. In the second step, the business goal of ASM and its

related security goals are entered to be in the system database

and displayed to users. Many artifacts like use cases, misuse

cases, architectural diagrams and figures are uploaded to

eSQUARE each in a file that the user can download and

review from any computer with internet access and a

browser. With the designed risk assessment methodology in

eSQUARE, only the risk impact level is displayed near each

risk of the ASM project as it does not provide weights for the

required factors of the risk assessment method. The agreed

technique for eliciting the security requirements in ASM was

the Interactive approach. With this approach, names and

descriptions are entered into the system and can be viewed

and edited as users need.

In the second phase of the SQUARE methodology case

study, the security requirements were refined and

summarized in nine security requirements [5]. In eSQUARE

these requirements are entered and saved successfully in the

system. To examine the CZT component integrated in

eSQUARE, a file of the Z specification in latex format is

written for each of the nine security requirements of ASM.

Figure 2 shows the Z specification for one security

requirement of ASM called R_07, where its English

description is [5]: It is a requirement that both process-

centric and logical means be in place to prevent the

installation of any software or device without prior

authorization.

Figure 2. Z Specification of ASM security requirement R_07

134 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

After launching the CZT component, the written Z

specification file is opened for parsing and type checking. In

this example Standard Z language and Latex markup are

selected and the files are both parsed and checked as seen in

Figure 3.

After determining the option the component starts

reading the file and gives feedback on the correctness of the

specification. The Z file is examined twice; the first with its

original correct specification and the next with an intended

syntactical error. eSQUARE has passed this examination

and responds correctly. Figure 4 shows the positive feedback

given by eSQUARE for the correct version of the Z file

along with its structure. As the file has been parsed and

checked successfully, users are able to export it to different

formats. A test is made and an export is performed on

asm.tex to the UTF16 format and the result is a perfect Z file

in the specified format. After examining the formal methods

based features of eSQUARE, we go back to step seven of

the SQUARE methodology case study. There were eight

defined categories used in categorizing the security

requirements of ASM. These categories have been defined in

eSQUARE and are ready to be used in categorizing the nine

security requirements of ASM.

eSQUARE uses integer numbers to express the priority

of projects’ security requirements. However in the ASM

case study the ninth security requirements were prioritized

under three levels (Essential, Conditional and Optional) [5].

As a result, each of the three level is assigned a number and

is used in eSQUARE (Essential: 1, Conditional: 2 and

optional: 3).

Finally, inspection technique selected for the ASM

project was the Peer Review technique. This technique has

been inserted and selected for the ASM project efficiently. A

Project Summary Form is generated once by clicking the last

link in the Nine Steps Form.

4 Conclusion

The eSQUARE tool is developed with a strong belief that

tool support should be sufficiently provided for efficient

security requirements engineering methodologies like

SQUARE. eSQUARE has a promising future for its unique

integration of the formal methods based language Z with the

SQUARE process. It can grow to be a robust and a powerful

tool that security requirement engineers can rely on to

increase their confidence in the security requirements

specifications. As shown by the example, eSQUARE is

simple and easy to use where users are capable of practicing

the nine steps of the SQUARE methodology in an effective

way.

Table 1 presents a summary of similarities and

differences among eSQUARE, mySQAURE and CyLab

SQUARE tools. The three tools share multiple features like

supporting the administration of SQUARE projects,

providing users with help option at any time of the work

flow and generating automatic summaries for projects.

Though, eSQAURE and CyLab SQUARE are web-based

and support the risk assessment step, but mySQUARE does Figure 3. Selecting a language and a markup

Figure 4. Feedback on Correct Z Specification

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 135

not. A noticeable difference is that eSQUARE provides the

support for the formal methods based language Z while

mySQUARE and CyLab SQUARE do not.

Table 1. SQAURE Tools Comparison

 Tool

Feature

eS
Q

U
A

R
E

m
y

S
Q

U
A

R
E

C
y

L
A

b

S
Q

U
A

R
E

Web Access
 ×

SQUARE Administrative Support

Risk Assessment Support ×

Z language Support × ×

Automatic Project Summary Generation ×

Automatic Reports Generation × ×

Tool Accessible Documentation ×

User Help

Team Work Support × ×

Although the presented example in the previous section

is built upon real data taken from a real project called ASM

[1, 5], it doesn’t provide the empirical evaluation of the tool.

The usage of the ASM data helped in getting the feeling on

how to use eSQUARE forms and in its sequence, but there is

still a need for an experiment or case study where

eSQUARE get used along the security requirements

engineering activities. Also, metrics for eSQUARE

advantages should be defined and used in evaluating the

tool.

5 References

[1] P. Chen, M. Dean, D. Ojoko-Adams, H. Osman, L.

Lopez, N. Xie, N. R. Mead. “System Quality

Requirements Engineering (SQUARE) Methodology:

Case Study on Asset Management System;” Software

Engineering Institute, Special Report CMU/SEI-2004-

SR-015 (December 2004). [Online]. Available:

http://www.sei.cmu.edu/library/abstracts/reports/04sr01

5.cfm

[2] E. Clarck, J. Wing, E. Al. Formal Methods: State of the

Art and Future Directions. ACM Computing Surveys,

vol.28, pp. 626 - 643 . (1996, December). [Online].

Available: http://portal.acm.org/citation.cfm?id=242257

[3] Community Z Tools [Online] Available:

http://czt.sourceforge.net/manual.html

[4] A. Gayash, V. Viswanathan, D. Padmanabhan,N.

R.Mead. “SQUARE-Lite: Case Study on VADSoft

Project;” Software Engineering Institute, Technical

Report CMU/SEI-2008-SR-017 (June 2008) [Online].

Available:

http://www.sei.cmu.edu/library/abstracts/reports/08sr01

7.cfm

[5] D. Gordon, T. Stehney, N. Wattas, E. Yu, N. Mead.

”System Quality Requirements Engineering

(SQUARE): Case Study on Asset Management System,

Phase II;” Software Engineering Institute, Special

Report CMU/SEI-2005-SR-005 (May 2005). [Online].

Available:

http://www.sei.cmu.edu/library/abstracts/reports/05sr00

5.cf

[6] P. Malik, M. Utting. “CZT: A Framework for Z Tools;”

Proceedings of 4th International Conference of B and Z

Users, pp. 65-84. (2005, April). [Online]. Available:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.

1.74.7673&rep=rep1&type=pdf

[7] N. R. Mead, E. D. Hough, Theodore R. Stehney.

“Security Quality Requirements Engineering

(SQUARE) Methodology;” Software Engineering

Institute, Technical Report CMU/SEI-2005-TR-009

(November 2005). [Online]. Available:

http://www.sei.cmu.edu/reports/05tr009.pdf

[8] N. R. Mead. “How To Compare the Security Quality

Requirements Engineering (SQUARE) Method with

Other Methods;” Software Engineering Institute,

Technical Report CMU/SEI-2007-TN-021 (August

2007). [Online].Available:

http://www.sei.cmu.edu/reports/08tn006.pdf

[9] N. R. Mead, E.D Hough. “Security Requirements

Engineering for Software Systems: Case Studies in

Support of Software Engineering Education;”

Presented at 19th Conference on Software Engineering

Education & Training, pp.149-158. (April 2006).

[Online]. Available:

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?tp

=&arnumber=1617341&isnumber=33901

[10] N. R. Mead, V. Viswanathan, D. Padmanabhan, A.

Raveendran. “Incorporating Security Quality

Requirements Engineering (SQUARE) into Standard

Life-Cycle Models;” Software Engineering Institute,

Technical Note CMU/SEI-2008-TN-006 (May 2008).

[Online]. Available:

136 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

http://www.sei.cmu.edu/library/abstracts/reports/04sr015.cfm
http://www.sei.cmu.edu/library/abstracts/reports/04sr015.cfm
http://www.sei.cmu.edu/reports/08tn006.pdf
http://www.cert.org/research/staff/Nancy_Mead.html
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?tp=&arnumber=1617341&isnumber=33901
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?tp=&arnumber=1617341&isnumber=33901

http://www.sei.cmu.edu/library/abstracts/reports/08tn00

6.cfm

[11] J. M. Spivey. “The Z Notation: A Reference Manual;”

Prentice Hall, 1992. [Online]. Available:

http://spivey.oriel.ox.ac.uk/~mike/zrm/

[12] G. Vinu, R. Vaughn. “Application of Lightweight

Formal Methods in Requirement Engineering1;”

 CrossTalk Journal (January 2003). [Online].

Available:

http://www.stsc.hill.af.mil/CrossTalk/2003/01/George.ht

ml

[13] G. H. Walton, T. A. Longstaff, R. C. Linger.

"Computational Evaluation of Software Security

Attributes;” Software Engineering Institute, Technical

Report CMU/SEI-2006-TR-021 (December 2006).

[Online]. Available:

http://www.sei.cmu.edu/reports/06tr021.pdf

[14] G. Yip, C. Zhang. “SQUARE AND mySQAURE:

SECURITY MADE EASY;” Proceedings of the

International Conference on Software Engineering and

Applications. (November 2009).

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 137

http://www.sei.cmu.edu/library/abstracts/reports/08tn006.cfm
http://www.sei.cmu.edu/library/abstracts/reports/08tn006.cfm
http://spivey.oriel.ox.ac.uk/~mike/zrm/%20/%20_blank

Formal Modeling and Analysis of Autonomous Robotics System
Using Z

Yujian Fu1, Nithin Yama1, and Zhijiang Dong2

1Department of Computer Science, Alabama A&M University, Normal, AL, USA
2Department of Computer Science, Middle Tennessee State University, Murfreesboro, TN, USA

Abstract— In recent years, the mobile robotics systems have
been developed and attracted more and more attentions be-
cause of its applications in various disciplines. The software
development of mobile robotics is a key and complex process
and it is required to be reliable and correct when placed
in the unknown working environment. To illustrate how to
design reliable and correct robotics systems, software design
is the key concern in robotics systems. Based on the set
theory and first order logic, Z notation is a formal approach
widely used for the modeling of distributed and embedded
system design. In this research, we presented a formal
framework based on the Z notation to describe generic
behaviors of robotics systems. A case study of field guard
robot that uses the LEGO NXT toolkit was implemented
in Java to validate the framework. In the mobile robot
navigation system, a robot travels from a start state to a
specified final state. To navigate the position of robot and
objects, coordinate systems are used to specify and analyze
the paths from start state to the final state. Using Z based
framework, it is able to investigate and analyze the entire
formal specification of the autonomous mobile system.

Keywords: Mobile robotics systems, software design, formal
framework, Z notation

1. Introduction
Many applications of autonomous mobile robots are de-

veloped and widely used in various disciplines, such as, man-
ufacturing, construction, waste management, undersea task,
space exploration, medical surgery, serving and assistance
for the disabled people. Autonomy and navigation are two
major concerns in a broad domain covering a large spectrum
of applications and technologies. They have drawn more and
more researchers attentions due to multiple disciplines as
well as the advanced techniques involved. Therefore, how
to design a reliable and correct mobile robot system is a
challenge issue now. Making progress toward autonomous
robots is of major practical interest in a wide variety of
applications.

It is a fundamental requirement for any autonomous robot
that is able to navigate from one location to another. Avoid-
ing the dangerous situation on the path such as collision with
obstacles, falling in a cave to stay in the safe operational
environment is the first class requirement during navigation.

Navigation is an ability to identify robot’s current position,
calculate the new path facing the obstacles while remember
and travel towards the destination. To build reliable and
robust autonomous robotics systems and achieve the quality
of navigation, different approaches have been proposed. In
this research, we use Z notation to model mobile robot
including navigation. The problem scenario we examine is
an autonomous robot that travel through an area that limited
by color line. The robot needs to find all obstacles, collects
them and removes to certain area and goes back to the place
that obstacle was found. The mobile robot needs to be able
to navigate within the area, identify current, collect locations
and calculate the path between.

Formal methods are mathematical based notations that
can precisely describe the system in an abstract level by
reducing ambiguity and inconsistency. The Z notation is
based on the set theory and first order logic with denotational
semantics. However, due to the complexity of the symbols
and knowledge, formal methods are not widely accepted in
industry. The basic unit in Z notation is a schema, each
data and operation can be specified by a schema or set
of operations of schemas. This research work modularizes
the Z notation into several blocks of robotics systems and
expresses in the set of schemas. Therefore, it will facilitate
further research in the automatic validation and verification
tool.

The remainder of this paper is organized as follows.
Section 2 gives a brief description of Z notations. In Section
3, we discuss the related works of formal modeling of
robotics systems. After that, a Z model of robotics systems
is presented in Section 4. A case study using LEGO NXT
toolkit is presented in Section 5. Conclusion and future
investigations are discussed in the Section 6.

2. Overview of Z Notations
Z notation is a formal specification notation that was

first created by J. R. Abrial and further developed by the
Programming Research Group at Oxford. It is based on
the well-known mathematical concepts of set theory and
predicate logic.

The primary construct in Z notation is called schema,
which represents a block, an operation, a set of data or
a subsystem. A schema is defined by two parts – data

138 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

declaration and system constraints. The data declaration
consists of the definition of necessary data of the schema
with data types in the form of v : T , where v is the variable
and T represents the type of data (data set). The constraints
of the system can be specified by a set of predicates usually
denoted by first order logic. In the operation schema, the
constraints of the system includes the precondition and post-
condition that define the relationships between the declared
variables. A schema has following form:

Schema
//datadeclaration

//preconditions
//postconditions

Data types in Z notation can be defined as basic or
composite. The basic data types are usually denoted by
capitalized letters. Composite data types can be the cartesian
product and schema types. Any data defined must have a data
type.

The operations are functions that maps a data set to an-
other. The mapping function can be total or partial relation.

Any schemas in Z notation can be either state schemas or
operation schemas. State schemas capture the static aspect
of a system by defining the database, constraints and initial
data. Operation schemas capture the dynamic aspects and de-
fine input-output relations. In other words, operation schema
defines an operation in terms of the relationship between the
state before the operation executes and the state after it has
completed execution. The declaration part contains variables
representing the before and after states, input and outputs.
The constraints specify the precondition that can cause state
change and postcondition after state change. For each system
model, it is important to identify the key data and operations.
Following notations are conventionally used in the content:
• Unprimed variable (e.g. v) – value of a variable before

execution of an operation.
• Primed variable (e.g. v′) – value of a variable after

execution of an operation.
• Variable suffix with ? – an input variable to an opera-

tion.
• Variable suffix with ! – an output variable to an opera-

tion.
• Delta S – denotes change for the data in set (or database

of) S.
• Ξ S – denotes no change for the data in set (or database

of) S.

3. Related Work
There are a lot of works have been done on the modeling

and analysis of embedded systems using Z notation, but only
very few works that has been done in the modeling robotics
systems using Z notation in the literature. In this section, we

will overview the works that applied formal methods to the
robotics systems.

A model to guide and keep track of a robot such that it
is able to complete several tasks is described in [9]. Petri
nets and Petri net extension methodologies have been used
to model systems for the control and coordination in the
unconstructured environment. Murata et al. [7] presented
an algorithm to construct predicate/transition models of
robotic operations. Basically, robot actions were described
as enabled and firing transitions and the model was used for
the planning of concurrent activities of multiple robots. The
model shows the ability of the Petri net models to capture
interactions between the agents that are not evident in the
design process. In a similar way, Xu et al. [12] proposed a
methodology based on predicate/transition nets for multiple
agents under static planning of activities. In addition, they
proposed a validation algorithm for plans with parallel activi-
ties. The work of Leitao et al. [5], proposed a Petri net model
approach to formal specification of holonic control systems
for manufacturing. They developed a Petri net submodel
for each of the four types of holons (agents) suggested in
the ADACOR (Adaptive Holonic Control Architecture for
Distributed Manufacturing Systems) architecture. There was
no attempt to study the structural properties of the Petri net
model in order to assess some sort of dependability in the
proposed architecture. Now the existing navigation of single
robot has extended to multiple robots system. The multiple
robots addressing the issues of cooperation and formation
control is discussed in several works ([3], [2]) where reactive
behavior based approach to formation control is described.
Some other works use Petri net plan can be found in [6-13].

Finite automata and graph theory [4] have proved to be
useful mathematical models for robot navigation through
a discrete environment. In [8], finite automata are used to
control the navigation of mobile robot along the possible
paths. They analyzed the movement and controlled the
population of a mobile robot by applying the algorithms of
graph theory. A number of modeling techniques for mobile
robot have been developed by researchers such as partially
observable Markov and behavior based navigation but the
existing approaches have lack of the formalization. Melo,
Isabel and Lima in [6] has examined the problem of multi-
robot navigation. They have analyzed the problem of driving
a robot population moving in a discrete environment from
some initial to a target configuration. In this paper, we build
a modeling framework using Z notation to formal describe
autonomous mobile robot systems.

4. A Modeling Framework of Robotics
Using Z Notation

Formal specification language (FSL) is a mathematical
based notation on top of algebraic, logics and/or discrete
mathematics. Therefore, FSL can provide a precise analysis

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 139

and consistent reasoning on the system properties from
design model. However, to establish a formal model is not
a straightforward job because it is challenging and tricky
to connect the mathematical notations to the dynamic and
flexible real world systems.

One of the commonly used formal specification languages
is Zed language or Z notation, which is based on the set
theory and predicate logic. The Z notation specifies the
system by input-output relation and describes the operations
by the constraints on the states. Two typical components in
the Z notation are state and operations that represent the
data and events of the systems. The fundamental block in Z
notation is schema that is composed of states and operations.
In this case, Z notation provides a precise and simple style
for the system model. The fundamental unit of the Z notation
is a schema, which includes two parts – data and constraints.
There are two types of schemas – state schema and operation
schemas. In the state schema, the data of the system and
initial conditions of the data are specified. In the operational
schemas, the data that is affected and operated on, the pre-
conditions and post conditions are described as set notation,
predefined syntax and first order logic. For specific syntax
of the Z notation, readers can refer to Spivey’s book [10].

The modeling framework of autonomous robot includes
three major components – environment, controller, sensor.
The environment schema aims at description of the scope.
Two types of approaches can be used – coordinate systems or
directed graph (DG). In this work, we present a model based
on the coordinate system. Assume a two dimensional system,
a coordinate system is described by a triple Co ,< O,X, Y >,
where O is the origin, and X and Y are horizontal and vertical
numbers respectively.

Environment
CS : ORIGIN × HX × VY × RC × OC

∀ c ∈ CS.c[1] ==< 0, 0 > ∧c[4] , λ

In the above schema of Environment, any data is specified
by five fields – origin, horizontal number, vertical number,
robot position and obstacle position. It requires that the
origin starts at <0,0>, and robot is within the scope and
should be known c[4] , λ. The coordinate system provides
the direction for the robot movement. Similarly, we can
define the schema of Robot as follows:

Robot
Robot : ORIGIN × HX × VY × STATUS × OC

∀ r ∈ Robot, e ∈ Environment.r[2] ==< 0, 0 > ∧
c[4] , λ

The Robot state schema is defined by a data with five
fields. The first filed specifies the original coordinates of the
robot, second and third place specify the current location,

while the last filed specifies the robot status, which includes
forward, backward, moving, spinning, turnleft, turnright, and
Uturn.

Now we can define sensor component based on the
above two schemas. The sensor component includes several
schemas of the various sensors. The schema of sensor highly
depends on the sensing mechanism. In this paper, we define
ultrasonic sensor and light sensor based on the LEGO NXT
Mindstorm toolkit as follows.

UltrasonicSensor
UltraSensor : FREQUENCY × DIST

∀ u ∈ UltraSensor.u[2] ≤ 1.5 ∧ u[1] , λ

In the above schema of UltrasonicSensor, if there is an
obstacle within 1.5m, then there is frequency returned and
the obstacle can be detected.

LightSensor
LightSensor : FREQUENCY × COLOR

∀ l1, l2 ∈ LightSensor.l1[1] , l2[1] ∧ l1[2] , l2[2]

In the schema of LightSensor, it is expected that for
all different colors the light sensor can return different
frequencies. The schema of Sensor is a composite scheme
and can be defined as

Sensor , UltraSensor ⊕ LightSensor
A path of a robot can be defined as the distance from

source to destination. A path needs to be updated every
time interval due to the environment changes. The robot
needs to remember the recent path. The calculation of path
is the line between two points – current position and the
destination. Considering one obstacle between the current
position and the destination, a path is two coordinates for
robot and destination.

Path
Path : HX × VY × HX × VY

∀ p ∈ Path, e1, e2 ∈ Environment.
p[1] == e1[2] ∧ p[2] == e1[3]∧
p[3] == e2[2] ∧ p[4] == e2[3]

The controller schema can be complicated and highly
depends on the requirements and tasks of the robot. The
controller takes input from sensor, perform some tasks and
output the commands to actuators to drive the robot. The
task can be calculation of the shortest path, uploading some
devices to help movement (e.g. a pad to the foot so that
the robot can walk cross the river.), and/or starting other
motors (rescue people). In this framework, we only present
the shortest path calculation so that the robot can avoid the
collision with obstacle and move to the destination.

140 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

The system needs current robot position (rc?) and obstacle
position (oc? =< x, y >). In addition, the frequency of
the ultrasonic sensor (freq?) is required for the sensor to
return the knowledge of detected object and (des?) denotes
the destination position that is retrieved from memory. The
precondition for the robot to calculate the correct moving
path is the detection of obstacle is precisely evaluated. The
path includes two parts – path1 represents the distance from
the robot to the obstacle, while path2 describe the distance
from obstacle to the destination (des?).

The preconditions for the controller are: i) the robot,
obstacle and the destination are all identified in the coor-
dinate systems (Environment); ii) the value returns from the
sensor matches the value for the obstacle. After the controller
calculates the path, the new paths should be generated,
commands are sent to motors to turn in a certain angle and
move the robot.

Controller
∆Environment
∆Robot
∆Path
ΞSensor
rc? : Environment
oc? : Environment
des? : Environment
msg! : MSG

∀ e1, e2, e3 ∈ Environment,
∃ r ∈ Robot.e1[2] == r[2] ∧ e1[3] == r[3]
∧e2[2] == oc?[2] ∧ e2[2] == oc?[3] ∧ e3[2] == des?[2]
∧e3[3] == des?[3]
Environment′ = Environment − {e}∪
{< e[1], e[2], e[3], rc?, oc? >}
Robot′ = Robot − {r} ∪ {< rc?[1], rc?[2], rc?[3],
rc?[4] = “moving′′, oc? >}
Path′ = Path − {p} ∪ < rc?[2], rc?[3], oc?[2], oc?[3] >

The block diagram that describes the architecture of the
framework is shown in the Figure 1. Fig. 1 show a generic
view and summarizes the relations of the above well defined
schemas.

5. Case Study Using LEGO Toolkit
The Mindstorms NXT brick uses a 32-bit ARM processor

as its main processor, with 256 kilobytes of flash memory
available for program storage and 64 kilobytes of RAM for
data storage during program execution. To acquire data from
the input sensors, another processor is included that has 4
kilobytes of flash memory and 512 bytes of RAM. Two
motors can be synchronized as a drive unit. To give the robot
the ability to “see,Ť the ultrasonic sensor, which is accurate
to 3 centimeters and can measure up to 255 centimeters, and
the light sensor, which can distinguish between light and

Fig. 1: The Z Notation Framework for Autonomous Mobile
Systems

dark, can be attached to the brick. A sound sensor that can
be adjusted to the sensitivity of the human ear can be used to
give the robot the ability to hear and react, if programmed,
to noises. Finally, the two touch sensors give the ability
for a robot to determine if it has been pressed, released,
or bumped, and react accordingly [1].

As a replacement for the standard Lego firmware, the
LeJOS project has support for threading, arrays, recursion,
synchronization, exceptions, non-generic data structures,
standard data types, and input and output [11]. The LeJOS
virtual machine supports much of the java.util package,
but the data structures require that data be stored as type
Object and then cast to a type that inherits Object. For
input and output, both streams and sockets are available for
use. For control purposes, the LeJOS platform supports the
direct connection of Bluetooth-enabled GPS units for spatial
location information and keyboards for the navigational
control of a robot [11].

5.1 Field Guard Robot (FGR)

LEGO NXT Mindstorm is a highly integrated toolkit for
the robot educators and learners in different levels. The main
features are i) is easy to assembly and ii) supports multiple
interfaces and platforms for various levels of users. Java
is supported by LEGO NXT toolkit by a plug-in package
package named LeJOS, a source forge project created to
develop a technological infrastructure for LEGO Mindstorms
products. LEGO NXT has three output ports to drive motors,
and four input ports for data acquiring from sensors. To
validate and apply the above formal framework, a LEGO
NXT field guard robot (FGR) was assembled to search the
objects in a certain field by patrolling around. The robot is
going to make a buzz for six times and starts spinning in
the center of the guarded area continuously looking for an
object within the specified area around it; If it is found any
object within the area, it will take and push the object to a
certain area outside the guarded place. After that it comes
back to the center of the area and continue to spin.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 141

5.2 Modeling of FGR In Z
To ensure the system works correctly with expected be-

haviors, we apply the above Z notation framework on this
LEGO NXT Mindstorm field guard robot (FGR). The main
schemas include followings – Environment, Robot, Ultra-
sonicSensor, TouchSensor, Pickup and Drop. Since we use
the coordinate system for the robot navigation, the schema
of Environment, Robot and sensors (UltrosonicSensor and
LightSensor) are same as those defined in section 4. In
this section a new sensor TouchSensor and some operation
schemas will be discussed in this section. The touch sensor is
used to react to the obstacle on the moving path. It responds
only to the surface interaction with the object, and can be
defined as following:

TouchSensor
TouchSensor : VALUE × STATUS

∀ t ∈ TouchSensor.t1[1] == λ∧t[2] == false

The data field for the touch sensor are the value read from
touch sensor and the status of object existence. The status
is a boolean value, where true indicates that the object is
detected, otherwise, no object. The constraint of touch sensor
is that if there is no touch with object, the status returned
from touch sensor is false, which indicates no object in front
of the sensor.

Two basic operations of the FGR can be pick up and
drop the object on the path. Besides, we need to the define
the moving operation to instruct the robot move correctly.
For the space limitation, we only show the pick and drop
operation schemas, which are defined as follows:

Pickup , Robot × Controller × Sensor × Environment →
Environment, and

Drop , Robot × Controller × Sensor × Environment →
Environment

The initialized Robot schema can be:

Robot Init
∆Robot
ΞEnvironment

<< 5, 5 >, 5, 5, start, λ >

Considering the success and failure of each operation,
the pickup and drop operation can be defined as composite
schemas, where

Pickup , Pickup Success ∨ Pickup Failure, and
Drop , Drop Success ∨ Drop Failure where
There are two preconditions specified in the schema of

Pickup Succ: i) the robot, object and destination are all in
the environment (identified by the coordinate system) and ii)
the touch sensor needs to interact with the object when pick
up. After pick up the object, the path needs to be updated
immediately. Similarly, if this operation is failed, it can be

defined as following schema:

In the drop operation, to simplify the case, let assume
there is no obstacle on the moving path. Thus, we do not
need to update the path from the obstacle to destination.
Otherwise, another schema for moving needs to be defined.
The drop schema can be defined as following.

Pickup Success
∆Robot
∆Environment
∆Path
ΞTouchSensor
rc? : ROBOT
oc? : ENVIRONMENT
des? : ENVIRONMENT
value? : VALUE
msg! : MSG

∀ e1, e2, e3 ∈ Environment,∃ r ∈ Robot.
e1[2] == rc?[2] ∧ e1[3] == rc?[3]
∧e2[2] == oc?[2] ∧ e2[2] == oc?[3]∧
e3[2] == des?[2] ∧ e3[3] == des?[3]∧
∀ s ∈ TouchSensor.s[1] == value?
Robot′ = Robot − {r} ∪ {< r[1], r[2], r[3],
r[4] = pickup, r[5] = oc? >}
Environment′ = Environment′ − {e} ∪ {< e[1], e[2],
e[3], e[4] = rc?, e[5] = oc? >}
Path′ = Path − {p} ∪ {< r[2], r[3], oc?[2], oc?[3] >,
< oc?[2], oc?[3], des?[2], des?[3] >}
msg! = “Objectpickedup!′′

Pickup Failure
ΞRobot
ΞEnvironment
ΞPath
ΞTouchSensor
rc? : ROBOT
oc? : ENVIRONMENT
des? : ENVIRONMENT
value? : VALUE
msg! : MSG

∀ e1, e2, e3 ∈ Environment,∃ r ∈ Robot.
(e1[2] , rc?[2] ∧ e1[3] , rc?[3])
∨(e2[2] , oc?[2] ∧ e2[2]neqoc?[3])∨
(e3[2] == des?[2] ∧ e3[3] == des?[3])∧
∀ s ∈ TouchSensor.s[1] , value?
msg! = “NoObject′′

The reason that the Path data was not updated because
the Drop schema only takes care from the found obstacle to
the destination where the path had been defined in the NXT
controller. In this design, LEGO robot uses light sensor to
identify the destination place by placing a certain color of

142 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

line in a place. Next, we define the failure case of drop
operation.

Drop Success
∆Robot
∆Environment
ΞPath
ΞLightSensor
rc? : ROBOT
des? : Environment
status? : STATUS
value? : VALUE
msg! : MSG

∀ e1, e2 ∈ Environment,∃ r ∈ Robot.
(e1[2] == rc?[2] ∧ e1[3] == rc?[3])∧
e2[2] == des?[2] ∧ e2[3] == des?[3]∧
∀ s ∈ LightSensor.s[1] == value?
∀ r ∈ Robot.r[5] = status?
Robot′ = Robot − {r} ∪ {< r[1], r[2], r[3],
r[4] = “drop′′, r[5] = des? >}
Environment′ = Environment − {e1} − {e2} ∪ {< e[1],
e[2], e[3], e[4] = des?, e[5] = λ >}
msg! = “Objectisdropped!′′

Drop Failure
∆Robot
ΞEnvironment
ΞLightSensor
rc? : ROBOT
des? : Environment
status? : DOUBLE
value? : VALUE
msg! : MSG

∀ e1, e2 ∈ Environment,∃ r ∈ Robot.
(e1[2] , rc?[2] ∧ e1[3] , rc?[3])∨
e2[2] == des?[2] ∧ e2[3] == des?[3]∨
∀ s ∈ LightSensor.s[1] , value?
∀ r ∈ Robot.r[4] , status?
msg! = “Noobjecttodrop!′′

There are several conditions that drop operation can be
failed. For example, the robot is not in the coordinate system
(not in the environment defined); the destination is not in the
coordinate system, the sensor cannot detect the destination
(by color), or the robot does not move (status is not properly
set up to the correct value). There is one case that the robot
can fail and not defined in the above schema – object is
not hold in the claws. It is mostly caused by hardware
imprecision not software controller based on our observation.

5.3 Implementation and Discussion of LEGO
FGR

The LEGO FGR was implemented in Java. The set up
includes the Eclipse IDE, LeJOS plug in for the APIs
defined for LEGO robot accessories and conversion of from
Java code to NXT brick. The java implementation of the
LEGO FGR can realize all defined functionalities and finish
expected requirements.

From the implementation of LEGO NXT robot in Java,
we found that:

1) The model of robot is very important for the descrip-
tion and precisely implement the functions. There are
some cases was missed in the code but defined in the
model during implementation.

2) On the other side, it is noticed that the above model
is a formal framework for the robot design. Due to
limitation, the coordinate system and robot may need
more detail description.

3) LEGO is a highly integrated tool kit. Some data
fields have been specified properly without definition.
A more sophisticated setting is needed for the more
research study.

6. Conclusions and Future Works
We have presented a frame of Z notation for modeling

the dominant design paradigms used in autonomous mobile
systems. We have done this by taking advantage of for-
mal specification languages to allow for navigation system,
network connectivity and proactive process migration. We
have also used the set theory and first order logics our
models. In addition, the modular approach is used for the
framework so that the robotics system with navigation can be
modeled incrementally, exploiting commonalities among the
design paradigms and reusing the defined state schemas and
improving the system maintenance. Modularity can similarly
be used to extend our models to represent their realization
with specific technologies, or to capture their use in specific
applications.

The formal basis of Z notation allows us to use the models
and their potential extensions to reason about properties
of mobile systems. This process can be aided by taking
advantage of the substantial reuse of classes within our
framework, and the particular form to which our specifi-
cations conform. Future work will look at how these aspects
of the models can be exploited to simplify reasoning and,
hence, the development of suitable reasoning support tools.

Acknowledgment
The authors would like to thank all reviewers for the

kindly comments and suggestions on this work.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 143

References
[1] B. Bagnall. Maximum Lego NXT: Building Robots with Java Brains.

Variant Press, 2007.
[2] T. Balch and R. Arkin. Behavior-based formation control for multirobot

teams. Robotics and Automation, IEEE Transactions on, 14(6):926 –
939, dec 1998.

[3] T. Balch and M. Hybinette. Social potentials for scalable multi-robot
formations. In Proceedings of the IEEE International Conference on
Robotics and Automation,ICRA ’00, volume 1, pages 73–80, 2000.

[4] W. P. Jonathan L. Gross, Jay Yellen. Handbook of graph theory. CRC
Press, December 2003.

[5] P. Leita, A. Colombo, and F. Restivo. An approach to the formal
specification of holonic control systems. In V. Marík, D. McFarlane,
and P. Valckenaers, editors, Holonic and Multi-Agent Systems for
Manufacturing, volume 2744 of Lecture Notes in Computer Science,
pages 1090–1090. Springer Berlin / Heidelberg, 2003.

[6] F. A. Melo, P. Lima, and M. I. Ribeiro. Event-driven modelling
and control of a mobile robot population. In Proceedings of the 8th
Conference on Intelligent Autonomous Systems, pages 237–244, 2004.

[7] T. Murata, P. C. Nelson, and J. Yim. A predicate-transition net model
for multiple agent planning. Information Sciences, 57–58:361–384,
1991.

[8] N. S. Nazir Ahmad Zafar and A. Ali. Construction of intersection of
nondeterministic finite automata using z notation. In Proceedings of
World Academy of Science, Engineering and Technology, volume 30,
pages 96–101, 2008.

[9] R. Simmons and S. Koenig. Probabilistic robot navigation in partially
observable environments. In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI ’95), pages 1080 – 1087,
July 1995.

[10] J. M. Spivey. The Z Notation: A Reference Manual. http://www.rose-
hulman.edu/class/csse/cs415/zrm.pdf, 2e edition.

[11] L. Team. Nxj technology. http://lejos.sourceforge.net/nxj.php.
[12] D. Xu, R. A. Volz, T. R. Ioerger, and J. Yen. Modeling and verifying

multi-agent behaviors using predicate transition nets. In Proc. of the
14th International Conference on Software Engineering and Knowledge
Engineering, pages 193–200. ACM Press, 2002.

144 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Implementing a Sound Mapping from Normative Requirements to
Event-B Design Blueprints Using MDA

Iman Poernomo1, Timur Umarov 2

1Department of Computer Science, King’s College London, Strand, London, UK, WC2R2LS
(iman.poernomo@kcl.ac.uk),

2Department of Computer Engineering, Kazakh-British Technical University,
59 Tole bi, Almaty 050000 Kazakhstan

(t.umarov@kbtu.kz)

Abstract— This paper addresses the problem of imple-
menting a mathematically sound MDA transformation from
requirements to design. The question of validation is partic-
ularly important as preserving the semantics of the systems
requirements across the transformation is a problem that
has been addressed by the MDA community for long. The
soundness check is performed over the transformation from
normative requirements specification into Event-B models.
The business requirement specification as a computation
independent model of MDA is described by an ontology
model and an associated set of normative rules that define
the ways in which business processes can interact. MDA
transformation uses normative requirements to generate
Event-B models, a platform independent model, which is
very close to a typical loosely coupled component-based
implementation of a business system workflow. This paper is
based on the previous works of the authors and specifically
addresses the soundness problem of the transformation.

Keywords: MDA, model transformation, normative requirements,
formal methods, business processes

1. Introduction
Business process management (BPM) is an increasingly

challenging aspect of the enterprise. Middleware support
for BPM, as provided by, for example, Oracle, Biztalk
and the recent Windows Workflow Foundation (WWF),
has met some challenges with respect to performance and
maintenance of workflow.

A business process implementation within a BPM mid-
dleware requires detailed treatment of both information flow
and information content. The abstraction gap is identified
by Hepp and Roman in [4]: an abstract workflow that
ignores information content provides an abstract view of
business processes that does not fully define the key as-
pects necessary for BPM implementation. We argue in [3]
that this abstraction gap can be addressed by developing
event-driven data models in the Event-B language from
an initial business process requirements specification. We
have employed a Model Driven Architecture approach. The
complete description of the formal transformation function

φ is provided in [2]. In [3], for CIM we use the ontologies
and normative language of the MEASUR method [1]. Our
approach in [3] addresses the semantic gap by defining
a formal transformation of MEASUR models to Event-B
machines, permitting: (i) a full B-based formal semantics for
vocabularies and data manipulation that is carried out within
the modeled workflow, which is validated for consistency;
and (ii) an initial, abstract B model can potentially be refined
by B-method to a final optimal executable system in an
object-oriented workflow middleware.

In this paper, we are ensuringsemantic compatibility
between the normative MEASUR models and the Event-
B blueprints, i.e. semantics we have given for norms is
preservedin some form by the semantics given by the MDA
transformation. This relates the research program proposed
by Poernomo in [5], where MDA transformations always
involve some form of check to ensure that what is meant
is preserved across the transformation. A notion of semantic
compatibility holds over the transformed models, so that any
property derived over the normative-ontological view of the
system will hold over potential processes that arise from the
Event-B machine. We address this problem in Theorem 4.1
below. This semantic preservation check can potentially be
applied for our previous MDA transformations described in
[3], [6], [7].

The paper proceeds as follows:

• In section 2, we shortly describe our CIM-to-PIM
transformation.

• Section 3 provides a brief introduction to the soundness
of refinement.

• Section 4 provides a semantic preservation theorem and
its proof.

• Section 5 shortly discusses conclusions, related work
and future work.

2. Background on the MDA Transforma-
tion

In this section, we provide an informal description of
the mapping strategy of our normative rules to the Event-
B machines, which is described in [3].The CIM-to-PIM

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 145

transformation are the ones that draw much attention of the
MDA community. Automation of this leg of transformation
is not always possible due to high level of abstraction of
the models involved. There were several successful attempts
to automate CIM-to-PIM transformation described in [8],
[11], [12], [13]. However, implementation of the semanti-
cally sound and automatic CIM-to-PIM transformation still
represents a scientific interest among software engineers.

In MDA terms, ontologies and norms are a computation
independent model (CIM) and Event-B machines represent
platform indepedent model (PIM).

The mapping of affordances is straightforward. The gen-
eral framework is shown in Fig. 1. All the elements of
the source and target models are marked with different
patterns to be able to differentiate separate mappings of
the subclasses of affordances to Event-B constructs: agents
are mapped to machines, business entities and relations are
mapped to Event-B sets, relations and state variables, and
communication acts are mapped to events. The transforma-
tion of normative constraints is more difficult. Conceptually,
norms of the form

(Trigger∧ pre-condition) →

EagentOb/Pe/Im post-condition. (1)

appear similar in form to a machine event:

• A trigger andpre-conditioncorrespond to aguard. The
former defines the situation that must hold before an
agent can act. The latter defines the state that must hold
before a machine can perform an action.

• The responsibility modalityEa corresponds to the loca-
tion of the event within the machine corresponding to
agenta.

• The deontic modalityOb/Pe/Im post-conditionidenti-
fies whether the action corresponding topost-condition
should be necessarily performed, or whether execution
of another (skip action) is possible instead. TheIm de-
ontic modality means the negation of the post-condition
holds.

Because the normative constraints are essentially abstract
business rules, while the conditions of the B machine
define further implementation-specific detail, the mapping
will depend on how we interpret relations and functions of
the ontology. For this purpose our transformation must be
based on a given semantic mapping of individual relations
and functions to B relations and functions. We assume this
is defined by a domain expert with the purpose of wide
reusability for the ontology’s domain.

Models specified using the Event-B language are com-
prised of two main building structures:machineandcontext.
The relationship between these constructs is that machine
seesthe context, i.e. machine can use the content by having
a read-only access to it without an ability to modify it.
Machines have a dynamic content, which means that its

Table 1: Types of generalised substitutions, whereA1 and
A2 are arbitrary generalised substitutions.

Type of Substitution Realisation in Event-B
Deterministic x := f
Sequential A1; A2

Empty skip

elements such asevents may modify the state variables.
Contexts only contain static information which is used by
machines and never changes.

Fig. 2 depicts the structure of the Event-B model con-
sisting of Context and Machine. It is shown that context
contains carrier sets, constants, axioms and theorems. Carrier
sets mainly describe typing information for state and local
variables. One can also define a carrier set and assign to
it a limited number of constants in which case we obtain
an enumeration set. Axioms in this case are used to specify
these constants as distinct values.

Because the language is essentially first order logic, the
intended meaning of the context/theory can be understood
by anyone with a basic knowledge of first order logic and
set theory. This usability is one of the motivating arguments
behind the simplicity of the Event-B language.

An Event-B machine is comprised of four elements:
• an (optional) context, whose sets, constants and axioms

may be used to define properties over the machine;
• variables that effectively define the state of the machine;
• invariants, logical formulae that define what mustal-

wayshold over the execution of the machine; and
• events (or as otherwise referred in [19], a collection of

transitions) that define how the machine is allowed to
behave in the face of particular guard conditions being
met over its state.

The events consist of three parts, as shown in Fig. 3.
• nameE,
• guardG, logical statements over machine variables,
• action S, also known as ageneralised substitutionover

machine variables.
Syntactically, an eventE is written

E =̂ WHEN G THEN SEND.

Generalised substitutionconsists simply of assignment of
state variables to new values, resulting in changing the state
of the whole machine. When used within an event, a guard
defines a condition when substitution should occur. These
generalised substitutions play a role of modifying the state
of machines by updating state variables. In Event-B, there
are three types of generalised substitutions: deterministic,
sequential, and empty. Table 1 depicts how all three types
of generalised substitutions are realised in Event-B. The
informal meaning of assignment should be clear. Empty
substitution is specified asskip and it does nothing by
skipping the execution.

146 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

agents

business entities

comm. acts

relations

 Transformation

events machines
sets

set(state) variables
axioms

machine context ontologies and norms

relations

Fig. 1: The general framework of the transformation

CONTEXT

Name

Carrier Sets

Constants

Axioms

Theorems

MACHINE

Name

Variables

Named Invariants

Events

sees

Fig. 2: Context and machine relationship in Event-B

EVENT

Name

Named Guards

Generalised Substitution

Fig. 3: Structure of events in Event-B

Machines have a formal operational semantics that models
system execution as a sequence of events and changes to
state. If an event’s guard holds over the machine’s state, its
action may be executed. This will change machine’s state,
which may cause another event’s guard to hold, and an action
to be executed. The sequence continues until the system
has halted (deadlocked). Note that execution is potentially
nondeterministic: when a number of event guards are true,
then one of the corresponding event actions is chosen at
random. A deterministic machine is one in which each event
guard mutually excludes the possibility of the other guards.

3. Soundness of Transformation
The set ofmodelsof a normative requirements specifi-

cation denote possible kinds ofimplementationsof these
requirements: some closer to a real, executing system than
others. For example, one possible model would take the in-
terpreting sets for affordances to denote actual computational
entities, such as Java data types for unit values and Java class
objects for agents that contain possible communication acts

as potential methods for interaction. Another possible model
might treat communication acts as mathematical functions
and agents as abstract values in and of themselves, that
simply save relationships with values and communication
acts, divorced from a component, modular or agent-based
view.

If there is no model for a set of requirements, then this
means that there is no possible implementation. Similarly,
the set of models for an Event-B design specification consti-
tutes a set of possible implementations. Again, some models
will be closer to an executable system than others. For
example, one model might take an understanding of states
and execution traces to be precisely the states and execution
traces contained within a .NET WWF implementation of the
Event-B machines, taking agents as Web Services. A more
abstract model might be not committed to considering states
as exactly .NET datatype values.

We do not consider an immediate implementation but,
following the MDA demarcation, are interested in howφ
might be used to move from one level of abstraction (our
normative CIM) to a level somewhat closer to implementa-
tion (an Event-B PIM). A more formal way of putting this
question is: Given a set of normativerequirementsas a CIM,
automatically transformed into an Event-Bdesignis PIM, if
the PIM has an implementation, will this implementation
serve as an implementation of the CIM? In what follows,
we will attempt to prove the corresponding semantic preser-
vation theorem.

4. Semantic Preservation Theorem
In this section, we are providing a theorem for semantic

preservation and a proof. Let us first define a particular
Kripke model from the possible execution traces of the B
specification generated from a normative specification.

Definition 4.1 (Kripke model) Assume REQ is adetermin-
istic set of behavioural norm/definition pairs, each of the
form

REQ= {(Gi → Eb i Ob Ai , ∀ x1 : T1, . . . ,

xn : Tn.Ai → DEFi | i = 1, . . . , n}

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 147

Let S be the set of machines generated by applyingφ over
each norm in REQ that is

S= φ(REQ)

Consider any norm/definition tableaux

N = (G → Eb Ob A, ∀ x1 : T1, . . . ,

xn : TnA ↔ DEF) ∈ REQ

Take any modelMPIM that satisfies S. Assume

〈UNIT,ENTITY,AGENT,CN,

COMMACT,RN,REL,DETERM〉

be the relational ontology over which REQ is defined. We
first define the associated normative model is tuple

MCIM = 〈F,V, h, hAN, hAV, hID , hEAPP, hACT, hREL,=
M
〉

• V is the union of sets of interpretingvaluesof units,
identifiers, agents, agent names, entities and entity
names, defined as

⋃

{VUNIT,VID ,VAN,VAGENT,VEN,VENTITY}

where we define

VAGENT= LIST(VUNIT)

and
VENTITY = VID × LIST(VUNIT)

and

VUNIT = {b ∈ B | b = ι(UNITtoB(t))for any

interpretationι overMPIM, any t∈ TermUNIT}

the interpretation ofι(UNITtoB(t)) should always be
the same, the closure of hPIM, because any element of
TermUNIT will be mapped only to functions and constant
symbols, without variables. We let VID be exactly the
set of entity identifiers, respectively, taken from the
normative ontology, so that hID(i) = i. We let VAN be
exactly the set of Event-B machine names.

• F is a normative Kripke frame, defined

F = 〈W,R〉

where

– W is a non-empty set, consisting of allnon-
intermediatestates of the Event-B specification

– R is a trinary relationship between two elements of
W and VAGENT instances R⊂ W × W × VAN, and
defined so that

R(σ, σ′, a)

if, and only if,

〈S, σ〉
∗
→ 〈S, σ1〉

∗
→ . . .

∗
→ 〈S, σn〉

Ma,e
→ 〈S, σ′

〉

for some event e (where a is a name of an Event-
B machine, the same name as the agent identifier
used in the CIM model). For this to be a model,
we are required to show that R is serial, so that,
for any σ ∈ W and a∈ VAN there exists at least
oneσ′

∈ W and one a∈ VAN such that R(i, j, a)
holds. This is clearly the case, because we have
only taken states where such a relationship holds
by definition.

• hACT is a function from a communication act name from
CN and worlds of F to possible interpreting values of
the agents and entities that the act might predicate over:

hACT : (CN× W) → (VAGENT× VAGENT× VENTITY)

defined
hACT(CN, σ) 3 (a1, a2, e)

for any a1, a2 and e satisfying:

– Let DEF(x1, x2, x3) be the definition associated
with the communication act CN, defined in a norm
N ∈ REQ as

CN(x1, x2, x3) ↔ DEF(x1, x2, x3)

for agent variables x1 : A1{i1 : T1, . . . , im : Tm},
x2 : A2{j1 : T1, . . . , jn : Tn}, and entity variable
x3 : E{k1 : T1, . . . , ko : To} so that

COMMACT(CN) =

(A1{i1 : T1, . . . , im : Tm},A2{j1 : T1, . . . , jn : Tn},

E{k1 : T1, . . . , ko : To})

– It must be the case that

σ(x1) = a1 = {vi
1, . . . , v

i
m}

σ(x2) = a2 = {vj
1, . . . , v

j
n}

σ(x3) = e= (i, {vk
1, . . . , v

k
o}

with

MPIM, σ |= toB(DEF(x1, x2, x3))

• For agent variable a: A{i1 : T1, . . . , im : Tm}

h(a, σ) = {vi
1, . . . , v

i
m}

if, and only if,

σ(i1) = vi
1, . . . , σ(im) = vi

m

• For entity variable e: E{i1 : T1, . . . , im : Tm}

h(e, σ) = (id, {vi
1, . . . , v

i
m})

if, and only if,

σ(i1)id = vi
1, . . . , σ(im)id = vi

m

148 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

• hREL is a function from relationship names RN and
worlds of F to possible interpreting values of the agents
and/or entities that the act might predicate over:

hREL : (RN× W) → (VUNIT ∪ VAGENT∪

VENTITY× VUNIT ∪ VAGENT∪ VENTITY)

defined
hREL(R, σ) 3 (b1, b2)

if, and only if, whenever

– If

REL(R) ≡ (A1{i1 : T1, . . . , im : Tm},

A2{j1 : T1, . . . , jn : Tn})

where A1,A2 are agent type names,

b1 = h(x1, σ) = {vi
1, . . . , v

i
m}

b2 = h(x2, σ) = {vj
1, . . . , v

j
n}

and
MPIM, σ |= toB(R(x1, x2))

– If

REL(R) ≡ (E1{i1 : T1, . . . , im : Tm},

E2{j1 : T1, . . . , jn : Tn})

where E1,E2 are entity type names,

b1 = h(x1, σ) = (id1, {vi
1, . . . , v

i
m})

b2 = h(x2, σ) = (id2, {vj
1, . . . , v

j
n})

and
MPIM, σ |= toB(R(x1, x2))

– If REL(R) = (T1,T2) for R a relationship defined
between unit types and

b1 = h(x1, σ)

b2 = h(x2, σ)

where
MPIM, σ |= toB(R(x1, x2))

• each element t∈ TermUNIT is mapped to an element of
h(t,w) ∈ VUNIT:

h(t,w) = ι(UNITtoB(t)) ∈ VUNIT

for any interpretation intoMPIM – noting again that
all interpretations will give the same value, the closure
of hPIM.

• each entity variable is mapped to an element of VEN

h(e,w) = e.

Let us now prove the semantic preservation theorem.

Theorem 4.1 (Semantic preservation)Assume REQ is a
deterministicset of behavioural norm/definition pairs. Let
S be the set of machines generated by applyingφ over each
norm in REQ that is S= φ(REQ).

Consider any norm/definition tableaux

N = (G → Eb M A,A ↔ DEF) ∈ REQ

for modalityM set to Ob or Pe (“obligatory” or “permis-
sible”, respectively).

Take any modelMPIM that satisfies S. The execution
traces ofMPIM for S form the Kripke modelMCIM, as
defined above. It is then the case that

MCIM |= G → Eb M A

Proof.
We first consider the case where the modalityM is

obligation Ob. We need to show that givenN = (G →

Eb Ob A, ∀ x1 : T1, . . . , xn : TnA → DEF) ∈ REQ it is the
case thatMCIM |= G → Eb Ob A.

First, assume that, for anyσ, and agenta

MCIM |=a
σ

G (2)

By the definition of our model, we know thatσ is non-
intermediate: that is

M, σ |= RN = ⊥ (3)

for any flag variableRN, any normN ∈ R. We are required
to show that, for anyσ′ (such thatR(σ, σ′, b)) MCIM |=b

σ
A.

That is, we must show that, if stateσ′ satisfies

〈S, σ〉
∗
→ 〈S, σ1〉

∗
→ . . .

∗
→ 〈S, σn〉

Mb,e
→ 〈S, σ′

〉 (4)

then it is the case thatMCIM |=b
σ

A.
We proceed by induction over the possible form ofG.

• AssumeG ≡ P(e1, e2) between two entity variablese1 :
E1{v11 : T1

1 , . . . , v
1
m : T1

m} and e2 : E2{v21 : T2
1 , . . . , v

2
m :

T2
n}. The assumption (2) entails that

hREL(P, σ) 3 (h(e1, σ), h(e2, σ)) (5)

for h(e1, σ) = (n1, {u11, . . . , u
1
m}) and h(e2, σ) =

(n2, {u21, . . . , u
2
n}). By the definition ofhREL, (5) entails

that
MPIM, σ |= toB(P(e1, e2)) (6)

• If G ≡ P(e, c), where e : E{. . .} and c : C{. . .}
are entity and agent variables, respectively, so that
E{. . .} ∈ ENTITY and C{. . .} ∈ AGENT, then the
assumption (2) entails that

hREL(σ,P) 3 (σ(e), σ(c)) (7)

By the definition ofhREL, (7) entails that

MPIM, σ |= e∈ P (8)

• If G ≡ P(e.fi , v), wheree : E{f1 : T1 . . . fn : Tn} and
v : T ∈ TermUNIT are an entity variable and a closed

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 149

UNIT term, respectively, then the assumption (2) entails
that

hREL(P, σ) 3 (h(e.fi , σ),UNITtoB(v)) (9)

whereσ(e) = (id, {v1, . . . , vi , . . . , vn}) andh(e.fi , σ) =
vi . By the definition ofhREL, (9) entails that

MPIM, σ |= R(fi(e),UNITtoB(v)) (10)

• The other atomic cases are similar. (Note thatG is the
guard of a normative tableaux: consequently, it does not
contain an instance of a communication act). The cases
involving connectives follow trivially by the induction.

In each case, we have that

MPIM, σ |= toB(G) (11)

We need to use this condition to show that the guard
condition of eventeventN in machineMB ∈ φ(REQ) will
alwaysbe invoked after a finite number of steps. To show
this, we proceed by working over two possible forms of the
actionA:

• If A is of the form R(p, b′, b), where p : P{. . .},
P{. . .} ∈ ENTITY, b : B{. . .}, B{. . .} ∈ AGENT,
b′ : B′

{. . .},B′
{. . .} ∈ AGENT and R ∈ COMMACT

and where the two agent types aredifferent, so
B{. . .} 6= B′

{. . .}, then we take the post-condition
Eb Ob R(p, b′, b). By the definition ofφ, we know that
there is an eventeventN in MB ∈ S of the form

pEvent eventN =̂ q

WHEN GUARDN(G)∗ ∈ b
THEN φN(D); RN := ⊥

(12)

where

GUARDN(G)∗ ≡ GUARDN(G)/G′
∧ RN = > ≡

toB(G)/G′
∧ RN = > (13)

and there is an eventcomEventN in machineMB′ :

pEvent comEventN =̂ q

WHEN G′

N ∈ EMB′
,

THEN RN := >

(14)

where G′
≡ GUARDN(G) |ExtVAR(MB′)

≡

toB(G) |ExtVAR(MB′)
.

Now, by (11) we know that

MPIM, σ |= toB(G) (15)

so it cannotbe the case thatMPIM, σ |= GUARDN(G)∗

holds by (13), becauseMPIM, σ |= RN = ⊥ by (3).
However, by (15) it must be the case thatMPIM, σ |=
G′

N (becauseG′

N ≡ GUARDN(G) |ExtVAR(MB′)
, and the

restricted form of a conjunctive formula should hold if
the original formula holds over a state). Consequently,

we know that〈S, σ〉
MB′ ,comEventN

−→ 〈S, σ1〉, whereσ1 =
[RN := >]σ. So

MPIM, σ1 |= RN = > (16)

Furthermore, because all other events are generated
from norms that exclude each other’s guards,σ1 is the
only such state that can follow fromσ. By (15) and the
fact thatG (and sotoB) do not contain any reference
to RN, we have that

MPIM, σ1 |= toB(G) (17)

But then it must be the case that

MPIM, σ1 |= GUARDN(G)∗ (18)

by (13), (17) and (16) becauseGUARDN(G)∗ ≡

toB(G)/G′
∧ RN = >. Finally, by definition of the

executable semantics, we know that there is a state
σ′ such that 〈S, σ1〉

MB,eventN
−→ 〈S, σ′

〉, where σ′ =
[φ(D); RN := ⊥] and soMPIM, σ

′
|= toB(DEF).

Furthermore, because all other events are generated
from norms that exclude each other’s guards,σ′ is the
only such state that can follow fromσ1, as required.

• The proof is very similar for the case whereR(p, b′, b),
where p : P{. . .}, P{. . .} ∈ ENTITY, b : B{. . .},
B{. . .} ∈ AGENT, b′ : B′

{. . .}, B′
{. . .} ∈ AGENT and

R ∈ COMMACT and where the two agent types are
the same, so B{. . .} = B′

{. . .}. The main difference
is that the transitions are occurring within the same
machine, rather than out of it – however this does not
effect the argument over the transition semantics, which
is essentially the same as the dual machine case above.

Now, in either case, we have thatMPIM, σ
′
|= toB(DEF)

and so (by a straightforward induction overDEF using the
definition of toB) it can be seen

MCIM |=σ′ DEF (19)

Now, by the definition of↔ and the assumptions regarding
the form ofhACT, we know thatMCIM, σ

′′
|= A ↔ DEF for

anyσ′′. So it must be the case thatMCIM, σ
′
|= A. Because

all other events are generated from norms that exclude each
other’s guards,σ′ is theonly such state that can follow from
σ1, which in turn is the only state that can follow fromσ,
which means

MCIM |= G → Eb M A

as required. 2

5. Conclusion and Future Work
In this paper, we have provided a semantic preservation

proof of our MDA transformation, which was described in
[3]. The transformation uses CIM as a source model and
PIM as a target model. The CIM is represented as normative
ontologies and norms, i.e. MEASUR combined with the
action logic and deontic logic in the light of the theory
of normative positions. PIM is formal Event-B machines.
The MDA transformation model addresses the semantic gap
between these two abstract artefacts.

150 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Norms are used for regulating and constraining behavioral
patterns in certain organized environments. For example, in
the area of artificial intelligence and multi-agent systems [9],
agents need to organize their action patterns in a way to
avoid conflicts, address complexity, reach agreements, and
achieve a social order. These patterns are specified by norms
which constrain what may, must and must not be done by
an agent or a set of agents. The fulfillment of certain tasks
by agents can be seen as a public good if the benefits that
they bring can be enjoyed by the society. [9], [10]

There are several works in the scope of MDA devoted
to CIM-to-PIM transformation with semantic preservation.
For example, Rodriguez, et al. [11] define CIM-to-PIM
transformation using QVT mapping rules. The model of
the information system that they obtain as a PIM are
represented as certain UML analysis-level classes and the
whole idea is reflected in a case study related to payment for
electrical energy consumption. This work was continued [12]
by extending CIM definitions of BPMN to define security
requirements and transforming them into UML use cases
using QVT mapping rules. Another approach described by
Wil van der Aalst, et al. [17] meets the difficulty of BPEL.
While being a powerful language, BPEL is difficult for end-
users to use. Its XML representation is very verbose and only
readable for the trained eye [17]. It describes implementation
of the transformation from Workflow-Nets to BPEL which is
built on the rich theory of Petri nets and can also be applied
for other languages.

The Event-B language was successfully applied in several
serious projects where there was a need for rigorous and
precise specification of the system. For example, Rezazadeh,
et al. [18] discuss redevelopment of the central control
function display and information system (CDIS). CDIS is a
computer-based system for controlling important airport and
flight data for London terminal control center. The system
was originally developed by Praxis and was operational
but yet had several problems related to the questions of
formalization. Namely, the problems included difficulty of
comprehending the specifications, lack of mechanical proof
of the consistency and difficulties in distribution and refine-
ment. These problems were addressed in redeveloping the
system using the advantages of the Event-B language and
Rodin platform.

Future work will investigate how our B-based PIMs can
be further transformed into an actual platform specific so-
lution utilizing industrial BPM solutions. We hope that our
specifications involving data and operations making them
semantically richer will map naturally onto the modular
technologies employed in, for example, WWF. Another plan
includes incorporation of the SOA concept into the final
implementation. In particular, we will look into the possibil-
ity of using web services in specifying business processes
thereby making them loosely coupled and adaptable to
performing different tasks.

References
[1] L. Kecheng, Semiotics in Information Systems EngineeringCam-

bridge University Press, 2000.
[2] T. Umarov,Analytical Business Computing: Bridging the Semantic Gap

between Requirements and Design Using Model Driven Architecture,
Ph.D. thesis King’s College London, London, UK, 2009

[3] I. Poernomo, T. Umarov “A Mapping from Normative Requirements to
Event-B to Facilitate Verified Data-Centric Business Process Manage-
ment,” in Advances in Software Engineering Techniques, Eds.Tomasz
Szmuc and Marcin Szpyrka and Jaroslav Zendulka2009, Springer, pp.
136-149.

[4] M. Hepp and D. Roman, “An Ontology Framework for Semantic
Business Process Management,” inProceedings of the 8th International
Conference Wirtschaftsinformatik, 2007, Universitaetsverlag Karlsruhe.

[5] I. Poernomo, “Proofs-as-Model-Transformations,” inProc. Theory and
Practice of Model Transformations, First International Conference,
ICMT’08, 2008, Springer, pp. 214–228.

[6] I. Poernomo, T. Umarov, “Business Process Development in
Semantically-Enriched Environment,” inProc. The Fifth International
Conference on Information Technology: New Generations ITNG’08,
2008, IEEE Computer Society, pp. 57–62.

[7] I. Poernomo, T. Umarov, “Normative Ontologies for Data-Centric
Business Process Management,” inProc. Enterprise of Distributed
Object Computing Workshop EDOCW’08, 2008, pp. 23–34.

[8] S. Kherraf, É. Lefebvre, W. Suryn, “Transformation from CIM to
PIM Using Patterns and Archetypes,” inProc. of the 19th Australian
Conference on Software Engineering, 2008, IEEE Computer Society,
pp. 338–346.

[9] M. d’Inverno, M. Luck,Understanding Agent Systems, Springer Series
on Agent Technology Springer, 2004.

[10] C. Castelfranchi, R. Conte, Paolucci, “Normative reputation and the
costs of compliance,” inJournal of Artificial Societies and Social
Simulation, 1998.

[11] A. Rodríguez, E. Fernández-Medina, M. Piattini, “CIM to PIM Trans-
formation: A Reality,” inProc. International Conference on Research
and Practical Issues of Enterprise Information Systems (2), 2007, pp.
1239-1249.

[12] A. Rodríguez, E. Fernández-Medina, M. Piattini, “Towards CIM
to PIM Transformation: From Secure Business Processes Defined in
BPMN to Use-Cases,” inBusiness Process Management, 2007, pp.
408-415.

[13] W. Zhang, H. Mei, H. Zhao, J. Yang, “Transformation from CIM
to PIM: A Feature-Oriented Component-Based Approach,” inProc.
Model Driven Engineering Languages and Systems, 2005, Springer
Berlin Heidelberg, pp. 248–263.

[14] L. Baresi, K. Ehrig, R. Heckel, “Verification of model transformations:
a case study with BPEL,” inProc. of the 2nd international conference
on Trustworthy global computing TGC’06, 2007, Springer-Verlag, pp.
183–199.

[15] P. Barbosa, F. Ramalho, J. de Figueiredo, A. Junior, “An Extended
MDA Architecture for Ensuring Semantics-Preserving Transforma-
tions,” in Software Engineering Workshop, Annual IEEE/NASA God-
dard, 2008, IEEE Computer Society, pp. 33–42.

[16] P. Barbosa, F. Ramalho, J. de Figueiredo, A. Junior, A. Costa,
L. Gomes, “Checking Semantics Equivalence of MDA Transformations
in Concurrent Systems,” inProc. JUCS’09, 2009, pp. 2196–2224.

[17] W. van der Aalst, K. Lassen, “Translating Workflow Nets to BPEL,”
in BETA Working Paper Series, 2005, Eindhoven University of Tech-
nology, Eindhoven, series 145.

[18] A. Rezazadeh, N. Evans, M. Butler, “Redevelopment of an Industrial
Case Study Using Event-B and Rodin,” inFormal Aspects of Computing
Science – Formal Methods In Industry, 2007, The British Computer
Society, pp. 1–8.

[19] J.-R. Abrial, C. Métayer, L. Voisin, “Event-B Language,” inRODIN
Deliverable 3.2, 2005, version 1.1.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 151

152 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

SESSION

WEB APPLICATIONS AND CASE STUDIES

Chair(s)

TBA

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 153

154 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

An approach for testing passively Web service compositions in
Clouds

Sébastien Salva
LIMOS CNRS UMR 6158, PRES Clermont University,

Aubière, FRANCE

Abstract— This paper proposes a formal passive testing ap-
proach for Web service compositions deployed in Clouds. It
addresses an issue lifted by the PaaS layer of Clouds, which
represents virtualised environments where compositions can
be deployed. In these latter, sniffer-based modules, which
are the heart of passive testing methods, cannot be installed
for technical reasons. We propose a new approach based
on the notion of transparent proxy. We define a new model,
called proxy-tester, which is used to observe the functional
behaviours of the composition under test but also to check
if it is ioco-conforming to its specification. We also provide
a solution and algorithms for testing several composition
instances in parallel.

Keywords: Web service composition; ioSTS; passive testing;
proxy tester.

1. Introduction
Conformance testing is now a well-established activity,

in model-based development, which aims at trying to find
defects in systems or software by analysing the observed
functional behaviours of an implementation and by com-
paring them with those of its specification. Two kind of
approaches may be considered for testing. On the one hand,
active methods can be applied to experiment an implemen-
tation with a set of predefined test cases, constructed from
the specification, and to conclude whether a test relation is
satisfied. For instance, ioco [1] is a standard conformance
test relation which expresses the set of correct implementa-
tions by means of suspension traces (sequences of actions
and quiescence).

On the other hand, passive testing, which is the topic of
the paper, is another approach which does not actively ex-
periment the implementation under test, but which passively
observes its reactions over a long period of time without the
need of a pervasive test environment. This approach offers
definite advantages in comparison to active methods e.g., to
publish more rapidly a system or to not inadvertently disturb
it while testing. The passive tester is composed of a kind of
sniffer-based module which is supposed to observe both the
stimuli sent to the implementation and its reactions in the
environment where it is running. Then, the resulting traces
are used to check the satisfiability of a test relation or of
properties called invariants [2]. In literature, all the proposed

works, dealing with passive testing, rely on a sniffer-based
module to extract traces [2], [3], [4]. This module must
be installed in the implementation environment and may
require modifications of the latter. However, at the same
time, some current trends in Computer Science, such as
Cloud computing, propose to replace physical environments,
such as servers, by virtualised environments composed of
resources whose locations and details are not known. In these
environments, a sniffer-based analyser cannot be installed,
consequently the current passive methods cannot be applied.

This paper addresses this issue by focusing on the passive
testing of Web service compositions deployed on Clouds,
and more precisely on PaaS (Platform as a Service) which
is the layer that supports service deployment [5]. In the
context of PaaS environments, we propose a model-based
passive testing method which relies on the notion of trans-
parent proxy to observe traces. With this concept, no code
modification is required, it is only necessary to configure
Web services and clients to pass through a proxy. For Web
service compositions described with ioSTSs (input/output
Symbolic Transition Systems [6]), we firstly define another
model called proxy-tester. Intuitively, this model describes
the functioning of a dedicated kind of proxy of one speci-
fication: it represents an intermediary between the different
partners taking part to the composition (Web services and
clients). So, once executed with an algorithm provided in
the paper, it helps to follow the functioning of one Web
service composition instance and to forward any received
message to the right partner. Thanks to this model, we
also show that composition traces can be extracted while
testing and that these traces can be also used to check
whether the composition under test is ioco-conforming to
its specification.

This paper focuses on another issue briefly mentioned
previously. Web service compositions deployed in PaaS can
be invoked by several clients at the same time. Consequently,
several composition instances can be executed concurrently.
We consider these composition instances in the paper and
provide original algorithms to construct traces in parallel.

This paper is structured as follows: Section 2 defines the
Web service composition modelling. Section 3 describes our
passive testing method by defining the ioco proxy-tester of
one specification. In Section 4, we details the passive tester
functioning, which is suitable to test several instances of

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 155

the same composition in parallel. Finally, we conclude in
Section 5.

2. Model Definition and notations
To express formally the functional behaviours of Web ser-

vice compositions, we focus on models called input/output
Symbolic Transition Systems (ioSTS). An ioSTS is a kind
of automata model which is extended with a set of variables
and with transition guards and assignments, giving the
possibilities to model the system state and constraints on
actions. With ioSTSs, action set is separated with inputs
beginning by ? to express the actions expected by the system,
and with outputs beginning by ! to express actions produced
(observed) by the system.

Below, we give the definition of an ioSTS extension,
called ioSTS suspension which also expresses quiescence
i.e., the absence of observation from a location. Quiescence
is modelled by a new symbol !δ and an augmented ioSTS
denoted ∆(ioSTS). For an ioSTS S, ∆(S) is obtained
by adding a self-loop labelled by !δ for each location
where quiescence may be observed. The guard of this new
transition must return true for each value which does not
allow firing a transition labelled by an output.

Definition 1 (ioSTS suspension) An ioSTS suspension is a
tuple < L, l0, V, V0, I,Λ, →>, where:
• L is the finite set of locations, with l0 the initial one,
• V is the finite set of internal variables, while I is

the finite set of interaction ones. We denote Dv the
domain in which a variable v takes values. The internal
variables are initialised with the assignment V0 on V ,
which is assumed to be unique,

• Λ is the finite set of symbols, partitioned by Λ = ΛI ∪
ΛO∪{!δ}: ΛI represents the set of input symbols, (ΛO)
the set of output symbols,

• → is the (potentially non deterministic) finite transition
set. A transition (li, lj , a(p), G,A), from the location

li ∈ L to lj ∈ L, denoted li
a(p),G,A−−−−−−→ lj is labelled

by an action a(p) ∈ Λ× P(I), with a ∈ Λ and p ⊆ I
a finite set of interaction variables p = (p1, ..., pk). G
is a guard over (p ∪ V ∪ T (p ∪ V)) which restricts
the firing of the transition. T (p∪V) are boolean terms
over p ∪ V . Internal variables are updated with the
assignment function A of the form (x := Ax)x∈V Ax
is an expression over V ∪ p ∪ T (p ∪ V).

Web service compositions exhibit special properties rela-
tive to the service-oriented architecture (operations, partners,
etc.). This is why we adapt (restrict) the ioSTS action
modelling:

Messages model: to represent the communication be-
haviours of Web service compositions with ioSTSs, we
firstly assume that an action a(p) expresses a message i.e.,
the call of a Web service operation op (a(p) = opReq(p)), or

the receipt of an operation response (a(p) = opResp(p)), or
quiescence. The set of parameters p must gather also some
specific variables:
• the variable from is equal to the calling partner and

the variable to is equal to the called partner,
• Web services may engage in several concurrent inter-

actions by means of several stateful instances called
sessions, each one having its own state. For delivering
incoming messages to the correct running session when
several sessions are running concurrently, the usual
technical solution is to add, in messages, correlation
values which match a part of the session state [7], [8].
So when a session calls another partner, the message
must be composed of a set of values called correlation
set which identifies the session. We model a correlation
set in a message a(p) with a parameter, denoted coor ∈
p.

The use of correlation sets with ioSTSs also implies to
set the following hypotheses on actions:
Session identification: the specification is well-defined.
When a message is received, it always correlates with at
most one session.
Message correlation: except for the first operation call
which starts a new composition instance, a message
opReq(p), expressing an operation call, must contain a
correlation set coor ⊆ p such that a subset c ⊆ coor of
the correlation set is composed of parameter values given in
previous messages.

The first hypothesis results from the correlation sets func-
tioning. The last one is given to coordinate the successive
operation calls together so that we could follow the func-
tioning of one composition instance without ambiguity by
observing the messages and the correlation sets exchanged
between sessions, while testing.

These notation are expressed in the straightforward exam-
ple of Figures 1 and 2. This specification describes a com-
position of two Web services: Shoppingservice represents an
interface which allows a customer to look for the availability
of books with isbn (International Standard Book Number).
This service calls StockService to check the availability and
the current stock of one book.

For one composition instance, we have two sessions of
services connected together with correlations sets. Each
service session is identified with its own correlation set
e.g., Shoppingservice with c1 = {account = ”custid”},
StockService with c2 = {account = ”custid”, isbn =
”2070541274”}. As these two correlation sets respect the
Message correlation assumption, we can correlate the call
of StockService with one previous call of Shoppingservice
even though several sessions are running in parallel.

An ioSTS is also associated to an ioLTS (Input/Output
Labelled Transition System) to formulate its semantics.
Intuitively, the ioLTS semantics corresponds to a valued
automaton without symbolic variable, which is often infinite:

156 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Fig. 1: A suspension ioSTS

Symbol Message Guard Update

?BookReq ?BookReq(account,
isbn, from, to, coor)

[from="Client"∧ to="S"
∧corr={account}]

{a:=account,
c1=coor}

!GetStockReq!GetStockReq(isbn,
from, to, coor)

G1 =[from="S"∧to=
"Stock"∧ coor={a,
isbn}]

{i:=isbn,
c2=coor}

!GetStock
Resp

!GetStockResp(stock,
from, to, coor)

G2=[from="Stock"∧to=
"S"∧ valid(i)∧ coor=c2]

st:=stock

!GetStock
Resp2

!GetStockResp(resp,
from, to, coor)

G3=[from="Stock"∧to=
"S"∧¬valid(i) ∧
resp="invalid"∧coor=c2]

st:=null

!BookResp !BookResp(resp,
from, to, coor)

G4=[from="S"∧to=
"Client"∧resp= "Book
available"∧ corr=c1]

!BookResp2!BookResp(resp,
from, to, coor)

G5=[from="S"∧to=
"Client"∧resp="Book
unavailable" ∧coor=c1]

Fig. 2: Symbol table

the ioLTS states are labelled by internal variable values while
transitions are labelled by actions and interaction variable
(parameter) values. The semantics of an ioSTS S =<
L, l0, V, V0, I,Λ,→> is an ioLTS ||S|| =< Q, q0,

∑
,→>

composed valued states in Q = L × DV , q0 = (l0, V0)
is the initial one,

∑
is the set of valued symbols and →

is the transition relation. The complete definition of ioLTS
semantics can be found in [6].

Intuitively, for an ioSTS transition l1
a(p),G,A−−−−−−→ l2, we

obtain an ioLTS transition (l1, v)
a(p),θ−−−−→ (l2, v

′) with v a
set of values over the internal variable set, if there exists
a parameter value set θ such that the guard G evaluates to
true with v ∪ θ. Once the transition is executed, the internal
variables are assigned with v′ derived from the assignment
A(v ∪ θ). Finally, runs and traces of ioSTS can be defined
from their semantics:

Definition 2 (Runs and traces) For an ioSTS S, inter-
preted by its ioLTS semantics ||S|| =< Q, q0,

∑
,→>, a run

q0α0...αn−1qn is an alternate sequence of states and valued
actions. RUNF (S) = RUNF (||S||) is the set of runs of S
finished by a state in F ×DV ⊆ Q with F a location of S.

It follows that a trace of a run r is defined as the projec-
tion proj∑(r) on actions. TracesF (S) = TracesF (||S||) is
the set of traces of runs finished by states in F ×DV .

3. Ioco passive testing with proxy-testers
This Section covers the theoretical aspects of ioco proxy-

testing. Instead of using a classical proxy for observing mes-
sages, we formalise below the notion of proxy-tester of an
ioSTS specification. This model will help to observe traces
but will be also used to directly check whether a composition
implementation is ioco-conforming to its specification.

3.1 Proxy-tester definition
A proxy-tester corresponds to a passive intermediary

between the partners of one composition (Web services
and clients) which must observes any behavioural action
(messages or quiescence). To act as an intermediary between
partners, a proxy-tester must exhibit different behaviours: to
receive client requests or to forward received messages to
the composition, it must behave as in the specification. It
must also collect, by means of input actions, the observable
messages (output actions) produced by any partner. This can
be expressed with a mirror specification (inputs are replaced
with outputs and vice-versa). While receiving actions, we
propose that it also recognises the correct messages and
the incorrect ones to detect failures. As a consequence, a
proxy-tester must be a combination of the specification with
a mirror specification augmented with the potential incorrect
behaviours of the composition. This second part corresponds
to a non-conformance observer of the specification, also
called canonical tester [9].

The non-conformance observer of an ioSTS, denoted
NCObserver, gathers the specification transitions labelled by
mirrored actions (inputs become outputs and vice versa) and
transitions leading to a new location Fail, exhibiting the
receipt of unspecified actions. Transitions to a Fail location
are guarded by the negation of the union of guards of
the same output action in outgoing transitions. Due to its
extent and generality, we do not provide here the definition
of the NCObserver of an ioSTS which can be found in
[10]. Instead, we illustrate the NCobserver of the previous
specification in Figures 3 and 4. Inputs are replaced with
outputs and vice-versa. Incorrect behaviours are also added
with new transitions to Fail. For instance, if we consider the
location 2, new transitions to Fail are added to model the
receipt of unspecified actions (messages or quiescence).

As stated earlier, a proxy-tester corresponds to a kind
of fuse of an ioSTS with its NCobserver over the tran-
sition set. To express this combination without ambiguity,
we initially separate locations of S and NCO(S) with a
renaming function φ. Locations are renamed by φ : L→ L′,
φ(l) → l′. For an ioSTS S, we also denote φ(S) =<
φ(LS), φ(l0S), VS, V 0S, IS,ΛS , →φ(S))>.

Now, we are ready to define the proxy-tester of an ioSTS
S:

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 157

Fig. 3: An ioSTS NCobserver

Symbol Message

?r1 ?CartCreateReq ?CartCreateResp ?Connectresp
?r2 ?CartCreateReq[G1] ?CartcreateResp ?ConnectResp ?δ[G1]
?r3 ?CartCreateReq ?CartcreateResp [¬G2 wedge ¬G3] ?ConnectResp

?δ [G2 ∨ G3]
?r4 ?CartCreateReq ?CartcreateResp ?ConnectResp [¬G5] ?δ[G5]
?r5 ?CartCreateReq ?CartCreateResp ?ConnectResp[¬G4] ?δ[G4]

Fig. 4: Symbol table

Definition 3 (Proxy-tester) The proxy-tester P(S) of the
specification S =< LS, l0S, VS, V 0S, IS,ΛS,→S> is a com-
bination of ∆(S) with its NCobserver φ(NCO(S)). P(S) is
defined by an ioSTS < LP, l0P, VS∪{side}, V 0S∪{side :=
””}, IS, Λ∆(S) ∪ ΛNCO,→P> such that LP, l0P and →P

are constructed by the following inference rules.

(Env l1
?a(p),G,A−−−−−−→∆(S) l2, l1′

!a(p),G,A−−−−−−→NCO l2′ ,
to l′1 = φ(l1), l′2 = φ(l2)
IUT): `

(l1l1′)
?a(p),G,A({pt=p,side:=””})−−−−−−−−−−−−−−−−−−→P (l2l1′?a

GA)
!a(p),[p=pt],A({side:=”NCO”})−−−−−−−−−−−−−−−−−−−−−→P (l2l2′),

(IUT l1
!a(p),G,A−−−−−−→∆(S) l2, l1′

?a(p),G,A−−−−−−→REF l2′ ,
to l′1 = φ(l1), l′2 = φ(l2)
Part `
ner) (l1l1′)

?a(p),G,A({side:=”NCO”,pt=p})−−−−−−−−−−−−−−−−−−−−−−→P (l1l2′

?aGA)
!a(p),[p=pt],A({side:=””})−−−−−−−−−−−−−−−−−→P (l2l2′),

(to
Fail):

l1′
b(p),G,A−−−−−→NCO Fail, l1 ∈ LS, l

′
1 = φ(l1)

`
(l1l1′)

b(p),G,[A({side:=”NCO”})]−−−−−−−−−−−−−−−−−−→P Fail

Intuitively, the first rule combines a specification transition

and a NCobserver one carrying the same mirrored actions
and guards to express that if an action is received from
the client environment then it is forwarded to the Web
service composition. The two transitions are separated by
a unique location (l2l1′?aGA). The second rule (IUT to
Partner) similarly combines a specification transition and
an NCobserver one labelled by the same mirrored actions
to express that if an action is received from the Web
service composition then it is forwarded to right partner
(Web service or client). Transitions labelled by δ, modelling
quiescence, are also combined: so if quiescence is detected
from the implementation, quiescence is also observed from
the client environment. The last rule (to Fail) completes
the resulting ioSTS with the transition leading to Fail of
the NCobserver. In each rule, a new internal variable, de-
noted side, is also added to keep track of the transitions
provided by the ioSTS NCobserver (with the assignment
side:="NCO"). This distinction will be useful to define
partial traces of proxy-testers.

Figure 5 depicts the resulting proxy-tester obtained from
the previous specification (Figure 1) and its NCobserver
(Figure 3). For sake of readability, the side variable is
replaced with solid and dashed transitions: dashed transitions
stand for labelled by the assignment(side := NCO). Figure
5 clearly illustrates that the initial specification behaviours
are kept and that the incorrect behaviours modelled in the
NCobserver are present as well.

In the proxy-tester definition, transitions carrying actions
provided by NCobservers are emphasised by means of the
variable side. Specific properties on runs and traces of the
proxy-tester can be deduced from this property. In particular,
we can define partial runs and traces over the variable side.

Definition 4 (Partial runs and traces) Let P(S) =<
LP, l0P, VP, V 0P, IP,ΛP,→P> be a proxy-tester and
||P(S)|| = P =< QP , q0P ,

∑
P ,→P> be its ioLTS

semantics. We define Side : QP → DVP
the mapping which

returns the value of the side variable of a state in QP .
SideE(QP) ⊆ QP is the set of states q ∈ QP such that
Side(q) = E.

Let RUN(P(S)) be the set of runs of P(S). We denote
RUNE(P(S)) the set of partial runs derived from the
projection proj(QP

∑
P SideE(QP))(RUN(P(S))).

It follows that TracesE(P(S)) is the set of partial traces
of (partial) runs in RUNE(P(S)).

For a proxy-tester P(S), we can now write
TracesNCOFail (P(S)) for representing the partial traces
leading to Fail derived from the NCobserver part. With
these notations, we can deduce an interesting trace property
on proxy-testers. We can write that the incorrect behaviours
expressed in the NCobserver with TracesFail(NCO(S))
can be still captured in the proxy-tester with the trace set
TracesNCOFail (P(S)).

158 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Fig. 5: A proxy-tester

Proposition 5 Let S be a specification and NCO(S), P(S)
be its NCobserver and its proxy-tester respectively. We have
TracesNCOFail (P(S)) = TracesFail(NCO(S)).

The proof is given in an extended version of the paper in
[11].

3.2 Ioco testing with proxy-testers
Formal testing methods often define the confidence degree

between an implementation I and its specification S by
means of a test relation. To reason about conformance and
to formalise a test relation, the implementation under test is
assumed to behave like its specification and is modelled by
an ioLTS I . ∆(I) represents its suspension ioLTS.

In the paper, we consider the ioco relation, which is
defined as a partial inclusion of suspension traces of the
implementation in those of the specification [6]. In [10],
ioco has been also defined for ioSTS by making explicit the
non-conformant trace set:

Definition 6 Let I be an implementation modelled by an
ioLTS, and S be an ioSTS. I is ioco-conforming to S,
denoted I ioco S iff Traces(∆(I))∩NC_Traces(∆(S)) =
∅ with NC_Traces(∆(S)) = Traces(∆(S)).(

∑O ∪{!δ} \
Traces(∆(S)).

To check if I is ioco-conforming to its specification,
we can collect traces of I with proxy-testers and compare
them with the specification one. However, since we have
formalised proxy-testers, we can also rephrase ioco with
proxy-tester traces. So, we reformulate ioco below.

Firstly, a NCobserver exhibits the incorrect behaviours
of the specification with traces leading to its Fail states.
However, NCO(S) is constructed by exchanging inputs and
outputs symbols of its specification. If we define refl :
(
∑∗

)∗ → (
∑′∗

)∗ the function which constructs a mirrored
trace set from an initial one (for each trace, input symbols are
exchanged with output ones and vice-versa), we can write:

Proposition 7 Let S be an ioSTS. The non-conformant
trace set of ∆(S), denoted NC_Traces(∆(S)), is equal to
refl(TracesFail(NCO(S))).

We have also asserted previously that
TracesFail(NCO(S)) = TracesNCOFail (P(S)) (Proposition
5). Consequently, ioco can be formulated with Propositions
5 and 7 as:
I ioco S⇔ Traces(∆(I))∩ refl(TracesNCOFail (P(S))) = ∅

So defined, ioco means that I is ioco-conforming to its
specification when implementation traces do not belong to
the set of partial proxy-tester traces leading to Fail, obtained
from the NCobserver part. However, we can go farther, in the
ioco rephrasing, by taking into account the parallel execution
of the client environment, the proxy-tester and the Web
service composition implementation. This execution can be
defined by a parallel composition:

Definition 8 (Passive test execution) Let P =< QP , q0P ,∑
P ,→P> be the ioLTS semantics of a proxy-tester P(S),

and I =< QI , q0I ,
∑
I ⊆

∑
P ,→I> be the implementa-

tion model. We assume that the client environment can be
modelled with an ioLTS Env =< QEnv, q0Env,

∑
Env ⊆∑

P ,→Env>.
The passive testing of I is defined by the parallel compo-

sition ||(Env, P, I) =< QEnv ×QP ×QI , q0Env × q0P ×
q0I ,

∑
Env ⊆

∑
P ,→||(Env,P,I)> where the transition

relation →||(Env,P,I) is given by the following rules. For

readability reason, we denote an ioLTS transition q1
?a−−→

”E”
q2

if Side(q2) = E (the variable side is valued to E in q2):

q1
!a−→∆(Env)q2,q

′′
2

?a−→∆(I)q
′′
3 ,q

′
1

?a−→
”” P

q′2
!a−−−−−→

”NCO” P
q′3

q1q′1q
′′
2

?a−→||(Env,P,I)q2q
′
2q

′′
2

!a−→||(Env,P,I)q2q
′
3q

′′
3

q2
?a−→∆(Env)q3,q

′′
1

!a−→∆(I)q
′′
2 ,q

′
1

?a−−−−−→
”NCO” P

q′2
!a−→
”” P

q′3,q
′
3 6=Fail

q2q′1q
′′
1

?a−→||(Env,P,I)q2q
′
2q

′′
2

!a−→||(Env,P,I)q3q
′
3q

′′
2

q2
?δ−→∆(Env)q3,q

′′
1

!a−→∆(I)q
′′
2 ,q

′
1

?a−−−−−→
”NCO” P

Fail

q2q′1q
′′
1

?a−→||(Env,P,I)Fail

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 159

The immediate deduction of the →||(Env,P,I) definition
is that Traces(∆(I)) ∩ refl(TracesNCOFail (P)) =
Traces(∆(I)) ∩ refl(TracesNCOFail (P(S))) is equivalent
to refl(TracesFail(||(Env, P, I))) (third rule). In other
terms, the non-conformant traces of ∆(I) can be also found
in TracesFail(||(Env, P, I)). Therefore, ioco can be finally
also reformulated as:
I ioco S⇔ Traces(∆(I)) ∩ refl(TracesNCOFail (P(S))) = ∅

⇔ TracesFail(||(Env, P, I)) = ∅
The refl function can be removed in the last equivalence

since if the set refl(TracesFail(||(Env, P, I))) is empty,
then TracesFail(||(Env, P, I)) is also empty (the function
refl only yields mirrored trace sets).

4. Passive tester functioning
A straightforward consequence of ioco is that non-

conformance (I ¬ioco S) is detected when a trace of the
parallel composition ||(Env, P, I) leads to one of its Fail
states. From this assertion, we can also deduce the intuition
of the proxy-tester functioning. It can be summarised by
these steps: wait for an action (message or quiescence), cover
some proxy-tester transitions when an action is received and
construct traces, detect non-conformance when one of the
proxy-tester Fail states is reached or continue.

Nevertheless, service compositions, deployed in PaaS, can
be invoked concurrently by several client applications. This
implies that a tester must also cope with several composition
instances gathering several sessions in parallel. To extract
traces from these composition instances, several proxy-tester
instances, running in parallel, are also required. All of these
will be managed by a unique entity that we call passive
tester. Its architecture is given in Figure 6. The passive
tester aims to cover, in parallel, the behaviours of several
composition instances to collect traces. Incoming messages
must be delivered to the correct proxy-tester instance by the
passive tester. This step is performed by an entry point which
routes messages by means of correlation sets.

Fig. 6: The passive tester architecture

The entry point functioning is given in Algorithm 1. Each
composition instance must be passively tested by a unique
proxy-tester instance. Therefore, Algorithm 1 handles a set
L of pairs (pi, PV) with pi a proxy-tester instance and PV
the set of parameter values received with messages. When

a new message is received, this set is used to correlate it
with an existing composition instance in reference to the
Message correlation hypothesis. As stated in Section 2, the
latter helps to correlate messages by assuming that a part of
the correlation set of a message is composed of parameter
values of messages received previously. Whenever a message
(e(p), θ) is received, its correlation set c is extracted to check
if a proxy-tester instance is running to accept it. This instance
exists if L contains a pair (pi, PV) such that a subset c′ ⊆ c
is composed of values of PV . In this case, the correlation
set has been constructed from parameter values of messages
received previously. If one instance is already running, the
message is forwarded to it. Otherwise, (line 7), a new one
is started. If a proxy-tester instance pi returns a trace set
(line 11), then the latter is stored in Traces(P(S)) and the
corresponding pair (pi, PV) is removed from L.

Algorithm 1: Proxy-tester entry point
input : Proxy-tester P(S)
output: Traces(P(S))

1 L = ∅;
2 while message (e(p), θ) do
3 extract the correlation set c in θ;
4 if ∃(pi, PV) ∈ L such that c′ ⊆ c and c′ ⊆ PV then
5 forward (e(p), θ) to pi; PV = PV ∪ θ;
6 else
7 create a new proxy-tester instance pi;
8 L = L ∪ (p, {θ}); forward (e(p), θ) to pi;

9 if ∃(pi, PV) ∈ L such that pi has returned the trace set
T then

10 Traces(P(S)) = Traces(P(S)) ∪ T ;
11 L = L \ {(pi, PV)};

The proxy-tester algorithm, which aims to test passively
one composition instance, is given in Algorithm 2. Both
the client environment and the implementation are assumed
to behave as ioLTS suspensions. The proxy-tester algorithm
handles a set of runs denoted RUNS. A single run is not
sufficient since both the proxy-tester and the implementation
may be indeterministic and may cover different behaviours.
The proxy-tester algorithm is based on a forward checking
approach. It starts from its initial state i.e., (l0P(S), V 0P(S)).
Upon a received action (e(p), θ) which is either an valued
action or quiescence (line 2), it looks for the next transitions
which can be fired for each run r in RUNS (line 5). Each
transition must have the same start location as the one found
in the final state (l, v) of r, the same action as the received
action e(p) and its guard must evaluate to true over the
current internal variable value set v and the parameter values
θ. If this transition leads to a Fail state then the proxy-tester
algorithm adds the resulting run r′ to RUNS (lines 8-11).
Otherwise, the valued action (e(p), θ) is forwarded to the
called partner with the next proxy-tester transition t2 (lines
12 to 17). The new run r′′ is composed of r′ followed by

160 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

the sent action and the reached state qnext2 = (lnext2, v
′′).

Once, each run of RUNS is covered, the proxy-tester waits
for the next action.

Algorithm 2: Proxy-tester algorithm
input : A proxy-tester P(S)
output: Trace set

1 RUNS := {(q0 = (l0P(S), V 0P(S)))};
2 while Action(e(p), θ) do
3 r′ = ∅;
4 foreach r = q0α0...qi ∈ RUNS with qi = (l, v) do
5 foreach t = l

e(p),G,A−−−−−−→ lnext ∈→P(S) such that G
evaluates to true over θ ∪ v do

6 qnext = (lnext, v
′ = A(v ∪ θ));

7 r′ = r.(e(p), θ).qnext;
8 if lnext == Fail then
9 Fail is detected;

10 RUNS = (RUNS \ r) ∪ r′;
11 else
12 Execute(t2 = lnext

!e(p),G2,A2−−−−−−−→P(S) lnext2)
; // forward (!e(p), θ) to Partner

13 qnext2 := (lnext2, A2(θ ∪ v′);
14 r′′ = r′.(!e(p), θ).qnext2;
15 RUNS = (RUNS \ r) ∪ r′′;

16 return the trace set T = proj∑(RUNS);

Algorithm 2 reflects exactly the parallel execution def-
inition of Section 3.1. It actually constructs traces of
||(Env, P, I) by supposing that Env and I are ioLTS
suspensions. In particular, when a location Fail is reached
(line 8), the proxy-tester has constructed a run, from its
initial state which belongs to RUNFail(||(Env, P, I)). From
this run, we obtain a trace of TracesFail(||(Env, P, I)). So,
we can state the correctness of the algorithm with:

Proposition 9 The algorithm has detected Fail
⇒ TracesFail(||(Env, P, I)) 6= ∅ ⇒ ¬(I ioco S).

These algorithms are currently under development for two
well-known Paas, Windows Azure and Google AppEngine.
With Windows Azure, the entry point is implemented as
a transparent proxy which behaves as it is described in
Algorithm 1. No modification of composition codes is
required. Web services and clients need to be configured
to pass through an external proxy only. In summary, this
development part is not raising particular issues. It is quite
different with Google AppEngine since the use of proxy is
prohibited. In this PaaS, we intend to implement the entry
point of the passive tester as a Java Filter Servlet. This kind
of application can filter the messages exchanged between
Web applications and clients. All these implementations and
experimentation will be proposed in future works.

5. Conclusion
We have proposed an original approach for passive test-

ing Web service compositions in PaaS environments. Our
approach is based upon the notion of transparent proxy
and is able to construct implementations traces from several
composition instances deployed in virtualised environments,
without requiring any modification of code. This approach
also offers the advantage of checking the satisfiability of
the ioco relation. An immediate line of future work is to
implement the proposed passive tester and to experiment
existing compositions for different Clouds, each having its
own possibilities and restrictions.

References
[1] J. Tretmans, “Test generation with inputs, outputs and repetitive

quiescence,” Software - Concepts and Tools, vol. 17, no. 3, pp. 103–
120, 1996.

[2] A. Cavalli, S. Maag, and E. M. de Oca, “A passive conformance
testing approach for a manet routing protocol,” in Proceedings of
the 2009 ACM symposium on Applied Computing, ser. SAC ’09.
New York, NY, USA: ACM, 2009, pp. 207–211. [Online]. Available:
http://doi.acm.org/10.1145/1529282.1529326

[3] T. Lin, S. Midkiff, and J. Park, “A framework for wireless ad
hoc routing protocols,” in Wireless Communications and Networking,
2003. WCNC 2003, New Orleans, LA, USA. IEEE society press,
2003.

[4] D. Lee, D. Chen, R. Hao, R. E. Miller, J. Wu, and X. Yin, “Network
protocol system monitoring: a formal approach with passive testing,”
IEEE/ACM Trans. Netw., vol. 14, pp. 424–437, April 2006.

[5] A. Lenk, M. Klems, J. Nimis, S. Tai, and T. Sandholm, “What’s
inside the cloud? an architectural map of the cloud landscape,” in the
2009 ICSE Workshop on Software Engineering Challenges of Cloud
Computing, 2009, pp. 23 – 31.

[6] L. Frantzen, J. Tretmans, and T. Willemse, “Test Generation Based on
Symbolic Specifications,” in Formal Approaches to Software Testing
– FATES 2004, ser. Lecture Notes in Computer Science, J. Grabowski
and B. Nielsen, Eds., no. 3395. Springer, 2005, pp. 1–15.

[7] Oasis-consortium, “Ws-bpel,” 2007. [Online]. Available: http:
//docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

[8] F. Montesi and M. Carbone, “Programming services with correlation
sets,” in ICSOC, ser. Lecture Notes in Computer Science, G. Kappel,
Z. Maamar, and H. R. Motahari-Nezhad, Eds., vol. 7084. Springer,
2011, pp. 125–141.

[9] B. Jeannet, T. Jéron, and V. Rusu, “Model-Based Test Selection for
Infinite-State Reactive Systems,” in Formal Methods for Components
and Objects, Amsterdam, Netherlands, 2006. [Online]. Available:
http://hal.inria.fr/inria-00564604

[10] V. Rusu, H. Marchand, and T. Jéron, “Automatic verification and
conformance testing for validating safety properties of reactive sys-
tems,” in Formal Methods 2005 (FM05), ser. LNCS, J. Fitzgerald,
A. Tarlecki, and I. Hayes, Eds. Springer, July 2005.

[11] S. Salva, “An approach for testing passively web service compositions
in clouds,” 2011, lIMOS Research report RR-12-03. [Online].
Available: http://sebastien.salva.free.fr/RR-12-03.pdf

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 161

Design of Safety Critical Survivable Systems Using
Autonomic and Semantic Web Methodologies

Michael C. Lindsey1, David J. Coe1, Jeffrey H. Kulick1, Letha Etzkorn2, Wei Li2, and Yujian Fu3

1Dept. of Electrical and Computer Engineering, University of Alabama in Huntsville, Huntsville, Alabama, USA
2Dept. of Computer Science, University of Alabama in Huntsville, Huntsville, Alabama, USA

3Dept. of Electrical Engineering and Computer Science, Alabama A&M University, Huntsville, Alabama USA

Abstract - Safety critical software systems are designed to
be able to respond to failures and continue to operate
correctly. Systems designed for long duration missions such
as space flights need to be able to reconfigure themselves
after failures and continue to be demonstrably safe.
Autonomic self-optimization and self-healing principles
provide the basic ideas for a system capable of recovering
from a partial failure event. The first part of the paper
discusses some approaches that have been taken to detection
and repair of autonomic systems including incremental,
formal controller verification allow for the creation of an
on-the-fly safety verification analysis. The second part
discusses a framework, based on the semantic web, for
implementing such as system.

Keywords: compositional verification; autonomic; self
diagnosis and healing; state space reduction; adaptive
safety critical systems

1 Introduction
As technology advances safety critical computing

systems are becoming more complex. While this
complexity adds features it also causes systems to be
difficult to manage and optimize. Furthermore, these
systems are being designed to be adaptable and to
reconfigure after a failure event. Such systems must
automatically manage themselves because human operators
are not always present such as in long duration space
flights. Also, adaptable safety critical systems must be
verified in order to ensure safe operation. The verification
process should be performed quickly as to not further
endanger the system.

In 2001 IBM presented the Autonomic Computing
paradigm, which described a means to design systems, that
self-heal, self-optimize, self-configure, and self-protect.
Environmental influence, workload changes, and internal
failures would all be managed and accounted for [1]. While
few systems have been created that fully meet this lofty
goal, some of the constructs popularized in the paradigm
are useful in creating safe, adaptive systems.

Safety critical systems must be verifiable as well as
highly reliable. Traditionally the verification process has

been carried out offline before the system is fielded. The
traditional approach has required the production of hazard
analyses, fault trees, and failure mode and effects analyses
[18]. Formal methods are also used to verify the system’s
functionality. If the system is re-configured after failure
these calculations become invalid. If a complete re-
verification is attempted online in a complex system the
calculations become overwhelming. This is commonly
referred to as state space explosion [16]. In this situation,
the reconfiguration and re-verification processes cannot
take place in a timely manner and the system is ultimately
unusable. To combat this problem, researchers are
developing compositional verification methods that begin
with a verified system and during reconfiguration only
analyze aspects of the state space that have been modified
or pertain to the controller’s next step.

In the first two sections that follow, fault detection and
fault repair are discussed. In the final section, a framework
based on the semantic web for organizing the necessary
programs, data, and proofs will be presented.

2 Detecting and handling failures	
2.1 Detecting a failure event
The first step in responding to a system failure is detection.
Many systems must change operation when their
environment is altered, but more often a system must
change to cope with a fault. In [8] and [9] Byttner et al
present a method for discovering faults that are not
predefined. In a typical safety analysis for an airframe, for
example, an all-encompassing fault model is constructed
before fielding the system. In Bytnner’s work a behavior
signature is constructed from a fleet of operational systems.
Numerous inexpensive sensors are placed on the system's
most important components and linear principle encoding
analysis is used to reduce the sensor information before
transmitting it to a central location. Once collected the data
for all systems are analyzed and a multivariate unimodal
Gaussian distribution is used to determine which systems
are faulty by comparing the current behavior to previously
known good behaviors. This approach allows for the
detection of unexpected faults that likely would have been

162 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

missed in a static comparison model.

Consequence-oriented self-healing presented in [7] is an
attempt to diagnose a condition based on symptoms in the
system and take corrective action before the fault occurs. A
static multivariate decision diagram is used to determine the
severity of an impending fault in order to assign a priority
value to it. A hybrid fuzzy logic and neural network
diagnosis tool is then used to determine what preemptive
actions should be taken to avoid the fault. While the neural
network has offline batch training before the system is
fielded, it also incorporates online learning in order to better
diagnose a changing system. An adaptive diagnosis tool
such as either of the aforementioned is necessary in a safety
critical system that attempts to detect unanticipated failure
events.

2.2 Responding to a failure event
Once a failure event has been detected an adaptive

system must take action to reconfigure itself, continuing to
meet its goals regardless of any failed components. Many
methods have been developed to achieve system healing.
This section describes some of these methods including
planned reconfiguration, genetic algorithms, and learning
classifier systems. Additionally, the challenges and merits
of each approach are reviewed in regards to online safety
critical reconfiguration.

2.2.1 Planned reconfiguration systems
Planned reconfiguration systems are designed with

duplicate components and a rigid protocol for adaptation. In
simple systems, when a primary component fails the
secondary is dynamically switched into the control flow to
take the primary’s place.

In [5] Khalgui introduces an agent-based system for
safe, dynamic reconfiguration. Each device in the system
has an associated agent responsible for monitoring it. When
the agent detects a failure it requests a reconfiguration from
the central coordination agent. If the restructuring is
possible, the coordination agent permits the change and
notifies other related agents in the system. Organized
change in this manner ensures all devices are operating in a
harmonious manner. For example, both duplicate
components know they are processing in parallel or in a
hierarchical manner. Furthermore, the coordinating agent
contains a set of coordination matrices, each defining a
valid system configuration. By commanding each device
agent to its defined state in a coordination matrix the entire
system can be put into a known good state. Since each
coordinate matrix has been validated offline by a model
checker, all the possible system configurations are known to
be acceptable.

The major disadvantage of this reconfiguration
approach is that all possible system states must be pre-
determined offline. Any unforeseen failure or
environmental conditions will cause the system to stop
functioning or perpetually remain in a request condition
where an agent is reporting a failure and requesting
reconfiguration but the coordination agent repeatedly denies
it because no alternative exists.

2.2.2 Genetic algorithms
Genetic algorithms (GA) are search and optimization

tools that are able to cope with difficult problem domains
with attributes such as discontinuity, time-variance,
randomness, and noise [6]. Where planned reconfiguration
is rigidly defined, GAs are practically the opposite. A GA
attempts to mimic natural evolution. It is composed of
individuals each of which is a solution to the given
problem. In each cycle of the algorithm a new set of
individuals are constructed. A fitness value is given to each
individual quantifying how well it solves the problem. Like
in nature, the fittest ones are more likely to “breed” new
individuals for later generations. Breeding occurs when
individuals swap data in the crossover event, creating
offspring, and a probabilistic mutation is introduced. These
offspring and the very fittest “parents” become the next
generation and the process repeats. GAs terminate once a
predefined number of generations is reached or a quality
solution is found. [4]

GAs have traditionally been applied to system design
or analysis rather than online reconfiguration. Real world
problems that involve multiple conflicting objectives are
well suited for GAs because an algorithm can be created to
find partially optimal solutions that best improve a single
objective without detriment to the others. By simply
changing objective priorities, other partially optimal
solutions can found [6]. Given a cost function based on
component reliabilities, cost, and weight a GA can also
develop an optimized series-parallel system or fault tree
with the greatest possible reliability [6]. Despite these
benefits the inherent stochastic nature of GAs has restrained
their use in safety critical systems.

Given the ability to verify their solutions, the major
disadvantage of GAs is the relatively large amount of
computation time required to produce a good solution. In
time critical systems, such as aircraft, that experience
failure events a GA would take too long to respond
resulting in system failure. In rapidly changing systems a
good GA solution for one state of the system may not be
valid when it has finally been produced because the system
has again changed. Modern parallel processing technology
may finally be able to address the real-time computational
problem, but the issue of specialization remains.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 163

2.2.3 Learning classifier systems
One recovery approach that attempts to marry the rigid

structure of planned reconfiguration and nondeterministic
nature of GAs is a Learning Classifier System (LCS). In [3]
Zeppenfeld describes an Autonomic System on a Chip
utilizing a micro-rollback shadow register technique to
eliminate CPU errors and an LCS variant to apply machine
learning to system changes.

The simple LCS variant used in this design was a
learning classifier table (LCT). The table contains a list of
rules, each with an associated condition, action, and fitness
value. When environmental monitors detect system strain or
malfunction, the LCT is addressed for corrective action.
The set of rules that relate to the current condition are
isolated and from those a single rule is chosen based on a
fitness weighted random draw. This selection approach
allows the system to learn how well all the related actions
correct the problem while still relying most heavily on the
traditional solutions. When an action has been taken on the
system its fitness value is updated to reflect its effect on the
problem.

A hierarchical design of autonomic elements was also
described to deal with larger systems and still provide
information sharing between branches. Each branch would
share performance metrics and fitness calculations in an
attempt to keep a global view of system optimization and
avoiding local maximums or conflicting branch activity.

An LCT approach in an improvement over the fully
scripted healing program of planned reconfiguration
because it allows the controller to discover in real time
which rules best address the operational and environmental
conditions the system experiences. Unlike a GA approach,
the LCT system still requires preliminary knowledge of the
system in order to define the LCT actions during
development. Furthermore, since the creation of new rules
is not capable online, LCT is limited in its ability to handle
drastic events that greatly modify the system.

2.2.4 A hybrid healing approach
The three aforementioned paradigms incorporate the

possible ways to address the issue. A completely defined
reconfiguration plan, while most easily enacted and
verified, does not allow for handling unforeseen problems.
Evolutionary methods such as GAs can provide the most
optimum solutions, but they require large amounts of time
for computation and re-verification. In non-safety critical
systems the use of GAs for complete system
reconfiguration may be exactly what is called for. However,
the need for system stability at all times in the safety realm
means a trade off is required. Some reconfiguration ability
must be relinquished in order to make verification and
stability possible.

Nevertheless, this trade off does not mean that some
form of GAs cannot be used. As defined in [3], the LCT
system is a decent combination of controlled
reconfiguration and online learning. Its inability to handle
larger failure events stems from its unchanging set of rules.
The authors briefly described a full LCS system, which
employed a GA to develop new rules when a system event
occurred. Such a hybrid system would have the ability to
evolve its healing capabilities, the rule set, when drastic
events occur but still perform system modifications in a
controlled manner through the rule selection table. In order
to validate such a system, however, re-verification must be
performed after new rule sets are introduced to ensure a
reliable system. The next section describes such a process
that can achieve validations while avoiding the traditional
state space explosion problem.

3 Dynamic controller verification
Thanks to advances in fault tolerance, reconfiguration,

and autonomic principles it is feasible to create a system
that can adapt to a great deal of environmental stress.
However, from a safety critical perspective these systems
are inadequate. Traditionally, safety critical systems
undergo rigorous checks before being fielded, either
through a formal methods development process, FMECA
and Fault Tree analysis, or integrated safety monitors. An
ever-changing state space, the directed graph representing
all possible operational state for a system, forces a
traditional verification scheme to continually recheck the
entire space.

The remainder of this section will introduce some
attempts to solve this problem. Formal methods for
autonomic systems attempt to include the model
verification software within the controller in such a way
that adaptive behaviors are noticed and evaluated.
Reachability analysis creates a system model and uses
vector trajectories and boundaries to calculate reachable
domains of a state space representation. Finally, runtime
and on-the-fly verification techniques attempt to recheck an
online system by reducing the state space in some manner.

3.1 Formal methods
In [12] Vassev and Hinchey describe a development

framework for formally specifying, validating, and
generating autonomic systems. This autonomic system
specification language (ASSL) is a multi-tiered framework
that treats autonomic elements (AE) like software agents
that are capable of managing their own resources and
relationships with other elements. ASSL takes a formal
specification and generates JAVA code containing inline
guards to evaluate activities and carry out definitive actions.
The described autonomic nano technology swarm (ANTS)
system is intentionally a high level model. Each AE is a

164 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

hardware device of a certain class, either a worker or
manager. Workers are required to regularly transmit status
messages to their manager, and the self-healing action of
the system is to replace inoperable units with new elements
from another system with a greater population or from a
base station. While this approach can indeed produce
verified software, the variability of the target system is very
limited and therefore the controller and state space will
experience little or no change.

ANTS research is continued in [10] with a greater
focus on verification. The four methods of Communicating
Sequential Processes, Weighted Synchronous Calculus of
Communication Systems (WSCCS), Unity Logic, and X-
Machines are evaluated as assurance techniques. A
combination of WSCCS and X-Machines is ultimately
deemed a possible way to model emergent behaviors of the
swarm system, but such a model would only verify the
behaviors after the fact not before use by the controlling
AE.

3.2 Reachability analysis
Reachability analysis attempts to provide safety

verification of continuous-time hybrid systems. Two
categories of analysis are presented in [13]. The first is the
decision whether or not a continuous region is reachable
from another without explicated computation of the state
space. The second is over-approximation of reachable space
in order to provide a general idea of safety properties.
Because of the infinite number of states in a continuous
system, analysis is impossible without a discrete event
model.

Both categories are centered on the idea of simplifying
the calculated space in order to avoid the traditional state
space explosion. Techniques such as addressing only
barriers between regions or approximating irregular regions
with convex polyhedrons are presented. However,
simplification of these state space regions results in
difficulties proving properties are not satisfied. Ultimately,
even after these tradeoffs, reachability analysis is too
complex for application to real world problems because the
dimensionality is too great [13].

3.3 Runtime or on-the-fly verification
The basis of runtime verification is monitoring an

online system’s actions and ensuring safety properties are
observed, either by forbidding illegal actions or forcing
corrective action when an unsafe condition is reached. In
[11] Alotaibi and Zedan employ a simple, expressive rule
set composed of condition, action, and consequence tuples
to create a safety policy. Safety assertions are inserted into
agent implementation software to allow for monitoring, but
the safety policy and behavioral software are developed

independently. This allows for easy policy modification
simply by updating the rule set and rerunning the insertion
process.

Alotaibi and Zedan do not address adaptive systems but
their descriptions of control mechanisms are valid for any
monitored system. These mechanisms can either be
enforcement or validation structures. Enforcement is more
invasive as it prevents actions from being carried out if an
assertion fails.. Validation, on the other hand, is recovery
oriented and system actions are allowed to take place if an
assertion fails. The failure is then reported to the controller
so any possible corrective action can be taken. While
enforcement provides stricter safety control, validation
allows the system more autonomy. For example, in the
event of a severe, unrecoverable failure an enforced system
would likely be unable to take any further action whereas a
validation approach may allow a system to be able to
gracefully shutdown despite assertions failures.

A preliminary verification framework similar to [11]
for adaptive systems is presented in [17]. The paper
proposes a framework consisting of a configuration model
that defines invariant system requirements in an abstract
manner and a reconfiguration activity model that defines
proper management actions for the system. Accordingly, a
proposed configuration is verified against the configuration
model to ensure the resulting system functions properly,
and that configuration’s deployment is validated against the
activity model to ensure reconfiguration is achieved safely
and completely. While the framework in [17] is only a
preliminary design, its current disadvantage is the type of
adaptable system it addresses. While a configuration is
selected and validated at runtime against these models, the
configurations from which to choose are static. Therefore,
this framework requires a planned reconfiguration system
as described in the previous section.

A model-based framework for runtime verification is
presented in [14] which employs both the enforcement and
validation paradigms. The framework executes a checker on
a system model in an interleaved manner with the system
implementation’s execution. To reduce computation
requirements, the system is only checked in critical states
and reduces the explored state space by starting from the
corresponding state in the model.

Since the model is being verified rather than the
implementation, the checker can advance in the model past
the currently executing state in any idle time. By checking
the future path of execution in an enforcement manner
problems can be avoided by directing the system to another
path. However, if execution demands are too high the
verification process can allow the system to proceed ahead
of the checker. In this situation a post-checking, validation
role is taken by the checker. Any encountered problems are

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 165

reported to the execution thread to be dealt with.

While the model-based framework provides versatility
in verification techniques and greatly reduces computation
requirements by reducing the searched state space, the
possible disconnects between the model and
implementation are a substantial disadvantage. Errors
detected in the model will not necessarily be encountered in
execution. Therefore the checker is conservative by nature,
possibly overly so. Component implementations that
deviate from the model will enhance this conservative
nature and possibly create inconsistency cases during
runtime. Another disadvantage is that the checker requires
component models to be created and proven correct offline
prior to use. Consequently, this verification framework
must be used on a planned reconfiguration system or
component modeling must be at a high enough level to
allow for unanticipated component reconfiguration that will
not invalidate the model.

A multi-agent runtime validation approach is presented
in [15]. Each agent in the system is a Finite State
Automaton that learns through an evolutionary algorithm
(EA). The system consists of either many agents acting on a
single execution plan or many agents with individual plans.
In development, offline learning is applied to each unique
task in order to develop the most efficient plan of execution.
Once fielded, the evolutionary algorithm’s population size
is reduced to one and allowed only a single change per
generation. While this restraint produces a more predictable
learning system than a complex EA, it also restricts the
system to use in gradually changing environments.

A final incremental verification system that also uses
the validation paradigm is presented in [16]. The
Cooperative Intelligent Real-Time Control Architecture
(CIRCA) uses partial verification techniques in each phase
of online controller synthesis to ultimately produce a
verified controller, which ensures both state transition paths
and logical timing requirements. A controller algorithm
executed at each action point selects safe actions for the
reachable states at that moment, using a model checker to
ensure the safety of each selection. Therefore, once the
controller has determined which states will possibly be
selected next in execution it has also determined that those
states are safe. Unsafe paths discovered in this process are
reported as counter examples and used by the algorithm to
revise the set of reachable states. A second algorithm is
used to verify reachability with respect to timed actions.
Essentially, the first algorithm verifies each portion of the
controller synthesis and the second algorithm verifies the
system by checking these portions as a whole.

To overcome the state space explosion this process
would normally experience Musliner and Pelican have
taken an on-the-fly approach to the state space calculation.

An implicit state space consisting of the initial state and set
of transitions is employed rather than an explicit
representation. Furthermore, only reachable successor states
and automaton products are computed in the synthesis
algorithm, rather than every discrete state in the system.
Once a reachability result has been calculate it is stored in a
continuation table for use by the next verification search if
that controller path has not been modified. These three
measures produce an efficient verification technique when
the controller algorithm is not forced to backtrack and flush
the cached results due to an unsafe controller path. They
report that the incremental verification tool saves up to 97%
of time on a sample problem versus the traditional complete
verification. Even when backtracking occurs and the results
cache is cleared, CIRCA produces little additional overhead
compared to a complete verification because, like any
verification tool, the majority of computation time is in the
state space calculations. [16]

CIRCA’s incremental verification process combines a
time-abstract state space search algorithm and a timed
automaton reachability algorithm to produce an on-the-fly
verification tool. Unlike Spears’ tool in [15] this process
includes timing restrictions allowing it to provide real-time
guarantees. However, no manner of system evolution is
specifically presented by Musliner and Pelican. In order to
employ this verification technique in an evolving system a
means to inform the controller of new states and system
capabilities must be implemented.

4 Semantic net framework
As we have discussed earlier, there are a variety of

properties that a potentially defective component of a safety
critical system may have and must be identified and
confirmed in any replacement component with similar but
not necessarily identical properties. We are examining a
framework based on semantic web methodologies for
organizing the properties of reusable computational
components that may be selected during initial system
design or during a recovery process for components that fail
while in service.

“The semantic web is an extension of the current Web
in which information is given well-defined meaning, better
enabling computers and people to work in cooperation”
[22]. Just as the current web has been based on ever
increasing complex description languages including HTML,
XML, and VRML the semantic data in the semantic web
has been represented by an ever increasingly complex
specification language ranging from RDF (Resource
Description Framework), DAML (DARPA Agent Markup
Language) to OWL (Web Ontology Language).

Extensive work has been done in building frameworks
for software engineering applications using the semantic

166 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

web together with formal semantics [19, 20, 21].

In our work, the behavioral view of a component might
be a model such as a Simulink or UML model.
Alternatively, the behavioral view might be represented by
a C language implementation of the component if targeting
a normal processor is desired while alternative behavioral
views might be represented in VHDL or Verilog if
hardware targets are planned.

Each of these behavioral views will have descriptions
that characterize the different capabilities of the component.
These capability descriptions can be searched for using
either exact or partial match capabilities of semantic web
systems. For example, a component might be a camera
mounted on a motion platform and one could locate the
component either by searching for a camera capability, a
motion platform capability, or both. Similarly, one might
search for a FFT component that had a specific latency or
power consumption, depending which property was
paramount.

For each component there will be formal description of
the precursor conditions and consequents that are associated
with a component. Thus for a computational component
there may be a “proof” of it’s worse case timing if used as a
C program and a different “proof” of it’s worse case timing
if used as a hardware component. An example of the
former might be an algorithm to estimate the timing on a
microprocessor while an example of the latter might be a
petri-net model containing unit delays of the critical paths.
The pre-conditions for re-using the “proofs” will be clearly
laid out so that compositional verification of an assembly of
components can be carried out without necessarily having
to do a complete verification of the entire system when the
components are used in accordance with their “proofs” thus
avoiding the state space explosion problem discussed
earlier.

Similarly, proofs about other properties such as safety
properties may be maintained in a petri-net representation
of the component so that the properties of live-ness and
deadlock can be ascertained without having to prove these
properties in the specific context of reuse. There will be
times when a component is used in ways that might require
partial proof reconstruction, such as when a component is
used not exactly in the way it was originally intended or
when some pre-conditions do not hold.

5 Conclusions and future work
Many challenges still exist for the development of a

safety critical adaptive system. While a general approach
for such a system is desirable, the tradeoffs involved in
selecting the system’s capabilities are currently too
polarizing for a panacea approach to be designed.

Extensive work has been done in the field of fault
diagnosis and therefore a selection of diagnosis techniques
for a system can be relatively straightforward. If each
hardware element is controlled by its own agent, as with an
autonomic element, the agents ensure proper operation of
the hardware and proper interaction with the rest of the
system. This hierarchical approach allows the system
controller to only be concerned with global system states
and transitions and not everything down to the hardware
level.

The methods for handing a failure in an adaptive
system vary considerably. A simple system can employ a
planned reconfiguration approach that is validated offline
and easily implemented in the controller. However, most
systems are too complex for this approach or they require
the ability to react to unforeseen environmental changes.
GAs allow more reconfigurable systems than any other
approach, but their nondeterministic nature can endanger
time critical systems that must ensure adaptation in a short
period of time. While a learning classifier system is more
adaptive than a planned reconfiguration system is still
evolves in a controlled manner that can have difficulty
coping with a drastic system event. Ultimately, a hybrid of
a small population GA and a LCS would provide the best
way for a system to carry out changes to controller after a
wide range of failure events. The GA would enable the
system to develop new rule sets to cope with environmental
changes, and the LCS would execute those rules on the
system in a timely, controlled manner.

The state space explosion problem has traditionally
plagued online V&V systems. An incremental approach of
only addressing a small portion of the state space in each
verification cycle can overcome this issue. While all three
runtime verification tools presented above have merit, the
on-the-fly controller in [16] provides the most versatile
online verification technique. A combination of a hybrid
adaptive controller and this on-the-fly validation may result
in a successful, general use adaptive safety critical system.

Finally, our approach to using a semantic web
representation of the design space will allow for inclusion
of a variety of semantic knowledge, from behavioral
descriptions including software codes to formal
specifications of the expected pre-conditions for behavioral
code reuse.

6 References
[1] J.O. Kephart and D.M. Chess, "The vision of
autonomic computing," Computer, vol.36, no.1, pp. 41-50,
Jan 2003.

[2] H. A. Muller, L. O’Brien, M. Klein, and B. Wood.
Autonomic Computing. Technical report, Carnegie Mellon

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 167

Univeristy and Software Engineering Institute, April 2006.

[3] J. Zeppenfeld, A. Bouajila, A. Herkersdorf, W.
Stechele, "Towards Scalability and Reliability of
Autonomic Systems on Chip," Object/Component/Service-
Oriented Real-Time Distributed Computing Workshops
(ISORCW), 2010 13th IEEE International Symposium on ,
vol., no., pp.73-80, 4-7 May 2010.

[4] F. Siefert, F. Nafz, H. Seebach, and W. Reif, "A genetic
algorithm for self-optimization in safety-critical resource-
flow systems," Evolving and Adaptive Intelligent Systems
(EAIS), 2011 IEEE Workshop on , vol., no., pp.77-84, 11-
15 April 2011.

[5] M. Khalgui and H.M. Hanisch, "Reconfiguration
Protocol for Multi-Agent Control Software Architectures,"
Systems, Man, and Cybernetics, Part C: App. and Reviews,
IEEE Trans. on, vol.41, no.1, pp. 70-80, Jan. 2011.

[6] P.J Fleming and R.C Purshouse, Evolutionary
algorithms in control systems engineering: a survey,
Control Engineering Practice, Vol. 10, Issue 11, November
2002, pp. 1223-1241.

[7] Yuanshun Dai; Yanping Xiang; Yanfu Li; Liudong
Xing; Gewei Zhang, "Consequence Oriented Self-Healing
and Autonomous Diagnosis for Highly Reliable Systems
and Software," Reliability, IEEE Transactions on, vol.60,
no.2, pp.369-380, June 2011.

[8] S. Byttner, T. Rögnvaldsson, and M. Svensson,
Consensus self-organized models for fault detection
(COSMO), Engineering Applications of Artificial
Intelligence, Vol. 24, Issue 5, Aug 2011, Pages 833-839

[9] T. Rognvaldsson, G. Panholzer, S. Byttner, and M.
Svensson, "A self-organized approach for unsupervised
fault detection in multiple systems," Pattern Recognition,
2008. ICPR 2008. 19th Int.Conf. on , pp.1-4, 8-11 Dec.
2008.

[10] C. Rouff, M. Hinchey, T. Truszkowski, and J. Rash,
(2004). “Formal Methods for Autonomic and Swarm-Based
Systems”. 1st Int. Symposium on Leveraging Applications
of Formal Methods (ISoLA 2004). Cyprus.

[11] H. Alotaibi and H. Zedan, "Runtime verification of
safety properties in multi-agents systems," Intelligent
Systems Design and Applications (ISDA), 2010 10th Int.
Conference on, pp. 356-362, Nov. 29 - Dec. 1 2010.

[12] E. Vassev and M. Hinchey, "ASSL Specification and
Code Generation of Self-Healing Behavior for NASA
Swarm-Based Systems," Engineering of Autonomic and

Autonomous Systems, 2009. EASe 2009. Sixth IEEE
Conference and Workshops on , vol., no., pp.77-86, 14-16
April 2009.

[13] Hervé Guéguen, Marie-Anne Lefebvre, Janan Zaytoon,
Othman Nasri, Safety verification and reachability analysis
for hybrid systems, Annual Reviews in Control, Vol. 33,
Issue 1, Apr 2009, pp 25-36,

[14] Yuhong Zhao, Franz Rammig, Model-based Runtime
Verification Framework, Electronic Notes in Theoretical
Computer Science, Volume 253, Issue 1, 6 October 2009,
Pages 179-193,

[15] D.F. Spears. “Assuring the Behavior of Adaptive
Agents”. Agent Technology from a Formal Perspective.
Springer. 2006. Pre-Publication
URL: http://www.cs.uwyo.edu/~dspears/papers/chap.pdf

[16] D. J. Musliner, M. J.S. Pelican, and R. P. Goldman,
Incremental Verification for On-the-Fly Controller
Synthesis, Electronic Notes in Theoretical Computer
Science, Vol. 149, Issue 2, 14 Feb 2006, pp. 71-90.

[17] L. Akue, E. Lavinal, and M. Sibilla, "Towards a
validation framework for dynamic reconfiguration,"
Network and Service Management (CNSM), 2010
International Conf. on , vol., no., pp. 314-317, 25-29 Oct.
2010.

[18] Rolf Isermann. Fault-Diagnosis Systems: An
Introduction from Fault Detection to Fault Tolerance.
Springer 2006.

[19] J. S. Dong, J. Sun and H. Wang, “Z Approach to
Semantic Web”, International Conference on Formal
Engineering Methods (ICFEM'02), LNCS, Springer-Verlag,
pp. 156-167, Shanghai, 2002

[20] J. S. Dong, “Software Modeling Techniques and the
Semantic Web”, The 26th International Conference on
Software Engineering (ICSE'04), ACM/IEEE Press,
Edinburgh, Scotland, 2004

[21] Ontologies and the Semantic Web,
http://www.cs.man.ac.uk/~horrocks/Publications/download/
2008/Horr08a.pdf

[22] “The Semantic Web Made Easy”,
http://www.w3.org/RDF/Metalog/docs/sw-easy

168 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Everyday Cloud Computing with SaaS
Robert F. Roggio1 and Tetiana Bilyayeva1 and James R. Comer2

 1School of Computing, University of North Florida, Jacksonville, FL 32224
 2Computer Science Department, Texas Christian University, Fort Worth, TX 76129

Abstract - This paper consists of three major sections that
describe cloud computing services. The first section explains
what is cloud computing and also summarizes the: (1) benefits of
cloud computing from a business prospective and (2) different
levels of cloud computing architecture such as Software as a
Service (SaaS), Platform as a Service (PaaS), and
Infrastructure/Hardware as a Service (IaaS/HaaS). The Second
section compares three major SaaS providers’ services. The
following companies were selected for a comparative analysis:
Google, Zoho and Salesforce. The comparative analysis
compares applications of the three companies that are similar
products; such as: 1) Zoho and Google online office suit
applications, 2) Zoho CRM and Salesforce CRM and 3)
application markets that been launched by all three companies.
The final section describes the future of software-as-service
provided by cloud computing.

Keywords: Cloud Computing, SaaS, Zoho, SalesForce.com,
GoogleApps

1 Background

1.1 Cloud Computing Definition

 In the Information Technology world, cloud
computing is one of the hottest and most popular topics.
With the appearance of Web 2.0 and Web 3.0
technologies, the management of applications and data
storage has begun to shift from the personal servers to “the
cloud.” For many users, cloud computing is not a new
service as Google Docs has been in use for many years.
National Institute of Standards and Technology (NIST)
currently defines cloud computing as “a model for
enabling convenient, on-demand network access to a
shared pool of configurable computing resources (e.g.
network, servers, storage, applications, and services) that
can be rapidly provisioned and released with minimal
management effort or service provider interaction.”[1]
This Cloud model promotes availability and is composed
of five essential characteristics: On-demand self-service;
Broad network access; Resource pooling; Rapid elasticity;
Measured Service. Figure 1 shows a typical cloud
computing system.

 Cloud Computing provides hosting different
applications and information technology services so that

they can be deployed and scaled quickly. Cloud providers
accomplish this by investing in large, general-purpose
compute infrastructures and using virtualization to divide
this infrastructure up between multiple consumers and
services. Cloud capacity can be easily added or removed
to a specific service. As total capacity demands grow, the
cloud provider deploys additional low-cost.

Figure 1: Cloud Computing System. [2]

1.2 Benefits of Cloud Computing

 Rajkumar Buyya, James Broberg, and Andrzej
M. Goscinski detailed several business benefits to building
applications in the cloud [3]:

 Almost zero upfront infrastructure investment: If
a company is considering the development of a large-
scale system, it may cost a fortune to invest in real estate,
physical security, hardware (racks, servers, routers,
backup power supplies), hardware management (power
management, cooling), and operations personnel. Due to
the high upfront costs, the project would typically require
several rounds of management approvals before the
project could even be initiated. With utility-style cloud
computing, there is no fixed cost or startup cost.

 Just-in-time Infrastructure: In the past, if your
application became popular and the systems or the …
infrastructure did not scale, you became a victim of your
own success. Conversely, if you invested heavily and did
not get a ROI, you became a victim of your failure. By

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 169

deploying applications in-the-cloud with just-in-time self-
provisioning, you do not have to worry about pre-
procuring capacity for large-scale systems. This increases
agility, lowers risk and lowers operational cost because
you scale only as you grow and only pay for what you use.
Source of these ideas?

 More efficient resource utilization: System
administrators usually worry about procuring hardware
(when they run out of capacity) and higher infrastructure
utilization (when they have excess and idle capacity).
With the cloud, they can manage resources more
effectively and efficiently by having the applications
request and relinquish resources on-demand. Insufficient
or excess computing power / resources are not issues…

 Usage-based costing: With utility-style pricing,
you are billed only for the infrastructure that has been
used. You are not paying for allocated but unused
infrastructure. This adds a new dimension to cost savings.
You can see immediate cost savings (sometimes as early
as your next month’s bill) when you deploy an
optimization patch to update your cloud application. For
example, if a caching layer can reduce your data requests
by 70%, the savings begin to accrue immediately and you
see the reward right in the next bill. Moreover, if you are
building platforms on the top of the cloud, you can pass on
the same flexible, variable usage-based cost structure to
your own customers.

 Reduced time to market: Parallelization is the one
of the great ways to speed up processing. For example,
assume that for one compute-intensive or data-intensive
job that can be run in parallel takes 500 hours to process
on one machine. With cloud architectures, it would be
possible to spawn and launch 500 instances and process
the same job in 1 hour. [4] Having available an elastic
infrastructure provides the application with the ability to
exploit parallelization in a cost-effective manner reducing
time to market.

1.3 Cloud Computing Architecture

Cloud Computing aims to be global and to provide such
services to the masses, ranging from the end user that
hosts its personal documents on the Internet to enterprises
outsourcing their entire information technology
infrastructure to external data centers.

 Figure 2 represent the layered organization of the
cloud stack from physical infrastructure to applications.
These abstraction levels can be viewed as a layered cloud
computing architecture where services of a higher layer
can be composed from services of the underlying layer.
The cloud computing architecture consists of: Software as
a Service (SaaS), Platform as a Service (PaaS), and
Infrastructure/Hardware as a Service (IaaS/HaaS).

 Infrastructure as a Service (IaaS) provides
general on-demand computing resources such as

virtualized servers or various forms of storage (block,
key/value, database, etc.) as metered resources. It is also
known as Hardware as a Service (HaaS). This is often
viewed as a direct evolution of shared hosting with added
on-demand scaling via resource virtualization and use-
based billing.

Figure 2 - Cloud Computing Architecture. [5]

 Platform as a Service (PaaS) provides an
existent managed higher-level software infrastructure for
building particular classes of applications and services.
The platform includes the use of underlying computing
resources. PaaS offers a faster, more cost-effective model
for application development and delivery. PaaS provides
the entire infrastructure needed to run applications over
the Internet.

 Software as a Service (SaaS) is a software
distribution model in which applications are hosted by a
cloud service provider and made available to consumers
over a network (usually the Internet). Organizations do
not install software on their own computers; instead, they
simply use their browser to access the software as it is
provided over the Internet (software provided as a
service). SaaS is becoming an increasingly prevalent
delivery model as underlying technologies that support
web services and service-oriented architecture (SOA)
mature and new developmental approaches become
popular. SaaS is most often implemented to provide
business software functionality to enterprising customers
at a low cost while allowing those customers to obtain the
same benefits of commercially licensed, internally
operated software. In addition to be cost efficient, it
allows users to avoid the complexity of installation,
management, support, licensing, and high initial cost of
commercially licensed, internally operated software.

 As a part of a business model of cloud
computing, SaaS has significant value.
Controllingsoftware licensing costs are reduced by
utilizing a software service provider licensing, patches,
upgrades. An organization pays for what it needs

170 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

(software elasticity). A cloud service provider allows the
customer to establish an approved applications list and
keep it enforced. Also IT departments do not need to
support random applications specific to one of users.
Further, streamlining application support improves
efficiencies, expertise and keeps everyone working and
controlrogue software installations. Finally, infrastructure
expenses are reduced because web-based application
access, which allows companies to purchase only the
amount of desktop power needed for company service
requirements.

 According to a study by Mertz, SaaS is becoming
increasingly important in most enterprise application
software (EAS) markets. Worldwide software revenues for
SaaS delivery are forecasted to grow by 19.4% overall
between 2008 and 2013. [6] Researchers see promising
opportunities for the successful adoption of SaaS,
especially in those application markets requiring low
levels of system customization (e.g., Office suites).[7]

 Today, SaaS is visible in such applications as
Salesforce.com and Google Apps. Salesforce.com,
which relies on the SaaS model, offers business
productivity applications (CRM) that reside completely on
their servers. This allows costumers to customize and
access applications on demand. Companies have also
unveiled SaaS applications for individual customers.
Examples include Google’s spreadsheets and Microsoft’s
OneCare service; the latter provides virus and spyware
cleanup for personal computers.[8] Other examples
offered by variety of cloud providers include: Customer
Service, HR, Project Management, Web Conferencing,
Helpdesks, Wikis, Blogs and other intranet like
applications.

 There are several different cloud providers.
Depends on your business goal, needs and budget, you
always can find a suitable cloud computing provider.

2 Google, Zoho, and Salesforce
Comparison

 According to David Hilley, cloud computing is a
promising industry on the cusp of high growth that is
attracting many potential entrants.[9] There exists a
variety of software-as-service providers and vendors that
offer tailored services depending on client’s business
needs and budget. Figure 3 shows major players in cloud
computing world.

 The business and economical reasons for cloud
computing are a direct result of various advantages
enjoyed by Cloud Computing technology heavy weights
such as Google, Amazon, Salesforce, Zoho and others.
Three competitive companies were selected for this study:
Google Apps, Zoho and Salesforce. All three companies

offer wide spectrum of services that are competitive with
each other. For example, both Google and Zoho offer
office suite applications that provide consumers virtually
everything needed in terms of office software that are
available online through their respective websites. The
services are comprehensive, reliable, and surprisingly
inviting. These services include e-mail service, calendar,
document editor, spreadsheet, and other secondary office
applications. Zoho also offers Customer Relationship
Management (CRM) that is similar to CRM services
offered by Salesforce (i.e., accounts, contacts, quotes,
etc.). However, Salesforce offers more comprehensive
and advanced services versus ZoHO. From the consumer’s
prospective, it is prudent to compare services and pick the
perfect service matching one’s own business needs.

Figure 3: Major Cloud Computing Providers. [10]

 Table 1 (See Appendices) shows the compatible
services of three different cloud computing providers. The
table was created after detailed research of service
spectrum of three SaaS providers.

 What follows below is more focus comparative
review of the major cloud computing services; such as: 1)
Zoho and Google online office suit applications, 2) Zoho
CRM and Salesforce CRM and 3) application markets that
have launched by all three companies.

2.1 Zoho and Google Office Suit Applications

 With the advancement of web technologies over
the past several years, Internet tools offer many of the
same features as MS Office at a greatly reduced cost or for
free. These tools or applications work within any web
browser. This past year, Google received significant
attention with its Google Docs and Spreadsheets, and
GMail applications. The Zoho Suite, probably a better
integrated but less-known, offers the same tools as Google
suite free to individuals at a lower price. For example, the
Google Apps suite is priced at $50 per user/year and the
equivalent Zoho Business service is priced at $40 per
user/year. Zoho supporter Raju Vegesna has stated that
“Zoho is targeted at business users while Google's aiming

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 171

for consumers, Zoho offers 20-30% more functionality
than Google”. [11]

 Both Google Apps and Zoho Business Service
offer browser-based office applications such as word
processor and spreadsheet; communication tools like chat
and email, and collaboration tools like project managers
and wikis. However the business-oriented Zoho and the
consumer-oriented Google applications do vary slightly in
offered services. This section of the study compares Zoho
and Google's currently offered office web services.

 Both Google Docs and and Zoho Business
Service are available as stand-alone products and offer
reasonably full-featured word processing capabilities.
Google Docs has a simple look to it, but it contains most
of the basic formatting options available in Word. More
advanced features such as pagination and adding footnotes
are not available with Google Docs. Fortunately, users
can save their Google documents in different formats—
including Word, RTF, PDF, HTML and OpenOffice.
Zoho Writer has the appearance of a traditional word
processor interface offering all the features of Google
Docs plus a few more. On the file-sharing side, both
Google and Zoho have the ability to collaborate document
production with other users including in real-time. Zoho
makes it easier to work with MS Word with its recently
introduced plug-in, which lets a user create a document in
Word or Excel then exports it directly to Zoho so other
participants can collaborate. In addition, both Zoho and
Google also have a Publishing feature, which sends your
document directly to a Web site or blog without requiring
any knowledge about HTML or other Web software.

 Generally speaking, the Google Calendar is
easier to use than Zoho’s. It is simple to add a meeting to
the calendar and update scheduled events. One of its finer
features is the ability to receive notifications by e-mail or
by SMS text message for event reminders, daily agenda
and invitations. The disadvantages include not being able
to sync it with other calendar programs.

 Unlike Google Calendar, the Zoho Calendar is
not available as a stand-alone product. To use it, you must
register for the Zoho Virtual Office Suite. Although it is
similar to Google Calendar, Zoho's Calendar is not as easy
to use. However, Zoho does provide a task list as well as
the ability to export your calendar to other applications;
features Google Calendar does not provide.

 Google Spreadsheets and Zoho Sheet offer basic
spreadsheet functions as well as more advanced formulas.
They differ, though, in a couple of respects. Google does
not allow the creation of charts while Zoho provides four
basic chart templates. Also, Google permits real-time
collaborative editing, but Zoho does not.

 Zoho offers Zoho Show, which lets users create,
edit, publish and show presentations remotely. It is
important to note that Zoho, as with other web-based

applications, cannot match the features offered by
PowerPoint. Perhaps Google understands this because it
does not provide a presentation application.

 Gmail was one of Google's first efficient tools,
and it continues to be the most popular. All users receive
at least 2.8GB of mail storage, if not more. GMail is quick
and is accessible on your mobile phone. Zoho's E-Mail
component, like its Calendar, is offered only through the
Zoho Virtual Office Suite, but Zoho E-mail offers many
more options than GMail. In addition to being able to
organize your e-mail by folders, you can save an e-mail as
a task, calendar item, note, document or other item.

2.2 Zoho and Salesforce CRM Comparison

 The following table (Table 2) compares different
characteristics of the Zoho CRM and Salesforce CRM
services:

 Both Zoho and Salesforce CRM are similar in
functionality and base features. Therefore, cost and
business needs are the driving factors in determining
which one to utilize. Zoho is a good choice for small
companies with limited budgets as it is free for the first 3
users. Additionally, it is also scalable allowing for future
growth while providing many initial features. On the
other hand, larger companies tend to benefit from
Salesforce and the integration that has been developed
between Salesforce and other business applications.
Salesforce is a building out platform development offering
excellent and comprehensive enterprise solutions.

 While Salesforce is not a better option than Zoho
as far as a CRM service is concerned, Salesforce is a safer
choice for a larger companies and enterprises. However,
Salesforce cloud services do potentially offer superior ROI
than Zoho. Salesforce CRM can be integrated with Google
Apps (Docs, Gmail, etc) if a company is using Gdocs.

2.3 Application Market from Zoho, Google
and Salesforce

 Table 3 (See Appendix) compares the cloud
service applications offered by the three companies. The
comparative table is based off of information provided
several resources including websites of each provider [12],
[13], [14] and web-based articles concerning the Zoho
Marketplace, [15] Google Apps Marketplace [16] and
AppExchange [17].

 All three companies generated the cloud service
market in order to expand their own already existing
services. Zoho, Google and Salesforce have increased
their presence by letting third-party companies or
developers create, sell or buy applications that integrate
with their cloud service applications. Understanding the
dominate presence of cloud giants like Google, Zoho has

172 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

collaborated with Google Apps creating one of the biggest
partners of the Google Marketplace. Applications are
created using Zoho Creator that easily integrate with
Google Apps. Salesforce has not collaborated with Google
and has its own platform to create custom applications for
AppExchange.

 The cloud computing market continues to grow
each year with AppExchange having the most number of
existing applications on market; around 1300 applications.
AppExchange leads the market due in part to the fact that
Salesforce launched it in 2006; several years before Zoho
and Google started their cloud application marketing.

 The corporate environments and business
strategies are very different among these three companies.
Zoho offers complete freedom to developers and does not
charge for transactions. Their main revenue stream is
generated from license fees for another edition of Zoho
Creator. Google is not as generous to developers; third-
party companies keep just 80% of revenue and pay a $100
to become a vendor. Out of the three companies,
Salesforce has the most expensive service.

3 Future: Cloud and SaaS

 Cloud computing has the potential to be as
routine as traditional services such as electrical, telephone
or water utilities. Cloud computing users would simply
subscribe and pay for the usage in the same manner as
traditional utilities. The primary attraction likely for
continued growth is that it allows users and businesses to
have access to needed technological infrastructure without
having to invest in costly servers and information
technology. The saving in capital expenditures allows
users to concentrate on their core businesses.

 The universal application of new applications is
also likely to result in cloud computing use and growth.
Developers would simply making new applications
available to the cloud computing service provider who in
turn place the new applications on its servers making new
resources instantly available to every subscriber at the
same time. The cost of marketing and selling new
applications would be avoided significantly reducing
indirect and direct overhead costs. This universal
application of the new resource would lead to huge
savings in computer time as newer software would be
instantly available without any need for downloading it on
to individual computers and system specific
reconfigurations would be avoided.

 In addition, the system requirements of end users
would be less of a factor. Computers would not require
high capacity hard drives as storage would be provided by
the service providers. This could greatly reduce the cost of
setting up information technology departments, which
again need their own service setups. It will also allow
users to keep what would otherwise obsolete computers in

production be for much longer. The key infrastructure
needs would be simple upgrades of present systems to
ensure fast access to the internet and the ability to use all
the services that are on offer.

 As all users will be using the same applications.
The portability of data and information will be easy
allowing companies to work worldwide by having all the
same information and data available to all
departments/offices/employees. This will greatly reduce
the investment of time and resources traditionally
expended on logistically managing uniformity across a
given company’s landscape.

 The need for very costly high end servers for
individual companies and institutions will become almost
zero, as they would have full access to the servers of the
service provider. What is expected is that the development
of services will include providing huge resources for
parallel computing. This expectation is just one aspect of
the possible future development of cloud computing.

 In Janna Anderson’s report, she mentions that
some experts predict that by 2020 most people will access
software applications online and share and access
information through the use of remote server networks
rather than depending primarily on tools and information
housed on individual, personal computers.

 The highly engaged, diverse set of respondents to
an online survey included 895 technology stakeholders
and critics. The study was fielded by the Pew Research
Center's Internet & American Life Project and Elon
University's Imagining the Internet Center.
Approximately 71% of the respondents agreed that "By
2020, most people won't do their work with software
running on a general-purpose PC. Instead, they will work
in Internet-based applications such as Google Docs, and in
applications run from smart phones. Aspiring application
developers will develop for smartphone vendors and
companies that provide Internet-based applications,
because most innovative work will be done in that
domain, instead of designing applications that run on a PC
operating system."[18]

 The 27% that disagreed with the above statement
believed that "By 2020, most people will still do their
work with software running on a general-purpose PC.
Internet-based applications like Google Docs and
applications run from smartphones will have some
functionality, but the most innovative and important
applications will run on (and spring from) a PC operating
system. Aspiring application designers will write mostly
for PCs."[19]

 Among the other observations made by those
taking the survey were: “large businesses are far less
likely to put most of their work ‘in the cloud’ anytime
soon because of control and security issues; most people
are not able to discern the difference between accessing

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 173

data and applications on their desktop and in the cloud;
low-income people in least-developed areas of the world
are most likely to use the cloud, accessing it through
connection by phone”. [19]

 So cloud computing software-as-service has a
promising future. However, this promising future is
contingent on infrastructure of a very high caliber so that
connections to the Internet are not interrupted because of
poor power or other problems.

4 Conclusions

 It is expected that Cloud Computing will be the
wave of the future in terms of computing. It is only
logical that the cloud’s economies of scale and flexibility
will impact how technology evolves and how users
implement these technologies.

 Cloud computing offers real alternatives to IT
departments for improved flexibility and lower cost.
Markets are developing for the delivery of software
applications, platforms, and infrastructure as a service to
IT departments over the “cloud.” These services are
readily accessible on a pay-per-use basis and offer great
alternatives to businesses that need the flexibility to rent
infrastructure on a temporary basis or to reduce costs.

 Architects in larger enterprises find that it may
still be more cost effective to provide the desired services
in-house in the form of “private clouds” to minimize cost
and maximize compatibility with internal standards and
regulations. If so, there are several options for future-state
systems and technical architectures that these users should
consider in order to find the right trade-off between cost
and flexibility. Using an architectural framework will help
users evaluate these trade-offs within the context of the
business architecture and design a system that
accomplishes the business goal. All of which will
increase the return on investment as well as decrease
operational costs normally involved with in house systems
processing the same data as in the cloud.

 Cloud platforms are not yet at the center of most
people’s attention. The odds are good, though, that this
will not be the case in the next five years. The attraction of
cloud-based computing, including scalability and lower
costs, are significant and will unlikely be ignored.
Application developers should expect the cloud to play an
increasing role in the future.

5 References

[1] Peter Mell and Tim Grance, “The NIST
Definition of Cloud Computing,” National
Institute of Standards and Technology, 9/2011
[2] http://www.sandiegoitsystems.com/hosted-
services/attachment/san-diego-cloud-computing/

[3] Rajkumar Buyya, James Broberg , Andrzej M.
Goscinski, “Cloud Computing: Principles and Paradigms”,
A John Wiley &Songs, Inc. Publication (March 2011)

[4]J. Varia, Cloud Architectures,
http://jineshvaria.s3.amazonaws.com/public/cloudarchitect
ures-varia.pdf, 2007-07-01.

[5]http://texdexter.wordpress.com/2010/09/08/cloud-
computing-architecture-part-1/

[6] S.A. Mertz, C. Eschinger, T. Eid, H.H. Huang, C.
Pang, B. Pring “Market Trends: Software as a Service”,
Worldwide, 2008–2013, Gartner, Stamford, CT (2009)

[7] C. Pettey Gartner says 25 percent of new business
software will be delivered as Software as a Service by
2011 available at
http://www.gartner.com/it/page.jsp?id=496886

[8] Richmond, R. 2005, “Microsoft to offer free trial of
computer-security service”, The Wall Street Journal
(November 30).

[9] David Hilley, “Cloud Computing: A Taxonomy of
Platform and Infrastructure-level Offerings”, College of
Computing Georgia Institute of Technology, April 2009.

[10] Yan Han, “Cloud Computing: Case Studies and
Total Costs of Ownership”, University of Arizona
Libraries, Tucson, Arizona, 2009.

[11] http://lifehacker.com/315256/zoho-suite-vs-google-
docs

[12]www.zoho.com/creator/marketplace/marketplace..html

[13] www.google.com/enterprise/marketplace/

[14] www.salesforce.com.

[15] http://www.eweek.com/c/a/Enterprise-
Applications/Zoho-Apes-Salesforcecom-With-Apps-
Marketplace/

[16] http://googleblog.blogspot.com/2010/03/open-for-
business-google-apps.html

[17]http://www.zdnet.com/blog/saas/how-is-
appexchange-really-doing/324

[18] Janna Quitney Anderson, Elon University and Lee
Rainie, Pew Internet & American Life Project
June 11, 2010;

 [19] Janna Anderson, Lee Rainie, “The future of cloud
computing”, June 11, 2010;
http://pewinternet.org/Reports/2010/The-future-of-cloud-
computing/Overview.aspx

174 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

 Google Zoho Salesforce

Word Processor Google Docs Zoho Writer

Spreadsheet Google Spreadsheet Zoho Sheet

Slideshows Google Presentation Zoho Show

Web Clippings Google Notebook Zoho Notebook

Email Gmail Zoho Mail
Email and calendaring
(one of CRM1 features)

Chat Google Talk Zoho Chat Chatter

Wiki (Google acquired JotSpot) Zoho Wiki

Application Market Google Marketplace Zoho Marketplace AppExchange

Online Database Zoho DB

Project Management Zoho Projects

Web Conferencing
(Google acquired
Marratech)

Zoho Meeting

Customer Relationship
Manager

 Zoho CRM
Salesforce CRM solutions

Personal Organizer Zoho Planner
Email and calendaring
(one of CRM features)

Web site hosting Google Page Creator

Feed Reader Google Reader

Personalized Homepage iGoogle
(Zoho Start Page only for Zoho
Apps)

Table 1: Comparative table of providing services of three main SaaS providers

Characteristics Zoho CRM Salesforce CRM

Charges $12 or $25 per user per month $65 per user per month
Free service Free version Free 30-day trial

Integration Integration with their complete suite of Zoho
Apps

Integration via a web services API

Business focus Small to medium business Medium to large business
CRM Features Sales force Automation, Marketing Automation,

Support Management, Order Management,
Reporting & Analysis, Workflow Management,
Outlook Edition

Sales force Automation, Marketing
Automation, Document Management,
Contract Management, Customer Service &
Support, Analytics, Mobile CRM,
AppExchange

Company strengths - Lowest TCO with a rich feature set at a
competitive price
 - Flexible deployment options (On-Demand as
well as On-Premise CRM solution)
- Ease of usage with web-based user interface,
and Total customizability
- Affordability

 - Sales force automation
 - Ease of use
 - Intuitive interfaces
 - Established status
 - Flexible customization
 - Integration and extensibility

Table 2: Comparison of the Zoho CRM and SalesForce CRM

1 Customer Relationship Management (CRM)

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 175

Beyond Traditional Disaster Recovery Goals – Augmenting the Recovery

Consistency Characteristics

Octavian Paul ROTARU
American Sentinel University

Octavian.Rotaru@ACM.org

Abstract

For most organizations the disaster recovery goals

are limited to Recovery Point Objective (RPO) and

Recovery Time Objective (RTO). This perspective on

disaster recovery overlooks very important factors that

can contribute to the successful implementation of a

Disaster Recovery plan. Evaluating metrics beyond

recovery time (RTO) and recovery point (RPO) is

essential to meet the recovery commitments of an

organization.

The purpose of this paper is to review existing

Disaster Recovery metrics that can augment the

Recovery Point and Recovery Time and to propose new

metrics for Recovery Consistency.

Recovery Consistency Objective is measuring the

total data consistency of your Disaster Recovery

solution post recovery. Recovery Consistency Objective

(RCO) ads data consistency objectives to the disaster

recovery objectives of an organization, but often RCO

is not enough to evaluate consistency.

Going beyond the traditional disaster recovery

goals, this paper introduces an assessment method and

metrics for the consistency of the module interfaces in

addition to the module consistency. The RCO as well

as the proposed interface consistency metrics are

evaluated in the context of the seven disaster recovery

tiers defined by SHARE User Group.

Keywords: Business Continuity (BC), Business Resilience,

Disaster Recovery (DR), Disaster Recovery Goals, Recovery

Consistency Objective (RCO).

1. Introduction

A successful disaster recovery plan has well

defined goals that are in line with the business

requirements. Defining the recovery objectives is one

of the most important steps in creating a disaster

recovery plan and the objectives are the result of the

Business Impact Analysis (BIA).

The maximum acceptable downtime in case of a

disaster will vary depending on the nature of the

business and the financial impacts of the downtime.

Depending on the criticality of the data handled and

service rendered, the business continuity approaches

cover a wide range of options. Most organizations

today depend heavily on their IT infrastructure and

their data in order to be able to provide service to their

customers and the recovery objectives will drive the

selection of the disaster recovery strategy and the cost

of the IT infrastructure required to support it.

Cyber-infrastructure protection, business

continuity and disaster recovery, includes safeguarding

and ensuring the reliability and availability of key

information assets, including personal information of

citizens, consumers and employees [13], but reliability

and availability need to be backed by data consistency

in order to provide proper recovery.

Susanto [9] considers IT to be the most important

issues of all when discussing BC and DR, not only for

being the foundation and backbone of the business but

also because IT can play important roles in strategies

development and improving efficiency of the whole

BCP plan. In today’s complex business environment

data and application consistency is becoming more and

more important.

As outlined in [14], managing a combined store

consisting of database data and file data in a robust and

consistent manner is a challenge for large scale

software systems. In such hybrid systems, images,

videos, engineering drawings, etc. are stored as files on

a file server while meta-data referencing/indexing such

files is created and stored in a relational database to

take advantage of efficient search. Consistency

between database content and files is required for the

application to function properly post recovery.

Defining a Recovery Point and Recovery Time

objective is often not enough to insure successful

recovery following a disaster event. Recovery

Consistency Characteristics (RCC), as well as

Recovery Object Granularity (ROG) and Recovery

Time Granularity (RTG) need to be assessed in order

to discover risks to which the environment is exposed.

176 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

2. Metrics that augment the Recovery

Point and Recovery Time Objectives

Proper evaluation of a disaster recovery solution

requires well defined metrics and risk assessment. The

Recovery Time Objective (RTO) and Recovery Point

Objective (RPO) are usually driven by Service Level

Agreements (SLA) that the organization is

contractually or legally bound to.

RTO defines the time required to recover the lost

data while RPO define the potential loss of data (the

time gap between the most recent data point that can be

recovered and the disaster event).

Even if RTO and RPO are enough to measure

SLAs, these two metrics do not measure the overall

consistency of the date or the risks to which the

organization is exposed in case of a disaster event.

Meeting the defined RTO and RPO doesn’t mean that

processing can be resumed. The recovered data may be

inconsistent if components are recovered at different

points in time. More comprehensive metrics are needed

to assess the quality of the recovery plan.

The recovery metrics used by most organizations

in their business continuity plans fall into three main

categories:

1. Recovery Time Characteristics

1.1. Recovery Time Objective (RTO) is the main

Recovery Time Characteristics define for any

DR solution and defines how quickly service

(data and application) is recovered following a

disaster scenario.

1.2. Recovery Time Granularity (RTG) measures

the time spacing required for selecting a

recovery point. RTG defines a logical

recovery point selection.

2. Recovery Data Characteristics

2.1. Recovery Point Objective (RPO) defines the

time gap between the disaster event and the

point in time where data can be recovered. It

is essentially a measurement of how much

data (measured in time updates) is estimated

be lost following a disaster.

2.2. Recovery Object Granularity (ROG) is

measuring the granularity of the objects that

a disaster recovery solution is capable to

recover.

3. Recovery Consistency Characteristics

3.1. RCO measures the usability of recovered

data by the associated applications. RCO is

defined as percentages, evaluating the

number of entities that are consistent after

recovery.

RTG complements RTO and RPO in situations in

which logical failures are encountered. For example, a

data replication solution with a zero RPO and well

defined RTO will recover from a physical failure but

not from a logical failure. Data corruption that is not

detected in time will be replicated and compromise the

ability to recovery. In such a situation, if no other way

to recover exists, the RTG will be undermined, and

another recovery solution need to be put in place to

provide a recovery point in time in the past prior to the

disaster event. As a result, RTO will highly increase.

The object granularity defined by ROG can be a

storage volume, a file system, a database, a cluster

package or service (including all associated storage),

etc. Going below a volume or a file system in terms of

granularity proves in most situations to be very

expensive and requires manual intervention (labor

intensive).

Measures the Recovery Consistency

Characteristics in terms of only RCO is often not

enough and the purpose of the next sections of this

paper is to assess RCO and introduce new metrics to

complement it.

3. Why RCO is not enough

Data is point in time consistent only if all of the

interrelated data components are exactly as they were

at any single instant in time.

Disaster recovery plans usually define only

recovery point and recovery time objectives. The

Recovery Time Objective (RTO) is the duration of

time within which a business process must be restored

after a disaster in order to avoid unacceptable

consequences associated with business continuity

disruptions. The Recovery Point Objective (RPO) is

the maximum tolerable period in which data may be

lost. In many circumstances, the consistency of the data

may be compromised even if the RPO and RTO are

met.

In this context the introduction of the Recovery

Consistency Objective (RCO) is necessary in order to

evaluate the data consistency following recovery. RCO

is defined as a percentage measuring the deviation

between the actual and the targeted state of business

data across systems.

RCO is calculated as a percentage that measures

the number of consistent modules of the system after

recovery reported to the total number of modules of the

system:

��� = �
� = �

� − 	
�

c = Number of Consistent Modules

t = Total number of modules

i = Number of Inconsistent Modules

where � = � + 	.
Even if the recovery point objective and recovery

time objective are properly evaluated and can be met,

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 177

the system can be restored in an inconsistent state, and

some of the applications may not be able to properly

recover.

Let's consider as an example a complex system

that is spanning across multiple storage systems. In

case replication is synchronous for all storage systems

the alternate site will always be in sync with the main

production site and data and application consistency

will be preserved. However, if the storage systems are

using different replication techniques, then the

recovery point will be different for each of them.

Even if the general RPO is preserved (all storage

frames at the alternate site have data at a point in time

lower than the general RPO), the difference between

the recovery points of different storage devices may

result in data inconsistency between applications.

Modules may try to access data assuming that it is

in sync and fail to find the records that are needed.

Similar inconsistencies may occur in case different

replication techniques are used for data inside the same

frame (synchronous and asynchronous).

Depending on the criticality of the application and

the way applications or modules are implemented, such

application data inconsistencies (different recovery

points) may prolong the recovery time and may require

manual intervention. Evaluation and correction will

take time and extend the recovery time beyond what

the business can tolerate.

The recovery consistency objective is very

important in such situations and reflects the individual

requirements of corresponding business data cross-

system consistency.

An unplanned IT outage can equate to a disaster,

depending on the scope and severity of the problem.

RCO is more important than RTO and RPO in the

context of BCP processes. RPO and RTO emphasize

the traditional IT Disaster Recovery Planning, while

RCO goes beyond DRP. An important part of

preparing for a disaster is to understand the type of

risks your organization is facing. The risk of data

inconsistency following disaster recovery is measured

by RCO.

The cost associated with creating and assuring

availability for the enterprise rise dramatically as you

approach the requirement for 100% availability. In

certain contexts data inconsistency is acceptable as

long as system availability is maintained and downtime

is reduced. In other business environments data

inconsistency may have staggering costs.

4. Improved consistency assessment

metrics for disaster recovery

RCO measures the usability of recovered data by

the associated applications. RTO calculated as

described above does not take into consideration

interfaces/links between application modules.

Let's assume for example that our system has 3

modules, and each module is consistent after recovery.

In this example the RCO is 100%. However, if the

point in time recovery for the 3 modules is different,

some of the links between modules may be

inconsistent.

In my view interfaces/links between modules of

the same system need to be considered when

calculating the overall consistency of the system

following recovery. If all modules except one are

recovered at the same point in time and one module at

a different point in time, the interfaces between the

module with the different recovery point and the others

may be compromised.

A better way to asses over consistency of the

system is to combine RCO with a consistency objective

for module interfaces (Recovery Interface Consistency

Objective).

The proposed RICO can be calculated as a

percentage as well based on the following formula:

���� = � �	�	 = �
�	 − 		
�	

ci = Number of Consistent Module Interfaces

ii = Number of Inconsistent Module Interfaces

ti = Total Number of Module Interfaces

Combining RCO and RICO into a single

measurement for consistency is more practical and can

be achieved by merging RCO and RICO into one

metric. The proposed measurement for recovery

consistency is Recovery Total Consistency Objective

and is calculated based on the following formula:

���� =
 ∗ ��	�	� + � ∗ �

�
��

 + �

where n and m are weigh parameters that can be

defined based on the number of modules and interfaces

and the importance of interfaces vs modules.

RTCO is covering both module consistency and

interface consistency providing a better measurement

than RCO.

5. Disaster Recovery Tiers and Goals

The SHARE User Group established 7 tiers of

Disaster Recovery solutions. Each of these tiers

addresses different requirements and corresponds to a

different set of disaster recovery goals. The table below

provides disaster recovery goals estimated for each of

178 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

the 7 Disaster Recovery tiers. Understanding the 7 tiers

of Disaster Recovery and the goals associated helps

organizations evaluate the DR solution that they

currently have in place and determine what level is

matching their business requirements.

Tier 0 - No offsite data

Tier 0 has no DR solution in place. There is no

alternate location (hot site) available, no saved

information, and no documentation and DR plans. Tier

0 offers no recovery options following a disaster. The

ability to recover following a disaster is completely

unpredictable and exposes the business to the risk of

not being able to recover.

No DR goals can be defined and recovery time and

recovery point are unpredictable.

Even if backups are done, the solution is

categorized as Tier 0 if the backups are stored at the

same location as the production environment and no

proper vaulting procedure is in place.

Tier 1 – Off-site vaulting

Tier 1 DR is relying on backups that are stored at

an offsite storage facility (vaulting). No alternate

environment (location, hardware, etc.) is available

where to restore the date in case of a disaster.

RCO depends on the consistency of the backups.

Backups taken at different times for different

application modules may render the application or

some of its modules and interfaces inconsistent.

RPO is defined depending on the frequency of the

backups. RTO is very hard to define - as a new site

needs to be built from scratch (location, infrastructure

and equipment), and usually RTO is higher than a

week. Recovery time is dependent on when hardware

can be supplied or when a building for the new

infrastructure can be located and prepared, and can

take months.

Tier 2 – Offsite vaulting with a hot site

Tier 2 is relying on backups sent offsite for

recovery (same like) Tier 1 plus a hot site. An alternate

location is available and backups can be transported

there from the offsite storage facility in the event of a

disaster.

The availability of a hot site reduces the recovery

time. RTO can be estimated and is lower than in Tier 1.

No time is required to locate an alternate location,

purchase and install hardware. The RTO is driven by

the time required to recall the backups at the hot site

available and load them (restore). RCO and RPO are

similar with those offered by Tier 1.

Tier 3 - Electronic Vaulting

Tier 3 includes everything offered by Tier 2 plus

electronic vaulting of a subset of the critical data.

Electronic vaulting requires communication lines

between the 2 sites and the creation and transmission

of backups (traditional backups or data replication)

more frequently than traditionally in the regular backup

process. The recovery time improves and can be as low

as one day. The recovery point improves for the critical

data that is electronically vaulted to the remote site.

The recovery consistency objective is the same like in

Tier 2 – the solution continues to be exposed to the risk

of inconsistency. There is no notable RCO

improvement when compared with Tier 2.

Tier 4 - Electronic vaulting to secondary active site

Tier 4 is comprised of two data centers with

electronic vaulting between the two sites. The

secondary site is also active and recovery can be bi-

directional.

The workload is shared between the two active

sites and critical data is continuously transmitted

between them, while the recovery of non-critical data

continues to rely on off-site vaulting.

Data loss is still possible in Tier 4 so the recovery

point depends on the frequency with which the two site

are synchronized

The recovery time is lower, but the risk of

inconsistency still exists – between critical and non-

critical data.

Tier 5 - Transaction integrity (two-site, two-phase

commit)

Tier 5 maintains selected data in sync between the

2 sites. Transactions involving the selected critical set

of data will be committed in the same time at both

locations (single commit scope). Both primary site and

the secondary site need to be updated before the update

request is considered successful. A high bandwidth

connection is required between the two sites.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 179

Recovery consistency is improved, but it is unsure

if transaction integrity of critical data is enough to

make the whole consistent.

Tier 6 - Zero or near-zero data loss

Tier 6 involves immediate transfer of data to the

alternate site. Data replication is used in order to

maintain the two locations in sync.

The recovery time is very low as well as the

recovery point (data is in sync – so the data loss is

minimal or zero).

There is not dependence on the applications or

other resources to provide data consistency. Recovery

consistency is assured. Data is considered lost only if a

transaction has commenced but the request was not

satisfied. This tier encompasses zero loss of data and

almost immediate transfer to secondary platform. In

such a configuration RCO is usually100%.

6. Conclusions

Disaster recovery architecture and plans are driven

by business requirements and consistency is often

overlooked and not properly evaluated as a disaster

recovery parameter.

The goal of this paper was to introduce new metrics

for consistency following disaster recovery. Interface

consistency is introduced and evaluated in addition to

module consistency. RICO and RTCO are proposed as

alternate metrics to complement RCO and enhance the

Recovery Consistency Characteristics.

The disaster recovery goals (RPO, RTO and RCO)

are evaluated in the context of the 7 tiers of disaster

recovery defined by the SHARE User Group.

7. References

[1] Octavian Paul Rotaru, Architecting for Disaster

Recovery – A Practitioner View, WORLDCOMP,

Proceedings of SAM 2011, July 2011.

[2] Cathy Warrick, John Sing, A Disaster Recovery

Solution Selection Method, IBM RedBook,

http://www.redbooks.ibm.com/redpapers/pdfs/redp384

7.pdf, February 2004.

[3] C. Brooks, M. Bedernjak, I. Juran, J. Merryman,

Disaster Recovery Strategies with Tivoli Storage

Management, IBM RedBook,

http://www.redbooks.ibm.com/redbooks/pdfs/sg24684

4.pdf, November 2002.

[4] Philip Clark, Contingency Planning and Strategies,

Proceedings of InfoSecCD 2010, October 2010.

[5] Richard Cocchiara, Beyond disaster recovery:

becoming a resilient business, IBM Global Services,

ftp://ps.boulder.ibm.com/common/ssi/rep_wh/n/BUW0

3014USEN/BUW03014USEN.PDF, June 2009.

[6] David Rudawitz, Enterprise Architecture and

Disaster Recovery Planning – On the way to an

effective Business Continuity Planning Philosophy,

Antervorte Consulting LLC,

http://www.antevorte.com/whitepapers/Enterprise_Arc

hitecture_and_Disaster_Recovery_Planning.pdf,

November 2003.

[7] N. Arshad, D.Heimbigner, A. Wolf, Dealing with

failures during failure recovery of distributed systems,

Proceedings of DEAS’05, NY, USA, 2005.

[8] Y. Edmund Lien, P. J. Weinberger, Consistency,

concurrency, and crash recovery, Proceedings of the

1978 ACM SIGMOD international conference on

management of data, NY, USA, 1978.

[9] Lukman Susanto, Business Continuity/Disaster

Recovery Planning, 2003,

http://www.susanto.id.au/papers/bcdrp10102003.asp

[10] U.S. Department of Commerce – National Bureau

of Standards, FIPS PUB 87 – Federal Information

Processing Standards Publication, Guidelines for ADP

Contingency Planning, 1981 March 27.

[11] Geoffery Wold, Testing Disaster Recovery Plans,

Disaster Recovery Journal, Vol. 3, No. 3, p. 34.

[12] Guy Witney Krocker, Disaster Recovery Testing:

Cycle the Plan, Plan the Cycle, SANS Institute –

InfoSec Reading Room, 2002.

[13] Constatine Karbaliotis, Critical Interests: Business

Continuity, Disaster Recovery and Privacy, Symantec,

September 2009

[14] Suparna Bhattacharya, C. Mohan, K W Brannon, I

Narang, Hui-I Hsiao, M Subramanian, Coordination

backup/recovery and data consistency between

database and file systems, Proceedings of the 2002

ACM SIGMOD International Conference on

Management of data.

180 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

A Smart Approach to Conference Registration and

Payment Processing

J. Vandersall, K. Schwarting, and R. Lee

Software Engineering Information Technology Institute (SEITI), Department of Computer Science

 Central Michigan University, Mount Pleasant, MI, USA

Abstract - As the global web continues to expand there is an

increased desire for a multitude of companies, varying greatly

in scope and size, to have a secure payment processing

infrastructure in place. Currently there are many options

readily available for the completion of such a task; however, it

is not uncommon for large fees to be associated with their

initial setup. Our goal is to develop a smart, user friendly

approach to aid in the registration payment process of

academic conferences. In order to accomplish this, our web

form must be able to be dynamically altered during initial

setup. Our form will establish a connection to First Data

Global Gateway Connect 2.0, allowing for secure payment

processing. After comparing our system to other available

options it is apparent that implementing our system has the

potential to, decrease overall costs while simultaneously

improving and quickening the initial set up process.

Keywords: Smart Payment Processing, Simplified

Registration, Easy Web Form Generation.

1 Introduction

 We have set out to develop a secure payment processing

system that is specifically geared to improve the conference

registration process all the way from the initial set up, to the

processing of the payment. What we have chosen to create

must place a strong emphasis on both security and usability.

This will allow for smooth and seamless payment processing

that keeps all sensitive data secure. The final product must

also have the ability to be regenerated with updated values so

that it can be used for conferences in the future that have

unknown price values for the various registration options.

There are numerous options that have been previously

created to address the issue of payment processing for

websites in need of such a service. However, the majority

have set their focus on simply providing a way in which to

accept a dollar value, process it, and return the approval or

denial. If you are seeking a custom form that provides specific

options for registrants to choose from, then often times there

are large initial set-up fees involved with the creation of a

form that will be static in nature. By this we mean that the

form used to collect data regarding the customers choices will

not have the ability to be altered, barring once again entering

into the initial set-up and re-incurring said fees.

 This process commonly begins by the conference manager

receiving a form that they must fill out specifying the costs

associated with the different registration options. A large

problem with this is the time that it takes for this form to get

back, undergo processing and become a final converted web

form that is capable of accepting payments. We believe that

many conference managers would prefer if they had an option

that allowed them to simply answer these questions, and then

have their form immediately generated. This is exactly what

we have set out to accomplish.

One of the key factors that many conference managers may

find appealing is the ability to link this service to a majority of

banks. This provides for a means to not only expedite the

reception of payments, but to also save on other more costly

transaction/set-up fees. What makes it specifically ideal for

conference registration is that it is coupled with a simple script

that requests a series of inputs from the conference manager.

The data collected during this initial setup covers everything

from the name of the conference, to the price of registration

and various other prices that correlate with all of the

predefined different registration options. Upon completion of

this series of questions you will have generated an HTML

form that is contained within a PHP file, allowing for the

ability to securely connect to First Data for payment

processing.

In this research paper we propose the use and configuration

of a pre-existing Electronic Payment Processing system, First

Data Global Gateway Connect 2.0 (FDGG), as well as the use

of a custom built python script that allows the conference

manager to set the price of different registration options.

1.1 Sections

The subsequent sections will provide an overview of the

research and work behind developing an application that will

meet or exceed the expectations of conference managers.

Section 2 outlines the specific methodology employed within

this project. Section 3 discusses the overall project

requirements for a successful system to be complete. Section 4

details the security features employed within our payment

processing infrastructure. Section 5 conveys the faults found

after performing rigorous testing of the web form, payment

processing gateway and registration generation script. Section

6 reviews the results of this project and discusses possible

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 181

modifications that we believe could be introduced to improve

the overall usability, as well as features that could be added in

future versions.

2 Methods Employed

 In order to accomplish our goal of developing a smart

approach to conference registration payment processing, we

needed to be able to establish a secure connection to the

FDGG. In order to do this we need to be certain that the

connection between FDGG and the conference web server is

one that cannot be replicated for illegitimate use. To ensure

that only our site has the ability to connect we must send a

hashed string that contains information that is specific to our

conference site. This process is carried out by the following

function. What is happening in the code below is the

generation of a hash value. The store name, date and time,

charge total, and shared secret are all concatenated into a

single string. After this a For Loop is activated that measures

the length of the new string and then steps through it character

by character converting them into hexadecimal. These

hexadecimal characters are placed in order within another new

string that is then passed to FDGG. Once received, FDGG

will verify that specific contents of the string correspond to a

valid store within their databases. If a match is found then the

payment information collection page specific for our

individual store will be displayed. This page is hosted on the

FDGG servers. [1][2]

function createHash() {

$str = $storename . getDateTime() . $chargetotal .

$sharedSecret;

for ($i = 0; $i < strlen($str); $i++)

{

$hex_str.=dechex(ord($str[$i]));

}

return hash ('sha256', $hex_str);

}[2]

2.1 PHP Hypertext Processor

This powerful server side scripting language was employed

to carry out the majority of tasks involved with actually

getting the payment processed through FDGG. In order to do

this many features of the language were used. Most notably is

the use of the $_POST variable that is built into the language.

The $_POST method is quite literally collecting all form data

sent via a $_POST and storing it into the $_POST array. This

array has its keys set to equal the form fields’ names and the

values set correspondingly. We are then able to invisibly pass

the data to a page that is specified in the form action. On the

associated page it is possible to collect any information passed

via a $_POST, by using a $_REQUEST. [2][3]

Figure 1- Data Flow Diagram for First Data Global Gateway Connect 2.0 [1]

182 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

The predefined $_REQUEST method is very powerful as it

has the ability to fetch data that is sent by both the $_GET and

$_POST methods. We again took advantage of this feature in

our receipt page that is displayed to the user after a successful

payment has been processed. After the initial non-sensitive

information is collected from the registration web form, it is

passed to the FDGG servers which collect and process the

sensitive payment information. We then have the FDGG pages

properly configured to send the non-sensitive data back to our

receipt page, allowing for the collection and generation of an

accurate and personalized receipt. This receipt data is then

stored on the conference server for proper record keeping.

Figure 2 above depicts the receipt page, as seen by the

registrant upon confirmation of payment. [2]

2.2 JavaScript

In our efforts to create a form that allows for users to make

the selections necessary for their specific needs, and then use

these selections to calculate a cumulative grand total, we have

chosen the client side language JavaScript. We have

determined that the ability to auto calculate the grand total will

increase the user friendliness of our form while at the same

time greatly reducing the possibility user error. This reduction

in user error will allow the process to be more efficient and

will also eliminate the need for additional charges and refunds

to be issued. This is a great feature to help aid in reducing the

quantity of unnecessary transaction fees incurred. [3] In order

to make this a reality the following method was employed.

function calcT() {

reg = document.mainform.presenterReg.value;

stu = document.mainform.studentReg.value;

paper = document.mainform.addPaper.value;

page = document.mainform.addPage.value;

lunch = document.mainform.addLunch.value;

dinner = document.mainform.addDinner.value;

document.mainform.chargetotal.value = (dinner

* 1) + (lunch * 1) + (page* 1) + (paper * 1) +

(stu * 1) + (reg * 1);

}

This simple, yet incredibly effective method grabs the

values associated with the various form options and stores

them each individually into an appropriately named variable

for further processing. It then takes the newly created and

populated variables and proceeds to add them altogether to

calculate a charge total. This calculated charge total is then set

as the value of the form field displaying the total amount that

is representative of the choices made on the form. It is also

important to note that the displayed charge total is only

Figure 2- Receipt Page as Displayed to Registrants

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 183

updated upon calling the above function. As such we have set

each of the form options to have an event listener. More

specifically, all drop down style input fields are set to have an

onChange event listener make a call to the function. This

creates a page that will update the total charge value displayed

to the user immediately after a choice is made or altered.

In order to properly keep track of those who have registered

for the conference we must generate a unique identifier for

each individual registrant. This was done in a manner similar

to the way that we have chosen to calculate our charge total.

However, rather than using an onChange event listener we

have chosen to go with an onKeyUp event listener.

For the case of the drop down style input, an onChange

event was perfect for displaying a newly calculated charge

total after a selected option was chosen. This was not the case

for the text box input style. It was meant to be very clear that

the users order ID was being generated based on the users

input into the three categories that were chosen for their

unique traits: Last Name, First Name and Submission Number.

Specifically in the order just presented, these three traits are

simply concatenated into a single string. This string is what we

have chosen to use as an order ID. The following function

performs what we have just described. [3]

 function track(){

 fname = document.mainform.firstN.value;

 lname = document.mainform.lastN.value;

 order = document.mainform.subN.value;

 document.mainform.order.value = (lname) +

 (fname) + (order);

 }

2.3 Python

Python is a versatile high level programming language and

is used in the generation of the PHP form, as well as in the

gathering of user input for the pricing of registration options.

We used multiple features of this language to write the

program. Through the use of many simple but powerful

attributes of the language, we are able to ask specific questions

to the conference manager, in an easy to understand and

prompt manner. The responses gathered from the conference

manager’s answers to these questions are the prices that will

be assigned as the values of the specific individual registration

options. This allows for our form to both quickly and

accurately collect all required responses from the associated

fields. These variables are then directly injected into the

framework of the PHP. This allows us to gather the responses

quickly and accurately. [4][5]

After the answers are properly collected they are then

injected into a PHP framework and the resulting file is saved,

and ready to be uploaded to the web server. With the use of

this small program, the entire conference registration setup is

streamlined to require only a few minutes from start to finish,

saving the managers weeks of waiting in some cases. [4][5]

3 Ideal Project Requirements

 This project required several steps of development in

order to properly and satisfactorily meet our requirements.

There are several key aspects that are considered to be

primary requirements for the fully functioning system as

outlined below.

3.1 Requirement 1

 One of the earliest requirements of this project was getting

the web form to properly and securely communicate with First

Data Global Gateway. This was in part accomplished through

the aid of a test server that FDGG has in place. In order to

securely communicate with the server the web form must pull

in a PHP script that generates a hash value. This hash value is

a product of the combination of multiple unique values. A few

of these values are as follows: store name, shared secret key

and other variables. The generation of this hash value is

discussed further in the following section V Security Features.

After communication was properly established with the test

server we were able to make the appropriate modifications

required in order to switch over and begin communicating

with the Production Server. This required the configuration of

the FDGG Virtual Terminal. The Virtual Terminal is an online

interface that allows for the management of many settings that

correspond to the payment gateway. [1]

3.2 Requirement 2

 The second requirement was to find a way to complete

transactions, while at the same time never storing or handling

any sensitive data regarding our clients’ payment details.

Security is considered a mission critical priority. To aid in

achieving this, all sensitive data handling is carried out on the

FDGG secure web servers. This allows us to assure our

conference registrants a much more secure method of payment

processing, while at the same time maintaining a speedy and

user-friendly web form interface, which allows for the easy

selection of registration options.

3.3 Requirement 3

 A third requirement that was essential to the longevity of

this project was the ability to generate new forms, with

modified values, for future events. This was considered to be

one of the more important tasks in our opinion as it truly sets

this project apart from other similar payment processing

options. As previously mentioned, there are often times large

fees associated with the configuration of a unique web form,

which will be shortly outdated. By allowing for the form to be

simply regenerated by the conference manager, we are able to

save a significant amount of both time and money. This will

eliminate the need of bringing in a web developer to set up a

new form for each individual event, which adds many benefits.

184 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

4 Security Features

The FDGG allows customers to select registration options

on the conference site prior to being transferred to the

payment form. This payment form is hosted on the FDGG

secure payment gateway, which allows for maximum security

when dealing with sensitive information, such as credit card

numbers and various other payment details. This also allows

us to accomplish our goal of keeping our site completely

separate from anything that is gathering credit card numbers,

greatly increasing our security. This security is accomplished

through the use of 128 bit SSL (Secure Sockets Layer)

protocols, coupled with both strong encryption and server

authentication via a shared secret. Despite the high level of

security involved with this process, First Data states that the

secure payment gateway has an average response time of less

than 6 seconds. Additionally keeping all credit card

information off of the conference server provides dissociation

that further aids in security. [6]

4.1 Encryption

Data security and integrity are vital aspects of encryption

and hashing. Essentially when we send our traffic to the

FDGG server, we first must send the server our store name

and shared secret. Directly before this transfer is conducted,

we convert our data into hash values in order to keep the data

both secure and to ensure integrity. If the store name and

shared secret were sent in plain text it would create the

possibility of potentially fraudulent charges being made to and

from the account. As such, we chose to use one of the

encryption methods that are accepted by the FDGG. When

establishing communication with the FDGG server, our script

uses the SHA-2 algorithm to encrypt the Store Name, Date,

Time, Charge total and the Shared Secret Key. After this hash

value is created the encrypted information is sent to the FDGG

server to be processed and authenticated against their records.

Sending our store name informs FDGG who is sending the

data and thus who to send a response to. The charge total that

is sent to the FDGG allows for the payment collection process

to know how much to charge the registrant. This is all

protected by a shared secret key that was also a portion of the

generated hash value that was sent to properly confirm our

individual store’s identity. [6]

4.2 SHA Algorithms

SHA is short for Secure Hashing Algorithm which is a

current and highly trusted family of algorithms. The family of

SHA algorithms started in 1993 with SHA-0, a name

retroactively given to the original SHA algorithm that was

removed from service early on due to a significant flaw that

created hash collisions very easily. The SHA-1 algorithm was

introduced in 1995 and is still in use today, and while it was

originally the standard hashing algorithm of the United States

Government, it was phased out in 2010 by the National

Institute of Standards. Many websites (including the popular

source control system Git) still use this algorithm, either for

data encryption or data integrity. [6]

4.2.1 Shared Secret Key

 A shared secret is a piece of data that is exchanged

during secure communication. This piece of data can be a

password, a passphrase or commonly a long string of

randomly generated numbers. The key can be created at the

start of communications or shared beforehand, though that is

commonly called a pre-shared key. The shared secret is

generated via a key-agreement protocol (such as Kerberos)

and then used to authenticate with the other party, in our case

the FDGG server. By sending the FDGG server this secret

key, we can prove our identity thus adding another layer of

protection from data fraud. [1][6]

5 Fault Testing

 It was important to ensure that our web form met all of

the requirements mentioned above in section IV. In order to

make this a reality we needed to be certain that all errors were

either removed or corrected on our form. This was done by

rigorous testing of the form, which was aided by the

availability of a test server provided by First Data. This

allowed us to continually submit the form to the test server

hosted by FDGG. It was helpful in determining flaws due to

the fact that it functioned identically to the one used in final

production, with a single exception; it would not present the

form for payment information collection and therefore would

not process the payment. The other nice feature that this

provided was a means of testing while not incurring any usage

fees for the test submissions. [1][2][3][4]

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 185

5.1 Common Faults

 The faults most commonly found within our forms and

Python script were as follows:

 Unwanted additions, deletions or modifications of

key aspects of the form.

 Non-essential user access to form options or

information.

 Errors in syntax on the Python side and the HTML

/ PHP / Java Script side.

 Variables with incorrectly associated values being

dynamically produced via the Python script.

6 Results

 Our results are on par with our expectations. By

removing the unnecessary costs and time most commonly

associated with the initial set-up of such a payment processing

system, we are able to reduce the burden placed on conference

managers as well as the expenses incurred. We have found

our alternative method to not only be a viable solution, but

also one that offers more flexibility while remaining aware of

future implementations.

6.1 Conclusions

 The final product can be best described in the following

four steps:

6.1.1 Step 1:

 The conference manager begins by running our python

script which gathers input based on a series of questions. This

input is then used to fill the PHP framework with the

necessary pricing for the various options. The page is then

generated and hosted on the conference web server which is

viewed by the conference registrants.

6.1.2 Step 2:

 When the user loads the conference registration page,

they are presented with a user friendly form that details all

possible registration options. Upon the user inputting the

appropriate variables, they will have an order ID generated

live on the page. Next, the user will begin to select the

relevant options for their registration. The selecting of these

options will call the function that is responsible for calculating

the charge total. This charge total is updated and constantly

displayed to the user. Once all options have been chosen the

user will submit the form causing them to be redirected to the

FDGG website for payment processing. We implemented

JavaScript here, as previously mentioned in section III, to

calculate the total cost for the user, thus removing the option

to under/over pay and reducing overall transactions to and

from the conference’s bank.

Figure 3- Registration Form as Displayed to Registrants

186 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

6.1.3 Step 3:

 Once the user is transferred to the FDGG payment

collection form they will be prompted to enter their payment

information. Payment information will be comprised of the

sensitive data that we wish to separate ourselves from in

efforts to promote maximum security. Generally the data

collected by FDGG will be the credit card number and other

relevant information required for processing. The amount to

be charged is passed to FDGG using a $_POST, as described

in section 2.

6.1.4 Step 4:

 If the transaction is successfully processed then the user

is redirected back to the conference server where a custom

receipt page is displayed. This receipt page includes details

regarding information pertaining to their purchase including

costs to them for particular options, paper number, title and

order ID. This receipt is printable for the registrants’ records

and a copy of the data is stored on the webserver for

conference records. If the transaction is declined the user is

redirected to a denial page describing the issue and from there

they can repeat the process and correct the errors.

6.2 Afterthoughts

 With the final completion of this payment processing

system, we have begun a complete evaluation of all features.

This has allowed us to determine that all core features are

presently functioning properly; however, the generation of the

web form by means of the python script shows room for

further improvement. It is important to keep in mind that one

of our main goals is not only to process payments, but also to

provide for ease in initial setup and to add the ability for

changes to be made to the cost of individual form options that

will vary from one conference to another. In future versions of

this payment processing system we feel that a graphical user

interface (GUI) version of the web form generation script

would increase the overall user friendliness. In fact, it would

appear that contrary to our original development plans, which

called for the use of a separate python script in order to

generate the web form, we may be better off with a simple

web interface management system. Such a management

system may be developed for future releases.

7 Acknowledgments

 Our thanks go to Lucas Falsetta for his assistance with

some of the more subtle syntax errors. Also we would like to

thank Dr. Roger Lee for being our supervising faculty

member for this project.

8 References

[1] F. Data, First Data Global Gateway Integration Guide

Connect 2.0, 2009

[2] W3Schools, PHP Tutorials, 2012

[3] W3Schools, HTML Tutorials, 2012

[4] D. M. Beazley, Python Essential Reference, 4th ed., 2009.

[5] B. Dayley, Python Phrasebook: Essential Code and

Commands, 2007

[6] National Institue of Standards and Technology, Secure

Hashing, 2012

Figure 4- Payment Flow Diagram [1]

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 187

��������	�
������� �������� ������������

����� ������	
� ��� ���� �����

����� �� �	��
����	 ���	�� �	� �	������	� �������

�	��
��� �� ��������� ��������� �����

�����������������	
���� �
����� ���� ��
����� ����	

�
�� ��� ��������� ����� ������
��
�� �������� ����

�� ��
� ������ ���� �
�� �
����� ���� �
��� ���������

� ��������� �	��
�����
������������ ����� ��
����� �
�

�
��� ��������
�� ���� ����� �������� �
� ����� �
������

�������� �
� ����
 ��������
�
 ���� ��� ��
��������

��� ���� �
�� �� ��� �������
�� ���� �
� ��
�� ��
�������

�� �� ��� �������� ������� ������ �� ��� ������� ��� ������

���� �� �����
 ����
����� �� ������� ��������! �����
����

�� �� ������
�� ���� �� ������� ���� �
�� ������ ��
�����

�
� �
��� ������ ��� �������� �� "�� �
��� �� ����� #�$�

���� ������
�� ����� ����� �
�
�� �� �
��� ��%���
��

���
����� ������ ����
�� ��� �����
����� ������
�� ���

������ �������� �
�� �� ������� �� ���
��� ��� ������ ������

�	
����� ��������	
�� ����	����� �������
�� �	��� ����	��

�	���� �����	�����

�� ������	
����
�������	�
 	� �� ���	
��� ��� ��� 	 ���� ������	�

���� ���� ���� ��� �����	�� �� ������	��� �����	���� ���

������	��� ��	�� ���� ��	�	 ��� �! ����� 	� �� �����

�� "��� ���# �� 	��������� ��� ��	�	 �	�� �� ����

������ �� ��	� ���� � �� ��� ��� ���# �� 	��������� ���

����"��# �� �� �� �� �� ���	�	���� $ 	� ��	� �� �����

��� ���� ����
�� 	�%������ "� ���� 	��� �� ��� ���

�������&���� ��� ���� �� ���� ��� �� ���'� ���
� ���	�	���

��� ���� �	
�	&����� 	�%������ "� ��	� ���� 	�� ��

���������� �� �������	�
� (� "��	��� �� ��� ��� ���

��)�	��� ��� ������ � ���� � ��"*�� ��� ��������� 	 ��

��� �� ���
� ��	�&�� ��� �
��� ������ ��� �
��� "��#�

$ 	� �
��� ������ ��� ������ ������ ��	��� ����
� ���

�� �"���� � $ 	� �
��� "��# �� ��� � � ����� ����

�� �� ��� ���	��� �� ��"*�� ��� ���� � ��������� 	

���� ��� ��� +� �� ���� ����� �������	�
 	� ��	�"�� ���

 ���	�
 ���� ��!	�	��� ����� �� � ��� ������� ��	��� ��

�����	������ �� ��	� ������� �� � ��� ������ #��� ��

������ ���� �� ��	� �"	�		���

,�������� ������� �������	�
 ������ ��� ���	��"�� �-��

�.�� �/�� �0�� �1�� 2������� ���� �� 	����� ��� ������

������	���� �������	�
 ������� �� ���� ���� �	�&���	��� $

��� �#� � �� �� 	�� � ������ �� ������ �� �����������

�� �� �	
� "� ������ � ��� ���������� �����������

3������ �� � ��� �	���� �������	�
 ����� ����	������

������ ���� � ������ ������� � ���	��� � �	�	 �� (�"

 �
�� �� 	������ ��
� ���� ���� �	�&���	�� 	� �� �!	�	�

������� �� ���� ������ �� �� �������	�
 ������ 4 �

�5�� ��6�� ����� ��	�� ������� ��� ���	�� ������� ��� �	�

��	�� ������ ��� ���	�� ��� ��"*�� �� 	������ ��	�

 � �� ������ �� �������� ����	�� �� 4 � 	� ��	�� �������

������	��� ��� ��"����� � ����� ������' ��	��	��

��� ����� �	�#� ��� �� ��
����	�
 	������� �� �����

 ���	��� ��#� 	 ���	"�� � ������� �� ����� 	����� $�

���		��� ��� ���
��
� ��� "� 	������� � �	� ��� (�" �
���

�������� ��� ���	�� ���	
� �� ������ �� (�" �
�� "�

��	�
 2�7� ��	 ������ ��� ���� ����� ��� ���� "� ���	��

��&��� ��� ��������� ��� � �� ���� �����	"�� �� �����

	� ������	�� �� 4 � ��� ���������� ��� �!�� �� ��

����� �	�#� ��� � �����"���	�� �����#�"����
���� +��� �

 ������� 	� ��)�	��� ��� � ������ � 	����� �� ����� �� ��

���	�	������ 4� 	������	�� ��� ������� �� ��� �	����

��	�
� �� � (�" ������ ��� � ���"��� ������� 8�����

��� �	�� ��� ��"*��� � � 	�� ���� "� ������	�
 �� ����

 �
� �� �� ������ ��� ��� ��� ��� ���	�	�
 ��� �� ��

��"*��� �	��� ��

	�
 	� �� ������ ��� ����� �	�	9��

������� ������	��� � ����� ������' ��	��	�� ��� �

�������
� ��� � ��� �� �	� ���� ����� 8����� ���

��*��
���� �
���� ��� 	� ���� �� ��� ���� ���	��

������� 	 ��� "� ������
���� 	� ��
�����

�� 	������� ������������ �� ��� ������

4� 	������	�� ��� �� ���� ������ �� ��#�� 	 ���� �

	����� �� 4 � ������ +��� � ������� 	� ��)�	��� ��� �

������ � 	����� �� ����� �� �� ���	�	������ 4 ������

�	������ �	�� "� �����	����� �	� ����� ��� �� 	������	��

�	������� ��	� 	������	�� ��� �����	����� &��� � �� �	�

�� ����� ��� � �����	�� �� �� ���"��� �� �����

��� :��
���)� �������� ��� ��� � ��	� ���&
���	�� &����

(����#���� ��� ���� �� 16 ;� < ��� --� ;� �< ��� ��

���� � �� ������ ��	�
 � ���"�� �� ���	���� ���� ;��

�� �	�	��
�� ����< � 	����� ��� ������ �� ������

;�< $����	�
 �� 4 � =>= 	�� � ��	�� �� � ��� ���

�	�� ��� �� 4 � 	������� �����	������ ;�< 4 ���
��
�

� 	��� ��
�	�� �� ?� ������ ��� "� ������� 	� ���������� ���

� ������� 	� ������ ��� �� ���	�	������ ;�< ��� 	�������

�����	����� &��� &�� � �� �	�� ����� ��� ��� �	� ����

��	� ���"���� ����� ��� ��� ���� ��� ����� (�" �������

+�� �� 	� ���� ��� :��
���)� ������� ��� ���� ��� ��

	� ���� ��� �
��� ������� ;-< (��� �� @$�����@ "���

	� ��	�#�� ��� 	 �	�� ���� ?��� ��� $=� ���� �� =>=�

188 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

;.< $ �	�� 	����� ����� (�" ������ "� ��	�
 ���� ���

�� � � � � ��� ������� ���� ��� ���� �� 4 � (�"

� �	��	��� $ �	�� ���� �� �� ������ ������ �� �� 4 �

����� "���� �� �� ������� ���
��
� � 	��� ;/< $ �	��

��� 	����� :��
���)� ���"��� ������� $ �	�� �� � ��

��� �������� ��� �� ���"��� ;=3< ������� ��� �����

4 � =3 ��� ��	�	� =3 ��� �� �!�� �� ��"*�� ��	�	��

����� ���"���� ��� ������ "���� �� �� ������ ���
��
�

� 	��� ����� 	 �	�� �� �� 4 � ���	�	�����'� �������

�� �� =3 ����'� �������� +��� �� 4 � ���	�	����� 	�

 �	�	��
�� � ������ ��� ���	�� ���� ���"���� "� ��	�

 �)� ��������� ;0< $ �	�� ����� �� 4 � ����� 	�������

	�� &�� ;A�4=7�����<� ��	�� �	� ���� �� 	������	��

	������	�� �� �� 4 � ����� ���� �� �� BA� �� ��

4 � ������ �� 4 � ���	�	�����'� �������� ��� ����

�������� � ������ ����� ��� :��
���)� �������� ��	�

&�� ��� "� �������� ���� "� �� ���� ��� ��� 	������� �	�

4 � ������ ;1< $ �	�� ��� ����� (�" ������� ��� 	 �	��

��	 ��� ��� �� ��� � � ��� ;5< $ �	�� ��� ��� � �������

(�" "������ � �	� ��� "�� �� �� 4 � ���� �
� ��� ��

4 � ����� 	������	�� �
� ;A�4=7�����<� ;�6< $ �	��

�!	� ��� 	����� ��� �� 4 � ���	�	���	�� ���� ;��< "�

��	�� �� ���	�	����� ��� ���	�� ��� ��� �� ����� ���

:��
���)� ��������

��� 4 � ����� ����	�� �� � (�" ������ ;�����< ��� �

���"��� ������ ;:��
���)�<� ��� ���"��� ������ ���	�	����

� ��" ���"��� �� ����� �� ��"*�� 	������	�� �� ����

��"*��� ��� ��"*�� ���"����� ���� �� ��	�� �	�� "� ������

���� � ��� ��"*�� 	� ������� 3� ��	�
 � (�" "�������

������ ������ �� (�" �	� �� �� 4 � ������

��

������� �	���
�� �� ������

��� �����	�
� �� ���� ���	
���

$� �	� ������ ������ ��� ������ ��� ��"*�� �� 	������

C	
��� � ����� �� ��� ����		�� �� (�" �
�� ��������

"� � ������ 8����� ��� ������ ��� �
�� ����� 	� C	
�

� ;�< �	��� ��
	�� ���� &�� ������ � ��"*�� ��� ���

	������� 	� "� ����#	�
 � �	� �� ��"*��� ����� 	� ��

��� ����� �� �� 4 � ���� �
�� ����� ��� �	� ��� ��

������ ���	�
 ��"*�� ���� �
� � ���	�� 	� ��� �
����

�� �	�� � �6 ���#	�
� 	� �!����

(�	�� ������ ��� ���	�
 ��
���� � ������ ��"���

�	�� "� �� � ������� ��� &�� ����� ��� ������� 	

�������� ���
� �� �!�� �������� ��� �	�� "� �"�� �

� ���� �	��� ��� ������ ��"��� 	� ������� � ������

����
)���	��� ��	�� ���� "��� �� � �� ��"���� ���

 ���	��� $� ������ ���� ���	��� ���� ��"���� �������

��� ���
�	� � �	
��� ���������� 	� ��
���� ��� �
��

����� 	� C	
� � ;"<� �� �� ���� ����� ��� �������� ����

��
	�� ��
	� 	� ��)�	��� ��� ������ � �#� �!���� ���	��

��)���	��� �������� ����
��� ��� ��"�	 ��	� � ��� ���

���	
������

(a) without login (b) with login

Top 10
rankings

Assignment
submission

Chance
problem

HTW game

problem
DB table

assignment
DB table

Practice Exam

Review

Apty home

Subject home

C	
� �D 8����'� ��� ����		�� �� (�" �
��

��� ����	�
�������
 �� ���� ���	
���

+��� �� 4 � ���	�	����� ��� ����� � ��� ��"*�� ���

������ ��� 	������	�� �� �� 4 � ����� 	�����	�
 =3

�"���� $� � ������ 	�
	��� � ��"*�� ���	�	����� $= ��� �

��"*�� ���	�	�����'� ������� "� �� 4 � ���	�	������

�� �� ��� �	�� "����� �� ��"*�� ���	�	����� �� ��

������ ���	�
 ��"*��� ��� ��� ��� ������ ��� 	������	��

�� �� ��"*��� 8����� ���	�� ��"����� �#� �!���� ���

��"�	 ��	� � ��� �� ������� � �� ���	
�����
	���

"� ��	� �������� 4����
� �� ����� ��� �����	�����

��������� �!�� ��� ���	�� ������� 	 ����� �����	�����

���� ������' � ���� 8�����' � ��� ���� � "�
�����

"� ��	� �������� �� ���� �� �������' ���#� ������ � �

�� ���	�	������� �� 	�� ���	
����
������ ���� "��� 	��

�������� �������� ��� ����
�� ��	� *�"� � �� ���	
����

������� ��� ���	
����
������ ��� �������' ���	����� ���

	����� �� �������� ��� ��� ��� �
���� � ����

(��� �� 4 � ���	�	����� ��� ��"*�� ���	�	������

;�������< ��
 	� �� �� ���	�	������ �� 4 � ���	�	���	��

 �
� �	�� "� �	� ������ ��	�� ����� � �	� �� ��� ��"*����

��� 4 � ���	�	����� ��� � ���� �� ��� �� ���� ��"*����

+� �� ���� ����� ���� ������� ;��"*�� ���	�	������<

��
 	�� ���� �� ��"*��� ��� ��� ������� � � ���� ��

�	�� "� �	� ����� �� ��	�#�"�� "����� (��� ��� ��	�# ��

��� �� �� "����� �� ������ ���	�
 8�"*�� ���	�	���	��

 �
� �	�� "� ������ ���� ��� ���	
��� ���	
����
�������

����� ���	
������ �����)���	��� ��� ���	�� ��� �!����

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 189

������ � ���&��	�
 �� � ��#� ���� �� �� ������)����

	���� ����� ��� ��� ���	��� �!���� ���)���	����	����

��� ����# ������� #	��� �� ������' ������ ���� �� �!��

������� ������ ������ ��	��� ��� ���	�� ��� ��	�� ��	���

4��	
����
������ ��� ���� ������� �
���� ������'

 � ���� �� ����� ��� ���� ��	�
 �� ���	�	������� ���

��� ������ � ��
 	� ��
������ ���� ��"*�� ���� �
�� 	�

�� ���� ��� �� ������� (��� ��� ��
 	�� � �	� �� ���

���	
����� �	�� "� �	� ����� �	� ��� � ��� ��"�	�� ���

���� ���	
������ C�� ���� ���	
����� � ������ ;��"*��

���	�	�����< �� ��� �� ��
������ 	� ���	
��� �
����

 � ��� ��"�	�� ��� �� ���	
����� ��� ������ ;��"*��

���	�	�����< ��� � �	�	��
� �
���� �� ��"�	�� � ���

�� ��� ���	
���� ���� 	� 	 	� ���	
��� � ������
������

��� ���� ������
 ���
����	� �����	�������	

�� �#� �!���� ������ ���� � "� �����	���� "� �����

	�
 ��	� ��������� (��� ��� ��� � ���	�� ��)���	���

�������� ����
��� ���� ��� ��� � ��� ��	� ��� �!��

������� �� ���� ��� ��� � ��"�	 ��	� ���	
���� � ����

��� ���� ���� � "� �����	����� C�� �	� ������ ����

�����	��	�� ������ ���� "��� ������ �� �� ����� 	�

C	
� �� C	��� �� 4 � ���	�	����� ��
	���� ������ 	� ��

����� �	� &�� � ������ �� ������ ����� ;����� $=�<�

�� ��������� �� ������ ������ �� ��	� ���������� ���

�� ���� ����� �� �� ������� ��� �����	��	�� ������

��� &�� �����	&�� 	�� �� ���
��	��� &�� �����	��	�� ���

������ �����	��	��� ��	�� 	� ������ �����	&�� �� �����

�����	��	��� :47 �����	��	�� ��� E$8 �����	��	���

��� &�� �����	��	�� ����� 	� C	
� � ;�< �����	����

������ "� ��	� ������ ����� ��� �������� ��������

	� �� ����� �	� &��� ��� ������ �����	��	�� �����

	� C	
� � ;"< ��� �����	��� ������ ���� %�!	"��� ���

����� �����	��	�� ���"��� �� 4 � ���	�	����� � ���

���	�� ��� � �����	��� ������� ��� ���	�	����� ���

	� ����� ��� �����	��	�� ����� "� ��&�	�
 �� ����

��
	�;< ����� �� �� ,����4����	��� ������ ��� :47

�����	��	�� ���� �� :��

�"�� 4����	��	�� 7������

� �����	��� ������� ����� �� �������� ��� ������

� ��
 	� ��	� ��� ���� ��� ����� ��� E$8 �����	��	��

�����	���� ������ "� ��	�
 �� ������ 	������	��

�"�	��� ���� � E$8 ������ "� 	���	�
 � @� �� �����@

�������� ��	� E$8 �����	��	�� ���"��� �� ���	���� ����

;�� � �� �� ����< � ���	�	��� �	� ������ �� ��#� 	

����������� � � ��	�� � � ��	&� ������ �����	��	��

������ �� 4 � ����� �����	����� *��
�� ��	�� ���

���� �����	��	�� ����� 	� ���	��"�� 	� ��� 	� �� �����

�� ;�< ������ ;�< :47� ��� ;�< E$8 �����	��	���� ���

�����	��� �� � �� �	�� ���� ��� ��� "��� ����� �� ��

4 � ���� �
� ����� �� �����	��	�� ����� ��������

	� ����

(a) File authentication (b) Account authentication

student ID
password
course
mail address
name

students
file

student ID
password

① ② ③

NIS
server

NIS auth

ypcat
passwd

Pluggable
Authentication

Modules

LDAP
server

PAM auth

canLogin()
method

Custom auth

auth
DB

C	
� �D 4����	��	�� �� ������

(a) A bucket icon

(b) A color palette file (colors)

1 BG color
2 menu/bgColor.png
3
4
5 colors

rgb(r11, g11, b11) rgb(r12, g12, ...
rgb(r21, g21, b21) rgb(r22, g22, ...
rgb(r31, g31, b31) rgb(r32, g32, ...
..................

C	
� �D =�&�		�� �� � "��#� 	���

�� ���������� �������� ��
����
�	��

��� 4 � ����� ���"��� ����� � �����	9� �������

����	��� ��� ������� �� ����� 	����� ��	� ���	�� ������

����� ���� �!�� ��� �� �� �����	9�	�� ��� ����������

�� �� ������

��� ����	
��� � !" ���� ��	�

�� ���	�� �����)���	��� ��	�
 � (�" "������� �� ��	

������ 2�7� �	�� ���� ��� 2�7� ���� ����� ���� "���

	��������� ��� 2�7� �	�� ���� ���"��� ������� � ��	

�� ������ �� (�" �
�� ��	�� ��� ��� �	��	�
 �� (�"

 �
�� �� �	�� "� ������� �	� ������ C�� �!�� ��� 	� ���

��� � ����
� �� "��#
����� ����� �� �� �! @���@ �

"���� ��� &�� ����� �	� �! �	� �� ������ (��� ���

��� ��	�# � "��#� 	��� ���� �� ��	 ����� � ����� ����

�	�� � ���� 4� ���� �� ��� ������ � "��� ����� ����� ��

"��#
����� ����� �� �� �! �	�� ��� "���� F�� ��� ��� ��

����� 	����	���� "������ �	� ����� ���� ?���8��	 ���

���� �� ������	��� �	� �� ������ � � ��� �� �	� ���

�� (�" �
��� ��� 2�7� ���� ���� ���"��� ��� � ����

���� ��� �	���� 2�7� ���� �	������ ��� ��� ��� ���	��

��#� ���� �� �� ����� "� ��	��	�
 ���� �� 2�7� ����

���� � �� 2�7� �	�� �����

2���� ��'� ����	��� �����	9	�
 ���� 	��� �� �� ��	

����� ��� ���	�
 ���� ��� ���� 	���� C�� �!�� ��� ��

"��#� 	��� 	� ��&��� �� 	�������� 	� C	
� � ;�<� ��� &�� �	��

	� C	
� � ;�< � ��	&�� �� ��� ��	 �! �� �� ���� 	��� ���

190 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

load
message

files

set the chosen locale

message files
for different languages
(ar, en, es, fr, it, ja, ...)

display translation for the chosen locale

rb = ResourceBundle.getBundle(locale);
fmt = DateFormat.getDateInstance(locale);
.......
<%= rb.getString(”Present time”) %>
: <%= fmt.format(new Date()) %>

C	
� -D �!���	"�� �������

	 �	�� "� �	� ����� ���� �� ����� ������ �	�
��� ���� ��

���� 	�� 	���� ��� ������ �	�� � ��	&�� �� ���� �� ��

���� 	�� 	��� &��� ��� �	�� ��� ����� �	��� � ��	�� ��

 ��&! ��� ���&! 2�7� ���� �� �	�� "� 	������ "�����

��� ���� �� ������� �!� ��� ��	����� ��� �� G �	��

"� �� ����� "� �� ����� ������� �	� �� ����� ���� ��

�
";�66� �..� �-6<� ��� &�� �	�� � ��	&�� �� ���� �� �

����� ���� &��� $� �	� ���� ��� #	�� �� ��	 ���� 	���

��� "� ��&���� ��� ���� ����� ����� ��� "� �!����� ��

����� 	� C	
� � ;"<�

��� ����	
��� ����#��$	 ��	�
 ��� ��	�����

�������	

4��	�	������ ��� �� � ��� ���
��
� 	� ��	�� ��

4 � ���� �
� �� ��"*�� ���� �
�� ��� �	� ������ C��

�	� �� ���� �����
� �� ��� �������� &��� ��� �������

���
��
�� ���� "��� �� ����� $� ���		��� � �����
� �� �

��� �������� &�� ��� � ��� ���
��
� ��� "� ���	�� ������

$� �� ���	�	����� ���� � ��� �����
� �� ��� ��������

&��� � �������� ���� � ��	�� �� ������ ���	�
 ���

���
��
� 	� ����� �	�� "� �����	����� �	� ����� ��������

� ���
��
� ����� � "� ������� �� ���������� 	� C	
� -�

(��� �� ���	�	����� ������� � ���
��
�� ������	�
 �

�� ������ ���	�
 ������� � �����
� �	�� "� �������� ���

��� ��� 	�� �	�� "� �	� ����� 	� �� � �� �	�� ������ $�

���		��� �� ���	�	����� ��� ����� ��� ���� � "� ����

���� ��"*�� ���� �����
�� ��� ����"��# �����
�� ���

� ������ �� �����������

��� ����	
��� ��
��� ��	%
 ���
&
��� �	#

��	����	�

4��	�	������' ��	
	��� �� ���	�#� ��� "���� ��� "�

 ���� �� ���� �� �� ��	� �
�� � ������� �� ������

C	
��� . ;�< ����� ��� � ��&�� � ����� "��� �� �	�� "�

 ���� �� �� � �� �� "��� ����� �� � ��"*�� ���� �
�

@�	�	�@� ��	� ����� "��� �)�	 � �� ����� �	� �
���

����� @2�(@� ��� &�� �	�� � ��	&�� �� ����	�� �� ��

����� "���� ��� ������	�
 �	��� � ��	�� �� 2�7� ����

�� �	�� "� �	� ����� � �� � ��	&�� ����	�� �� �� �
��

����� G��"*��E��� �	�� "� �� ����� �	� �� ������ ���	�

��"*�� ����� $� �	� �!�� ��� � ?��� � �� �	�� "� �	� �����

� �� � �� �� "��� ����� �� �� ��"*�� ���� �
��

��	�� �	�� �	� ��� � ��	�#�"�� "��� ����� @2�(��	�	��@�

(��� ������ ��	�# �� �	� "���� ��� ��� ��� � ��� �	�

��� �� �
��� �� ��"*�� @�	�	�@�

C	
��� . ;"< 	�������� ��� � ��&�� � ����� �� ���	�#

�� �	�� "� ���� 	� �� ����� �� �� 4 � ���� �
��

(��� ������ ��	�# �� �	� �	�#� �� ��� (�" �
� �� ��

2�(
��� �	�� "� �	� ����� 	� ������ �	����� ��� &��

�	�� � ��	&�� �� ����	�� �� �	� ����� �	�#� ��� ������	�

�	��� � ��	�� �� 2�7� ���� �� �	�� "� �	� ����� � ��

� ��	&�� ����	�� �� �� �
�� ����� G������ �	�� "� �� �����

�	� �� ������� ������ ���� �� �� ;4��"	�<� �� ;��
�	��<�

�� ;8 ��	��<� �� ;C�����<� ��� *� ;?� �����<� ��� ��� (�"

 �
� �	�� "� �	� ����� 	� �� ���
��
� �������� ������� ��

�����	"�� 	� 8��	�� -��� C	
��� . ;�< 	�������� �� 4 �

 ��
����	�
 	�������� ��	� �
� 	� �	� ����� "� ��	�#	�

�� ������ ����� �	�# @4 � �	 �@ ��� ���� � ������ ��

4 � ���"��� ��� ������� �� 4 � ������

�� �������� ����	����� ��
������������

�����

��� ����� ��� "��� �������� "� �
��� ����� 2�(

;2��	�
 ��� (����<� 4����� ��� ��� ��� *�	� 	� ��
���

���	��� $� ���� �� �� *�	� 	� ��
��� � �� ���� 	���

�� &�� �� �� �� �	�� "����� � �	� ��� ��� ��
����

4 �� ���� 	��� ���	 �� �	�� ��� ��� ��
��� ��� ���

�	� ��� �� ������� =��	�
 ����
���� � ������ ��"���

�	�� "� �����	�����
	���� ��� &�� ����� ��� ������� 	

�������� ���
� �� �!�� ��������� ��	�� �	�� ����� 	� �

�	
��� ������

C	
��� / ����� �� ����� ���&
���	�� �� ��
���� ���

?��� � �� 	� ����	�
 �� �� ��	�� �	�� ��	�� ������	���

	�
 �	� ������� ��
���� �� �� ������ �	��� (��� � �����

��	�#� �� �� 2�("���� �� � �� �	�� ���� � ��"*��

���� � �� ������� ��� ����	�� � �� ���"�� ��� ����

������	��� ��	� �� ���"�� ��� �����	��� 	� �������

�� ��� �� �� &�� ����� ��� ���� �� 4 � ����� ���

	������� �� �����	"�� 	� 8��	�� �� 4 ��� �	���� �	�� "�

� ���� � �	� ��� �
��� "����� ��� � ��	�� ����� �����

�	�� ��� ��� ������ �	� � ����� ������ "� ��	�
 ��

������� �� ���"��� (��� �� ����� *�	�� 	� ��
����

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 191

(a) Definition of an HTW button
(in trivia/customLink.subjectHomeBottom file)

(b) Definition of an HTW help link
(in customLink.aptyHomeTop file)

(c) Apty programing interface

top
<applet code=”htw.applet.HTWapplet.class”
 >
 <param name=”id” value=”$subjectName”/>
</applet>

center
<a href=”/apty/ToHelp?language=$locale”
target=“HTWhelpWin”>
 HTW help

Trivia
English
Math
.......

Trivia

HTWHTW help

C	
� .D =�&�		�� �� � ����� �	�# � ������� �� �����

�� �����'� 	������	�� �	�� "� �������� �� �� ������ �	���

(��� �	� �� ��� � ���� *�	�� 	� ��
���� ��
��� �	��

���� =��	�
 ��
���� ���� �� ����� ������ 	������ ��

��	�� ����� ����� �� � ������ ��"��� "�	�
 ��� �� ��	��

 ����� ����� �	�� � �� � (�" "������ �	���� ��� ����

� ��)��� � �� ,����� ������ ;��������	�� ��
���<� ���

,����� ������ �	�� ���	��� �� � �� �	��)���	�� ���� ��

 ���	�� ��"��� =3 �"��� ��� ����� � ��� ���� � ���� ��

)���	�� 	� � (�" �
� �� �� "������ �	����� ��� ����

)���	�� �	�� "� ����� � �� �	� �� ������ � �� ����

	��� $� ��� ����� ������� ��)���	�� �������� ����	��

��� �� ����� �� �� ��� �	��
�	� �� �!�� ��������� $� �

 ����� ��	�#� �� �� ,�� "���� � ��� �	���� �	�� � ���

��� �� ��	�� ����� ����� �	�� ������ �	� �� ,�� ������

"� ��	�
 �� ���� ��� ��� ����� ��� ��� �	� ��� ������

 ������ 	�����	�
 �	� �� ��� � ���� "� ��#	�
 ��� �� ���

 ������' 	������	�� �������� �� �� ������ �	���

 � ����	�����

'�� ��
& �	
��������	 $��� �	�& � ��

$���

(��� � ���� 	����� �� 4 � =>= � � ��� ���� ��

4 � 	������� �	�� ��� �����	������ ��� ���� ������� �

���
��
� ��� � ��	&�� �� 	������	�� �	������� 	� ����������

(�� �� ���� ��� � �� 	� ���� ����	�
 � ������� �� ��

4 � ���	�	������ ,�	�#	�
 �� �� @$�����@ "��� ����

	������	��� B��	#� �� ������	���� ������� �	� ��� ����

��	����� ��� � � �� �	�� �� ���"��� ��� ����� ���

:��
���)� �������� ������ � ��"*�� ���"��� �� ����	��

�� �!�� �� ��"*�� ��	�	�� ��� �� ���"��� ������� ��

connect connect
display

display display

click

send a request

automatically set

send a request
load

click

click
click

display

Chat
server

Chance
servlet

Chat
server

HTW server

Chat A
B
C
D

Chance
problem

HTW

Chat A
B
C
D

Chance
problem

HTW

practice
problem

DB

Player A (client side) Player B (client side)

HTW
applet

Chat
client

HTW
applet

Chat
client

Player
server

Player
server

Player
client

Player
client

 Server side

automatically set

C	
� /D 2�(
��� �������

���� � ��	&��� ���� �� 4 � ������ ��� ��� �	� ���� ��

4 � ���� �
� "� �����	����� ���	�
 � ������� (�"

"�������

'�� (��	 ����

 ��
�)���

�� ���"�� ������ � "�
	� ���	�	�
 ��� ��"*�� �	���

��
	�� �� ���� �����
�� � �	� �� ��� ��"*��� 	� �� ���

����� �� �� 4 � ���� �
�� ��	�� 	� �� � �
� ��

�� ������ ��� �����
�� �� ���� �
� �� ���� ��"*�� 	�

	� �	
� ����� �� ����� 	� C	
� �� (��� � ����� ��	�#� ��

� ��"*�� ���� ����� 	� �� ��"*�� �	�� �� ���� �
� ��

�� ������ ���	�
 ��"*�� �	�� "� ����� 	� �� �	
� ������

$� �� � ����� �� �� ��"*�� ���� �
�� ������ ��� �	��

��"*�� 	������	�� ��� �#� �!���� $� �� "��� ����� ��

�� ��"*�� ���� �
�� ������ ��� �	�� �� ���	�� �������

(��� ��� ��	�# �� �� @:���	��@ "��� �	� ����� 	� ��

������ ��� ��� "�
	� � ������)���	��� ��� ���	��� 3�

�	� ���	�	�� ������ ��� �	�� �� �!�� ��� ��)���	��� ��

�� ��"*�� ��� ��� 	������� 	�� ��� ���� � ���������

��� ��� ��� ����� ���� �� ��"*�� �	��� �� ��
	���	��

�� ��	� �������� ��	�� �	� �	&�� �� ���
� �� �� ������

(��� � ����� ��	�#� �� �� @4�#)���	��@ �	�# 	�

�� � ������ �� �� ��� ��� ��# �� ������ 	� ����
�

�� �� ��"*�� ������������ 4� ����� 	� C	
� �� �	�

����� 	� "��	����� � �� � ������� 4����� ��� ������ �	�

����� � ��� ���	�	�
� ��� � �6 ������ �� �!��	��	���

��� ���	��� ��#)���	���� ��� ����"��# �����
��� ���

��� � ��� �
���� +� �� ���� ����� ���� ��
	�����

������ ��� ������� � �#� �!��	��	���� ���	��� ������

�)���	����	��� ��� ��� ��	� ��� ������� 4 ������ ��

���� �
� �� ��"*�� ��	�	� 	� ����� 	� ��
�	��� 4�������

��� �����
�� ��� 	��
�� �	� ����� "� �� 4 � ����� ���

"� �����	9�� � ��� ���
��
� ��� ��� ������ �� �����	"��

	� 8��	�� -� $� ���		��� ���� �! &��� �� ����	� �� ��

4 � ���� �����
�� � ��"*�� ���� �����
�� �� � ��"*��

����"��# �����
� ��� � ������ �� ����������� ��� ���� ���

�� ������ ��� "� � �	���

192 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

'�� *���������+� ����

4
��� "��� @2�(��	�	��@ 	� �	� ����� 	� �� �

�� �� "��� ����� 	� �� ��"*�� ���� �
� @��	�	�@� ��

��� ��
���� &��� �����
� ���� ��������� �� �� "���� ��

����� 	� C	
� /� 4 ����� ��� ���� �	� �� ��� � ����'�

��������� �� �� "����� F�� ��� ���� ���� � ����'�

�������� �� ���� 	�� ���� �� � ���� ��	�� 	� ��� ����

���� ���� ��� �� ���� ���������� $� ��� ������������ ����

���� � ����'� ��������� ��� �	��
� ���� �	�� ��� ����

� �	
��� ���#	�
� $� ��� ���� ��������� ��� ���� ��� �	�� ����

��
���� F�� ��� *�	� 	� ��
��� �
�	� ��� �
�	� ��� 	���

=��	�
 ��
���� � ������ ��"��� �	�� "�
	��� � �������

��� ������ ��"����
	��� � ������ �	�� ����� ������'

��	��	�� �� �����	�
� (��� ��� ��	�# �� �� ,�� "���

�� �� "����� ��� ��� ��� �	� ��� �� ������ ��������

*�	�	�
 	� ��
��� 	�����	�
 �� ������ ��� ���� ��� ��

����

'�� ��������	�

(� ���� "��� ��#	�
 ��� �� �� 4 � ����� 	� ����

������� � �� ��	����	� � ����# �� ������ �� �� �������

��� � ����� ������' ��	��	��� (� ���� "�	�%� ���

���	"� �� ������ �� ���� �! ��	����� (� �� ���� -����	��

)���	���� ��	�� ���� �����	&�� 	�� � ��"���
��� � ����

�� ����������� 	������	��� ��� ��������� ��� ���"��� ��

��)���	��� ���� 06� �.� �6� ��� ��	����� ��� 5. 	� ����

(� �������� � ���	�� �� . ��� ;*	 � � *	 .<� C�� ���� ���

�� �� .)���	���� ��� �� �� ������ 	�� "� �6 �	�����

C�� �!�� ��� ��� �� &�� �� ;*	 �<� .)���	��� ����
	���

� ������ ����
 06)���	��� �� �� ���������� ��"���

��� � 4� �� ����� ��� ������	�
 ������� ���� �� ��

)���	��� 	� �� 	������	�� ��� �������� ��"���
��� �

����
	��� 	� �� ����� �� ;*	 -< ��� �� &�� �� ;*	 .<�

C�� ���	��� .)���	��� ����
	��� � ������ ����
 /6

)���	��� �� �� ���������� ��"���
��� � ��� ������

	�� ��� �� � �. �	����� ��	�� ��� � �	�� ���
�� ���

�� �� �� ���� 4����� ��� �"�� � "�
	� � ������ ��

)���	��� ��� ���	�� �	��� ��
	�� (� ���	�	����� ����

. ��� ���� �� "�
	��	�
 �� ?��� � �� "�
	��	�
 �� ?����

4 �	�� ��	�� ���� �� ����� ������ ���� ������
��������

� ����� ��� �	�� � "�
	� ���	�	�
� $����	���� "�����

�� &�� �� ���
	���� � �� �� ������ �	� ���	�	�
 �
�	�

��� �
�	�� 4����
� �� ��� �6� ������ 	� ��� ������ ���

�	�� � ���	�� �056 	��� 	� ���� (� ��� ��� �� ��

�����
� ������ �� ���	��� ����
�������� "�	�
 ��	����

'�, �����	�
� ����+����	

8����� ��� ��� �� � �6 ������ ��� �� �	��	"�	��

�� ������ ��� �� ������ �� ��� �� ���	��� �� 	� �

��"*�� ���� �
� � ��� 	��� $ ��� ���	"�� �� ����

������ ���#�� �� �� � �6 	� �� ������ �� ���� ���
�

��� �	� �� ���# �� �� � �6 	� �� ���	��� ��� $ 	�

"������ �� � �6 ������ ���� ����� "���� �� �� �� ���

������ "� �� ������ �� ���� ����� ��� ��� � �6 ������

�� ���	�� ��� ���� �	� ����� 	� �� "��� ����� �� ��

��"*�� ���� �
� 	� ���� 	��� ����� ������ 	��	��� ��

���#	�
� 	� �� ���� ���� ��	��� (��� 	 ����� � � ���

 ��	�� ;� ��� ���� �� � ��� ���#<� 	 �	�� "� ���	"�� ���

������ � ���# �� �� � �6 �� ���� �� � ������ 8�����'

����� ��� �� �	� ����� 	� �� � �6 ������ ��� ���	��

"������ ������ ��� ��� ���	�	�
 �	��� ��
	�� $������

�� 	�� ���� � ����� ��� ���� ���	�	�
 	� �������� 	�

�������� ���������� 	� ������� ���#� �� �� � �6� ��� ���

#��� �� 	 	� ������� ��	� ��� ������ ?��
	�
 ���� ��

� �6 ������ �� ���	���� 	 ����� �� ���	�	�
 ��� ����

���	�
 �� ���� �� ����� 	�� "� ���� ���� 	���� (��� ��

����# �� � �6 ������ ��� �� ���� ���������� �� ��� #���

�� ���� ���� ���� ������ ��� ���� � �� ��	����	�

� �� ���	�	�
 ���� �� ���	����� 4 �	��
��� �� ���	��

��� ��	�� 	��	���� ��� ����� �� ������ ��� ����

���	��	�
 ��)���	��� ��� ��� �������� ����
�� 	� ��

���� 8����� ��� ���	�� ����)���	��� ���� �
�	� ���

�
�	�� $� ���� ��� ����)���	��� ��� ���� �� �� ���	�����

��� ��� ���	�� ����# ��� ���� ����)���	��� ��� ���� (�

��� #��� �� 0� �� �� �6� ������ ��� ���� ���	��	�

� 5� � �66 H� $ ����� �� ����� ��� ������ �	� ��	�

"�� � ���	�� �� ������ �� ���� . ����

'�' ������
� ����

�������� ���
	�� ���� ���	
����� � ��	� �������

(��� � ����� ��"�	� � � �� ��� �� ���	
����� ��

���	
����
����� �	�� ����� �� ��"�	�� � �� ��� ���

��#� � ������ �� 	 	� ���������� 4 ������ �����	���

�� ���
� �� ������ 	� ������� �� �
����� ��� �������

��� �!�� ��� ��	�� ��� 6� �6� �6� �6� -6� ��� .6 �	���

$� �	� ����� .6 �	�� 	� � ����� ������ ��	�� ������

��� 	������� �� 	� �������� $� ���		��� �� ������ ���

 ���	�� � "���� �	�� I�6� ��	�� ��#�� �� �	
��� �����

/6 �	��� J������ ��� ����� ���� "���� �	�� 	� ��

������ �� � ��"�	�� � �� 	� �!������� ��	� ������	��

�����
��
������' �	����	�� ��� ������ "�� ��
������'

��� ������' ��	��	��� (� ���� �"�� � ��#� ���� ��

������' �"	�	� �� ���������	�
 ��� ��	� ��	��	�� ��

�����	�
 ���� ������ 	� �� ������� ����� �� 4 � �����

��� � �	��� ��� 4 � ����� ����� �� ������ ��� ��� ���

"������ ������ ���	�� ���� �������	�� ����
� �� ����

 ���	��� ��� ��������� ���� �"�� � ���� ���� 	�� ��

����� ���� "��� ��)�	��� � ���� �� ����

!� "��
�	����
��	� � �� ��� ������� �� �!���	"�� �����	�
 �����

4 � �	� ��	�� ������� ��� ���	�� �����)���	��� ���

���	
����� ����
� � (�" "������� ��� ��� �����	�

����� ���	�	��� ���	��� ��� �!���� 3� 	������	�
 ����

������	��� ���� �� ���� ���	���� "���� �	��� ���#	�
��

��� ���	���"���� �����"���	��
����� ������' �"	�	� ��

���������	�
 ��� ��	��	�� �� �����	�
 ���� �������

$� �� ������ "� 	������	�
 �� ����� �	�#� �	� � ��

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 193

��� �������� �� ���
�	�
 � ������� ���� ����	���

�� ����	�
 ������	��	��� "����� ������ ��� ��	�

��� ���	�� 	� �����	�
�

#������
��
��� �� �� ��	
���� �� �� ������ �� �� �� �			�� ��� �� �� �����

����������������� �� ����
� ��� �	����� �� !��	����� ������
"	� �� ��������"�� ��!��� ���	��# ��������	
� ���� ����
���
$��� %&� ��� �� ��� �'()�(�� � %**+�

�%� ,� ��
�� �� ��!���		��� ��� �� ����� � �-�� �� ��� "�	 ���
��� ��� "�	 �� ���. �� /�	� �
�� �
��� /� �����
� ""�
�
��""	�
 ����
�� ��� ��$ ��
� ��	���� ��
�� � �" �
���
� 0��
��$ ��""	�
 ��	���� �
����# �������
�� �
�� ��������	� $��� �1�
��� 2� ��� 13�)3*3� 3 %**(�

�&� 4� �� 5�� ��� ,� 6� 7��� �8��	 ��""	��� �� �	��
���� ���
	��
�������� � ��� �� ����
� �" !��	���� ����
����# ��������	

� ���� ����
��� $��� %%� ��� 2� ��� 1�()1%3� 3 %**(�

�'� �������� ����� ��������� �

�.99000�:���;:��	���� 9� %*�%�
�2� �� 6� 6� ��� 6� �0���� ��	���
���
� �� �" 0:!:��� ��"�	 �!

��� ���
 �. ��"!"<����� �=�� �
� ��	���� ���� �	��
�
���� ���

�
�������� ����
��� ����# �������
��� ������ �� �����
�������� ����
�	� $��� 23� ��� '� ��� '&�)''3� �* %**&�

�(� >� �� ���$ ��� �� �$��� �7�	���� ��
�� � �� ����� ��"�	 �
!
���. 4� ��	���� �" � 0:�
 ���	� 0�
� �	����	� 0: ��
 ��	����
 �
	����# �������
��� ������ �� ���
�� �������
�	� $��� +2� ��� %�
��� �2()�(%� % %**(�

�+� ,� 7�� 4�!�� 6�� ��� 4� 7��� �7�	���� �
��� ��	���� ��

	��� ���
��	���� �	"�	 ��� �� � 0:�
!:��� �� ���	��# �������
��
��������� $��� '*� ��� (� ��� '3+)2*+� (%**&�

�1� �� ?����� ��� ������� �

�.99 ������	�9� %*�%�
�3� @� ��� � �	�� !	"# !�$�"���# !�����
�� !�%���
��� ��$� �����

��:����	�� A���� %**1�
��*� @� ��� � �	�� �� @�;������� B� 7� 4��� �� �� 7���� ��� >� A;���

�C��� �=���:� ""�
�$ ��
� �
� �	��
�� ���
�
 ���
 �# �&�
'!(&)'�*&)% �*+(&)% �� !,+�)'�*&)&, �&-*(�)'�*&

'!��&*%*.�!�� $��� �� ��� �� ��� �)+� %**+�
���� @� ��� � �	�� >� A;��� B� 7� 4��� �� �� 7���� ��� �� @�;�������

���
�. C��� �=���:� ""�
�$!��	�����# �� /������
��	 �� ���
0�� 1�!)� �������
��� ���������� ��)���
�� �������
�	 ��

������
��
��	� 1 %**+� ��� %��)%�(�

194 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Goal-Based Reengineering of Web Business Applications

Hicham H. Hallal, May Haidar

Fahad Bin Sultan University

Tabuk, Saudi Arabia

{hhallal, mhaidar}@fbsu.edu.sa

Abstract
We present an automated approach to reengineering

Web Business Applications from execution traces based

on predefined functional goals of the applications. The

approach uses model checking to filter the execution

traces based on their satisfaction of desired goals and a

framework for model inference (implemented using

Data Mining algorithms) to infer behavioral models

that depict both the data and control flows of an

application.

Keywords: Reengineering, Web Business Application,

Model Checking, Modeling.

1. Introduction
Advances in Web technologies have turned Web

Applications into an integral part of daily life. In

particular, automated development techniques have

largely contributed to the sharp increase in the

production of all sorts of Web Applications including

plain informative Web Sites; simple Web Applications,

which consist mainly of content pages plus some

“shopping” pages; and complex Web Business

Applications (WBAs), which are actually information

systems deployed over the Internet and linked to

sophisticated databases with elaborate user interfaces.

Meanwhile, ensuring high quality of the produced

applications has remained a concern for designers and

developers who have to guarantee features like

correctness, high performance, security, and usability.

This is true in particular for WBAs, where both personal

and financial information of users are constantly at

stake.

Over the past two decades, model driven techniques have

made the development process of WBA less tedious and

error prone and have provided efficient means for the

guarantee of quality features in the developed and

deployed application. Techniques like model

transformation, model based testing, reverse

engineering, and property testing and validation are

increasingly used in the development and analysis of web

applications in general. In particular, behavioral model

extraction from deployed applications is of high interest

since it facilitates several activities like testing and test

case generation, property validation, and model

transformation. Actually, a behavioral executable model

makes it possible to apply formal methods and

techniques like requirement specification, test derivation,

and model checking to automate main development and

analysis activities, which adds to the efficiency of the

development process. However, the inherent complexity

of applying formal methods to industrial scales and the

persistent questions about scalability of any relevant

approach pose major challenges to researchers and

practitioners in the field to optimize the models

generated from applications to alleviate the complexity

and scalability problems. However, in many cases, an

executable model cannot be built from design or

requirement documents due to, e.g., the fact that such

documents do not exist or are not complete or accessible.

Therefore, relying on actual executions to infer models

that describe how a system actually behaved becomes a

more practical choice. In general, monitoring and

logging techniques and tools exist for almost all types of

applications. A monitor would record execution traces

from the actual use of an application and store them in

logfiles. These traces are then used to infer a model of

the application. The inferred model can serve to analyze

the behavior of the application and improve its design

and implementation if needed (Figure 1). The problem

with trace based models, however, is twofold. First, the

expressiveness of the generated models is always limited

by what is observable during the execution of the

application. Second, the size of the model can reach

limits which affect the scalability of any analysis

approach that relies on the generated models.

In this paper, we explore an approach to reengineer

customized behavioral models of WBAs based on the

actual executions of an application while being accessed

by real users or by testers. The reengineered models are

customized to depict the intentions of the users of a

WBA. By default, each user accesses a WBA to fulfill a

specific task: purchase a ticket, book a reservation, buy

food, execute a banking transaction, etc. The main idea

in the proposed approach is to reengineer models that

depict the different intentions (goals) of users who

interact with the WBA over a period of time. The

behavior of the WBA in response to user stimuli is

collected in execution traces observable through

monitoring (using a proxy server for example). Then, for

each predefined goal a model is reengineered that

includes the behavior recorded only in the traces that

satisfy the goal.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 195

Figure 1. Workflow of the model inference approach.

This paper is organized as follows. In Section 2, we

review the related work. In Section 3, we describe WBAs

and how to collect execution traces. In Section 4, we

introduce a definition of functional goals and discuss the

formulation method. In Section 5, we describe the

approach to infer behavioural models from traces of

WBAs based predefined functional goals. Finally, we

conclude the paper in Section 6 and discuss potential

extensions of the work.

2. Related Work

Inferring behavioural models of software applications

has been the focus of many research efforts over decades,

e.g., [2, 7, 8, 10, 15, 16, 18], where models are either

inferred mainly from system requirements [9, 15, 16],

depicted as scenarios, or extracted from execution traces

[2, 7, 8, 10] collected by monitoring. The approach

presented in this paper can be compared to the work in

[10], [13], and [23]. In [13], a method is proposed to

learn HTTP request models for intrusion detection,

where the signatures of known attacks are used in

enhancing the learning. On the other hand, in [10], a

trace recorded during a browsing session is used to infer

a model of a web application. The obtained model in [10]

consists of communicating automata representing

windows and frames of the application, thus resulting in

a hierarchical model that describes the control flow of

the application, but does not address the data variations

that are revealed by traces collected in different browsing

sessions. In [23], the focus is mainly on predicting

simple low level intentions of users of applications based

on the features extracted from the user interaction such

as user’s typed sentences and viewed content. The work

does not consider high level goals and structured

intentions that relate more to the functionality of the

application.

This work builds on the results obtained in [8] in the

sense that we reuse the formal framework for model

inference, which is capable of inferring models that

depict both the data and control flows of a WBA. The

implementation of the framework was completed using

data mining algorithms applied to random sets of traces

generated by actual use of the WBA. Here, we do not

consider random traces to generate the behavioral model

of a WBA. Instead, we filter traces before using them

based on satisfying a pre-defined goal specified as a

property tested on the trace. If the trace satisfies the goal,

then it is added to the model. Otherwise, it is ignored.

The objective is to customize the model and reduce its

size to make it more useful in automation of specific

tasks like property testing, test derivation and test case

generation.

 3. Web Business Applications

In general, WBAs are developed in three tiers: a user

interface, a server side, and a database at the backend.

The database part is usually masked by the server

programs which perform the storage and retrieval

operations on behalf of the user. Meanwhile, the user

and server components are commonly linked through the

client-server architecture, where the client can be any

typical Web browser. In terms of behaviour, a WBA

involves two levels of logic: the application logic, which

manipulates the inner part of the application like the

interface and the protocols that control it, and the

business logic, which is usually seen as the part of the

code that controls the data in the application and

determines how it is treated based on the user

interactions.

Traces of WBAs
To generate traces of WBAs, we adopt a monitoring

approach that relies on a HTTP proxy, which intercepts

the communications between the server and the client

and stores them in execution traces (logfiles). A proxy

yields traces that contain only information exchanged

between the client and the server during a monitoring

session. In other words, any information handled, e.g.,

variables assigned or scripts executed, on the server and

client side cannot be obtained by a proxy and is absent

from the collected traces. In addition, we do not consider

the interactions between the server and the database,

which might actually reside on the same machine. At the

same time, we do not consider information related to

stateful HTTP communications like cookies, server side

sessions, and hidden variables.

Following [8] and [10], we define a WBA trace recorded

by a proxy as a set of ordered HTTP request/response

pairs exchanged between the client and the server as a

result of a sequence of user actions. Each request sent by

the client is a link clicked or a form filled on the source

Business Application

Monitor

Model

Inference Engine

Execution

Traces

Executable Model

Testing

&Validation
Visualization

ServerServer

Request

Response

Client ServerServer

Request

Response

Client

Users/TestersUsers/Testers

Change

Management
Customization

196 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

page by the user while the response is an HTML

document returned by the server identifying the

destination page or frame in a page when frames are

used. As a result, a request/response pair may identify

one page or frame in the WBA. The proxy identifies the

pages of the WBA either directly by their names or by

parameters in the request if a generic name is used for all

the pages. For simplicity, we assume that each page of an

application contains at least one form which is used to

make the transition to other pages. Moreover, to identify

a page, we use the URI/URL of the page along with a

subset of the page attributes, i.e., fields used in HTML

forms that are submitted by the client to the server.

Finally, we consider only single window WBAs with

non-framed pages and assume that all traces recorded

from an application start in its home page.

4. Goals of WBAs
In general, a user interacts with a WBA with a purpose

in mind. It basically depends on the type of the

application and the functionality it offers. For example,

we consider a WBA that has been used in our previous

work [8] which consists of small flight reservation

system, where customers can use the application to buy

tickets and make reservations with different preferences.

Hence, a user accessing the flight reservation application

would, most probably, want to buy an airplane ticket to

travel from one place to another. In this case, the

purpose is to “buy a ticket”. This can be identified as the

goal of the user in his access to the WBA. By default,

achieving the mentioned goal involves completing

smaller tasks before actually “buying the ticket” through

a confirmation issued by the WBA in the form of receipt,

SMS message to a mobile phone number or through an

email message. These smaller tasks might involve

entering personal information of the passenger for whom

the ticket is being bought, source destination

information, financial and credit card information, and

finally consent for purchase and payment. This means

the bigger goal of “buying the ticket” is broken down

into smaller goals that are not necessarily an expression

of the functionality of the WBA.

This reasoning about goal definition and classification is

similar to the work in [22] where the intentions of the

user of a web application are classified into two types:

1. Action intentions, which are perceived on a low level.

Each action can be a mouse click, keyboard typing, or

any other basic action performed on a computer.

2. Semantic intentions, which correspond to what the

user wants to achieve at high level. A semantic

intention may involve several basic actions on a

computer to accomplish it.

Our reasoning is also similar to the reasoning made in

the field of automated planning, where hierarchical

decomposition of goals is considered to devise and

implement proper plans especially in the presence of

contingencies.

We consider the following classification of goals in a

WBA:

1. Non functional goals: They relate to completing low

level tasks in the WBA. The completed tasks do not

need to satisfy a functional requirement of the

application. They include tasks like filling personal

information on a page, entering login information,

navigating from one page to another using various

controls (buttons, links, form submissions, etc).

2. Functional goals: They relate directly to satisfying a

functional requirement of the WBA. Examples

include buying a ticket, reserving a hotel room,

buying a book, etc. Each functional goal is achieved

through the completion of at least one non functional

goal. In other words, each functional goal can be

broken down into a sequence of one or more non

functional goals that should be achieved in a certain

order (usually defined by the developers of the

application).

In this paper, we focus on functional goals and describe

how to use them in reengineering customized models of

the WBA with respect to the various goals that can be

achieved when using the application. We describe in the

following section the model checking based approach

where traces from a WBA that satisfy a specific pre-

defined goal can be used to infer a behavioural model of

the application.

5. Goal-based Modeling of WBAs

In this section, we describe the goal based modeling of

WBAs. The proposed approach is an extension of the

inference approach presented in [8]. Figure 2 shows the

modifications needed to make the approach goal-based,

i.e., modeling is based on knowing the goals of the users

of the application under test. A new step in the

workflow is added to filter out traces that do not satisfy

the desired goal. Trace filtering based on goal

satisfaction is detailed in Section 5.1.

5.1 Trace Filtering
Each recorded trace of the WBA is checked against the

representation of a goal for satisfaction. The check is

performed in the model checker Spin [11], where the

trace is modeled by a PROMELA process and the desired

functional goal is specified using the Linear Temporal

Logic (LTL) formalism. Notice that since the trace of a

WBA is a sequence of pages interleaved with HTTP

requests, the check for goal satisfaction can be performed

more easily through a simple search to match the goal.

However, we choose to use model checking in order to

keep the approach more generic and capable to treat

more sophisticated traces where a total order between

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 197

components of a trace is not always present. In some

cases, such as in [7], the traces collected from a system

under test can be partially ordered sets of events and the

simple search to match the goal becomes insufficient.

Business Application

Monitor

Model

Inference Engine

Execution

Traces

Executable Model

Testing

&Validation
Visualization

ServerServer

Request

Response

Client ServerServer

Request

Response

Client

Users/TestersUsers/Testers

Change

Management
Customization

Goal Based
Filtering

Goals

Figure 2. Modified model inference approach.

5.2 Goal Specification
LTL is the main language for property specification in

the model checker Spin [11]. Other forms of

specification like automata (never claims) are possible

but not considered in this work. Following the discussion

in Section 4, we consider that each functional goal is a

sequence of smaller non-functional ones. As an example,

consider the function goal “purchase a ticket for a

minor” that is adopted with minor modifications from

[8]. Such goal involves several steps including:

1. Providing the name of the passenger

2. Providing the age

3. Providing the name of the guardian traveling with

the child

4. Providing the source and destination information

5. Providing seating preferences

6. Providing payment information

7. Confirming purchase

However, formulation of the goal does not require an

LTL formula that involves all the non-functional steps.

Instead, one can choose key steps to use as indicators of

the goal. For example, “purchasing a ticket for a minor”

must always involve the two non-functional goals:

“providing guardian information” and “confirming the

purchase”. For simplicity, we denote the functional goal

A and the two non-functional goals b (for providing

guardian information) and c (for confirming purchase).

In addition to the decomposition of A into b and c, we

know that b must always come before c.

In LTL, this specification of A can be expressed in

several forms. For illustration purposes, we show one of

the simplest forms:

!c U b, which reads: NOT c UNTIL b.

This means that c does not happen until after b.

Reservation

SetAge

Set-

Guardian

Set-

Category

Set-

Category
Three

Confirm

Figure 3. Single trace satisfying ticket purchasing goal.

On the other hand, a single trace that features

purchasing a ticket for a child is visualized in Figure 3.

The trace is represented as an automaton, where states

represent the pages visited in the WBA to fulfill the goal

and the transitions are the transitions between the pages.

Consequently, the main assumption on the applicability

of the modeling approach is to be able to identify the

states of the process representing a trace of the

application.

After selecting the trace to be added to the model, the

existing framework for model inference [8] is used to

deduce a model based on the filtered trace and any traces

chosen previously.

Figure 4 shows the model of the WBA corresponding to

the goal A generated from 200 traces. The presented

model includes, in addition to states and transition, the

conditions on the data submitted to the WBA in order to

reach the goal. Notice that even though some customers

were interested in buying a ticket for a child, they

entered wrong information that led them into rejection.

This is due to the formulation of the goal itself which

states the confirmation has to come after setting a

guardian while rejection is reached directly from

reservation. This example shows that proper definition of

the goals is the key to obtain the optimal model for the

198 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

WBA under test. On the other hand, the presented model

shows how the behavior of the application from all the

processed traces (in this case 200 traces) is aggregated in

a single state diagram. While some traces would

contribute new states and transitions to the model, other

traces might contribute only new conditions on the

transitions between states.

Figure 4. Model of the WBA for the goal “purchase a ticket

for a child” (200 traces).

After selecting the trace to be added to the model, the

existing framework for model inference [8] is used to

deduce a model based on the filtered trace and any traces

chosen previously.

Figure 4 shows the model of the WBA corresponding to

the goal A generated from 200 traces. The presented

model includes, in addition to states and transition, the

conditions on the data submitted to the WBA in order to

reach the goal. Notice that even though some customers

were interested in buying a ticket for a child, they

entered wrong information that led them into rejection.

This is due to the formulation of the goal itself which

states the confirmation has to come after setting a

guardian while rejection is reached directly from

reservation. This example shows that proper definition of

the goals is the key to obtain the optimal model for the

WBA under test. On the other hand, the presented model

shows how the behavior of the application from all the

processed traces (in this case 200 traces) is aggregated in

a single state diagram. While some traces would

contribute new states and transitions to the model, other

traces might contribute only new conditions on the

transitions between states.

Another example of a model generated from the WBA,

we show, in Figure 5, a model corresponding to another

type of goals. This time we model the behavior of the

users who try to detect the names that are on the no fly

list used in the application. Such model can be used for

security purposes.

Figure 5. Model of the WBA for the goal “identify no fly

list” (100 traces).

6. Conclusion
We presented an approach to reengineer WBAs through

inference of behavioral models from execution traces of

the applications under test. The proposed approach relies

on identifying functional goals of an application and

filtering execution traces based on satisfaction of selected

goals. The inference is performed in the framework for

model inference already presented in [8] and

implemented using Data Mining algorithms. The

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 199

inferred models, which depict the data and control flows

of an application, can be useful in various development

activities like testing and validation. Being goal based,

the models are customized to reduce the complexity of

handling them in automated environments. In addition,

goal-based models of WBAs can have practical uses in

security analysis of such applications.

The proposed approach can be extended by considering

combining multiple models to infer a global model of an

application which offers more coverage of the behavior

of the application. In addition, multiple goals that are

satisfied in collected traces can themselves be used to

reengineer partial specifications of the original

application.

Acknowledgment. We thank the insightful contributions

from Prof. Alexandre Petrenko and Arnaud Dury.

References
[1] Angluin, “Learning regular sets from queries and

counterexamples”. Information and Computation, 1987,

v.75 n.2, pp.87-106.

[2] T. Berg, B. Jonsson, and H. Raffelt, “Regular Inference

for State Machines with Parameters”. In Fundamental

Approaches to Software Engineering (FASE 2006),

LNCS 3922:107–121, March 2006.

[3] J. Chandra, R. P. Bose, S. H. Srinivasan, “Data Mining

Approaches to Software Fault Diagnosis”. In 15th

International Workshop on Research Issues in Data

Engineering: Stream Data Mining and Applications

(RIDE-SDMA'05), pp. 45-52. 2005.

[4] E. M. Clarke, O. Grumberg, D. A. Peled, Model

Checking. The MIT Press, 2000.

[5] T. Denmat, M. Ducassé, O. Ridoux, “Data Mining and

Cross-Checking of Execution Traces: A Re-Interpretation

of Jones, Harrold and Stasko Test Information”. In 20th

IEEE/ACM international Conference on Automated

Software Engineering, 2005, pp. 396-399.

[6] Graphviz: http://www.graphviz.org.

[7] H. Hallal, S. Boroday, A. Petrenko, A. Ulrich, “A Formal

Approach to Property Testing in Causally Consistent

Distributed Traces”. In Formal Aspects of Computing,

2006, 18(1): 63-83.

[8] H. Hallal, A. Dury, A. Petrenko, “Web-FIM: Automated

Framework for the Inference of Business Software

Models”. Services2009 Competition Conference

Associated with ICWS 2009 International Conference on

Web Services, Los Angeles, USA, July, 2009.

[9] D. Harel, H. Kugler, and A. Pnueli, “Synthesis Revisited:

Generating Statechart Models from Scenario-based

Requirements”. In Formal Methods in Software and

Systems Modeling, 2005.

[10] Haydar, A. Petrenko, H. Sahraoui, "Formal Verification

of Web Applications Modeled by Communicating

Automata" In 24th IFIP WG 6.1 IFIP International

Conference on Formal Techniques for Networked and

Distributed Systems (FORTE 2004), Spain, 2004, pp.

115-132.

[11] G. J. Holzmann, The SPIN Model Checker. Addison-

Wesley. 2003.

[12] J. Hopcroft, R. Motwani, J. Ullman, Introduction to

Automata Theory, Languages, and Computation. Third

Edition Addison-Wesley. 2006.

[13] K. Ingham, A. Somayaji, J. Burge,S. Forrest. “Learning

DFA Representations of HTTP for Protecting Web

Applications”. In Computer Networks Journal, 2007, 51,

pp.1239-1255.

[14] B. Jobstmann and R. Bloem, “Optimizations for LTL

Synthesis”. In FMCAD ’06: Proceedings of the Formal

Methods in Computer Aided Design, San Jose, 2006.

[15] Kazhamiakin, M. Pistore, and M. Roveri, “Formal

Verification of Requirements Using Spin: A Case Study

on Web Services”. In SEFM’04: Proceedings of the

Software Engineering and Formal Methods, 2004, pp.

406–415.

[16] Kruger, R. Grosu, P. Scholz, and M. Broy, “From MSCs

to Statecharts”. In Distributed and Parallel Embedded

Systems, DIPES’98. Kluwer Academic Publishers, 1999,

pp. 61–71.

[17] D. Lo, S. Khoo, C. Liu, “Mining Temporal Rules from

Program Execution Traces”. In 3rd International

Workshop on Program Comprehension through Dynamic

Analysis (PCODA'07). Vancouver, Canada. 2007.

[18] L. Mariani, M. Pezzè. “Dynamic Detection of COTS

Component Incompatibility”. In IEEE Software 24(5):

76-85 (2007).

[19] J. R. Quinlan, C4.5: Programs for Machine Learning.

Kaufmann, 1992.

[20] C. E. Shannon, "A Mathematical Theory of

Communication", Bell System Technical Journal, 1948,

27, pp. 379–423 & 623–656.

[21] Weka: http://www.cs.waikato.ac.nz/ml/weka/

[22] Web Application Security Consortium Glossary,

http://www.webappsec.org/projects/glossary/

[23] C. ZHENG, L, Fan, H. LIU, Y. LIU, W. MA, L.

WENYIN User Intention Modeling in Web Applications

Using Data Mining World Wide Web: Internet and Web

Information Systems, 5, 181–191, Kluwer Academic,

2002.

200 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

http://search3.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=S.%20H.%20Srinivasan
http://portal.acm.org/author_page.cfm?id=81100624760&coll=GUIDE&dl=GUIDE&trk=0&CFID=70528963&CFTOKEN=26624041
http://portal.acm.org/author_page.cfm?id=81100087612&coll=GUIDE&dl=GUIDE&trk=0&CFID=70528963&CFTOKEN=26624041
http://www.graphviz.org/
http://doi.ieeecomputersociety.org/10.1109/MS.2007.138
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/p/Pezz=egrave=:Mauro.html
http://en.wikipedia.org/wiki/Claude_Elwood_Shannon
http://en.wikipedia.org/wiki/A_Mathematical_Theory_of_Communication
http://en.wikipedia.org/wiki/A_Mathematical_Theory_of_Communication
http://www.cs.waikato.ac.nz/ml/weka/
http://www.webappsec.org/projects/glossary/

Web Application Vulnerabilities and Detection

Kangan(Student)1 and Monika(Assistant Professor)2

1U.I.E.T, Panjab University, Chandigarh, U.T, India
2 U.I.E.T, Panjab University, Chandigarh, U.T, India

Abstract - Web applications cover a range of activities, such
as e-banking, webmail, online shopping, community websites,
blogs, vlogs, network monitoring and bulletin boards. Web
security testing verifies whether Web based applications are
vulnerable or secure when they are subjected to malicious
input data. This paper presents taxonomy of various security
testing techniques and mainstream software tools used for a
particular type of security testing. We also provide the brief
description of various types of attacks and the security testing
tools used to detect these attacks.

Keywords: web application security; security testing tools;
types of security testing; security risks;

1 Introduction
Software testing is any activity aimed at evaluating an

attribute or capability of a program or system and determining
that it meets its required results [1]. Although crucial to
software quality and widely deployed by programmers and
testers, software testing still remains an art, due to limited
understanding of the principles of software. The purpose of
testing can be quality assurance, verification and validation,
or reliability estimation [2]. There is a plethora of testing
techniques [3] as shown in figure 1.

Today, software becomes more complicated and large-
scale, which results in more software security problems
increasingly. Software security is the ability of software to
provide required function when it is attacked [4]. Security
testing of any developed system is all about finding out all the
potential loopholes and weaknesses of the system, which
might result into loss/theft of highly sensitive information or
destruction of the system by an intruder/outsider. Security
Testing helps in finding out all the possible vulnerabilities of
the system and help developers in fixing those problems.

Now a day, almost all organizations across the world are
equipped with hundreds of computers connected to each other
through intranets and various types of LANs inside the
organization itself and through Internet with the outer world
and are also equipped with data storage & handling devices.
The information that is stored in these storage devices and the
applications that run on the computers are highly important to
the organization from the business, security and survival point
of view.

Any organization small or big in size, need to secure the
information it possesses and the applications it uses in order
to protect its customer’s information safe and suppress any
possible loss of its business.

Figure 1. Types of Security Testing

Security testing ensures that the systems and applications
used by the organizations are secure and not vulnerable to any
type of attack. Finding and fixing security flaws in a legacy
web application typically requires detailed knowledge of its
behavior. This knowledge is a result of understanding high-
level design artifacts combined with an analysis of the source
code of the web application. However, it is well known that
manual effort spent towards analysis of the source code is
labor and cost-intensive and is often error-prone.

Additionally, design level artifacts are often unavailable
for legacy web applications and the only available resource is
the source code. While source code is the most accurate

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 201

description of the behavior of a web application, this
description is expressed in low-level program statements. Due
to its inherent low-level nature, source code does not readily
over a high-level understanding of an application's intended
behavior which is necessary to identify and fix security flaws.
So, there arises the need for security testing of web
application.

Software testing is the process that determines that
confidential data stays confidential and users can perform
only those tasks that they are authorized to perform.

In the next section we have describes the needs of
security testing. Section III presents the different software for
various types of security testing. Section IV presents various
security risks. Section V provides the security testing tool for
each type of security risk. Section VI concludes by
highlighting research opportunities resultant from this work.

2 Needs of Security Testing
Exposing systems to the internet increases the risk that

security weaknesses in those systems will be leveraged to
compromise the system or the underlying data. So, there arises
the need for security testing of web application. The various
needs of security testing are [10]:

 Security test helps in finding out loopholes that can cause
loss of important information and allow any intruder enter
into the systems.

 Security Testing helps in improving the current system and
also helps in ensuring that the system will work for longer
time .

 Security Testing doesn’t only include conformance of
resistance of the systems your organization uses, it also
ensures that people in your organization understand and
obey security policies. Hence adding up to the
organization-wide security.

 If involved right from the first phase of system
development life cycle, security testing can help in
eliminating the flaws. This is beneficial to the organization
almost in all aspects (financially, security and even efforts
point of view).

3 Needs of Security Testing
The purpose of security testing is to identify the

vulnerabilities and subsequently repairing them. It ensures
that the systems and applications used by the organizations
are secure and not vulnerable to any type of attack. Typically,
security testing is conducted after the system has been
developed, installed and is operational. Security testing can be
further classified into various types as shown in table I [10]. It
presents the types of security testing, faults detected by them
and various tools used for each type of security testing.

TABLE I. TYPES OF SECURITY TESTING

Type of
Security
Testing

Fault Detected Mainstream
Commercial Software

Tools used
Security
Scanning

Detect areas of vulnerability
in the OS, applications and
network

Nessus (software), ISS

Network
Scanning

Detect active devices
 Detect open ports and
associated services/
application

Amap, AutoScan,
Netdiscover, Nmap,

P0f, Umit etc

Vulnerability
Scanning

Detects hosts and open ports
Detect known
vulnerabilities

Firewalk, GFI
LANguard, Hydra,
Metasploit, Nmap,

Paros Proxy etc

Password
Cracking

• Detect weak passwords and
password policies

Hydra, John the Ripper,
Rcrack, SIPcrack,

SIPdump, TFTPBrute,
THC etc

Log Review Provides historical
information on system use,
configuration, and
modification
Could reveal potential
problems and policy
deviations

Snort IDS sensor

File Integrity
Checkers

•Detect changes to important
files;
Detect certain forms of
unwanted files, such as well-
known attacker tools

Autopsy, Foremost,
RootkitHunter, and

Sleuthki

Anti-Virus
and

Malicious
Code

Detection

Prevent attacks avast! Free Antivirus,
Veracode

Penetration
Testing

 Tests security using the
same methodologies and
tools that attackers employ
Verifies vulnerabilities

Driftnet, Dsniff,
Ettercap, Kismet,

Metasploit, Nmap,
Ntop, SinFP, SMB

Sniffer,
and Wireshar

Modem
Security/ war

dialing

 Detect the use of
unauthorized modems that
might be used to bypass
existing security measures.

Toneloc (freeware),
THC-SCAN (freeware),
SecureLogix Telesweep

Secure (commercial)
Risk

Assessment
Find out and prepare
possible backup-plan for any
type of potential risk

CRAMM, CORA,
COBRA, Risk Check,

RiskPAC,
Ethical

Hacking
Detect potential security
weaknesses for a client

Cain and abel, Legion,
Brutus,Ec-Council

Security
Auditing

Detect common security
/config errors

LSAT, Flawfinder,
RATS

4 Security Risks
In recent years the development of such applications has

been considerable, and today rich internet applications offer
complex, real-time interactions with users. For instance, web
operating systems such as eyeOS offer much functionality that
was previously available only with traditional operating

202 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

systems. While web applications have become ubiquitous,
they also present new security risks. It is important to identify
and understand these risks when developing, hosting or
simply using these applications [5]. There are two main
reasons that web applications are vulnerable to attack.

First, it is generally difficult for the service manager to
keep up to date with security patches. This is a common issue
for services in general, but it may be particularly challenging
for web applications. This could be improved by better design
and packaging but it is often impossible to upgrade web
applications automatically.

Second, web applications are often easy targets for
attackers. As a relatively recent development, they use non-
mature code compared to traditional network services.
Unfortunately exploits – malicious code that exploits software
vulnerabilities –are generally easy to prepare, remotely
executable, cross-platform, and require no compilation. This
helps attackers to design effective and scalable automated
attacks. Vulnerable installations can be found quickly, easily
and silently by using search engines to detect known
vulnerable patterns, generally filenames, of specific web
applications. In table 2 we focused on identifying the most
common vulnerabilities.

In our study we get details for each of the Open Web
Application Security Project Top Ten 2011 [6] vulnerability.
Table II shows the variations in top 10 security risks from
2007 to 2011.

TABLE II. TOP 10 SECURITY RISKS

Risk Level Top 10 Security Risks in

2007 Till 2011

1 Cross Site Scripting
(XSS)

Injection

2 Injection Flaws Cross-Site Scripting (XSS)

3 Malicious File
Execution

Broken Authentication and
Session Management

4 Insecure Direct
Object Reference

Insecure Direct Object
References

5 Cross Site Request
Forgery (CSRF)

Cross-Site Request Forgery
(CSRF)

6 Information Leakage
and Improper Error
Handling

Security
Misconfiguration(NEW)

7 Broken
Authentication and
Session Management

Insecure Cryptographic
Storage

8 Insecure
Cryptographic
Storage

Failure to Restrict URL
Access

9 Insecure
Communications

Insufficient Transport Layer
Protection

10 Failure to Restrict
URL Access

UnvalidatedRedirects and
Forwards (NEW)

Added risks are Security Misconfiguration and
UnvalidatedRedirects and Forwards. Security Miscon-
figuration issue was A10 in the Top 10 from 2004, but was
dropped in 2007 because it wasn’t considered to be a software
issue. However, from an organizational risk and prevalence
perspective, it clearly merits re-inclusion in the Top 10; so
now it’s back. UnvalidatedRedirects and Forwards issue is
making its debut in the Top 10. The evidence shows that this
relatively unknown issue is widespread and can cause
significant damage.

Removed risks are Malicious File Execution and
Information Leakage and Improper Error Handling. Malicious
File Executions is still a significant problem in many different
environments. However, its prevalence in 2007 [9] was
inflated by large numbers of PHP applications having this
problem. PHP now ships with a more secure configuration by
default, lowering the prevalence of this problem. Information
Leakage and Improper Error Handling issue is extremely
prevalent, but the impact of disclosing stack trace and error
message information is typically minimal.

5 Security Testing Tools
Many web application security vulnerabilities result

from generic input validation problems. Examples of such
vulnerabilities are SQL injection and Cross-Site Scripting
(XSS). Although the majority of web vulnerabilities are easy
to understand and to avoid, many web developers are,
unfortunately, not security-aware[7]. As a result, there exist a
large number of vulnerable applications and web sites on the
web.

A web application scanner is an automated security
testing that examines web applications for security
vulnerabilities. In addition to searching for web application
specific vulnerabilities, the tools also look for software coding
errors, such as illegal input strings and buffer overflows [8].
Most of these scanners are commercial tools (e.g., Acunetix
Web Vulnerability Scanner and HP WebInspect), but there
are also some free application scanners (e.g., Foundstone
WSDigger and wsfuzzer) with limited use.

A method is method to evaluate and benchmark
automatic web vulnerability scanners using software fault
injection techniques [8]. Software faults are injected in the
application code and the web vulnerability- scanning tool
under evaluation is executed, showing their strengths and
weaknesses concerning coverage of vulnerability detection
and false positives. However, this study was focused on a
various security testing tools or vulnerability scanner for a
particular type of tool. In table III various security testing
tools [12] used to detect OWA SP Top Ten attacks are
presents and how these attacks occur. Security testing tools
presented in table III are both open source and commercially
available tools.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 203

TABLE III. TYPES OF ATTACKS AND TOOLS USED FOR THEM

Type of Attack How they occur Security Testing Tools

1. SQL Injection[15] SQL commands are injected into data-
plane input in order to affect the
execution of predefined SQL commands

ZAP, Francois Larouche, Antonio Parata,
icesurfer, ilo

2. Reflected Cross-Site
Scripting (XSS) [13]

In this attack doesn't load with the
vulnerable web application but is
originated by the victim loading the
offending URL

XSS-Proxy, ratproxy, Burp Proxy, WebScarab,
PHP Charset Encoder(PCE)

3. Stored Cross Site Scripting
(XSS)[17]

Occurs when a web application gathers
input from a user which might be
malicious, and then stores that input in a
data store for later use

PHP Charset Encoder(P CE) , Hackvertor,
BeEF, XSS-Proxy, Backframe, Burp,
WebScarab

4. DOM-based Cross-Site
Scripting [16]

Occur when active content, such as a
JavaScript function, is modified by a
specially crafted request such that a DOM
element that can be controlled by an
attacker.

The DOMinator Tool, DOM XSS Wiki, DOM
Snitch

5. Broken Authentication &
Session Management Testing
[12]

Attacker uses leaks or flaws in the
authentication or session management
functions (e.g., exposed accounts,
passwords, session IDs) to impersonate
users.

HackBar

6. Insecure Direct Object
References [12]

Occurs when a developer exposes a
reference to an internal implementation
object, such as a file, directory, database
record, or key, as a URL or form
parameter.

Burp Suite

7. Cross-Site Request Forgery
(CSRF) [12]

Occurs when attacker link or script in a
page that accesses a site to which the user
is known (or is supposed) to have been
authenticated.

Tamper Data, monkeyfist

8. Security Misconfiguration
[14]

Occur when the system admins, DBAs,
and developers leave security holes in the
configuration.

Watobo, Microsoft Baseline Security Analyzer

9. Insecure Cryptographic
Storage [12]

Occur when web applications do not
properly protect sensitive data, such as
credit cards, SSNs, and authentication
credentials, with appropriate encryption or
hashing.

N/A

10. Failure to Restrict URL
Access [12]

Frequently, an application only protects
sensitive functionality by preventing the
display of links or URLs to unauthorized
users. Attackers can use this weakness to
access and perform unauthorized
operations by accessing those URLs
directly.

Nikto/Wikto

11. Insufficient Transport Layer
Protection [12]

When Applications frequently fail to
authenticate, encrypt, and protect the
confidentiality and integrity of sensitive
network traffic

Calomel

12. UnvalidatedRedirects and
Forwards [12]

Common website functions, such as
search results or account logins,
frequently use redirects or forwards to
send visitors to another destination. If the
website doesn't verify the destination,
redirects or forwards might be vulnerable.

Watcher

204 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

6 Conclusion
In this paper we have provided a review of various

security risks to which web applications are vulnerable. A
brief description of which type of security testing tool should
be used for a particular type of attack is given. Various studies
that are given in this paper show that the effectiveness of
security testing tools in detection of vulnerabilities varies a
lot. So researchers are still focusing on this major issue so as
to make the web application more secure.

7 References
[1] Hetzel, William C., The Complete Guide to Software
Testing, 2nd ed. Publication info: Wellesley, Mass : QED
Information Sciences, 1988.

[2] Jiantao Pan, 18-849b Dependable Embedded
Systems,”Software Testing”,Spring1999.

[3] Types of security testing , Available : http://www.
softwaretestingnow.com/types-of-software-testing

[4] Gary McGraw, Bruce Potter. “Software Security
Testing”[J]. IEEE Security & Privacy, 2004, 2(5):81-85.

[5] OWASP Top Ten Project. Open Web Application
Security Project. [Online]. Available: http://www.owasp.org
/index.php/Category:OWASP_Top_Ten_Project

[6] Romain Wartel. Security Risks. [Online]. Available:
http://cern.ch/security.

[7] Jan-Min Chen; Chia-Lun Wu; Dept. of Inf. Manage.,
Yu Da Univ., Miaoli, Taiwan, “An Automated Vulnerability
Scanner for Injection Attack Based on Injection Point” . In
Computer Symposium (ICS), Dec 2010 .

[8] Elizabeth Fong; Vadim Okun.,“Web Application
Scanners: Definitions and Functions”. In System Science,
40th Annual Hawaii International Conference on Jan 2007.

[9] Security risks 2007, Available: https://www.owasp.org
/index.php/Top_10_2007

[10] Security Testing, Available: http://www.buzzle.com/
editorials/7-14-2006-102344.asp.

[11] Security risks 2010, Available: https://www.owasp.org/
index.php/Top_10_2010-Main.

[12] Security Testing Tools, Available: http://resources.
infosecinstitute.com/owasp-top-10-tools-and-tactics.

[13] Cross-Site Scripting, Available: http://www.opensource
testing.org/security.php.

[14] Securitymisconfigurations, Available: http://www.make
useof.com/tag/test-computer-securitymisconfigurations –micr
osoft-baseline-security-analyzer.

[15] Tesing SQL Injection, Available: https://www.owasp.
org/index.php/Testing_for_SQL_Injection_(OWASP-DV-00
5).

[16] DOM-based Cross-Site Scripting, Available: https://
www.owasp.org/index.php/DOM_Based_XSS.

[17] Cross site scripting tools, Available: https://www.
owasp.org/index.php/Testing_for_Cross_site_scripting.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 205

Verifying the Behavioral Contracts among Components by means of Semantic
Web Techniques

Francisco-Edgar Castillo-Barrera
Engineering Faculty

Universidad Autónoma de San Luis Potosı́
Dr. Manuel Nava 8, Zona Universitaria poniente

78290 San Luis Potosı́, México
ecastillo@uaslp.mx

Héctor A. Durán-Limón
Department of Information Technologies

Universidad de Guadalajara
Periférico Norte 799, Mdulo L-308

45100, Zapopan, México
hduran@cucea.udg.mx

Carolina Medina-Ramı́rez
Department of Electrical Engineering

Universidad Autónoma Metropolitana, México
Av San Rafael Atlixco 186, Col.Vicentina

09340 Distrito Federal, México
cmed@xanum.uam.mx

Jose Emilio Labra Gayo
Department of Computer Science

Universidad de Oviedo
C/Valdes Salas s/n 33007-Oviedo, España

labra@uniovi.es

S. Masoud Sadjadi
School of Computing and Information Sciences

Florida International University (FIU)
11200 SW 8th St

Miami, USA
sadjadi@cs.fiu.edu

Abstract

Verification and validation of Component-Based systems
are important tasks to do during the whole component life-
cycle. In companies, verification techniques for component
matching are difficult to integrate into the standard software
development process because these can be time-consuming,
error-prone, and require specialized expertise. In this pa-
per we describe a semantic web framework for verifying
behavioral contracts: invariants, pre- and post-conditions.
In addition, we use the CORBA-IDL vocabulary with se-
mantics for this purpose. Our approach relies on a core on-
tology of software components and SPARQL queries. The
ontology captures the concepts, properties, relationships,
requirements, and software component functionality. This
is encoded using OWL DL, supported by the Pellet reasoner
for checking the ontology component consistency. The Re-
source Description Framework (RDF) triples (describing
components content in the form of subject-predicate-object
expressions) are queried using SPARQL, in order to comple-
ment the matching verification process. We use case exam-

ple and a prototype (a semantic framework called Chichen
Itza) to show the feasibility of our approach.

1. Introduction

Crnkovic and Larsson [11] define Component-Based
Software Engineering (CBSE) ”as an approach to soft-
ware development that relies on software reuse”. The goal
of CBSE is the rapid assembly of complex software sys-
tems using pre-fabricated software components. In order to
achieve this aim, methods for verifying the matching among
components are necessary. Such methods can be basically
classified in Formal, Semi-Formal, and Informal methods.
Formal methods such as Z [27] or VDM [24] require a
mathematical background. For that reason, in practice it is
not adopted by industry. Parnas says ”paraadoxically, suc-
cess stories reveal the failure of industry to adopt formal
methods as standard procedures; if using these methods was
routine, papers describing successful use would not be pub-
lished” [22][26]. Other problems to adopt formal methods

206 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Figure 1. Visual assembled of software components in Chichen Itza framework.

are the time and the cost involved in the analysis of large-
scale component-based systems [32]. For the reasons given
above, formal methods require new ways to be applied. In
this work, we propose a verification technique based on
semantic techniques (Ontologies and SPARQL queries) in
conjunction with Chichen-Itza framework to mitigate this
problem. We propose an approach for verifying that the
contract of a required interface matches with the contract
of a provided interface. Our approach is able to check con-
tract conformance of syntactic and behavioral aspects [6].
The former invoves verifying the compatibility of the sig-
natures of a provided and a required interface. The latter
is in charge of certifying that the values of the parameters
are within a valid range and have a proper semantics. In this
work, we only consider sequential composition in which the
composed components are executed sequentially. We fol-
low an ontology-based approach which involves a formal
method but without the complexity of most formal meth-
ods. In this work, we consider the following definition: ”A
component is a reusable unit of deployment and composi-
tion that is accessed through an interface”[11]. In practice,
we have noted problems related to interface incompatibil-
ity are frequent. In particular such as incompatibility with
the semantics of operation parameters and interface opera-
tions (behavioral contracts [6]). We consider that the use of
a semantic matching approach (a software component on-

tology) could help to detect interface incompatibility before
the component-based system is deployed.

The rest of the paper is structured as follows. In Section
2 we present some related work. In Section 3 we briefly
explain semantic web techniques and its elements (Ontolo-
gies and SPARQL queries). Section 4 describes our seman-
tic approach for Verifying the Matching of Software Com-
ponents. In Section 5 we show the feasibility of our tech-
nique by describing an example. In Section 6 we draw some
concluding remarks. Finally, acknowledgments are given in
Section 7.

2 Related Work

There are several works about techniques for verifying
contracts, Brada [8], Mariani and Pezze [19], Tsai and Eric
Y.T. Juan [31], Cernuda, Cueva et all [12]. The most closely
related work about component contract verification was
made by Barnett and Schulte [3]. They propose a method
for implementing behavioral interface specifications on the
.NET Platform using contracts to check the conformance of
an implementation class and they define the AsmL speci-
fication language. In contrast with their work, our model
is independent of plataform and our semantic specification
language is supported by a domain ontology about soft-
ware components. Another related work was made by Lau

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 207

and Ukis [18]. They enrich component’s interface with
metadata which is used for preventing component’s con-
flicts with the target execution environment. Their work
is focused on .NET and J2EE frameworks. The ontolo-
gies based on software component and matching are mostly
represented by work of Claus Pahl at Dublin City Univer-
sity [21] who made an ontology for software component
matching. His ontology is based on DAML+OIL [4] logic
languange. Our ontology has an advance in logic and it
is based on OWL-DL logic model. We have found other
works about software component ontologies [30][20], but
they need extra information to be able to verify contracts
among components.

Figure 2. Semantic Verification Process

3. Semantic Web Techniques

3.1 Ontologies

An ontology [15] is a knowledge representation which
defines the basic terms and relations comprising the vocabu-
lary of a topic area, as well as the rules for combining terms
and relationships used to define extensions to the vocabu-
lary. In our case, the domain area is software components.
In particular, the ontology is able to manage all attributes for
software components, establishing links between two com-
ponents that can be connected by means of its interfaces.

3.2 SPARQL Query Language

SPARQL is a query language for the Resource Descrip-
tion Framework (RDF), this is a W3C Recommendation
[34]. We use Web Ontology Language (OWL) [35] which
extends RDF and RDFS. We use the disjointWith property
to verify compatibility among the instances created by the

user and its properties. We selected OWL DL language be-
cause we can assure that all conclusions given by the rea-
soner are computable and decidability. Example using RDF
triples (Parameter class and hasDataTypeParameter object
property) is showed below.

:Parameter a owl:Class .
:hasDataTypeParameter rdfs:domain

:Parameter .
:hasDataTypeParameter rdfs:range

:DataType .

4 Chichen Itza: verifying the matching of
software contracts

Chichen Itza 1 is a Semantic Framework which it con-
sists of a visual editor of software architectures. See Fig.1.
The tool makes use of the library Flamingo and the Ribbon
component [16] implemented in Java. The process to verify
a matching among components is very easy for the user.

4.1 A Core Ontology for Software Components

A Software Component Ontology was created for cap-
turing and verifying information about the input domain
models during the Architectural Design [14]. It was writ-
ten using notation 3 or n3 [5] which is similar to RDF in
its XML syntax, but more easy to understand. This ontol-
ogy consisted of 20 classes, 28 Object Properties, 36 Data
Properties. The ontology was written using n3 notation,
it is used by RDFS and OWL DL logic model. The main
classes are: ComponentType, Interface, Method, DataType,
Parameter, ComponentModel, PreCondition and PostCon-
dition. The Ontology is built by means of classes and re-
lations among concepts. These concepts and classes corre-
spond to the specification of an abstract data type and a set
of methods that operate on that abstract data type. Each
method is specified by an interface, type declarations, a
pre-condition, and post-condition [11]. In addition, there
are two types of interfaces (provided and required). The
interface of a method describes the syntactic specification
of the method. Interfaces define the methods used in con-
tracts and composition. The typing information describes
the types of input and output or both parameters and inter-
nal (local) variables. All of the above is represented in our
ontology (class Type, class Parameter, etc.). The most im-
portant part to consider in our ontology are the Conditions
(Pre and Post). The Pre-condition describes the condition
of the variables prior to the execution of the method whose
behavior is described by the Post-condition.

1Chichen Itza is the name of a large pre-Columbian city built by the
Maya civilization

208 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Figure 3. Currency invariant verification using a SPARQL query

4.1.1 Evaluating the core ontology created

The ontology developed has been evaluated in an infor-
mal and formal way. Regarding the former, the ontology
was evaluated by the developers using the Pellet reasoner
[23] to check the consistency of the ontology. The sec-
ond evaluation applied to the ontology is based on the work
of Gómez-Pérez [4] who establishes five criteria (consis-
tency, completeness, conciseness, expandability and sen-
sitiveness). The number of concepts and their relations
among them, allow us to check the ontology consistency
with less steps than other kind of ontologies.

4.2 Verification of Contract Matching

Our definition about matching is based on interfaces as
contracts by Szyperski [29]. Interface specifications are
contracts between a client of an interface and a provider of
an implementation of the interface. A contract states what
the client needs to do to use the interface. It also states
what the provider requires to implement to meet the services
promised by the interface. We define Contract Matching
among components when we say there is a componet in-
terface match when the provided interface of a component
satisfies the requirements of the required interface of an-
other component. Such a match is validated for sytactic and
functional semantic aspects. In the first case, it is checked
whether the provided interface includes at least the same list
of methods defined in the required interface. We follow a
structural approach whereby the names of the interface op-
erations can be different but the types of the parameters and
the order of the paramenters must be compliant. In the case
of functional semantic it is validated using SPARQL queries
about Invariants, Pre- and PostCondition of methods. See
Figure 4. Conditions defined for each method has to be
matched with the same variable, logic operator and value.
We verify restrictions and assumptions at construction time,
in a completely static manner, prior to the testing stages. Se-
mantic verification is the process which uses Semantic Web

Techniques (Ontologies and SPARQL queries) to guarantee
compliance with contractual agreements. The semantics of
an operation are described in an interface (contract). The
only task for the user before to apply our model is to define
the vocabulary of his domain and semantics. He introduces
his model into the framework by means of a file or by the
menus that allows us to do an automatic evaluation by us-
ing the Pellet reasoner [23] which checks inconsistencies.
Chichen Itza transforms his vocabulary from a text file into
an ontology instances and its relations. The instances are
created from classes defined in the software component on-
tology.

4.3 Using CORBAL-IDL vocabulary with Seman-
tics

CORBA(Common Object Request Broker
Architecture)[33] is a standard created by the Object
Management Group (OMG)[10] that enables software
components written in different computer languages for
working among them by means of their interfaces. These
interfaces are described using the Interface Definition
Language (IDL). In our semantic model, we need to receive
the component interfaces written using the concepts and
properties defined in the software component ontology
and Bradas affirm that ”developing CORBA components
is rather tedious by today’s standards due to its IDL-first
approach” [8]. For the reasons above, we have decided to
use the keywords of the CORBA-IDL with elements of the
ontology and supported with Chichen Itza framework. For
example, ComponentType, Interface, Method, Parameter
and hasNumParameters are keywords. Part of the semantic
ATM-IDL vocabulary. It is showed below.

:Atm a :ComponentType .
:Bank a :ComponentType .
:IAtmClient a :Interface .
:IAtmClient :hasMethod :deposit .
:IBank a :Interface .

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 209

Figure 4. Matching the precondition about the amount

:IBank :hasMethod :withdrawal .
:deposit a :Method .
:withdrawal a :Method .
:amout a :Parameter .
:idClient a :Parameter .
:deposit :hasNumParameters 2 .
:withdrawal :hasNumParameters 3 .
:deposit :hasPrecond :condition1 .
:deposit :hasPostcond :condition3 .

:

In the code above we would like to emphazise that there
are some instaces of clases (Atm and Bank), some classes
(ComponentType, Parameter, Interface and Method), some
object properties (hasMethod, hasPrecond and hasPost-
cond) and just one data type property (hasNumParameter).
In particular, the notation :deposit :hasNumParameters 2
means that the method deposit has exactly 2 parameters.

4.4 Using The Pellet Reasoner

Pellet [23] is an open-source Java based OWL DL rea-
soner. In our verification process we use Pellet for checking
the consistency of the ontology. Pellet gives an explanation
when an inconsistency is detected. Restrictions can be ex-
pressed into an ontology. For instance, the following code
states that one component has at least 1 interface.

:Component rdfs:subClassOf
[a owl:Restriction ;
owl:onProperty :hasInterface ;
owl:cardinality 1].

In contrast with the Logic Programming paradigm, we can
check types using ontologies. Besides, in the matching pro-
cess subtypes can be accepted as parameters. See code be-
low.

:Int a owl:Class .
:ShortInt rdfs:subClassOf :Int .

The disjointWith property allows for verifying restric-
tions in the input model (Semantic CORBA-IDL file). For
example, we could establish that a component made in .Net
can not run in the Linux operating system and the EJB com-
ponent model is not compatible with the MS COM model.
Defining disjointWith properties is also possible [1].

:Linux rdfs:subClassOf :OperatingSystem ;
owl:disjointWith :Windows .

:EJB rdfs:subClassOf :ComponentModel ;
owl:disjointWith :MS_COM .

All properties defined in the Ontology and blank nodes
are checked by the reasoner (Pellet) during the consistency
verification process.

4.5 Behavioral Contract verification using
SPARQL

At this moment the complete verification is not possible
using only the reasoner. For more complex checking we can
apply anothers actions such as: production rules [13]. We
decided to explore semantic queries in SPARQL [25] insted
of production rules. The second step after the reasoner have
checked the ontology consistency is to apply a SPARQL
query. We defined specific queries that evaluate and verify
the contract information of the components. Such queries
are completely transparent to the user who only needs to
provide the contracts of the components. We have used
Jena API [17] and Java language [9] for programming and
NetBeans IDE 7.0 [2]. SPARQL is similar to the database
SQL but for ontologies. Besides, we can use variables in the
queries, constraints, filtering information, logic operators, if
statements and more. Lines are linked by variables which
begin with a question mark. The same name of variable im-
plies the same value to look for in the query. The Jena API
allowed us to use SPARQL queries in our framework pro-
grammed in Java language. Part of the query which verifies
the Precondition matching is showed below.

210 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Figure 5. Semantic IDL help using the ontology

PREFIX : <http://www.ejemplo.org/#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT DISTINCT ?Interface1 ?Interface2
?Match_Method ?Match_Precond

{
?Interface1 :typeInterface :required ;

:hasMethod ?Method1 .
?Method1 :hasParameter ?par1 ;

:hasMethodName ?name1 ;
:hasNumParameters ?numpar1 .

?par1 :hasIndexOrder ?pos1 ;
:hasDataTypeParameter ?partype1 .

?Method1 :hasPrecond ?precond1 .
?precond1 :hasVariable ?var1 .
?precond1 :hasOperator ?opr1 .
?opr1 :symbolOperator ?oprname1 .
?precond1 :hasNumber ?num1 .

:
} order by ?Match_Method

An additional benefit of using ontologies and SPARQL
queries has been the extra information (metadata) to offer
support for writing the IDL file. See Figure 5.

5 Automated Teller Machine: example

ATM is a machine at a bank branch or other location
which enables customers to perform basic banking activi-
ties. The component model used for describing the ATM
was written using UML 2 notation [7], and is shown in fig-
ure 6. The vocabulary of the input model is created by the
user who selects classes and relation among concepts and he
creates his instances. In this case the input model (semantic
IDL file) only has the information of 5 software compo-
nents and we can create its instances and relations among
them using the Chichen Itza’s menus.

Figure 6. UML ATM Component-based system

6. Conclusions

In this paper we have presented and described a se-
mantic technique for checking the Matching of Software
Components. In comparision with other formal methods,
this semantic technique, based on logic (ontology), a rea-
soner and a set of SPARQL queries offers an easy way
to check matching among components and verifying the
model proposed. This model can be extended and enriched
with more concepts that rely on architectural design and
non-functional requirements (QoS). The Ontology was ex-
pressed in a logic-based language (OWL DL), enabling de-
tailed, sound, meaningful distinctions to be made among the
contracts expressed as classes, properties and relations. The
OWL DL ontology proposed is checked with the Pellet rea-
soner. Because it has a finite complexity. The use of a core
domain ontology permits us to search for specific compo-
nent information using intelligent techniques like SPARQL
queries. Extending the ontology with no functional proper-
ties (Quality of Services attributes), Design Patterns and ob-
ject properties (hasInvoke, hasResponse, etc.) for dynamic
behaviour are key points for our future work.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 211

7 Acknowledgments

This material is partly based upon work supported by
the National Science Foundation under Grant No. OISE-
0730065. I would like to express my deepest thanks to
Comision Mexico-Estados Unidos para el Intercambio Ed-
ucativo y Cultural (COMEXUS) through the Fulbright Pro-
gramme, for gave me a grant to support my research in Mi-
ami, Florida without which this work would not have been
possible, and Florida International University (FIU), School
of Computing and Information Sciences. In particular, I
would like to thank to Dr. S. Masoud Sadjadi and his team
for their fruitful discussions and support for my research.

References

[1] F. E. Antoniou Grigoris and V. H. Frank. Introduction to
semantic web ontology languages. 2005.

[2] E. Armstrong, J. Ball, S. Bodoff, D. B. Carson, I. Evans,
K. Ganfield, D. Green, K. Haase, E. Jendrock, J. Jullion-
ceccarelli, and G. Wielenga. The j2ee TM(tm) 1.4 tutorial
for netbeans TM(tm) ide 4.1 for sun java system application
server platform edition 8.1.

[3] M. Barnett and W. Schulte. Contracts, components, and
their runtime verification on the .net platform. J. Systems
and Software, Special Issue on Component-Based Software
Engineering, 2002.

[4] S. Bechhofer, C. A. Goble, and I. Horrocks. Daml+oil is not
enough. In SWWS, pages 151–159, 2001.

[5] T. Berners-Lee, D. Connolly, and S. Hawke. Semantic web
tutorial using n3. In Twelfth International World Wide Web
Conference, 2003.

[6] A. Beugnard, J. Jézéquel, N. Plouzeau, and D. Watkins.
Making components contract aware. Computer, 32(7):38–
45, 1999.

[7] M. Bjerkander and C. Kobryn. Architecting systems with
uml 2.0. Software, IEEE, 20(4):57–61, 2003.

[8] P. Brada. The cosi component model: Reviving the black-
box nature of components. Component-Based Software En-
gineering, pages 318–333, 2008.

[9] P. J. Clarke, D. Babich, T. M. King, and B. M. G. Kibria.
Model checking and abstraction. ACM Transactions on Pro-
gramming Languages and Systems, 16:1512–1542, 1994.

[10] O. CORBA and I. Specification. Object management group,
1999.

[11] I. Crnkovic and M. Larsson. Building reliable component-
based software systems. Artech House computing library,
Norwood, MA, 2002.

[12] A. del Rı́o, J. Gayo, and J. Lovelle. Verificación y validación
mediante un modelo de componentes. In Actas del Simposio
Iberoamericano de Sistemas de Información e Ingenierı́a del
Software en la Sociedad del Conocimiento (SISOFT-2001),
Bogotá (Colombia), pages 29–31.

[13] A. C. del Rı́o, J. E. L. Gayo, and J. M. C. Lovelle. A model
for integrating knowledge into component-based software
development. KM - SOCO, pages 26–29, 2001.

[14] A. Eden and R. Kazman. Architecture, design, implemen-
tation. In proceedings of the 25th International Conference
on Software Engineering, pages 149–159. IEEE Computer
Society, 2003.

[15] T. Gruber. Toward principles for the design of ontologies
used for knowledge sharing. pages 907–928. 1995.

[16] Java.net. Flamingo. http://java.net/projects/flamingo/, 2010.
[17] Jena. Jena a semantic web framework for java. 2000.
[18] K. Lau and V. Ukis. Deployment contracts for software com-

ponents. Preprint, 36, 2006.
[19] L. Mariani and M. Pezze. A technique for verifying

component-based software3. Electronic Notes in Theoret-
ical Computer Science, 116:17–30, 2005.

[20] X. Nianfang, Y. Xiaohui, and L. Xinke. Software compo-
nents description based on ontology. In Proceedings of the
2010 Second International Conference on Computer Mod-
eling and Simulation - Volume 04, ICCMS ’10, pages 423–
426, Washington, DC, USA, 2010. IEEE Computer Society.

[21] C. Pahl. An ontology for software component matching. vol-
ume 9, pages 169–178. Springer-Verlag, Berlin, Heidelberg,
2007.

[22] D. Parnas. Really rethinking ’formal methods’. Computer,
43(1):28 –34, Jan. 2010.

[23] B. Parsia and E. Sirin. Pellet: An owl dl reasoner. In In
Proceedings of the International Workshop on Description
Logics, 2004.

[24] J. P. Paul, P. and J. I. Siddiqui. Formal Methods State of the
Art and New Directions. Springer, Springer London Dor-
drecht Heidelberg New York, 2009.

[25] J. Pérez, M. Arenas, and C. Gutierrez. Semantics and com-
plexity of sparql. The Semantic Web-ISWC 2006, pages 30–
43, 2006.

[26] G. Reed. Exploiting formal methods in the real world: a
case study of an academic spin-off company. In Proceedings
of Modelling Software System Structures in a fastly moving
scenario, 2000.

[27] J. Spivey. Understanding Z: a specification language and its
formal semantics, volume 3. Cambridge Univ Pr, 1988.

[28] C. Szyperski, D. Gruntz, and S. Murer. Component soft-
ware: beyond object-oriented programming. Addison-
Wesley Professional, 2002.

[29] A. Talevski, P. Wongthongtham, and S. Komchaliaw. To-
wards a software component ontology. In Proceedings of
the 10th International Conference on Information Integra-
tion and Web-based Applications & Services, iiWAS ’08,
pages 503–507, New York, NY, USA, 2008. ACM.

[30] J. Tsai and E. Juan. Compositional approach for model-
ing and verification of component-based software systems.
In Proceedings of the 2000 Monterey Workshop on Model-
ing Software System Structures in a Fast Moving Scenario,
pages 13–16. Citeseer.

[31] J. J. P. Tsai and E. Y. T. Juan. Compositional approach for
modeling and verification of component-based software sys-
tems. In Proceedings of Modelling Software System Struc-
tures in a fastly moving scenario, 2000.

[32] S. Vinoski. Distributed object computing with corba. C++
Report, 5(6):32–38, 1993.

[33] W3C. http://www.w3.org/consortium/. 1994.
[34] W3C. Owl web ontology language, 1994.

212 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

SESSION

EMBEDDED SYSTEMS, APPS, ANDROID, AND
APPLICATIONS

Chair(s)

TBA

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 213

214 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Software Engineering a Family of Complex Systems Simulation Model
Apps on Android Tablets

V. Du Preez, B. Pearce, K.A. Hawick and T.H. McMullen
Computer Science, Institute for Information and Mathematical Sciences,

Massey University, North Shore 102-904, Auckland, New Zealand
{ dupreezvictor, brad.pearce.nz }@gmail.com, { k.a.hawick, t.h.mcmullen }@massey.ac.nz

Tel: +64 9 414 0800 Fax: +64 9 441 8181

March 2012

ABSTRACT
Tablet computers are emerging as powerful platforms for
educational and demonstration software in areas like com-
putational science and simulation which previously had
needed higher performance processing. Developing soft-
ware as an App or even porting it from other interactive
platforms still requires non-trivial software engineering ef-
fort however. We describe how a family of complex sys-
tems simulation models were developed as a domain re-
lated family of Apps and discuss the software engineering
issues we encountered in generalising the data structures,
and simulation code patterns to run as Android Apps. We
also discuss performance achieved on various models with
a range of modern tablet computers and other devices with
similar processors. We speculate on how domain-specific
software engineering methods could automate such future
simulation model App development.

KEY WORDS
software architecture; tablet; Apps; Android; ARM.

1 Introduction
Engineering software for tablet computers is an exciting
area of development with emerging framework software
proving capabilities to exploit the mobile nature and touch
screen interaction capabilities of such devices. Despite a
somewhat tumultuous history [1, 2], these devices have al-
ready found uses in mobile gaming [3–5] and other com-
putationally intensive applications beyond simple data en-
try [6, 7].

These platforms are here to stay and have a strong poten-
tial [8]. In this paper we describe our interests in develop-
ing software for computational interactive simulations [9]
and our efforts in engineering simulation Apps for tablet
computers using the Android operating system [10–12]
and associated code frameworks.

Figure 1: Screen-dump showing our App running the Ising
Model

Tablets are powerful platforms for simulation demonstra-
tion models, due to their highly interactive graphical dis-
play capabilities. However coding for this interactivity can
be demanding due to the still maturing touch and multi
touch interfaces. Tablet architecture is becoming more and
more advanced with the development of duel core and re-
cently quad core systems. This allows for models be be-
come more interactive and become more graphically in-
tense.

Mobile operating systems, such as Apple’s IOS and
Googles Android have provided developers a solid plat-
form to implement classical models on to test both the de-
vices and the models as interaction with the model is made
easy. Stumbling blocks are present however when moving
a model from a PC to a mobile operating system. Con-
siderations such as power management, memory manage-
ment and conservation, and limited computational power
all need to be considered when implementing a chosen
model.

The Android platform allows a somewhat self managed
system for its Apps due to the use of the Dalvik virtual ma-
chine [13]. This is a type of Java virtual machine which is

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 215

much like Sun’s JVM but has optimizations in the areas of
power management, better memory sharing and other as-
pects which enable strong performance on mobile devices
such as phones and tablets.

Todays tablets and mobile devices have Advanced Risk
Machine (ARM) processors [14]. This is as these ARM
processors are low powered and cheap to make which al-
lows fast and efficient mobile computing in comparison to
more powerful and power hungry PC CPUs. Even though
ARM processors are now as powerful as PC processors
they are still capable of running the latest mobile operating
systems of IOS and Android. Many devices have multiple
ARM processors which perform different aspects for the
tablet or mobile device.

Multiple ARM processors and other hardware can be
formed into an integrated circuit know as a System on
Chip(SOC). A SOC can contain all the hardware that is re-
quired to operate a tablet or mobile device, hardware such
as multiple ARM processors for applications, GPS, blue-
tooth, WiFi and RF communications.

The SOC also contains many busses that link all the pro-
cessors and many other bits of hardware for peripheral de-
vices for the tablets. There is a limited number of com-
panies that manufacture SOCs which are known for slight
optimizations in certain areas of the various chips. SOC
however are not limited to tablets and mobile devices, there
are various organisations that have used SOCs in various
other development boards such as Panda [15] and Rasp-
berry Pi [16].

As both ARM processors and SOCs become more com-
plex and powerful this allows for tablets and other mobile
devices to take advantage of portable and interactive com-
puting power which allows for interesting research in App
development. Tablets have been optimized with version of
an ARM architecture processor for longer battery life vs
battery weight.

ARM gained popularity with more power and cost efficient
way to build tablet or mobile computers, running both and
Android and IOS. The touch display capability supports
direct model manipulation of complex systems such as the:
Ising model of a magnet [17–20]; Game of Life [21, 22];
Game of Death [23, 24]; Kawasaki exchange model [25,
26]; and Sznajd opinion model [27, 28] which we discuss
in Section 2. Figure 1 shows a screen-shot from our App
running the Ising model simulation.

In Section 3 we describe various aspects of Android’s App
architecture that we exploited to engineer our Apps the
platform works. In Section 4 we explain our results from
the various models and we discuss this further in our dis-
cussion in Section 5. We offer some conclusions and di-
rections for further work in Section 6.

2 Model Family
The driving motivation for our building a family of simu-
lation model Apps was our desire to demonstrate these to
students learning about the models [29], coupled with the
realisation that many of these models have a great deal in
common. In software engineering terminology they con-
stitute a family of domain models that are closely related.
We found that it was feasible and desirable to construct our
App software to exploit this observation.

The models themselves have been described extensively
elsewhere - both by ourselves and by other authors. How-
ever we give a brief summary of the key features here for
completeness and to explain the decisions and results dis-
cussed in this present article.

The Game of Life and Game of Death are cellular automa-
ton models. Each cell is initialised to a state or live, dead
(or zombie) and a deterministic rule is applied to change
the state according to its own state and that of its imme-
diate neighbours. These models are surprisingly complex
systems whereby rich and unexpectedly structured spatial
patterns of cells emerge from the very simple microscopic
rules applied deterministically to the individual cells.

The Ising model is almost as simple a model. In it, a heat-
bath algorithm is used to emulate thermal effects on atoms
in a magnetic material arranged in a crystalline lattice. The
Ising system consists of a micro crystalline array of single
bit magnetic moments or “spins” which interacts with its
nearest neighbours. At each time step of the simulation
each spin is considered in turn and the energy and thermal
probability of it “flipping” – reversing its direction are con-
sidered. The probability of flipping is different, depending
upon the applied temperature.

We find that spins align with their neighbours when the
system is cold, but thermally randomize when it is hot. The
interesting feature about the Ising system in 2 (or 3) dimen-
sions is that there is a definite Curie temperature that can
be measured. In real magnets the Curie temperature is the
temperature above which the material stops being a mag-
net, or an alternative viewpoint is that materials like iron
spontaneously become magnetic below their Curie temper-
ature. This is known as a phase transition and is very dif-
ficult to explain simply without a model to demonstrate.
The value of an interactive simulation is that the temper-
ature parameter can be directly varied by the user and the
effects seen in real time. Thus, it is possible for a user of
our App to cool or quench a simulated Ising magnet down
and see it undergo its phase transition and all the spins start
to spontaneously align with one another to produce com-
plex patterns.

The Kawasaki exchange model is constructed in a simi-
lar manner to the Ising system. In this case however we

216 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

preserve a fixed ratio of the two microscopic species since
instead of flipping or changing species, in the Kawasaki
system we only allow them to swap positions with one of
their (randomly chosen) neighbours. In this respect the
Kawasaki system models diffusion and phase separation
or “unmixing” of the two species. the rate and manner
of unmixing is like the separation of two atomic species
in a binary alloy. This sort of dynamical behaviour is of
great importance in real materials. With out some sepa-
rated granules an alloy typically lacks strength and other
physical properties but if too much separation occurs it can
break apart and cause catastrophic failure in for example
fuel rods in a reactor.

Models of opinion formation and propagation are now
recognised as important ways to understand crowd be-
haviours, social and political phenomena. The Sznajd
opinion model is also formulated in a manner similar to the
Ising or Kawasaki models, but the update rules are simpler.
Each species represents an opinion, and at each step if two
cells of the same opinion are found next to one another we
allow the possibility of them “persuading” all their neigh-
bouring sites to the same opinion. In this sense opinions
get pushed out to the neighbours via the Sznajd update rule.

We encounter similar complex spatial patterns formed by
all these models. They are all modelled as an array of sites
on for example a square lattice. Each cell can take on a dis-
crete and small number of different states – live/dead/zom-
bie or spin-up/spin-down or alloy species x/y, or political
opinions A/B/C and so forth. An array of bytes is suited
to this model. The update rules are only slightly different
for each model so some commonality in code structure is
possible.

For convenience in applied the update rules symmetrically
we impose periodic boundary conditions - so that a cell at
the edge of the array still sees the same number of neigh-
bouring cells as one in the middle. This does not affect the
physics or complexity of the model and also supports visu-
alisation actions such as panning and zooming around in a
wrap-around display of the simulated system.

The key criteria for engineering a family of Apps for these
models are the performance capabilities and managing the
code complexity to implement suitable model system sizes
on current generation tablet computers using the code de-
velopment frameworks available for them.

3 Android Java Apps Architecture
The Android operating system has emerged as a powerful
and popular platform for developing Apps to run on mo-
bile platforms such as tablet computers and smart phones.
Android is a Unix/Linux-like operating system with many
well established, tested and widely used and understood

Figure 2: Android Activity Life-cycle

internal software models. Its relative openness makes it an
attractive development platform for mobile applications.

Figure 2 shows the Android activity life-cycle. It shows
the different calls an Android activity makes on its cre-
ation, halt and restart. Our application used many of these
activity call-backs to set up and run our simulations. We
mainly used the onCreate() function to initialize data and
classes and the onPause() function to halt the simulations
when the activity was not longer in view by the user using
the home button or the back button.We also used the on-
Restart() call-back to restart our App if the user navigated
back to the application. This life-cycle call-back functions
of the activity are extremely useful in application as they
are mainly event driven. However as can be seen the sys-
tem does the handling of properly destroying the activity
which means from a programming point of view you need
to be careful about how you exit and clean up in your ap-
plication.

The code listed in Figure 3 is an example of a running
model in the main loop. This is pseudo-code for creat-
ing new thread controlling the main loop and handling the
invalidation for the GUI. The code stipulates that when the
activity is active update the model in a continuous loop oth-
erwise a one-step mode can be performed which updates
each step individually with button control.

Figure 4 and Figure 5 show pseudo code for our rule im-

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 217

r u n S i m u l a t i o n f u n c t i o n {
new Thread {

While (a c t i v e){
i f (r ed raw){

c a l l u i u p d a t e ()
} e l s e i f (Running){

choose r u l e s e t
c a l l u i u p d a t e ()

} e l s e i f (one s t e p){
choose r u l e s e t
c a l l u i u p d a t e ()

}
}

}

Figure 3: Pseudo code for main loop

g o l c o n w a y r u l e s () {
g e t number o f c e l l s i n g r i d ;

f o r (i n t i =0 ; i< t o t a l c e l l s ; i ++){
c o u n t num of l i v e n e i g h b o u r s ;
i f ((s t a t e == 0) && (c o u n t == 3)){

s e t a l i v e ;
} e l s e i f ((s t a t e == 1) &&

((c o u n t == 2) | | (c o u n t == 3)))
s e t s t a t e t o a l i v e ;

} e l s e {
s t a t e d i e s ;

}
}

}

Figure 4: Pseudo code for Game of life computation
plementation of the Game of life and the Game of Death.
For the game of life we loop through all the cells. For each
one we get the sum of the number of live cells surrounding
the current cell and then apply the rules to the cell bases on
this count. The rules are implemented in the if statements.
After every cell has been updated this is considered one
step or iteration in the game of life.

For the Game of Death in Figure 5 the implementation of
the rules was slightly more complex due to the addition
state of zombie but it is very similar to the game of life.
Again we loop through all the cells, for each we need to
know its current state and how many are alive around it.
We can then apply the rules in the if statements to the cell
to produce the next state. When all cells have been updates
we again consider that one iteration.

The App architecture can derived from Figure 2 showing
the App runtime environment. Android supports what is
know as a multiple activities model and the screen area is
managed using various ”activities.” We found it useful cre-
ating multiple activities to navigate through the application
selecting and initializing each model. Once activity is cre-

p u b l i c s t a t i c vo id g o d r u l e s () {
g e t number o f c e l l s i n g r i d ;
f o r (i n t i =0 ; i< t o t a l c e l l s ; i ++){

c o u n t num of l i v e n e i g h b o u r s ;
i f s t a t e a l i v e and

c o u n t i s 3 or c o u n t i s 2{
t h e n s e t a l i v e s t a t e ;

} e l s e i f s t a t e i s a l i v e {
s e t t o dead s t a t e ;

}
i f s t a t e i s dead and c o u n t i s 3{

s e t t o a l i v e s t a t e ;
} e l s e i f s t a t e i s 0){

s e t s t a t e t o zombie ;
}
i f s t a t e i s zombie and c o u n t i s 2{

s e t s t a t e t o a l i v e ;
} e l s e i f s t a t e i s zombie{

s e t s t a t e t o zombie ;
}

}
}

Figure 5: Pseudo code for Game of life computation

ated it can send Intents to the Android system which starts
other activities. This allows us to combine loosely couple
components to perform certain tasks.

Graphical Apps creates a single thread of execution by the
Android OS which is called the main thread. UI, invalida-
tion and canvas drawing are performed on this thread and
we implemented this with the code on Figure 3, creating
a new thread for our drawing to the canvas. Developers
can not access the main thread directly, however Async-
Task can be used for thread management. Manipulating
thread and handlers are avoided when the UI thread con-
trols background operations and result.

These models can be defined in a arbitrary dimension most
commonly described as ”hyper bricks” of mesh points.
This allows us to have a block of memory to index any
point in the brick using a single integer which is known
as the ”k-index” [30]. In our implementation both a k-
index and x coordinate system was used due to X,Y loca-
tion coordinates being precomputed and stored in an array
rather than converting to X and Y from a k-index. This was
to reduce the amount of modulus operations in the code
which has been known reduce performance in computa-
tional models. The negative aspect of precomputing the X
and Y coordinates is that it requires additional storage for
X,Y coordinates on top of storage of the state of each cell.

4 Performance Results
We have measured the simulation and graphical update
performance of our model Apps on various specific tablet

218 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Device FPS Time(s)
Motorola Xoom 26 38.22s
Samsung Galaxy Tab 34.8 28.95
Asus Transformer 28.2 35.58s
Panda Developer board 17 59.69s
Android Emulator 4.6 213.57s
Animaux (PC Build) 24.7 40.5s

Table 1: Averages for 1000 iterations for Game of Life

Device FPS Time(s)
Motorola Xoom 15.2 69.16s
Samsung Galaxy Tab 18.8 55.58s
Asus Transformer 17 58.63s
Panda Developer board 11 95.16s
Android Emulator 4.6 213.57s
Animaux (PC Build) 24.7 40.5s

Table 2: Averages for 1000 iterations for Game of Death

and other compute platforms.

Table 1 , Table 2 ,Table 3 and Table 4 all show interesting
results when compared to each other. The tested tablets,
Motorola Xoom, Samsung Galaxy Tab and the Asus Trans-
former all showed similar performance. This was expected
as they all contain the same hardware (See Table 5). This
was apparent when comparing the Xoom and the Trans-
former tablet devices. The Galaxy Tablet however per-
formed much better than expected in comparison to the
other two tablets. We can only speculate as to why this
occurred. The Panda Developer board performed slower
than the tablet devices which was surprising as it is very
similar in hardware.

The Android emulator that is provided with the Android
SDK performed the worst of all tested devices. We suspect
this to be as all the hardware of the emulator is emulated
in software unlike the other devices that run on physical
hardware. The Animaux program for PC performed the
same across the all the models. This was expected as the
program is programmed in a totally different way with dif-
ferent classes and underlying classes and data structures.
Therefore it make it hard for us to draw any relevant con-

Device FPS Time(s)
Motorola Xoom 24.2 41.30s
Samsung Galaxy Tab 31 32.41s
Asus Transformer 26.2 38.40s
Panda Developer board 18.2 58.04s
Android Emulator 4.4 274.15s
Animaux (PC Build) 24.7 40.5s

Table 3: Averages for 1000 iterations for Ising

Device FPS Time(s)
Motorola Xoom 87.8 11.50s
Samsung Galaxy Tab 128.4 7.77s
Asus Transformer 78.8 12.73s
Panda Developer board 88.6 11.40s
Android Emulator 6.8 153.87s
Animaux (PC Build) 24.7 40.5s

Table 4: Averages for 1000 iterations for Sznjad

clusions as to how powerful PC simulations are compared
to those on tablet based devices.

Table 5 shows each device specification that these com-
plex models was computed on. Android tablets and the
Panda Developer board running the Dual Core Cortex A-9
chip from the ARM family, this was somewhat interest-
ing since similar results are expected between Android de-
vices. These Android tablets are identical and the only dif-
ference to similar devices is the Graphics Processing Units
(GPU) in the Panda Development board. Android tablets
use a 8 core 333 MHz GPU whereas the Panda boards use
4 core 384 MHz both supporting OpenGL ES 2.0.

Results shown the Samsung device having much faster re-
fresh rates and lower time steps compared to other tablet
devices. Since all the models had the Android Ice Cream
Sandwich 4.0.3 running as their main operating system,
we concluded differences in driver, memory and resource
management between the different vendors. Android emu-
lator showed slow results due to the ARM architecture that
Android is based on. Personal computers are based on the
x86 architecture and thus the emulator need to be executed
on a virtual machine which was irrelevant to the test we
wanted to contrive on Android OS.

5 Discussion
Our test environments which were all dual core architec-
ture (Tegra 2). This allows creation of a genuinely concur-
rent new thread so that calculations of the rules and An-
droid’s output on the display can be separated. This pro-
vided significant performance increases. (see performance
comparison graph/grid). This is as Android/Java’s system,
garbage collection and user display processes are on one
core and the other core is left to do all the calculations
on the rule-set. When the newer quad core architecture is
available (Tegra 3), the App may then be able to run the
various models a lot faster as it splits the work load across
the four cores the cpu provides.

Models showed that similarities such computation time
and refresh rate could be closely correlated, however the
Game of Death showed these variables to be slower in
all aspects. Having three states was display intensive

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 219

Device CPU Memory GPU L2/L3 Cache
Motorola Xoom NVIDIA Tegra 2 T20 1 GB - DDR2 ULP GeForce 1MB - L2
Samsung Galaxy Tab NVIDIA Tegra 2 T20 1 GB - DDR2 ULP GeForce 1MB - L2
Asus Transformer NVIDIA Tegra 2 T20 1 GB - DDR2 ULP GeForce 1MB - L2
Panda Developer board Dual-core Cortex-A9 1 GB - DDR2 SGX540 graphics core 1MB - L2
Android Emulator NA 256Mb - VM NA NA
Animaux (PC Build) 3.2 GHz Intel Core i3 4 GB DDR3 ATI Radeon HD 5670 512 MB 4MB - L3

Table 5: Specifications for the computer platforms used.

on the model with garbage collection(GC) initially run-
ning at 40%, this was optimized using the Android Debug
Bridge(adb). This was a crucial tool developing the App
showing thread usage and garbage collection.

The various models across different devices and platforms
gave us many interesting and unexpected results. Firstly
the various models, Game of life, Game of Death, Ising,
and Sznajd all produced interesting results across the three
tablet devices. As can be seen from table one through four
all the tablets showed slight performance differences. This
was interesting as all the tablets are based on the same duel
core, Tegra 2 architecture. It was surprising to see the
rather large variation in the amount of time it took to do
1000 steps in the various models across the Xoom, Trans-
former and Galaxy Tablet. The only thing we can put these
variations are down to the specific hardware differences of
the three tablet devices and the device drivers associated.
This could also be due to different ARM processor ver-
sions, cache, clock speeds, stand alone GPU processors in
devices.

The FPS of the various devices varies in direct relation to
the time taken to perform the 1000 iterations of the model.
As FPS rises the time taken decreases. This was due to
the multi-threaded nature of the application and how An-
droid platform separates its processes across its various
available cores. The Panda development board fared some-
what worse than expected in testing. This may be due
to its unoptimized nature to the Android platform as the
panda board is also designed to run various other operat-
ing systems. The Android emulator that comes with the
Android SDK performed slowest of all across all the mod-
els. This we suspect is due to the emulator running via
software rather than hardware like on the tablets. This may
be causing a bottleneck in the emulator in graphic output.

The PC based Animaux model performed uniformly across
all models in terms of iteration times and FPS. This per-
formed well and it was obvious that the PC implementation
had a lot more possible power that could be squeezed out
of it if optimized to the models such as the Android App
had. Even though the Animaux model was also written in
Java, underlying classes and grid structure were used. This

means differences in neighbour discovery, state recovery.
Differences in 1000 iteration times in the four models was
due to what neighbours where needed by the various mod-
els and the requirements or computing them. As these
models are loop intensive resource reuse was something
we needed to be wary of as garbage collection by the
Dalvik virtual machine can be time intensive. The Sznajd
model requires the least amount of neighbours to be re-
trieved hence it performs the fastest.

6 Conclusions
We have described how we architected and developed a
family of Apps for tablet computers using Android and
associated Java frameworks. We have shown that mod-
ern tablet devices produce quite credible performance even
when compare d to a desk top implementation - for inter-
active simulation demonstrations. We have discussed soft-
ware and implementation commonalities across our initial
family of application simulation models - including sim-
ple automata such as the Game of Life and Game of Death
through more sophisticated automata-like models such as
the Sznajd opinion models to models like the Ising and
Kawasaki models which require random number genera-
tion and mathematical function evaluations.

The Android code development framework is quite well
suited to such a family of Apps and we have been able to
share a lot of code and data structures across this family
of models. The graphical interface code and associated id-
iomatic structures are rather different for a touch sensitive
screen found on the tablet to the more common mouse en-
vironment and widget collection used on desktops but it is
feasible to find ways for a user to exploit either.

The Android activities model and the associated life-cycle
is a good framework for the interactive nature of Android
applications. It lends itself well to the event driven flow
and style of direct model manipulation in computational
models. The activity design with call-back functions en-
ables users to prioritize and handle views and the under-
lying computations in a clean and theoretical way. It also
allows easy instantiation and destruction of activities and
associated objects that the activity needs before and after

220 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

the running of the activity. This aspect of the Android sys-
tem allowed us to handle and optimize our activities and
the flow of our activities to enable our App to be as intu-
itive as possible.

An interesting area for future development will be to find
ways to combine these model generation ideas so that code
can be generated for either a tablet or a desktop platform.
We have made some inroads into exploring the common-
alities across our target simulation models and algorithms,
and have identified ways for them to share data structures.
There is still considerable work to be done however to
identify a common software model architecture for the user
interaction and parameters control framework that would
be needed to fully automatically generate Desktop and App
codes.

References
[1] Yarow, J.: Tablet computing: A history of failure. Business

Insider Online (2010) 1–3
[2] Norman, D.A.: Inside risks: Yet another technology cusp:

Confusion, vendor wars, and opportunities. Communica-
tions of the ACM 55 (2012) 30–32

[3] Cheng, K.W.: Casual gaming. VU Amsterdam (2011)
[4] Kemp, R., Palmer, N., Kielmann, T., Bal, H.: Opportunis-

tic communication for multiplayer mobile gaming: Lessons
learned from photoshoot. In: Proc. Second Int. Workshop
on Mobile Opportunistic Networking (MobiOpp’10), Pisa,
Italy (2010) 182–184

[5] Feijoo, C., Ramos, S., Gomez-Barroso, J.L.: An analy-
sis of mobile gaming development - the role of the soft-
ware platforms. In: Proc. Business Models for Mobile Plat-
forms(BMMP10), Berlin, Germany (2010)

[6] Buchanan, N.: An examination of electronic tablet based
menus for the restaurant industry. Master’s thesis, Univer-
sity of Delaware (2011)

[7] Castellucci, S.J., MacKenzie, I.S.: Gathering text entry
metrics on android devices. In: Proc. Computer Human
Interactions (CHI2011), Vancouver, BC, Canada (2011)
1507–1512

[8] Coulter, R.: Tablet computing is here to stay, and will force
changes in laptops and phones. Mansueto Ventures (2011)

[9] Huynh, D.B.P., Knezevic, D.J., Peterson, J.W., Patera, A.T.:
High-fidelity real-time simulation on deployed platforms.
Computers & Fluids 43 (2011) 74–81

[10] Conti, J.P.: The androids are coming. Engineering and
Technology Magazine May - June (2008) 72–75

[11] Johnson, M.J., K. A, H.: Porting the google android mobile
operating system to legacy hardware. In: Proc. IASTED Int.
Conf. on Portable Lifestyle Devices (PLD 2010), Marina
Del Rey, USA (2010) 620–625

[12] Kim, S.: Logical user interface modeling for multimedia
embedded systems. In: Proc. Int. Conf on Multimedia,
Computer Graphics and Broadcasting (MulGrab 2011), Jeju
Island, Korea (2011)

[13] Ehringer, D.: The dalvik virtual machine architecture.
Technical report, Google (2010)

[14] Sloss, A.N.: ARM System Developer’s Guide: Designing
and Optimizing System Software. Elsevier (2010) ISBN
978-0080-490-496.

[15] Panda: Panda board development resources (2012)
[16] Pi, R.: Raspberry pi - an arm gnu/linux box (2012)
[17] Ising, E.: Beitrag zur Theorie des Ferromagnetismus.

Zeitschrift fuer Physik 31 (1925) 253?258
[18] Hawick, K., Leist, A., Playne, D.: Cluster and fast update

lattice simulations using graphical processing units. Tech-
nical Report CSTN-104, Computer Science, Massey Uni-
versity (2009)

[19] Leist, A., Playne, D., Hawick, K.: Interactive visualisa-
tion of spins and clusters in regular and small-world Ising
models with CUDA on GPUs. Journal of Computational
Science 1 (2010) 33–40

[20] Hawick, K.A.: Domain Growth in Alloys. PhD thesis,
Edinburgh University (1991)

[21] Gardner, M.: Mathematical Games: The fantastic combi-
nations of John Conway’s new solitaire game ”Life”. Sci-
entific American 223 (1970) 120–123

[22] Hawick, K.: Cycles, diversity and competition in rock-
paper-scissors-lizard-spock spatial game simulations. In:
Proc. International Conference on Artificial Intelligence
(ICAI’11), Las Vegas, USA (2011)

[23] Resnick, M., Silverman, B.: Exploring emergence:
The brain rules. http://llk.media.mit.edu/
projects/emergence/mutants.html (1996) MIT
Media, Laboratory, Lifelong Kindergarten Group.

[24] Hawick, K., Scogings, C.: Cycles, transients, and complex-
ity in the game of death spatial automaton. In: Proc. In-
ternational Conference on Scientific Computing (CSC’11).
Number CSC4040, Las Vegas, USA (2011)

[25] Kawasaki, K.: Diffusion constants near the critical point
for time dependent Ising model I. Phys. Rev. 145 (1966)
224–230

[26] Hawick, K.: Visualising multi-phase lattice gas fluid
layering simulations. In: Proc. International Confer-
ence on Modeling, Simulation and Visualization Methods
(MSV’11), Las Vegas, USA (2011)

[27] Sznajd-Weron, K., Sznajd-Weron, J.: Opinion evolution
in closed community. Int. J. Modern Physics C 11 (2000)
1157–1165

[28] Hawick, K.: Multi-party and spatial influence effects on
opinion formation models. In: Proc. IASTED International
Conference on Modelling and Simulation (MS 2010). Num-
ber CSTN-032, Calgary, Canada (2010) Paper 696-035.

[29] Fenwick, J.B., Kurtz, B.L., Hollingworth, J.: Teaching mo-
bile computing and developing software to support com-
puter science education. In: Proc. 42nd ACM Tech. Symp.
on Computer Science Education SIGCSE’11, Dallas, Texas
(2011) 589–594

[30] Hawick, K.A., Playne, D.P.: Hypercubic Storage Layout
and Transforms in Arbitrary Dimensions using GPUs and
CUDA. Concurrency and Computation: Practice and Expe-
rience 23 (2011) 1027–1050

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 221

Abstract— the complexity in embedded systems applications

at the present time has been increasing considerably. This

paper proposes an iterative and incremental approach to

design software applications for embedded systems based on

Model-Driven Software Development (MDSD). MDSD helps

to develop software by enhancing its reusability and

maintainability. The proposed approach is tested by using it to

develop a self-monitoring home healthcare system, which

gathers and processes information from a generic Wireless

Body Sensor Network (WBSN) using Bluetooth technology.

The prototype was developed using both the Android software

development kit (SDK) and the development platform Eclipse,

integrated with IBM Rational Rhapsody plugin.

Index Terms— Android, wireless sensor network, embedded

system, methodology, model-driven development.

1. INTRODUCTION

In recent years, Wireless Sensor Networks (WSN
1
) have

gained worldwide interest, due to their potential for

developing applications in a wide range of areas: health,

environmental monitoring, control and monitoring processes.

In consequence, it is reasonable to expect that many

programmers will engage in the development of the next

generation of software applications for embedded systems,

mobile devices and WSN. Integrating a WSN with a cell

phone through protocols is a common design practice in some

applications due to the high capacity network connectivity and

computational performance of the mobile phone [1]. Various

companies have developed mobile devices with different

computational capabilities according to people’s needs. In

some cases, companies open their application programming

interfaces (APIs), allowing anyone to develop their own

applications for the company’s devices [2].

Software development for mobile devices is supported by

several methodologies and some of these are specifically for

embedded systems development [3]. This paper proposes a

methodology to software development for embedded systems

1
 WSN: The Wireless Sensor Networks are distributed devices, self-

employed, which use sensors to cooperate in a common task.

with the android mobile platform that considers a

communication channel between Wireless Body Sensor

Networks (WBSN) and mobile phone with Android.

This paper is organized as follows: Section II describes related

work. Section III describes the application development for

the case study. Section IV describes the proposed

methodology. Section V shows platforms and the toolkit used

to build an application following the proposed methodology.

Section VI presents conclusions and future work.

2. RELATED WORK

The development of embedded systems that integrate

devices and mobile solutions is gaining acceptance, especially

in telemedicine. In [4] the authors study the possibility of

implementing a logging application on a smart-phone to help

diabetic patients with their daily lives. These patients have to

keep track of measured blood glucose levels, as well as daily

routines that affect their condition. Incorporating this

functionality into the user’s cell phone gives easy access,

mobility and communication capabilities. The intention was to

provide tools that enable the patients to understand aspects

about their condition and to simplify data entry. The results

show that it is possible to create an alternative solution to

conventional logging that includes features missing in today's

systems.

The Clinication system [5] is a web- and cell phone-based

Patient Adherence Management System. This system can send

reminders via e-mail, or send text messages to a patient’s

mobile. One of the modules of the system is called CellPly,

and patients can use this module on a mobile device to control

and monitor aspects of their treatment. The patient will receive

messages to remind them of their treatment activities,

informational messages about the therapy and questionnaires

to monitor vital signs. CellPly can be used in addition to the

Clinication portal or independently of it.

In the context of therapeutic adherence, another work [6]

suggests some elements for working collaboratively to

improve the levels of adherence, such as a monitoring system

with wireless sensors to capture relevant patient variables like

blood pressure, oxygen saturation, heart rate and respiratory

A Model-driven development approach to

design software for embedded systems using the

Android platform

L.V. Cobaleda
1
., J. C. Villa

2
., J. J.Yepes

2
., J.F. Duitama

1
, J.E. Aedo

2
.

1
ARTICA, Software Engineering Research Group

2
ARTICA, Microelectronic and Control Research Group

Universidad de Antioquia

Medellin, Colombia

222 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

rate; a smart pillbox that stores medicines and communicates

messages through a wireless channel when it is opened; a call

center where medical staff receive alerts indicating low

adherence; and finally, an application for managing medical

records.

Another work [7] proposes model-driven development of

mobile personal healthcare applications. The authors

developed an approach to modeling care plans for chronic

disease using two domain-specific visual languages (DSVLs).

The first allows healthcare providers to model complex care

plans, health activities, performance measurements and sub-

care plans. The second DSVL describes a mobile device

interface for the care plan. A code generator synthesizes

mobile device implementation of this care plan application.

Unlike these works, in our application communicates with a

wireless body sensor network which is managed from the

communication and processing of physiological variables. All

was developed with MDSD approach.

3. CASE STUDY

This section describes a software application for a cell

phone designed for Android operating system that employs a

communication channel with a WBSN to obtain and process

the information gathered by nodes in a self-monitoring home

healthcare context. Moreover, this case study is subsequently

used to detail the methodology proposed in this paper.

This work was developed in the context of tele-assistance. It

considers a home care scenario for pneumological patients

(patients with respiratory disease) who regularly require the

measurement of oxygen saturation and heart rate (among other

variables) to allow severity assessment of a possible asthma

attack. In this case, it would be useful if, after a measurement

taken by the pulse oximeter, the personal mobile device not

only shows the patient’s measurements, but also sends an alert

to the health care provider if the measurements are

considerably outside of the accepted range.

This application was developed to facilitate the monitoring of

patients with respiratory diseases who are being treated at

home by medical personnel. The patient regularly takes a

measurement of oxygen saturation, heart rate and cardiac

activity with a pulse oximeter node and an electrocardiogram

(EKG) node, both connected point to point via Bluetooth to a

mobile phone. In the mobile device the information received

is analyzed according to the ranges of acceptable values for

the patient and, if there is a risk, the mobile device sends a

warning message to the health care provider. This scenario is

shown in Figure 1.

Figure 1 Case study scenario

4. METHODOLOGY

The methodological approach proposed in this paper is based

on MDSD. This section describes the proposed method and

presents an example design of the case study: a mobile

application for monitoring home healthcare patients.

A. Model-Driven Software Development approach

MDSD approach attempts to find domain-specific

abstractions and make them accessible through formal

modeling. It creates a great potential for automation of

software production, leading to increased productivity, quality,

maintainability, reusability, and manageability of software

complexity. This approach is intended to promote the use of

formal and abstract models which can be easily understood by

knowledge domain experts.

MDSD separates the specification of the structure and

essential system functionality from its implementation using

platform-specific models [8] [9]. Thus, it is possible to use

concepts that are much less tied to the underlying technology

and closer to the problem domain. The domain specification

is defined in Platform-Independent Models (PIM), and is

completely separated from target platform implementation.

The Platform-Specific Models (PSM) are created from the

PIM and through model transformations. Finally, the

application code is generated.

B. Methodological approach

The methodological model-driven approach presented in this

work is iterative and incremental; the key issue is to define a

number of short-time iterations, each of them having a group

of similar steps; the goal is, after finishing one iteration, to

refine the system specification and development, resulting in

the final complete product. The aim of the first phase is to

select and develop some suitable requirements to produce a

stable increment. In the second place, it is to adjust the high-

level and independent-platform models, in order to achieve a

high reusability and maintainability of the software

components, and finally the last phase consists of generating

the code for a specific platform.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 223

Therefore, the first step is to identify the fundamental

functional (FR) and non-functional (NFR) requirements,

which are used to establish the base architecture for the

following development. The base architecture is set down in

formal high-level platform-independent models. After that,

the semi-automatic transformation to platform specific code is

done and the first version of code is generated and tested. In

the next steps, additional requirements are specified and

detailed, the architecture is refined and the code generation

and tests are completed. These activities are presented in detail

in the following section.

Monitoring system

UC_Data_Capture

UC-01-Take
measurement

UC-01.1 Take
measurement from

pulsioximeter

UC-01.2 Take
measurement from
electrocardiograph

UC_Information_processing

UC-02 Process data

«include»

UC-03 Send
alert message

«extend»

UC-04 Notify to
patient

«include»

UC_Configuration

UC-05 Set
preferences

UC-06 Configure

«include»

«extend»«include»

ACT-01 PatientACT-01 Patient

General Use Case Diagram

ACT-02 TechnicianACT-02 Technician

ACT-03 DoctorACT-03 Doctor
Figure 2 Use Case Diagram

C. Development of requirements

In this phase it is important to select the suitable requirements

that will guide the subsequent phases; i.e. the actors, their

responsibilities, some functional features and constraints.

In the case study, several requirements were identified in the

first iteration, but only those essential to establish the base

architecture were selected. These are related to the

communication with two WBNS nodes. Figure 2 shows the

use case model in which the principal requirements are

specified.

Although the system requires communication with two

medical devices, this application could require more devices,

so the design is projected to be scalable to more medical

devices.

D. Application Model

The second phase is intended to create the PIM. The

application packages are organized according to the main

responsibilities identified in the software system. Focusing on

reusability and maintainability is a key issue in this approach.

Another activity in this phase is to define the detailed design

of classes that conserves the logical distribution made before.

Here the design patterns are applied, and the sequence

diagrams and state charts are created.

The logical approach in this work is based on the Five-Layer

architecture Pattern [10] but applied in a simple way.

Specifically, the Abstract Hardware and Operative Systems

Layers are not clearly separated because the current

requirements are not demanding this partition. Thus, this

application is divided into three layers, shown in Figure 3,

where the responsibilities concerning the display of

information, data processing and technical communication are

clearly grouped. This arrangement makes reusability and

debugging control easier.

224 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Figure 3 Application Packages

User Interface (UI) layer is responsible for showing the

medical measurements to users and for capturing the

configuration values. This layer contains specialized view

classes corresponding to each medical device. In consequence,

it has one view for the pulse oximeter and one for the

electrocardiogram. There is also a sub package in this layer,

called plot, which is responsible for drawing the

electrocardiogram signals.

Application (App) layer is responsible for embracing the

specific domain classes. The Devices package is the most

important in this layer. It has a class structure where the

extensibility of new functionality is easily allowable through

the addition of subclasses. This is shown in Figure 4.

Figure 4 Extract of class diagram for Devices package

Classes inside of Technical services (TS) layer implement

technical features of communication. In particular, the

Bluetooth Serial Port Profile (SPP) was implemented at

application level to establish a communication channel

between the cell phone and WBSN.

Some of the design patterns adopted in this work are the

Observer pattern to notify the Bluetooth discovery process;

the Front Controller pattern to draw the electrocardiogram

signs; and the Channel architecture pattern to transform the

data from medical devices [10]. The sequence diagrams were

created and the functionalities were assigned to the classes

according to the logical distribution of packages. An extract of

this diagram is shown in Figure 5.

Figure 5 Sequence diagram for verifying Bluetooth

E. Code generation

In this phase, the process of transforming the high-level

platform independent models into code for a specific platform

is done in a semi-automated way. Subsequently, the particular

modifications are introduced in the code directly. The code

generation for android 2.2 is done with Rational Rhapsody

plug-in for the Eclipse software development kit.

The self-monitoring mobile application runs on Android 2.2 or

higher in a context of WBSN. The application establishes

Bluetooth communication with a WBSN which captures

corporal signs such as oxygen saturation, heart rate and

cardiac activity. If the patient measurements are outside of an

acceptable range, the mobile sends a message to a health care

provider.

The Java code is generated with the Rational Rhapsody tool

where some parts were written manually. It is important to

emphasize that it is possible to accomplish the iterative

development process due to the Rational Rhapsody tool

capability for keeping the consistency between models and

generated code. Figure 6 shows the work with Rhapsody plug-

in tool for Eclipse.

This proposed architecture has also been used in the

development of an application for an embedded system with

Android, named System Integration and Interoperability

Medical monitoring for Tele-care (SIMMIT), which is

developed by the Microelectronic and Control Research

Group. The packages, the class structure and the patterns used

were similar. However, the implementation of the channel

architecture pattern was different due to the means of

communication with external devices, which was achieved

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 225

through a USB
2
-serial interface. In this way, this architecture

evidences a valuable reference framework for developing new

embedded applications in this domain.

Figure 6 Extract of code

F. Testing

In the deployment process, two WBSN nodes gather data

about some vital signs using the cell phone. The pulse

oximeter node takes heart rate and oxygen saturation using

Bluetooth communication with no difficulty. This is shown in

Figure 7.

Figure 7 Application Running

5. PLATFORMS AND TOOLS DESCRIPTION

In this section, a set consisting of a toolkit and platforms

utilized to build the application are described.

This work was developed with the Android software

development kit (SDK) and the development platform Eclipse,

integrated with IBM Rational Rhapsody. These platforms and

tools were useful for modeling use case diagrams, class

diagrams, sequence diagrams and state charts; also for

generating code for Android 2.2 (Froyo) platform, in order to

interchange information with a generic WBSN node.

2 USB: Universal Serial Bus

A. Eclipse

Eclipse is a software development kit (SDK) [11] consisting of

the Eclipse Platform, Java development tools and the Plug-in

Development Environment [12]. This Platform is a multi-

language software environment composed of an integrated

development environment (IDE) and an extensible plug-in

system; it can be used to develop applications in various

programming languages including Ada, C, C++, Java, Perl,

PHP, Python, Ruby (including Ruby on Rails framework) and

Scheme. Development environments include the Eclipse Java

development tools (JDT) for Java, Eclipse CDT for C/C++,

and Eclipse PDT for PHP, among others.

B. Android Software Development Kit (SDK)

The SDK for Android includes a set of development tools

[13]. This SDK includes a debugger, libraries, a phone

simulator, documentation, sample code and tutorials. The

integrated development environment (IDE) is officially

supported by Eclipse Plug-ADT (Android Development Tools

plugin) and also it can control Android devices that are

connected.

C. IBM Rational Rhapsody

Rational Rhapsody is a model-driven development

environment for embedded systems based on UML [14]. It

was primarily designed to accelerate development, manage

complexity, enhance testability, reduce costs and improve

quality by leveraging the Object Management Group’s

(OMG’s) Systems Modeling Language (SysML) and Unified

Modeling Language (UML) standards. Throughout the

development process, Rational Rhapsody was built to manage

complexity through visualization, and helps maintain

consistency across the development life cycle to facilitate

agility in response to ever changing requirements.

D. Samsung GT-S5570

The Samsung GT-S5570 (also known as Samsung Galaxy

Mini) is a low-cost smartphone manufactured by Samsung

[15]. It was released with the operating system Android 2.2

(Froyo) and Android 2.3(Gingerbread). The Galaxy Mini is a

3.5G smartphone that offers quad-band GSM at 7.2 Mbit/s and

also counts with GPS receiver with A-GPS, Bluetooth 1,0 and

WIFI 802.11 b/g connections. The display is a 3.14-inch (80

mm) Thin Film Transistor-Liquid Crystal Display(TFT LCD),

capacitive touchscreen of vertical QVGA (240x320)

resolution. It also has an ARMv6 600 MHz processor and 384

MB RAM with 279 MB available.

E. Pulse Oximeter and Electrocardiogram Nodes

Pulse Oximeter and Electrocardiogram nodes are generic

small nodes for health monitoring developed by ARTICA

[16]; these are small WBSN systems designed for health

monitoring applications. They are composed by MSP430

processor, for the ATMega128RFA1 radio transceiver chip,

and the RN-42 Bluetooth chip. Each node communicates with

import android.content.Context;
import android.util.Log;

public class Pulseoximeter extends Absdevice{

 private String hearthRate = null;

 private String oxygenSaturation = null;

 public Pulseoximeter(Context context) {

 super(context);
 setKeyDevice(Setup.PULSEOXIMETER_KEY);

 setDeviceName(Setup.getInstance(contexto).getDeviceName(

Configuracion.PULSEOXIMETER_KEY));

 }

226 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

the other via 802.15.4 protocol. In this wireless sensor

network, the sink node is the pulse oximeter, which is in

charge of gathering information, and sensing the oxygen

saturation and heart rate. The Electrocardiogram (EKG) node

senses cardiac activity. Figure 8 shows pulse oximeter node

and Figure 9 shows EKG node.

Figure 8 Pulse Oximeter Node

Figure 9 Electrocardiogram Node

6. CONCLUSION AND FUTURE WORK

This paper describes an iterative, incremental and model-

driven methodological approach for embedded systems with

the android mobile platform that considers a communication

channel between WBSN and the embedded system. This

approach is demonstrated through a case study of the design of

a self-monitoring home healthcare software system that uses a

communication channel with a WBSN. It enhances software

reusability, extensibility and maintainability: a layered

architecture is proposed to improve the reusability and the

maintainability, a polymorphic structure is proposed in the

application layer to support the extensibility, and the use of

some design patterns are proposed to improve the reutilization.

The architecture proposed in this work has been tested in other

scenarios in the healthcare context and its usefulness

evidenced as reference architecture for the development of

applications for embedded systems. Future work will include

improving the robustness and reliability in the methodological

approach and integration with new Android versions.

ACKNOWLEDGMENT

We would like to express our thanks to the Excellence

research Center, ARTICA and to the members of

Microelectronic research group and Software Engineering

Research Group from Antioquia University.

7. REFERENCES

[1] G. D. Abowd, L. Iftode, and H. Mitchell. Guest editors’ introduction:
The smart phone–a first platform for pervasive computing. IEEE

Pervasive Computing, 4(2):18–19, 2005.

[2] Beaton, J.; Sae Young Jeong; Yingyu Xie; Stylos, J.; Myers, B.A.; ,
"Usability challenges for enterprise service-oriented architecture APIs,"

Visual Languages and Human-Centric Computing, 2008. VL/HCC

2008. IEEE Symposium on , vol., no., pp.193-196, 15-19 Sept. 2008.
[3] Bruce Powel Douglass. Real-Time Agility: The Harmony/ESW Method

for Real-Time and Embedded Systems Development. Addison-Wesley

Professional. 2009.
[4] A Widen. Diabetes care on smart phones running the Android platform

Design and implementation of a system to help self- monitoring and

managing. Master's Thesis Chalmer University Sweden.
[5] «Clinication Home Page». [Online]. Available: http://clinication.com/.

[Accessed: march-23-2012].

[6] Duitama, F., Gaviria Gómez, N. and Aedo Cobo, J.E. Technical report
Macroproyecto Telesalud (ARTICA), Universidad de Antioquia, 2008.

[7] A. Khambati, J. Grundy, J. Warren, J. Hosking. 2008. Model-Driven

Development of Mobile Personal Health Care Applications Found in:
Automated Software Engineering, International Conference. Issue Date:

September 2008 pp. 467-470

[8] DSDM: Desarrollo de Software Dirigido por Modelos. MDA y
Aplicaciones. Universidad de Málaga. [Online]. Available:

http://www.lcc.uma.es/~av/MDD-MDA/

[9] Stahl, T. and Völter, M. 2006. Model – Driven Software Development.
John Wiley & Sons, Ltd.

[10] B. Powel Douglas. Real-Time Design Patterns: Robust Scalable

Architecture for Real-Time Systems.
[11] "What are Eclipse projects and technologies?" [Online]. Available:

http://wiki.eclipse.org/FAQ_What_are_Eclipse_projects_and_technologi

es%3F

[12] "Eclipse Build Drop". Eclipse Foundation. [Online]. Available:

http://download.eclipse.org/eclipse/downloads/drops/R-3.7.1-

201109091335/details.php
[13] «Tools Overview». Android Developers [Online]. Available:

http://developer.android.com/guide/developing/tools/index.html

[14] Telelogic Rational Rhapsody Getting Started Guide. pg 1. 2007
[15] "Samsung Galaxy Mini Homepage". [Online]. Available:

http://www.samsung.com/latin/consumer/mobile-phones/mobile-

phones/smartphone/GT-S5570EGATCL
[16] Artica. [Online]. Available: http://www.articacdt.com/

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 227

http://www.lcc.uma.es/~av/MDD-MDA/
http://wiki.eclipse.org/FAQ_What_are_Eclipse_projects_and_technologies%3F
http://wiki.eclipse.org/FAQ_What_are_Eclipse_projects_and_technologies%3F
http://download.eclipse.org/eclipse/downloads/drops/R-3.7.1-201109091335/details.php
http://download.eclipse.org/eclipse/downloads/drops/R-3.7.1-201109091335/details.php
http://developer.android.com/guide/developing/tools/index.html
http://www.samsung.com/latin/consumer/mobile-phones/mobile-phones/smartphone/GT-S5570EGATCL
http://www.samsung.com/latin/consumer/mobile-phones/mobile-phones/smartphone/GT-S5570EGATCL
http://www.articacdt.com/

Recognizing recurrent development behaviors
corresponding to Android OS release life-cycle

Pavel Senin
Collaborative Software Development Laboratory
Information and Computer Sciences Department

University of Hawaii at Manoa
Honolulu, Hawaii, 96822

senin@hawaii.edu

Abstract—Within the field of software repository mining
(MSR) researchers deal with a problem of discovery of inter-
esting and actionable information about software projects. It is
a common practice to perform analyzes on the various levels
of abstraction of change events, for example by aggregating
change-events into time-series. Following this, I investigate
the applicability of SAX-based approximation and indexing of
time-series with tf∗idf weights in order to discover recurrent
behaviors within development process. The proposed workflow
starts by extracting and aggregating of revision control data
and followed by reduction and transformation of aggregated
data into symbolic space with PAA and SAX. Resulting SAX
words then grouped into dictionaries associated with software
process constraints known to influence behaviors, such as time,
location, employment, etc. These, in turn, are investigated with
the use of tf∗idf statistics as a dissimilarity measure in order
to discover behavioral patterns.

As a proof of the concept I have applied this technique to
software process artifact trails corresponding to Android OS1

development, where it was able to discover recurrent behaviors
in the “new code lines dynamics” before and after release.
By building a classifier upon these behaviors, I was able to
successfully recognize pre- and post-release behaviors within
the same and similar sub-projects of Android OS.

Keywords: software process, recurrent behaviors, data-mining

I. I NTRODUCTION

By the large body of previous research it has been
shown, that software process artifact trail (change events
and associated metadata) is a rich source of process and
developers’ information and characteristics. The ability to
discover recurrent behaviors with Fourier Analysis of change
events is explained in [1], while another work [2] connects
recurrent behaviors and software product quality. Thus,
potentially, it is possible to relate recurrent behaviors to
software product quality and to software process efficiency.
The main part of a toolkit aiding such research is not only
an efficient mechanism of recurrent behaviors discovery, but
a mechanism of recognition of social and project-related
constraints modulating these behaviors. This paper presents
my exploratory study resulted in a universal framework

1http://source.android.com

for temporal partitioning and mining of software change
artifacts. As an evaluation example, it presents a recurrent
behaviors discovery from the data extracted from Android
SCM (software configuration management) system.

The rest of the paper is organized as follows. In Section
2, I discuss the motivation, results of previous work in MSR
and present the research questions. In Section 3, I consider
the workflow, data selection, collection, partitioning, and de-
scribe algorithms and methods. Section 4 presents results and
the contribution. Finally, in Section 5, I discuss limitations
and possible extension of this work.

II. M OTIVATION

Software development is a human activity resulting in a
software product. The software process is a structure im-
posed on the software development. This structure identifies
a set and an order of activities performed to design, develop
and maintain software systems. Examples of such activities
include design methods; requirements collection and cre-
ation of UML diagrams; requirements testing; performance
analysis, and others. The intent behind a software process
is to structure and coordinate human activities in order to
achieve the goal - deliver a software system successfully.
Many processes and process methodologies exist today, and
it has been found, that the amount of time and effort
needed to complete a software project, and the quality of the
final product, are heavily affected by the software process
choice [3]. Thus, studying software processes is one of the
important areas of software engineering.

Traditionally, the software process study is built from
top to bottom: it requires the researcher to guess a whole
process, or to notice a recurrent pattern of behavior up-
front, and to study it in a variety of settings later. These
empirical studies usually involve two expensive and limited
in scale techniques: interviewing and monitoring of the
developers. Furthermore, these techniques are virtually im-
possible to apply within open-source project settings where
a diverse development community scattered over the globe.
Fortunately, current advances in software configuration man-
agement (SCM) technologies enable researchers to study

228 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

software process by mining software artifact trails [4], such
as change logs, bug and issue tracking systems and mailing
lists archives.

Mining of large software repositories demands advanced
techniques allowing to tame with the complexities of data
extraction and its analysis. These challenges are not new
to the data-mining community and an enormous wealth of
methods, algorithms and data structures have been developed
to address these issues. While some of these approaches
were already implemented within the field, such as finding of
trends, periodicity and recurrent behaviors through the linear
predictive coding and cepstrum coefficients [5], Fourier
Transform [1] and coding [6], many are yet to be tried.

In this paper, I investigate the application of Symbolic Ag-
gregate Approximation [7] and the term frequency–inverse
document frequency weight statistics (tf∗idf) [8] to the prob-
lem of discovering recurrent behaviors from software process
artifacts. The motivation behind this choice is coming from
the demonstration of outstanding performance by SAX in
time-series mining, and from the wide range of successful
applications oftf∗idf statistics, which is focusing on measur-
ing the degree of dissimilarity as the opposite to convenient
similarity metrics. Implementation of this approach I validate
on Android SCM data.

A. Research question

In this exploratory work I am investigating the appli-
cability of Lin&Keogh symbolic approximation technique
combined withtf∗idf statistics to the discovery of recurrent
behaviors from SCM trails of Android OS. The research
questions I am addressing are:

• Which kinds of SCM data need to be collected for such
analyzes?

• What is the optimal approach to data representation and
a data storage configuration?

• Which partitioning (slicing) is appropriate, and which
set of parameters should one use for SAX approxima-
tion?

• What is the general mining workflow?

III. E XPERIMENTAL SETUP AND METHODS

In this section I explain the steps of the recurrent behaviors
discovery workflow along with their theoretical background.

A. Data collection and organization

As with many other large open-source projects, Android
OS has been in the development for many years. It is “an
open-source software stack for mobile phones and other
devices”, which is based on the Linux 2.6 monolithic kernel.
Development of Android was begun by Android Inc., the
small startup company. In 2005, the company was acquired
by Google which formed the Open Handset Alliance - a con-
sortium of 84 companies which announced the availability of
the Android Software Development Kit (SDK) in November

2007. The Android OS code is open and released under the
Apache License.

Google platform is used for hosting, issue and bug track-
ing systems, whether Git is used as the distributed version
control system for Android. The source code is organized
into more than 200 of sub-projects by function (kernel, UI,
mailing system, etc.) and underlying hardware (CPU type,
bluetooth communication chip, etc.). There are about two
million change records registered in the Android SCM by
more than eleven thousands of contributors within an eight
year span. The richness of this data makes Android SCM
very interesting repository for exploring.

By using provided Google Data API for bugs and is-
sues data retrieval, and custom coded Git repository data
collection engine, I have collected information about bugs
and issues, the revision tree, authors and committers, change
messages, and affected targets. In addition to that data, by
creating a local mirror and by iterating over changes, I was
able to recover the auxiliary data for the most of the change
records. This auxiliary data provides quantitative summary
of added, modified, and deleted targets, as well as the sum-
mary about LOC changes: added, modified or deleted lines.
All this information was stored in the relational database.
Main tables of this database correspond to change and issue
events; these accompanied with change target tables, issue
details, comments, and tables for contributor authentication.
Overall, the database was normalized and optimized for the
fast retrieval of change and issue information using SQL
language.

The collected data constitute almost full set of collectible
artifacts. The only lacking information is the precise infor-
mation for source-code line changes, which I intentionally
omitted in this step due to the storage space and collection
time constraints. Despite of being collected, bugs and issues
data has not been included into recurrent behaviors discovery
experiments in this work mostly due to the complexity of
change-issue relations. However, as was shown by previous
research, this data is a valuable source of information for
recurrent behaviors discovery [2].

B. Temporal data partitioning

By following the previous research targeting social char-
acteristics of committers [2], as well as the release pattern
discovery [6], I have partitioned and organized the collected
change trails by the time of the day using time windows of

• Full day, 12AM - 12AM
• Late night, 12AM - 04AM
• Early morning, 04AM - 08AM
• Day, 08AM - 05PM
• Night, 05PM - 12AM

For every of these windows, I then aggregated values
for commits, added, edited, or deleted targets and lines,
producing equidistant time-series abstraction of software
development activity.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 229

One of the effects of this data transformation is an instant
increase of the number of change data entities by the
factor of 5 and production of very sparse equidistant time-
series. In order to reduce the sparseness and the complexity
(dimensionality) of data, two additional procedures were
applied within the post-collection data treatment step: PAA
and SAX.

C. Piecewise Aggregate Approximation (PAA)

PAA performs a time-series feature extraction based on
segmented means [9]. Given a time-seriesX of lengthn, ap-
plication of PAA transforms it into vector̄X = (x̄1, ..., x̄M)
of any arbitrary lengthM ≤ n where each of̄xi is calculated
by the following formula:

x̄i =
M

n

(n/M)i
∑

j=n/M(i−1)+1

xj (1)

This simply means that in order to reduce the dimen-
sionality from n to M , we first divide the original time-
series intoM equally sized frames and secondly compute
the mean values for each frame. The sequence assembled
from the mean values is the PAA transform of the original
time-series.

It worth noting, that PAA reduction of original data
satisfies to a bounding condition, and guarantees no false
dismissals in upstream analyzes as shown by Keogh et al.
[10] by introducing the distance function:

DPAA(X̄, Ȳ) ≡

√

n

M

√

√

√

√

M
∑

i=1

(x̄i − ȳi) (2)

and showing thatDPAA(X̄, Ȳ) ≤ D(X, Y).

D. Symbolic Aggregate approXimation (SAX)

Symbolic Aggregate approXimation extends the PAA-
based approach, inheriting algorithmic simplicity and low

Figure 1: The illustration of the SAX approach taken from
[7] depicts two pre-determined breakpoints for the three-
symbols alphabet and the conversion of the time-series
of length n = 128 into PAA representation followed by
mapping of the PAA coefficients into SAX symbols with
w = 8 anda = 3 resulting in the stringbaabccbc.

computational complexity, while providing satisfactory sen-
sitivity and selectivity [7].

SAX transforms a time-seriesX of lengthn into a string
of arbitrary lengthω, whereω << n typically, using an
alphabetA of size a ≥ 2. The SAX algorithm consist of
two steps: during the first step it transforms the original
time-series into a PAA representation and this intermediate
representation gets converted into a string during the second
step. Use of PAA at the first step brings the advantage of
a simple and efficient dimensionality reduction while pro-
viding the important lower bounding property. The second
step, actual conversion of PAA coefficients into letters, is
also computationally efficient and the contractive property
of symbolic distance was proven by Lin et al. in [11].

Discretization of the PAA representation of a time-series
into SAX is implemented in a way which produces sym-
bols corresponding to the time-series features with equal
probability. The extensive and rigorous analysis of various
time-series datasets available to the authors has shown that
normalized by the zero mean and unit of energy time-
series follow the Normal distribution law. By using Gaussian
distribution properties, it’s easy to picka equal-sized areas
under the Normal curve using look-up tables [12] for the
cut lines coordinates, slicing the under-the-Gaussian-curve
area. Thex coordinates of these lines called “breakpoints”
in the SAX algorithm context. The list of breakpoints
B = β1, β2, ..., βa−1 such thatβi−1 < βi and β0 = −∞,
βa = ∞ divides the area underN(0, 1) into a equal areas.
By assigning a corresponding alphabet symbolalphaj to
each interval[βj−1, βj), the conversion of the vector of PAA
coefficientsC̄ into the stringĈ implemented as follows:

ĉi = alphaj, iif c̄i ∈ [βj−1, βj) (3)

SAX introduces new metrics for measuring distance be-
tween strings by extending Euclidean and PAA (2) distances.
The function returning the minimal distance between two
string representations of original time serieŝQ and Ĉ is
defined as

MINDIST (Q̂, Ĉ) ≡

√

n

w

√

√

√

√

w
∑

i=1

(dist(q̂i, ĉi))2 (4)

where thedist function is implemented by using the look-up
table for the particular set of the breakpoints (alphabet size)
as shown in Table I, and where the singular value for each
cell (r, c) is computed as

cell(r,c) =

{

0, if |r − c| ≤ 1

βmax(r,c)−1 − βmin(r,c)−1, otherwise
(5)

As shown by Lin et al., this SAX distance metrics lower-
bounds the PAA distance, i.e.

n
∑

i=1

(qi − ci)
2 ≥ n(Q̄ − C̄)2 ≥ n(dist(Q̂, Ĉ))2 (6)

230 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

a b c d
a 0 0 0.67 1.34
b 0 0 0 0.67
c 0.67 0 0 0
d 1.34 0.67 0 0

Table I: A look-up table used by the MINDIST function for
the a = 4

It worth noting, that SAX lower bound was examined by
Ding et al. [13] in great detail and found to be superior in
precision to the spectral decomposition methods on bursty
(non-periodic) data sets.

E. Symbolic approximation and indexing

As explained above, application of SAX to the single
time-series results in its symbolic representation which is
much shorter (reduced in the dimensionality) and easier to
manipulate.

By following a sliding window sub-series extraction and
SAX indexing technique described in detail by Lin et al.
in [7] and Keogh et al. in [11], I have built a number of
symbolic indexes for every time-series generated at parti-
tioning step (III-B) combining following parameters for SAX
transformation:

• three sizes for sliding window reflecting natural inter-
vals of a week (7 days), two weeks (14 days) and a
month (30 days);

• 4 PAA steps for a weekly window, 6 PAA steps for
a bi-weekly window, and 10 PAA steps for a monthly
window;

• 3 letters alphabet for weekly window, 5 letters for bi-
weekly, and a 7 letters alphabet for monthly window.

These indexes were stored in the same relational database,
organized and indexed in order to allow the fast retrieval of
SAX words and their frequencies for a specific project, a
contributor, a time-interval, a SAX parameters set, or any
combination of these fields.

F. Behavioral portrait

Here I define a term of “behavioral portrait” of a contrib-
utor c as the set of all observed SAX words in her software
artifact trail(s):

BPc = {(w1, f1), (w2, f2), ..., (wn, fn)} (7)

where each pair(w1, f1) corresponds to the observed SAX
word and its frequency. This portrait can be further specified
by project, time-interval and SAX parameters set. Also it can
be easily extended from the individual contributor to a team,
whose “behavioral portrait” is a union set of “behavioral
portraits” of team members.

G. Token-based distance metrics application to behavioral
portraits

In my previous experiments I have measured the per-
formance of three similarity metrics when applied to the
behavioral portraits.

The first metrics I have tried is weighted by SAX
Euclidean similarity distance defined for common to two
behavioral portraits words:

D(S, T) =

√

∑

S∩T

(MINDIST (si, ti) ∗ ‖Fsi
− Fti

‖)2

(8)
whereS and T are two behavioral portraits whose words
are ordered by frequency.

The second metrics I have tried is the Jaccard similarity
coefficient between two behavioral portraitsS andT which
is simply

Jδ(S, T) =
|S ∪ T | − |S ∩ T |

|S ∪ T |
(9)

The third metrics I have tried is thetf∗idf similarity which
defined as a dot product

TFIDF (S, T) =
∑

ω∈S∩T

V (ω, S) · V (ω, T) (10)

where

V (ω, S) =
V ′(ω, S)

√
∑

ω′ V ′(ω, S)2
(11)

is a normalization oftf∗idf (product of token frequency and
inverse document frequency):

V ′(ω, S) = log(TFω,S + 1) · log(IDFω) (12)

whereTFω,S is a normalized token frequency

TFω,S =
|ω|

|S|
(13)

and IDFω is a measure of the general importance of the
pattern among all users

IDFω =
|D|

DF (ω)
(14)

where |D| is cardinality ofD - the total number of users,
andDF (ω) is the number of users havingω pattern in their
activity set.

While first two metrics demonstrated very poor perfor-
mance in the clustering tests (discussed in the section III-H),
the tf∗idf similarity statistics performed very well and is
presented in this work.

H. Clustering

As a universal tool for the exploration of derived behav-
ioral portraits through their partitioning, and for assessment
of the metrics’ performance, I used hierarchical clustering.
The k-means clustering was used in the validation of the
class assignment and for general assessment of the validity
of the approach.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 231

Table II: Patterns observed within pre- and post-release behavioral portraits, theirtf∗idf weights and sample,not normalized
curves.(here pre-x.x and post-x.x rows of the upper table correspond to pre-release and post-releases of Android OS version
x.x; columns of the table correspond to non-trivial patterns observed in all behavioral portraits; cells of the table contain
tf∗idf weights computed for a particular SAX word in a particular behavioral portrait)

release "bbac" "abca" "babc" "bbba" "bcaa" "bcbb" "ccaa" "cbaa" "bbcb" "bbbb" "bbbc"
post-2.0 0.63 0 0.63 0 0 0 0 0.39 0.24 0.06 0
post-1.0 0 0.93 0 0 0 0 0 0 0 0.09 0.36
post-1.5 0 0 0 0 0 0 0 0 0.79 0.61 0
pre-1.5 0 0 0 0.23 0.23 0.91 0 0.14 0.18 0 0.09
pre-2.0 0 0 0 0 0 0 0 0 0 1 0
pre-1.0 0 0 0 0 0 0 0.79 0 0 0.08 0.61

unnormalized
sample
curves corre-
sponding to
patterns

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Android kernel−OMAP hierarchical clustering
stream ADDED_LINES, user mask ``*@google.com``

Android 1.5, POST-release

Android 2.0, POST-release

Android 1.0, POST-release

Android 2.0, pre-release

Android 1.0, pre-release

Android 1.5, pre-release

Figure 2: Hierarchical clustering of pre- and post- release
behavioral portraits corresponding to the new code lines
dynamics of google.com affiliated contributors.

IV. RESULTS

For the experiments related to this work I have tried a
number of contributors partitioning schemes, variety of time-
intervals and sub-projects selections observing satisfactory
performance of investigated approach. However, due to the
space constraint of this paper, I present only single validation
experiment in this section as the proof of concept.

A. Kernel-OMAP life cycle patterns discovery

I have arbitrary selected the Android kernel-OMAP
project as one of the large sub-projects in Android OS.
It is the Android kernel implementation for OMAP-based
(a proprietary system on chips based on ARM architecture
processor by Texas Instruments) devices.

As a “training set” for discovery of behavioral portraits
of pre- and post-release patterns, I chose three Android
releases:Android 1.0, Android 1.5 “Cupcake”andAndroid
2.0 “Eclair” . For each of these I generated behavioral

portraits corresponding to four weeks before the release
- pre-release behavioral portrait, and to four weeks after
release -post-release behavioral portraithaving in place an
additional constraint on contributors and the artifacts trail. I
have selected contributors affiliated withgoogle.com e-mail
domain only, expecting that paid developers will have much
more consistent behavior [2]. By selecting theadded_lines

artifacts stream only, I additionally limited the scope of the
analyzes and the complexity of captured behaviors to the
“new code lines dynamics” only. The almost perfect cluster-
ing picture (Figure 2) obtained with hierarchical clustering
and tf∗idf statistics as the distance function indicates, that
there are significant differences in the pre- and post-release
weekly behaviors of contributors in selected time-windows.

While hierarchical clustering is a good sanity test for
the data exploration, the performance of K-means clustering
is much more valuable [14]. I performed k-means on the
symbolic representation of data usingtf∗idf statistics and
Euclidean distance. The algorithm converged after two it-
erations separating pre- and post-release dictionaries with a
single mismatch for the Android 2.0 pre-release.

By using centroids of two resulting clusters as a basis for
pre- and post-release patterns I tested the classifier on the rest
of Android kernel-OMAP releases. The classifier was able
to successfully classify more than 81% of pre- and post-
release behaviors (Table III). When applied to the similar
project - kernel-TEGRA - it demonstrated the error rate less
than 15%.

The classifier demonstrated a weak, almost random per-
formance on other sub-projects, such as user-interface
related projects and e-mail client. However, when re-
trained on the platform-external-bluetooth-bluez project,
its performance on other bluetooth-related sub-projects,
such as platform-external-bluetooth-glib, platform-external-
bluetooth-hcidump, and platform-system-bluetooth, recov-
ered to 20% miss-classification.

232 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Table III: Pre- and post-release development patterns classi-
fication results for kernel-OMAP.

Release Classification Release Classification
1.6-pre misclassified beta -pre OK
1.6-post OK beta-post OK
2.2-pre OK 2.0.1-pre OK
2.2-post OK 2.0.1-post misclassified
1.1-pre OK 2.1-pre OK
1.1-post OK 2.1-post OK
2.3-pre OK 2.2.1-pre OK
2.3-post OK 2.2.1-post misclassified

B. Contribution

To the best of my knowledge, this work is the first
attempt to study the applicability of symbolic aggregate
approximation and term frequency–inverse document fre-
quency weight statistics to the mining of software process
artifacts. This methodology has a number of advantages.
First of all, SAX facilitates significant reduction of the large
complexity (dimensionality and noise) of temporal artifacts
and opens the door to application of a plethora of string
search and text-mining algorithms. In addition, thetf∗idf
statistics provides an efficient mechanism for discrimination
of the signal by ranking symbolic data while focusing on
dissimilarity. Finally, the third component I have used -
the relational database - facilitates efficient data slicing,
indexing, and retrieval.

As an example of a possible data-mining workflow
demonstrating the resolving power and correctness of the
approach, I presented a case study of building a classifier for
pre- and post-release recurrent behaviors. Whereas this clas-
sifier demonstrates a good performance within the project it
was trained on with less than 20% miss-classification, it has
less than 15% miss-classification rate in similar Android OS
kernel sub-projects.

V. D ISCUSSION

The presented approach and workflow employs two novel
techniques in order to discover and rank recurrent behaviors
from software process artifact trails. While the approach
demonstrates satisfactory performance, the interpretation of
the captured behaviors requires more work. The discovered
behavioral patterns are organized in Table II by their oc-
currence: the first three columns belong to the post-release
time-window, the four next columns belong to pre-release
time-window, while the rest are the behavioral patterns
observed in both. The bottom row of the table contains plots
visualizing examples of the raw-data streams corresponding
to symbolic behavioral patterns. By the visual examination
of these examples, it appears that during pre-release most
of the added lines within a week fall on the Monday and
Tuesday, whereas during post-release time, most of the lines
are added during the end of the week and the week-end.
While an explanation of these findings requires an additional
study to be made, one of the interpretations of such behavior

could be based on the contributors employment profile. For
example, if the coding activity of developers paid to work
on Android (thus mostly commit during working days) has
fallen below the activity of developers working on their own
volition (who commit mostly off business hours); which,
in turn, could be a consequence of removing of a pre-
release code-freeze, or that the paid developers switched in
post release period to design, documentation, or bug-fixing
activities.

VI. A CKNOWLEDGMENT

I thank to Philip Johnson for his time, useful discussions,
and comments.

REFERENCES

[1] A. Hindle, M. W. Godfrey, and R. C. Holt, “Mining recurrent activ-
ities: Fourier analysis of change events,” inSoftware Engineering -
Companion Volume, 2009. ICSE-Companion 2009. 31st International
Conference on. IEEE, May 2009, pp. 295–298. [Online]. Available:
http://dx.doi.org/10.1109/ICSE-COMPANION.2009.5071005

[2] J. Eyolfson, L. Tan, and P. Lam, “Do time of day and developer
experience affect commit bugginess?” inProceedings of the 8th
Working Conference on Mining Software Repositories, ser. MSR ’11.
New York, NY, USA: ACM, 2011, pp. 153–162. [Online]. Available:
http://dx.doi.org/10.1145/1985441.1985464

[3] L. McLeod and S. G. MacDonell, “Factors that affect software
systems development project outcomes: A survey of research,”
ACM Comput. Surv., vol. 43, no. 4, Oct. 2011. [Online]. Available:
http://dx.doi.org/10.1145/1978802.1978803

[4] A. E. Hassan, “The road ahead for mining software repositories,”
in Frontiers of Software Maintenance, 2008. FoSM 2008.IEEE,
Sep. 2008, pp. 48–57. [Online]. Available: http://dx.doi.org/10.1109/
FOSM.2008.4659248

[5] G. Antoniol, V. F. Rollo, and G. Venturi, “Linear predictive coding
and cepstrum coefficients for mining time variant information
from software repositories,” inProceedings of the 2005 international
workshop on Mining software repositories, ser. MSR ’05, vol. 30,
no. 4. New York, NY, USA: ACM, 2005, pp. 1–5. [Online].
Available: http://dx.doi.org/10.1145/1082983.1083156

[6] A. Hindle, M. W. Godfrey, and R. C. Holt, “Release Pattern Discovery
via Partitioning: Methodology and Case Study,” inProceedings of the
29th International Conference on Software Engineering Workshops.
Washington, DC, USA: IEEE Computer Society, 2007. [Online].
Available: http://dx.doi.org/10.1109/ICSEW.2007.181

[7] J. Lin, E. Keogh, L. Wei, and S. Lonardi, “Experiencing SAX:
a novel symbolic representation of time series,”Data Mining and
Knowledge Discovery, vol. 15, no. 2, pp. 107–144, Oct. 2007.
[Online]. Available: http://dx.doi.org/10.1007/s10618-007-0064-z

[8] T. Roelleke and J. Wang, “TF-IDF uncovered: a study of theories
and probabilities,” inProceedings of the 31st annual international
ACM SIGIR conference on Research and development in information
retrieval, ser. SIGIR ’08. New York, NY, USA: ACM, 2008, pp. 435–
442. [Online]. Available: http://dx.doi.org/10.1145/1390334.1390409

[9] B. K. Yi and C. Faloutsos, “Fast Time Sequence Indexing for Arbitrary
Lp Norms,” in VLDB ’00: Proceedings of the 26th International
Conference on Very Large Data Bases. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2000, pp. 385–394. [Online].
Available: http://portal.acm.org/citation.cfm?id=645926.671689

[10] E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra,
“Dimensionality Reduction for Fast Similarity Search in Large
Time Series Databases,”Knowledge and Information Systems,
vol. 3, no. 3, pp. 263–286, Aug. 2001. [Online]. Available:
http://dx.doi.org/10.1007/PL00011669

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 233

[11] J. Lin, E. Keogh, S. Lonardi, and B. Chiu, “A symbolic
representation of time series, with implications for streaming
algorithms,” in Proceedings of the 8th ACM SIGMOD workshop on
Research issues in data mining and knowledge discovery, ser. DMKD
’03. New York, NY, USA: ACM, 2003, pp. 2–11. [Online].
Available: http://dx.doi.org/10.1145/882082.882086

[12] R. J. Larsen and M. L. Marx,An Introduction to Mathematical Statis-
tics and Its Applications (3rd Edition), 3rd ed. Prentice Hall, Jan.
2000. [Online]. Available: http://www.worldcat.org/isbn/0139223037

[13] H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E. Keogh,
“Querying and mining of time series data: experimental comparison
of representations and distance measures,”Proc. VLDB Endow.,
vol. 1, no. 2, pp. 1542–1552, Aug. 2008. [Online]. Available:
http://dx.doi.org/10.1145/1454159.1454226

[14] Initialization of Iterative Refinement Clustering Algorithms, 1998.
[Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/summary?
doi=10.1.1.54.3469

234 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

GiftScroll – An Online Gift Registry for the Android Mobile Phone

Devon Simmonds, Michael Nipper

University of North Carolina Wilmington

601 S College Rd, Wilmington, Tel. (910) 962-3000

{ simmondsd, mjn4406}@uncw.edu

Abstract

Smart-phone ownership rates are on the rise and An-

droid is one of the fastest growing mobile-phone op-

erating systems. Developers can now take advantage

of creating mobile applications that provide utilities

that were never before possible. Various libraries

available for the Android phone have been created,

and provide a starting point for creating useful appli-

cations. One such application is ZebraCrossing, a

barcode scanning application that returns the bar-

code type and barcode value to a developer. This in-

formation can then be sent to Google to receive an

XML file containing information about the product,

such as its name and description. Various functions

built-in to Android can also help a developer create

useful applications quickly, such as Android’s loca-

tion-aware technology. This paper reports on the

development of an online gift registry for the Android

phone using Zebra-Crossing and Android technolo-

gies. Results and lessons learned are presented.

Keywords: android, smart phone, online gift registry,

software engineering

1. Introduction

Smart-phone ownership rates have sky-rocketed in the

last few years, leaving an opening for developers to

create applications which were never possible in the

past [1, 2, 3]. The Android operating system, currently

developed by Google, is the fastest-growing mobile

operating system, and is expected to be a dominant

player in the smart-phone operating system market for

years to come [3, 4]. Many imaginative applications

have already been created for Android, including ap-

plications which use the ZXing library created by

Google to scan barcodes with the unit's camera [5, 6]

The Android phone's barcode scanning capabilities

offer developers the ability to easily create useful ap-

plications for shopping [7].

One potential use for a barcode scanner on an Android

phone is a gift registry program. A gift registry is es-

sentially a ―wish list‖ created by someone and distri-

buted to their friends and family. They are often used

for events such as weddings or baby showers [8]. Cur-

rently, to create a registry spanning several different

stores is burdensome and difficult to communicate ef-

fectively [9]. Creators of gift registries also often miss

the opportunity to include items from smaller, specialty

stores which may not have the technology to create in-

store gift registries.

In order to solve these problems, we created an appli-

cation for the Android 2.* mobile phone operating sys-

tem. The application uses the camera on the Android

mobile phone for scanning barcodes, and stores the

information in a database which is accessible both from

a web-site and our Android application. Currently,

there are not any identical projects in the Android mar-

ketplace. However, there are several applications

which make use of the ZXing library, including Shop-

Savvy, Barcode Scanner, and Amazon's Android appli-

cation [10]. Many of these applications, while useful,

have limited capabilities. Several other novel applica-

tions which are more sophisticated are currently being

developed using the ZXing technology, such as a sys-

tem which scans different over the counter medications

and warns consumers of potential allergies and adverse

drug reactions [5].

2. Software Design and Development

2.1 Scope and Objectives

 Our main objective was to create an application

which is both intuitive and reliable. Therefore, our

primary concerns were an easy-to-use user interface

and data concurrency control. The user interface for the

Android application should be intuitive enough to

quickly learn, with a minimalist design principle with

an emphasis on reducing clutter. The highly competi-

tive Android application marketplace has no place for a

cluttered design which is difficult to use. The website

which has access to the data should also be designed

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 235

with simplicity in mind. Gift registries are often sent to

a wide range of users with varying technical expe-

rience. Therefore, the website should be easily naviga-

ble to even the most elementary user.

Data concurrency control is also an important aspect of

the project. When an item is added to the registry, there

should be a check to make sure it is the correct item.

When an item is purchased from the registry, it is also

essential that it is appropriately marked both on the

website and in the Android application. An error in

concurrency control could result in a fatal flaw in the

system, and each time an item is added or removed

from the registry there should be a prompt, minimizing

user-error.

The android application should be able to scan a bar-

code using the camera on mobile phone. The applica-

tion should then be able to extract information about

that product based on the barcode. The location of the

item should be deduced using Android's location-aware

technology. The information should then be stored in

an online database, which will be accessible from both

the Android application and a website. The creator of

the registry should be provided with a means of send-

ing out the registry, such as e-mail.

2.2 Application Design

 Our design process began with a specification of the

basic software features using a use case diagram (see

Figure 1) and an activity diagram (see Figure 2) to out-

line the basic behavioral features of the software. These

include adding and removing items to and from the

registry respectively, along with the ability to edit and

view the registry and purchase items.

 Figure 1: Use Case Diagram

A R C H I T E C T U R A L D E S I G N

The two Architectural Designs used for this project are

the three-tiered diagram and the model view controller

diagram (MVC). The MVC diagram is shown in Figure

3. The three-tiered diagram expresses the organized

flow of the project by representing three layers—the

user level, logic level, and data level. The MVC dia-

gram shows the flow of the project displaying the inte-

raction between the client and program, representing

the data, functionality, and user interface. The Model

View Controller Diagram (MVC) is used to represent

the interaction between the user or client and the pro-

gram, GiftScroll, or the server. The advantage of using

MVC is to represent the relation between the data,

functionality, and user interface of the program. Alto-

gether, MVC shows the flow the program when being

used by user.

Each subsystem focuses on a major role of the pro-

gram. The client subsystem is responsible for creating

and/or finding a users’ login username and accepting

the users’ password. The user database subsystem is

where the program’s users’ login usernames and pass-

words are stored. The registry subsystem contains the

users’ list, where they can create, edit, and export their

registry list. The item subsystem represents the name,

price, and description of an item previously added to a

list. And finally the viewer subsystem is for the friends

and family of the user, where lists can be viewed and

items can be purchased and marked purchased.

236 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Following architectural design, the subsystems were

individually designed. This part of the design process

centers around the development of class and sequence

diagrams. The class diagram for the application is

shown in Figure 4. The figure shows the classes and

relationships organized by subsystems. For example,

the Model subsystem is made up of the Registry and

DBGateway classes.

2.3 Design Constraints

 Being an android application, GiftScroll will only

run on the android platform. The program is operated

by touch gestures, which does make the program non-

operational if the user is not familiar with a touch

screen environment or if the touch screen is non-

responsive. Also, the user must have data access avail-

able to use the features of scanning items, the scanner

finding the item from the database, and the item being

listed in the registry. Being limited with time, export-

ing the registry will be done by email and text, but not

social networks.

Figure 2: GiftScroll Activity Diagram

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 237

 Figure 3: MVC Architecture

HomeUI BarcodeScanUI MyListUI OthersListUI
ExportUI

Client

SQLiteGateway

DBGateway

XMLParsar

-displays1

-updates1

-update client1

1

-displays1

-updates1

-displays1

-updates1

-displays1

-updates1

-displays1

-updates

1

-instantiates

1

1

-instantiates

1 1

-instantiates1

1

Registry

-queries1

-updates

1

-queries1

-updates1

-queries

1

-updates

1

Viewer

Controller

Model

3. Implementation and Testing

The application was developed and tested using a pre-

defined test suite. Both the Android application and a

corresponding web page were developed. A snapshot

of the web page is shown in Figure 6. The main menu

for the GiftScroll Android application is shown in Fig-

ure 5. Users have the options to create, view and edit

list of items as well as setting their preferences and

using the barcode scanner when managing items.

The log in screen allows a registered user to log in to

Giftscroll by entering their user name in the text field

called user and then entering their password in the

password field. Once a valid user name and password

have been entered, press the log in button. For users

that are not registered with gift scroll, the log in screen

also provides the ability to register.

Figure 4: GiftScroll Class Diagram

238 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

In order to register with Giftscroll, click the register

button on the log in screen. New users will be asked to

provide their First and Last name, their email address,

as well as a username and password that are each be-

tween 6 to 10 characters long. Once all fields are com-

pleted click the register button at the bottom. A mes-

sage should appear confirming that the registration is

complete and asking you to please log in.

 To add a new item to the list press the add item but-

ton. Once the add item is pressed GiftScroll will go in

to bar scanning mode, simply hold you Phone over the

bar code of the item you wish to scan until scanner

finish scanning. This is signified by the red line in the

middle of the scanner turning green and the phone pain

a sound. One the bar code is scanned gift scroll will fill

out the information for the newly added item. The user

will be shown a screen with the information and asked

to confirm that this is what they want to add to the list.

Before confirming they user will be able change any of

the information gift scroll has displayed.

 To edit an item on a list press the edit button and

select the item. Doing this should bring up the edit

item screen, at this screen the user will be able to edit

the name of the item, the items location, the items

price, the quantity of the item that they want, and the

items description. The user will also be able to mark if

the item is purchased or not as well at delete the item

from the list. To edit simple change the information

and any of the text fields and click save, to delete sim-

ple click the delete button.

 To send a list, click the send button under the edit

button. Clicking the send button will bring up the send

list menu. At this menu the user will be able to enter a

message and send it to their friends by ether email or

text messaging. To send by text message simple click

the text message button, select the contact phone num-

bers that you wish to send the message to, fill in the

message, and click send. To send by email click the

email button, select the emails that you wish to send

the message to, fill out the message, and click send.

4. Discussion and Lessons Learned

 There are ethical issues to take into account during

this project. Unauthorized use of information, such as

the distribution of user e-mail addresses and other per-

sonal information is not only unethical but is also

against the law. Under no circumstances will personal

information about users be sold or given to a third par-

ty without prior consent. There also will be significant

effort to secure our database and web server space from

being exploited by a malicious third party.

Figure 5: Main Menu

Figure 6 Index of the website.

 One security measure taken includes using php

scripts to execute MySQL queries and updates in the

Android application instead of allowing direct access to

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 239

the MySQL database. Allowing direct access from the

application would allow the potential for exploitation

by a third party. In addition, all administrative areas of

the website, as well as the FTP password, will be se-

curely protected with strong passwords. Since the

website is hosted on a shared server space, it is impera-

tive that our passwords are secure both to protect our

users’ information and to protect the other information

on the shared server.

 Since our website will have the ability to update a

MySQL database, significant effort will be put into

preventing SQL injection attacks on the client-side

before the information even reaches the database on the

sever. Doing so is imperative to protecting our website

users from executing unwanted scripts from malicious

parties.

 The only function that was not implemented was the

location-aware technology. The code was written and

worked correctly on most occasions, however on some

occasions a glitch would happen when the application

was not able to determine the location. We felt it was

better to just leave this feature out until it could be

properly addressed.

 The primary performance issue expected will be

that multiple users will be accessing a registry database

at the same time. Another issue may be the limited

computing power on most Android mobile phones. The

performance of the Android application in conjunction

with the Android OS must constantly be evaluated.

Since this system does involve a web application,

bandwidth is another issue that may hinder perfor-

mance. The issue of bandwidth consumption must be in

the foreground during the website design task.

REFERENCES

 [1] Brown M (2009) The NetGens 2.0: Clouds on the

Horizon. EDUCAUSE Review, vol. 44, no. 1 (Janu-

ary/February 2009): 66–67.

[2] Oliver, Earl. ACM SIGMOBILE Mobile Compu-

ting and Communications Review (2009). Vol 12 Issue

4: 56-63.

[3] Xun Li, Pablo J. Ortiz, Jeffrey Browne, Diana

Franklin, John Y. Oliver, Roland Geyer, Yuanyuan

Zhou, Frederic T. Chong. A case for smartphone reuse

to augment elementary school education.

GREENCOMP '10: Proceedings of the International

Conference on Green Computing.

[4] Gadhavi, Bimal and Khushbu Shah (2010) Anal

ysis Of The Emerging Android Market. San Jose State

University: May 2010.

[5] Jara, A.J et al. "A Pharmaceutical Intelligent Infor-

mation System to detect allergies and Adverse Drugs

Reactions based on internet of things." Pervasive Com-

puting and Communications Workshops (PERCOM

Workshops), 2010 8th IEEE International Conference:

809 - 812. May 2010.

[6] Kulyukin, Vladimir and Aliasgar Kutiyanawala

(2010): From ShopTalk to ShopMobile: Vision-

Based Barcode Scanning with Mobile Phones for

Independent Blind Grocery Shopping. RESNA An-

nual Conference. University of Utah: June 2010.

[7] Fuchs M., Reichl P., and M. Baldauf. Mobile Aug-

mented Barcodes: Experiences with a Novel Mobile

Barcode Scanner in the Wild. Computational Intelli-

gence: 2010.

[8] Gillenson Mark L., Sherrell Daniel L., and Lei-da

Chen. Communications of the AIS: Vol 2. Issue 3

(1999). Information technology as the enabler of one-

to-one marketing.

[9] Robertson, Steven C. "System and Method For

Providing Electronic Multi-Merchant Gift Registry

Services Over A Distributed Network." Patent #: US

2005/0033650 Al. Feb 2005.

[10] Zebra Crossing Project Wiki.

 http://code.google.com/p/zxing/wiki

[11] Kemerer, Chris F. (1993). Reliability of

function points measurement: a field experiment.

Commun. ACM 36, 2 (February 1993), 85-97.

DOI=10.1145/151220.151230 http://0-

doi.acm.org.uncclc.coast.uncwil.edu/10.1145/1512

20.151230

[12] Lavazza, L. and Garavaglia, C. 2009. Using

function points to measure and estimate real-time

and embedded software: Experiences and guide-

lines. In Proceedings of the 2009 3rd International

Symposium on Empirical Software Engineering

and Measurement (ESEM '09). IEEE Computer

Society, Washington, DC, USA, 100-110.

DOI=10.1109/ESEM.2009.5316018 http://0-

dx.doi.org.uncclc.coast.uncwil.edu/10.1109/ESEM

.2009.5316018

[13] Harris, A. (2009). Publishing in JISE. Journal of

Information Systems Educators, 7(1), 12-15.

240 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Extending Java for Android Programming

Yoonsik Cheon
Department of Computer Science

The University of Texas at El Paso
El Paso, Texas, U.S.A.

ycheon@utep.edu

Abstract— Android is one of the most popular platforms
for developing mobile applications. However, its framework
relies on programming conventions and styles to implement
framework-specific concepts like activities and intents, caus-
ing problems such as reliability, readability, understandability,
and maintainability. We propose to extend Java to support
Android framework concepts explicitly as built-in language
features. Our extension called Android Java will allow An-
droid programmers to express these concepts in a more
reliable, natural, and succinct way.

Keywords: Android, domain specific language, framework, Java

1. Introduction
Android is an open-source and rapidly growing platform

for developing applications running on mobile devices such
as smartphones and tablet computers [1]. It consists of a
Linux-based kernel, libraries, and a Java-compatible applica-
tion framework. The application framework provides a semi-
complete application that can be specialized to produce a
custom application quickly [2]. It defines conventions for
extending classes provided by the framework so that newly
added, application-specific classes can interact correctly with
the framework classes as well as themselves.

However, the Android framework has a steep learning
curve; it takes a long time to learn and be able to use the
framework effectively. Reliability is a more serious issue. The
framework relies on conventions to implement framework-
specific concepts like activities and intents (see Section 2). If
these conventions are violated, an application may not work
correctly. But, there is no automatic way of detecting such
violations or enforcing the framework conventions.

In this position paper we propose a solution to the above
problem. The key idea of our solution is to extend the Java
programming language to support Android framework con-
cepts like activities and intents as built-in language features
by introducing a few new language constructs. The extension
will allow one to not only express these concepts in a succinct
and natural way but also check them automatically.

2. The Android Framework
Two fundamental concepts of the Android application

framework are activities and intents. Activities are building
blocks of Android programming in that an Android applica-
tion consists of one or more activities. An activity is a single

public class MainActivity extends Activity {
public void onCreate(Bundle savedState) {

...
Intent i = new Intent("edu.utep.cs.GRADE");
Bundle extras = new Bundle();
extras.putString("name", "Joe");
i.putExtras(extras);
startActivityForResult(i, 0);

}

public void onActivityResult(int id, int o, Intent r) {
if (id == 0 && o == RESULT_OK) {

Bundle extras = r.getExtras();
... extras.getString("grade") ...

} } }

public class GradeActivity extends Activity {
public void onCreate(Bundle savedState) {

...
Bundle extras = getIntent().getExtras();
if (extras != null) {

String name = extras.getString("name");
String grade = findGrade(name);
Intent r = new Intent();
Bundle extras = new Bundle();
extras.putString("grade", grade);
r.putExtras(extras);
setResult(RESULT_OK, r);
finish();

} } }

Fig. 1: Sample Android code

screen in an application with supporting code. At runtime,
there is a stack of activities, each created for one unique
screen of the user interface. An activity may invoke another
activity. The invoked activity is pushed onto the top of the
activity stack and becomes visible. It is popped from the stack
when its execution is finished, making the previous activity to
resume its execution. Android runs each activity in a separate
process each of which hosts a separate virtual machine. This
is to provide a sandbox model of application execution to
protect the system and other applications from badly-behaved
code. One consequence of this decision is that an activity
cannot directly invoke another activity.

Android introduces another concept called an intent to
combine and glue activities. An intent is a message to the
Android system asking for performing a certain action on
certain data. Upon receiving an intent, the system locates and
starts an activity that can perform the requested action on the
requested data. If an action requires additional data or returns
results, they are piggy-backed on intents. In short, activities
are invoked indirectly using intents, and intents are the core
of the Android message system.

Figure 1 shows sample code illustrating the use of activities

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 241

public activity MainActivity {
public void onCreate(Bundle savedState) {

...
calls("edu.utep.cs.GRADE", "Joe")

receiving(String grade) {
... grade

};
}

}

public activity GradeActivity {
receives String name;
provides String grade;

public void onCreate(Bundle savedState) {
...
String grade = findGrade(name);
returns(grade);

}
}

Fig. 2: The sample code rewritten in Android Java

and intents. It defines two activities, subclasses of the Activity
class, and the first activity invokes the second. The framework
method, startActivityForResult, invokes an activity
by taking two arguments, an intent and a request code. The
intent specifies the activity to be invoked along with optional
arguments bundled as key-value pairs. The request code is an
integer identifying a particular invocation. The main activity
also defines a callback method, onActivityResult, to
be invoked upon completion of the execution of an invoked
activity. Because a single callback method handles all activity
invocations, the request code—identifying the invocation—is
provided as the first argument. As shown in the definition
of the second activity class, results are returned by calling
two framework methods, setResult, and finish. The
finish method makes the control to return to the invoking
activity and thus its callback method to get executed.

3. The Problem
The Android framework relies on conventions and pro-

gramming styles to support the concepts of activities and
intents, and this causes several problems.

• Reliability. Several factors contribute to this problem,
including no parameter validation and no checking for
framework conventions, e.g., overriding callback meth-
ods like onActivityResult and calling framework
methods like setResult and finish. Manually
bundling activity arguments is error prone, and missing
definitions or statements may cause subtle errors that are
often hard to detect and diagnose.

• Readability. The source code is not only verbose but
also less readable, understandable, and maintainable.
For example, the location where an activity is invoked
and that of the results become available and used
(onActivityResult method) are different. Note also
that a single callback method handles the results of all
invocations, resulting in error-prone case analysis code.

• Learning curve. Learning framework classes and their
protocols—expected ways of using them, e.g., method
overriding and calling—takes a time.

4. Our Approach—Android Java
The key to our approach is to extend Java to support

Android framework concepts as built-in language features.
For this, we introduce a few new language constructs for
activity declarations and invocations. Figure 2 shows the
sample code rewritten in our extended Java, called Android
Java. Activities are now built-in language concepts like
classes as indicated with the use of the keyword activity. As
shown in the GradeActivity activity, an activity declaration
may include optional parameter declarations, receives and
provides statements declaring input and output parameters.
The activity parameter declarations specify the signature of
an activity—input arguments and return values along with
their types. The returns statement is used to return from an
activity with optional results. An activity is invoked using the
calls statement that specifies the name of the activity to be
invoked, along with activity arguments; an optional receiving
clause specifies the code to handle return values.

By mapping framework concepts to programming language
constructs, Android Java addresses all the problems described
previously. An explicit declaration of activity parameters will
enable us to perform parameter validation, either statically or
dynamically. An activity invocation and return is expressed
in a more concise, natural, and readable way. One only needs
to learn a few new language constructs that explicitly support
the concepts of activities and intents.

5. Discussion
Android Java may be implemented in several ways includ-

ing preprocessing, compiling, and annotations. Preprocess-
ing is the easiest and quickest way to implement Android
Java. Android Java code can be translated to plain Java
code by essentially converting (a) the calls statement to a
startActivityForResult method call wrapped with
an appropriate check for parameter validation and (b) the
receiving clause to the onActivityResult method with
dispatching code. An Android Java compiler may be built to
produce virtual machine code directly, by extending an open-
source Java compiler like OpenJDK and Eclipse. Yet another
possibility is to translate or express Android Java constructs
in Java annotations and write an annotation preprocessor;
however, this requires support for statement-level annotations.

Although we considered only activities and intents, there
are many other concepts and features of the Android frame-
work that could also be explicitly supported in Android
Java, and the general problem is to map these features—
currently supported in framework conventions and styles—
to built-in language constructs in Java-based, domain specific
programming languages.

References
[1] Google, “Android website,” |http://www.android.com/|.
[2] R. E. Johnson, “Frameworks = (components + patterns),” Communica-

tions of the ACM, vol. 40, no. 10, pp. 39–42, Oct. 1997.

242 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

SESSION

COST ESTIMATION METHODS

Chair(s)

TBA

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 243

244 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

A Lightweight Test-Driven Approach to Test Indie Software Products

Yong Lai, and Hassan Reza

School of Aerospace Sciences
Department of Computer Science

 University of North Dakota
Grand Forks, ND 58201, USA

reza@aero.und.edu

Abstract
In this work, we discuss the application of testing

method to a typical independent (or indie) software
development. Toward this goal, an experimental indie
software ShoppingList is developed and tested using the
proposed techniques. Some testing frameworks and tools
are also utilized to facilitate the process. Based on our
results we concluded that the test-driven development
does have a positive effect on reducing the cost of indie
software development..

Key Words: Test-driven Development, Extreme
Programming (XP), Lightweight testing, JUnit,
Jemmy, Indie Software Development and Testing.

1. Introduction

Comparing to well-established software testing
method (e.g., white-box, black-box, etc.) used in the
traditional software development methodologies (e.g.,
waterfall model, spiral model, etc.) indie software testing
is a new concept and it is at its primitive stage.
Informally, the indie software development refers to the
independent development of software systems by very
small team of talented but market savvy software
developers having limited human and financial resources.
Examples of indie software developers include
independent game and mobile applications (or mobile
apps) developers.

The front-end and back-end developments of these
types of software require agilities and speed due to market
short windows of opportunities. Traditional heavy
weighted and plan driven software development process
such as waterfall model are very expensive and hence are
ill-suited for development of these types of systems for
the following reasons: demands complete, consistent, and
correct requirements, testing process takes place only
after the software has been written, lack of systematic test
case design and testing plan, combined debugging and
testing approach, etc [4].

In this work, we propose a lightweight testing method
and guidelines for indie software developers aiming to
improve the software quality, simplify the testing process,
and reducing the cost of testing. Toward this goal, we are
applying our proposed method to a typical indie software
application to examine its feasibility.

In what follows, we first describe the test-driven
development method [1]. This discussion will assist us to
effectively incorporate the methodology into our proposed
software testing approach. Next, our lightweight testing
management process is discussed. We then discuss our
decision on programming language, testing framework
and tool support. A model-view-controller [3] testing
model is developed to depict the feasibility of our
proposed testing process. More specifically, the feasibility
of our method is examined using a simple indie software
application known as ShoppingList that manages a list of
groceries the user wants to shop.

2. Background and Related Works

Test-driven development (TDD) refers to a testing
method that requires testing a requirement (or code) first
and implementing that requirement (or code) when the
test fails [1]. More specifically, TDD is an evolutionary
and specification development method in which writing
code and testing the corresponding code are carried out in
interleaved fashion [1]. The approach originally
introduced as part of agile development such as Extreme
Programming [4] that often works with automated
software testing such as Junit [10]. Test-driven software
development process heavily relies on the repetition of a
very short development cycle: first developer writes a
failing test case describing the new functionality, then
s/he writes the code to pass that test, and finally, s/he
refactors (or improve) the new code according to
acceptable standards [1,4]. Testing-driven development
(TDD) is especially efficient in solving the prevailing
problem by indie software developers consisting of small
number of talented programmers with limited resources.

A test-driven development cycle includes the
following steps [4]:

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 245

1) Identify new functionality and generating the
corresponding test cases.

2) Write the code: Initially, the test case will fail and
corresponding code must be written and implemented
to pass subsequent test case.

3) Refactor the code: After all test cases passed
successfully, we need to clean up the code along with
the test cases as necessary.

4) Repeat: The previous three steps are repeated to push
forward the whole development process until the
whole program is written.

Figure 1 shows a typical test-driven development cycle.

Figure 1. Test-driven development cycle.

3. A light-weight testing method

The well managed testing processes such as waterfall
models have been proven to be very effective but very
expensive in the development of commercial software
product because the approach demands complete,
consistent, and correct requirements before the validation
and verification (V&V) begin [4]. The testing (static and
dynamic) activities usually are normally performed by
independent testing teams aiming at showing both correct
and incorrect behaviors of the systems under test. Because
of the cost and human resource attributed to these
approaches, it is impractical to directly apply them in the
indie software development. Therefore, it makes sense to
adopt a lightweight testing process that shall be cheaper
and yet effective for indie software developers with
limited resources.

A lightweight methodology shall be a flexible
development process using a handful of rules to manage
the unstable requirements and environments. Examples of
light-weight approach include adaptive software
development [5] and extreme programming (XP) [6],
feature driven development [7], etc.

In general, the testing management process includes

the following steps: 1) test planning, 2) test design, 3) test
setup, 4) test execution, 5) test result analysis, and 6) test
reporting. In our experiment, we simplified the task of
each stage to create a light-weight testing management
process. To further simplify the testing process, we have
integrated the elements of lightweight testing process with
the steps of test-driven development (TDD) as follows:
1) Test planning and test design.

These two stages are integrated in the first step of
test-driven development. Different from the test
planning and test design stages in traditional testing
management process, which usually requires the
requirements to be complete into consideration. In
addition, test planning and design at each cycle of
test-driven development focuses on a small chunk of
requirements. Since the test planning and design only
consider a small part of the functionality of the
software, a detailed test schedule is minimized or
becomes unnecessary. Also, because of the small
scale of indie software, other steps such as deciding
test strategy, test requirements and items can be
skipped in order to keep the testing management
process simple and agile.

2) Test setup and test execution. For the test-driven
indie software development, test setup and execution
are related to writing product code to pass the newly
added test case. Again, because of the small scale of
indie software, test setup is trivial. After the product
code is written, the new test cases and old test cases
all need to be executed to ensure the new code
doesn’t introduce errors (regression testing). With the
advancement of the development, test execution will
be a tedious task as the number of test cases keeps
growing. Normally, automated testing tools [10] are
used to ease the task of test execution. The test
entrance criterion is easy to define: when the new test
cases are written. So as the test exit criterion: the new
product code passes both the new test cases and old
test cases.

3) Test result analysis and reporting. The task of this
stage is to write test report, analyze defects, make
changes, and prevent defects from reoccurring. In
test-driven indie software development, this stage
should happen before or after the third step. The most
important task for indie developers at this stage is to
document the test case design and test results
including the effectiveness of test cases, whether new
product code passes the old test cases, the choice of
test data, etc. The output of this stage is very
important as well since it provides insightful
guidance for future software development.

 A modified test-driven development incorporating a
light-weight testing management process is shown in
figure 2.

246 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

4. Testing tools and techniques

Besides testing methodology, testing tools also play an
important role in the indie software development.
Appropriate choice of testing tools can greatly enhance
the productivity of indie developers because they can
minimize the test cost by providing sophisticated testing
frameworks and saving programmers’ effort in creating,
organizing, and executing test cases. For different
programming languages and platforms, there are many
different testing tools available for indie developers to
choose. Some of them are open source, while others are
commercial software. The factors influencing the choice
of testing tools include but not limited to individual’s
styles, budget, tools, appropriateness to the project, etc.

Figure 2. An Improved test-driving development cycle
using light-weight

4.1 Programming language

We choose Java to implement our experimental project
because as a programming language, Java is comparable
with any other high level programming languages. Java
has the advantage of being used as a prototype language.
Also, as a mature programming language, Java enjoys the
availability of many well-established frameworks and
tools support used in test-driven development and test
automation. More importantly, Java is representative
among the programming language adopted by indie
developers especially in the current trend of increasing

popularity of Android platform development and mobile
apps.

4.2 Unit testing framework

We choose JUnit [10] as our testing framework. JUnit is a
unit and regression testing framework; it is commonly
considered as de facto tool for test-driven development
that works with java language. The key justifications for
using Junit include providing a complete assertion tools to
validate actual result against expected results; generating
Java test cases by API; and reporting and aggregation
supports.

A high-level class diagram of JUnit framework is
shown in figure 3.

Figure 3. High-level class diagram of JUnit framework.

The core classes of JUnit framework include the
following:
• Test: Test is the interface that all test cases must

implement. In JUnit framework, two classes
TestCase and TestSuit implemented the Test
interface.

• TestCase: TestCase is the simplest type of Test.
Most test case written by indie developers are going
to extend this class. A concrete TestCase class
contains methods (with signature testXXX)
implementing individual tests as well as optional
setup (for setting up test environment) and teardown
(for cleaning up test environment) methods.

• TestSuite: Like TestCase, TestSuite also implements
the Test interface. Like a container, TestSuite is used
to collect together tests: TestCases, other TestSuites,
or any combination of the two. The purpose of

(Re)Write a test

Check if the
test fails

(Re)Write a test

Check if the
test fails

Document test cases and test
results

Clean up code

Test succeeds

Test fails

Test(s) fail

All tests succeed

Repeat

Test planning and
design

Test setup and
execution

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 247

TestSuite is organizing logically related testCases
into individual groups.

• Assert: Assert is the superclass of TestCase that
provides all kinds of assertion methods, which are
used to decide if a test passes, or fails.

• TestFailure: TestFailures encapsulates an error or
failure that occurs during a test run. It keeps track of
the test cases that failed and the exception that was
responsible for the error or failure.

• TestResult: It accumulates the results of running the
tests and is responsible for informing the start and
end of a test.

• TestListener: Any class that wishes to track the
progress of a test run can implement this interface. It
has methods for notification of the start and end of
each test, as well as occurrence of errors and failures.

• TestRunner: TestRunner is used to run specified test
cases. It expects the name of a TestCase class as
argument. If this class defines a static suite method it
will be invoked and the returned test is run.
Otherwise all the methods starting with “test” having
no arguments are run.

 JUnit is not an automated testing tool: developers still
have to write the test cases themselves. But by providing
testing support library and runtime framework, JUnit does
enable developers’ write their test cases more
conveniently, execute the test cases in batch, or run the
test cases automatically with the help of Java Another
Neat Tool (ANT) build script. At each test run, JUnit will
report how many tests are executed, how many of the test
methods in a test succeed, and how many failed. The
detail of each failure will be reported in a form of a print
of Java’s stack track leading to the location of the failure.

4.3 Mock objects

Test-driven development (TDD) focuses on a small part
of the functionality of the software one at a time. The
direct result is numerous independent, small, but focused
test cases. Some test cases are context sensitive and hence
require system to be in the specific state. This makes it
very impractical to set the system in a specific state to
meet the requirement of each test case since it may greatly
increase the number of test cases. The other problem is
lack of proper coverage criteria to measure the adequacy
of test cases when context is very important.

Mock objects are shown to be very effective when the
objects are not currently available (e.g., Database). Mock
objects are interpreted in three different ways [2]:
• Stubs: a class with methods that do nothing. They are

created simply to allow the system to compile and
run.

• Fakes: a class with methods that return a fixed value
or values that can either be hardcoded or set
programmatically.

• Mocks: a class in which testers can set expectations
regarding what methods are calls, with what
parameters, how often, return values for various
calling situations, etc. It also provides a way to verify
whether the expectations are met.

Despite the differences between the semantics of mock
objects, they have a common target that is to take the
place of real objects for the purpose of testing some
functionality that interacts with and is dependent on the
real object [2]. There are two major approaches to create
mock objects: 1) coding them from scratch and 2)
generating those using frameworks or tools.

A mock object written from scratch looks like a
traditional class having some methods. It is just that the
logic contained in the methods are greatly simplified to
return desired value or performing simplified actions that
a real object would do in place. Hand-coding all the mock
objects can be a very time consuming task when the
number of test cases is large.

There are many frameworks and tools have been
created to make mock objects creation easier. EasyMock
is one of such frameworks which generate mock objects
at runtime using Java’s proxy mechanism. EasyMock fits
very well with test-driven development because the
generated mock objects will not be affected by refactoring
due to its unique style of recording expectations. Other
similar frameworks and tools include MockMaker and
MockObjects project.

4.4 Automated testing techniques

For indie software developers, two major automated
testing techniques are used more often than others: batch
test and automated GUI test.

4.4.1. Batch test. Batch test refers to the ability to execute
a lot of test cases together [4]. It is usually supported by a
testing framework. In our experiment, the batch test
functionality is provided by the JUnit framework.

4.4.2 Automated GUI test. Most indie software involves
intense graphical user interface (GUI) interaction with the
user. Thus, GUI testing is inevitably an important part of
the overall testing process. However, using test-driven
development for GUI testing is tricky because automated
testing of user interface is not as intuitive as other non-
interface related testing. Fortunately, there are many
automated GUI testing tools have been developed to help
developers make the task easier.

In this work, we choose Jemmy to implement our
automated GUI testing. Jemmy is a Java library that is
used to create automated tests for Java GUI application.
Using Jemmy, each component in the Swing API has a
corresponding Operator class in the Jemmy API. An
operator is used to wrap a corresponding Swing object on
the GUI to be tested. The developer can specify the

248 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

behavior of each operator and wrap all these code in a
single testXXX method of a TestCase class which can be
executed by JUnit framework automatically.

4.5. A model-view-controller testing model

Model-view-controller (MVC) is a classic design
pattern often used by indie and GUIs application
developer which requires the ability to maintain multiple
views of the same data [3][8].

To test the application designed using MVC pattern,
we identify three classes of test cases corresponding to
the essential elements of the MVC pattern, namely, test
cases to test model, test cases to test controller, and test
cases to test GUI. This test partitioning, in turn, allows us
to organize test cases in manner that traceability between
code implementing the requirements and test cases to
validate these code can be established. Furthermore, it
helps to simplify the testing process because each test
group is independent of other test suites and hence
reduces the duplicated test. This should increase the
effectiveness of test cases to uncover possible software
defects.

5. Case Study

A simple mobile application, namely, ShoppingList is
used to show the feasibility of our proposed method.
ShoppingList attempts to help the shopper to keep track of
the groceries (items) she/he wants to shop. The main
features of the program are as follows:
• It keeps a list of groceries items the user needs to

buy. New groceries can be added to the list and
existing groceries can be removed from the list.

• The name of each grocery in the list is unique.
Attempt to add duplicated grocery to the list should
fail.

• Each grocery in the list has a priority which helps the
user decide which groceries are needed more than
others. The priority of a grocery can be changed by
the user.

• Groceries belong to different categories such as
diary, baked food, vegetable, meat, frozen food, etc.
The user can manage the category to accomplish
tasks such as adding new categories, delete existing
categories, or modifying categories. If a category
containing groceries is deleted, those groceries’
category property will be automatically changed to
“uncategorized”.

• The grocery list can be sorted by name, category, or
priority. The order can be ascending or descending.

The project “ShoppingList” is developed using the

Eclipse java development tool [11] in Java language. The
application is designed using the MVC design pattern [8].

Using our proposed method, the first step is to identify
smell set of functionalities and corresponding test cases
according to MVC. Figure 4 shows a screenshot of the
project structure and the functionalities to be tested
according to MVC.

Figure 4. Project “ShoppingList” structure.

Step 2 requires to test setup and test execution
environment. To this end, JUnit framework is used which
allows multiple test cases be executed at one time (i.e.,
batch testing). Upon completion of step 2, the final step,
test result analysis and reporting, is performed. The
testing result will be provided immediately after the
testing is done. Using this feature, we can test our test
cases in different groups. For example, we can choose to
execute all the test cases in the model testing group. After
all the test cases in the model testing group passed, we
can start executing all the test cases in the GUI testing
group and leave the test cases in the controller testing
group for the last. In this way, program defects are
isolated and the errors in one group won’t affect other
groups.

Figure 5 shows a JUnit testing report for a successful
test run. The listbox shows that there are total 4 test cases:
TestEmptyGroceryList contains one test “testSize”;
TestGroceryListWithOneGrocery contains one test
“testSize”; TestGroceryListWithTwoGroceries contains
two tests “testSizeAfterAddingTwo” and “testContents”.

Figure 6 shows a JUnit testing report for a failed test
run. It shows that the test “testSize” in
TestEmptyGroceryList failed.

model-view-controller

testing model

JUnit library

Automated GUI testing library

EasyMock library

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 249

Figure 5. JUnit testing report for a successful test run.

5.2 Automated GUI test

In our experimental project, the automated GUI test is
implemented by Jemmy framework [9]. In this work, we
are going to test the functional features such as
adding/deleting a grocery item by user interface. Figure 7
shows a simplified GUI.

Figure 6. JUnit testing report for a failed test run.

Figure 7. The simplified user interface (GUI)

The automated GUI testing code of adding new

groceries using Jemmy is shown in figure 8.

Figure 8. The automated GUI testing code using Jemmy.

Figure 9. The testing report for adding new groceries.

Figure 9 shows the testing report for the automated GUI
test. It shows that there is one test case in the test run. The
test case contains two tests “testListContents” and
“testAdding”. The green bar shows that all tests passed.

The console output of the testing execution is shown in
Figure 10.

One failure

Failed test case

Failed test

No errors No failures

Green bar shows
that all tests passed.

It shows that there are total
4 tests being executed.

Grocery list
New grocery name

Add button

250 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Figure 10. The console output of test automated GUI
testing of adding new groceries.

6. Conclusions and Future works

Through our experiment, we found out that test-driven
development does have a positive effect on indie software
development. First, the introduction of testing at the early
stage of software development helps developers to better
understand the requirement specification and hence
prevent design errors from being propagated into the later
stage of development. This, in turn, decreases the
development cost and hopefully increase the productivity.

Also, appropriate choice of testing framework and tools
can help developers implement effective test automation
and simplify the task of regression test.

In addition, a light-weight testing management process
helps to enhance the test-driven development process
because it enforces the regulation of test design,
documentation, execution, and reporting.
 Last but not the least, the development of innovative
testing models should always be encouraged since it may
help to simplify the testing process.
 This work by no means is complete and therefore it
warrants additional work and experimentations to validate
our process. Therefore, future work includes, among other
things, more case studies and experimentations.

References

[1]. K. Beck. Test-Driven Development by Example,
Addison Wesley, 2003.

[2] Astels, D. (2003). Test-driven development: Practical
Guide. Prentice Hall PTR. (2003).

[3] R Taylor, N. Medvidovic, E. Dashofy. Software
Architecture, Foundation, Theory, and Practice. Wiley,
2010.

[4] I. Sommerville. Software Engineering, 9th edition.
Addison wisely, 2012.

[5] J. Highsmith. Adaptive Software Development :
Collaborative approach to development of complex, 1999.
Systems.

[6] K. Beck. Extreme Programming Explained: Embrace
Change. 2nd edition. Addison-Wesley, 2005.

[7] S. Palmer, S.R., and J. Felsing. A Practical Guide to
Feature-Driven Development. Prentice Hall, 2002.

[8]. G. Krasner, S. Pope. A cookbook for using the
model-view controller user interface isn Smalltalk-80.
Journal of Object-Oriented Programming, 1(3):26-49,
1998.

[9]. Jemmey framework . http://jemmy.java.net/

[10]. Junit Framework. http://junit.org/

[11]. The Eclipse Java Development Tool.
http://www.eclipse.org/jdt/

ComponentOperator wrapper
provided by Jemmy

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 251

Establishing the Optimal Software Cost Equation Using
Cost Affecting Factors and Elitist Gene Expression

Programming

Divya Kashyap1 and A. K. Misra2
1 and 2CSED, Motilal Nehru National Institute of Technology, Allahabad

1div.kashyap@gmail.com, and 2akm@mnnit.ac.in

Abstract- Accurate estimation of software’s cost isone of the most
intricate activity during the software development lifecycle.There
are many factors that directly or indirectly affect the
development cost of any software and these factors range from
the size of the software to the experience of project manager.
Calculating and interpreting these factors would be much
valuable in software cost estimation if an ideal relationship
between cost and these factors is found out. In this paper we have
tried to identify some of the critical factors that affect the cost
and we have also attempted to create a software cost equation
that institutes the relationship between these factors and the
software cost, using Gene Expression Programming.Our aim is to
create an optimized model for cost estimation that includes least
number of most acute factors for more accurate predictions. To
settle this relationship, we have used Gene Expression
Programming, a variant of Genetic Programming, because of its
proven potential in evolving mathematical equations.

Keywords: Software Development Cost, Cost Affecting Factors,
Genetic Expression Programming, Elitism, Function Points
andCost Estimation.

I. INTRODUCTION

Software cost estimation is one of the widely researched areas
related to software engineering and software project
management. It is the most onerous task which is perilous for
its customers, developers and users because itseverely affects
the total software project management process, including
contract negotiations, scheduling, resource allocation and
project planning [1, 2].Overestimation of cost may result in
the failure to win the project contract or over employment of
the resources while underestimating it may result in
undeveloped functions, low quality and late deliveries. So it is
a considerably important activity to envisage the software cost
and its component units as early as possible in the
development process so as to shape the future development
plans [3]. One can also claim that the timely production of
quality software also depends on this estimation.

Various cost estimation models have been described in the
past andBhoem in [4]classifies these models into six
categories: Parametric models, Expertise based, Learning
oriented, Dynamic based, Regression based and Composite
Bayesian. Out of these prototypesparametric or factor based
models are the most prominent and precise. These are also

easy to understand and use [2, 3, 4]. Some of the factor based
models are Putnam’s SLIM [5], Function Point [6],
Checkpoint [7], Price-S [8], Estimacs [9], Seer-Sem [10],
SELECT-estimator [11] and COCOMO II [12, 13].The
traditional parametric model is envisioned in figure1.

Laird & Brennan [15] have shown that notwithstanding the
presence of several cost estimation models, only 28% of the
total completed projects are delivered on time and each of
these delivered projectscan averagely overrun its budget by
45% or even more. Cost estimation is typical and critical
because there are many factors that affect the software cost.
Some of these factors are: Function size, duration,
implementation language, development technique, developer’s
skills, project schedules, project manager’s discretions and
many more [6, 16, 17, 18].Calculations that connectthese
parameters are hard because these parameters are ambiguous,
uncertain and there is dearth of information about these
factorsduring the initial phases of software development when
we have to determine the cost.Also the rapid changes in user
requirements make this process even more typical.

To tackle this imprecision and uncertainty we have used Gene
Expression Programming(GEP) [19, 20] to successfully find
an optimal relationship between the software cost factors.GEP
is a special form of Genetic Programming [21, 22]in which
each individual is a calculation unit or a mathematical
equation. It is an optimization procedure used to optimize a set
of mathematical expressions based on the fitness behavior of
the expression, determined by its ability to perform a given
computational task. In our paper the software cost equation is
modeled as a mathematical expression and its accuracy in
estimating the cost would be considered as its fitness. To
improve the accuracy, we have combined Genetic Expression
Programming with Elitist strategy [23] which makes it
computationally fast and more accurate.The flow of rest of the
paper goes in the following manner: In section two we have
described the various factors that affect the software cost in
section one. Then in third section we briefly discussed elitist
strategy and gene expression programming. Finally, in section
four we have framed the problem and tried to approach it
using elitist gene expression programming with results and
conclusions.

252 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

User Requirements

Requirement Analysis

Software Requirement Specification

Software Size Software
Sizing Function Cost Estimation

 Function

 Cost
Factors
{f1

f2

f3
.
.

Effort

Cost

Schedules

Figure 1: A Typical Parametric Cost Estimation Model

II . FACTORS AFFECTING SOFTWARE DEVELOPMENT COST

Finding the software cost function is the most arduous task in
the field of software engineering, since there are many factors
that simultaneously and synchronously affect the software
development activities during the whole development life
cycle. We have analyzed some hundred projects from ISBSG
data repository [33] to find out the most prominent factors, so
as to quantify the effect of these parameters on the software
cost, using Gene Expression Programming. The following
factors are the prerequisite for cost estimation:

A. Function Points (real number)
Function Points (FP), founded by Albrecht in [24], is the
measurement of the functionality of any program. FP can be
calculated from the detailed software requirements. The five
categories of functions to be count are: external inputs,
external outputs, external inquiries, external interfaces and
internal files. After the functions of all categories (xj) have
been found out, with their complexity, we calculate the
Unadjusted Function Points (UFP) [25], using the following
table 1 and equation 1.

TABLE I

FUNCTION COUNT WEIGHTING FACTORS

Function Type Low Average High Total
External inputs --*3+ --*4+ --*6= ---
External outputs --*4+ --*5+ --*7= ---
External inquiries --*3+ --*4+ --*6= ---
External interfaces --*5+ --*7+ --*10= ---
Logical internal files --*7+ --10+ --*15= ---

Total Unadjusted Function Points ---

(1)

wij and xijare the weighting factor and function count
respectively, in the i th row and j th column.

B. Software Quality Factor (real number)
The software quality is the degree to which the software meets
the client’sexpectations. Tocalculatethe Software

QualityFactor (SQF), we have used the following quality
attributes,

described by McCall’s in[26]:Correctness, Usability,
Efficiency, Reliability, Integrity,Portability,
Reusability,Maintainability, Flexibility and
Testability.Although it is very difficult to directly quantify the
quality attributes of any system, SQFcan be estimated by
combining the ratings for the individual quality factor [27] as
described in following equation 2.

 (2)

cn are regression coefficients, mn are the metrics that affect the
quality factor calculated on a grading scheme ranging from 0
(low) to 10 (high).

C. Project Duration (natural number)
It is the total number of workdays for which the project has
been developed. Cost is directly proportional to project
duration.

D. Team Size (natural number)
Total number of developers who functioned conjointly
throughout the entire development process, for the successful
completion of the project. Cost increases with the size of team.

E. Number of Consultants (natural number)
It is the number of advisers or experts associated with the
project. Project cost increases with the number of counselors.

F. Risk Classification
The overall risks and contingencies associated with the
development process as well as the project itself.

G. Explicit Constraints
The explicit constrictions levied by the client or developers,
such as, schedule constraints, execution time limitations,
resource constraints or storage constraints.

H. Team’s Experience and Ability
The assessment of skills, expertise and capabilities of the
programmersin handling the project of particular type.Greater

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 253

+

a *

- c

b d

-

* c

^

b d

a

the expertise and ability, the lesser will be the cost.This factor
also includes the project team’s cohesion.
I. Development Platform
This is the primary platform for the development of the
software. Usually, each software project is developed for one
of the following platforms:multi-platform, mainframe,
midrangeor personal computer. The cost decreases from multi-
platform to personal computers.

J. Use of Modern Programing Practices
The degree to which modern software tools and programing
practices are used in the development of software project. This
factor also specifies the type of development language use in
the process. Usually using the 4GL language and other
development tools such as IDEs increases the implementation
efficiency. It may increase or decrease the cost. An increase in
the cost would be noticed if development tools are very costly
or cost may decrease if the use of tools or particular
programming language saves time and effort.

The factors from H to Lare measured at a scale of 1 to 5,
ranging from 1 (very low) to 5 (very high). As one common
characteristic of all parametric models is that the quality of
outputs rest on the quality of inputs i.e. accuracy of cost
estimation directly depends on the preciseness of input
parameters and the relationship settled between there discrete
parameters and the software cost [14], so care must be taken to
be more and more precise while calculating these parameters.

III . GENE EXPRESSION PROGRAMMING AND ELITISM

A. Gene Expression Programming
Gene Expression Programming (GEP) is a variant of Genetic
Programming [28]. It is a subset of Evolutionary Computation
[29, 30] that automatically evolves and creates,computer ably
programmable units. These units can be conventional
mathematical expressions or complex polynomial structures
[31].In GEP each computational unit or mathematical
expression is encoded as a linear chromosome (genotype)
which can be translated into expression trees (phenotypes).
There is a one-to-one relationship between the symbols used
in the linear chromosome and the nodes of the corresponding
expression tree.

B. GEP Chromosome Structure
A GEP chromosome is made up of functions and terminals
and has two parts, head and tail. Head is made of both
terminals and functions, while tail contains only terminals.
The tail length tis calculated through the following formulae:

(3)

Where h is the head length and n is the number of distinct
terminals. The tail, randomly formed, is a noncoding region
which has nothing related to the expression but it plays a
crucial role in the evolution.To understand, how GEP can be

effectively utilized to code for mathematical equations and
how genetic operators can be applied over them, let us
considering the structural organization of GEP using two
expressions, exp1 and exp2.

(4)

(5)

In context to exp1 and exp2:
Set of functions, F= {+, -, *, ^},
Set of terminals, T = {a, b, c, d},
h1 = h2 = 7 and t1 = t2= (7 (4-1) + 1) = 22.

 (6)

(7)

These expressions, exp3 and exp4 are known as Karva notation
or the K-expression of the corresponding expressions:exp2 and
exp3. K-expressions are straight forwardly formed by reading
the expression tree from left to right and top to bottom. The
trees corresponding to exp1 and exp2are shown in figure 2.

Figure 2: Expression trees corresponding to exp1 and exp2

GEP is simple and elegant. The structures of genotypes allow
the genetic operators to be applied over it very easily.
Secondly they have a perfect and one-to-one mapping from
genotype to phenotype which makes it easier and faster to
quickly determine the fitness of any chromosome. Thus GEP
efficiently completes the prerequisites of any evolutionary
system.

C. GEP Genetic Operations
Due to the simplicity of GEP any selection scheme, roulette-
wheel selection or tournament selection can be applied on
GEP chromosomes. The three kinds of recombination
operators for GEP are: single point, two point and gene
recombination for any GEP chromosome. Chromosomes can
be replicated through mutation also. For more detail on GEP
genetic operators we redirect the reader to [19]. Sample
recombination and mutation for exp1 and exp2 are shown in

254 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

table II, here exp3 and exp4 are the offspring and exp5 and exp5

are the mutants formed from exp6 and exp5.
TABLE II

CROSSOVER& M UTATION FOR GEP

exp1 exp2

C
ro

ss
o

ve
r

at
 5th

 P
o

si
tio

n

exp3 exp4

R
an

d
o

m
 M

u
ta

tio
n

exp5 exp6

H
E

A
D

+

H
E

A
D

-

H
E

A
D

+

H
E

A
D

-

H
E

A
D

+

H
E

A
D

-

a * a * a +

* c * c * c

- a - a + a

c ̂ ^ c ^ c

b b b

T
A

IL

b b

T
A

IL

b

d d d d d d

T
A

IL

a

T
A

IL

b b a b a

b c c b c b

a d

T
A

IL

d a

T
A

IL

d a

b a a b a b

a a a a a a

c b b c b c

d b b d b d

d a a d a d

c d d c d c

a c c a c a

b c c b c b

c d d c d c

c a a c a c

b b b b b b

a d d a d a

D. Elitism
Elitism or elite preservation is a technique to retain the best
solutions during subsequent generation of any evolutionary
algorithm. There are two general approaches to inculcate
elitism in the evolutionary process. One is to combine the
parents and offspring of the previous generation before
forming the mating pool for the current one. The other way is
to maintain an archive to which the promising solutions at
each generation can be copied [32]. In our paper also, we have
applied the elitist strategy by maintaining an archive. Since the
memory resources are limited, for both the variants, we select
and hold only a specific number of elites. Elitism makes any
evolutionary algorithm fast and efficient because it
considerably reduces the loss of good solutions.

IV . PROBLEM DESCRIPTION AND SOLUTION APPROACH

Hitherto, various cost estimation models are present in the
software industry that either calculates cost as the function of
cost drivers or they simply model the cost estimation as
regression problem to construct the expression which best
predicts the cost, combining all input parameters. This

approach is known as metric based software cost estimation
since we consider various metrics/factors to predict the
software cost. The three major disadvantages of using this
terminology are:

1) Because of inherent dynamism in the cost affecting factors,

it is difficult to select the appropriate factors for cost
estimation of any particular project.Once we are able to
locate them, it is even more difficult to find their values in
the early phases of development.

2) We have to analyze a lot of test cases to achieve a certain
level of accuracy in the constructed expression or
otherwise our predictions would be far from the reality.

3) The rapid changes in the Information Technology and
software development methodology and processes have
made it difficult to stabilize a particular estimation model.

Although, we are also succeeding in the same direction
(metric based) for cost estimation, we are unalike from the
previously proposed models, in our approach. We have tried to
assuage these three problems.

First we have found out the least set of most affecting factors.
From the available pool of factors we have selected only those
factors which are not only the most dominating ones but these
factors are easy to calculate also. This set of factors is briefly
discussed in section 2 of this paper. Thus we have condensed
the problem one.

Secondly, instead of using the conventional regression tools or
simple genetic programming, we have used elitist Gene
Expression Programing (GEP), described in section 3 of this
paper. GEP has a proven potential for setting and optimizing
the complex mathematical equations. It is simple and has
directly mapped genotypes and phenotypes. Its operators are
fast and effective. Also a very little knowledge is required by
this heuristic method. Thus we overcome the second problem.

Thirdly, in our factor set we have considered quality factors,
explicit constraints, development platform and use of modern
programming practices. All these factors will clearly indicate
the characteristics of the development methodology. So the
third problem is also tapered.

In the proposed methodology, we have considered ten
parameters to set up a cost estimating equation. One of the
most prominent factor is function point, it itself requires some
pre-calculations on the basis of user requirements, so as to be
used in the estimation equation directly. The others factors
can also be easily calculated from the users requirements and
project manager’s strategies. To connect there parameters we
have used eight simple mathematical operators, namely,
addition, subtraction, multiplication, division, exponent, log,
square and cube. Now we have to establish the relationship

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 255

between the factors using these mathematical operations, so as
to form the cost equation and we have used elitist GEP for this
purpose.To start the elitist GEP iterations we randomly form a
pool of five hundred initial equations. These initial and the
consequent equations get processed through thousand
iterations. This processing includes binary tournament
selection, single point head-tail crossover and random
mutation. This procedure eventually results in final
expressions or cost equations (elite archive) that minimizes
the Mean Magnitude Relative Error (MMRE) [34], described
as equation 8.MMRE is used as a benchmark to measure the
performance of the model, we have proposed.

(8)

N is the total number of fitness cases. actual_efforti and
estimated_efforti represents the value of actual effort and
model calculated effort respectively for the i th project. Both
actual_effort and estimated_effortare measured in the person-
months. The cost in INR or dollars is directly proportional to
this effort unit, i.e. the more person-months the more would be
the cost. This whole optimization procedure, based on elitist
Gene Expression Programming is briefly described in
algorithm 1 of this paper.

VI . RESULTS

We set the experiment table with 30 projects, out of which two
third i.e. 20 are used to for learning and the remaining 10 are
used for testing. Thus the value of variable N is 20 in equation
8. Algorithm 1, gives a set of 50 cost equation, so to be more
precise in our test results, we calculate the resultant estimated
effort as the average effort calculated from these 50 equations.
We compared our model i.e. Elitist GEP (EGEP) with PSO
based COCOMO model (PC), Artificial Neural Network
approach (ANN) and simple Genetic Programming (GP).
From the results in figure 3, we can conclude that EGEP
works well in most of the cases with minimum MMRE. The
more interesting and appealing results are related to the time

Figure 3: MMRE for different models

complexity of the algorithm i.e. EGEP not only competes
other algorithms in terms of MMRE but also in terms of total
time taken to learn and subsequent predictions. The average
time complexity comparisons of EGEP with PC, ANN and GP
are shown in figure 4.

Algorithm 1: Elitist Genetic Expression Programming (GEP)

Inputs:
Parameters: Values:
Terminals: All factors discussed in section 2.
Functions: {+, -, *, /, ^, log(x), x^2, x^3}
Fitness function: Mean Square Error (MSE).
Population: 500.
Size of elite archive (s): 50.
Total generations (m): 1000.
Selection operator: Binary tournament selection.
Crossover operator: Single point.
Mutation operator: Random single point.
Crossover probability: 90%
Mutation probability: 10%

Output:
Set of 50best cost equations.

Procedure:
Step 1. Generate an initial population P0and create the empty

archive A0. Set t=0.
Step 2. Calculate the fitness of the individuals in Pt and At,

using genotype (k-expression) to phenotype
(expression tree) conversion and equation 8.

Step 3. Copy the best s solutions in Pt and AttoAt+1.
Step 4. If t >= m return At+1.
Step 5. Apply selection operator to Ptto form the mating

pool.
Step 6. Apply crossover and mutation operator on the mating

pool to form Pt+1. Set t = t+1 and go to Step 2.

256 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Figure 4: Time complexities for different models

VII . CONCLUSIONS

Cost estimation is a hard-hitting topic related to software
industry. Although, many cost estimation models have been
proposed till date, there is a continuous requirement of now
techniques to predict the cost because of rapid change in the
domains of information technology and software development
methodology itself. We always necessitate a model that
absorbs all the factors associated with the project and fallouts
with a precise development cost estimate. In the light of this
issue, our research in this paper gives an overview of the state
of art of software cost estimation using principles of
evolutionary computation.

We have tried to find out the most dominating parameters that
potentially affect the cost of any software project and then we
have proposed a methodology to set up a cost equation
containing these parameters. Gene expression programming,
which is a special case genetic programming, is used to
establish the software cost equationsbetween the software cost
and the factors that affect it. From our experiment we have
found that the equations found from Elitist Gene Expression
Programming are the most accurate ones when compared to
other traditional techniques.

VIII . REFERENCES

[1] A. Nolan and S. Abrahao, “Dealing with Cost Estimation
in Software Product Lines: Experiences and
FutureDirections”, Software Product Lines: Going Beyond,
LNCS, Springer Berlin, pp. 121-135, 2010.

[2] H. Leung, Z. Fan, “Software Cost Estimation”, Handbook
of Software Engineering, Hong Kong Polytechnic University,
2002.

[3] R. Gray, S. G. MacDonell, and M. J. Shepperd, “Factors
systematically associated with errors in subjective estimates of
software development effort: The stability of expert
judgment”, IEEE 6th Metrics Symposium, IEEE Computer
Society, Los Alamitos, CA, USA, pp. 216-227, 1999.

[4] B. Boehm, C. Abts, and S. Chulani, “Software
development cost estimation approaches — A survey”,
Technical Report 2000-505, Univ. of California and IBM
Research, Los Angeles, USA, 2000.

[5] L. Putnam and W. Myers, “Measures for Excellence”,
Yourdon Press Computing Series, 1992.

[6] A. J. Albrecht, “Measuring Application Development
Productivity”, Joint SHARE, GUIDE, and IBM Application

Development Symposium, pp. 83-92, Monterey, CA, 14-17
October 1979.

[7] C. Jones, “Applied Software Measurement”, McGraw Hill,
1997.

[8] R. Park, “The Central Equations of the PRICE Software
Cost Model”, 4th COCOMO Users' Group Meeting,
November 1988.

[9] H. Rubin, “ESTIMACS”, IEEE, 1983.

[10] R. Jensen, “An Improved Macrolevel Software
Development Resource Estimation Model”, Proceedings of 5th
ISPA Conference, pp. 88-92, April 1983.

[11] SELECT (1998), “Estimation for Component-based
Development Using SELECT Estimator”, SELECT Software
Tools, 1998. Website: http://www.selectst.com.

[12] B. Boehm, “Software Engineering Economics”, Prentice
Hall, 1981.

[13] B. Boehm, B. Clark. E. Horowitz, C. Westland, R.
Madachy, and R. Selby, “Cost Models for Future Software
Life Cycle Processes: Cocomo 2.0”, Annals of Software
Engineering, Software Process and Product Measurement,
Science Publishers, Amsterdam, The Netherlands, vol. 1,
pp.57-94, 1995.

[14] Ali A. Malik, B. Boehm, “Quantifying requirements
elaboration to improve early software cost estimation”,
International Journal of Information Sciences, vol. 181-13,
Elsevier Science Inc., New York, 2009.

[15] L. Laird and C. Brennan, “Software Measurement and
Estimation: A Practical Approach”, IEEE Computer Society,
John Wiley & Sons, Hoboken, 2006.

[16] R. Lagerström, Liv von Würtemberg, H. Holm and O.
Luczak, “Identifying factors affecting software development
cost and productivity”, Software Quality Journal, Springer
Netherlands, pp. 1-23, 2011.

[17] R. Lagerström, Liv von Würtemberg, H. Holm and O.
Luczak, “Identifying factors affecting software development
cost”, Fourth International Workshop of Software Quality and
Maintainability (SQM), Germany, 2010.

[18] Z. Jiang and P. Naud´e, “An examination of the factors
influencing software development effort”, International
Journal of Computer Information and Systems Science and
Engineering, vol. 1, no. 3, pp. 182–191, 2007.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 257

[19] C. Ferreira, “Gene Expression Programming: A New
Adaptive Algorithm for Solving Problems”, Complex Systems,
vol. 13 - 2, pp. 87-129, 2001.

[20] C. Ferreira, “Gene Expression Programming:
Mathematical Modeling by an Artificial Intelligence”, 2nd
Edition, Springer-Verlag, Germany, 2006.

[21] J. R. Koza, “Genetic Programming: On the
Programming of Computers by Means of Natural Selection”,
Cambridge, MA: MIT Press, 1992.

[22] J. R. Koza, “Genetic programming II: automatic
discovery of reusable programs”, Cambridge, MA: MIT
Press, 1994.

[23] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, “A fast
andelitist multi-objective genetic algorithm: NSGA-II”, IEEE
Transactions on Evolutionary Computation, vol. 6-2, pp. 182–
197, 2002.

[24] A. J. Albrecht, and J. E. Gaffney, “Software function,
source lines of codes, and development effort prediction: a
software science validation”, IEEE Trans. on Software Eng.
SE-9, pp.639-648, 1983.

[25] Chris F. Kemerer, “Reliability of Function Points
Measurement. A Field Experiment”, Communications of the
ACM, vol.36 -2, pp. 85-97, February 1993.

[26] J. McCall, P. Richards and G. Walters, “Factors in
Software Quality”, Technical Report RADC-TR-77-369, US
Department of Commerce, 1977.

[27] Roger S. Pressman, “Software engineering: a
practitioner’s approach”, 5th ed., McGraw-Hill series in
computer science, 2001.

[28] A. Abraham, N. Nedjah, L. Mourelle, “Evolutionary
Computation: From Genetic Algorithms to Genetic
Programming”, Studies in Computational Intelligence,
Springer Berlin, vol. 13, pp. 1-20, 2006.

[29] T. Back and H. Schwefel, “An overview of evolutionary
algorithms for parameter optimization”, Journal of
Evolutionary Computation, MIT Press Cambridge, vol. 1-1
MA, USA, 1993.

[30] D. B. Fogel, “Evolutionary Computation. Toward a New
Philosophy of Machine Intelligence”, IEEE Press, Piscataway,
NJ, 1995.

[31] Online article on Gene Expression Programming, (URL:
http://www.gene-expression-programming.com/), Feb 27,
2012.

[32] E. Zitzler, M. Laumanns and S. Bleuler, “A Tutorial on
Evolutionary Multiobjective Optimization”, Metaheuristics for
MultiobjectiveOptimisation, Lecture Notes in Economics and
Mathematical Systems, Springer Berlin, vol. 535, pp. 3-37 ,
2004.

[33] Online data repository, (URL: http://www.isbsg.org/)
Feb 28, 2012.

[33] M. Shin and A. L. Goel, “Emprirical data modeling in
software engineering using radial basis functions”, IEEE
Trans. on Software Engineering, pp. 567-576, 2000.

258 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Using metadata for automated testing of complex object structure

Jaroslav Zacek
Faculty of Science, 30. dubna 22

University of Ostrava
Ostrava 702 00, Czech Republic

jaroslav.zacek@osu.cz

Frantisek Hunka
Faculty of Science, 30. dubna 22

University of Ostrava
Ostrava 702 00, Czech Republic

frantisek.hunka@osu.cz

Abstract—Ontologies have more then one level of the
abstraction view. This ensures to create a precise model of the
subject under study. Different level architecture requires using
a specific model techniques such as power-type objects to
represents object that exists on more then one level. Complex
object structure makes hard to implement unit testing. This
paper proposes a new approach to implement unit testing by
using object metamodel. That makes unit testing fully
automated and increase efficiency. The paper also proposes a
required extension to JUnit framework and verifies the
approach on the real model.

Keywords-Automated testing; reflection; metamodel; power-
type; REA ontology

I. INTRODUCTION
Latest researches in modelling are focused on metamodel

and working with meta-models. Resource-Event-Agent
business ontology is defined as a multi-level ontology to
define economic business processes. Main advantage of the
REA model is ability to make real-time overlook of the
resources in model. That means the management can have
relevant information about supply items, cash flow, and
orders almost immediately and do not have to wait until
financial statements. The economic model contrary to model
in any other domain has specific needs. We can define a
simple business process for example – car production.
Customer buys a new car. He signs the contract and defines
parameters. Every car has specific serial number. At the time
of signing the contract there is no serial number because the
car is not in the product line yet. The model (information
system) must carry the information about car type and must
be able to define the specific attributes later. Car has many
accessories and accessories can be bound to the car serial
number (for example the GPS system). Every accessory is
bound to contract and specific car; therefore it must be bound
to specific car in model with no serial number. When the car
is finished the serial number is created and all components in
model must be informed about changing the value. These
complex model structures can be created with power-types.
However automated testing of these special object types is
not trivial, consume developer time, and increase complexity
of the whole implementation.

II. REA ONTOLOGY
We can find a several concepts in almost every

information system. If concepts are determined and defined

correctly a whole design of the information system is much
easier and do not violate domain rules. An adaptation of the
new requirements is easier as well. These concepts are
known as REA (Resources, Events, Agents). Fundamentals
of the REA concepts for economic software are economic
resource, economic event, economic agent, commitment, and
contract. REA also specifies a domain rules to ensure
consistency of the whole information system from the
business perspective. There are, of course, other approaches
to define the modeling entities (archetypes, pleomorphs).
These concepts are focused on certain subdomain in specific
business domain therefore REA ontology can generally
describe all these concepts. REA was originally proposed as
a generalized accounting model and published by W.E.
McCarthy in 1982. Since then, McCarthy and G. Geers have
extended original REA model to a framework for enterprise
information architecture and ontology for business systems
in 2002. REA became the foundation for several standards
such as ebXML, and Open-edi. Fundamentals of the REA
concepts are presented in fig. 1.

Figure 1: REA concept fundamentals

Economic Resource is a thing that is valuable and unique

to other and has utility for economic agents. Usually users
want to plan monitor and control that resource which must
be also a part of economic information system. Examples of
the economic resources are money, material, labor, tools,
services and products.

Economy Agent can be an individual or organization
capable of having control over economic resources and
capable of interaction between other economic agents.
Economic agents are usually customers, vendor or other
companies. The company itself is a specific economic agent,

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 259

because the REA model is created from the company
perspective.

Economic event is an act that represents an increment or
a decrement specific value of the economic resource. The
economic event can occur instantaneously (purchase of
merchandise) or over time (rental).

Commitment expresses the obligation created in a long-
time economic event. For example, commitment represents a
one item on the order.

Contract is a set of increments and decrements
commitments. Contract also specifies what happens if the
commitments are not fulfilled. Order document is a typical
example of contract concept. Order consists of items to order
and can specify the penalties if the items have not been
received. Additional penalties are specified as another
commitments.

REA has two abstraction conceptual levels – operational
level and policy level. Operational level defines concepts
that describes past events and policy level defines planning
by future events.

III. TYPIFICATION IN REA ONTOLOGY
Basic typification is shown in fig. 2. StudentType

instance represents a different sort of students. StudentType
has three attributes – yearOfStudy, groupName and course.
Student instance is always directly bound to specific
StudentType and specifies the instance by three attributes –
studentName, studentAddress and grades. Student instance
can access to StudentType attributes. Relationship between
StudentType and Student is 1:M. That means if one instance
of Student class changes inner attribute of the StudentType,
all instance of Student class bound to that StudentType
instance reflects that change automatically.

Figure 2: Typification

Another important fact is that StudentType is instantiated

first and represents a parent of the complex Student model
structure. A child objects Students are instantiated
afterwards. This structure is convenient if the user must
change the values of the parent object periodically and needs
a specific grouping, for example year of study in object
StudentType.

Figure 3: Resource typification in REA ontology

Fig. 3 shows resource model in REA ontology with two

abstraction levels. Policy level expresses the future event by
ResourcerType. Object Resource on operational level
represents existing resources as Goods, Services, and Rights.
Modelling problem between Resource and ResourceType
must be solved by typification. When user creates an order a
type of resources is created. At that time there is no Resource
specification such as serial number, colour etc. Specific
resource is specified only as a type of Resources not the
actual instance of object Resource. ResourceType is specific
instance that will be specified later during order process by
objects Schedule and Contract. Another words ResourceType
can be and will be changed anytime and every resource
connected to ResourceType must be aware of that change.

From a developer point of view there are two possibilities
to implement model with changing parent objects:

• Object reference as an attribute in parent
• Inner classes

 ResourceType class has specific attribute – Resource.
This attribute expresses an array of resources instantiated and
related to ResourceType. All instances of ResourceType are
stored in hash map and all Resource instances can access
ResourceTypes attributes by searching with provided ID
during Resource instantiation. This construction is not
adequate because of complex data structure and complicated
implementation. A hash map requirement can be resolved by
using reflection in every child class to get reference to parent
instance.

Inner classes are much more suitable to model
typification. This construction is also called a power-type
[6]. Power-type is construction between two or more meta-
layers to model complex objects such as policy and
operational level in REA ontology. Following testing process
can be applied to both constructions however inner classes
are more widespread and therefore the paper aims this
construction.

260 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

IV. TESTING POWER-TYPES
Implementation of the power-type is class with inner

classes. From a testing point of view a power-type should be
tested on the lowest level. Software testing at the lowest
level (programming language) is referred to as unit testing.
At this level, individual inner classes and specified methods
are tested. More emphasis is placed on verification and black
box testing at this level. The main concern is that algorithms
works correctly and specified values are verified. Basically a
unit test is a test designed to evaluate a piece of code. A suite
of test can be used to evaluate an entire solution. Unit testing
should be divided into four areas:

• Class scope testing
• Inheritance-level class scope testing
• Implementation-level class scope testing
• Method scope testing

Class scope testing defines the interfaces for power-types
and then establishes and maintains their effectiveness
thought the development. Power-type is usually not interface
itself, but should contain some complex methods using
interfaces from inner classes.

Inheritance-level testing aims to check all methods
inherited from super classes. Power-type is a specific
construction of inner classes therefore there is no inherited
method from super class. In fact a power-type construction is
a different approach to ensure inheritance.

Implementation-level class scope testing is exactly the
opposite to inheritance-level testing. The main concern is to
test all implemented methods in actual classes and none of
the inherited methods. Overridden methods are regarded as
implemented methods.

Method scope testing is an alternative to class-level
testing and is focused to specific methods or to the most
important method of the specific class. This approach is
suitable for specific design classes with few core methods
that do a lot of work in static context. Method-level testing is
usually used in evaluating robustness.

Automated tools are used widely in the test driven
development approach to minimize human work time
(developer/tester work), speed up test process and reduce
human error. One of the most used frameworks is JUnit.
JUnit is a testing framework that was originally developed
by Kent Beck [9] and Erich Gamma for testing at class-level
scope. Since then, a lot of implementation specifications and
testing patterns has been discovered [1]. JUnit has special
package to compare object values – Assert (org.junit.Assert).
This package provides libraries to check values defined by
object types (Integer, Double, String, Long…).

However this package is prepared only to objet values
and primitive data types and cannot state of equation on
complex structures such as Power-type. An example of
typification is presented in fig. 4. Subject under study is
university consisting of several faculties. Every faculty has at
least one department.

Figure 4: Typification example

At this example the typification is much more

appropriate then inheritance. Top level of the model defines
a university.

University has specific attributes, such as name, address
and town. These attributes have been defined to faculty and
department as well. Main difference between generalization
and typification is in inner attributes. In generalization the
department is defined by inner attributes, attributes inherited
from the Faculty and attributes inherited form the University.
All attributes are on the Department instance level. That
means if university changes address, all instances of classes
Faculty and Department must be informed about that change
and therefore one change of the attribute generates many
new method calls.

A model example of University-Faculty-Department
shows fig. 5. This class diagram is based in fig. 4 by
applying typification approach. University class represents
top of the hierarchy with attributes universityName,
universityType, rectorName, chancellor, address, and town.

Figure 5: Class diagram of University-Faculty-Department model

example

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 261

V. DESIGNING A POWER-TYPE TESTING LIBRARY
Power-type construction could be a significant part of the

REA model implementations. A lot of models have been
analyzed and determined basic requirements for testing
library:

• Library must be able to test across the level of
typification

• Test power-types automated
• Reduce the time to create test case
• No additional implementation to tested class
• Easily implemented
• No additional dependences to other libraries

The library must be able to reveal a number of inner
classes in implemented power-type. Theoretically the
number of inner classes is infinite as seen in fig. 6.
Practically the number depends on programming language
implementation (for Java programming language is
maximum Integer.MAX_VALUE). For example model from
fig. 5 has three meta-levels: University, Faculty and
Department and library must equals all attributes in the right
meta-level. Another example has only two levels. The library
must determine all outer classes to get their references
automatically.

Figure 6: Inner class level

Library must be able to work with automated testing

frameworks such as JUnit. Automated testing framework
works with assert library and expects Boolean value. A new
method, which decides equality of a two power-types, will
return always a Boolean value. Method will be marked as
static as well according to design pattern Library. These
conditions support integration to existing testing
frameworks.

Significant lines of code must be implemented to test all
inner attributes of the main class from fig. 5. Additional lines
must be created in inner classes to access all attributes.
Access methods are often implemented just for testing
purpose and makes whole code confusing. 44 lines of code
must be written to state that two instances of Department
class are equal.

All testing methods should be separated from tested class
[1]. The new library must be able to get all needed
parameters from metamodel of the instantiated class (power-
type).

The key to the easy implementation and usability is well-
arranged code [10] and simplicity of design. New method
must be created according to design pattern Library and

provide documented interface to seamless integration to
current project.

New library must also use only API of the current
programming language (in this case Java API).

VI. POWER-TYPE METAMODEL
Every instance of the power-types class has the own

metamodel carries important information about inner
structure, number of attributes and method. This metamodel
must be used to discover inner attributes and get reference to
the concrete value. We used a reflection to allow work with
metamodel in our testing library.

A. Reflection and metamodel
Reflection as a term in information science means ability

to read and change program structure and behavior during
the program running. Considering object-oriented
programming approach, reflection means ability to read and
change object attributes, read and execute the object
methods, passing calling results and instantiate new objects.
Generally the reflection is able to read object metamodel
during program running without changing any object
attributes. Reflection is widely used with Smalltalk
programming language and scripting languages. Reflection
can be used as a universal tool to make object persistent [2]
or to generate project documentation.

Reflection enables creating a new object instance entered
by name during program running. Following source codes
are in Java programming language, but same function can be
done with .NET platform and languages defined under
Common Language Specification. Basically there are two
requirements to programming languages:

1. Ability to read object metadata and work with them as
a metamodel (object self-identification).

2. Some tool to enable object metamodel extension.
Before the source code of metadata model instantiation

the metamodel must be discovered.
By using reflection technique most of the requirements

defined in section 5 are met. Reflection can obtain a
reference to instance of inner and outer class. Reflection can
obtain all declared fields in instance. If instance consists of
more then one object (typically power-types) last declared
field is a reference to upper object and in Java language is
marked as „this$0“. Number after dollar symbol expresses
the level nested class. Therefore we must use a technique to
discover number of nested classes in power-type as show in
fig. 7.

private static int getLevel(Object obj) {
Field[] fields = obj.getClass().getDeclaredFields();
String[] stringArray = (fields[fields.length -1]

 .toString()).split(".this\\$");
return new Integer(stringArray[1]);

}
Figure 7: Method to determine number of nested classes

Method has only one parameter – obj. First line gets a

reference to declared fields of the prototype instance.
Declared fields are part of the power-type metamodel.

262 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Second line parses the String value obtained form the array
of declared fields.

The whole metamodel of instantiated class can be
discovered by method getClass(). This universal method is a
part of Object metamodel defined by Java programming
language and therefore an additional library import is not
required. Method retrieves a runtime class of an object.
Retrieved object is locked by static synchronized methods of
represented class. To reveal a number of levels in power-type
instance we do not have to browse all inner classes. Method
getDeclaredFields() is a part of Object metamodel as well.
This method retrieves an array of objects reflecting all the
fields declared by the class or interface represented in Class
object returns by getClass() method. This includes public,
protected, and private fields. The method does not include
inherited fields or fields from inner classes. Retrieved
elements are not sorted and are not in any particular order. If
the method returns array with length 0 there is no declared
field in specific instance of class or interface. The retrieved
array contains specific classes – Field. A Field class provides
information about, and dynamic access to, a single field of a
class or interface using their metamodel. The reflected field
may be a class field or an instance field. Every returned field
has method toString() returning String object to describe the
field. Last string is a reference to outer class. The format is
the access modifiers for the field, if any, followed by the
field type, followed by a space, followed by the fully-
qualified name of the class declaring the field, followed by a
period, followed by the name of the field. The modifiers are
placed in canonical order as specified by Java language
specification. The power-type in fig. 5 includes this string:
“final cz.osu.example .University$Faculty cz.osu.example.
University$Faculty$Department.this$1”. In this context the
final means that the reference has been created in
instantiation process and cannot be change except calling
class destructor. Modifier is followed by definition of full
outer class name including packages. Inner classes are
divided by dollar symbol.

Figure 8: Reflection field references

In this example are inner classes represented as

University$Faculty. Next string is definition of current
power-type class composed from class University, Faculty,
and Department. Last entry of the whole string value is the
reference to outer class in notation “.this$1”. Diagram in fig.
8 shows comprehensive structure of the references for
example from fig. 5.

The basic idea of the testing library is to obtain
metamodel at the top level of the power-type and iterate
through all values. If the values are equal (including complex
object data types) the algorithm finds a reference to the next
inner class and repeats the comparative process. When the
comparative process ends on all level of the two compared
power-types the process ends and returns a result. The

algorithm can be speed up by comparing the number of inner
classes. The whole process shows flowchart in fig. 9.

On of the fundamental features of the object-oriented
programming is encapsulation. Metamodel of the power-type
respects this attribute with key word private. Reflection uses
special method to retrieve value of the current field and this
method returns specific data type wrapped to Object data
type. From an algorithm point of view the specific data type
is not relevant and we do not have to check or cast retrieved
value. All objects in programming language (specifically
Java) have method equals implemented by default Object
specification and we use this method to compare values.
However if the value is marked as private the method of the
reflection package throws IllegalAccesException as a
response to obtain the value. Therefore we must set
accessibility mark to every field that will be obtained and
compared. This approach has one big advantage. The
comparative process runs over all fields of the power-type
metamodel on all levels not interfered by encapsulation and
therefore we can assert that two power-types are equal or
not.

B. Implementation and consequences
We choose a Java programming language because we

have a lot of projects implemented on Java technologies and
significant count of power-types for automated testing.

First step of the algorithm flowchart diagram instructs to
obtain level of classes in power-types. Full implementation is
relatively long and because of page limitation the paper
shows only significant passages.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 263

Figure 9: Algorithm flowchart

VII. RESULTS
By implementing new library for testing prototype

equality a coding has been dramatically reduced. In the
beginning the testing of power-type model from figure 5
required about 3 lines of code per one attribute. That means
42 lines of Java code to test equality on whole model
excluding getters and setters methods. These methods are
required for testing however these methods should be
implemented automatically and therefore we do not count
them.

System.out.println("Equals? - " +
 Power-typeTesting.equals(real, real2));
Figure 10: Power-type testing library example of use

That means that by using a Power-typeTesting library the
code is reduced three times. Moreover there is no requisition
to implement accessing methods. At the beginning of the
project we tested the library to simple power-types such as
Flight-RealFlight, University-Faculty-Department. Later we
used complex economic power-types in REA ontology. We
have tested Commitment-Economic Event power-type,
Resource-Resource Type power-type, Event-Event Type
power-type, and Agent-Agent Type power-type. These
power-types have been identified in REA ontology before
and by using new testing library the time required for testing
was dramatically reduced. New code was well arranged,

automated and fully integrated into JUnit testing framework.
The project PowerTest is an open-source and is available at
https://sourceforge.net/projects/powertypetest/.

VIII. CONCLUSION
The paper is focused to problem of automated testing

power-type objects. First section introduces the reader to the
problem of power-types testing and summarizes the main
challenges in testing complex object structures. Next two
sections define key principles and terms of REA ontology
and use of power-types in REA ontology designing model.
These two sections determines of using power-types as
necessary technique to support REA models creation.
Section 4 discuss ordinary techniques to automated testing of
power-type objects and defines basic approaches to test
complex object models. A main requiremets for creating a
universal testing library has been defined. Based on the
requirements a new testing library has been designed and
implemented. A new testing library has been successfully
tested in many REA ontology models. The results are
significant reduction of time to realize unit testing and fully
integration to JUnit framework. The new code is well
arranged and number of necessary lines has been reduced
three-times. Moreover the testing library is not bound only to
REA ontology power-types and can be used on any other
complex object with inner classes. The implementation is
available as open-source at Sourceforge.

Acknowledgments: This paper is supported by IGA no.

6141, Faculty of Science - University of Ostrava

REFERENCES
[1] J. Thomas, M. Young, K. Brown, A. Glover, “Java Testing Patterns”,

Wiley Publishing Inc., 2004, ISBN 0-471-44846-X 41-67.
[2] I. Forman, N. Forman, “Java Reflection In Action”, Manning

Publications Co., 2005, ISBN 1-932394-18-4.
[3] C. J. Chang, L. R. Ingraham, “Modeling and Designing Accounting

Systems”, Wiley Publish-ing Inc., 2007, ISBN 13 978-0-471-45087-
0.

[4] P. Hruby, “Model-Driven Design Using Business Patterns”, Springer,
2006, ISBN 13 978-3-540-30154-7.

[5] J. Arlow, “Enterprise Patterns and MDA”, Addison-Wesley
Professional, 2004, ISBN 9 780-321-11230-9.

[6] C. Gonzales-Perez, “Metamodelling for Software Engineering”,
Wiley Publishing Inc., 2008, ISBN 13 978-0470-03036-3.

[7] M. Soden, “Operational Semantics for MOF Metamodels”, available
on-line at http://www.metamodels.de/docs.html, Mar. 2010.

[8] B. Eckel, “Thinking in Java (4th edition)”, Prentice-Hall PTR, 2006,
ISBN 13 978-0131872486.

[9] K. Beck, “Test-Driven Development: By Example”, Addison-Wesley
Professional, 2002, ISBN 978-0321146533.

[10] S. McConnell, “Code Complete: A Practical Handbook of Software
Construction”, 2nd edition, Microsoft Press, 2004, ISBN 978-
0735619678.

264 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Empirical Estimation of COCOMO I and COCOMO II

Using a Case Study

Muhammad M. Albakri
1

M. Rizwan Jameel Qureshi
2

1-2
Department of Information Technology, King Abdul-Aziz University, P.O. BOX 80221 Jeddah 21589, Saudi

Arabia

Abstract- There are several software estimation models

such as Line of Code, Function Point and COnstructive

COst MOdel (COCOMO). The original COCOMO model

is one of the most widely practiced and popular among the

software development community because of its flexible

usage. It is a suite of models i.e., COnstructive COst

MOdel I and COnstructive COst MOdel II. In this paper,

we are evaluating the both models, to find out the level of

efficiency they present and how they can be tailored to the

needs of modern software development projects. We are

applying COCOMO models on a case study of an E-

Commerce application, that is built using HTML and

JavaScript. We will also shed light on the different

components of each model, and how their Cost Drivers

effect on the accuracy of cost estimations for software

development projects.

Keywords- COCOMO I; COCOMO II; Software Cost

Estimation; Software Cost Drivers' Assessment; Trade-off

Analysis; Component Composition.

1 Introduction

The main stimulus for the COCOMO I model is to

help people understand the cost consequences of the

decisions they will make in developing and supporting a

software product. COCOMO II not only offers a cost

estimation tool, but also provides a great amount of

parameters which explain what the model is estimating,

and why it produces the estimates it does. COCOMO I is

actually a hierarchy of three sub-models and each sub-

model is progressively more detailed than the other. This

paper will present our results and findings after applying

two of COCOMO's sub-models. The First sub-model is

'Basic COCOMO'. It is a single-valued model and

calculates the software development cost and effort of a

program by measuring lines of code (LOC). Basic

COCOMO itself is divided into three modes based on the

nature of the software project. First is 'Organic Basic

COCOMO', it is used in small-sized simple software

projects developed by small teams with good application

experience. Second is 'Semidetached Basic COCOMO', it

is used in medium-size software projects developed by

teams with diversified levels of experience. Third is

'Embedded Basic COCOMO', that is used in massive

software projects with strict resource constraints developed

by multiple teams acquiring immense levels of experience,

and sophistication. The second sub-model is 'Intermediate

COCOMO’; it is simply 'Basic COCOMO' plus a set of

subjective 'Cost Drivers'. Those drivers are used to assess

product, computer, personnel, and project attributes of a

software project. The evaluator uses a six-level scale to

decide where each attribute fall. When an attribute is

assessed, it produces what is called an Adjustment Factor.

After all adjustment factors are multiplied together, they

give an Effort Adjustment Factor (EAF) that is usually

equal to a value between 0.9 and 1.4. The EAF is then

mathematically applied on all Basic COCOMO's formulas.

Third sub-model is Detailed COCOMO, as the name

indicates, it produces the most accurate estimation of all

three sub-models of COCOMO I. It combines Basic and

Intermediate COCOMO together, boosted by an

assessment of every Cost Driver's impact on each stage of

‘Barry Boehm’s software engineering process'. COCOMO

II model on the other hand, is divided into four sub-

models. Each sub-model is based on different inputs and

estimates the effort of different activities of a software

project. 'Application Composition' is the first sub-model. It

estimates the effort of prototype systems developed using

scripts, database programming, etc. And it uses application

points as an input. Second sub-model is 'Early Design', it

calculates initial effort based on system requirements and

design options, and uses function points as an input. Third

sub-model is 'Reuse', it estimates the effort of integrating

reusable automatically generated components and uses

generated line of code as an input. Fourth sub-model is

'Post Architectural', it estimates the development effort of

system design specifications and uses lines of source code

as an input.

The paper is further organized as: section 2 covers

related work. Section 3 defines the research problem.

Section 4 describes the brief case study design. Section 5

illustrates the evaluation. Section 6 covers the discussion.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 265

2 Related Work

 Boehm et al. [1] proposed evaluation criteria for the

validity of the process models and they provided effective

results. This article also explained the strengths and

weaknesses of various cost estimation techniques for the

period of 1965 to 2005 (40 years). COCOMO-II [2] was an

excellent model up to 2005 but it did not enfold the new

requirement and development styles for the reuseness or

estimation of cost. COCOMO-II directed the software

experts to create and designed new models such as the

Chinese government version of COCOMO (COGOMO)

and the Constructive Commercial-off-the-Shelf Cost

Model (COCOTS) etc. Different future challenges were

discussed for the invention of new model/methods and

tools.

 The author discussed different software cost

estimation techniques and highlighted various hot areas

and challenges of research in the field of software cost

estimation. In [3], it is emphasized that there should be a

need to research more in this field to open the new

horizons for novice researchers. Nasir [4] discussed the

strengths and weaknesses of various software estimation

techniques to provide the basis for the exactness of

software cost estimation. Basic Project Estimation Process

also presented in a wonderful style. This paper clearly

elaborated the different types of models those were derived

from COCOMO (I&II).

 Reusability of components in Component Based

Development (CBD) is illustrated in [5]. The research in

[5] also discussed and compared different architectures of

CBD. It may be mentioned that a detail explanation of

advantages and disadvantages of CBD elaborated very

nicely. A comparison, of component based development

(CBD) with other traditional software development

practices, is also provided.

 Succi and Baruchelli [6] highlighted the importance of

standardization of components for the software reusability.

The discussion of this research paper was to find how total

development cost of a software system affected on the

basis of component-based software engineering. The main

two factors those were affecting the standardization cost of

a component have been explained. According to them, the

cost of the standardization of component(s) must be

included during the cost-benefit analysis of a software

system.

 Gill [7] highlighted the pertinent issues of software

reusability for component based development on the basis

of CBSE, considered the important issues of software

reusability and high level reusability guidelines. He

mentioned that how much reusability resulted to improve

product reliability and to reduce overall software

development cost.

 The problem of crosscutting which is produced during

component development is elaborated in [8]. They solved

this problem by the extension with Aspect oriented

methodology. It was mentioned by an example that how

new business rules resulted in the more adaptable and

reusable components. Aspect Component Based Software

Engineering has been developed with success in the

CORBA Component Model domain [9].

 Dolado [10] wrote a report for the validation of the

component-based method (CBM) for software size

estimation by the analysis of 46 projects. Then the

complete process of this analysis and different techniques

of analysis was mentioned. Relationship of LOC (Line of

Code) and NOC (No. of Component) was carried out with

suitable examples. Comparison of CBM and a Global

Method (Mark II) was also provided [10].

3 Research Problem

A number of discussions are reported in the literature

for the effectiveness of COCOMO models. This paper is

written to find out the accuracy of cost estimation of both

models when applied on a specific project. Further, what is

the impact of cost drivers during the system development

life cycle phases.

 We want to validate the accuracy of the cost

estimations of COCOMO models for projects that are built

using HTML and JavaScript. Hence, we will not only find

out how accurate and reliable they are, but also whether

they are suitable for estimating HTML and JavaScript

Code.

4 Case Study Design

The case study is for a project completed by author

Mr. Albakri in a course called ‘Human Computer

Interaction’. The objective of the project is to follow the

principles of HCI in creating an E-Commerce web

application of an online bookstore. The application

consists of forteen webpages written in HTML and

JavaScript. All forteen pages were fully designed to have

different content and perform different web tasks. Then,

they were coded and connected together according to their

design. The pages are a demo experience of how a real user

would buy a book online. Detailes of the pages are

mentioned in the next section.

5 Evaluation

The sub section 5.1 covers the COCOMO I whereas

COCOMO II is covered in the sub section 5.2

subsequently.

5.1 Applying COCOMO I

Sub-model Used: Basic COCOMO I

 Mode Used: Organic

 Formulas Used:

 () () (1)

 () (2)

Calculating Total LOC:

Table 1: HTML Pages, 14 pages in total:

266 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Webpage Name Number of Lines of Code

abousUs 101 LOC

bookDetails 119 LOC

categories 376 LOC

congrats 91 LOC

contactUs 144 LOC

feedBack 267 LOC

index 276 LOC

myAccount 114 LOC

payment 245 LOC

searchResults 327 LOC

shoppingCart 157 LOC

signIn 118 LOC

signUp 190 LOC

verification 146 LOC

Total = 2918 LOC, 2.918

KLOC

Estimating Effort:

 ()

Estimating Time:

 ()

Sub-model Used: Intermediate COCOMO I

 Mode Used: Organic

 Formulas Used:

 () () (3)

 () (4)

Cost Drivers:

 Product Attributes:

1. RELY- Required Software Reliability.

2. DATA – Database Size.

3. CPLX – Product Complexity.

 Computer Attributes:

4. TIME – Execution Time.

5. STOR – Main Storage.

6. VIRT – Virtual Machine Volatility.

7. TURN – Computer Turnaround Time.

 Personal Attributes:

8. ACAP – Analyst Capability.

9. AEXP – Applications Experience.

10. PCAP – Programmers Capability.

11. VEXP – Virtual Machine Experience.

12. LEXP – Programming Language Experience.

 Project Attributes:

13. MODP – Use of Modern Programming

Practices.

14. TOOL – Use of Software Tool.

15. SCED – Required Development Schedule.

Table 2: Estimating Cost Drivers Values:

Very

Low
Low Normal High

Very

High

RELY 1.15

DATA 1.16

CPLX 1.30

TIME 0.85

STOR 1.21

VIRT 1.30

TURN 1.15

ACAP 0.86

AEXP 0.80

DCAP 1.0

VEXP 0.90

LEXP 0.95

MODP 1.0

TOOL 0.83

SCED 0.85

Calculating Effort Adjustment Factor(EAF):

Here all assessment values are multiplied together to

determine the EAF:

 (5)

The equation further substitutes as follows.

 () ()

 ()

Sub-model: Organic Detailed COCOMO I

This sub-model was not used this model based upon

two reasons. First, is that this E-Commerce application

does not require to go through the detailed project phases

of 'Barry's software engineering process. Second, it is a

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 267

small scale project. Though, the findings will be stated in

section 6.

5.2 Applying COCOMO II

Sub-model Used: Application Composition

 Formulas Used:

 ()
 () () (6)

 ()
()

 (7)

 ()

 (8)

⁄ (9)

(10)

Table 3: Project Parameters:

 CF

 EC Simple Average Complex

Screens 14 1 2 3

Reports 6 2 5 8

Components 10 1 1 10

Environment

Maturity
25

After Substitution:

 () () () ()
(11)

This e-commerce application reuses 90% of previous

common e-commerce applications.

 ()
()

 ()

Assumed, the average labor rate is 1500 USD.

⁄

 ⁄

Sub-model Used: Early Design

Formula Used: (12)

Where:

 A is 2.94, a coefficient proposed by Boehm,

 Size, is in KLOC,

 B, reflects the increased effort required as the size

of the project increases, ranges from 1.1 to 1.24.

 M, is a multiplier which is based on a simplified set

of seven project characteristics that influence the

estimation.

Project Characteristics:

1. RCPX – Product Reliability and Complexity

2. RUSE – Reuse Required

3. PDIF – Platform Difficulty

4. PERS – Personnel Capability

5. PREX – Personnel Experience

6. SCED – Schedule

7. FCIL – Support Facilities

Table 4: Estimated Project Characteristics:

Very

Low
Low Normal High

Very

High

RCPX 1.5

RUSE 1.40

PDIF 1.20

PERS 1

PREX 1

SCED 0.85

FCIL 1

Calculating multiplier M:

B value is medium (equal to 1.15), because the size of this

e-commerce application is predicted to require medium

expansion effort.

 ()

268 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Sub-model Used: Reuse

Formula: ()

(13)

This formula estimates generated code. Where:

'Auto', indicates that 'Effort' is of generated code,

ASLOC, is the number of adaptive LOC of

reusable components,

AT, is the percentage of adapted generated code,

ATPROD, productivity of engineers integrating

the code, usually approximates to 2400

LOC/Month.

Here, it is assumed that the HTML and JavaScript code of

reusable components is generated using design models

inserted into a code generator.

 ()

Sub-model Used: Post-Architectural

Formula: (14)

As the name indicates, this model is used when more

project parameters become identified.

Detailed Project Cost Drivers:

1. RELY – Required Reliability.

2. CPLX – Complexity of Modules.

3. DOCU – Extent of Documentation.

4. DATA – Database Size.

5. RUSE – Required percentage of Reusable

Components.

6. TIME – Execution Time Constraint.

7. PVOL – Platform Volatility.

8. STOR – Memory Constraints.

9. ACAP – Analysts Capability.

10. PCON – Personal Continuity.

11. PCAP – Programmer Capability.

12. PEXP – Programmer Experience.

13. AEXP - Analyst Experience.

14. LTEX – Language and Tool Experience.

15. TOOL – Use of Software Tools.

16. SCED – Development Schedule Compression.

17. SITE – Extent of Multisite Working and Quality

of Inter-Site Communication.

The last cost driver 'SITE' was excluded because the work

site is not relevant to the nature of this application.

Table 5: Estimated Cost Drivers:

Very

Low
Low Normal High

Very

High

RELY 1.15

CPLX 1.30

DOCU 1.1

DATA 1.16

RUSE 1.40

TIME 0.85

PVOL 0.70

STOR 1.21

ACAP 0.86

PCON 0.90

PCAP 1

PEXP 1

AEXP 0.80

LTEX 1

TOOL 0.83

SCED 0.85

 ()

6 Discussion

As mentioned above in Table 2, the estimated fifteen

cost drivers provide more information about different areas

of the application that were not obtainable at the beginning

of the project to enhance cost and effort estimations. In the

basic stage, the effort and time to develop the application

was 9.851 MM and 5.963 Months respectively, but when

intermediate stage was reached, 0.985 more effort and

0.219 more time was needed to complete the project.

At the beginning of the project, 'Organic Basic

COCOMO' envisions the system as a single unit, whereas

'Organic Intermediate COCOMO' divides the system into

subsystems or components. The intermediate cost drivers

allow estimating particular components not the entire

system, therefore enabling the development team to choose

the best course of action regarding project's plan.

In 'Detailed COCOMO' the estimator's understanding

does not only cover different project parameters, it also

considers the project as a sequence of phases and each

phase is estimated in a different way. That is the most

major difference between it and previous sub-models. The

'Detailed COCOMO' assigns different cost drivers for each

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 269

of phase of the project. These phase-dependant cost drivers

are the reason behind producing much more accurate

estimations. For example if we consider the 'ACAP' cost

driver, it is assigned a value of 1.00 for Coding and Unit

Testing phase, which has no influence on the

multiplication operation, but a value of 1.40 for

Requirements phase. This intelligent manipulation of cost

drivers can save up analysts' energy and time for phases

that need them. They do not have an impact on coding and

testing phases, because they are not involved.

COCOMO I only uses number of thousands lines of

code (KLOC) as an input, and so it is best used in projects

built using structured programming languages.

'Application Composition' is intended for prototype

projects, where the project is built by composing

components called 'Object Points'. It not only considers

cost drivers but also project environment's characteristics

like developer's experience and capability, CASE tool's

maturity and capability, number of screens, and number of

system generated reports. So, each component (object) is

customized and then attached to whole body of the project

in a different way and with a different level of challenge.

As mentioned in previous section, 90% of the project is

reused components from existing e-commerce

applications. The relation between '%reuse' and 'Effort' is

disproportional; the more components are reused (90% out

of 100%), the less effort (1 Man Month) is required.

'Early Design' model is similar to 'Organic

Intermediate COCOMO'. In each model more information

is uncovered as initial stages of the project are concluded

and design stages are initiated. However, only a rough

system design is required to make early estimations. A

very important element in the formula is 'B' as mentioned

in section 5.2.2, which has a great influence on the effort

estimation. While comparing the value of effort estimated

by 'Application Composition' and the value of effort

estimated by 'Early Design', the impact of 'B' is definitely

obvious. More 15.118 man effort is needed to meet the

increasing size of the project.

When 'Reuse' model is used HTML code can be

generated using various code generators. It may appear that

'Early Design' model and 'Reuse' model are similar,

because they both estimate reusable components, but that

is not the case. In fact, the estimator using 'Early Design'

needs neither to understand the reusable components nor to

modify it. The estimator simply just uses them. Each time

the generated code is studied and then refined, the cost of

the component will decrease.

'Post-Architectural' model is used once an initial

architectural design of the system is available. The model

uses the same formula as 'Reuse' model uses. However, the

estimation is the most accurate and realistic among others,

because ten more cost drivers are uncovered and used in

the formula. In section 5.2.2, 16.118 man effort is needed

to develop the e-commerce application. This estimation

was found to be unrealistic, because conventionally such a

small scale application (2918 LOC) does not need that

amount of man effort to be completed. Thanks to the

detailed cost drivers, effort is reduced to 8.462 Man

Month.

Acknowledgements

The author Muhammad Albakri would like to thank

Dr. M. Rizwan Jameel Qureshi for his continuous and

valuable support. It would never been possible to complete

the work without his guidance throughout the making of

this paper.

7 References

[1] Boehm, B. W. and R. Valerdi. Achievements and

Challenges in Cocomo-Based Software Resource

Estimation published by IEEE Computer Society. 74-83

(2008).

[2] Boehm, B. W. An Overview of the COCOMO 2.0

Software Cost Model (1999).

[3] Zaid, A., M. H. Selamat, A. A. A. Ghani, R. Atan and

K. T. Wei. Issues in Software Cost Estimation, IJCSNS Int

J of Computer Science and Network Security, 8(11): 350-

356 (2008).

[4] Nasir, M. A Survey of Software Estimation Techniques

and Project Planning Practices, Proceedings of the Seventh

ACIS Int. Conf. on Software Engineering, Artificial

Intelligence, Networking, and Parallel/Distributed

Computing (SNPD’06), (2006).

[5] Qureshi, M. R. J. and S. A. Hussain. A Reusable

Software Component-Based Development Process Model

Int. J of Advances in Engineering Software, 39(2): 88-94

(2008).

[6] Succi, G. and F. Baruchelli. The Cost of Standardizing

Components for Software Reuse, Standard View 5(2)

(1997).

[7] Gill, N. S. Reusability Issues in Component-Based

Development, ACM SIGSOFT Software Engineering

Notes, 28(4): 4 – 4 (2003).

[8] Clemente, P. J. and J. Hernández. Aspect Component

Based Software Engineering, University Extremadura. 1-4

Spain (2001).

[9] Frakes, W. B. and K. Kang. Software Reuse Research:

Status and Future, IEEE Transactions on Software

Engineering, 31(7): 529-536 (2005).

[10] Dolado, J. J. A Validation of the Component-Based

Method for Software Size Estimation, IEEE Transactions

on Software Engineering, 26(10): 1006-1021 (2000).

270 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Comparative Analysis of Software Reliability Estimation

Models –State and Path Based

Arashdeep Kaur(Student)
1
 and Monika(Assistant Professor)

2

1
U.I.E.T, Panjab University, Chandigarh, U.T, India
2
 U.I.E.T, Panjab University, Chandigarh, U.T, India

Abstract - Software reliability is an important factor that

contribute to the quality of software. The objective of this

paper is to provide an overview of the research in the area of

architecture-based software reliability models considering the

system architecture approach, uncertainty factors influencing

the model. The aim of this paper is to establish a relationship

between various models by identifying the limitations and

enhancements of previous models over the new models.

Keywords: component-based software, reliability analysis,

markov chains, component dependency graphs.

1 Introduction

 Software reliability is often defined as “the probability

of failure-free operation of a computer program for a

specified time in a specified environment [23]. It refers to the

quality of the software. Early quality prediction at the

architecture design stage is highly desired by software

managers and developers, as it provides a means for making

design decisions and thereby facilitates effective development

processes [1]. Software architecture analysis aims at

investigating how an architecture meets its quality

requirements [2] based on the structure and the correlation

among the components of the software.

Figure 1. Classification of architecture based models.

In Figure 1 evaluation of analytical models is categorized

based on architecture and failure behavior. Hierarchical

method and Composite method are the two approaches which

can be used as a solution method in architecture based

prediction for reliability. Prevalent approaches to software

reliability modeling are black-box based [1], i.e., the software

system is considered as a whole and only its interactions with

the outside world are modeled, without looking into its

internal structure. Several critiques of these time-domain

approaches have appeared in the literature and some of these

include the fact that they are applicable very late in the life-

cycle of the software, ignore information about testing and

reliabilities of the components of which the software is made,
and do not take into consideration the architecture of the

software.

 White box reliability modeling is another approach that

considers the internal structure of the software. The

approaches to architecture-based prediction fall broadly into

two categories: state-based approaches [7], and path-based

approaches [13]. The path-based approaches to architecture-

based software reliability prediction generally assume that the

successive executions of the components are independent.

This assumption leads to very pessimistic estimates of

reliability, and largely impedes the applicability of these

approaches.

2 State-based models

 State-based models estimate software reliability

analytically. They assume that the transfer of control between

modules has a Markov property, that is, model software

architecture with a discrete time Markov chain (DTMC),

continuous time Markov chain (CTMC), or semi Markov

process (SMP). The reliability of software application is

estimated either by solving the composite model that

combines software architecture with failure behavior

(composite method), or by superimposing failure behavior on

the solution of the architectural model (hierarchical method).

If the reliability improves over time, as faults are discovered

and corrected, one would expect that the number of failures

detected per unit of time would be decreasing and the time

between failures would be increasing.

 Analytical models for architecture-based prediction

 Architecture Failure Behaviour

Failure behaviour plus

solution of

architecture model

Failure behavior &
architecture in a

single model

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 271

Table 1. Summary of State based models with uncertainty

factors.

S. no State

Based

Model

System

Architecture

Uncertainty

factors

influencing

the Model

1.

Littlewood

(1975) [5]

Irreducible

CTMC

Operational

Profile, Time

between

Failure,

Component

Failure Rate

2.

Littlewood

(1979) [6]

Irreducible

SMP

Operational

Profile, Time

between

Failure,

Component

Failure Rate

3.

Cheung

(1980) [7]

Absorbing

DTMC

Component

Reliability,

Number of

Component

Execution ,

Operational

Profile

4.

Laprie

(1984) [8]

Irreducible

CTMC

Mean

execution time

of

Component,

Number of

Failures, Time

between

failures.

5.

Kubat

(1989) [9]

SMP

Expected

number of

Component

executions,

Time spent in

each

Component

6.

Littlewood

(1995)

DTMC

Total

workload,

Operational

Profile, Time

between

Failure,

Component

Failure Rate.

7.

Gokhale

(1998)

[10]

Absorbing

DTMC

Module

Reliability,

number of

module

executions,

Number

 of failures.

8.

Ledoux

(1999)

[11]

Irreducible

CTMC

Component

Failure Rate,

Operational

Profile, Time

between

failures.

9.

Reussner

(2003)

[22]

DTMC

Individual

Component

Reliability,

Number of

Component

Executions,

Operational

Profile.

*DTMC(Discrete time markov chain)

**CTMC(Continous time markov chain)

***SMP(Semi-markov process)

Factors that bring uncertainty in reliability estimation

based on Path-based models are the operational profile,

Number of component execution, Individual Component

reliabilities. Table 1 gives an overview of the various state

based models together with the system architecture and

uncertainty factors influencing the model.

3 Various Models

3.1 State Based Models

1. Littlewood Model [5] - [6] : This was one of the earliest

approach to estimate software reliability. It considers software

reliability in terms of operational reliability. Firstly a

reliability system with system architecture based upon

irreducible CTMC was made [5]. An another approach [6]

was developed that consist of a modular program in which

transfer of control between modules follow a SMP. This

Model describes structure via dynamic behavior using Markov

assumption. It analyze both the component and interface

failures.

Limitations of Littlewood Model [6]:

• This model considers that failure occur if given input value
specification of computation to be performed and output

values are incorrect or delayed not considering performance

requirements.

272 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

• Littlewood Verrall is applicable when there are no failures
during testing or when failure data are not available.

• This model suffers from the shortcomings of the composite
solution approach which considers both the architectural

behavior and failure behavior together.

2. Cheung Model [7] :The early approach (for not

continuously running applications) by Cheung uses a discrete

time Markov chain (DTMC).The user-oriented reliability

model developed to measure the reliability of service that a

system provides to user. A simple Markov model is

formulated to determine the reliability of a software system

based on the reliability of each individual module and the

measured intermodular transition probabilities as the user

profile. It takes into account that infinite number of

component executions may occur until termination of the

application execution, e.g. in case of loops.

Enhancements in Cheung Model:

• It measures the reliability of software system with respect to
user environment.

• various effects of user profile is discussed, which
summarizes the characteristics of users of system on

software reliability.

• Sensitivity analysis techniques are developed to determine
the modules that are most critical to system reliability.

Limitations of this approach:

• The applicability of this model is restricted to two
assumptions:

module reliability independence and transfer of control

independence.

• This model may be refined to be considered for component
failures due to aging in addition to design errors.

• The model shows that the components have to be extremely
reliable in order to produce an acceptable results which is

not always the case.

3. Laprie Model [8] :This model which considers only the
component failures is the special case of littlewood model [6].

It describes the software system made up of n components by

a CTMC.

Enhancements in Laprie Model:

• It considers component interconnection, inter component
transition probability, component failures and other

statistical information. It is assumed that each component

fails with constant failure rate.

• Embedded DTMC of this (n+1) state CTMC is equivalent to
DTMC that represent Cheung Model [7] with additional

transitions from both exit state and failure state to starting

state which represent immediate reset/restart of program

execution.

Limitations of this Approach:

• Laprie Model [8] assumes that the failure rates are much
smaller than the execution rates which leads to asymptotic

behavior relative to the execution process. To overcome this

limitation Laprie model considers the hierarchical solution

method.

4.Kubat : This model was considered as an enhancement over

cheung model. The model proposed by Kubat [9] includes the

information about execution time of each component, thus

resulting in an SMP as a model of software architecture.

Transitions between components follow a DTMC with initial

state probability vector q = [qi] and transition probability

matrix P = [pij].The solution method taken in this work is

hierarchical. The reliability of component is estimated as the
probability that no failure occurs during its execution. This

model was made for certain improvements in cheung model

[7].

Enhancements in this Approach:

• Kubat [9] takes into account the execution time of each
component for measuring the reliability.

It provides an approach to measure the each component

reliability as compared to cheung [7] in which no proper

method was defined.

Limitations of Kubat model:

• It concludes that component failure leads to system failure.
some measures are still needed to be taken to avoid this

problem.

• Kubat is based on the assumption that components are
highly reliable and variances of number of times each

component is executed are very small. This cannot be

assumed for all types of softwares.

 Note that once component reliabilities are estimated the

solution approach reduces to the hierarchical treatment of

the Cheung model [7].

5. Gokhale [10] describes the architecture by an absorbing

DTMC and uses a hierarchical solution method. However, it

differs in the approach taken to estimate the component

reliabilities. Given time-dependent failure intensity λi(t) and
the cumulative expected time Vi ti spent in the component per

execution of the application, the reliability of component is

estimated as

 Viti
Ri = e

- ∫ λi(t) dt
 0

Enhancements in Gokhale model:

• It provides an enhanced approach for estimating component
reliability considering time dependent failure rates and

utilization of component through cumulative expected time

spent in component per execution.

• It donot assume that component reliability of software
architecture is given. It can be obtained experimentally by

testing the application.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 273

Limitations of Gokhale model:

• Gokhale concludes that Component failure leads to system
failure. This is not valid statement depending upon whether

the part containing bug is executed or not. There must be

some approach related to this issue that is needed to be

considered.

• Solution to issue of dependency among components was not
developed. This is the major drawback in all the previous

models as well as Gokhale model.

 Note that, the special case of this model that assumes

constant failure intensities is equivalent to the special case of

Kubat model [9] that assumes deterministic execution times.

6. Ledoux [11] : A general model (Op) is presented and is

specifically designed for software systems; it allows the

evaluation of various dependability metrics, in particular, of

availability measures. Op is an attempt to overcome some

limitations of the well-known Littlewood [6] reliability model

for modular software.

Enhancements in Ledoux model:

• Ledoux considers the way failure processes affect the
execution and deals with the delays in recovering an

operational state.
• Primary failure and Secondary failures was discussed, which
was one of the limitations in Littlwood model .

Limitations of ledoux model:

Analysis of factors affecting the reliability was not considered.

7. Reussner Model [22] use Markov chains to model system

architecture. This method uses the idea to express component

reliability not as an absolute value but as function of the input

profile of the component. Markov chains are constructed in a

hierarchical manner and states include calls to component

services in addition to usual component executions. Services

may invoke different methods, which may be either internal or

external for the component. The reliability of the component is

calculated by the reliabilities of the methods, which it uses.

3.2 Path-based models
Path-based models are similar to state-based models, but

consider only finite number of component executions traces. It

usually correspond to system test cases.

Table 2 .Summary of Path based models with uncertainty

factors

S.

no

Path

based

Model

System

Architecture

Uncertainty

Factors

Influencing the

Model

1

Shooman

(1976)

[12]

Markov

Structure

Number of bugs

in software,

system

operation time.

2

Krishn-

amurthy

(1997)

[13]

Component

call graph

Test coverage

,Individual

Component

Reliability,

Number of

Component

Executions.

3

Yacoub

(SBRE)

(1999)

[14]

CDG

Usage

Scenarios,

Component

Reliability,

Transition

Reliability.

4

Everett

(1999)

[15]

CDG

Test Cases,

Component

Reliability,

Number of

Component

Executions.

5

Hamlet

(2001)

[16]

Component

call Graph

Probability of

occurrence of

each subdomain,

Operational

profile,

Individual

component

reliability.

6

Yacoub

(SBRA)

Enhanced

(2004)

[21]

 CDG

Usage

Scenarios,

Component

Reliability,

Transition

Reliability.

7

Zhang

(Extension

to Hamlet

2008) [17]

 CDG

Probability of

occurrence of

each subdomain,

Operational

profile,

Individual

component

reliability.

1. Shooman model [12] This is one of the earliest models that
considers reliability of modular programs, introducing the

path-based approach by using the frequencies with which

different paths are run.

 Based on the assumption that software execution can take

fixed number of different Paths. The frequency of occurrence

of each path and its failure probability are assumed to be

known.

Limitations of Shooman model:

274 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

• Dependency among components is not considered as it is
important issue to be discussed.

• It donot provide the solution of execution of different paths.
• Some parameters are assumed to be known. No method is
defined for there evaluation.

• shooman assumed that failure rate(crash rate) is directly
proportional to the number of remaining errors. But this is

not valid because two bugs in less frequently occurring code

is more reliable than the one bug in frequently occurring

one.

2. Krishnamurthy and Mathur model [13] takes an

experimental approach to obtain path reliability estimates, a

sequence of components along different paths are observed

using the component traces collected during testing called

Path Traces. Assuming that individual components fail

independently of each other, it follows that the path reliability

is the product of components reliabilities.

Enhancements in Krishnamurthy model:

• Krishnamurthy addresses the problem of intra component
dependency(in case of loops).

• Seeding fault method is applied to obtain component
reliability (i.e component and interfaces are identified).

• Information collected using path traces was assumed to be
given in shooman [12] .

Limitations of Krishnamurthy model:

• This approach doesnot consider component interface-errors
although they are considerable factors in reliability analysis

of component based software.

• Estimating reliability based on test cases don’t take into
consideration the frequency of interaction between

components.

3. Yacoub, Cukic and ammar Model [14] [21] takes an
algorithmic approach to estimate path reliabilities; a tree-

traversal algorithm expands all branches of the graph that

represents software architecture. The breadth expansions of

the tree are translated as the summation of reliabilities

weighted by the transition probability along each path. The

depth of each path represents the sequential execution of

components, and is hence translated to multiplication of

reliabilities.

Enhancements in this approach [14]:

• Analysis based on execution scenarios taking into account
algorithmic approach.

• Probabilistic model name CDG is constructed.It guarantees
that the loops between two or more components donot lead

to a deadlock.

• Using CDG model, we can incorporate effect of frequently
executed components,interfaces and links.

Hence we can dedicate more testing and development

effort to those critical artifacts.

Limitations of yacoub (SBRE) model [14]:

• The nature of the application: The approach is applicable to
component-based application which are analyzed using

execution scenarios.

• The algorithm can be used for sensitivity analysis of the
application reliability to the variation in the component and

interface reliabilities in a given period of execution.

• It does not consider failure dependencies between
components.

 An Yacoub (SBRA) model [21] have some enhancements:

• Develop a reliability analysis technique that addresses issues
related to the distributed nature of software systems, such as

the complexity and hierarchical composition of subsystems.

• Algorithm application results in identifying critical

components, subsystems, and links which require increased

attention in testing, verification, and validation.

Limitations of this approach:

The algorithm does not consider the overall application

reliability growth as a function of time. Further, some

scenarios may be more critical than others, but they are

seldom executed.

4. Hamlet model [16] is also regarded as pathbased, as it

considers the actual execution traces of component execution

given the mapping from input to output profile. This model

tries to address the issue of unavailability of component’s

usage profile in early system development phases. To do so

they do not assume fixed numeric values for reliability but

provide model mappings from particular input profile to

reliability parameters.

 Different input profiles are represented by dividing the

input domain of the component to sub-domains and assigning

a probability for each sub-domain to occur. This model does

not consider explicitly the architecture of the system. Instead,

it calculates the output profile of a component, which actually

is the input for the next component and is used to calculate

latter reliability.

4 Discussion

 Although the path based approaches represent the

failure behavior of the components using the probability of

failure or reliability, the state-based approaches allow

component failure behavior to be represented using three

types of failure models, namely, probability of failure or

reliability [7], [18], [3], [4, constant failure rate [19], and

time-dependent failure intensity [20] . The difference in

reliability predictions of the statebased and path-based

approaches becomes evident only when the control flow graph

of the application contains loops. Thus, while state-based

models analytically account for the potentially infinite number

of paths, pathbased models restrict the number of paths to

ones observed experimentally during the testing or terminate

the depth traversal of each path using the average execution

time of the application [14].

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 275

In Path based models,the method of combining software

architecture with components and interfaces failure behavior

is not analytical. First, the sequence of components executed

along each path is obtained either experimentally by testing

[13] or algorithmically [14] and the path reliability is obtained

by multiplying the reliabilities of the components along that

path. Then, the system reliability is estimated by averaging

path reliabilities over all paths.

5. Conclusion

 The framework presented in this paper addresses the

enhancement and limitations of the architecture based

reliability models. We have classified the these models based

on the system architecture approach and the uncertainty

factors influencing these models. A notable drawback of

path-based approaches is that they provide only an

approximate estimate of application reliability when the

application architecture has infinite paths due to the presence

of loops. Based on the solution methods of architecture based

prediction the reliability of software is estimated but still

many enhancements are required in the models to overcome

the limitations that occurred in the above approaches.

6 References

[1] W. Farr. Handbook of Software Reliability Engineering,

M. R. Lyu, Editor, chapter Software Reliability Modeling

Survey, pages 71–117. McGraw-Hill, New York, NY, 1996.

[2] W.Wang, Y.Wu,M.Chen, An architecture-based

software reliability model, in: Proceedings of the Pacific Rim

International Symposium on Dependable Computing, 1999,

pp. 143–150.

[3] K. Seigrist, “Reliability of Systems with Markov

Transfer of Control,” IEEE Trans. Software Eng., vol. 14, no.

7, pp. 1049-1053, July 1988.

[4] K. Seigrist, “Reliability of Systems with Markov

Transfer of Control, II,” IEEE Trans. Software Eng., vol. 14,

no. 10, pp. 1478- 1480, Oct. 1988

[5] B. Littlewood, A Reliability model for systems with

Markov structure, Applied Statistics , 24 (2) 172-177 (1975)

[6] Littlewood B. Software reliability model for modular

program structure, IEEE Trans. Reliability. 1979, : 241-246

[7] R. C. Cheung, “A User-Oriented Software Reliability

Model”, IEEE Trans. Software Engineering, Vol.6,

No.2,1980, pp. 118-125

[8] J. C. Laprie, Depndability evaluation of software

systems in operation, IEEE Trans. on Software Engineering ,

10 (6) , 701-714 (1984).

[9] P.Kubat, “Assessing Reliability of Modular Software”,

Operations Research Letters, Vol.8, 1989, pp. 35-41.

[10] S. Gokhale, W.E.Wong, K. Trivedi and J.R .Horgan,

“An Analytical Approach to Architecture Based Software

Reliability Prediction”, Proc. 3rd Int’l. Computer

Performance & Dependability Symp., 1998, pp. 13-22.

[11] J. Ledoux, Availability modeling of modular software,

IEEE Trans. on Reliability, 48 (2), 159-168 (1999).

[12] M. Shooman, Structural models for software reliability

prediction, in: Proceedings of the Second International

Conference on Software Engineering, 1976, pp. 268–280.

[13] S. Krishnamurthy and A. P. Mathur. “On the Estimation

of Reliability of a Software System Using Reliabilities of its

Components”. In Proc. of Eighth Intl. Symosium on Software

Reliability Engineering, Albuquerque, New Mexico,

November 1997.

[14] S.Yacoub, B.Cukic and H.Ammar, “Scenario-Based

Reliability Analysis of Component-Based Software”, Proc.

10th Int’l. Symp. Software Reliability Eng., 1999, pp. 22-31.

[15] W.W. Everett, “Software Component Reliability

Analysis,” Proc. Application Specific Software Eng. and

Technology, pp. 204-211, Mar. 1999.

[16] Hamlet, D., Mason, D., Woit, D.: Theory of Software

Reliability Based on Components, In Proc. of International

Conference on Software Engineering (ICSE), Toronto,

Canada, pp. 361-370, May, 2001

[17] Zhang, F., Zhou, X., Chen, J. and Dong, Y., A Novel

Model for Component-Based Software Reliability Analysis,

In Proceedings of the 11th IEEE High Assurance Systems

Engineering Symposium, (HASE) 2008, pp.303-309, 3-5 Dec.

2008.

[18] S. Gokhale and K.S. Trivedi, “Reliability Prediction

and Sensitivity Analysis Based on Software Architecture,”

Proc. Int’l Symp. Software Reliability Eng. (ISSRE ’02), Nov.

2002.

[19] J.C. Laprie and K. Kanoun, “X-Ware Reliability and

Availability Modeling,” IEEE Trans. Software Eng., vol. 15,

pp. 130-147, 1992.

[20] S. Gokhale, W.E. Wong, K.S. Trivedi, and J.R. Horgan,

“An Analytic Approach to Architecture-Based Software

Performance and Reliability Prediction,” Performance

Evaluation, vol. 58, no. 4, pp. 391-412, Dec. 2004

[21] S. Yacoub, B. Cukic, and H. Ammar, “A Scenario-

Based Analysis for Component-Based Software,” IEEE

Trans. Reliability, vol. 53, no. 4, pp. 465-480, 2004

276 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

[22] Reussner, R., Schmidt, H., Poernomo, I.: Reliability

prediction, for Component-based Soft ware Architectures, In

Journal of Systems and Software, 66(3), Elsevier Science Inc,

2003

[23] Michael R. Lyu , Handbook of Software Reliability

Engineering. McGraw-Hill publishing, 1995, ISBN 0-07-

039400-8.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 277

What Is the Cost of One IFPUG Method Function Point?

– Case Study

Beata Czarnacka-Chrobot

Department of Business Informatics, Warsaw School of Economics, Warsaw, Poland, bczarn@sgh.waw.pl

Abstract - Software Functional Size Measurement (FSM)

methods more and more often are used worldwide as a

basis for estimating/measuring the Dedicated Software

System (DSS) Development and Enhancement Projects

(D&EP) costs. It involves adopting specified per-unit cost

measured with regard to the product’s functional size unit.

In this paper we present a case study on tender

competition concerning enhancement of DSS of specific

public administration institution in Poland where one of

the two potential developers offered possibility to modify

such system at the cost of 1 cent per 1 Function Point (FP)

of the International Function Point Users Group (IFPUG)

method, whereas another one attempted to prove that

enhancement at such unit cost was not possible to carry

out. The goal of this paper is to analyse likely per-unit

costs of the DSS enhancement with regard to 1 IFPUG

FP. These issues classify into economics problems of

Software Engineering Research and Practice.

Keywords: dedicated software systems development and

enhancement projects, per-unit cost, software size

measurement, functional size measurement, IFPUG

method, function point

1 Introduction

Like any other product, especially of engineering
character, software systems too are characterised by some
attributes that should be subject to measurement. The
main attribute of every product is its size. However,
software engineering cannot boast about such a degree of
maturity with regard to the units intended for product size
measurement (in this case product being software
systems) as other engineering disciplines can (e.g.,
construction engineering where distinct, precise measure,
that is square meter, is being used for the measurement of
the apartment size). This constitutes the main cause of the
problems with reliable and objective estimation and
measurement of such basic attributes of projects aimed at
developing, modifying/enhancing and maintaining
software systems as work effort, total costs, per-unit costs,
execution time or productivity. ”Measurement of software
size (...) is as important to a software professional as
measurement of a building (…) is to a building contractor.
All other derived data, including effort to deliver a
software project, delivery schedule, and cost of the
project, are based on one of its major input elements:
software size.” [1, p. 149].

However, it is not possible to give answer to the
question about above mentioned project’s attributes, in
particular of per-unit cost, without prior adoption of

adequate, i.e., sufficiently reliable and objective, software
system size unit. Among the three measures of software
system sizes being used in practice, that is: (1)
programming units (e.g., source lines of code), (2)
construction complexity units (e.g., object points), and (3)
functionality units, this is just functionality units that now
are the most widely recognised worldwide [2]. This has
been confirmed by the fact they were accepted by the
international standardization organizations: ISO
(International Organization for Standardization) and IEC
(International Electrotechnical Commission) as the only
appropriate units of software system size – in the ISO/IEC
14143 norm, which standardizes the concept of the so-
called software Functional Size Measurement (FSM) [3].

As a result of many years’ verification of particular
FSM methods reliability and objectivity, five of them (out
of over 25) were recognised by the ISO and IEC as
complying with the rules contained in the ISO/IEC 4143
norm and accepted as international standards as well.
Those methods include the following:
1. International Function Point Users Group (IFPUG)

Function Point (FP) method (ISO/IEC 20926 standard

[4]).

2. Mark II (MkII) function point method, developed by

the United Kingdom Software Metrics Association,

i.e., UKSMA (ISO/IEC 20968 standard [5]).

3. Netherlands Software Metrics Association (NESMA)

function point method (ISO/IEC 24570 standard [6]).

4. Common Software Measurement International

Consortium (COSMIC) function point method

(ISO/IEC 19761 standard [7]).

5. Finnish Software Measurement Association (FiSMA)

FSM method (ISO/IEC 29881 standard [8]).
The most popular FSM method, at least in Poland, has

been so far the IFPUG function point method ([9]) – and
this is the method that in the discussed tender competition
was chosen by the client as a point of reference for the
offered per-unit costs, that is the costs measured with
regard to 1 FP.

It should be mentioned that the IFPUG FP method
offers calculation of function points at two levels [10]: (1)
the so-called unadjusted FP; (2) the so-called adjusted FP.
This is only the level of unadjusted FP that has been
recognised as a standard of the software system FSM by
the ISO/IEC [4]. Calculating the number of adjusted
function points consists in correcting functional size
(number of unadjusted FP) using the so-called VAF
(Value Adjustment Factor), calculated with the use of 14
pre-defined so-called general system characteristics in
order to evaluate the overall complexity of software
system. Its purpose is to adjust the previously determined

278 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

functional size to the environment of the specific project
by taking into account the influence of technical and
quality-related requirements on the project. The VAF’s
range is <0.65, 1.35>, which means that it can adjust
functional size by maximum ±35% therefore it does have
influence on the system’s total cost. Since the publishing
of the definition part of the ISO/IEC 14143 norm for the
first time (in 1998), per-unit costs have been measured
with regard to the functional size (as being recognized by
those standardization organizations), i.e., with regard to
unadjusted FP – hence further in this paper the IFPUG
function points shall be understood as unadjusted FP.

What’s more, it should be stressed that what is being
considered here are per-unit costs of activities concerning
software system dedicated to the needs of a specific client
which is of significance since in case of commercial
software packages designed for a mass consumer, where
specified number of licences is being sold (e.g., MS
Office), per-unit costs are calculated in a completely
different way. Moreover, these activities make up a
Dedicated Software System (DSS) Development and
Enhancement Project (D&EP), in particular
modification/enhancement of the existing system, and
they do not contribute to maintenance project, in case of
which per-unit costs require analysis of other
benchmarking data resources.

Thus in this paper we present a case study concerning
tender competition for enhancement of the software
system dedicated to specific institution of public
administration in Poland where one of the two potential
developers offered possibility to modify such system at
the cost of 1 cent per 1 IFPUG FP whereas another one
attempted to prove that enhancement of the system at such
unit cost was not possible to carry out. Hence the goal of
this paper is to analyse likely per-unit costs of the
dedicated software system enhancement with regard to 1
FP of the IFPUG method, and in particular to compare the
offered per-unit cost against the selected resources of
benchmarking data.

2 Analysis of data for per-unit costs of

DSS enhancement with regard to 1

IFPUG FP

Per-unit costs of the D&EP (i.e., developing from
scratch or enhancing the existing software systems) are
difficult to estimate if a provider of the dedicated system
does not have at their disposal their own resources of
appropriate benchmarking data, on the basis of which they
would be able to determine their own (organizational) per-
unit costs with regard to 1 IFPUG FP. This results from
the fact that such data depend on a number of specific
factors – on a general level including first of all work
costs that vary from country to country as well as type of
project, type of software system, field of system
application and technological environment of project
execution (hardware platform, programming languages
used, etc.) as well as many other factors having an effect
on a large differentiation of development teams
productivity.

However it should be pointed out that relatively few
development organizations possess appropriate resources
of own benchmarking data as the condition to have them

is not only effective implementation of measurement
programmes, what per se is not a frequently found
phenomenon, but having collected such data for relatively
large number of similar projects having been executed in
the past and, additionally, referring them to the right unit
of software system size (see e.g., [11]). Even more such
situation may be found in Poland where FSM methods,
including the IFPUG function point method, have been
employed for relatively short time [9]. This is when the
usefulness of repositories with general data, offered by
organizations such as for example International Software
Benchmarking Standards Group (ISBSG), comes out. It is
worth mentioning that according to C. Jones’s estimations
there are dozen or so resources of benchmarking data for
the discussed types of projects now yet definite majority
of them are not widely available. What is more, part of
them feature data concerning relatively little number of
projects, and also – they not always relate to the IFPUG
FP method [12].

2.1 The ISBSG data

2.1.1. The ISBSG data repository
At the moment the ISBSG is an organization that

provides the largest, commonly recognised and accessible
repository containing general benchmarking data for DSS
D&EP whose products are measured with the use of the
IFPUG function point method [13]. The ISBSG is a non-
profit organization that was established in the second half
of the 1990s with the mission to enhance processes of
software projects execution in business entities as well as
in public administration institutions. This mission is being
fulfilled by developing, maintaining and exploiting three
kinds of repositories with benchmarking data. One of
them, the largest one (current version of repository
contains data concerning over 5600 projects from 29
countries), comprises data for development and
enhancement projects. It is normalised in accordance with
the ISO/IEC 15939 standard [14], verified and
representative of current technology.

Data collected in the discussed repository are being
classified by the ISBSG with regard to the following
criteria – they are of importance as they have an effect on
how high are per-unit costs with regard to 1 IFPUG FP
([15][16]):
• country where project was undertaken
• context of the project, including: type of organization

and business area
• type of project, including: type of activities

(enhancement of the system or development of the
system from scratch), purpose of the project and size
of development team

• type of product, including: type of application and
product size (in definite majority of cases expressed in
the IFPUG FP)

• project execution environment, including:
programming language and hardware platform

• project development methods and tools being used.
However, when using data gathered by this

organization one should keep in mind that these data are
rather representative of the above-average projects, which
results from the following facts:
• Criteria of data collection for ISBSG repository take

into account only those organizations that use FSM

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 279

methods, including the IFPUG FP method above all,
and these organizations are considered more mature
than the others as they accomplish programmes
concerning implementation of software measures.

• Data to be included to the ISBSG repository are chosen
by the providers themselves – they may choose projects
that are typical of them as well as projects characterised
by the best attributes.

• The ISBSG repository does not include a good deal of
data about really large projects.
However, one has to point up that those data are

subject to rigorous process of verification with regard to
quality. Thus the ISBSG data are valued in the IT
industry while general conclusions coming from their
analysis are consistent with the conclusions resulting
from the analysis of other organizations benchmarking
data repositories.

2.1.2. Per-unit costs according to ISBSG data

The ISBSG produces cyclical analytical reports based
on the data concerning DSS D&EP. What appears of
significance from the perspective of the subject matter
being discussed in this paper is the ISBSG report titled
“Software Project Costs” [17], which analyses the size of
per-unit costs with regard to 1 IPFUG FP. Data analysed
therein indicate that:
1. For definite majority of cases, per-unit costs

measured with regard to the product functional size

unit (1 IFPUG FP) range from USD 300 to USD 1000

per 1 FP, with an average of about USD 750 per 1 FP.

Taking into account all analysed projects, the spread

is from USD 17 to USD 2727 per 1 FP (extreme

values for the so-called outlier projects) while the cost

median is USD 716 per 1 FP. These costs are

measured by taking into account development team

and support personnel (e.g., data base administrators)

– they are approx. 15% higher than costs estimated

for development teams only.

2. For definite majority of projects, per-unit costs

measured with regard to the work time unit (1 hour)

range from USD 60 to USD 105 per hour, with an

average of about USD 80 per hour. Taking into

account all analysed projects, on the other hand, the

spread is from USD 7 to USD 570 per hour (extreme

values for the outlier projects) while the cost median

is USD 69 per hour and the mean is USD 84 per hour.

As in the previous case, these are costs measured with

development team and support personnel being taken

into account.
On the basis of the above, the ISBSG recommends

employing the following rules of thumb for the discussed
projects:

1) cost per 1 IFPUG FP ranges from USD 300 to USD

1000, with an average of about USD 750 per 1 FP

2) cost per 1 hour ranges from USD 60 USD to USD

105, with an average of about USD 80 per 1 hour.
What is more, the ISBSG data indicate that PDR

(Project Delivery Rate)
1
 median, that is middle value of

1 PDR is the inverse of productivity, being the ratio of the number of

function points to the effort (work effort). Naturally PDR depends on a

the number of person-hours necessary to deliver 1 IFPUG
FP, ranges from about 8 to 11 person-hours per 1 FP –
mainly depending on the project type, software system
(product) type, application area and technology

2
. Besides,

productivity is significantly lower (that is PDR is higher)
in case of projects consisting in enhancement of software
systems rather than in case of projects consisting in
developing such systems from scratch [18, pp. 8, 13, 15,
22]. Taking into account those values together with the
cost per hour gives us the spread of costs from USD 480
per 1 FP to USD 1155 per 1 FP, that is on average from
USD 640 to USD 880 per 1 FP, which roughly confirms
the conclusions coming from the above analysis of the
unit cost per 1 IFPUG FP.

Moreover, if project is executed by an outside
provider, one should differentiate internal per-unit costs
(provider’s per-unit work costs) from external ones (per-
unit costs offered by provider to a client, including profit
as well). According to the ISBSG, the latter usually
exceed internal per-unit costs by 2.5 to 3 times, and in
big corporations even by 6 times [19, p. 128].

Per-unit cost measured with regard to 1 IFPUG FP for
given types of applications reads for example as follows:
web and content management applications – USD 800
per 1 FP, CRM and administration applications – USD
400 per 1 FP, report generators – USD 200 per 1 FP.

2.2 Other sources of benchmarking data

As mentioned above, per-unit costs of DSS D&EP
with regard to 1 IFPUG FP depend on numerous factors,
which has been the subject of studies carried out by
Capers Jones, among others (see e.g., [20, pp. 24-26]). In
Table 1 and in Table 2 we present how those costs
depend on work costs that vary from country to country.
On the other hand, Table 3 shows the so-called
effectiveness of exemplary programming languages and
several tools, by which we understand the average
number of source lines of code required to deliver 1
IFPUG FP depending on the programming language/tool
being used.

Table 1. Countries with the highest average per-unit costs
(per 1 IFPUG FP) in USD

No. Country Per-unit costs (per 1
IFPUG FP)

1. Japan 1600

2. Sweden 1500

3. Switzerland 1450

4. France 1425

5. United Kingdom 1400

6. Denmark 1350

7. Germany 1300

8. Spain 1200

9 Italy 1150

10. USA 1000

Source: [21, p. 29].

number of factors – there are nearly 50 such factors mentioned in the

ISBSG repository.
2 In this case median is a value more reliable than arithmetic mean as

the impact of several atypical (the so-called outlier) projects is thus

avoided.

280 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Table 2. Countries with the lowest average per-unit costs
(per 1 IFPUG FP) in USD

No. Country Per-unit costs (per 1 IFPUG
FP)

1. India 125

2. Pakistan 145

3. Poland 155

4. Hungary 175

5. Thailand 180

6. Indonesia 185

7. Venezuela 190

8. Columbia 195

9 Mexico 200

10. Argentina 250

Source: [21, p. 30].

Table 3. Programming languages table – fragment for
the selected languages and tools*

Programming language/tool Average number of lines of
code per 1 IFPUG FP

Assembly languages 320

C 128

Basic (interpreted) 128

COBOL 107

FORTRAN 107

Basic (compiled) 91

Pascal 91

PL/I 80

Ada83 71

Lisp 64

Prolog 64

C++ 53

Java 53

Ada95 49

AI Stell 49

Visual Basic 32

Delphi 29

Smalltalk 21

HTML 15

SQL 12

First generation languages (1GL) 320

Second generation languages (2GL) 107

Third generation languages (3GL) 80

Fourth generation languages (4GL) 20

Object languages 30

Report generators 80

Code generators 15

Spreadsheets 6

* This table comprises about 600 programming languages and is

continually updated. Its current full version may be found on the
Software Productivity Research website: http://www.spr.com/products/
programming.shtm.

Source: [22, p. 117] and [23, p. 78].

What is more, in the subject literature one may also
find a common view about occurrence of the
phenomenon of diseconomies of scale in case of DSS
D&EP [24]. This means that as the system size
(measured e.g., in IFPUG FP) increases, per-unit costs
grow too, and they do not decrease instead - which is
contrary to the situation taking place in vast majority of
other projects, including engineering ones. Data
displayed in table 4 confirm this phenomenon, at the
same time showing how per-unit costs for development
and implementation are being determined.

Table 4. Average per-unit costs per 1 IFPUG FP with
regard to the software system size in IFPUG FP

Number of
IFPUG FP

Per-unit costs
(per 1 IFPUG

FP) for
development

Per-unit costs
(per 1 IFPUG

FP) for
implementation

Per-unit
costs (per 1
IFPUG FP)

- total

1501 – 2000 242 725 967

2001 – 2500 255 764 1019

2501 – 3000 265 773 1058

3001 – 3500 274 820 1094

3501 – 4000 284 850 1134

Source: [25].

It should be noted, however, that some studies have
appeared recently, indicating quite an opposite
phenomenon, that is occurrence of economies of scale in
the execution of the discussed projects, which means
decrease in costs per unit with the increase in software
system size at the same time ([18][24]). This, however,
applies only to specific types of systems and those D&EP
projects with relatively little increase in product size.

What also is of significance to the subject matter
considered here is the fact that according to the studies by
C. Jones, consultants carrying out analysis with the use of
the IFPUG FP method charge on average USD 5 per 1
function point calculated [26, p. 3.].

3 Concluding Remarks

 The above presented data vary greatly - as there
is no possibility to derive accurate values for the per-unit
cost calculated with regard to 1 IFPUG FP without taking
account the specificity of given development
organization. Since this cost has influence on a number of
factors – major ones were mentioned in the paper.
However, lack of own (organizational) resources of
adequate benchmarking data continues to be common
situation - not only in Poland but worldwide as well.
Hence there is the necessity to employ general data.

 On the basis of the above presented general
benchmarking data for DSS D&EP it should be stated
that adopting per-unit cost for enhancement project on
the level of 1 cent per 1 IFPUG FP entails the following
paradoxes:
• Such cost is 1 700 times lower than the lowest per-unit

cost noted in the ISBSG repository – considering per-
unit cost for development team alone will not change
this fact considerably (then it will be nearly 1 500
times lower).

• Such cost is 30 000 times lower than the lowest per-
unit cost recommended by the ISBSG for dedicated
software systems.

• Such cost is 75 000 times lower than the average per-
unit cost recommended by the ISBSG for dedicated
software systems.

• Given that this is an internal cost, the costs of 8 to 11
hours of work are estimated to be 1 cent – yet
enhancement is characterised by significantly lower
productivity than development of the system from
scratch. In case of external cost, those costs are
estimated to be even lower as the internal per-unit
cost, with the lowest difference resulting from the
ISBSG data being taken into account, is 0.4 cent per 1
FP.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 281

• A question then arises whether this very low per-unit
cost already takes into account the phenomenon of
diseconomies of scale, that is increase of such cost
together with the increment of system size.

• Comparing with the per-unit cost of the cheapest per
system size unit types of application, such cost is
20 000 times lower.

• Comparing with the average per-unit cost for Poland
such cost is 15 500 times lower (additionally it should
be assumed that per-unit costs for Poland have grown
since 2000 due to the increase in work costs).

• Assuming that even most efficient programming
languages (of fourth generation) will be used for the
software system enhancement, such per-unit cost
means that writing 2 000 lines of code costs USD 1 on
average.

• This cost is 500 times lower than the average
consultant’s pay for 1 calculated function point – even
if this pay is significantly lower in Poland, it still
without doubt is repeatedly higher than 1 cent.

In view of the above paradoxes, mostly diametrical
differences resulting from the comparison of general
benchmarking data with the adopted per-unit cost on the
level of 1 cent per 1 IFPUG FP, place and time factors
(as well as inflation related to them) do not really matter,
similarly as the fact whether the per-unit cost is an
external or internal cost.

Thus it should be stated that both general data, those
collected in ISBSG repository and those coming from
other sources having been recognised in the IT industry,
as well as common sense rules of rational economic
approach unequivocally indicate that it is not possible to
develop, and in particular to enhance software system
dedicated to the client’s needs at the cost per unit
amounting to 1 cent per 1 IFPUG FP, at the same time
assuming the lack of subsidization for those works with
maintenance costs or other project-related costs, which
naturally should not have happened.

It is worth mentioning that the analysis of likely per-
unit costs of the DSS enhancement with regard to 1 FP of
the IFPUG method carried out following the above
described manner resulted in client rejecting the provider
offering such costs in the tender competition being
considered.

4 References

[1] M. A. Parthasarathy. “Practical software estimation:

function point methods for insourced and outsourced

projects”, Addison Wesley Professional, 2007.

[2] B. Czarnacka-Chrobot. “The Economic Importance

of Business Software Systems Functional Size

Measurement”, Software Engineering, vol. 1, no 1,

Scientific & Academic Publishing, Rosemead, California,

USA, 2011, pp. 9-23.

[3] ISO/IEC 14143 Information Technology – Software

measurement – Functional size measurement – Part 1-6,

ISO, Geneva, 1998-2011.

[4] ISO/IEC 20926 Software and systems engineering -

Software measurement - IFPUG functional size

measurement method 2009, edition 2, ISO, Geneva, 2003-

2009.

[5] ISO/IEC 20968 Software engineering – Mk II

Function Point Analysis - Counting practices manual,

ISO, Geneva, 2002.

[6] ISO/IEC 24570 Software engineering – NESMA

functional size measurement method version 2.1 -

Definitions and counting guidelines for the application of

Function Point Analysis, ISO, Geneva, 2005.

[7] ISO/IEC 19761 Software engineering – COSMIC: a

functional size measurement method, edition 2, ISO,

Geneva, 2011.

[8] ISO/IEC 29881 Information Technology – Software

and systems engineering – FiSMA 1.1 functional size

measurement method, ISO, Geneva 2010.

[9] B. Czarnacka-Chrobot. “Analysis of the Functional

Size Measurement Methods Usage by Polish Business

Software Systems Providers”; in: Software Process and

Product Measurement, A. Abran, R. Braungarten, R.

Dumke, J. Cuadrado-Gallego, J. Brunekreef, Eds., Lecture

Notes in Computer Science, vol. 5891, pp. 17–34,

Springer-Verlag, Berlin-Heidelberg, 2009.

[10] IFPUG, “Function point counting practices manual,

release 4.3”, Part 0-5, International Function Point Users

Group, NJ, January 2010.

[11] B. Czarnacka-Chrobot. “The Role of Benchmarking

Data in the Software Development and Enhancement

Projects Effort Planning”; in: New Trends in Software

Methodologies, Tools and Techniques, H. Fujita, V.

Marik, Eds., Frontiers in Artificial Intelligence and

Applications, vol. 199, pp. 106-127, IOS Press,

Amsterdam-Berlin-Tokyo-Washington, 2009.

[12] C. Jones. “Sources of Software Benchmarks”,

Version 13, Capers Jones & Associates LLC, November

2011.

[13] http://www.isbsg.org.

[14] ISO/IEC 15939 Systems and software engineering –

Measurement process, ISO, Geneva 2002-2007.

[15] International Software Benchmarking Standards

Group. “Release 10 Repository Demographics”, ISBSG,

Hawthorn, VIC, January 2007.

[16] International Software Benchmarking Standards

Group. “Data demographics release 11”, ISBSG,

Hawthorn, Australia, June 2009.

[17] International Software Benchmarking Standards

Group. “The ISBSG Special Analysis Report: Software

Project Costs”, ISBSG, Hawthorn, VIC, June 2005.

282 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

[18] Ch. Symons. “The Performance of real-time,

business application and component software projects”,

COSMIC and ISBSG, September 2009.

[19] “Practical Software Project Estimation”, P.R. Hill,

Ed., ISBSG, McGraw-Hill, 2010.

[20] L. Buglione. “Some thoughts on productivity in ICT

projects, version 1.3”, WP-2010-01, White Paper, August

23, 2010.

[21] C. Jones. “Software Benchmarking: What Works

and What Doesn’t?”, Boston SPIN, November 2000.

[22] M. Flasiński. “Zarządzanie projektami

informatycznymi” [„IT Projects Management”], PWN,

Warsaw, 2006.

[23] C. Jones. “Software Assessments, Benchmarks, and

Best Practices”, Information Technology Series, Addison-

Wesley, 2000.

[24] B. Czarnacka-Chrobot. “(Dis)economies of Scale in

Business Software Systems Development and

Enhancement Projects”; in: Proceedings of the 10
th

International Conference on Software Engineering

Research and Practice (SERP’11), The 2011 World

Congress in Computer Science, Computer Engineering &

Applied Computing (WORLDCOMP'11), H.R. Arabnia,

H. Reza, L. Deligiannidis, Eds., Vol. I, pp. 80-86, CSREA

Press, Las Vegas, Nevada, USA, 2011.

[25] P. Ratford, R. Lawrie. “The Role of Function Points

in Software Development Contracts”, White Paper,

Charismatek, 2000.

[26] C. Jones. “A New Business Model for Function

Point Metrics”, Version 10.0, Capers Jones & Associates

LLC, August 2009.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 283

Software Reuse Cost Factors

Hisham M. Haddad, Nancy R. Ross, and Woranuch Kaensaksiri

Department of Computer Science, Kennesaw State University, Kennesaw, GA, USA

Abstract - Software organizations are encouraged to adopt
reuse strategies into their development processes.
Organizations use software reuse cost estimation models to
assess the feasibility of investment in reuse programs. Each
organization is unique in its resources and capabilities. Thus,
the initial logical step in establishing a reuse program is to
examine relevant reuse-specific cost factors applicable to the
organization’s situation, and then utilize relevant estimation
models to assess the feasibility of such investment. This work
investigates cost factors associated with adopting software
reuse independent of cost estimation models. It highlights
cost estimation models for software reuse, and outlines
possible combinations of cost estimation models for identified
cost factors to help organizations gain better understanding
of the investment in reuse strategies.

Keywords: Software reuse, reuse cost factors, reuse cost
estimation, reuse cost estimation models.

1 Introduction

When an organization decides to integrate software reuse into
its development process, many factors must be considered.
Reuse is a long-term investment that can bring about
improvements in productivity, quality, and reliability as well
as cost reductions. Reuse is not free [1], it requires resources
to create and maintain reusable work products, a reuse library,
and reuse tools. In fact, the benefits brought by a program of
systematic reuse may not cover the costs. Accurate cost
analysis of a reuse program is necessary in order to decide
whether to utilize component reuse or not. Reuse is not
always the appropriate solution and at times, the development
from scratch is the feasible approach [2,3].

As each organization is unique in its resources and
capabilities, the initial step is to examine cost factors
applicable to the organization’s circumstances. Reuse cost
factors provide insight into how adopting a reuse strategy
affects the entire software development life cycle. In fact, a
separate software reuse lifecycle must be considered as part
of the overall software lifecycle. Furthermore, several
software reuse cost estimation models have evolved over the
years, such as software-size-based metrics; metrics for
measuring the amount of reuse in an application; and more
complicated models measuring the many costs involved in
reuse programs. These models can be used to assess the
feasibility of adopting reuse into the development process,
and they can influence the adoption of more accurate reuse
cost estimation practices. However, understanding the key
cost factors that affect software reuse, independent of cost
estimation models, is the first step. This work describes reuse
cost factors; draws a comparison of estimation methodologies;
and suggests combinations of models to adequately cover
identified software reuse cost factors.

The research methodology for this work is based on a study
of relevant research and qualitative analysis of software reuse
cost estimation methodologies to highlight the cost factors on
which these models are based. The various approaches to cost
estimation are also contrasted, and related combinations of
such approaches are identified. A limitation in this study was
the accessibility to documented practical experiences in cost
estimation for real-world projects. Such information was not
readily available, and organizations are reluctant to share.

2 Software development with reuse

The cost of reuse is distributed throughout the development
lifecycle. The software reuse lifecycle involves two groups:
the producer team and the consumer team. Producers are
responsible for domain engineering and component
engineering. Domain engineering determines whether it is
feasible to develop a reusable asset; while component
engineering includes component specification, development
for reuse, verification and validation, reuse certification, and
storage (phases of the software reuse lifecycle). Consumers
are tasked with application engineering and corporate
engineering. Application engineering involves requirements
specification, retrieval, assessment, instantiation (using a
component as is), adaption, and integration phases of the
software reuse lifecycle. Corporate engineering involves the
production of reusable assets in domain engineering and their
use in application engineering.

During component engineering, the producer decides upon
the necessary functions, interfaces, and performance for a
specific asset. The requirements specification and detailed
design document is produced during component engineering,
and the reusable components are developed from the
specifications in the detailed design document during the
development phase. The reusable assets are verified,
validated, and certified before they are stored in the software
reuse library. Using requirements elicited by the consumer,
the consumer searches the repository to identify and retrieve
reusable assets. These assets are then evaluated to determine
if they can be used as is or modified to fit the
consumer-identified specifications. The consumer then
integrates the components into the new applications [4].

According to various researchers, software designed for reuse
is much more costly than software developed for a specific
application. Software designed for reuse requires 20-25%
more time to develop and to learn how to use at the beginning
of a software reuse initiative. The cost of making software
reusable has been found to be 60% higher than development
for single use due to the additional effort required for
generalization, documentation, testing, and component library
support and maintenance. The cost of creating a reusable
component is about two times that of creating a non-reusable
version, and costs to integrate reused components into new

284 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

components range from 10-20% of the cost of creating
non-reusable versions. The relative cost of producing a
reusable component ranges from 120-140% of the cost of
creating a non-reusable version, and integration costs range
from 10-63% of the cost of creating a non-reusable version
[22]. In addition, the adoption of a reuse program involves
risk and the choice of a reuse strategy can be crucial to its
success [5].

3 Software reuse cost factors

During development, the cost factors for incorporating
reusable components fall into seven categories, described
below. The cost factors involved in adopting reusable
components into the development process are identified, an
essential step in generating accurate cost estimates.

1. Identification and acquisition costs:
Before searching for reusable components, the producer must
develop a complete description of the product and identify
the requirements and environment characteristics from the
consumer. With these requirements, the producer develops
components generically in order to allow for future reuse.
The producer may also find it necessary to modify the
existing process to allow for reuse. Component identification
and acquisition costs represent the cost of mining and
acquiring reusable assets that involves the effort required in
searching for the appropriate asset whether it exists in a
reusable component repository, in other areas within the
organization, in the public domain, or in the market. Such
costs include the trial, verification, and subsequent purchase
of an asset identified for reuse.

Domain analysis costs are generated when defining the scope
and the content of reusable assets, including classification of
the repository assets into categories in order to determine
which candidate reusable artifacts have common
functionality, and mining potential assets from past products.
During reuse of a software artifact, great effort must be
devoted in the retrieval of associated artifacts since reusable
components may be found in both intra-organization
repositories and component markets. This may involve the
research classification methods, search for keywords, and
choosing appropriate components by inspecting their
functionalities in order to discover a reusable component.
Furthermore, royalties or license fees may apply. Acquisition
costs may be higher when a component is purchased, but the
higher acquisition costs may be balanced by fewer revisions,
which could potentially result in lower modification costs.

Additional costs for mining and acquiring reusable assets are:
1) the cost of technical staff and consultants in identifying
needed components for an application; 2) any costs incurred
in making a reusable component or system function properly
in order to evaluate its potential reuse in the new application
(including media conversions, implementation differences,
non-current documentation, and cost of existing functionality
evaluation for potential reuse); 3) the creation of a design
document for planning and implementation of components
reuse; and 4) the purchase price and maintenance fee
acquired from outside the company [6,7,8,9,18].

Assets may be transitioned for reuse in the following ways: 1)
buying a copy of a repository component for a certain product
and making changes to it via white-box reuse (also known as
cataloged asset acquisition); 2) buying a copy of a repository
component and using it without making changes (known as
black-box reuse); 3) buying an existing component from
another product (known as mining and cataloging); 4) using a
copy of a component that is not cataloged in the repository
but that an employee has knowledge of (copy and paste); and
5) purchasing a component from another organization and
adding it to the repository (external acquisition).

2. Modification costs: During modification for reuse, there
are two methods that may be used in the transformation of
repository assets: 1) adaptation for reuse, which is the
modification of an existing repository asset; and 2) white-box
reuse, which involves the revision of one asset into another
asset inside the same application. Asset modification costs
include: 1) additional effort required to modify other artifacts
in order to integrate a reused component into the new product
when white-box, black-box, or commercial off-the-shelf
software is reused.; 2) the cost of interface design between
the application and the repository asset - all functions of the
reusable component and all attributes that make up the
interface between the application and the reusable component
must be identified and specified properly in order to achieve
the desired functionality; and 3) the cost of reformatting data
when an application is migrated from one platform, database
management system, or operating system to another. For
instance, a reusable component developed in C# and uses
Microsoft Access database. The new application is developed
in Java using an Oracle database, so the changes required for
component reuse may require a great deal of effort [6,9].

3. New development costs: Development costs of new assets
are also involved in software reuse. These costs fall into two
categories: producer and consumer. Producers construct a
new repository asset from scratch in a manner in which the
asset will conform to specified standards that allow for
reusability, and consumers incorporate the reusable assets
developed by producers into software components.
Consumers may develop new components as needed in order
to integrate reusable software into their application [10].

When finding needed components in the reuse repository, the
consumer must decide if any additional components are
needed, if it is viable to build the product from the reusable
components, the code needed for component integration, and
the additional code needed to satisfy the requirements. If
reuse is economical, the consumer chooses the necessary
reusable components, codes additional required components,
assimilates the retrieved components as black box reuse or
white box reuse, and develops integration code to make the
components work together [4].

4. Integration and testing costs: Product integration costs
include: 1) the cost of partial and full integrations; 2) the cost
of data transfer from a previous application to a new
application in order to verify and test a component in
preparation for reuse; and 3) the cost of design reviews which
require effort to review a document and prepare an abstract.
Integration costs also include verification and validation

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 285

activities (i.e., technical design reviews, formal code
walkthroughs, and unit test plans) that are involved in
software reuse coding costs of new components as well as the
same costs performed directly on the reused assets.

Product testing costs include: 1) the development of a test
environment; 2) unit testing and debugging; 3) acceptance
testing; 4) subsystem and system testing; and 5) testing of
functionality by a quality control engineer [6,9]. The
interaction of the reused component with the system must be
thoroughly tested to guarantee that the functionality is
performing as expected. After development of the entire
product, both the producer and the consumer perform tests,
potentially reusing test cases and test data, to determine
whether the functionality was built according to specification
and validate the software to determine if the system
accomplishes the intended goal [4].

5. Infrastructure costs: Prior to instating a reuse program, a
new development process implementing reuse and a reuse
repository must be established [2]. Costs to establish and
maintain the repository include: 1) database analysis and
design; 2) the cost of tool development or purchase, which
requires textbook or online training in the new technology;
and 3) the cost of database administration. The cost to store
and catalog repository artifacts includes 1) the cost of the
time required for the approval of artifacts for the repository;
2) the cost of analyzing the metadata needed in order to
employ efficient searches of artifacts in the catalog; and 3)
the cost of a mechanism for the retrieval of assets from the
catalog. In the storage phase, the producer must classify and
store assets that will be maintained in a repository for
consumer retrieval [4,6,8].

The actual development cost of asset reuse cannot be
determined precisely. Some costs may not apply since the
catalog rarely provides a complete product; however,
multiple assets may be constructed into a complete product in
which several assets have been reused. The cost of
development of such an asset may be the sum of its
integration, verification, and validation costs.

4 Reuse cost estimation models

When the development of a new software project begins, it is
necessary to compare the cost of developing new components
versus integrating reusable components. To determine the
cost of reuse, several cost estimation models have been
developed. In this work, we focus on six common models,
briefly described below.

1. COCOMO-II model (Boehm): The original COCOMO
model predicts the length and effort of a project by drawing
an association between the size of the system and various cost
factors. The factors were weighed based on the project’s
domain, environment, and limitations in order to convert the
estimated project size into estimated person-months which
could be broken down into staff size and project length. In
addition, the equations include fifteen cost drivers for each
phase of a project (product design, detailed design,
coding/unit test, and integration test). In 2000, the model was
extended to COCOMO-II, which presented three sizing

options: object points (used during the application
composition model), function points (used during the early
design model), and lines of source code (used for the
post-architectural model) [9,11,17]. When reusing software,
the percent of reuse is determined, and the object point count
or function point count is adjusted.

2. Reuse-Based model (Jasmine/Vasantha): The model is
based on reuse cost metrics. Metrics are considered important
in deciding whether to modify a reusable component, and
they can be used to better measure, manage, and plan
software application development. Such metrics may give
engineers the information they need to make decisions in
technical areas, and they may give management the
information needed in making decisions regarding project
planning. The two categories of metrics are: 1) product
metrics that establish component characteristics and 2)
process metrics that involve measurements of cost and time
among other things. The model considers many cost factors
associated with reusable components, including domain
analysis, explicit documentation to increase the ease of
implementing a reusable component, maintenance of and
revisions to of reuse documents and components, costs in the
form of licenses and royalties for artifacts acquired from
other organizations, purchase, installation, and operation of a
reuse repository, and costs associated with training personnel
in reuse design and incorporation. Management should also
consider the number of times a component is expected to be
reused when building reusable components [3].

3. Basic-Reuse model (SPC): This basic reuse costing model
[12] was developed by the Software Productivity Consortium
(SPC). The model takes into account the following csot
factors: the cost of software development, the relative cost to
reuse software, the proportion of reused code in the product,
the relative cost of developing a reusable asset, and the
number of reuses over which the asset development costs will
be amortized.

4. Rate-Based model (Intermetrics): This ad-hoc method is
presented from the experience of Intermetrics, Inc. Under this
model, much of the reuse cost has to do with the energy and
time spent in searching for and retrieving enough of the
necessary reusable components required to work together to
produce the desired functionality as well as determining the
condition in which the reusable software components are
found. From its experience in the development of a reusable
software system, Intermetrics identified the following cost
factors: data transfer, data reformatting, document review,
abstract preparation, facet and keyword preparation,
configuration management, reusable component testing,
environment testing, outside resource personnel, and
consulting.

5. Risk-Based model (Lim): This model determines reuse
value by adding total of reduced and avoided consumer costs
to the greater profit generated by software reuse and
subtracting out the producer costs. This number is multiplied
by a probability that factors in risk and adjusts the result in
order to consider the value of money over time. The model
utilizes the following cost factors: cost to create product
without reuse, cost to create product with reuse, cost to create

286 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

an asset for reuse, profit from increased revenues enabled by
reuse, probability of receiving cash flow, interest rate by
which cash flows are discounted, number of time periods
under consideration, and net Present Value [10].

6. Product-Line model (Tomer): A software product line is
a group of software applications using a shared set of
components that meet specific requirements of a certain
application domain. The product line approach achieves
considerable savings and is economical due to the reuse and
integration of related components from the common asset
library [13]. In this approach, transformation and transition
are involved in the cost of a reusable component. The
transformation operation’s cost consists of the cost required
to modify the reusable component; while the transition
operation’s cost is made up of the cost incurred in copying
code from one component into another in the application or
black-box reuse [6]. The model uses these cost factors: cost
of adaptation for reuse, cost of development from scratch, cost
of white box reuse, cost of constructing the target private
artifact from scratch as new development, cost of catalog
acquisition (replicating a copy of repository), cost of copy and
paste, cost of mining, and cost of externally acquiring.

In addition, the calculations of reuse costs depend upon the
reuse scenario put into place, such as Systematic Reuse Cost
for adapting assets from artifacts mined during domain
analysis; Systematic Reuse Cost for new assets developed
from scratch; Controlled Reuse Cost; Opportunistic Reuse
Cost; and Pure Development Cost. In order to determine the
most cost-effective reuse scenario that should be used in the
production of the desired functionality from the original
source assets, one must be able to compare the costs of other
possible reuse scenarios. Reuse scenarios are any sequence of
transition and transformation operations performed while
practicing reuse [12,13].

5 Comparison of estimation models

In order to compare the models analyzed in this work,
Table-1 depicts a list of common cost factors. The cost factors
from each model are linked with the common cost factors in
Table-2 in order to portray the similarities and differences in
each model. To be clear, a producer is a programmer who
creates reusable components from scratch while a consumer
is a programmer who uses reusable components to create
other applications.

Table-1: Cost Factors of Reuse Cost Estimation Models (adapted from [10]).

QUANTITIES LINES OF CODE
NR Number of reuses ASLOC Adapted source lines of code in project
CM Percentage of code modified RLOC Reused lines of code in product
DM Percentage of design modified RLOCL Reusable lines of code in library
IM Percentage of integration effort required PLOC Lines of code in product
CONSUMER PROFIT
Cc,wrp Cost to create product without reuse P Profit from increased revenues enabled by reuse
Cc,rp Cost to create product with reuse RISK
Cc,mwr Cost to maintain product created without reuse p Probability of receiving cash flow
Cc,mr Cost to maintain product created with reuse pl Probability of asset being found in library
Cc,ra Cost to consumer to reuse asset TIME VALUE
Cc,r1 Cost of royalties and licenses for external assets i Interest rate by which cash flows are discounted
Cc,r2 Cost to adapt asset M Number of time periods under consideration
Cc,r3 Cost to acquire, generalize, search, and retrieve PRODUCER
Cc,r4 Cost to utilize assets: instantiation training Cp,r Cost to producer to create asset for reuse

Cc,r5
Cost to reuse: identify, retrieve, understand,
validate, integrate, and test an asset

Cp,lm
Cost to producer/maintain reusable assets in the library;
configuration and change management

Cc,r6 Cost of incentive paid to component developers Cp,wr Cost to create non-reusable version of asset

DOCUMENTATION OVERHEAD
DD Documentation development O1 Library overhead costs
DU Documentation maintenance O2 Cost of Domain Engineering
OUTPUT O3 Infrastructure costs - repository mechanisms
E Effort in programmer months O4 Infrastructure costs - domain analysis, architecture, training
C Cost of effort
NPV Net present value
SZ Project size – LOC, object, or function points

Table-2: Comparison of Software Reuse Cost Models by Cost Factor.

 COCOMO-II
(Boehm)

Reuse-Based
(Jasmine/
Vasantha)

Basic-Reuse
(SPC)

Rate-Based
(Intermetrics)

Risk-Based
(Lim)

Product-Line
(Tomer)

Cost Factor Total
Quantities
NR Y 1
CM Y 1
DM Y 1
IM Y 1
Consumer

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 287

Cc,wrp Y Y 2
Cc,rp Y Y 2
Cc,mwr 0
Cc,mr Y 1
Cc,ra Y Y 2
Cc,r1 0
Cc,r2 Y Y Y 3
Cc,r3 Y 1
Cc,r4 0
Cc,r5 Y Y Y Y 4
Cc,r6 0
Documentation
DD Y 1
DU Y 1
Lines of Code
ASLOC Y 1
RLOC Y Y 2
RLOCL 0
PLOC Y Y 2
Profit
P Y 1
Risk
p Y 1
pl Y 1
Time Value
i Y 1
M Y 1
Producer
Cp,r Y Y Y 3
Cp,lm Y 1
Cp,wr 0
Overhead
O1 0
O2 0
O3 0
O4 0
TOTAL 8 5 5 4 7 6 35

Comparison of Reuse Cost Estimation Models by Output
E Y Y Y 3
C Y Y Y 3
NPV Y 1
SZ Y 1

5.1 Analysis of similarities

Thirty-three cost factors were considered in this study.
Table-2 reveals the following commonly used cost
factors:

- Cost to reuse: cost to identify, retrieve, understand,

validate, integrate, and test an asset (4 models)
- Cost to producer to create asset for reuse (3 models)
- Reused lines of code in product (2 models)
- Cost to adapt asset (2 models)
- Cost to create product/system without reuse (2

models)
- Cost to create product/system with reuse (2 models)
- Lines of code in product (2 models)
- Cost to consumer to reuse asset (2 models)

The most common cost factors make up fifteen of the
total of thirty-five instances resulting from the
comparison or 43% similarity, and they make up eight of
the thirty-three or 24% of the cost factors used for the

comparison. The greatest similarity among the models
involves the costs to create or adapt components for reuse.
The most common forms of output for the reuse cost
models are effort (38%) and cost of effort (38%), taking
into consideration that some models provide more than
one output. As far as costs to the consumer,
Jasmine/Vasantha, Tomer, and Boehm models all include
the cost to adapt an asset and the cost to acquire reusable
assets in their calculations. The adaptation of an asset
includes the adoption of requirements as well as code and
test cases among other artifacts. The consumer may
choose to modify the artifact, incorporate it in a black box
way, or modify it and integrate it into the system.

Both Boehm and SPC include lines of code in the product
(PLOC) as well as reused lines of code in the product
(RLOC) in their calculations. For Boehm, PLOC is
similar to his equivalent source lines of code, and for SPC,
RLOC and PLOC are used to determine the proportion of
reused code in the product. Producer costs are included in
the calculations of the Rate-based, SPC, Lim, and

288 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Tomer’s models. All of them include the cost to the
producer to create an asset for reuse. These costs include
the creation of new requirements that are necessary in the
integration of the reused design as well as the
development of new software components that allow the
reused component to operate properly with the existing
software.

All of the identified costs in the list of similarities
specified above occur in the design, development, and
integration/test phases. When reuse is implemented,
requirements, code, and test cases are affected.
Documentation of the reused artifact as well as the
developed/modified artifact becomes very important in
order for the reused components to be implemented more
easily and accurately. The overhead costs of reuse are not
included in the formulas of any models; however,
Jasmine/Vasantha’s approach considers additional
overhead reuse costs, specifically domain analysis,
creation and operation of a reuse library, and training of
personnel in design for and with reuse.

None of the six models explicitly considers the time
required to create or revise a particular component. Such
measurements include the start and end times of an
assignment or project duration. Some examples of this are
the date on which a consumer begins to create a product
and the date on which the consumer completes the
product with reuse or without reuse; the date on which the
consumer begins to incorporate an upgrade and the date
on which the consumer completes the incorporation and
upgrade with or without reuse; and the date on which a
producer begins creating an upgrade and the date on
which the producer completes the creation of the upgrade
[26].

5.2 Analysis of differences

Not one of these models indicates whether the producer or
consumer should be responsible for the cost of a reusable
asset. The producer and consumer information found in
this paper comes from Lim’s 1996 paper [10] on Reuse
Economics. Both Jasmine/Vasantha and Lim include the
cost to create a product/system without reuse in their
calculations of the cost with reuse. Lim and Tomer’s
calculations of the cost of development with reuse include
the cost to the consumer to create a product with reuse.

Only Jasmine/Vasantha considers the cost to the consumer
to operate and maintain a product/system created for reuse,
but they do not include this information in their
calculations. They simply suggest that this information be
considered when determining the cost of reuse. Only SPC
and Tomer include the cost to the consumer to reuse an
asset in their calculations. SPC uses the relative cost to
reuse software, and Tomer uses the cost of black box
reuse. Only Tomer’s Controlled Reuse Cost formula uses
the cost to the consumer of external acquisition, searching,
and retrieval.

As far as producer costs, Boehm, Jasmine/Vasantha, and

the Rate-based model do not consider the cost to the
producer to create a new asset for reuse.
Jasmine/Vasantha focus on consumer costs, the
Rate-based model focuses on the search for reusable
components, and Boehm focuses on estimation of effort
using a reuse percentage and an adaptation adjustment
factor. Only the Rate-based model considers the cost of
configuration management. The importance of
documentation to the reuse effort is only mentioned in one
model (Jasmine/Vasantha) - increased documentation
facilitates reuse, and maintenance and enhancement of
reuse documents is suggested; However, even in this
model, the cost of documentation is not specified in any
formula.

5.3 Combinations of models

Although each of the identified reuse cost estimation
models cover from five to eight identified cost factors, no
one estimation model covers all of those cost factors.
Because of this, combinations of several methods may
give a more accurate estimation of the actual cost of such
a project. Table-3 shows the possible combinations of cost
factors among the six estimation models investigated in
this work and the model that produces it. This information
helps managers and engineers determine more accurate
estimates for cost factors that apply to their situation.

Table-3: Cost factors and associated estimation models.
Cost Factor Model

Consumer Costs
Cost to consumer to create
product/system without reuse

Reuse-Based

Cost to consumer to create
product/system with reuse Product-Line

Cost to consumer to reuse asset Product-Line
Cost to consumer to adapt asset Product-Line
Cost to consumer to acquire reusable
assets: acquisition, generalization,
searching, and retrieval

Product -Line

Cost to consumer to reuse: identify,
retrieve, understand, validate, integrate,
and test an asset

Product-Line

Cost to develop documentation Rate-Based
Cost to maintain documentation Rate-Based
Producer Costs
Cost to producer to create asset for
reuse

Product-Line

Cost to producer for configuration
management Rate-Based

Cost to producer to develop
documentation

Rate-Based

Lines of Code
Adapted source lines of code COCOMO-II
Reused source lines of code Expert Judgment
Source lines of code in product Analogy-Based

Table-3: Cost factors and the Expert Judgment method
involves multiple experts who provide estimates based on
experience. PERT and the Delphi technique,
expert-consensus methods, are used to work out
differences in the various estimates [14]. The
Analogy-Based estimation method formulates the cost

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 289

estimation for the new project based on the actual costs of
one or more previous similar projects. Through analogy, it
involves the following stages: 1) select relevant project
size estimates; 2) retrieve data of all historical projects
and compute the similarity; and 3) estimate the effort
required for the new project [15,16]. With such a
combination of approaches, fourteen of the thirty-three
identified cost factors would contribute to the reuse cost
estimation. This is almost twice the number of cost factors
covered by COCOMO-II, which appears to be the most
thorough of the approaches to cost estimation.

6 Conclusion

No guidance exists for the analysis and selection of
alternative approaches for software reuse including no
reuse. Instituting a successful reuse strategy should be
based on understanding of the factors that impact reuse in
the organization’s context. None of the models researched
in this work takes into consideration all costs that a
software reuse program might generate. The
comprehensive list of these costs might be considered, but
they are not included in the formulas specified by these
models. This work identified thirty-three reuse-specific
cost factors. These factors were mapped to six common
costing models. The results of this work also shows
possible combination of cost factors among the studied
estimation models, given an organization alternative ways
to obtain accurate estimate of instituting a reuse program.

AN effective reuse strategy may require changes in
organizational structure and additional personnel to
manage reusable assets and to stay informed about reuse
products in the software community. The Reuse Manager
must have knowledge of organizations supporting reuse,
reuse economics, reuse metrics, and reuse products. The
reuse repository Librarian provides a useful, usable, and
efficient library to the producers and consumers; ensures
the generality, correctness, reliability, and clarity of the
components in the repository; and determines the best
way to represent and catalog reusable assets. The Domain
Analyst explores application domains to determine
components to be included in the library; identifies
commonly recurring assets and/or problem solving
patterns; and decides whether the source code assets or
design patterns are appropriate for the specific domain.
The Application Engineer decides how to implement
selected reusable components (blackbox or whitebox);
and determines the risks (program quality and
programmer productivity) when modifying a component
to develop a new component from scratch, or to use the
component “as is” in the application. Components are
modified and re-tested when whitebox is chosen.

7 References

[1] Lim, W. C. (1994). Effects of reuse on quality,

productivity, and economics. IEEE Software, 11(5),
23-30.

[2] Succi, G., and Baruchelli, F. (1996). Analysing the return
of investment of reuse. ACM SIGAPP Applied Computing
Review., 4(2), 21-25.

[3] Jasmine, K.S., and Vasantha, R. (2008). Cost estimation
model for reuse based software products. Proceedings of
the International MultiConference of Engineers and
Computer Scientists 2008, 951-954.

[4] Chmiel, S. F. (2000). An integrated cost model for
software reuse. (Doctoral Dissertation). Retrieved from
the ACM Digital Library database.

[5] Rothenberger, M. A., Dooley, K.J., and Kulkarni, U. R.
(2003). Strategies of software reuse: A principal
component analysis of reuse practices. IEEE Transactions
on Software Engineering, 29(9), 825–837.

[6] Tomer, A., Goldin, L., Kuflik, T., Kimchi, E., and Schach,
S. R. (2004). Evaluating software reuse alternatives: A
model and its application to an industrial case study. IEEE
Transactions on Software Engineering, 30(9), 601-612.

[7] Ravichandran, T., and Rothenberger, M. A. (2003).
Software reuse strategies and component markets.
Communications of the ACM. 46(8), 109-114.

[8] Krutz, W. K., Allen, K., and Olivier, D. P. (1991). The
costs related to making software reusable: Experience
from a real project. Proceedings of the Conference on
TRI-Ada’ 91: Today’s Accomplishments, Tomorrow’s
Expectations, 437-443.

[9] Boehm, B., Abts, C., and Chulani, S. (2000). Software
development cost estimation approaches - A survey.
Annals of Software Engineering, 10(1-4). Springer,
Netherlands, November 2000.

[10] Lim, W. C. (1996). Reuse economics: A comparison of
seventeen models and directions for future research.
Proceedings of the Fourth International Conference on
Software Reuse 1996, 41-50.

[11] Kemerer, C. F. (1987). An empirical validation of software
cost estimation models. Communication of the ACM,
30(5), 416-429.

[12] Data & Analysis Center for Software (DACS). (2010).
Assess reuse risks and costs. Software Tech 13(3).
Retrieved on April 29, 2012 from the World Wide Web:
http://www.goldpractices.com/practices/arrc/index.php

[13] Software Engineering Institute (SEI) (2009). A framework
for software product line practice, version 5.0: What is a
software product line? Retrieved April 29, 2012, Wide
Web:
http://www.sei.cmu.edu/productlines/frame_report/what.is
.a.PL.htm.

[14] Hughes, R.T. (1996). Expert judgment as an estimating
method. Information and Software Technology, 38(2),
67-75.

[15] Li, Y., Xie, M., and Goh, T.N. (2008). A bayesian interface
approach for probabilistic analogy based software
maintenance effort estimation. 14th IEEE Pacific Rim
International Symposium on Dependable Computing,
176-183.

[16] Shepperd, M., and Schofield, C. (1997). Estimating
software project effort using analogy. IEEE Transactions
on Software Engineering, SE-23:12, 736-743.

[17] Hari, CH., Reddy, P., Kumar, S., and Ganesh, G. (2009).
Identifying the importance of software reuse in
COCOMO81, COCOMOII. International Journal on
Computer Science and Engineering, 1(3), 142-147.

[18] Nasir, M. (2006). A survey of software estimation
techniques and project planning practices. Proceedings of
the ACIS International Conference on Software
Engineering, Artificial Intelligence, Networking, and
Parallel/Distributed Computing.

290 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

SESSION

MODELING, SOFTWARE DEVELOPMENT, USER
INTERFACE METHODS + VISUAL

PROGRAMMING

Chair(s)

TBA

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 291

292 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

A Two-Dimensional Overall Software Customization Classification and
Visualization

Michaela Weiss1, Norbert Heidenbluth
Inst. for Applied Information Processing, Ulm University, 89069 Ulm, Germany

1 Scholar of the Wilken Foundation, Ulm

Abstract— Customization is widely used in non-software areas
and is a crucial part in current software engineering as an
option to adapt software to end-user needs. Since existing
customization classifications are very rough, previous studies
only evaluate the overall acceptance of software customization
but do not evalute specific adaptations.

In this paper, we analyze research to date and extend
existing customization classifications to get an embracing, two-
dimensional classification for non-software products. We also
develop a chart to visualize this classification. The findings
are carefully applied to the software sector and validated with
the help of an empiricism. Thus we create a comprehensive
two-dimensional software customization classification and a
Software Customization Chart (SCC).

This helps vendors identify shortcomings in customization
options and judge the acceptance of their customization fea-
tures. Hence software producers could gain a competitive
advantage and users could get software that meets their needs.

Keywords: Customization, Adaptability, Tailoring, GUI Design,
Human-Computer Interaction

1. Introduction
Surveys show that customers increasingly demand products

or services that exactly meet their individual needs [1] rather
than accepting the customer sacrifice [2], [3]. This describes the
gap between a customer’s needs and the supplied products and
services. This is why the long tail phenomenon [4], [5] starts to
dominate the market. Large traditional markets are now being
replaced by millions of small markets with low sales. These
tiny niche markets all together offer immense revenues because
demand does not shrink. Empiricisms also show that customers
value products that match their needs [6], [7]. As a result of this
changing market situation, customization is of vital importance
for companies and is part of our daily life.

The trend of customization is also visible in the software
sector. For instance, apps and web portals grant their users
access to the required functionalities which in terms of web-
based resources can be combined with the help of mashups [8],
[9]. The Technical Report on Software Engineering (ISO/IEC
TR 9126-2) even names the “suitability of the software for
individualization” as a product quality aspect because homo-
geneous standard software can only rarely meet the needs

of an individual customer. Additionally, customization can
help increase the customer experience [10] and cope with the
experience economy as Gilmore and Pine called our society
as far back as in 1998 [11]. The immaterial product software
offers many customization opportunities. In order to exploit the
full capabilities, developers need a classification to structure
adaptations to improve their work and avoid customer confu-
sion. Moreover, a classification is needed to analyze the various
adaptation options. This classification should focus on users and
their perception because customers are the basis of the market,
and—according to Peter Drucker—a company can only prosper
if it focuses on its customers and their needs [12].

We introduce a comprehensive classification of software
customization from a customer’s point of view to comply with
these needs. This high-level groundwork serves as a basis
for software implementation and analysis. Furthermore, we
present a new chart to illustrate customization options. This
helps software companies analyze their software and brave
competitive pressure. Customers can be attracted to products
addressed to their needs and cross and up-selling could be
enhanced. Moreover, these products create higher value for the
customers than standard software and increase customer loyalty
and willingness to pay (WTP).

In terms of software classification development, we carefully
apply a new classification that focuses on non-software products
to the software sector. Although non-software products and
software differ greatly in characteristics and manufacture, there
are similarities in customer perception. We believe that findings
from the non-software area in terms of perceived customization
could be valuable for the software sector. This practice is useful
since the non-software sector has a much longer history. Thus
non-software products are well-known to a wider audience
whereas software knowledge could still be limited.

The following Section 2 lists existing customization classifi-
cations for non-software and software products and emphasizes
the requirements of a new, more detailled categorization. In
Section 3, we extend existing customization classifications
to get a two-dimensional customization classification. Fur-
thermore, we introduce a method to visualize customization.
These findings are applied to the software sector and presented
in Section 4. Section 5 illustrates an empiric validation of
the software customization classification. Finally, Section 6
summarizes the results and shows aspects for further research.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 293

2. Background and Related Work
Customization is a topic that is widely studied and discussed

in the literature. In the following, we focus on the evolution of
customization and previous classifications.

2.1 Evolution of Customization
In the 1990’s, new business strategies arose which focused

on individual customers [13] rather than standardization. These
strategies can be traced back to the production strategy of
mass customization (MC), that links differentiation with cost
leadership. The term MC was introduced by Stanley Davis in
1987 [14] and made popular by Joseph Pine [15] in 1993.

Customization helps meet customer needs by adapting prod-
uct features to differing customer requirements [16]. In 1999,
Åhlström and Westbrook identified increasing customer satis-
faction and market share as the greatest benefits of customiza-
tion. In contrast, longer delivery times and increasing material
and manufacturing costs are the biggest disadvantages [1].

This trend and the increasing importance of accessibility
stimulated research in customized software development. In
order to support older or disabled people many authors focused
on the customization of graphical user interfaces (GUIs) [17],
[18], [19], [20], [21]. Furthermore, much technical work was
done to discover the best practices for designing menus [22],
[23], GUIs [24], [25], [26], and product lines [27], [28].

In comparison to the amount of technical studies, compara-
tively less conceptual work has been done. In 1991, however,
Mackay analyzed the triggers and barriers to software cus-
tomization. She named the reusing of repeated patterns, the
retrofitting after a system change, and the avoidance of annoy-
ing behaviors as the main reasons for software customization.
In contrast, barriers are a lack of time and knowledge [29]. In
1996, a study by Page et al. showed similar results [30].

2.2 Classification of Customization
There are different categorizations to specify customiza-

tion. In 1995, Coates and Wolff established the terms soft
customization and hard customization [31]. They classified
customized products according to the person who adapts them.
Products adapted by the customer or the retailer are refered
to as soft customized products and need no adaptations in
production and distribution. In this case, standard goods with
adaptation options are produced. In contrast, hard customization
is done by the manufacturer and results in higher complexity
of production and distribution. However, the adaptation options
increase. The different manufacturing processes needed justify
this categorization. Nevertheless, this classification is rather
rough and does not consider the particular adaptations.

In 1996, Lampel and Mintzberg extended this classification.
They specified pure standardization, segmented standardiza-
tion, customized standardization, tailored customization, and
pure customization [13]. These categories differ in the degree
of freedom, thus this subdivision is slightly more detailed.
However, a closer examination of implemented adaptations is

also missing. The necessity of a classification that focuses on
the starting points of customization is documented by Piller and
Müller [6] as well as Ponn et al. [32]. Both empiricisms analyze
non-software customization and categorize the adaptations by
means of the starting points. Piller and Müller use the categories
style, fit and comfort, as well as functionality. Ponn et al. use
similar categories, namely product fit, form, and function. An
established classification could help create uniformity.

There are only few classifications of software customization.
The most popular one is the diversification in adaptable, adap-
tive and mixed-initiative customization. Adaptable strategies are
based on the implementation of adaptation options which can
be tailored by the end-user. This gives users the control but
causes barriers to customization such as a waste of time as
well as problems caused by a lack of knowledge on adapting. In
contrast, adaptive methods are based on an intelligent software
system which analyzes software usage. Problems arising from
a low quality of adaptations as well as a lack of control
and transparency could occur. This adaptation, however, does
not require any additional effort. Mixed initiatives combine
the advantages of both strategies. A number of writers have
conducted studies on this adaptation implementation [33], [22],
[23], [34], [35], [36]. Furthermore, there are studies on the
automatic generation of customer-optimized GUIs [37], [38],
[39], [40]. The classification in adaptable, adaptive and mixed
initiatives is based on who carries out customization and thus
can be regarded as the equivalent to the above named classi-
fication of Coates and Wolff. Unfortunately, it only considers
technical criteria and does not draw any conclusion about which
aspect of the software is really adapted. Thus Oppermann and
Simm divided software customization into adaptations of the
functionality and adaptations of the interface in 1994 [41].

Yet, for users the GUI is their connection to the software,
and they sometimes even feel it is the software itself. Thus
the classification of Oppermann and Simm could not be used
to handle perceived customization. It is also very rough and
needs to be improved. Thus we introduce a more detailed
classification, combining both the execution and the starting
points of the customization. This enables detailed analysis of
software customization with focus on user experience. This
classification also helps compare different software systems in
terms of customization.

3. Non-Software Customization
In this section, we present DEFS Customization Classifica-

tion, which is based on starting points. It unifies and extends
the categories used by Piller and Müller [6], as well as Ponn et
al. [32] (cf. Section 2). We add the services category to get an
overall classification. In the following, we introduce the four ar-
eas of adaptation, design, ergonomics and fitting, functionality,
and services. Afterwards, we merge this classification with that
of Coates and Wolff [31]. Thus we provide a comprehensive
two-dimensional classification that is illustrated with the help
of our customization chart (CC).

294 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

3.1 Design (D)
Since the whole product look, e.g. the styles, colors, and

patterns can be adapted to customer-specific preferences, the
first category to customize a product is design. This is highly
promising because of the subjective perception. Hence design
customization can easily raise attachment to the product. Fur-
thermore, this facilitates risk reduction because of the made-to-
order-principle [42] that replaces uncertain predictions, avoids
warehouse stock, and leads to a higher WTP.

3.2 Ergonomics and Fitting (E)
The second category for customization is the adaptation of

the ergonomics and fitting to allow for the customer-specific
body. In many areas, above all in the health sector, these
adaptations are absolutely necessary. Nevertheless, in industrial
sectors such as footwear, automobile, and sporting goods many
companies also offer ways of improving the ergonomics. The
huge advantage of ergonomics customization is that even cus-
tomization critics cannot refute the benefit of such an adaptation
because it is objectively noticeable.

3.3 Functionality (F)
Requirements of the customers differ greatly and provide a

sound basis for customization. Thus functionality is another pil-
lar of customization. Many products that offer such adaptation
options use modularization to fulfill customer needs by merging
favored modules. Those build-to-customer programs are often
used in the computer hardware sector.

3.4 Services (S)
As a result of increasing competitive pressure many com-

panies now offer additional services. This started—as Rust
and Lemon called it in 2001—the service revolution [43].
Customers also consider extended benefits as an important part
of the solution to their specific problem. Hence customization
in services is a great way of achieving a better fitting of
product characteristics and customer needs. Such adaptations
only affect the last step of the value-adding process. Thus they
can be seen as the easiest way of customization and could
be assigned to Gilmore and Pine’s customization strategy of
cosmetic customization [44]. However, only voluntary services
that afford additional benefits offer customization capabilities.

3.5 Two-Dim. Classification and Visualization
The DEFS classification focuses on the starting points of

adaptations but does not consider who really makes them. This
distinction, however, was already made by the classification of
Coates and Wolffs [31]. Thus we merge both classifications to
achieve a new comprehensive two-dimensional classification.

We develop a CC to visualize this classification. It illustrates
the DEFS customization categories design, ergonomics and
fitting, functionality, and services with the help of bars. The bar
width indicates the amount of available customization options

Supplier
(Hard Customization)

Retailer/User
(Soft Customization)

Design

Ergonomics
and Fitting

Functionality

Services

Fig. 1: SLK CC and usage of customer A

in each category. A two-dimensional view is made by adding
a distinction between hard and soft customization.

Table 1 lists the customization options of the Daimler
SLK product line. They can be visualized with the help of
a CC (cf. Figure 1). The SLK especially offers many op-
tions for a hard customization. As a consequence, the hard
customization column of the CC is highly pronounced. Soft
customization is only available in terms of the ergonomics and
fitting (adjustment of seats, steering wheel stand, and mirrors).
Thus the only bar in the right column is in this category.
The CC easily illustrates the customization options and the
viewer immediately knows that the SLK offers particularly
many design adaptations but also focuses on functionality
customization. However, service customization is only rarely
available. Daimler offers the updating of navigation maps as
well as prepaid maintenance.

DEFS Customization Options
Design color of exterior/interior, wheels, seat materials, wheel hub

inserts, wheel locks, tire valve stem caps, trim, sunroof,
spoiler, sport body styling, trunk handle, chrome fins, licence
plate frames,...

Erg./Fitting steering, keyless go, wipers with rain sensor,...
Functionality navigation system, media interface, radio, sound system,

DVD/CD changer, memory card, lighting, child safety seats,
climate control, heated seats, car-theft protection, park dis-
tance control system,...

Services navigation map updates, prepaid maintenance

Table 1: SLK customization options1,2 and usage of cus-
tomer A

This example shows that the two-dimensional classification
and its visualization in a CC enables an intuitive overview of
customization. In contrast, tables are predestined to list cus-
tomization options, but quickly become complex and confusing.
Even though this example is limited to one product, a CC can
be used to compare similar products.

By adding a filling to the bar the usage of these options
can be illustrated for a special customer or a customer group.
The CC example shows the used customization options of the
imaginary customer A that are highlighted in Table 1.

1Genuine Mercedes-Benz Accessories for the SLK Class, Mercedes-Benz
USA, ACC-11-R1721-10000 (04/2011)

2Mercedes-Benz vehicle builder, http://www.mbusa.com/mercedes/vehicles/
build

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 295

4. Software Customization
Software may be adapted in various ways to user preferences,

characteristics and tasks. To handle this variety, we introduce
the starting-point based software customization classification
DUFS which is modeled on the DEFS classification (cf. Sec-
tion 3). To provide the characteristics of software the cate-
gories are applied to design, usability, functionality, and service
customization and communication. Moreover, a comprehensive,
two-dimensional software customization classification and the
software customization chart are introduced.

4.1 Design (D)
The software customization starting point design can be di-

rectly derived from the DEFS classification. The term software
design is often used in conjunction with software architecture.
This architecture is not visible for the users. Thus perceived
software design customization refers to the GUI appearance.

Design adaptations are an easy way of allowing for customer
preferences which vary greatly in design. Even color combina-
tions cause different reactions in customers so there are many
options for design customization. Adaptations can affect colors,
contrasts, as well as font type and size. Individual photographs,
icons, and user name and initials could also be added. All these
changes are minor but can increase customer acceptability and
are quite common in the business-to-business (B2B) sector.

It is important to point out that design is related to usability.
For example, different color combinations also differ in their
suitability for use and customers should be supported in their
design decisions. Moreover, design adaptations can help make
software accessible for people with disabilities. For instance,
enlargement of the font size or icons and use of different colors
can deal with the needs of people with impaired motor or vision
skills. As most users are not disabled and see these adaptation
as design aspects, they belong to the design category.

4.2 Usability (U)
Another category of software customization is usability,

reflecting the non-software customization category fittings and
ergonomics. In accordance with DIN EN ISO 9241 Part 11 this
is how “effective, efficient, and task satisfying a software can
be used by a user to fulfill his specific tasks”. GUIs which
are characterized by good usability are easy to handle, well-
arranged, and contain self-explanatory icons and menu items.
The operating manual, the integrated help, and the compatibility
also affect usability. All these aspects help optimize software
usage, save time and physical effort.

Problems fulfilling the task can either occur as the needed
functionality is not available (see the next paragraph) or cannot
be used because of incorrect handling. Since the usage of a
specific GUI can be totally intuitive for one user but absolutely
incomprehensible for another, customization offers a great
benefit. Compliance with the customer-specific intuitiveness
means adapting the appearance of the GUI. This can be done by
adapting the layout and grouping of the buttons, menu items,

and bars or by offering a choice between different kinds of
GUI elements. Furthermore, icon images and labels can be
customized. These adaptations affect the appearance of the GUI
but are done to improve the usage rather than the design. Thus
these adaptations belong to the usability category.

Moreover, coping with the customer-specific hardware and
the user’s native language as well as giving users the possibility
to create shortcuts influences overall usability. As mentioned
above, usability can also be used to make software accessible
for everyone and comply with DIN EN ISO 9241-171.

4.3 Functionality (F)
Functionality is the heart of the software and can affect

usability as mentioned above. However, due to increasing
technological possibilities rather than insufficient functionali-
ties, software offers a multitude of features. Thus software is
often called bloated. Bloated software can be separated into
objective and subjective bloat [45]. Objective bloat identifies
functionality that is neither wanted nor needed by any user
and should be avoided. In contrast, subjective bloat sums up
functionalities that are not needed by the specific user and can
be reduced with functionality customization. Many companies
try to come up with this functional abundance by offering
software variants or plug-ins. The plug-in concept enables
customers to add the needed features. A very easy way of
offering adaptation in terms of functionality is to hide and show
functionalities. Even though undesired functionalities are only
hidden but still available, the software seems to be adapted.

4.4 Services and Communication (S)
Software is an immaterial product itself, but several software

companies offer auxiliary services to distinguish themselves
from the competition and offer customization. Examples of
such customizations are individual customer care, an update
service, and customer-specific maintenance. The focus on com-
munication prevents the customer from having the feeling of
beeing only one of a million.

Furthermore, characteristics of software allow another kind
of customer contact because software itself is able to communi-
cate with the customer. For instance, the software could include
the user’s name that is entered through installation in order to
create individual greetings. Thus an emotional attachment to
software and perceived customization can be promoted.

4.5 Two-Dim. Classification and Visualization
To get an overall view of software customization it is im-

portant to match the DUFS starting points with the knowledge
of the customization executor. Thus we now introduce a two-
dimensional, overall classification. In contrast to Chapter 3,
we use the categorization of adaptive, adaptable and mixed
initiatives to distinguish between the executors.

We develop a software customization chart to visualize
software customization. The bars show how many customiza-
tion options the software offers, subdivided into the DUFS

296 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

DUFS Windows 7 Calculator DeskCalc 4.2.12 SFR CalcTape Pro 5.0.0 fnA 1.31a
Design - views, schemes, number block

visibility
views, font colors (value-
constrained), document colors,
visibility of ribbons

input font color

Usability number format, history, ex post
value changes

number format, ex post value
changes, language, shortcuts,
round method, sound, exit han-
dling, constants; user-confirmed
autostart, laptop mode

round method, language, ex
post value changes, shifting,
variables, font size, user but-
tons, shortcuts, toolbar; user-
confirmed autostart

startup mode or user-confirmed
saving of the last one, user-
confirmed autostart

Functionality basic/scientific/statistic functional-
ities can be chosen, date calcula-
tor/economic calculator/ unit con-
verter can be faded in

commercial/formel functionali-
ties can be chosen

- -

Services/Com. - user-confirmed software and
currency rate update service

user-confirmed update service -

Table 2: Customization options of calculator subset

categories. By using two columns the distinction between the
customization executor is made. The system/supplier column
marks adaptive customization. The user column shows the
adaptable customization. An SCC can also visualize mixed
initiatives. On the one hand, a mixed initiative may exist be-
cause the software offers adaptive and adaptable customization
options. This is shown by bars in both columns. On the other
hand, a mixed initiative can be based on the requirement of an
immediate user communication to execute an adaptive change.
This could be an adaptive customization which is triggered by a
customer call or requires a confirmation. These communication-
based mixed initiatives are marked by a bar in the adaptive
column that starts with a circle. The circle is filled if every
adaptive customization needs a direct user interaction, or not
filled if it is only needed for several adaptations.

In the following, we compare the customization options of
several desktop calculators (cf. Table 2) by using the SCC
shown in Figure 2. We choose this example because it is
a minimal working example that is small, simple, and well-
known. Nevertheless, it contains all adaptation options and
easily explains the SCC. The subset contains the Windows
7 Calculator, DeskCalc 4.2.12, SFR CalcTape Pro 5.0.0 (SFR
Software GmbH) and fnA 1.31a (RJ Software).

System/Supplier
(adaptive)

User
(adaptable)

Design

Usability

Functionality

Services/
Comm.

DeskCalc
4.2.12

Windows 7
Calculator

SFR CalcTape
Pro 5.0.0

fnA 1.31a

Fig. 2: SCC for calculator subset

The SCC points out that the Windows 7 Calculator provides
only customization options that affect usability and functional-
ity. The bar width shows that this calculator offers only little
usability customization, but is the most customizable one with
regard to functionality aspects. All adaptations offered by the
Windows 7 Calculator have to be done by the user, so an
adaptable initiative is used. The SCC figures out that DeskCalc
and CalcTape provide above all usability adaptations that also
have to be executed by the user. However, CalcTape and fnA
contain adaptive features in terms of usability and with service
customization and communication. All these adaptive changes
have to be confirmed by the user. This is symbolized by the
filled circle and highlights that a mixed initiative based on user
interaction is implemented.

DeskCalc automatically adapts to laptop characteristics in
terms of usability but offers a user-confirmed autostart. Thus a
mixed-initiative is also used. Since not every adaptive change
needs user interaction, the circle in the SCC is empty.

The example illustrates that the two-dimensional classifica-
tion can help gain valuable insights into software customization
and helps visually compare different software. In contrast to
large, detailed, and complex tables this allows an intuitive
overview of software customization. Additionally, a filling
could be used to show customization usage. The width of a
bar shows the amount of all available customization options,
whereas the filling illustrates how many of them are really used
by a specific customer or customer group.

5. Empiricism
Our two-dimensional customization classification is based

on two customization aspects. On the one hand, we use the
well-known and popular distinction between adaptable, adap-
tive, and mixed initiatives. On the other hand, we develop a
new DUFS classification to handle the customization starting
points. Since the DUFS classification is not yet evaluated, we
conducted a large study to get insights into customer opinions
on customization and validate the DUFS classification. In this
section the used methods are outlined and we present the part
of the survey that deals with the DUFS categories.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 297

5.1 Methods
The cross-sectional study was conducted in 2010 in South

Germany with 284 participants. The answers of ten intervie-
wees could not be used because of missing data. Thus the study
includes the answers of 274 participants. 43.43% of them are
female and 56.57% male. The survey could be completed either
electronically (20.44%) or in paper form (79.65%). Figure 3
shows the age distribution of the participants.

Gender
Male Female

40 30 20 10 0 10 20 30 40

> 69

60-69

50-59

40-49

30-39

25-29

15-18

11-14

19-24

> 69

60-69

50-59

40-49

30-39

25-29

15-18

11-14

19-24

Number of Participants

1

2

17

18

13

26

37

4

12

15

36

29

23

22

19

8

1

A
geA

ge

Fig. 3: Age Distribution

The proximity to Ulm University leads to several differences
in the sample in comparison to the whole German population. It
includes comparatively many young, well-educated participants
and the opinions of male participants are slightly overweighted.
However, the large and heterogenous sample allows conclusions
to be drawn on the perceived customization.

5.2 Validation of DUFS
In Section 1, we explained that a classification is needed that

focuses on the customer’s point of view. The most important
theory to explain human behaviour is the concept of the homo
oeconomicus. It explains the behaviour of human beings with
the help of the benefit involved. Thus we investigated whether
there are differences in the benefit between several existing and
well-known software customization options. Such differences
could be used to find clusters and validate our classification.

The participants had to judge 15 customization features. They
are mainly located in the areas of operating systems, Office
products and world wide web because participants of all age
categories are familiar with them. In terms of usability there
are many adaptation options available. We chose the creation of
links and bookmarks that help quick access to customer-specific
data or websites. The quick launch bar of the operating system
as well as the tool bars in Office programs also enable quick
access and improve usability. Moreover, we listed the feature
to decide on different options to handle updates and to choose
one’s native language. With regard to design adaptations, we
specified the options of adapting fonts, colors and contrast,
icon size, desktop background, and mouse pointer. Participants
also rated the possibilty to customizing the screen saver.

Furthermore, the participants judged functional customization
offered by iGoogle and Windows gadgets. In the B2C sector,
service customization is only rarely available. Thus we limited
the survey to adaptive purchase proposals in terms of shopping
in online shops.

The survey gave a brief description of each customization
option to ensure that the participants understood the questions
and conclusions could be drawn. Afterwards, the participants
had to evaluate each customization option with a benefit value
between 0 and 5 on a Likert scale. A benefit of 0 means that
this customization feature is completely useless. In contrast, a
benefit of 5 shows that this option is very useful.

1

2

3

4

5

Usability Design Serv.Func.

Lin
ks

Upd
at

es

Boo
km

ar
ks

Too
l B

ar

Quic
k L

au
nc

h
Bar

Fon
t

La
ng

ua
ge

Ico
n

Size

Colo
rs

/C
on

tra
sts

Des
kto

p
Bac

kg
ro

un
d

Scr
ee

n
Sav

er

M
ou

se
 P

oin
te

r

W
ind

ow
s G

ad
ge

ts

Pur
ch

as
e

Pro
po

sa
ls

iG
oo

gle

Average Benefit Values and Usage
of Software Customization Options

B
en

ef
it

V
al

ue

10

20

30

40

50

60

70

80

90

100

P
ercentage of U

sage

Fig. 4: Benefit and Usage of Software Customization Options

Figure 4 illustrates the results and demonstrates the mapping
of the named customization options to the DUFS software
customization categorization. With regard to the benefit values,
clusters became visible that comply with the DUFS categories.
All customization options that affect usability are rated similar
(3.38 to 3.92). Such common benefit values can also be seen
in terms of design (2.50 to 3.19) and functionality adaptations
(2.09 to 2.12). Even the services and communication category
is different in terms of benefit values (1.44) to the other
customization options. Consequently, the DUFS classification
reflects the benefit values mentioned by the participants. Since
the benefit is the center of customer behaviour the DUFS
classification is a significant method for classification.

We also analyzed the connection between benefit values and
usage. Thus the chart also figures out participant usage of
the customization options. To get meaningful conclusions, we
excluded the participants that did not know that the specific
adaptation option exists. A correlation between benefit values
and usage became visible. Hence the DUFS classification is
a valuable categorization of software customization and could
help vendors create software that fulfills user requirements in
terms of customization.

298 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

6. Conclusions and Future Work
This paper showed that there are many ways of implementing

customization and gave a detailed overview of previous re-
search. Existing classifications in the non-software and software
sector are very rough and do not focus on the customer’s
view. Thus we presented the new starting-point based DEFS
and DUFS categorizations to classify and structure perceived
customization in both the non-software and the software sector.
The DUFS categorization is a conceptual basis for software
customization and enables customer-oriented analysis. It helps
software developers to decide about adaptations that meet
customer needs.

Each customization classification was consolidated with an
existing categorization to get a comprehensive two-dimensional
classification. These new classifications contain both the start-
ing points of the customization and the customization executor.
Two new kinds of charts, the Customization Chart (CC) and
the Software Customization Chart (SCC), were also imple-
mented. These illustrate the customization options of a product
and enable comparisons of similar products. The charts also
help compare the available customization options with the
customization usage of a customer or a group of customers.
Thus software developers could easily discover shortcomings in
customization and recognize if the implemented customization
options are accepted by the customers. This would help gain a
competitive advantage.

The analysis of existing software with focus on customiza-
tion options and the illustration and comparison in SCCs are
interesting for future research.

References
[1] P. Åhlström and R. Westbrook, “Implications of mass customization for

operations management,” Int. J. of Operations and Production Manage-
ment, vol. 19, no. 3, 1999.

[2] C. W. Hart, “Mass customization: conceptual underpinnings, opportunities
and limits,” Int. J. of Service Industry Management., vol. 6, no. 2, pp.
36–45, 1995.

[3] A. Bardakci and J. W. AND, “How “ready” are customers for mass
customisation? an exploratory investigation,” European J. of Marketing,
vol. 38, no. 11/12, pp. 1396 – 1416, 2004.

[4] C. Anderson, “The long tail,” Wired Mag., vol. 12, pp. 170–177, 2004.
[5] C. Anderson, The Long Tail: How Endless Choice is Creating Unlimited

Demand. Random House, 2010.
[6] F. T. Piller and M. Müller, “A new marketing approach to mass customi-

sation,” Int. J. of Computer Integrated Manufacturing, vol. 17, no. 7, pp.
583–593, 2004.

[7] F. T. Piller, K. Moeslein, C. M. Stotko, and C. M. Stotko, “Does
mass customization pay? an economic approach to evaluate customer
integration,” Control, vol. 15, no. 4, pp. 435–444, 2004.

[8] C. Schroth and O. Christ, “Brave new web: Emerging design principles
and technologies as enablers of a global soa,” SCC, pp. 597–604, 2007.

[9] V. Hoyer, K. Stanoesvka-Slabeva, T. Janner, and C. Schroth, “Enterprise
mashups: Design principles towards the long tail of user needs,” SCC,
vol. 2, pp. 601–602, 2008.

[10] S. Marathe and S. S. Sundar, “What drives customization? control or
identity?” in CHI ’11, 2011, pp. 781–790.

[11] B. J. Pine II and J. H. Gilmore, “Welcome to the experience exonomy,”
Harward Business Review, vol. 76, no. 4, pp. 97–105, 1998.

[12] P. F. Drucker, The Practice of Management. HarperBusiness, 2006.
[13] J. Lampel and H. Mintzberg, “Customizing customization,” Sloan Man-

agement Review, vol. 38, no. 1, pp. 21–30, 1996.

[14] S. M. Davis, Future Perfect. Addison-Wesley, 1987.
[15] B. J. Pine II, “Mass customization: The new frontier in business compe-

tition,” Harvard University Press, 1993.
[16] M. Spring and J. Dalrymple, “Product customization and manufacturing

strategy,” Int. J. of Operations & Production Management, vol. 20, pp.
441–467, 2000.

[17] A. Dickinson, R. Eisma, and P. Gregor, “The barriers that older novices
encounter to computer use,” UA in the Inform. Society, pp. 1–6, 2010.

[18] P. Gregor and A. F. Newell, “Designing for dynamic diversity: making
accessible interfaces for older people,” in WUAUC’01, 2001, pp. 90–92.

[19] A. Newell and P. Gregor, “Design for older and disabled people - where
do we go from here?” UA in the Inform. Society, vol. 2, pp. 3–7, 2002.

[20] A. Newell, “Accessible computing – past trends and future suggestions:
Com. on comp. and people with disabilities,” TACCESS, vol. 1, 2008.

[21] G. Pullin and A. Newell, “Focussing on extra-ordinary users,” in
UAHCI’07, 2007, pp. 253–262.

[22] L. Findlater and K. Z. Gajos, “Design space and evaluation challenges
of adaptive graphical user interfaces,” AI Magazine, vol. 30, no. 3, pp.
68–73, 2009.

[23] L. Findlater and J. McGrenere, “A comparison of static, adaptive, and
adaptable menus,” in SIGCHI ’04, 2004, pp. 89–96.

[24] A. Bunt, C. Conati, and J. McGrenere, “What role can adaptive support
play in an adaptable system?” in IUI ’04, 2004, pp. 117–124.

[25] A.Bunt, C. Conate, and J. McGrenere, “Supporting interface customiza-
tion using a mixed-initiative approach,” in IUI ’07, 2007, pp. 92–101.

[26] J. McGrenere, R. M. Baecker, and K. S. Booth, “An evaluation of a
multiple interface design solution for bloated software,” in SIGCHI ’02,
2002, pp. 164–170.

[27] K. Pohl, G. Böckle, and F. van der Linden, Software product line
engineering. Birkhäuser, 2005.

[28] J. Bosch, “Maturity and evolution in software product lines: Approaches,
artefacts and organization,” in SPLC’02, 2002, pp. 257–271.

[29] W. E. Mackay, “Triggers and barriers to customizing software,” in
SIGCHI ’91, 1991, pp. 153–160.

[30] S. R. Page, T. J. Johnsgard, U. Albert, and C. D. Allen, “User customiza-
tion of a word processor,” in SIGCHI ’96, 1996, pp. 340–346.

[31] J. F. Coates and M. F. Wolff, “Customization promises sharp competetive
edge,” Research Technology Management, vol. 38, no. 6, pp. 6–7, 1995.

[32] J. Ponn, C. Baumberger, and U. Lindemann, “Guidelines for the devel-
opment of individualized products,” in DESIGN’04, 2004.

[33] S. Greenberg and I. H. Witten, “Adaptive personalized interfaces: A
question of viability,” Behaviour and Information Technology, vol. 4,
no. 1, pp. 31–45, 1985.

[34] K. Z. Gajos, M. Czerwinski, D. S. Tan, and D. S. Weld, “Exploring the
design space for adaptive graphical user interfaces,” in AVI’06, 2006, pp.
201–208.

[35] E. Horvitz, “Principles of mixed-initiative user interfaces,” in SIGCHI
’99, 1999, pp. 159–166.

[36] C. G. Thomas and M. Krogsæter, “An adaptive environment for the user
interface of excel,” in IUI ’93. AC, 1993, pp. 123–130.

[37] K. Z. Gajos, R. Hoffmann, and D. S. Weld, “Improving user interface
personalization,” in UIST ’04, 2004.

[38] K. Z. Gajos, J. J. Long, and D. S. Weld, “Automatically generating custom
user interfaces for users with physical disabilities,” in Assets ’06, 2006,
pp. 243–244.

[39] K. Z. Gajos, J. O. Wobbrock, and D. S. Weld, “Automatically generating
user interfaces adapted to users’ motor and vision capabilities,” in UIST
’07, 2007, pp. 231–240.

[40] K. Z. Gajos, J. O. Wobbrock, and D. S. Weld, “Improving the performance
of motor-impaired users with automatically-generated, ability-based inter-
faces,” in SIGCHI ’08, 2008, pp. 1257–1266.

[41] R. Oppermann, Ed., Adaptive User Support : Ergonomic Design of
Manually and Automatically Adaptable Software. Erlbaum Assoc., 1994.

[42] C. Berger and F. Piller, “Customers as co-designers,” Manufacturing
Engineer, pp. 42–45, Aug./Sep. 2003.

[43] R. T. Rust and K. N. Lemon, “E-service and the consumer,” Int. Journal
of Electronic Commerce, vol. 5, no. 3, pp. 85–101, 2001.

[44] J. H. Gilmore and B. J. P. II, “The four faces of mass customization,”
Harvard Business Review, vol. 75, no. 1, pp. 91–101, Jan.-Feb. 1997.

[45] J. McGrenere and G. Moore, “Are we all in the same “bloat”?” in
Graphics Interface, 2000.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 299

A Graphical Approach to the Development of

Deployment Agnostic Systems

Dr. Mark.B.Dixon
School of Computing and Creative Technologies, Leeds Metropolitan University, Leeds, England

Abstract - The ever expanding number of environments in
which computer systems are being used has led to the
evolution of numerous development languages, tools and
techniques. This paper discusses a predominantly
graphical approach to software development that is
deployment platform agnostic. The aim is to provide
engineers with an approach to development that is general
enough to be applied across the multitude of problem
domains. By using a purely component based approach, in
which target platform specifics are hidden from the
language design, it has become possible to build a set of
interrelated tools which allow for the development,
manipulation and exchange of implementation solutions.

Keywords: modeling; graphical; component; deployment

1. Introduction

One of the main difficulties faced by software engineers

is the shear array of available development languages, run-
time platforms and deployment architectures. The decision
of which combination of available tools and techniques to
be used is often dictated by the nature of the target system.
Broadly speaking target systems can be classified as being
desktop applications, mobile applications, embedded
control systems, web applications, and distributed
applications including Service Oriented Architectures
(SOAs). Many of these systems are multi-tier of course,
meaning that many modern solutions are actually a hybrid
of the aforementioned categories.

The presence of multiple deployment possibilities has
led to fragmented development approaches, not just at a
language level but also at a tools level. For example,
embedded systems development is vastly different to SOA
development in terms of implementation languages,
development approaches, tracing, debugging etc. The work
described within this paper aims to provide a single
development technique underpinned by a set of tools
capable of supporting different target platforms.

The suggested technique and supporting tools, which
has been named the Razor Development Environment
(RDE), consists of a component oriented graphical notation
supported by an underlying 3GL type language. The
enforced use of a component based structure and strong

support for re-use among components allows the majority of
a solution to be developed using existing generic
components which do not include any target specific
information. A small number of platform specific
components can then be linked with the main solution to
produce a deployable system.

2. Background

The graphical notation of the RDE was initially devised

as part of a project to develop an embedded operating
system [1]. This initial work was extended upon in an effort
to allow the technique to be applied to a wider variety of
problem domains, including those outside the embedded
systems arena. During this work much consideration was
given to the best mechanism of supporting deployment of
RDE based systems. The possibilities considered included
run-time interpretation; native compilation; and language
translation. The former of which has been implemented in a
reference implementation.

The fact that there were so many deployment possibilities
led to initial confusion. It became clear however that this
level of flexibility was actually a strength of the approach
since it provided the basis of a platform neutral technique.
By removing certain constructs from the core RDE, such as
direct support for dynamic component instantiation and
multiple threading, a fully deployment agnostic approach
was developed.

3.The Razor Development Environment
3.1 Overview and Architecture

The RDE provides a selection of tools and techniques
that allow the development of software systems using a
reusable component based approach. At the core of the
environment sits a Document Object Model (DOM) that
provides a canonical representation of the application under
development. This DOM defines the available components
along with how they are configured and connected via their
interfaces.

The DOM may be populated using a graphical notation,
a textual 3GL type language or an XML document. These
three representations are 100% semantically equivalent,
hence DOM contents can be manipulated using any
representation, independent of the original input method.
Any number of deployment tools can then be developed to

300 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

produce systems via interrogation of the DOM. A graphical
representation of the environment [2] is shown in Fig. 1.

Figure 1. The Razor Development Environment

A developer can work on components with only limited
regard for the architecture on which they are to be deployed,
hence most components are generic re-usable objects. Only
target specific components need to take into account
deployment and domain specifics. Due to loose coupling
and strong reusability support, both generic and platform
specific components can be easily sewn together to provide
a complete solution.

The RDE has implicit support for automated testing.
The ability to specify compliance tests when defining
component interfaces ensures better support for mature
concepts such as the Programming by Contract [3] approach
along with contemporary development practices such as
Test Driven Development (TDD) [4]. Implicit testing
support also allows for better independent development of
components, since associating well defined tests with
specific interfaces in effect provides a mechanism of
ensuring semantic compliance.

3.2 Design Principles
The RDE was designed by taking into account many

commonly agreed upon design principles, mainly derived
from the Object-Oriented paradigm. Many of these concepts
enhance the capability for component re-use, which is
fundamental to the RDE approach.

The RDE is extremely 'interface centric' in nature. In
fact, only interface definitions may represent a type within
the system (languages such as Java, C++ and Objective C
allow implementation classes to be used as the type of
variables and parameters). This design principle is very
important for re-use since only interfaces are ever passed as
values between component services, also the inheritance
model is simplified since implementation inheritance is no
longer required or even possible. The demotion of the
traditional 'Class' may seem radical but it allows for much
better support for the Open-Closed principle [5] which
states that elements should be open for extension but closed
to modification. It also helps address the well known fragile

base class problem [6] since inheritance hierarchies are
interface based, rather than implementation based. Finally,
the Liskov Substitution Principle [7] is well supported, not
only due to the interface centric nature but due to the ability
to ensure semantic compliance of interfaces via implicit
testing support.

Systems are defined by identifying component instances
and binding them together via their external ports. Each port
represents a single interface which defines a number of
services, attributes or signals. Each component instance acts
as an implementer of one or more port interfaces, either
directly through terminal ports or by delegation to sub-
components. This multi-interface ability supports the
Interface Segregation Principle [8] which promotes the idea
of providing many fine grain interfaces in order to help
reduce dependencies.

The rules that determine the legality of port bindings
between components are based on a signature which does
not include the name of the port, only the type information.
This loosens the coupling somewhat between components,
again promoting re-use. This in-turn also enhances support
for the Dependency Inversion Principle [9] that suggests
higher level components should not be dependent on lower
level components. Within the RDE lower level components
can be connected via ports rather than being embedded
within the higher level components. The dependency
injection pattern [10] is also easily supported by the binding
together of higher and lower level components. The
weakened port binding semantics also mean that
components can be developed more independently, since
their visible namespace is only defined within the
component itself. Hence, the implementation never needs to
be aware of port names that exist outside of the immediate
component. Well known classical design patterns [11] are
much easier to support in an interface centric component
based approach which exhibits low coupling.

3.3 The Graphical Notation
One of the primary aims of the RDE was to support a

predominantly graphical model based approach to
development. Abstracting to a graphical representation not
only simplifies development but better supports the ability
to hide deployment specifics. It has been pointed out that
model driven approaches are better placed to deal with the
complexities of modern platforms, while also allowing
better representation of problem domain concepts [12].

A graphical notation has been defined to allow the
declarative definition of RDE based software systems. This
notation, known as (Razor's) EDGE, allows for the
construction of an entire system via the use of a single
diagram type. Rather than base the notation on an existing
notation, for example by defining a UML profile [13], the
decision was made to create the simplest notation possible;
while still supporting all required concepts of the underlying
DOM.

Unsurprisingly the key elements represented within the
notation are Interface and Component definitions. Each of
these elements is capable of hosting one or more Ports. Both

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 301

Interfaces and Components are represented using the same
graphical shape, which may seem odd at first but allows for
the use of a single model to define all parts of a system. An
interface defines a number of 'provided' and 'required' ports,
which in essence determines the direction of dependency
when a port based on the interface is bound. The example
presented in Fig.2 shows the definition of a ‘Flow’ interface
that allows controlled flow of data. A single service is
‘provided’ and two signal ports are ‘required’ in this
particular example.

Figure 2. An interface defined using the graphical notation

A component realizes the implementation of a number

of interface types. This is accomplished by either providing
a terminal port; or delegating to a sub-component instance.
Components can also 'provide' and 'require' a number of
ports, which are independent of any ports that are defined
on implemented interfaces.

An example of a Component is shown in Fig. 3. In this
example several contained part instances both provide and
require the previously defined ‘Flow’ interface.

Figure 3. A component defined using the graphical notation

As well as being able to represent the internals of a
component using a structural model, components can also
be defined as finite state machines. This allows for the
definition of control processes such as those used in real-
time embedded systems or SOA orchestration languages
such as the Web-Services Business Process Execution
Language (WS-BPEL) [14]. Interestingly enough almost
exactly the same notation can be used to show either

definition style, with only the addition of transitional flows
being required to support the state machine approach.

All ports have a nature that determines whether they
provide a service, store an attribute, represent a signal or are
compound, i.e. are nested ports based on other interfaces.
Support for compound ports is a very important abstraction
mechanism and allows interfaces which are commonly used
together to be wrapped into a single conduit type port.

Configuration values and configuration types are used to
support customization of components during instantiation.
These are analogous to constructor parameters and generic
types respectively.

Terminal service implementation code is defined using a
simple 'C' like grammar. Within the initial reference
implementation Javascript was used but has since been
replaced as many concepts supported by Javascript are
simply not required within the RDE. The language is only
required to consist of standard statements and expressions.
Support for creating new objects for example is handled
using components, since this is a deployment specific aspect
and is not always supported by certain domains such as
resource constrained embedded systems.

3.4 The Model Definition Language
A Model Definition Language (MDL) was developed as

an alternative mechanism for populating the RDE DOM.
Although regular use of the EDGE graphical notation is the
final aim, during the research phase the ability to quickly
change the grammar rules within a parser make a 3GL
textual language more appealing at this time.

The MDL provides the same constructs as the graphical
notation as keywords within the legal grammar. The
language supports definitions of interfaces, components
(using the ‘implementation’ keyword) and binding of ports.
The service implementation code uses exactly the same
grammar as it does within the EDGE graphical notation;
hence MDL is a superset of the imperative code used in the
EDGE model. Example MDL code that is equivalent to the
previous example is shown in Fig. 4.

Figure 4. A component defined using MDL based code

implementation ExampleSystem {

 provides {

core.App app;
 }

parts {

Producer producer();
Consumer consumer();
Buffer<core.Int> buff(256);

}

bindings {

 producer.output -> buff.in;
 buff.out -> consumer.input;
 app.main { /* Imperative code to start the app */ }

}
}

302 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

4. Related Work

The existence of component based techniques is well
established. Technologies such as DCOM [15], Corba [16]
and JavaEE [17] tend to focus on higher level distributed
components however, and often act as a wrapper for
existing languages. Hence, they represent a different layer
in the software stack than the RDE which constructs
systems from components but does not necessarily deploy
them as such. OSGi [18] has a little more in common with
the RDE since it is not specifically designed to create
distributed systems. However it has not been designed to be
deployment agnostic and requires a very specific run-time
environment.

The work most closely related to the RDE appears to be
work carried out by France Telecom within the Fractal
Project [19]. This too is a component based approach in
which models can be graphically defined. An Architectural
Description Language [20] is supplemented with C++ or
Java in order to build a full system. Although there are
similarities they are also differences regarding environment
semantics and the graphical notation. As with the more
established technologies, Fractal is primarily based on
wrapping existing programming languages. Also the
bindings between components within Fractal can be
representative of higher level network connections etc.

The RDE is in effect an instance of the Model Driven
Engineering (MDE) approach. Hence, from a modeling
point of view the UML and related MDA technologies [21]
cannot be ignored. The model driven paradigm as defined
by the Object Management Group (OMG) aims at providing
platform independent models which are mapped to platform
specific models using transformation rules. This concept
however is fairly complex and requires the definition of
multiple mapping and translation rules for each deployment
target. Introducing more complexity into the development
process is the opposite of what the RDE approach is trying
to accomplish.

In terms of purely graphical development of software
systems, the MIT App Inventor software [22] and its
underlying technologies seem to be based on similar
concepts to the RDE. However, the graphical aspects of the
RDE are provided to support an architectural level of
design, whereas the App Inventor supports graphical design
of the user interface along with the procedural aspects of the
system. Hence the RDE EDGE notation provides a higher
level of abstraction with the lower level imperative code
being defined using a 3GL type language (MDL).

The fundamental difference between the RDE and the
related work is that its primary aim is to provide a single
format that allows for the definition, exchange, and
deployment of components which when combined can be
used to create software solutions for a diverse set of
application domains. In many respects it is synonymous to
the philosophy that drove the development of the XML, but
instead of being data centric, it is behavioral centric in
nature. The tools and techniques developed within the RDE
are all specifically designed to provide a realization of this
core concept.

5. Evaluation

An initial Java based implementation of the RDE DOM
and MDL parser has shown the concept to be a viable
approach. These tools are likely to form the basis of an
initial release of the environment and have been developed
with a commercial strength product in mind. In contrast
however, the current run-time environment in which the
systems are deployed is unlikely to be usable for real
systems. This is because it is a simple interpreter which is
capable of executing DOM defined models. Although this
serves as a good reference implementation for testing
purposes it lacks good performance and does not currently
apply any optimization prior to execution.

Although a full implementation of the EDGE notation is
not yet complete a prototype has been developed as an
Eclipse based GEF [23] dependent plug-in. A screenshot of
the graphical editor is shown in Fig.5. At the moment this is
not yet functional enough to support development of test
systems, thus all current evaluation has been done by
developing systems using the purely textual based language
(MDL).

Figure 5. A screenshot of the prototype EDGE tool

The development of the test systems has gone some way
to validating the supported constructs along with the
mechanics of the approach. This work has also shown
however that development via the textual based language
alone is a fairly difficult process when compared to
traditional OO based programming in languages such as
Java. This appears to be due to the fact that the RDE was
always designed to be predominantly graphical in nature;
hence using a textual language to define the architectural
properties of a system is often likely to be counterintuitive.

The development of the run-time environment has also
highlighted difficulties when providing an implementation
mechanism for compound natured ports. There is a large
amount of complexity involved in ensuring that bindings
between nested ports are configured correctly during
deployment. The ability to pre-examine models and
produce optimized compiled code is likely to reduce this
problem in the future when compilation or language
translation becomes the preferred mechanism of
deployment.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 303

6. Conclusions and Future Work

Once a full set of development tools are available the
system will need to be more thoroughly evaluated via the
production of some industrial strength solutions. The
significant point is that the available set of tools will be
applicable to the development of all Razor based systems
irrespective of the target platform. Only the deployment
specific compilers or run-time environments need to be
target aware.

A component model such as this could only be a
practical reality if mechanisms for the locating and
matching of components were provided. Hence publishing
and discovery services, such as the Web Services
Description Language (WSDL) [24] and Universal
Description Discovery and Integration (UDDI) [25], need to
be adapted to work within the scope of the RDE.

There needs to be more work undertaken on creating
both deployment agnostic and deployment specific
components. Once a library of components is available the
tool can be released to a wider audience in order to gather
feedback. The creation of an open source tool chain, along
the same lines as the GNU GCC project [26], would help
maximize availability of the proposed approach and provide
a low cost of entry for prospective developers. The
compilation of Razor compliant components directly into
native machine code is the next major aim of this work.

References

[1] K.Tindell and M.B.Dixon, ‘Scalios’, A scalable Real-Time
Operating System for resource-constrained embedded
systems, computer software. Published by JK Energy Ltd.
2008. Available from: https://github.com/jkenergy/scalios/

[2] M.B.Dixon, “Supporting component oriented development
with reusable autonomous classes,” ARPN Journal of
Systems and Software, vol.1, no.5, August 2011, pp. 182-
193, ISSN 2222-9833.

[3] B. Meyer, Applying "Design by contract," Computer (IEEE),
vol. 25, issue 10, October, 1992, pp. 40–51,
doi:10.1109/2.161279.

[4] K. Beck, Test-Driven Development by Example. (The
Addison-Wesley Signature Series), Addison Wesley, 2002.

[5] B. Meyer, Object Oriented Software Construction. Prentice
Hall, p 23, 1988.

[6] L. Mikhajlov and E. Sekerinski, “A study of the fragile base
class problem,” Proc. ECOOP'98 - 12th European
Conference on Object-Oriented Programming, Brussels,
Belgium, 1998, pp 355-382.

[7] B. Liskov and J. Wing, “A behavioral notion of subtyping,”
ACM Transactions on Programming Languages and Systems
(TOPLAS), vol 16, issue 6, November, 1994, pp. 1811 -
1841.

[8] R. Martin, The Interface Segregation Principle, C++ Report,
August, www.objectmentor.com/resources/articles/isp.pdf,
1996.

[9] R. Martin, The Dependency Inversion Principle, C++ Report,
May, www.objectmentor.com/resources/articles/dip.pdf,
1996.

[10] M. Fowler, Inversion of Control Containers and the
Dependency Injection Pattern,
http://martinfowler.com/articles/injection.html, Jan 2004.

[11] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley, 1995.

[12] D. C. Schmidt, “Model Driven Engineering,” Computer
(IEEE), vol. 39, issue 2, February, 2006, pp. 25-31.

[13] J. Rumbaugh, I. Jacobson and G. Booch, The Unified
Modeling Language Reference Manual, 2nd Edition. Object
Technology Series, Addison Wesley, Chapter 12, 2004.

[14] OASIS, Web Services Business Process Execution Language
Version 2.0 standard. http://docs.oasis-
open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html, April 2007.

[15] T. L. Thai, Learning DCOM, O’Reilly Media, 1999.
[16] Object Management Group, Common Object Request Broker

Architecture (CORBA), http://www.omg.org/spec/CORBA,
1997.

[17] J.Farley and W.Crawford, Java Enterprise in a Nutshell,
O’Reilly Media, 3rd Edition, 2005.

[18] OSGi Alliance, “OSGi Service Platform Release 4,” OSGi
Alliance Specifications,
http://www.osgi.org/Specifications/HomePage, 2009.

[19] OW2 Consortium, The Fractal Project, http://fractal.ow2.org,
2009.

[20] M. Leclercq, A.-E. Ozcan, V. Quéma and J.-B. Stefani,
“Supporting heterogeneus architecture descriptions in an
extensible toolset,” Proc. 29th International Conference on
Software Engineering (ICSE 2007), Minneapolis, MN, USA,
May 2007.

[21] A.Kleppe, J.Warner and W.Bast, MDA Explained: The
Model Driven Architecture: Practice and Promise. Object
Technology Series, Addison Wesley, 2003.

[22] D.Wolber, H.Abelson, E.Spertus and L.Looney, App
Inventor, May 2011. O’Reilly.

[23] The Eclipse Foundation, The Graphical Editing Framework
(GEF), http://www.eclipse.org/gef, 2010.

[24] W3C, Web Services Description Language (WSDL) Version
2.0 Part 1 : Core Language. http://www.w3.org/TR/wsdl20,
2007.

[25] OASIS, UDDI Specification 3.0.2.
http://uddi.org/pubs/uddi_v3.htm, 2004.

[26] Free Software Foundation, GCC, the GNU Compiler
Collection, http://gcc.gnu.org/, 2011.

304 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Non-Simultaneous Round-Trip Engineering

for 3D Applications

Matthias Lenk1, Arnd Vitzthum2, Bernhard Jung1

1Virtual Reality and Multimedia Group, TU Bergakademie Freiberg, Freiberg, Germany
2University of Cooperative Education, Dresden, Germany

Abstract— This contribution presents a novel extension of

round-trip engineering (RTE) to the development of inter-

active 3D applications. RTE is a model-driven software de-

velopment process which combines forward (model-to-code)

with reverse (code-to-model) engineering in an iterative fash-

ion. Today, several tools exist that support the simultaneous
editing of UML diagrams and program code. However, devel-

opment of 3D application involves different developer groups,

i. e. 3D content designers and programmers, who make use of

different tools, and produce different types of program code,

i. e. the graphical 3D objects and the application logic. Thus,

a non-simultaneous means of synchronizing the different code

bases with the common model is required. To address the

challenges of non-simultaneous RTE for 3D development,

we propose a multi-tiered approach comprised of a common

domain model written in a DSL for 3D applications, an

intermediate model, abstract syntax trees, and program code

in the respective target languages. A persistent intermedi-

ate model serves as central data structure for the non-

simultaneous synchronization of the various models and code

artifacts.

Keywords: Round-trip engineering, model transformation, code

generation, X3DOM

1. Introduction
Today, 3D computer graphics are indispensable in many

domains, such as CAD and architectural planning, infor-
mation visualization, training simulations, medical and ed-
ucational applications as well as entertainment. Many 3D
applications are implemented for different device classes
from ordinary PCs, over mobile devices, up to immersive
Virtual Reality installations. Further, development of 3D
applications is an interdisciplinary process that involves
disjoint groups of 3D content designers and programmers.
Tooling support is mostly limited either to the 3D modeling
or to the programming task. For instance, the 3D content
may be declared in X3D or VRML and is edited within a
3D modeling tool, like Blender1 or 3DS Max2, while the
program code, that could be encoded e. g. in JavaScript or
Java, is edited in an appropriate IDE, such as Eclipse3 or

1http://blender.org
2http://autodesk.de
3http://eclipse.org

Netbeans4. However, at some point the 3D content as well
as the program code have to be integrated into the overall
3D application. Due to the concurrent development process
and different terminologies used in the two developer groups,
inconsistencies may appear within the developed software.
For example, a 3D designer might change the name of a
3D object while the programmer depends on the original
naming to address the 3D object from the application code.
Therefore, 3D applications are usually developed within an
iterative process.

As argued in [22], the above challenges call for an iterative,
model-driven development (MDD) process, particularly with
round-trip engineering (RTE) methods. MDD, by using a
common abstract model for the 3D and program code,
supports multi-platform development and can be instrumental
in the resolution of the above-mentioned inconsistencies.
RTE is a software development process that combines auto-
mated forward (model-to-code) with reverse (code-to-model)
transformations [4]. In the context of iterative, model-driven
3D development, RTE offers to simplify the necessary syn-
chronization between the common model and the different
code bases.

RTE has proven useful in the development of “conven-
tional” software as exemplified by several existing integrated
tools supporting the simultaneous editing of UML diagrams
and program code. However, development of 3D applications
involves (at least) two types of program code, i. e. 3D code
and application logic (in case of multi-platform development,
there will even be several variants of the program code). Due
to the concurrent development process in conjunction with
the preference for very different modeling/programming tools
between 3D designers and programmers, the use of a (yet to
be developed) integrated tool for the various tasks seems not
advisable for 3D development. Instead, an approach should
be taken, where the distinct developer groups (software
modelers, 3D designers, and programmers) each can employ
their tools of choice. As a consequence, synchronization
between the model and program code bases must occur in a
non-simultaneous fashion.

In the following, we introduce a novel RTE approach for
development of 3D applications. Its main features are:

• A domain specific language (DSL) called SSIML [23] is

4http://netbeans.org

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 305

used to specify an abstract model of a 3D application.
SSIML models can be specified in a graphical editor
(Section 2).

• Forward model-to-model transformations (M2M) and
code generation (model-to-text, M2T) for multiple target
languages, such as JavaScript and X3D (Sections 3.2
through 3.4).

• Reverse transformations and model merging for syn-
chronization of modified models and source code ar-
tifacts (Section 3.5).

We also discuss the state of our implementation and first
experiences (Section 4), relate the proposed approach to other
work (Section 5), before we finally conclude (Section 6).

2. Preliminaries

2.1 An illustrating example

For a better illustration of 3D application development,
involving our approach for round-trip engineering, we in-
troduce a small example that is a simulation of a robot in a
factory. The 3D scene is built up of the following 3D objects:
A factory hall (Figure 1(a)) that already contains accessories
like boxes, a simplified model of an industrial robot (Figure
1(b)) that is explicitly made up of its single components
and a console with separated buttons and desk (Figure 1(c)).
Furthermore, the application shall provide an interactive part
that allows the user to control the robot directly within the 3D
scene, by pressing buttons on the console using the mouse.
To declare the 3D scene and to exemplify our round-trip
process we chose X3D [9] as the first target language. To
easily publish the example application in the web we use
X3DOM [5] that allows for rendering X3D scenes in modern
web browsers using WebGL. Additionally, we use JavaScript
as second target language to animate the 3D robot.

2.2 Graphical Model Editor

We use SSIML (Scene Structure and Integration Modeling

Language) [23], which allows for modeling so called 3D
scene graphs at a high level of abstraction. 3D scene graphs
are directed acyclic graphs (DAGs) forming transformation
hierarchies of 3D objects. Furthermore, in interactive 3D
applications, there typically exist interrelationships between
elements of the 3D scene and application components that
are responsible for flow control and that hold additional data.
For instance, an application component needs to modify node
attributes of the 3D scene, e. g. to animate the robot.

We developed an editor to create SSIML domain models to
describe the 3D application, including the 3D scene as well
as interrelationship elements. The graphical SSIML editor
is implemented using the Graphical Modeling Framework5

(GMF) atop of the Eclipse Modeling Framework6 (EMF).

5http://eclipse.org/modeling/gmf/
6http://eclipse.org/modeling/emf/

(a)

(b) (c)

Fig. 1: (a) The 3D factory hall includes the structure and
accessories. (b) The single parts of the industrial robot. (c)
A simple console with buttons, meant to rotate the segments
of the robot.

To improve the interdisciplinary development process with
3D designers, an evaluated icon design is used.

Figure 2 shows the graphically modelled example de-
scribed in Section 2.1. The scene model contains several
group nodes to structure the 3D scene as well as the single
objects. The object nodes contain relevant attributes, e. g.,
each instance of the four console buttons is connected to a
touch sensor attribute. When a button is pressed by a user,
the associated sensor will notify the RobotControl class in the
interrelationship model. This application component, which
will later be realized as a set of JavaScript functions, is able to
access the transformation attributes and therefore can animate
the robot.

3. Concept: RTE for 3D Applications

3.1 Basic approach

RTE combines forward engineering with reverse engineer-
ing, while preserving manually developed code, that cannot
be reflected in the domain model. The algorithm which
synchronizes different code bases has to resolve conflicts that
may appear due to the concurrent code development.

306 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Fig. 2: The robot example in the graphical SSIML editor.

Common methods for (simultaneous) RTE, as provided by
various tools (cf. Section 5), are not applicable in the domain
of 3D applications. As mentioned above, 3D applications are
made up of at least two target languages, e. g. JavaScript
and X3D. 3D content designers will use their favorite 3D
modeling tools whereas an adequate IDE will be used by
programmers. Therefore, modifications to the program code
and 3D content cannot be tracked and mapped to the do-
main model in real time. Thus, an asynchronous – or non-
simultaneous– round-trip is required.

Two methods are common for storing the model and the
source code, both using a decentralized approach: In the first
approach, model and source code are stored separately, in a
model file and in the respective source code files. The manu-
ally created source code contains the detailed information of
the application, that cannot (or should not) be reflected in the
domain model. In the reverse step, changes are extracted from
the source code and applied to the model. In the forward step
of the next iteration, where changes in the model are applied

Fig. 3: The overall round-trip process with the participating
models and transformations between them.

to the code, manually developed source code from prior
iterations has to be preserved. This can be achieved by active

code generation, in particular through weaving the code or
protected regions [19], [16]. While this storage approach
allows for synchronizing all language elements that can be
reflected in the domain model, it is also limited to them.
The platform independent SSIML model does not contain
specific features, e. g. a concrete color value of a 3D object.
Therefore, with this approach, same elements from different
target languages, e. g. pure X3D code and slightly different
X3DOM web code, cannot be synchronized.

In the second approach, the model is not stored separately,
but within the source code [6]. However, in 3D develop-
ment multiple target languages (TLs) are used and thus, the
model would be redundantly contained within several code
bases. Further, to preserve consistency of the full application,
synchronizations have to be performed between each pair of
the TLs in both directions. Therefore the number of merge
transformations quickly increases.

To overcome the synchronization issues of the above
approaches we use a multi-tiered approach to transform
between model and code. Specifically, we introduce a generic
intermediate model (IM) and target language-specific Ab-

stract Syntax Trees (ASTs) [12] as additional representations
to the transformation process. As a positive side effect,
complex transformations are split into sequences of simpler
ones and the extensive code generation process becomes
more manageable, cf. [4]. The introduction of language-
specific models has been proposed before, e. g. in the context
of multi-target user interfaces [7].

Figure 3 describes our overall round-trip process. The
SSIML model (during forward transformation) as well as the
ASTs (during reverse transformation) are transformed into a
corresponding IM representation. Each IM is then merged
into a persistent IM, that serves as a central storage for the
transformed SSIML model as well as for every transformed
AST (that contains the code semantics). Therefore, the IM
allows for the complete re-generation of the SSIML model
and the ASTs. Code is generated from the ASTs in the last
forward step (Section 3.4).

The IM describes the SSIML and AST contents in
a generic fashion (much like an object-oriented database
would), see Figure 4. IM classes contain attributes to store
data as well as specific meta data of the involved languages
and the Ecore-based SSIML model. In this way, the IM can
accommodate all relevant information from the SSIML model
and code artifacts. Since IMs from different code based have
to be merged into one single IM during the reverse step,
conflicts may appear. To handle these conflicts without the
loss of data each intermediate attribute provides a history
that holds information about recent changes, in particular
the modification type and the previous value. The IM is not
meant to be viewed or edited by a user.

In order to facilitate a non-simultaneous round-trip, it must

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 307

Fig. 4: The generic structure of the intermediate metamodel.

be possible to uniquely identify an element’s representations
in the various models and code bases, even if the element is
substantially changed during the editing process. Therefore,
as in [3], we provide a unique ID (UUID) for each element.
The ID is stored in its model element and in comments within
the source code.

3.2 Generic transformations (SSIML to IM)

The first step in our round-trip scenario is to transform the
graphically created SSIML model into a new IM. As noted
above, the IM has a generic structure and thus generic M2M
transformations are appropriate (Figure 3, generic M2M).
Transformations between SSIML and IM are performed with
EMF, that provides a reflective API [20], which is comparable
to the Java reflection API but operates on Ecore classes. We
transform each SSIML Element to an intermediate object

and accordingly each associated attribute to an intermediate

attribute. Since no further conversions are performed during
the forward transformation, the SSIML model can also be
reconstructed from the IM, by using generic reverse trans-
formations.

3.3 Specific transformations (IM to AST)

The next step of the forward phase is the transformation
of the (persistent) IM into several ASTs. Referring to our
example, where a 3D web application based on X3D and
JavaScript has to be generated, two transformations are
performed. The description of the 3D scene is extracted
from the IM and converted into an AST for the X3D code.
Analogously, the definition for the application is transformed
into an AST for the JavaScript code. Generic transformations
are not suitable for this task, since target language-specific,
complex mappings and assignments have to be performed.
Rule-based and hybrid transformation languages like ETL
[14] operate on models and allow for the declarative transfor-
mation of model elements as well as for further assignments
in an imperative manner. Rules to assign cross references
within the AST or to create the concrete structure of the

AST assume that the involved elements are present [18].
Using ETL, we split each IM-to-AST transformation into
three phases: In the first phase, all elements of the AST
are created, while their content and the concrete structure of
the tree remain disregarded. In order to reduce the amount
of necessary transform rules, we additionally make use of
a simple mapping model, i. e. Metamodel Mappings [15]
that defines associations of IM elements (actually SSIML
elements) to language elements of the AST. Listing 1 shows
the rule to transform relevant intermediate objects (accord-
ing to the mapping model) into their equivalent JavaScript
representation.

rule IMObjectTOJavaScriptElement
transform imObj:im!IntermediateObject
to Any
{

var javascriptfile:jsm!JavaScriptFile
= jsm!JavaScriptFile.allInstances.first();

var mapping = mapping!SourceElement.allInstances
.selectOne(s|s.type = imObj.featureType)
.mappingContent.asSequence();

for(targetElement in mapping)
{
var jsElement = createJavaScriptElement(...);
javascriptfile.objects.add(jsElement);

}
}

Listing 1: An ETL Rule to instantiate JavaScript elements
from intermediate objects, using an additional mapping.

In the second phase, we establish the concrete structure of
the AST and assign uninitialized attributes. In the third and
final phase, we remove inconsistencies and evaluate the AST
in a post block [14]. E. g., the viewpoint attribute in Figure
2 has no association to any JavaScript element. However,
due to the static mapping a corresponding JavaScript element
is created during the transformation. Since this viewpoint
attribute is not meant to be addressed from the JavaScript
code it has to be removed from the AST.

3.4 Code generation (AST to code)

In the final step of the forward transformation pipeline, the
ASTs need to be converted to code skeletons in the respective
TLs. Code generation can be performed with various trans-
formation languages, with some popular ones being JET [1],
Xpand [2], EGL [19] and MOFScript [16]. However, these
languages do not provide support for reverse transformations.
Therefore, we opted for another transformation language,
Xtext [10], that allows us to re-use parts of the specification
of the AST-to-code transformation (Figure 3, M2T) for the
reverse code-to-AST specification.

Besides a grammar, Xtext requires a metamodel for each
involved TL (X3D and JavaScript, in our case). For our
purposes, it suffices that these metamodels cover relevant
subsets of the TLs as not every construct of the TL has to
be represented as a distinct type in the AST [12]. In con-
trast to essential JavaScript elements, such as the functions

308 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

RobotControlClass or init, arbitrary hand coded statements
within JavaScript functions have no equivalent representation
in the domain model. Therefore, it is not necessary to
semantically distinguish between these statements and they
can be generalized to arbitrary content.

/**
* @id: JavaScriptFile 12...

*/

function init() {

/**
* @id: Assignment 38...

*/
var robotControlClass = new RobotControlClass();

/**
* @id: Object 1b...

* @id: NodeAttributeRelationship 1f...

* @id: TouchSensor db...

* @id: EventRelationShip c4...

*/
document.querySelector(’[DEF="button0"]’)
.addEventListener("click" ,

robotControlClass.button0_CLICKED);
...

}

/**
* @id: JavaScriptClass 38...

*/
function RobotControlClass() {

/**
* @id: ValueAccessRelationship bf...

* @id: Object c1...

*/
var transform0
= document.querySelector(’[DEF="transform0"]’);

/**
* @id: ValueAccessRelationship 24...

* @id: Object 83...

*/
var transform1

= document.querySelector(’[DEF="transform1"]’);

/**
* @id: UserFunction c4...

*/
this.button0_CLICKED = function(obj) {
}
...

}

Listing 2: JavaScript code skeleton to access the 3D scene.

Listing 2 shows the JavaScript code skeleton that will
be generated from its respective AST. The JavaScript code
emulates the structure of object orientated languages, such
as Java or C++, to simplify the adaption to other target
languages in future work. The generated code is related to the
original SSIML domain model of Figure 2 in the following
way: The SSIML application component RobotControlClass

results in a JavaScript function of the same name that creates
a suitable JavaScript object. The application component’s
action relationships to nodes transform0 and transform1

result in member variables of the JavaScript object. In the
SSIML model, each of the 4 buttons of the control panel
is associated with a TouchSensor. The CLICKED event
relationship to RobotControlClass results in 4 event listen-

Fig. 5: The 3D application with the modified scene and
interactive control functionalities.

ers button0_clicked, etc. Further application logic, e. g. to
calculate the rotation values for a robot animation, will be
manually programmed by filling in code stubs or in additional
functions. Concurrently to the JavaScript refinement, the
generated X3D code is customized by 3D designers, e. g. by
placing the 3D objects in their final positions, fixing lighting
and viewpoints, etc.

The edited X3D model and JavaScript code now define
(a first version of) the 3D application7. E. g. the robot in
Figure 5 is animated by JavaScript functions, when the
respective buttons on the control panel are pressed.

3.5 Reverse transformations and model merg-

ing

For the reverse transformation from code to AST (Figure
3, T2M), Xtext can be used to generate parsers for converting
the source code into corresponding ASTs. Subsequently, each
AST is transformed to a corresponding IM. Every AST
element is converted into the intermediate representation
of the respective SSIML element (Figure 3, M2M). Re-
verse transformations have been implemented for X3D and
JavaScript. For the reverse way we use a mapping model,
which is the inverse to the one of the forward transformation
(Section 3.3). Remaining elements from the AST without
equivalent SSIML representation will be stored in the IM
without further conversions.

Next, each IM needs to be merged into the persistent IM.
We distinguish between three basic modification types that
may occur during an editing process:8

7Available at: http://elrond.informatik.tu-freiberg.de/roundtrip3d/example
8Sometimes a further edit operation “move elements” is considered [8].

We can reduce the move operation to an update of the respective parent-child
properties, since the IM has a flat hierarchy.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 309

1) Updating model elements. The changing of attributes,
e. g., the renaming of 3D objects, is probably the most
frequent modification.

2) Inserting new model elements. For instance a 3D
designer adds a new light source to the scene.

3) Deleting existing model elements. E. g., a 3D designer
removes a button, that is associated with a touch sensor
in the JavaScript code.

Due to the unique identifiers, changes to each element can
be detected. However, in case of conflicting modifications, a
fully automatic merge will not be possible [3]. For instance,
when a programmer has changed the name of the 3D object
segment0 to seg0 in the JavaScript code, while the 3D
designer renamed it to middle_segment in the X3D code, it
is unclear which name should finally be applied. To resolve
such conflicts, we store a history for every intermediate at-
tribute. This history contains applied modifications (updated,
inserted or deleted) and prior attribute values (Figure 4).
Intermediate objects and attributes from each participating
IM are merged into the persistent IM. Afterwards, every
intermediate attribute may contain a history with conflicting
operations. To reestablish consistency of the persistent IM,
the software designer is prompted which of the conflicting
operations finally has to be applied.

In the final reverse transformation from the IM to the
SSIML model (Figure 3, generic M2M), all relevant SSIML
elements are extracted from the persistent IM in a generic
manner, as described in Section 3.2.

In RTE, of course, merging also has to be performed
during the forward transformation (SSIML to IM). This is
done analogously to the described merging during the reverse
phase.

4. Discussion
Our first approach for RTE was to directly generate code

from a SSIML model with MOFScript. This straightforward
model-to-text transformation, however, turned out to be hard
to manage and extend. Therefore, our multi-tiered approach
aims at manageable transformations, which can be achieved
best by using different transformation languages. Reflection-
like transformations in Java convert between the SSIML
model and its generic intermediate representation. Combining
hybrid ETL with an declarative and extendable mapping
model allows for well structured conversions between the
IM and ASTs. Through Xtext, model-to-text as well as text-
to-model transformations are obtained automatically from the
language descriptions without the need of implementing them
manually. Our implementations of forward and reverse engi-
neering confirm the practicality of the multi-tiered approach
in contrast to the immediate model-to-code conversion. For
merging, we use the Epsilon Merging Language (EML) [13]
which also allows for user interactions during the merge
transformations. Storing model information and the com-
plete code base in one common IM representation reduces

the merging complexity dramatically. Instead of numerous
language specific synchronizations among all participating
languages, only one model merging algorithm is needed.

A potential drawback of our approach results from the use
of IDs for tracing elements through the different models and
source codes. While the use of IDs is a common method for
this problem, it will also result in the pollution of models and
source code with IDs. In future work, we plan to experiment
with tree-diff algorithms in order to trace elements without
the need for IDs.

To synchronize different platform variants of code (e. g.
X3D and VRML), the metamodels and grammars must be
specified in detail. Implementing the complete X3D specifi-
cation is also very extensive. For our round-trip scenario, we
mainly cover the basic X3D Interchange profile.

5. Related work

Existing tools, such as UML LAB9 or Together10, provide
support for simultaneous RTE. Models (rendered as UML
class or sequence diagrams) and source code are edited in
the same IDE, while changes to each are directly applied
to its counterpart. Borland’s LiveSource-Technology supports
multiple TLs (Java, C++ and IDL), while the complete model
information is stored in the source code. Synchronizations
are performed between domain model and the respective TLs
and therefore are limited to artifacts which can be reflected
in the model [6]. However, the domain of interactive 3D
applications is not covered by any of these tools.

The above tools mostly realize the concepts described
in [21]. Different views of a software application, e. g. a
model view and an implementation (code) view, have to
be synchronized continuously to minimize the difference in
between them. Furthermore it is assumed that an element
– or actually a meta-element– remains the same within all
views. These two preconditions are inconsistent with the
assumptions of our RTE approach, where complex mappings
between model elements and the source code are performed
and continuous, simultaneous synchronization is not possible.

Previous work on model-centric development [17] de-
scribes methods for multi-platform adaption of existing
source code. More concretely, an X3D scene can be used to
derive a SSIML model, which then can be used for further
MDD, although not full iterative RTE.

The authors of [3] describe model management in the
context of a version control system. To merge two modified
models into the original one, their difference (the delta) is
calculated. This delta, given as a sequence of operations, is
used to detect conflicts which are resolved (automatically or
manually) by modifying the operations. Storing the applied
modifications (update, insert and delete) during the merge

9http://www.uml-lab.com
10http://www.borland.com/us/products/together/

310 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

of the IMs (Section 3.5) is a simplified determination of
conflicting operations.

Aßmann abstracts RTE to mathematical domain transfor-
mations and gives definitions for an Automatic Roundtrip En-

gineering, where an inverse transformation to a given forward
transformation can be calculated [4]. In the context of our
RTE, an automatic determination of an inverse transformation
would be far from trivial, not least because such an inverse
needs not to be unique.

The authors in [11] introduce a new approach to model
RTE by using abductive reasoning. Thereby, modifications of
the target model are observed and a hypothesis for changes
to the source model with respect to the transformations is
derived. Although this approach eases the reverse phase of
RTE, in our case, it does not allow for resolving conflicts
from different intermediate models during the merge.

6. Conclusion

We presented a new approach to the structured develop-
ment of 3D applications based on round-trip engineering.
3D and program code are generated from a common model
specified in SSIML, a DSL for modeling 3D applications.
Reverse transformations and model merging are used for the
non-simultaneous synchronization of the SSIML model with
changes at the code level. The approach was designed in such
a way, that it honors the concurrent development process
involving 3D designers on the one side and programmers
on the other. To the best of our knowledge, the presented
approach is first to apply round-trip engineering techniques
to the development of 3D applications.

In the current state of our implementation, SSIML models
can be specified in a visual editor. Forward and reverse
transformations, including the generation of code skeletons
as well as the non-simultaneous merging of intermediate
models, are implemented for X3D and JavaScript. Building
on the X3DOM framework, functional 3D applications for
the web using X3D and JavaScript can be developed.

For future work, we intend to use tree diff algorithms to
overcome the necessity for UUIDs. Also, support for further
platforms such as immersive Virtual Reality or Augmented
Reality will be investigated.

Acknowledgements

This research was supported by the Deutsche Forschungs-
gemeinschaft (DFG).

References

[1] The Eclipse Foundation: The Model to Text (M2T) project, JET
(2012), http://www.eclipse.org/modeling/m2t

[2] The Eclipse Foundation: The Model to Text (M2T) project, Xpand
(2012), http://www.eclipse.org/modeling/m2t

[3] Alanen, M., Porres, I.: Difference and union of models. pp. 2–
17 (2003), http://www.springerlink.com/content/

y13a5qt85f6f1uak

[4] Aßmann, U.: Automatic roundtrip engineering. Electr. Notes Theor.
Comput. Sci. 82(5) (2003), proceedings of the Fifth Workshop on
Quantitative Aspects of Programming Languages (QAPL 2007)

[5] Behr, J., Eschler, P., Jung, Y., ZÃűllner, M.: X3dom: a dom-based
html5/x3d integration model. In: Spencer, S.N., Fellner, D.W., Behr,
J., Walczak, K. (eds.) Web3D. pp. 127–135. ACM (2009)

[6] Borland: Case study template (2008),
http://www.borland.com/resources/en/pdf/products/

together/together_faq.pdf

[7] Calvary, G.: A unifying reference framework for multi-target user
interfaces. Interacting with Computers 15(3), 289–308 (2003)

[8] Chawathe, S.S., Rajaraman, A., Garcia-Molina, H., Widom, J.: Change
detection in hierarchically structured information. SIGMOD Rec. 25,
493–504 (June 1996)

[9] Daly, L., Brutzman, D.: X3d: extensible 3d graphics standard. In:
SIGGRAPH Asia ’08: ACM SIGGRAPH ASIA 2008 courses. pp. 1–6.
ACM, New York, NY, USA (2008)

[10] Efftinge, S., Völter, M.: oAW xText: A framework for tex-
tual DSLs. In: Eclipsecon Summit Europe 2006 (Nov 2006),
http://www.eclipse.org/Xtext

[11] Hettel, T., Lawley, M., Raymond, K.: Towards model round-trip
engineering: An abductive approach. In: Proceedings of the 2nd Inter-
national Conference on Theory and Practice of Model Transformations.
pp. 100–115. ICMT 2009, Springer-Verlag, Berlin, Heidelberg (2009)

[12] Jones, J.: Abstract syntax tree implementation idioms. Pattern Lan-
guages of Program Design (2003), proceedings of the 10th Conference
on Pattern Languages of Programs (PLoP2003)

[13] Kolovos, D., Paige, R., Polack, F.: Merging Models with the Epsilon
Merging Language (EML). In: Nierstrasz, O., Whittle, J., Harel, D.,
Reggio, G. (eds.) Model Driven Engineering Languages and Systems,
vol. 4199, chap. 16, pp. 215–229. Springer Berlin Heidelberg, Berlin,
Heidelberg (2006)

[14] Kolovos, D.S., Paige, R.F., Polack, F.: The epsilon transformation
language. In: Vallecillo, A., Gray, J., Pierantonio, A. (eds.) Theory
and Practice of Model Transformations, First International Conference,
ICMT 2008, ZÃijrich, Switzerland, July 1-2, 2008, Proceedings.
Lecture Notes in Computer Science, vol. 5063, pp. 46–60. Springer
(2008)

[15] Miller, J., Mukerji, J.: Mda guide version 1.0.1. Tech. rep., Object
Management Group (OMG) (2003)

[16] Oldevik, J.: MOFScript Eclipse Plug-In: Metamodel-Based Code Gen-
eration. In: Proceedings of the Eclipse Technology eXchange workshop
(eTX) (2006)

[17] Pleuss, A., Vitzthum, A., Hussmann, H.: Integrating heterogeneous
tools into model-centric development of interactive applications. In:
Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MoDELS.
Lecture Notes in Computer Science, vol. 4735, pp. 241–255. Springer
(2007), http://dblp.uni-trier.de/db/conf/models

/models2007.html#PleussVH07

[18] Rahimi, Lano: Development and evaluation process of model transfor-
mation. SERP (2011)

[19] Rose, L.M., Paige, R.F., Kolovos, D.S., Polack, F.: The epsilon
generation language. In: Schieferdecker, I., Hartman, A. (eds.) Model
Driven Architecture - Foundations and Applications, 4th European
Conference, ECMDA-FA 2008, Berlin, Germany, June 9-13, 2008.
Proceedings. Lecture Notes in Computer Science, vol. 5095, pp. 1–
16. Springer (2008)

[20] Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse
Modeling Framework. Addison-Wesley, Boston, MA, 2. edn. (2009)

[21] Van Paesschen, E., De Meuter, W., D’Hondt, M.: Selfsync: a dynamic
round-trip engineering environment. In: Companion to the 20th annual
ACM SIGPLAN conference on Object-oriented programming, sys-
tems, languages, and applications. pp. 146–147. OOPSLA ’05, ACM,
New York, NY, USA (2005)

[22] Vitzthum, A., Jung, B.: Iterative model driven VR and AR development
with round trip engineering. In: Proc. SEARIS Workshop at the IEEE
Virtual Reality 2010 Conference. Shaker (2010)

[23] Vitzthum, A., Pleuß, A.: SSIML: Designing structure and application
integration of 3D scenes. In: Proceedings of the tenth international
conference on 3D Web technology. pp. 9–17. Web3D ’05, ACM, New
York, NY, USA (2005)

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 311

Domain-specific transformation of the REA enterprise ontology

Zdenek Melis

University of Ostrava

Czech Republic

e-mail: Zdenek.Melis@Osu.cz

Jaroslav Zacek

University of Ostrava

Czech Republic

e-mail: Jaroslav.Zacek@Osu.cz

Frantisek Hunka

University of Ostrava

Czech Republic

e-mail: Frantisek.Hunka@Osu.cz

Abstract—The paper deals with the general description of the

methodology of the transformation of basic concepts of the

REA enterprise ontology (Resource, Event, Agent) from the

initial visual modeling interface to model source codes. The

paper describes the structure of the script of the domain-

specific language (DSL) and its subsequent transformation into

the executable source code using abstract classes for defining

the structure of the template code. The aim is the creation of

the basic structure of the concept of templates and layout the

code generated from the created model. The model is due to

excessive complexity limited to the use of three basic concepts

of REA enterprise ontology.

Keywords- REA ontology; DSM; DSL; transformation

I. INTRODUCTION

Due to the increasing complexity of information systems,
demands for the control clarity and the simplicity are
increasing. Technologies that use a visual environment come
to the fore. One of the leading technologies based on a visual
programming is a domain-specific modeling (DSM) [1]. It
focuses on one particular domain, which provides the syntax
and the semantic of the visual language and the ability to
transform created models into the executable source code
[1]. Business process modeling is one of complex problems
that use the visual modeling technology. With regard to the
structure of the DSM and code generation possibilities, the
most appropriate technology of the description of business
processes seems to be the REA ontology [2]. The object-
oriented structure of the REA ontology allows
transformation of models into other structures, such as
source code or database schema [8, 9, 10].

II. DOMAIN-SPECIFIC MODELING

Domain-specific modeling is a software engineering
methodology for software development [1]. The primary
focus of DSM is automated development of applications in a
specific domain based on principles of visual programming.
Unlike traditional modeling principles that have a universal
focus, DSM is based on the entirely specific modeled
domain.

The DSM architecture is three layered, although
individual layers overlay to each other. The highest and for
the user the most visible layer is the language. The narrow

focus on a specific domain allows language to correspond by
its whole structure to domain terms. Syntactic aspects of the
language are not limited to textual form, but they can take
any visual form representing concepts of particular domain.
Unlike generally focused traditional principles, semantic
aspects of the language are contained. The second layer is
the generator, which transforms created model into language
of the target platform. The last layer is the domain
framework. It creates a supportive environment for the
generator, which includes many features, such as defining
the interface for the generator, integration of the generated
code into the system, removing duplicate parts, and many
others.

The main advantage of DSM is the automated
transformation without mapping that is a frequent source of
errors. Using of the domain language brings simplicity and
easy manipulation with tool even for non-technical users
who can intuitively use the tool through the knowledge of
the problem domain. The toughest stage in the development
process is creating of the modeling tool. Once the tool is
developed, using this tool for creating software is very
simple and fast. It can increase development productivity up
to ten times [5, 6].

III. THE REA ONTOLOGY

The REA enterprise ontology is the concept for designing
and model creation of enterprise infrastructures. It is based
on resource ownership and its exchange. The aim of most
businesses is the profit generation and therefore they must
ensure the effectiveness, the efficiency and the adaptability
of their business processes and it cannot be done without
their modeling and subsequent analysis [4]. There are many
of business processes modeling tools, but due to inadequate
level of abstraction and the use of general concepts they are
not usable enough for the business process modeling. Rather
than general modeling techniques companies use expensive
software created directly to the specific requirements of a
particular enterprise.

REA ontology does not use general concepts but specific.
They increase the amount of represented data, while
maintaining the simplicity of the model. The REA ontology
model offers 4 levels of abstraction [2, 7]. The highest level
is Value System Level, which represents view of the flow of

312 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

resources between the company and its business partners.
The second level is Value Chain Level describing links
between business processes within a company. The third
level, REA model level, describes a specific business process
and represents the change in the value of resources. The
various concepts of this level can be divided into two groups
– the operational level and the policy level. The operational
level includes the basic concepts describing the specific facts
and events that have already happened. Here are included
concepts forming the name of this ontology - economic
resource, event and agent. The policy level is an extension of
the operational level by concepts specifying rules or allowing
planning. The lowest level of an abstraction is the Task level,
which describes the model instance level, making it an
implementation-dependent.

This paper deals only with the transformation of the
operational level of the REA model level. It has three basic
concepts: economic resource, event and agent. The resource
represents an economic material that the business wants to
plan, manage and monitor. It can include products, money,
services or for example workmen. The economic agent is a
person, group of people or the whole company that has
control over resources. The economic event describes
incremental or decrement change of resource. From the
model perspective the economic event is key for preserving
information, because it determine who, when, why and how
the resource was changed [3].

One of reasons for choosing the REA ontology is object-
oriented structure support that is necessary for successful
transformation. The REA ontology model also includes
internal rules for verifying the consistency of the model,
ensuring correctness of created links. At the same time
models are simple and understandable for ordinary users
who will work with it, but sufficiently precise for its
automation [2].

IV. MODEL TRANSFORMATION

The transformation itself consists of several steps. At the
beginning the user creates a model of a business process in
the visual interface. This interface contains methods for
ensuring the basic model validation by preventing incorrect
links creation alternatively prevent execution of the second
phase - generation.

During the second phase the DSL script is generated
from a visual model, containing basic elements of the
structure of the model and on this basis the source code is
generated.

A. Visual interface

The user creates a business process models in the visual
environment that provides the basic user interface and
performs the validation and the partial verification of the
model. It provides basic semantic correctness of the model
and prevents the generation of incomplete structures. The
visual interface contains the common label of an entity type
and its name and basic data attributes defining its properties.
Figure 1 shows the visual form of the model with attributes.

For simplicity and clarity only basic entities representing
resources, events and agents are used.

Figure 1: Visual representation of the model

The header of each element contains the name and the
type of entity. Under the header there are attributes with a
predefined structure specified by the type of entity. If
necessary the user can expand, or completely change the
structure by adding new attributes or changing existing ones.
The entity Car can serve as an example. In addition to basic
attributes Name and Amount the entity is expand by SN
attribute representing a specific serial number of the car and
Value that represents the value that the resource has for the
company (for example total production costs).

The value on the link between the resource and the event
indicates the amount of resources that is changed within the
event.

B. DSL script

Once the model is completed and validation criteria are

met, a domain-specific language (DSL) script constituting

the regulation for the generator is created. The script is

basically the export of the created model into XML format

with the omission of data related to the visual interface of

the model (such as the placement of elements, their size,

color ...).

The following code fragment represents the DSL script

showing the transfer of the resource entity from the model

shown at Figure 1:

 <resource title="Car">

 <id type="int">1</id>

 <name type="String">Audi A4</name>

 <sn type="String">35A76C38</sn>

 <amount type="int">1</amount>

 <value type="int" currency="USD">

7200</value>

 </resource>

 <resource title="Money">

 <id type="int">2</id>

 <name type="String">Money</name>

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 313

 <amount type="int">50000</amount>

 <currency type="String">

USD</currency>

 </resource>

The code contains new items added by user - value that

represents the value of the economic resource and currency

for defining the exchange of funds handled by business.

Individual links are merged with the appropriate entities.

An example may be the Stackflow link (link between the

Resource and the Event) containing information on the

amount of increase / decrease of resources within a single

event. This attribute is converted into an Event entity. As

mentioned before, the main carrier of information is an

Event entity, which has a significant role in obtaining data

from the model. For this reason, most of links of this model

moves into this entity. Each entity has a unique ID, which is

used for the unique identification of the element and for

replacing individual links by creating reference to that ID.

The following code fragment shows one of event

entities:

 <event title="Sale">

 <id type="int">1</id>

 <name type="String">Sale</name>

 <eventType

type="EventType">decrement</eventType>

 <agentReceiveID

type="int">8</agentReceiveID>

 <agentProvideID

type="int">2</agentProvideID>

 <resourceID

type="int">1</resourceID>

 <date type="String">8.12.2002</date>

 <amount type="int">1</amount>

 </event>

EventType attribute is determined by the type of link

provide/receive, if the event is from the business point of

view incremental or decrement and according to these links

agents are determined too.

Exchange duality saves all references to events

connected with duality.

 <exchangeDuality>

 <id type="int">1</id>

 <eventID type="int">1</eventID>

 <eventID type="int">2</eventID>

 </exchangeDuality>

C. Source code generator

The last phase of the transformation itself is generating
the source code from the created DSL script. Creating a
complete general generator would be inefficient and
implementationaly difficult due to the unchanging structure
of REA ontology elements. Fixed domain structure ensures
durability and stability of domain terms, which allows
predefining the general structure of basic elements. Due to
their limited number it is possible to predefine a common
part of the code that is same in all cases of the use of the
entity as a template. In case of the above model, which is
restricted for using of only three basic entities, two types of
templates are used - an abstract class and a class template.

An abstract class contains the basic code structure, layout
of methods and predefined basic attributes that the given
entity must contain. In the case of transformation of the
model restricted to using only three entities the same number
of abstract classes are fully enough. When extending the
model by other semantic abstractions, the number of abstract
classes is not linear to the number of used entities because
some entities may have more abstract classes based on
specific uses of that entity in the model. Basic abstract
classes are therefore AbstractAgent, AbstractEvent and
AbstractResource.

The abstract class defining the agent entity contains the
basic attributes id, name and company and their access
methods, as shown in Figure 2.

Figure 2: Abstract class for the agent entity

These attributes are common to all agents and can be

individually extended by additional parameters specifying a

particular agent. Using default parameters is not mandatory,

but it is recommended. The creator of the model can ignore

these parameters and creates new one. The only restriction

is that variable names defined in the parent class cannot be

used again with different data type.

The abstract class for a resource entity is defined in a

similar way (Figure 3). Amount attribute indicates the

amount of resources from the business perspective. The

other attributes (id and name) are the same as attributes in

AbstractAgent class.

AbstractAgent

- company: String

- id: int

- name: String

+ getCompany() : String

+ getId() : int

+ getName() : String

+ setCompany(String) : void

+ setId(int) : void

+ setName(String) : void

+ toString() : String

314 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Figure 3: Abstract class for the resource entity

The last abstract class is AbstractEvent that creates a

draft for the event entity (see Figure 4). Unlike the other two

abstract classes it contains the most methods because the

event is carrier of basic properties of the model. Attributes

agentProvideID, agentReceiveID and resourceID store links

with individual agents and a resource.

Figure 4: Abstract class for the event entity

In addition to basic attributes such as id and name the

attribute amount also figures here. It indicates the amount of

resources that is changed within the event. Another

necessary attribute is date, recording the date of the past

event. Calendar class is intended for its preservation, but the

output of the visual interface returns the date as a string and

therefore it is necessary to convert the date inside access

methods. The last parameter is eventType, that specifies the

type of an event, whether it is from the business perspective

incremental or decrement. It is determined by a constant of

enumerator EventType, which is part of this class.

Abstract classes are used to define basic parameters for

the generated class. They are generated using class

templates. They operate on a simple principle: instead of

generating the whole structure of the code, such as headers

of classes, methods, etc., the appropriate template that

contains all of these structures will apply and on the basis of

the script missing data will be add. Part of data can be added

by just replacing non-terminal symbol for the specific name

from the script, other data provides a simple automaton

according to the specified grammar. Non-terminal symbols

are written in a template as non-terminal name between two

percent signs. The following code shows a template for a

resource entity:

public class %className% extends

AbstractResource{

 %attributesDeclaration%

 /*

 * Default constructor

 */

 public %className%(int id, String

name, int amount){

 setId(id);

 setName(name);

 setAmount(amount)

 }

 /*

 * Empty constructor

 */

 public %className%(){}

 %fullConstructor%

 %attributesGetterSetter%

 public String toString(){

 return super.toString()%toString%;

 }

}

Generator processes the template by its division by the %

character to array strings - tokens. Each token is compared
with the list of keywords and if the comparison did not find
any results, the token is written to the file.

 If the token is recognized as a keyword, the output of
automaton corresponding to that keyword is written to the
file. In above template there are many non-terminals. The
first of them is an attribute %className%, which is

AbstractResource

- amount: int

- id: int

- name: String

+ getAmount() : int

+ getId() : int

+ getName() : String

+ setAmount(int) : void

+ setId(int) : void

+ setName(String) : void

+ toString() : String

AbstractEvent

- agentProvideID: int

- agentReciveID: int

- amount: int

- date: java.util.Calendar

- eventType: EventType

- id: int

- name: String

- resourceID: int

+ getAgentProvideID() : int

+ getAgentReciveID() : int

+ getAmount() : int

+ getDate() : String

+ getEventType() : EventType

+ getId() : int

+ getName() : String

+ getResourceID() : int

+ setAgentProvideID(int) : void

+ setAgentReciveID(int) : void

+ setAmount(int) : void

+ setDate(String) : void

+ setEventType(EventType) : void

+ setId(int) : void

+ setName(String) : void

+ setResourceID(int) : void

+ toString() : String

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 315

overwritten by the value specified in the script as a title. Any
spaces or illegal characters are removed. The attribute
%attributesDeclaration% is responsible for the declaration
of new variables. This must be performed by automaton
using the following grammar:

%attributesDeclaration%:

 %attributesDeclaration% -> private

%attribDataType% %attribName%;%n%

%attributesDeclaration%

%attributesDeclaration% -> %e%

The grammar has 2 rules. Until there are other undefined

variables, the first rule is used, but once all new variables

from the script are processed, the second rule is used.

Known data types defined at an abstract class are skipped by

the generator at this stage. Non-terminal %attribDataType%

is replaced by the appropriate data type corresponding to the

attribute type in the DSL script in the section behind the

element name. The element name itself is used to replace

%attribName% attribute. Non-terminal %n% is used by

automaton as the command new line and %e% is empty

non-terminal, in this case the automaton ends and the

generator continues processing other parameters.

Another non-terminal symbol in the template is

%fullConstructor%, that is used to generate the constructor

containing all used variables. Its structure is defined by

following grammar:

%fullConstructor%:

 %fullConstructor% -> public %name%(int

id, String name, String

company%attributes%){

 this(id, name, company);

 %setAttributes%

 }

 %fullConstructor% -> %e%

%attributes%:

 %attributes% -> ,%attribDataType%

%attribName% %attributes%

 %attributes% -> %e%

%setAttributes%:

 %setAttributes% ->

this.set%attribName%(%attribName%);

%n%%setAttributes%

 %setAttributes% -> %e%

The processing of this non-terminal occurs only when

the DSL script contains new attributes, otherwise the output

would be identical to the default constructor. That is why

this structure is implemented by using the non-terminal

instead of fixed placement in the template. The first part of

the template generates the general structure of the

constructor with fixed set of variables of the abstract class.

In the header of the method there is non-terminal

%attributes% which generates a list of all newly added

variables including their data types separated by commas.

The body of method starts with calling the default

constructor. Then %setAttributes% non-terminal is used for

generation of the code to ensure the assignment of method’s

input values to particular variables.

The last non-terminal in the template is %toString%,

which is used for completing toString() method. This non-

terminal is performed only if the element contains new

attributes.

%toString%:

 %toString% -> +"\n%attribName%:

"+get%attribName%()

 %toString% -> %e%

After the template processing is complete, the output is

the class containing the complete source code corresponding

to the particular element in the visual interface:

public class Money extends

AbstractResource{

 private String currency;

 /**

 * Default constructor

 */

 public Money(int id, String name, int

amount){

 setId(id);

 setName(name);

 setAmount(amount);

 }

 /**

 * Empty constructor

 */

 public Money(){}

 public Money(int id, String name, int

amount, String currency){

 this(id, name, amount);

 setCurrency(currency);

 }

 public void setCurrency(String

currency){this.currency = currency;}

 public String getCurrency(){return

this.currency;}

 public String toString(){

316 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

 return super.toString()+"\ncurrency:

"+getCurrency();

 }

}

In a similar way templates for agents and events are

created. In addition to these classes the new class is

generated, which creates instances of created classes and

fills them with data. By extending this class there is a space

for the instance level of visual modeling or to extension the

model by the simulation ability.

V. DISCUSSION ABOUT USING OF ABSTRACT CLASSES

Using abstract classes can greatly simplify the process of

the source code generating, because it is not necessary to

generate repeatedly general and often used structures. The

disadvantage of this solution is the loss of generality of

generated models. Globally, it is not possible to determine

the exact structure of abstract classes of the REA ontology,

because it depends on the specific modeled business

process. It is only possible to determine the estimated

parameters, but not mandatory parameters. For example, the

agent has estimated parameter Name. An abstract class

defines it as a String, but the model creator may require an

instance of some object. Although it is possible to add a new

attribute, it is necessary to choose a different label of the

attribute. The question is, when it is appropriate to use an

abstract class? If the usage of complex data structures in

attributes is not expected, the application of abstract classes

of will significantly facilitate the creation of the generator.

On the other hand, if generality of models and their greater

modeling expressiveness is required, then the application of

abstract classes is not recommended.

ACKNOWLEDGMENT

The paper is supported by the grant reference no. 6141

provide by IGA Faculty of Science University of Ostrava.

REFERENCES

[1] M. Fowler, “Domain-specific Languages”, Addison Wesley

Longman, Inc., 2010, ISBN 0-321-71294-3

[2] P. Hrubý, M. Hučka, F. Huňka, J. Kašík, D. Vymětal, “Víceúrovňové
modelování podnikových procesů (Systém REA)”, 2010, VŠB-TU
Ostrava, ISBN 978-80-248-2334-8

[3] P. Hruby, Model-Driven Design Using Business Patterns, Springer
2006, ISBN-13 978-3-540-30154-7

[4] G. L. Geerts, W. E. Mccarthy, “The ontological foundation of REA
enterprise information systems”, American Accounting Association
Conference 1-34 (2000)

[5] S. Kelly, J. Tolvanen, „Domain-Specific Modeling Enabling Full
Code Generation“, John Wiley & Sons, Inc., 2008, ISBN 978-0-470-
03666-2

[6] Metacase, “Domain-specific modeling with Metaedit+: 10x faster
than UML”, White paper

[7] Ch. L. Dunn, J. O. Cherrington, A. S. Hollander, “Enterprise
Information Systems – A Pattern-Based Approach”, 3 edition,
McGraw-Hill/Irwin, ISBN-13: 978-0072404296

[8] J. Ševčík, Z. Meliš, J. Žáček, F. Huňka, “Enterprise Information
System Design Using REA Enterprise Model”, Strategic Management
and its Support by Information Systems, VŠB - TU Ostrava 2011,
ISBN 978-80-248-2444-4

[9] Z. Meliš, J. Žáček, J. Ševčík, F. Huňka, “Transformation of selected
policy level REA concepts into a relation database”, VŠB-TUO,
2011, ISBN 978-80-248-2487-1

[10] T. Halpin, “Information Modeling and Relational Databases: From
Conceptual Analysis to Logical Design”, 2001, Academic Press,
ISBN 1-55860-672-6

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 317

An Image Comparing-based

 GUI Software Testing Automation System

Hyunjun Jung, Sukhoon Lee, Doo-Kwon Baik

Department of Computer and Radio Communications Engineering, Korea University,

Seoul, Republic Of Korea

junghj85@gmail.com, leha82@korea.ac.kr, baikdk@korea.ac.kr

Abstract - This paper proposes an automated GUI (Graphical

User Interface) testing method to support regression testing

when a company requests new functionality additions or

program changes during the development phase. In this paper,

we propose an automated GUI testing method based on two

processes. An event-driven testing method can test the target

program directly. A capture and replay testing method can

repeat recordings of the tester's actions. GUI verification is

image comparing-based. To demonstrate the advantages of

our proposed method, we implemented a prototype system

based on C#.

Keywords: Capture & Replay test, Event-driven test, Image

comparing-based test, Test automation, Test automation tool

1 Introduction

Quality assurance (QA) is very important in large scale

software projects but manual testing cannot guarantee the

quality of large scale programs. A company may request the

addition of a new functionality or software changes during the

development phase. Software changes can contain new types

of errors. Thus, software changes demand repeated testing to

ensure there are no errors. Software is needed for regression

testing to meet the specified requirements [1]. The regression

testing method uses previously executed test scenarios to

check for the presence of errors. Weak version management

can lead to problems with the loss of the previous bug fixes.

Previously, fixing the software version solved the problem.

However, temporary fixes of software often lead to the same

problem when software is redesigned by refactoring. Thus,

this method is not a fundamental solution. To solve the

problem, software is locked up with the software version

while a test scenario is created to find the bug. The test

scenario should also be repeated when the software changes.

QA testing proceeds by manual or automated software testing.

However, this repeats a lot of regression testing when using

automated testing tools, which can be expensive in terms of

cost and efficiency [2]. However, quality management with

automated test tools can facilitate the early detection of

defects in modified software. If errors are detected before

complete software development, this also has the advantage of

reducing time and costs. Automated testing method include

code-driven and GUI testing. Code-driven testing methods use

a class, module, or library interface and they return results that

confirm whether a variety of input arguments is satisfied. The

GUI testing method uses a mouse click or mouse input to

generate user interface events, such as changes in a program,

to ensure that the program functions correctly while observing

the results. In this study, we proposed event-driven testing and

capture and replay testing for automated GUI testing. The

GUI also includes image comparing-based validation, such as

graphs and charts. The paper is organized as follows. Section

2 provides a brief review of previous automated GUI testing

tools. Section 3 describes the automated GUI testing method.

Section 4 presents an implementation of a prototype system.

We conclude the paper and consider future work in Section 5.

2 Relate Work

Table 1 GUI automated testing tools

Testing

Tool

Feature input Report

Function

abbot • Measured via a test

script GUI state

• An interface for

controlling the replay

• Event-based testing

Java

Applic

ation

Coverag

e Report

Guitar • Provide a test case

generator plug-in

• Event flow

measurement is useful

Java

Applic

ation

Unsuppo

rted

Pounder • Records test scripts

and provides an

interface for measuring

the results

Java

Applic

ation

Unsuppo

rted

Seleniu

m IDE
• Records the actions of

the tester using HTML

script

Web

UI

Unsuppo

rted

318 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Many studies have been conducted to support automated

testing [3-11]. For example, Abbot [12] assists Java UI testing

where test scripts are used to measure the state of the GUI,

while event-based replay provides a control interface.

GUITAR [13] is a Java and Microsoft Windows application

that provides a GUI testing framework with a test case

generator and event flow measurement. Pounder [14] records

a test script that can be measured while the results are

provided via an interface. Selenium IDE [15] records the

behavior of a test script as HTML generated in the tests.

Table 1 shows examples of automated GUI testing tools.

3 GUI testing automation methods

The automated GUI testing procedure is shown in Figure 1.

The tester selects the appropriate method during the Method

Selection phase. Special control testing is difficult, image-

based buttons and user creation control are provided. In this

case, the tester has selected the capture and replay method.

The event-driven method sends the event directly to the target

program, depending on whether scenario testing is performed

by sending an event. In addition, a scenario can be created

using the event to perform tests rapidly and without error. The

exact value of the unit tested is checked before verifying

whether an event-driven method is required.

Method selection during this stage of the target application

development requires a unit test or verification of the exact

value when it is necessary to initiate the event. Figure 2 s

shows the use of the event-driven method. The event-driven

method can be used to send events directly to the target

program to perform precision tests of the control value of the

property involved in the event, by comparing the verification

accurately. This would be available at the code level with

other methods for scripting an event in a direct target program.

An event-driven method is required to perform tests using the

event name and to create a test script for the operation. Test

scripts are written in scripting languages, while parsing the

script will create the event. The event script is a list of events

that are passed to the actual event. All events are dispatched

to the target program, before ending the test.

Figure 1 Automated GUI testing process

Figure 2 Process of the event-driven method

During the capture and replay method selection step, as

shown in Figure 3, the tester selects how the test is performed

throughout the process. The test script is written by hand or

previously written scripts are reused where available. This

method is based on the coordinates of the target program

features when performing a test of added or changed events.

In this case, you the previous scenario can be reused. Test

scenarios keyboard strokes and mouse movements can be

used to automatically generate scripts by recording. Replaying

the generated script reproduces the movement of the testers,

which alters the program or input data so the test can be

performed.

The capture and replay method does not communicate

directly with the event in the target program. Targeted

programs are recognized based on their coordinates. A

comparison of the output image should verify the correct

value. A comparison of images is shown in Figure 4 using the

verification procedure. The tester extracts and generates a

script to control the capture program, which is targeted

directly in the middle of the verification process for features

that require an output value from the GUI and the image.

Figure 3 Event-driven method process

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 319

Figure 4 Verification method based on image comparing

Figure 5 Example of image comparing

The necessary features are implemented for each

verification result before comparing the differences in the

output between the images on the screen and the previous

screen output, which creates an image that is recorded.

The image shown in Figure 5 is generated by comparing the

images. Figure (a) is the previous screen output results on the

GUI. Figure (b) shows a GUI screen with the results for the

test output. Replaying the created image facilitates testing of

the changed GUI and a change in the target program will be

detected as an error. Figure (c) shows a comparison of the

image before and after performing the image testing. The

result of performing the functions on the replay screen during

testing are compared with the extracted features to determine

whether they perform correctly.

4 An Image Comparing-based Automated

Software Testing System

4.1 Conceptual Model

Figure 6 shows the concept model of our event-driven

method. The tester extracts information to perform a test

scenario by parsing the XML-based test. The event generator

produces an event script based on this information. A saved

script file can be reused if necessary for future testing of the

same units as those found in the target program. An event

testing engine script is generated for events and passed to the

target program to perform the test. Verifying the results of the

control target program for events yields the value of the

property.

The event-driven method can be verified directly to yield

the property values of controls, which is advantageous for

verifying the exact value. The XML tester must specify the

expected results to verify the values directly. The test result is

deduced from the tests performed by the function generator,

including successful and failed test results.

Figure 7 shows a conceptual model of the capture and

replay method. The capture engine generates test scripts

according to the tester while entering the time for recording

mouse and keyboard inputs automatically. The tester input is

activated when the target program is generated. The capture

engine uses Global Hooker global event analysis of the OS to

generate the script. This function is necessary for the extracted

image in the target program verification system to activate the

image verification engine accelerator to deliver the results.

Replayed functions during image performance are passed

through a procedure to test the capacity to compare the output

of the identified portions and to verify the test results that are

based on it.

320 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Figure 6 Conceptual model of the event-driven method

Figure 7 Conceptual model of the capture and replay method

Figure 8 Example of a test target program

4.2 Test Case

 Figure 8 shows an example implementation of a target

program when applying the automated test tool. The path is

typed in the target program to enumerate the files by selecting

the check box, which can be deleted. Menus, list boxes, and

edit boxes are common features in the GUI.

Events in the target program are tested using the event-

driven Method, with the tester shown in Figure 9 to transfer

the event to XML-based scripts. The root node of an XML-

based script in the <test> center node of each test is divided

into a function <step> to perform any function that indicates

whether the value was passed as an argument.

Figure 10 shows the main screenshot of the event-driven

method. In this stage, the tester has loaded XML-based

scripting of the test step to select the requirements. The step

chosen by the tester moves to the automated GUI test tool,

which is passed through a targeted program of events. The

tester includes a previously created XML-based script step

scenario for mouse and keyboard inputs. The automated GUI

test tool passes sequentially through each step of the scenario

at the rate set by the tester.

The capture and replay method is shown in Figure 11 where

the number and speed of the repeat can be set. The capture

start button is used to record the movements of the tester.

When the capture the tester is finished, the Stop button is

pressed to create a script and test the tool automatically when

it is ready to Replay. Capture and replay is performed using a

script, which can be reused.

Figure 9 Example of a written script

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 321

Figure 10 Event-driven testing

Figure 11 Capture and replay testing

5 Conclusions

This paper proposed an Automated GUI Testing Method to

support regression testing. The GUI provides image

comparing-based validation using graphs and charts. The

automated test method uses two processes. The event-driven

method generates an event that tests the target software. The

capture and replay method records the action, which needs to

be repeated. We developed the test method, which was

defined for this prototype system. Using the proposed method,

automated testing is possible without knowing the source code.

Further comparisons of the proposed automated test method

and other commercial tools are required. The test method also

requires simpler scripting to improve the efficiency of the

input method.

6 Acknowledgement

This study was supported by Second Brain Korea 21

Project and by the National IT Industry Promotion Agency

(NIPA) under the program of Software Engineering

Technologies Development. The corresponding author is Doo-

Kwon Baik.

7 References

[1] A. M. Memon and M. L. Soffa. “Regression testing of

GUIs”, In ESEC/FSE-11: Proceedings of the 9
th

 European

Software Engineering Conf/11
th

 ACM SIGSOFT Int’l

Symposium on Foundations of Software Engineering, pages

118-127, 2003

[2] B. A. Myers. “User interface software tools”, ACM

Trans. Comput.-Hum. Interact., 2(1):64-103, 1995

[3] E. Dustin, J. Rashka, and J. Paul. “Automated Software

Testing”, Addison-Wesley Publishing Company, 1999

[4] A. Memon, I. Banerjee, A. Nagarajan. “GUI ripping:

reverse engineering of graphical user interfaces for testing”,

In Reverse Engineering 2003 WCRE Proceeding 10
th

Working Conference on, pages 260-269, 2003

[5] T.Ostrand, A. Anodide, H. Foster, T. Goradia. “A visual

test development environment for GUI systems”, SIGSOFT

Softw. Eng. Notes, 23(2):82-92, 1998

[6] Q. Xie, A. M. Memon. “Designing and comparing

automated test oracles for GUI-based software applications”,

ACM Trans. Softw. Eng. Methodol., 16(1):4, 2007

[7] T. Yeh, T. H. Chang, R. C. Miller. “Sikuli: Using GUI

screenshots for search and automation”, In UIST ’09, pages

183-192, 2009

[8] A. Kervinen, M. Maunumaa, T. Pääkkönen, M. Katara.

“Model-based testing through a gui”, In Formal Approaches

to Software Testing, volume 3997, pages 16-31, 2006

[9] M. Finsterwalder. “Automating acceptance tests for GUI

applications in an extreme programming environment”, In

Proc. Second Int’l Conf. eXtreme Programming and Flexible

Processes in Software Eng., pages 114-117, 2001

[10] J. Steven, P. Chandra, B. Fleck, A. Podgurski.

“jRapture: A capture/replay tool for observation-based

testing”, In Proc. Of the 2000 ACM SIGSOFT Int’l

Symposium on Software Testing and Analysis, pages 158-167

ACM Press, 2003

[11] L. White, H. AlMezen, N. Alzeidi. “User-based testing

of GUI sequences and their interactions”, In Proc. 12
th

 Int’l

Symposium on Software Reliability Engineering, pages 54-63,

2001

[12] Abbot. Abbot framework for automated testing of JAVA

GUI components and programs,

http://abbot.sourceforge.net/doc/overview.shtml

[13] Guitar. A GUI testing framework,

http://guitar.sourceforge.net/index.shtml.

[14] Pounder. Java GUI Testing Utility,

http://pounder.sourceforge.net/

Selenium IDE. Web application testing tool,

http://seleniumhq.org/projects/ide/

322 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

A Usability Evaluation Process for Plastic User Interface Generated
With an MDE Approach

Lassaad Ben Ammar, Adel Mahfoudhi, and Mohamed Abid
CES Laboratry, University of Sfax, Sfax, Tunisia

National Engineering School of sfax

Abstract— The challenge of developing a practical plastic
User Interface (UI) has been the subject of several recent
studies. Usability evaluation method and technique consider
usability only at the last stage of the development process.
At this stage, solving the usability problems is a very
difficult and expensive task. Actually, we wish to integrate the
usability evaluation into a plastic UI development process
that follows the principles of the MDE. To do so, we propose
a usability evaluation process which is aligned with the
ISO/IEC 25000 standard. In this paper, our utmost objective
is to show how our usability evaluation process can improve
usability. A case study was performed in order to reach such
objective.

Keywords: Usability Evaluation Process, ISO/IEC 25000, Plastic
User Interface

1. Introduction
The Usability of Plastic User Interface (PUI) is a crucial

factor since the plasticity of a User Interface (UI) denotes
its ability to withstand the context variation while preserving
usability. The functional aspect of UI adaptation is the well-
developed part of the plasticity. Nevertheless, usability is a
key factor that determines the success or the failure of a
UI. The need for a usability evaluation method (process)
that is crafted for PUI has become critical since the PUI
are increasing their importance in industrial domains. Typ-
ically, usability evaluation is considered at the last stages.
Intermediate artifacts are used to guide developers and
document the application. Due to the lack of the well-defined
traceability between intermediate artifact and final product,
the correction of the Usability Problems (UPs) is usually a
difficult and expensive task. This problem can be alleviated
in an MDE development process. We argue that performing
the evaluation at each stage of the development process is a
critical part of ensuring the effectiveness of the PUI for their
purpose. For that reason, we are opting for making use of
an MDE-compliant method for generating usable PUI. Such
methods basically transform models that are independent of
implementation details (Platform Independent Model - PIM)
into others that contain specific details from the platform
(Platform Specific Model - PSM). The source code of the

UI is automatically generated by transforming the PSM. So,
the aim of this paper is to propose a Usability Evaluation
Process (UEP) that can be integrated into an MDE-compliant
method in order to generate a usable PUI. Our proposal is
intended to perform usability evaluation at each stage of the
development process. Such operation provides feedback that
can be used to suggest changes in the evaluated artifact or in
his predecessor, at some extent, in order to improve usability
of the generated PUI.
The remainder of this paper is structured as follows. While
section 2 presents an outline of the usability evaluation
process quoted in the literature, section 3 describes the
proposed usability evaluation process. Besides, section 4
provides a case study illustrating the integration of the
usability evaluation process into an MDE-compliant method
for generating PUI. Finally, section 5 draws the conclusion
and provides perspectives and future research work.

2. State of the art
Several usability evaluation methods have been proposed

over the last years. The most important part of these methods
have been defined building on existing standards such as ISO
25000.
The ISO/IEC 25000 standard aims to provide a guideline
for requirements specification, measurement and evaluation.
The evaluation process can be performed for the intermediate
artifact or the final product. It consists of five phases:
establish evaluation requirements, specify the evaluation,
design the evaluation, execute the evaluation, and conclude
the evaluation.

In the first phase, the evaluation requirements such as the
purpose of the evaluation or the identification of the product
parts to be evaluated are established. The quality model
of ISO/IEC 9126-1 standard is used as the basis for the
requirements specification. During the second phase, suitable
measurements for each attribute are identified. The decision
criteria for the metrics as well as the assessment criteria are
defined. In the third phase, evaluation and evaluator action
are scheduled in an evaluation plan. The evaluation phase
consists of the following activities: applying measurement,
applying rating, and assessment. At the last stage of the

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 323

Table 1: Usability Evaluation Process ISO/IEC 25000.
Phase Activity

Establish evaluation - Establish the purpose of the evaluation.
requirements - Obtain the software product quality

requirements.
- Identify product parts to be included
in the evaluation.
- Define the stringency of the evaluation.

Specify the evaluation - Select measures.
- Define decision criteria for measurements.
- Define decision criteria for evaluation.

Design the evaluation - Plan evaluation activities.
Execute the evaluation - Make the measurements.

- Apply decision criteria for measures.
- Apply decision criteria for evaluation.

Conclude the evaluation - Review the evaluation results.
- Dispose evaluation data.

process, evaluators determine to which extent the software
product meets the quality requirements.
Based on this standard, [1] propose a usability evalua-
tion process for web application generated with an MDD-
compliant method (WUEP). The aim of this work is to
show the feasibility of the WUEP in discovering the UPs.
The accuracy of this work is the main question since the
analysis of changes step was not developed. The number of
evaluators (seven) is also more than the recommended for
a usability inspection method (three to five). The use of a
non representative user; two web usability experts for the
evaluation designer role and four web usability experts in
the evaluator role, has led the authors to speak about the
limitation of their proposal.
[2] define an evaluation process in four phases: quality
requirement definition and specification, elementary evalu-
ation, global evaluation and conclusion. In the first step,
evaluators should clearly identify the evaluation goals, the
users need and the requirement tree based on the ISO/IEC
9126-1 quality model. Next, metrics were associated with
each attribute from the requirement tree. An elementary
criterion function was defined for each metric to interpret
the measured values. In the third step, evaluators select
the aggregation function of the overall elementary quality
preference obtained in the last stage. The global quality
preference represents the degree to which the software
product meets the stated requirements. Finally, evaluators
analyze the assessed product with regard to the established
goals and users need, and suggest some recommendations to
improve the global product usability. The main limitation of
this work is that it quantitatively assesses web applications.
Besides, it requires the final product to do the evaluation and
does not define the context in which UI will be executed.
The WebTango methodology presented in [3] addresses
the web usability issues. In fact, it assesses web sites by

comparing them to well-designed interfaces. The evalua-
tion process starts with identifying an exhaustive set of
quantitative interface measures to assess as many aspects
of web interfaces as possible. After that, measures will
be computed for a large scale of rated interfaces. Then,
a statistical model will be derived from the measurements
and ratings. This model will be used to predict ratings for
new interfaces, and finally validating the model prediction.
Like the other methods presented in this section, this method
has some limitations. Indeed, it is based only on objective
measurements that make difficult to capture the subjective
preferences of the user. It should be susceptible to changes
in the web site content (improving measures and techniques
to address the current state of the web). The assessment of
the web site is based on comparing it to well-designed web
sites. Such web sites are well designed in a well-defined
context that may not be the same as that of the interface in
question. Such assessment need final product to be done.
After reviewing several UEP, we have noted that the men-
tioned UEP present some limitations. Next, we will eval-
uate the aformentioned UEP in the basis of some creteria
that have been extracted from severals works ([4], [5],. . .).
According to [4] defining thecontextin which the product
will be used as a key factor that affects the accuracy of a
UEP. It is important, when evaluating the usability, that the
conditions for the test are representative of the important
aspect of the overall context of use. Thetype of the evaluator
is also an important factor that affects the accuracy of an
UEP ([5]). Nielsen said that it is more appropriate to use a
system developer as an evaluator since it will focus on the
aspects of the UI that an expert would not. We argue that the
means ofimprovementprovided by a UEP is a key factor. In
fact, the ultimate goal of an evaluation process is to ensure
that the software product meets the requirements stated in
the specification stages. After detecting UPs, an evaluation
process should suggest changes to improve the product. The
type of the productto be evaluated (intermediate, final) can
be an evaluation criterion since the objective of recent works,
from the present work is part, is to integrate this activity at all
stages of the development process. It is important for a UEP
to consider intermediate artifact when evaluating usability.
Other criteria can be used for the evaluation UEP such as
thegroup/individualevaluation. According to [5], it is more
effective to perform a usability method as a group than with
individual evaluator.
To the best of our knowledge, there is no generic process
that integrates usability evaluation into an MDE-compliant
method for PUI generation. As it is shown above, the
majority part of works that tackles usability issues, although
they contain almost the activities that can occur in a usability
evaluation process, they suffer from some drawbacks. We

324 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Table 2: Evaluation of some Usability Evaluation Method.
Method [2] [3] [1]

Context Limited No Limited
Evaluator Type Expert Expert Expert
Improvement No No No
Product Type Final Final Intermidiate
Grp/Ind Individual Induvidual Group

will use them as sources that can be drawn from our
proposal. The ultimate objective of this paper is, actually,
to propose a UEP that fills these gaps and that aims to be
used as a guideline for generating a usable PUI. The section
that follows presents our proposed UEP for such a purpose.

3. Proposed Usability Evaluation Pro-
cess

Figure 1 presents an overview of our proposal UEP. In
fact, the proposed UEP adapt and extend the ISO/IEC 25000
standard. The following sub-sections describe each activity
of the proposed UEP.

3.1 Establish the Purpose of Evaluation
The aim of this activity is to clearly identify the purpose

of the evaluation and to ensure that the PUI provides the
required usability that meets the users’ needs. Since the
usability of PUI can be evaluated at all stages of the
development process, several goals can be identified. A list
of typical purposes is presented below:

• Identify specific UPs;
• Improve PUI performance;
• Predict or estimate final PUI usability;
• Decide on the acceptance of the PUI.

3.2 Select Usability Model
An agreed usability model is used for structuring the

usability requirements. The usability model is based on the
ISO/IEC 9126-1 standard. It considers the usability from
a software product view that allows us to determine the
usability of the intermediate artifact in the PUI development
process.

3.3 Identify Product Part to be Evaluated
The Usability of a PUI generated by an MDE-compliant

method can be evaluated at several stages of the development
process: in the PIM by evaluating the Abstract User Interface
Model (AUIModel), in the PSM by evaluating the Concrete
User Interface Model (CUIModel), in the CM by evaluating
the Final User Interface. The product parts to be evaluated
depending on the purpose of the evaluation.

3.4 Identify Context of Measurement

The Usability of PUI depends on the context of use in
which it will be used. Usability is the quality of use in a
context [4]. The context of use is defined by the user, task
and environment. The selected context when evaluating the
usability should be representative of the important aspect of
the actual or the intended context of use.

3.5 Select the Usability Attributes

The selected usability model is used when selecting the
attributes that will be considered in the usability evalu-
ation stage. This model is based on the ISO/IEC 9126-
1 standard which decomposes the usability into five sub-
characteristics: learnability, understandability, operability, at-
tractiveness, compliance. As already mentioned, we only
focus on the usability from a software product point of view
since it can be evaluated during the development process by
inspecting the intermediate artifact.

3.6 Select the Metrics to be Evaluated

With each selected attribute, we associate at least one
metric in order to quantify them. The selection metrics
activity’s must verify the following condition: choosing
the minimum number of metrics that reveal the maximum
amount of the usability detail for the PUI under study [3]. We
propose two types of metrics: objective and subjective since
we argue that a robust UEP must aggregate both subjective
and objective measurements.

3.7 Establish Rating Levels

The values obtained from the already selected metrics
have no meaning since they are numerical values obtained
using a calculation formula. These numerical values must
be interpreted. We propose to assign a categorical value
for the ranges of values obtained for each metrics. Such
mechanism is climbed by [6]. The values obtained from the
metrics and the rating level established for these values allow
us to interpret the degree to which the selected attributes
contribute to achieving a usable PUI.

3.8 Define an Aggregation Function

The aim of this activity is to prepare a procedure for the
further summary of the attributes and the sub-characteristics.
We propose an adaptation of the aggregation function pro-
posed in [7]. We will present such adaptation when devel-
oping the case study section.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 325

Figure 1: The proposal Usability Evaluation Process.

3.9 Elaborate Evaluation Plan
This activity includes the establishment of the order in

which the artifact will be evaluated, the number and type of
evaluators and assigning tasks to evaluators. According to [8]
the recommended order for artifact evaluation is PIM since
this artifact drives the development process. We can then
evaluate the PSM and CM artifact. As we mention above,
the recommended number of evaluators for an inspection
method for usability evaluation is usually three to five.

3.10 Define the Usability Reports Template
This activity defines the template of the usability report

that is commonly a list of the UPs detected in the evaluation.
We propose the fields presented in Table 2 to describe each
UPs.

3.11 Apply Metrics, Indicators and Grouping
The selected metrics should be applied to the product

parts already selected according to the evaluation plan. The
indicators should be applied in order to identify the artifacts’
elements that contribute to the UP. The outcome of this
stage is a usability report that collects the UP detected when
evaluating the selected artifact. This usability report should
clearly specify the source of the UP. After grouping the

Table 3: Usability Report Template.
Fields Meaning

ID An identifier of the UP.
Description A description of the UP.
Related attributes The attributes from the usability model that is

related to the UP.
Level The categorical value assigned to the numerical

values obtained by the evaluation activity.
Recommendation The suggested changes in order to improve the

extent to which contributes the elements which is
the source of the UP.

elementary categorical values, the usability of the overall
artifact is identified.

3.12 Assessment
The obtained categorical value indicates the extent to

which the PUI meets the usability requirements. The eval-
uator should decide to accept the version of the PUI or to
reject it.

3.13 Suggestion of improvement
In case of rejection and based on the usability reports,

evaluators should suggest changes in order to improve the

326 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

selected artifact that was evaluated. The outcome of this
stage is an improvement reports. After applying the sug-
gested changes, it is necessary to re-evaluate the artifact.

4. Instantiation of the proposal Usability
Evaluation Process

In order to well structure this section, we will follow the
guidelines of the presentation of the case study presented
in [9]. In such guidelines, case study is comprised by the
following stages: design, preparation, data collection, data
analysis.

4.1 Case study design
It is necessary when designing the case study to consider

some components. For reason of simplicity, we will consider
here only two components: the purpose of study and the
research questions.
The purpose of the case study is to show the feasibility of
applying our proposal UEP to improve the usability of a
PUI that was generated by an MDE-compliant method. The
research questions that are addressed by the case study are:

• Does the proposed Usability Evaluation Process con-
tribute to discover sevrals UPs at severals artifacts?

• What are the implications of the detected usability
problem for the intermediate artifacts?

We are opted to the conceptual framework proposed in [10].
Such a method identifies four stages in the development
process: task model, Abstract UI model, Concrete UI model,
Final Model. The object of the evaluation is an Ask for a
Credit Card Application. The following scenario illustrates
the interaction. the customer is connected to the site of the
bank to launch her request of credit card. He has to log in
first of all by introducing her user name and password. Then
he has to choose her type (private individual or company).
Then, he is asked to choose the type of card that she
seeks to obtain Visa, Master Card, etc.) before filling in an
information form.
The subjects are all the authors. The preparation stages
(establish evaluation requirement, specify evaluation, design
the evaluation) are performed by two of the authors while
the execution of the evaluation stages are performed by all
the authors.

4.2 Preparation of the case study
With regard to theEvaluation Requirement Establishment

stages of our proposal UEP, the purpose of the evaluation
was to identify specific UPs. The usability model that will
be used to structure the requirement is an adaptation of the
ISO/IEC 9126-1 model. The artifacts to be evaluated were
abstract user interface model and the final user interface
model. The context of use of the system is the customer

service in a bank agency. Two kinds of users will use the
system: the manager of the service and the customer.
As for the Specification of the Evaluationstages of our
proposal UEP, a set of 6 attributes were selected from the
usability model. When selecting the attributes, we consider
only those which would be more relevant to the application
type and the context in which it is going to be used. For
each selected attributes, we identify at least one metrics in
order to quantify them. Metrics are then associated with the
selected artifacts in which they could be applied. Table 4
and 5present respectively some calculation formula and the
rating level associated to the selected metrics, respectively.
The numerical range defined for each metrics has been built
from some usability guidelines and heuristics described in
the literature, as [6] and [11].

Table 4: Example of metrics.
Name Number of Font Style Used

Attribute Font Style Uniformity
Description The number of font style used in a UI.
Scale type numerical value
Interpretation The larger the value of the metrics, the less

attractive is the UI.
Artifact At the PIM and the CM.

Table 5: Examlpes of indicators.
Metrics VG G M B VB

TL ≺2 2≤TL≤3 3≺TL≤5 5≺TL≤7 �7
NFSU ≺2 2≤NFSU≺3 3≤NFSU≺4 4≤NFSU≺5 �5
WN ≺15 15≤WN≤20 20≺WN≤25 25≺WN≤30 �30
MA ≺2 2≤MA≺4 4≤MA≺6 6≤MA≺8 �8

The aggregation function that we opted for is an adap-
tation from that proposed in [7]. Such function aggregates
two by two the qualitative values applying a set of rules.
The adaptation affect the following rules:

• Combination (G,VB)→ VB we suggest M
• Combination (B,B)→ VB we suggest B
• Combination (G,G)→ VG we suggest G
• Combination (VG,B)→ VG we suggest M

when adapting these rules we are considering the following
hypothesis:

• All metrics that make up attributes, all attributes that
make up sub-characteristics and all sub-characteristics
that make up usability have the same impact (relative
weight).

• Each metrics, each attribute or each sub-characteristics
has a positive or a negative effect on the final level of
usability.

With regard to thedesign of the Evaluationstage, the evalu-
ation plan was elaborated taking into account the following

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 327

order of artifact to be evaluated: PIM and then CM. Three
evaluators were selected to perform the execution stage of
our proposal. In fact, this number was selected taking into
consideration some recommendations (e.g. [12]) which claim
that 3 to 5 evaluator can release the most part of UPs. The
Evaluation Report Templatewas defined by considering the
same fields proposed in the previous section.

4.3 Data collection
Data was collected during theExecution of the evaluation

stage of our proposal UEP. Metrics are applied to the
excerpts of model that are shown in Figure 2. In the PIM
model (Abstract User Interface Model AUIM), the value of
Title Lengthis 3 (title of the window). The categorical value
attributed to this numerical value is G. This leads to the
conclusion that the title of each window in the PIM artifact
does not exceed the value 3 in order to obtain at least a
categorical value equal to G. In the CM model (Final User
Interface Model FUIM), the value of theNumber of Font
Style Used(NFSU) is 4. The rating level of this metrics
indicates the existence of a Bad UP (UP01). Table 6 shows
an excerpts of the usability report that is presented in the
UP01.

Table 6: Usability problem UP01.
Fields Meaning

ID UP01.
Description The CM model use four font style: Calibri,

Georgia, Arial and Verdana.
Related attributes Font Style Uniformity.
Level Bad (four different font style are used).
Recommendation change the font style property of the captions

of the buttons in the abstract UI model. The font
style property should be defined at the PIM. We
may use a statistic variable that stocks the
number of different font style used in each window.

4.4 Analysis of data
The Usability Evaluation Process proposed in this paper

contribute in discovering several UPs in several artifacts
employed during the early stages of the MDE-compliant
method. Implication of the usability problem for the
intermediate artifact.
Concerning theAbstract User Interface Model, the detected
problem related tooperability sub-characteristics can be
solved by correcting the AUI meta Model or the transforma-
tion rule. In order to increase the attributes that contribute
to theOperability sub-characteristics (User Operation Can-
cellability, User Operation Undoability, Explicit User Ac-
tion, we suggest to add to each UIUnit a Back button, a
Cancel button and a Validate button.
Some guidelines recommend a number of navigation that

should not be exceeded. To solve the detected problem
related to theNavigation attributes, we suggest a statistic
variable in each window that stocks the number of a navi-
gation element. Such changes affect the propriety of UIUnit
in the AUI Meta Model.
Regarding theFinal User Interface Model, the detected
problems related to theattractiveness sub-characteristics
can be solved by correcting the AUI Meta Model. We can
add some statistic variables defining the number of each
metrics contributing to this sub-characteristics through a
number (e.g. number of font style used, number of font size
used, number of colors used, . . .).
We argue that the case study has been useful for us since it
allow us to learn more about the benefits and limitations of
our proposal UEP and how it can be improved to achieve
its purpose.
Several types of problems can be detected using our pro-
posal. These problems are related to several artifacts during
the development process. The evaluation process may be a
means to discover the limitation in the expressiveness of the
artifacts of any MDD approach. The performed changes at
several artifacts and the traceability between artifacts allow
us to talk about usability that can be achieved by construction
[13], at least to some extent.
Our proposal can be applied in another MDD process.
We have just to mapp between the metrics and the model
elements from the other MDD process. Besides, our pro-
posal can be judged as an accurate process since it takes
into account several recommendations like the number of
evaluators, the type of evaluators, the evaluation as a group.
Such recommendations are judged by the experts as a key
factor in the success of any usability evaluation method.

5. Conclusion and Further Work
This paper has presented a Usability Evaluation Process

for Plastic UI (UEPP) that integrates usability evaluation
during several stages of an MDE-compliant method. The
proposal process adapt and extend the ISO/IEC 25000 stan-
dard. The UPs detected allow us to extract the expressiveness
of the artifacts. The changes performed after evaluation can
affect models or the transformation rules. Due to the trace-
ability between models, the usability of an automatically
generated UI can be predicted. We are referring to a UI that
can be usable by construction [13]. This paper argues the
following claim : taking into account usability through the
entire development process enables the development of a UI
that has better usability. Such mechanism also contributes to
the effort reduction at the maintenance stage.
Further work are intended to : propose a usability model that
is crafted for plastic user interface; tackle the problem of the
aggregation function; study the possibility of automating the

328 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Figure 2: Excerpts of model from PIM and CM artifacts.

large part of our proposal UEP.

References
[1] A. Fernandez, S. Abrahão, and E. Insfraán, “A web usability evalu-

ation process for model-driven web development,” inCAiSE, 2011,
pp. 108–122.

[2] L. Olsina and G. Rossi, “Measuring web application quality with
webqem,”IEEE MultiMedia, vol. 9, no. 4, pp. 20–29, 2002.

[3] M. Y. Ivory and R. Megraw, “Evolution of web site design patterns,”
ACM Trans. Inf. Syst., vol. 23, pp. 463–497, October 2005. [Online].
Available: http://doi.acm.org/10.1145/1095872.1095876

[4] N. Bevan and M. Macleod, “Usability measurement in context,”
Behaviour and Information Technology, vol. 13, pp. 132–145, 1994.

[5] H. W. Desurvire, “Usability inspection methods,” J. Nielsen and
R. L. Mack, Eds. New York, NY, USA: John Wiley & Sons,
Inc., 1994, ch. Faster, cheaper!! Are usability inspection methods
as effective as empirical testing?, pp. 173–202. [Online]. Available:
http://dl.acm.org/citation.cfm?id=189200.189217

[6] J. I. Panach, N. Condori-Fernández, T. E. J. Vos, N. Aquino, and
F. Valverde, “Early usability measurement in model-driven develop-
ment: Definition and empirical evaluation,”International Journal of
Software Engineering and Knowledge Engineering, vol. 21, no. 3, pp.
339–365, 2011.

[7] J. I. Panach, N. Condori-Fernández, F. Valverde, N. Aquino, and
O. Pastor, “Software process and product measurement,” J. J.
Cuadrado-Gallego, R. Braungarten, R. R. Dumke, and A. Abran,
Eds. Berlin, Heidelberg: Springer-Verlag, 2008, ch. Towards an Early
Usability Evaluation for Web Applications, pp. 32–45.

[8] J. I. Panach, N. Condori-Fernández, T. E. J. Vos, N. Aquino, and
F. Valverde, “Early usability measurement in model-driven develop-
ment: Definition and empirical evaluation,”International Journal of
Software Engineering and Knowledge Engineering, vol. 21, no. 3, pp.
339–365, 2011.

[9] P. Runeson and M. Höst, “Guidelines for conducting and reporting
case study research in software engineering,”Empirical Softw. Engg.,
vol. 14, no. 2, pp. 131–164, Apr. 2009. [Online]. Available:
http://dx.doi.org/10.1007/s10664-008-9102-8

[10] W. Bouchelligua, A. Mahfoudhi, N. Mezhoudi, O. Dâassi, and
M. Abed, “User interfaces modelling of workflow information sys-
tems,” in EOMAS, 2010, pp. 143–163.

[11] J. I. Panach, N. Condori-Fernández, F. Valverde, N. Aquino, and
O. Pastor, “Understandability measurement in an early usability
evaluation for model-driven development: an empirical study,” in
Proceedings of the Second ACM-IEEE international symposium on
Empirical software engineering and measurement, ser. ESEM ’08.
New York, NY, USA: ACM, 2008, pp. 354–356. [Online]. Available:
http://doi.acm.org/10.1145/1414004.1414080

[12] N. Bevan, C. Barnum, G. Cockton, J. Nielsen, J. Spool, and
D. Wixon, “The "magic number 5": is it enough for web testing?” in
CHI ’03 extended abstracts on Human factors in computing systems,
ser. CHI EA ’03. New York, NY, USA: ACM, 2003, pp. 698–699.
[Online]. Available: http://doi.acm.org/10.1145/765891.765936

[13] E. Iborra, J. V, S. Abrahão, and S. Abrahão, “Usability evaluation of
user interfaces gener with a model-driven architecture tool. chapter
2,” in Maturing Usability: Quality in Software, Interaction and Value.
HCI Series. Springer-Verlag, 2007.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 329

SES-based Structure Modeling Method
Using the Block Diagram

Suk-hoon Shin1, Chan-ho Jung1, Eun-bog Lee1, Sung-do Chi1, Seung-jin Han2

1Graduate School of Computer Engineering, Korea Aerospace University, Goyang-si, Gyeonggi-do, Korea
2Agency for Defense Development, Changwon-si, Gyeongsangnam-do, Korea

Abstract - SES(System Entity Structure) is the well-known
structure representation formalism for describing the
decomposition and/or taxonomy of the system. It also provides
several convenient operations for building the structure model.
However, the conventional SES modeling system does not
utilize the module diagram which is easy and widely used
graphical representation method. To deal with this, we have
proposed the advanced structure modeling method by
combining the SES structure model with the block diagram
representation. The paper will demonstrates how each
properties and operations of the SES may be accomplished by
using the block diagram.

Keywords: SES, structure modeling, block diagram,
modeling tool, system design

1 Introduction
 The structural modeling describes the architectural
feature of the target system. It refers to define the connection
relation between that it is the architectural feature comprising
the system hierarchical relation of the sub-model and each
sub-model, and etc. The structural modeling modularizes the
complex system by the functional and is the administration
and revision easy, and the reusability of the module is
enhanced.

 In the ‘Matlab’ or ‘AnyLogic’, and etc., that is the
existing system modeling and simulation tool, the typicaly
structural modeling feature is provided. That is the function of
the extent which defines the hierarchy structure of the
modelling object and connection relation and which it
modifies with the reuse of the sub-model[1,2].

 The SES is a representation scheme that contains the
decomposition, coupling and taxonomy information of a
system. The SES contains entities and three types (aspect,
specialization and multiple-decomposition) of nodes. One
application of the SES framework relates to the design of a
system. Here the SES serves as a compact knowledge
representation scheme of organizing and generating the
possible configurations of a system to be designed. To
generation a candidate design, we can use pruning that
reduces the SES to a PES (Pruned Entity Structure) [3,4,5,6].

Presently, SES is used in many field overs structure modeling
including the modeling & simulation, system design, and etc.

 Block diagram is a diagram of a system, in which the
principal parts or functions are represented by blocks
connected by lines, which show the relationships of the blocks.
They are heavily used in the engineering world in hardware
design, electronic design, software design, and process flow
diagrams [7].

 However, the conventional SES tools only deal with
tree-type graphic editing facilities. To overcome this
limitation, we have suitably proposed the new method for
building the structure model by combing the SES formalism
with the block diagram representation.

 The block diagram is typically used for a higher level,
less detailed description aimed more at understanding the
overall concepts and less at understanding the details of
implementation. Contrast this with the schematic diagram and
layout diagram used in the electrical engineering world, where
the schematic diagram shows the details of each electrical
component and the layout diagram shows the details of
physical construction [7].

 Therefore, this paper suggests the methodology that it
SES-based structure model represent and can utilize the
function provided by SES through the block diagram. This
paper starts with 1 introduction. It introduces SES in the
chapter 2. This paper illustrates the methodology to be
proposed in the chapter 3 with the example image.
Subsequently, in the chapter 4, it introduces about the user
interface of the modeling tool which develops this by applying.
A conclusion is provided in the chapter 5.

2 Background on SES
 The SES contains entities and three types (aspect,
specialization and multiple-decomposition) of nodes as
follows; (see Figure 1):

 Entity - An entity represents a real world object that either
can be independently identified or postulated as a

330 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

component of a decomposition of another real
world[3,4,5].

 Aspect - An aspect represents the decomposition out of
many possible entities. The children of an aspect are
entities representing components in a decomposition of
its parent[3,4,5].

 Specialization - A specialization is a mode of classifying
entities and used to express alternative choices for
components in the system being modeled. The children of
specialization are entities representing variants of its
parent[3,4,5].

 Multiple Decomposition - A multiple-decomposition is used
to represent entities whose number in a system may
vary[3,4,5].

 Coupling – A coupling is connection between entities. Each
entity has the port and the parent entity has the coupling
between ports with the attribute[3,4,5].

Figure 1. SES example

SES also provides three operations as follows;

 Pruning - Recall that a pure SES is on having no
specializations and at most one aspect hanging from
every entity. Pruning is required to create such pure SES.
The result of pruning is a PES which contains fewer
aspects and specializations than the original and therefore
specifies a smaller family of alternative models than the
latter. Ultimately, pruning terminates in a pure SES
which specifies the synthesis of a particular hierarchical
model (show pruning of table 1) [3,4,5,8].

 Cutting - Figure 3 shows tool for creating and partitioning
SESs. Given an SES, entity ‘A’ with leaf entity, ‘B, we
can use operation cutting which (show cutting of table 1)
[3,4,8]:

 Removes the substructure of ‘B’ from ‘A’,

 Reincarnates it in the form an SES, ‘B’,

 Allows the user to pruned ‘B’ as many times as
desired.

 Restructuring - The restructuring on SES may be
accomplished on the basis of two operations; deepening

and flatting. The deepening is to create a parent entity of
the entities, good for grouping. The invers operation of
deepening is flatting. The flatting is to remove a parent
entity of grouped entities, and its components are coupled
to their grandparent entity. The restructuring is provided
which automatically does the desired restructuring in
such a way that behavioral equivalence is preserved
((show restructuring of table 1) [3].

3 Proposed SES-based Structure Model
ing Method Using Block Diagram

 In order to support the convenient means to build the
structure model, we have successfully proposed the structure
modeling method that combines the SES structure model with
the block diagram representation.

3.1 SES Building

 SES Building means the set of tasks to create and edit
the desired SES. As shown in table1(a), every properties such
as aspect (decomposition), specialization, multiple
decomposition and coupling can be easily constructed by
using the block diagram.

SES building also can be easily developed on the basis of the
block diagram as follows;

 For the aspect of the SES, the sub-block is arranged
inside the upper block and it expresses.

 For the specialization of the SES, it arranges in the block
expanding the alternative entity to the dotted line and it
expresses.

 For the multiple decomposition of SES, It marks ‘is
multiple’, in the corresponding object and it expresses. And
the input form for the choice the number is provided when
pruning.

 For the coupling of SES, in the output entity, the arrow
is drawn the input entity. In the arrow, the name of the output
port and input port is indicated.

3.2 SES Operation

 SES operations also can be easily developed on the basis
of the block diagram as follows;

 For the pruning of the SES, the function and of selecting
the alternative of the specialization and function of
determining the number of the multiple-decompositions has to
be provided by using the block diagram. The pruning of the
table 1 (a) is the example of SES pruning with the block
diagram. ‘X, Y, Z’ of Pruning of the Table 1 (a) indicates the
substructure of ’A’. ‘B is selected’ means the select ‘B’
among alternative of ‘A’. it becomes ‘B.A’ inheriting the ‘A’

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 331

 For the cutting of the SES, the structure model base
[3,5,6] is needed. The sub-structure which becomes the
cutting in any SES of structure model base can be separately
stored to the model base. The cutting of the table 1 is the
example of SES cutting with the block diagram.

 For the restructuring of the SES, there is the function of
modifying the coupling automatically. In the deepening, there
is the coupling with the parent entity produced newly. In the
flatting, there is the coupling removal with parent entity
removed and generating the coupling with grandparent entity.
The restructuring of the table 1 is the example expressing SES
restructuring with the block diagram.

4 Conclusions

 SES is the well-organized structural modeling formalism
which has been successfully applied many research projects
and systems; however, the conventional SES tools only deal
with tree-type graphic editing facilities. To overcome this
limitation, we have suitably proposed the new method for
building the structure model by combing the SES formalism
with the block diagram representation. The research is on
going to develop the structure modeling tool based on the idea
subscribed in this paper.

Table 1. Relation between with SES and block diagram representation
(a) SES building

 Task Block diagram SES

S
E

S
 B

uilding

Aspect

Specialization

Multiple
Decomposition

332 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Coupling

Table 1. Relation between with SES and block diagram representation
(b) SES operation

 Task Block diagram SES

S
E

S
 O

peration

Pruning

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 333

Cutting

Restructuring

5 Reference
[1] http://www.mathworks.com/products/matlab/

[2] http://www.xjtek.com/anylogic/why_anylogic/

[3] B.P. Zeigler, Object-oriented Simulation with
Hierarchical, Modular Models: Intelligent Agent and
Endomorphic Systems, Academic Press, 1990.

[4] B.P. Zeigler, System-theoretic Representation of
Simulation Models, IIT Transactions, 19-34, 1984.

[5] B.P Zeigler, H Praehofer and T.G Kim, Theory of
Modeling and Simulation – Integrating Discrete Event and
Continuous Complex Dynamic Systems, 2nd edtion,
ACADEMIC PRESS, 2000.

[6] Jerzy W. Rozenblit and B.P. Zeigler, Representing and
Constructing System Specifications Using the System Entity
Structure Concepts, 25th Conference on Winter Simulation,
WSC ’93, ACM, 1993

[7] http://en.wikipedia.org/wiki/Block_diagram

[8] B.P. Zeigler, Multifaceted Modeling and Discrete Event
Simulation, ACADEMIC PRESS, 1984.

Acknowledgement
This research was supported by “The Combat Object
Modeling Research for the M&S of the Maritime Weapons
System”, that is the commissioned research business of
ADD(Agency for Defense Development of Korea).

334 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

http://en.wikipedia.org/wiki/Block_diagram

SESSION

AGILE SOFTWARE METHODS

Chair(s)

TBA

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 335

336 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Low Fidelity User Interface Prototypes as Agile
Refactoring Tools

Michael Wainer
Department of Computer Science

Southern Illinois University Carbondale
Carbondale, IL 62901

Abstract - Agile development relies on refactoring and it-
erations to continually refine working code to meet require-
ments. The goal of refactoring is to produce code which is
easy to understand and maintain. Refactoring user interface
(UI) code is subject to ordinary refactorings plus others
specific to this area. Even as refactoring tools grow more
powerful, most programmers do not fully take advantage of
automated support for many of the more complicated refact-
orings. As an alternative to automating source code refact-
oring tools with more and more sophisticated code trans-
formations, our proposal brings in a more human element
considering low fidelity prototypes(screen sketches etc.) as
high-level refactoring tools. A beneficial side-effect may
also be improved understanding of refactoring and earlier
clarifications on important design issues. Suggestions are
made for how low fidelity prototypes, already proven so
useful in interaction design, can be used to get an earlier
start on refactoring as well.

Keywords: refactoring, prototyping, HCI, agile, tools

1 Introduction

Users have high expectations for their software and in
markets where users have a choice, careful consideration of
the user interaction design, including the graphical user in-
terface (GUI), is a must. Developing highly usable software
requires a considerable effort: practically universal recom-
mendations are to involve users early and often, iterate, and
evaluate designs using prototypes.

When developing such software in an agile manner, the
use of low fidelity prototypes such as screen sketches and
paper prototypes is extremely valuable. Such prototypes are
effective not only for customer design evaluations but also
as a way of specifying and communicating design ideas
among the team. They are fast, cheap and easy to produce
and modify. Agile interaction design can be coupled with
agile software development by using an interaction design
track in parallel with the development track. This dual track
approach is discussed in section 2.

A common approach in coding GUI interfaces is to separ-
ate the internal data and logic (the business logic) from the
particulars of how it is visualized and interacted with. Sec-
tion 3 explores possible implementation strategies for cod-
ing GUIs including an introduction to the Model-View-
Controller paradigm. Most interfaces use many components
(widgets) which must be properly organized within the ap-
plication's windows. Developers may be assisted in these
tasks by ever more capable visual interface builder tools that
are often part of the development environment.

Agile processes produce code which evolves through
many iterations. Rather then spending a large amount of up-
front time deriving a detailed and unchanging specification,
change is recognized as a certainty so design work will con-
tinue throughout the project. To make this feasible the code
must adapt; not only to add new features but also to stay
easy to understand and maintain. Thus refactoring, improv-
ing and clarifying the evolving code (without changing its
functionality) has become an important agile practice. Re-
factoring and the related idea of prefactoring with a special
emphasis on interface code are taken up in sections 4 and 5.

Given the importance of refactoring when developing an
application in an agile manner, section 6 looks at how low
fidelity prototypes can be used as refactoring tools. As such
prototypes are already available for communicating the in-
teraction design, we show that they can also allow for rapid
communication and exchange of ideas regarding refactoring
options. An example of this is illustrated by following a
sample case introduced in earlier sections. Finally, section 7
summarizes and concludes this paper and gives a look to-
wards future work.

2 Agile Development

We assume an agile development methodology [1] for
both GUI and application development as a whole. Agile de-
velopment expects change and therefore does not put much
effort into big upfront design. Instead, it is recognized that
the code will have to evolve. Agile development will also
favor using lightweight modeling artifacts and documenta-
tion as the main emphasis is on working code.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 337

While agile development does not favor big upfront plan-
ning, some form of planning is often appropriate. During an
iteration, developers will be implementing code derived, in
part, from an earlier iteration's interaction design work. As
shown in Figure 1, it has been found useful to consider dual
tracks of development: one for the interaction design and
one for application development [2, 3]. Rather than striving
for a complete and detailed interaction design, the interface
is designed in enough detail for just the features present in
the current development iteration. The interaction design
team (which may overlap with the developers) works with
prototypes and/or existing code from previous iterations to
create a design for the next iteration. Designs are expressed
to the developers in an agile manner – often as paper or low
fidelity prototypes [2]. An iteration 0 may sometimes be
used for initial setup and exploration of internal details
which have little dependence on the user interface.

Paper prototypes, screen sketches and navigation flow
diagrams have proven to be useful artifacts to communicate
the specification for the user interface of applications. These
artifacts may be created by hand or by various drawing or
modeling applications. They are generally not used to dir-
ectly generate code but to communicate the design amongst
members of the team. Paper prototypes can simulate much
of the behavior of a system before any coding. The sketchy
nature of low fidelity artifacts invites more appropriate user
feedback on early design aspects.

 To illustrate more specifically, we use an example of a
small Java Swing application, PolygonMaker, which is to be
developed in an agile iterative manner. PolygonMaker is an
application to assist developers in generating the source
code required to specify a polygon for various systems or
languages. The user is able to specify the polygon points

and initiate a process to generate the source representing the
specified polygon. Initial choices might be as a Java2D
Shape, POVray (a ray-tracing package) prism object, etc. A
screen sketch of PolygonMaker's main window is shown in
Figure 2.

The user specifies new points in the entry field at the
lower left and the polygon is visualized as the table of points
on the left and the diagram on the right. The diagram shows
the last point entered with emphasis and connects it to the
first point with a dashed line to illustrate the resulting poly-
gon. The design is expected to change as the application
evolves. The user interface aspects may be under pressure
to change in different ways than the underlying application's
algorithms and data structures (its “business logic”). The
next section discusses a coding approach commonly used to
combat this problem as well as the help that can be offered
by visual interface construction tools.

3 Implementation Strategy

A commonly accepted principle of good object oriented
design is the “Single Responsibility Principle” [1] which
seeks to limit the pressures of change exerted upon objects
by having objects focus upon a single facet. In this way,
they will only have to be modified in response to changes
impacting that facet and are kept rather isolated from other
possible changes. Like many design principles, while the ba-
sic concept seems simple, in practice it can be difficult to
apply. In terms of software supporting graphical user inter-
faces, the Model-View-Controller(MVC) paradigm is com-
monly used to separate concerns (see Figure 3).

In the Model-View-Controller(MVC) the internal core lo-
gic of application entities (business logic) is kept separate
from the user interface. Business rules and interface con-
cerns change for different reasons and separating these con-
cerns helps to isolate changes in one from affecting the oth-
er. Having a separable model also makes it possible to de-
velop and test the model independently or in parallel with

Figure 2: An early design screen sketch for the
PolygonMaker example application.

Collect User
data for Iteri+2

Design for Iteri+1

Code stories
including
UI design

Interaction Design
Track passes
interface design to
developers

Development
Track imple-
ments code.
Code passed
to I.D. track
for UI eval.

Iteration i

Figure 1: Agile development using parallel tracks for
Interaction Design (top) and Development (bottom).

working code
prototype as spec

338 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

the GUI. Test Driven Development, a common practice in
agile development, incrementally builds a suite of tests
which drive and direct the development of the model.

Since constructing a GUI involves the specification and
creation of its visual aspects, it is only natural that visually
based tools can be very helpful. In this paper, WindowBuild-

er Pro [4] a visual construction tool for Java Swing inter-
faces (and other systems as well) is taken as representative
of these utilities. These tools usually provide similar inter-
active design spaces. A design space visually shows the in-
terface under construction and allows changes to be made
by dragging components from a palette. A structure view
shows the containment hierarchy of the components. Selec-
ted components are highlighted in both the design and struc-
ture views. A selected component also has properties that
are available for inspection and modification in a properties
view.

Figure 4 shows a screenshot of WindowBuilder working
on another screen for the PolygonMaker example applica-
tion. WindowBuilder, now freely available as a plugin for the
Eclipse IDE is highly capable and recently acquired and re-
leased as open source by Google. While such tools reduce
the tedium of coding many details of a GUI, they have
drawbacks as well. From unexpected widget sizes and lay-
outs, to failures and delays in parsing, it still can be far easi-
er to sketch a screenshot by hand (especially if custom
graphics components are required). Thus even though visual
build tools are increasingly powerful and useful in building
code, they have not eliminated the need for simple low fi-
delity prototypes for early design.

It is also interesting to note that the code generated by
GUI builders is often quite different from what would typic-
ally be constructed manually. Developers may have some
control over aspects of the code generated but in general,
machine generated code will use uninformative names and
create fewer but lengthier methods. The code tends to be
easier for the tool to generate and read than it is for humans.
This may become an issue especially in the context of an it-

Figure 4: WindowBuilder shown in design mode, while creating a conversion dialog for the example application.
PolygonMaker, allows users to enter polygon points and then generates equivalent source code for a variety of systems.

Model
(underlying logic

and core data)

Controller
Works with view to
interpret and dis-

patch user requests

G
U
I

Figure 3: The Model-View-Controller separates
core logic and data (the model) from the user
interface (view and controller). Tests may also be
used to drive and develop the model.

requests to
the model

notify view
to update

Tests
(for Model)

queries for
model state

View
Visualizes
the model

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 339

erative development process in which the code is continu-
ally revised. In effect, reverse engineering will be needed to
interpret and adapt the code generated by the visual build
tool[5].

4 Refactoring

Over time as code evolves it often begins to diminish in
clarity and quality: methods grow too long, logic gets more
convoluted, the original names, data structures and al-
gorithms may become less appropriate. These problem areas
in the code are referred to as smells. Many specific code
smells have been cataloged along with suggested refactor-
ings to remove them. Refactorings are transformations of
the code with the goal of making the code easier to under-
stand and maintain [6]. Specifically, refactorings, while they
may be applied to improve design in preparation for new
features, do not themselves aim to implement new features.
Since agile development methods use continuous design,
rather than big upfront design, refactoring is essential to
maintain the quality of the code as it evolves.

A very frequent refactoring activity, rename, is supported
both in visual construction tools as well as through source
code editors. Good names can significantly improve the
ability of the code to communicate its intent. Naming is so
important that Martin in “Clean Code”[7] provides seven
heuristics devoted to just that consideration alone.

Another frequently used refactoring activity is extract . It
is often used to reduce the number of lines in methods hav-
ing the “long method smell”. A method is reduced in size by
extracting some of its lines into a new method. The original
method then refers to the newly extracted method. Once
again naming is important as the new method should have a
name which makes its purpose clear. A call to a clearly
named purpose often eliminates the need to comment a se-
quence of statements.

As refactoring becomes more widely practiced and under-
stood, IDEs are increasing support for automated refactor-
ings. Eclipse[8] provides a refactoring menu with many of
the refactorings from Fowler[6]. Research is underway to
study more about how developers use refactoring tools in
their work [9-11]. While IDEs like Eclipse now provide
many refactoring options, it has been difficult to determine
exactly how refactoring is used in practice[10]. Some stud-
ies try to determine refactoring histories by examining re-
pository data while others have used instrumented IDEs to
collect and report various types of information. Experiments
and interviews with developers are another approach. Over-
all it seems as though only a handful of the automated re-
factoring features are widely used. Some attribute this, in
part, to the difficulty (poor usability) of using refactoring
tools[10-11].

It is logical to assume that certain types of refactorings
might be associated with specific types of code. Indeed,
GUI code analyzed by participants in Mäntylä and Lasseni-
us'[9] refactoring study was noticed to tend toward typical
characteristic smells. Furthermore, Marinilli[12] suggests
several specific refactorings that are applicable to GUI code.
Visual interface construction tools will often directly sup-
port some forms of refactorings (even as the code they gen-
erate may necessitate others [5]). The complexity of sup-
porting a modern interface suggest a multitude of refactor-
ings which may be possible including: switching layout
managers, obtaining text and image content from a resource
loading system, internals of event handling, undo and log-
ging. Aside from pure UI issues, the model, or what the ap-
plication uses as its internal model(s) might also be refact-
ored.

5 Refactoring Early: Prefactoring

Recognizing that code will need to change and that there
is value in refactoring, can the practice be advanced by util-
izing the knowledge gained from previous software devel-
opment experiences? That is the idea behind Prefactoring as
put forward by Pugh[13]. Some of the main concepts em-
phasized in prefactoring are listed below:

Interface: more focus on what components should do rather
than on how.

Abstraction: express ideas with pseudocode.
Separation of Concerns: responsibilities are split between

classes, methods etc.
Readability: code should clearly communicate what it does.

There is considerable overlap between these concepts and
those supporting good interface design and implementation.
Abstraction and interface manifest themselves in the ideals
of expressing interaction design with low fidelity proto-
types: offering a high-level way to visually explore what an
application should do. Parameterization permits an abstrac-
tion to consider a generalization of items rather than each in-
dividual instance separately. Separation of concerns mir-
rors the MVC paradigm. Readability relates to choosing
meaningful names and appropriate chunking of ideas.
Grouping related interface items together often makes sense
for the user (logical groupings, consistency) as well as for
the implementation (readability, reusability, reduced duplic-
ation).

6 Low Fidelity Prototypes:
Refactoring Tools

As software developers prepare to start a new iteration,
assume they have available (or can quickly construct) a low
fidelity prototype. Consider how that prototype could be
used for refactoring (or prefactoring). While not meant to

340 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

be an exhaustive list, for clarity, we will focus on refactor-
ings concerned with naming, extraction and parameteriza-
tion. These refactorings and how they may be explored with
low fidelity prototypes are now considered in more detail.

name/rename: interface items may have names visible to
the user (labels, titles etc.) as well as internal
names. Especially objects that are to be referenced
at larger scopes, should have clear names. Naming
and renaming can iterate quickly and using the pro-
totype it is easy to involve interaction designers
and/or customers in the discussion about appropri-
ate names. Good names are extremely important
for creating highly readable code.

extract: a window or dialog may contain many components
or areas devoted to different types of information
or interaction. The implementation might specific-
ally use separate methods extracted to group to-
gether code devoted toward different aspects. Ex-
tract may also be useful for breaking down event
handling routines. New classes may also be extrac-
ted.

parameterize: a window, pane or other object or method
may be representative of a family of similar ob-
jects. Rather than create each item with distinct
code, merge implementations and use parameters to
specialize. This can reduce instances of duplicate
code.

Recall the MVC paradigm discussed earlier. View com-
ponents may be the first to mind when examining a proto-
type. In Figure 5, view aspects are clearly the polygon graph
and its table of points as well as the view of the generated
source code. The graph is likely to be a custom component
but it also brings to mind the internal polygon model and
what information it contains. A basic polygon model may be
composed of a list of vertices but to support graphical edit-
ing the application model may add a “selected vertex” data
structure as well. In this application, the model is supple-
mented by additional converter objects to generate source
code conversions for polygons. These model classes (or
perhaps interfaces), objects and methods all require good
names. Models can be tested without the GUI so initial ideas
regarding names, method parameters etc. may already exist.

The controller coordinates the events and provides but-
tons like “Add”, “Copy to Clipboard”, “Convert” etc. In
some cases, controls may be enabled/disabled based upon
the state of the model (i.e. “Convert” should not be enabled
if at least 3 points haven't been defined). Since such controls
need to be referenced to update their status, they require
special naming considerations. An alternative implementa-
tion strategy might use Swing Actions but again the actions
should be carefully named.

To illustrate more specifically, the “Convert” dialog (bot-
tom left of Figure 5) is opened once the user has specified a

Items to consider names forN

NN

P
X

N

X

NParameterization possibilitiesP

Extraction possibilitiesX

Consider what objects will need to be referred to in
the future and give them meaningful names

Do groupings of items represent a higher level idea
and/or behavior that might be extracted ?
Are entities visualizations of model com-
ponents that might be extracted ?

Would duplication of the abstracted components be
reduced through parameterization ? Propose
good names for extracted and parameterized
objects as well.

N

X

X

P

Figure 5: Prototype sketches as refactoring tools.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 341

polygon and clicked the Convert button. It is shown for a
POVray conversion but no doubt it will be very similar to
the conversion dialogs for other source code options. Rather
than duplicate essentially the same thing (removing duplica-
tion is a common refactoring goal), the dialog can be ex-
tracted into a new class and its constructor parameterized.
The orange dashed ellipses indicate possible parameter
items – the items are also annotated for naming. Deriving
good names naturally leads to thoughts about what the data
represents and, if it is dynamic, how it changes. Here the
data could be passed in directly as a parameter or be gener-
ated by other objects (polygon and converter objects).

Of course, once implemented, items may continue to
change and new prototype sketches generated by the I.D.
team reveal how. Figure 6 shows both the implementation of
the conversion dialog along with the design sketch for the
next iteration. Screenshots of the working software (and
other design diagrams, uml etc.) can be used along side the
prototype, to plan the refactoring and to prepare for design
changes and new features. Prototype sketches can be
scanned and overlaid with notes regarding the current area
of focus (refactoring overlays). Figure 6 concerns moving
the ConversionDialog into a section of the main window.
The notes show a refactoring plan to extract the content cre-
ation aspect of the dialog to a method that instead creates a
pane. The pane can then be used in the main window. To

work with all different types of conversions, parameteriza-
tion for different type names and source code is maintained.
Since the pane will remain open, an update method is also
proposed.

Notice that extraction of the code requires new names, de-
cisions of what parameters to use, as well as a determination
of where the code should go. Renaming or eliminating the
original class is a possibility. Even though the existing code
will ultimately be refactored using the refactoring tools of
the IDE (and/or manual code refactoring), it can still be
helpful to work out a refactoring plan by beginning to re-
factor using the low fidelity prototype. This can provide a
more fluid environment for thought and discussion with a
greater sense of context as the existing code is prepared for
modification to fit into the new design. A rapid exchange of
ideas over the low fidelity prototype may serve to explore
and eliminate some refactorings before making any changes
to the actual source code.

As new features are considered, the existing code modi-
fications move beyond refactoring but the issues of renam-
ing, extraction etc. become immediately apparent and the
process repeats. Prototypes with their refactoring overlays
may be saved (scanned and checked into the team reposit-
ory) for review during retrospectives or whenever needed.

These annotations focus on
the refactoring, extraction
and movement of the
ConversionDialog code into
the main window.

X

X

P

ConversionDialog

extract panel
makeConversionPane(conv,poly)
updateConversionPane(conv,poly)

?

PolygonModel

getPoint(i)

PolygonConverter

getName()
convert(poly)

Figure 6: Further design iteration moves the conversion dialog information into a section of the main window.

P

P

poly

conv

342 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

7 Conclusion

Much effort has been placed into making powerful auto-
mated refactoring tools available to developers. Research
has shown that these tools do not seem to be used as often
as might be expected. Some tools suffer from usability is-
sues and there may also be a lack of awareness of complex
refactorings among developers. Rather than focusing ex-
clusively on building more powerful automation into refact-
oring tools, this paper proposes a contrary idea; expand re-
factoring tools to the more human side by overlaying refact-
orings onto low fidelity prototypes.

A criticism of prefactoring, and perhaps this method, is
that we may fall into the trap of too much upfront planning.
That is obviously not the intent. We merely wish to intro-
duce “prototypes as refactoring tools” as one more tool to
be used where appropriate. As is the case with simple low
fidelity prototypes, they provide a fast and flexible way to
consider many ideas quickly and in a way that serves to
foster communication among team members. Much of
maintaining good clean code involves naming and commu-
nicating intent. Informal, light and fast, refactoring with
prototypes allows for quick iterations over naming and
helps to raise important ideas about what aspects might be
extracted and parameterized.

To quote from the Agile manifesto[14]: “Individuals and
interactions over processes and tools”. Teammates working
together around a whiteboard or table on the initial refactor-
ing for an iteration using prototypes promotes this idea.
While there is certainly value in automated refactoring
tools, ultimately there is a very human side to crafting code
which effectively expresses its intent. Ideally developers
will have a broad spectrum of tools to help them succeed in
this challenging endeavor.

We plan to continue exploring these ideas. It is expected
that refactoring using prototypes will also aid in brainstorm-
ing with the team (and customer) and help in story estima-
tion and splitting. Refactoring discussions using prototypes
may also raise awareness of refactoring options in general
and result in more use of automated refactoring tools as
well. We are hoping to collect data on these anticipated ef-
fects as well as to determine what if any new notations
might be appropriate for annotating refactoring thoughts
onto screen sketches etc.

8 References

[1] Robert Cecil Martin, “Agile Software Development:
Principles, Patterns, and Practices”. Prentice Hall PTR,
Upper Saddle River, NJ, USA, 2003

[2] Jeff Patton, “Twelve emerging best practices for adding
UX work to Agile development”, 2008 ,
http://agileproductdesign.com/blog/emerging_best_agil
e_ux_practice.html

[3] Lynn Miller. “Case Study of Customer Input for a Suc-
cessful Product”. In Proc. of the Agile Developers Con-
ference (ADC 2005), Denver, CO, pp 225-234, 2005.

[4] WindowBuilder (Pro),
http://code.google.com/javadevtools/wbpro/

[5] Michael Wainer. “GUI Tools and Generated Code: Re-
factoring to Reveal Intent”. In Proceedings of the Inter-
national Conference on Computers and Their Applica-
tions (CATA 2011), New Orleans, LA, pp. 108-113,
2011.

[6] M. Fowler. “Refactoring: Improving the Design of Ex-
isting Code”, Addison-Wesley, Boston, MA, USA,
2000.

[7] Robert Martin. “Clean Code: A Handbook of Agile Soft-
ware Craftsmanship”, Prentice Hall, 2009.

[8] Eclipse Project, http://www.eclipse.org/
[9] Mika V. Mäntylä and Casper Lassenius. “Drivers for

software refactoring decisions”. In Proceedings of the
2006 ACM/IEEE international symposium on Empiric-
al software engineering (ISESE '06). ACM, New York,
NY, USA, 297-306, 2006.

[10] Mohsen Vakilian, Nicholas Chen, Stas Negara, Balaji
Ambresh Rajkumar, Roshanak Zilouchian Moghad-
dam, and Ralph E. Johnson. “The need for richer re-
factoring usage data”. In Proceedings of the 3rd ACM
SIGPLAN workshop on Evaluation and usability of
programming languages and tools (PLATEAU '11).
ACM, New York, NY, USA, 31-38, 2011.

[11] Emerson Murphy-Hill and Andrew P. Black. “Break-
ing the barriers to successful refactoring: observations
and tools for extract method”. In Proceedings of the
30th international conference on Software engineering
(ICSE '08). ACM, New York, NY, USA, 421-430,
2008.

[12] Mauro Marinilli, “Professional Java User Interfaces”,
John Wiley & Sons, West Sussex, England, pp.191-
201, 2006.

[13] Ken Pugh.“Prefactoring”. O'Reilly Media, Inc., 2005.
[14] Agile Manifesto, http://agilemanifesto.org/

All web sources were accessed March 2011.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 343

http://agileproductdesign.com/blog/emerging_best_agile_ux_practice.html
http://agileproductdesign.com/blog/emerging_best_agile_ux_practice.html
http://www.eclipse.org/
http://code.google.com/javadevtools/wbpro/

Adopting Agile Methodologies to a One-Man Software

Engineering Team

Steve Biccum
1
, Nasseh Tabrizi

2

1
Department of Computer Science, East Carolina University, Greenville, NC, USA

2
Department of Computer Science, East Carolina University, Greenville, NC, USA

Abstract - This paper presents how Agile software

development methodologies can be adapted to suit the one

man team. The paper follows the development of an

application called WebChecker; a Ruby on Rails based

software application. Throughout the development of the

WebChecker project, special care was taken to try to stay as

true to the Agile principles as possible. Both tooling and

methodology were tuned for Agile development. The

scheduling application that was built for Agile development,

and supported all of the Agile artifacts out of the box which

made it a natural fit for the project.

Keywords: Agile, Management, One-Man Team, Software,

Development

1 INTRODUCTION

 Agile [1] and its iterative and incremental [2] nature is

clearly more than a fad or development “flash in the pan”, but

rather the evolution of some of the established incremental and

iterative methods of software development of the past. Prior

to the 1990's, software development was completed largely

with either a “Waterfall” [3] approach or some flavor of

incremental and iterative [4] approach. Waterfall, being a

rigid format of where all requirements gathering takes place in

the beginning of a project development and

Incremental/Iterative development being more tolerant to

change by evolving as a project progresses to manage risks.

Both approaches have their benefits depending on the project

at hand, but both proved to be documentation heavy and

somewhat slow to deliver measurable value.

In the mid 1990's [5], small groups of developers began to

embrace a more lightweight style of development and came up

with several new approaches for developing software. These

methods were different from traditional schools of thought in

that they embraced the end user point of view of software that

adds business value and less of the developer point of view

that seeks to develop features to meet a requirement. In 2001,

several leaders of the software movement dubbed “Agile”

came together in a meeting to seek to find common ground

around the various processes that had developed over the last

decade. From that initial meeting, the Agile Alliance was

formed and the following “manifesto” [6] was released that

embodies the Agile way of software development:

We are uncovering better ways of developing software by

doing it and helping others do it. Through this work we have

come to value: Individuals and interactions over processes and

tools; working software over comprehensive documentation;

customer collaboration over contract negotiation; responding

to change over following a plan [7].

When adapting Agile principles to the single man team, it

was natural to draw on some of the existing methodologies for

somewhat larger teams. Agile SCRUM specifically served as a

good starting point and the methodology was customized from

there [1]. Although the SCRUM methodology takes its name

from a type of meeting among the developers, it still served a

as a good starting point for ideas. Naturally a “daily standup

meeting” that is traditionally held among developers was not

required, but other core concepts did prove useful. Agile

SCRUM employs the use of user stories, story themes, and of

course, the user story backlog to house all of the stories [1].

Beyond that, the project also adopted incremental and iterative

scheduling practices that are popular among many flavors of

Agile including a story sizing technique based on a metric

referred to as story points [1]. Using these pieces of Agile, it

was possible to construct a viable one man form of agile

development.

2 THE WEBCHECKER SYSTEM

 The motivation for the creation of the project called

WebChecker was simple, web administrators need to know

that expected content is making it to the screens of their

clients. Traditional methods of server checking are generally

based on checking response headers or some other generic

check of page response. In order to verify that a particular

page is being served properly, a more sophisticated way of

checking must be employed. WebChecker provides a way for

savvy web administrators to construct a series of regular

expressions that can be used as verification points that prove

to the web server administrator that the page did, in fact, load

all content properly. Placing this verification on a schedule

and adding alerting capabilities such as email, extends the

check to be a monitor for any given website. The concept is

simple, and while many companies offer some form of

checking and verification of site presence, it is not easy to

know exactly how these companies verify site availability.

With WebChecker, presence is determined directly in a binary

way. The verification point will either match or not match.

This is similar to the way several web enabled functional

344 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

testing frameworks operate, but on a much more targeted

scale.

3 AGILE DEVELOPMENT

3.1 User Stories

 After defining the scope and nature of the project,

the next step was to start translating the project into

requirement terms. In the Agile context, this means defining a

set of statements called user stories [8] that capture the bits of

business value that when combined form the overall solution.

Since Agile is focused from the user perspective, all user

stories are written from the user's perspective. This assists the

developer in looking at the solution from the user's point of

view. A typical story is a single sentence that defines the role

of the requester of the requirement, the actual requirement of

the solution, and finally and perhaps most importantly, the

reason for the requirement.

Although somewhat clunky in syntax, the requirement's

reason is most significant because it can lead to other stories

by placing customer requirements in context. If the users say

they need a feature without properly defining the need being

satisfied, it might be easy to miss the underlying need for

another feature. For example, if the client requests a feature to

track web response times, but the question of “why” was never

asked, the fact that the company was actually monitoring

responses in order to make a vendor hosting decision might be

missed. Tracking response times is simple enough, but the

need to group web sites by hosting vendor would most

certainly affect how database tables are constructed.

Furthermore, presentation of the aggregate response times by

vendor would certainly be useful for decision making.

 For the Webchecker project, since there was no existing

infrastructure, many of the stories were obvious – tool

selection, infrastructure decisions, and a high level design of

the software. Once past the initial layer of these basics, stories

were written that shaped what features would ultimately be

implemented including elements of both presentation and

collection elements. Most of the stories are written at the

onset of a project but as the project progresses, it is quite

natural to generate more stories. These new stories as a rule

are placed on a queue for later sizing and scheduling. In this

manner, the work that is in progress remains in focus and the

schedule is maintained.

3.2 Story Points

 Once the stories are written, each story must be assigned a

unit for size estimation. This unit is based on perceived

complexity and is referred to as story points [9]. Story points

are a “quick and dirty” estimation technique where developers

estimate complexity in terms of similar code that they have

developed in the past. A scale is used that helps define a level

of complexity that sets it apart for the directly adjacent scale

markers. The scale can be a simple Fibonacci sequence of

1,2,3,5,8,13, etc. or, in some cases use terms similar to shirt

sizes: extra small, small, medium, large, extra-large. Either is

acceptable, but the point is to quantify the level of effort

required for a given story. Proper estimation of story points

should also take into account the developers experience with

the language, code base and the amount of discovery involved

with the aspects of the project that the story's implementation

would involve. Once quantified, judgments can be made for

scheduling, and planning.

For this project, stories were all assigned points just after

the stories were written. This allowed for first pass estimation

while the story was still fresh in the mind and no additional

review was required to gain understanding. Each story was

evaluated in terms of what the story would take to fully

implement. Depending on the story, this could include

estimating database work, interface and functional testing

work and, of course, the writing and testing of the unit level

code. The project management software that was chosen for

this project (discussed later in this paper) provides an easy

way to record the story points in terms of shirt sizes (xxs,

xs,s,m,l,xl,xxl) with an underlying numerical component that

is used for point tracking and project management processes.

3.3 Themes

Once the stories were written and assigned points, stories

could be sorted into logical groups called themes [10].

Themes serve a few critical purposes in the Agile software

development cycle.

 First, the grouping of stories forces the developer to take a

step back and take a broader look at the projected work. This

high level view allows for sorting and determining

interdependencies or competing stories. Interdependent stories

typically will dictate some order of implementation while

competing may require some stakeholder involvement for

resolution. In either case, there is the potential impact on

implementation or overall design. Themes also provide a

scheduling convenience. Once themes are created, large

collections of work can be evaluated for the optimal

implementation schedule. Multiple themes can be started

concurrently if required.

 Finally, and perhaps most importantly, themes provide a

goal for each release and a way to clearly articulate that goal.

The first release for the WebChecker project, for instance, was

to build the infrastructure, select tools, complete the software

design, and finally implement the core agent functionality. By

simply evaluating the list, even the most passive observer can

glean what deliverables would be in place at the end of the

first release: a functioning server environment, a set of

development tools, a software design, and the first release of

the core agent software.

 The WebChecker project was broken into stories that

were grouped into three distinct themes: infrastructure work,

core agent work, and web presentation work. Infrastructure

stories relate to building the underlying server hardware and

operating system software, as well as tooling research and

tooling selection. Core agent work was dedicated to the

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 345

components of the system that, as the name suggests, provide

the core functionality of checking and alerting functions. The

web presentation work's goal was to implement a means for

persisting response data for analysis and actually providing

data presentation via web based charts and graphs.

3.4 Acceptance Criterion

 As noted above, each story was written with an acceptance

criterion appended to the end. A criterion was written for

every story as it was entered to the tracking system (also

known as the product backlog). The idea behind the writing of

the criterion is to serve as a quick way to determine the point

of “done”. In other words, “this story will be complete when

the following requirements are met: A,B and C.” In the above

example, a design artifact must be complete and a unit test

generated. In this case the code itself is assumed.

3.5 Incremental and Iterative Scheduling

 As mentioned, agile methodologies encourage incremental

and iterative development. To achieve this, the project made

use of an incremental release and iterative sprint schedule.

The release itself has a deliverable at the end that seeks to

match the above mentioned themes. Inside each release can

contain any number of sprints as determined necessary. In this

case, the project was split into three releases with two, two

week long sprints inside each release.

As a best practice, the Increments for this project were

named using a date format and increment number YYN.

Sprints were numbered sequentially within the increment with

a dash. For this year, 2011, the first increment will be named

111 and the first sprint will be named 111-1. The second

sprint of the first increment is named 111-2. The first sprint of

the second increment is named 112-1 and so on.

3.6 Agile Status Checking Backlogs and the

Burndown Chart

As lightweight as Agile can be, it is still important to keep a

status of the project to determine if a project is behind or on

schedule. Agile, or more specifically the Scrum flavor of

Agile development, introduces the concept of a “backlog” that

represents a list of the known requirements for a given

software project [11]. The backlog is the total bucket of work

for the project. As the stories are completed, the total number

of incomplete story points in the backlog will decrease, the

result of which can be traced on a graph. The result is a

downward slope from upper left to lower right of the chart as

work is completed.

3.7 Project management

Project management software selection was particularly

tricky for this project. There are multiple competing

applications available to manage an agile project. Since this

was such a small scale and single user type project there were

even more choices as there are many enterprise class

management applications available for free or low cost when

using small teams or small projects. While these were

considered, these generally were deemed to be heavy for this

project. The core requirements were: lightweight, simple to

use, with built in support for the agile artifacts (stories, story

points). The selection for the WebChecker project was a

single user style, Java freeware planning tool called

“Scrumpy” [12]. Scrumpy supports all the agile artifacts and

scheduling routines and has some built in charting functions

for displaying progress, and is intuitive and effective. One of

the most attractive aspects of the tool was the clarity it

provides when observing the backlogs and the project

backlog.

3.8 Language and Framework

Given the scope of the project, it was clear very early on

that Ruby on Rails was a good choice for development. The

Rails portion of the configuration allows for rapid

development with automated helpers for database

configuration. It also uses a rigid Model-view-controller

pattern for software development that will lead to better

overall system design. Another key advantage of Ruby is the

active developer community.

This support allows for a good point of reference in terms

of syntax and troubleshooting. As with many software

communities, libraries are routinely released as optional

packages that extend the base language in various ways. These

extensions are bundled into independent libraries that can then

be imported for various functionality. In the Ruby community,

these libraries are called “gems”. These gems provide an easy

way to avoid “reinventing the wheel” and in many cases, can

speed delivery of working software.

3.9 Development Tooling

 An Eclipse based solution was selected as the primary

development environment and the search for a suitable Ruby

plugin for eclipse became a priority. After some shopping

around for different alternatives, Aptana Studio 3 (formerly

RadRails 3) was selected as it plugs in perfectly into the

Eclipse environment. Ruby on Rails also implements

something called Representational State Transfer perhaps

better known as REST. The Hyper Text Transfer Protocol

relies on 4 core actions: post, put, get, and delete. If you

combine these actions with a url object to act on, a consistent

syntax emerges that forms the basis for all HTTP create, read,

update and delete or CRUD operations. In Ruby on Rails, it

means that the Uniform Resource Identifier or URI on the

location line represents the object or objects that will be

subject of the CRUD operation.

3.10 Design Philosophy

346 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

 Design is important part of any system and can in many

cases, can determine a system's longevity. In this case, as a

requirement of each phase a requirement of the realization of

the application was a design artifact. In all cases, a basic UML

or class diagram was used to reflect the changes in the design

as the project was developed. Although, by the end of

development, the diagrams became quite complex, it was

necessary to make them complete should this code ever be

extended or enhanced.

3.11 Testing Conventions

 One convention in the Rails community is to avoid

repeating yourself. This is especially true in the testing aspects

of Rails. Testing takes a lot of time in the development cycle

and it is something that should only be performed on code that

you personally created and not generated code, or code that is

brought into the project via plugins or code that is included for

enhancing functionality this includes any gems that are

installed. The assumption here is that the creators of any

imported code follow good conventions and testing best

practices as well and thoroughly test their code before it hits

the general public. In accordance with this, you only test the

code you develop, not add-ons or functions that Rails provides

off the shelf. Following this principle makes the development

and testing much lighter from a maintainability standpoint.

4 RELEASE 111

The primary focus of this release was the prework and

infrastructure items, and a single release of the WebChecker

program. The single release of WebChecker includes testing

suite including unit tests and functional tests.

4.2 Sprint 111-1

This sprint was primarily concerned with the infrastructure

and prework elements. This includes tool selection,

architecture configuration and the initial design of the

WebChecker Agent.

4.2.1 Tool Selection

During this release, several tools were decided upon, including

planning tools, development environment and the back end

database.

Planning Software Scrumpy was the scheduling software

that was selected for scheduling and project management. As

noted above, Scrumpy is a simple java application that installs

on the developer workstation with very little setup. Once

installed, the application was intuitive to configure. The work

items were entered assigned proper sizing very quickly.

Language Platform As mentioned before, language was an

easy choice. Ruby, with its popularity, it open source nature

and solid community support was a natural fit. Rails extends

the ruby selection and assists with the persistence mechanisms

that will be required in the later releases when the database

elements are introduced.

4.2.2 Infrastructure Milestones

 The following section details some of the implementation

aspects of the infrastructure including the physical server

hardware, the Ruby and Rails environment, and the actual http

server implementation that is required for serving the rails

environment.

Installation of the Server As mentioned above, the sever

installation was simple as the hardware was a stock 2.4 GHz

Pentium 4 class system with 1GB of RAM and was fully

capable of running a modern linux distribution. For this

project, Debian 5.0 Linux (also known as “Lenny”) as

mentioned, was selected for its reputation for stability.

Installation of the Ruby and Rails Environment Ruby and

rails proved to be more difficult than initially suspected. This

is not a because of Ruby, Rails or the underlying operating

system, but due to some constraints external to the scope of

this project. These constraints require some versions greater

that the built in Debian package system provides. When

building the environment and incorporating the constraints,

the built in package management system of Debian failed to

remove some of the built in Ruby hooks and symbolic links.

Since the Ruby and Rails installation for this environment was

being built from source, a filesystem cleansing of these links

was required to make all subsequent layers work together.

After a manual build for source and installation and some

manual symbolic link creation, the system was ready. Ruby

has its own package management system that is used to install

gems that are essentially add on packages to enhance the ruby

environment. Rails and its dependencies are all installed

through the gem manager.

Installation of Nginx/Passenger Phusion After some

research the Nginx http server, was found to be one of the best

http servers for Ruby/Rails around. Passenger Phusion is a

proxy and bootstrap system that works well in getting Nginx

up and running quickly. The entire package is natively

compiled and is a very responsive platform. A test application

was raised for verification of the http installation in short

order.

Initial Design stages of the project, it was somewhat unclear

as to what the initial objects would look like. At this point, the

design was a product of what the end objects “should” look

like. That is, as responsibilities go, it was clear what roles

were going to be in play. The initial Class diagram was

developed from this standpoint.

4.3 Sprint 111-2
 There was, in fact, a significant amount of discovery that

needed to take place as the project evolved. Some of these

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 347

items were as simple as Ruby syntax and code structures.

Other, more complex items surrounded the libraries that were

available for use in the Ruby environment. So there was much

evolution of this code over the sprint.

4.3.1 WebChecker Implementation

 The first pass with the sprint was to essentially get a

functioning prototype up and running. The first

implementation was a essentially a sequencer that would drive

a series of methods within the same class in a rough draft of

the core logic. Each of these methods would do their small

part of the process using whatever bits of the Ruby libraries

that could be used to get the job done. At the end of the

exercise, there was, in a sense, a functional script that would

do most of the tasks that were required for this iteration. In the

next pass, it became apparent what would be required to make

this code reusable and more modular. In this step, the methods

were ported from the initial prototype into full blown objects.

This naturally, required some refactoring of the initially

planned objects.

4.3.2 Testing for WebChecker Agent

Acceptance Test At the end of the first sprint, the

WebChecker agent was completely developed. This agent was

able to be run from the operating systems cron table on a

schedule and poll a series of websites. An administrator had

the ability to set these web pages (both http and https) and

regular expression verification points to ensure that the

content of a site was being served properly. Administrators

could also specify an email address that could be used for

WebChecker to email failure reports. In this increment, all of

these settings are contained in comma separated files. While

primitive, the agent could be released in this form, as it does

deliver business value.

Functional Testing Functional testing for this increment

was handled by manipulating the comma delimited input files.

Test cases were generated by determining the different input

factors that ultimately change the way the program builds the

target urls. PageValidator uses mocks as well, this time for

network calls. In this test suite, various inputs of the

UrlToCheck objects are fed to the unit. Positive and negative

paths are tested. There are seven tests that exercise this unit.

5 RELEASE 112

 The focus of this release is the enhancement of the core that

was built in the first release. Specifically, in the first release,

there were some brittle input methods that required special

syntax to avoid input errors. In this release a Web based

Graphical input mechanism will be created, with a back end

database storage system for persistence. Sprint 112-1 is

focused on designing and developing the interface, refactoring

the core agent code from 111, and integrating the core agent

code with the new persistence mechanisms. The next few

sections discuss some key concepts that are required about the

nuances of Ruby on Rails development.

5.2 Sprint 112-1

 In this sprint, the primary focus was contacts management.

Contacts are simple objects that consist of first name (fname),

Last name (lname) and email address (email).

5.2.1 Expanded Class Diagram

 In the designed class diagram, there are 4 classes that

represent the view classes (edit, new_contact, index, and

show) along with the contacts_controller class. The Contact

class now represents a model of database elements that are

persisted in a sqlite 3 database. The Primary focus of this

release was to make the management of the core inputs easier.

As you recall in the initial release of 111, the inputs to the

core agent was handled by a series of comma delimited files.

While crude, it was effective but by most standards,

susceptible to errors and typos. To fix this, a means to

standardize the input methods was required. Development was

handled in two separate stories: The contacts management

story and the web location management story. While similar in

design, each had its own nuances and it was decided to make

each story a focus of a sprint.

5.1.3 Design

 Previous to this step in the process all development was

done in Ruby and not specific to the Rails framework. This

was the first real step in the project where the kit that Ruby on

Rails provides including the rails generation scripts, Model-

View-Controller based architecture, database persistence and

restful interactions with the web. Given the conventions that

the Rails framework provides, the design was fairly simple.

The contacts model would be a table in the database that

would hold the string fields that are mentioned above.

Scaffolding would create the required elements to provide all

Create Review Update and Destroy (CRUD) operations in the

view and controller. The rails framework would create the

back end tables and model object.

 As for integration, the factory pattern that was developed

in the first release worked in our favor here, it was trival to

change the getNotificationList method that was already

implemented in the factory and change it into a call that would

access the database directly. Ultimately, this is the class

diagram that represents the classes from this sprint and how it

would be wired in with the previous released code.

6 RELEASE 113

This sprint's focus was to enhance WebChecker to collect

response data and devise a logical manner to display this data

in chart format.

348 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

6.2 Design

For this sprint there were two core problems that needed to

be tackled: data collection and data representation. The

design is therefore divided into separate pieces, data collection

and data presentation.

6.1.1 Data Collection

For data collection, further expansion of the database

needed to take place. A table to store data about response

times needed to be created and integrated with the front end

agent that does the gathering. The class diagram was designed

and particular interest was the PageValidator class and the

response.rb file. The file named response.rb is the data model

that represents the underlying table named responses in the

database. This response class is also linked to the

web_location record of the web site that is being polled.

Notice that web_location has been re-factored as well to move

the web_response information directly into the response table

to further normalize the data. The design is that the

PageValidator class will poll each site tracking the required

response information, when the poll results are received from

the server, the PageValidator makes a call to the Response

data object and to the create method on the model object with

the the relevant parameters. When the create action occurs, the

web_location.id will be passed as well, which is used to link

the response to a particular website. When it comes time to

display the data, the has_many, belongs_to relationshops will

join the elements together for grouping calculations, etc.

6.1.2 Data Representation

 For representation, there is the temptation to over think the

representation and begin to develop complex javascript, dojo

or Adobe Flash based solutions. This ultimately leads to a lot

of logic placed into the view that can be difficult to test. The

approach that was taken was somewhat different : the chart api

from Google.

 Google has made an API freely available that generates the

charts and graphs that are easily integrated into websites.

Essentially, what the programmer must do, is integrate a url

into an img tag on the page that gets served. When the client

displays the page, a request is made to the chart api url from

Google with all the relevant data integrated into the img tag.

Google's server uses the parameters that are passed via url and

creates the chart on the fly. This has the advantage of moving

the logic out of the view, and actually out of the application

altogether. This does place a dependency on an external entity,

but being that Google has a good track record for availability,

and the nature of the dependency (few graphical elements),

this risk is acceptable.

6.1.3 Implementation

Data Collection Implementation of the data collection for

this design was not significantly difficult given that the Rails

environment is initialized every time that the agent is run. So,

for this integration, a change was made to the loop, where the

polling takes place to add the start_time and stop_time

variables along with the addition of single line to create a

response record. This single line that has been truncated for

readability creates a new record in the response table with all

the relevant variables applied. The web_location.id is the

binding factor in the database to link the two tables along with

the appropriate has_many belongs_to relationships. So now

whenever web_location is selected from the database, all of

the responses that belong to that same web_location.id will be

pulled in as well. This is especially useful for the Data

representation phase of this sprint.

Data Representation Implementation To integrate the chart

representation, an adapter was implemented that would assist

in the url generation that would be placed inside the img tag in

the view. This object was naturally written in Ruby, and takes

two or three arguments dependent on where the adapter is

used. For the index pages, the the controller passes in a title

for the chart, a data set to be represented, and the name of the

websites that are placed on the chart. In this way, the adapter

unfolds all the title, data and names are presents this into a

single line url. For the individual pages, the data set is less

complex and different type of chart is required. The

representation for these types of calls is handled through the

chart adapter object as well, where the Title of the chart is

passed in along with the data set that will be charted. In either

the large collections or the individual representations, the

adapter object is passed to the view on the original http get

request, and the url method is then called to write the img tag

properly. When the page is rendered, Google's server provides

the required graphic. See below for a sample chart.

6.1.4 Testing

Data Collection Testing Testing for the Data Collection

aspect was handled via unit test in RSpec. Testing was as

simple as building a mock object of the WebLocations model,

and creating a few expectations on it. This mock was placed in

an array and passed to the PageValidator initializer and finally

in the test we set an expectation on the Response table to

receive exactly one call on the create method. The test consists

of fewer than 15 actual lines of code:

Data Presentation Testing The testing for the presentation

was a little more involved. Since there are two modes of

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 349

operation for the representation, there are a few items that

require testing. First a test of each mode was required, then a

test to make sure that the chart_adapter object that provides

the url for the img tag is being properly presented to the view.

 To test the chart adapter itself a set of tests were created that

would exorcise the various modes of operation that the adapter

was required to provide. To do this, 2 known data sets are

constructed for the test- a set that would be used as the

representative set for the individual data points. This data

would represent the single web site. For the set of web sites, a

few more items were created. A set of names, and a set of data

points. This represents the multiple sites line graph above.

In the BDD model the test was not overly complex:

Given these data points,

when put into the chart adapter,

then the response on the url method will be X

(Where X represents the oracle that is hand derived

by the tester.)

 After the chart adapter was fully tested at a functional level,

all that was left was the integration testing. In this case, the

test that was required was to make sure that the chart adapter

object was getting passed to the view properly. Since the

passing of objects from the models through the controller is is

already something required for other objects in the existing

system , it was a simple matter of enhancing the existing tests

to ensure that the chart object was getting passed to the view

for rendering as well.

7 Conclusions

Agile development is typically a team effort. Agile teams

can be various sizes but typically, they are comprised of 2 or

more individuals. Single members or small sub teams have

selected focus but they are part of the larger project effort.

This project was unique in that the “team” was a single

individual. Rather than simply toss a few stories together, the

project and plan was iteratively groomed together. There was

cohesion to the stories as they were developed and real

meaning was associated with how the stories were grouped,

sized and planned. While this approach may seem a bit heavy

in nature for a team of one, the structure of it prevented so

called “cowboy coding” and ultimately lead to a higher quality

of code.

 Certain Agile conventions like check point or stand up

meetings were deemed unnecessary, other items like the the

Burndown chart and the large scale written updates at the end

of a release proved valuable in the progress of the project.

The burndown charts lead to the internal perception that work

was progressing at the expected rate. There was a great sense

of accomplishment in marking the stories complete and

driving the status bar to the right and down.

 Large scale written updates near the end of each release

were used to document what had transpired. These served as a

good verification point and a good sanity check that

everything had indeed been completed properly. During Sprint

111-2 for instance, while writing an explanation about the

testing procedures, it was deemed that a certain class had no

unit tests written for it. This class had been overlooked with

regard to unit testing, and the write up procedure actually

caught the problem and the tests could be completed before

the next set of work was started.

 All aspects of the project were completed on time and the

project met all of the initial requirements. Agile, with its

incremental and iterative nature lent itself to this project

nicely. Ruby on Rails was a viable solution for this particular

application and the available testing frameworks were more

than adequate for the task.

 Perhaps most interesting, is that other than the freeware

scheduling application, Scrumpy, the entire software stack was

comprised of open source solutions. This includes everything

from the development environment to the Debian powered

server and the other web service components and the core

languages. Clearly this is an inexpensive solution that could be

extended for cloud based computing and other web based

services in the future.

8 References

[1] Pham, Andrew, and Pham, Phuong-Van 2012 Scrum in

Action: Agile Software Project Management and

Development. Cengage Learning

[2] Larman, C. and Basili, V.R. 2003. Iterative and

Incremental Development: A Brief History Computer, vol.

36, no. 6, pp. 47-56

[3] Department of the US Air Force's Software Technology

Support Center, 2003 Guidelines for Successful

Acquisition and Management of Software-Intensive

Systems: Weapon Systems Command and Control Systems

Management Information Systems Condensed Version

Version 3. Department of the Air Force, Hill AFB, Utah

[4] Larman, C. and Basili, V.R. 2003. Iterative and

Incremental Development: A Brief History Computer, vol.

36, no. 6, pp. 47-56

[5] Larman, C. and Basili, V.R. 2003. Iterative and

Incremental Development: A Brief History Computer, vol.

36, no. 6, pp. 47-56

[6] Fowler, Martin and Highsmith Jim, 2001. The Agile

Manifesto Software Development Magazine

[7] Larman, C. and Basili, V.R. 2003. Iterative and

Incremental Development: A Brief History Computer, vol.

36, no. 6, pp. 47-56

[8] Leffingwell, D. with Behrens, P. 2009 A User Story

Primer, Leffingwell, LLC.

[9] Cohn, M. 2005 Agile Estimating and Planning, Mountain

Goat Software, LLC

[10] Cohn, M. 2009 An Introduction to User Stories.

Mountain Goat Software, LLC

[11] Pekka Abrahamson, Outi Salo, Jussi Ronkainen & Juhani

Warsta , 2002 Agile software development methods

Review and analysis, VTT PUBLICATIONS, VTT,

Finland

[12] Scrumpy, 2011. http://www.scrumpytool.com/

350 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

http://www.scrumpytool.com/

Estimating Agile Iterations by Extending

Function Point Analysis

A. Udayan Banerjee, B. Kanakalata Narayanan, and C. Mahadevan P
NIIT Technologies Ltd, No.31/2, Rupena Agarhara, Hosur Main Road, Bangalore-560068, India

Abstract - Estimation is critical to software development

irrespective of the development methods being used. Waterfall

methods work on the concept of signed off requirements, while

agile methods are designed to handle changing requirements

through increased customer participation and frequent

releases. Statistical estimation methods like Function Point

Analysis (FPA) are more appropriate in scenarios where

requirements are explicitly documented, while agile projects

are typically estimated using analogous non standard sizing

methods like Story Points.

Organizations outsourcing software development want

vendors to adopt agile methods but estimate using standard

techniques like FPA and upfront commit to schedules,

features, effort. The key characteristic of agile projects which

impacts estimation is its iterative incremental lifecycle which

includes evolutionary design, requirement refinement,

increasing code base and constant code refactoring. In this

paper we propose a mechanism for estimating the size of agile

iterations in Function Points by extending FPA [11]

techniques along with Caper Jones activity scope for software

projects [17, 20]. We have applied this technique on three

agile projects and observed that there is a linear correlation

between effort consumed and the estimated iteration size.

Keywords: Agile, Function Points, Estimation, Iterative

Development, Outsourcing.

1 Introduction

 As an answer to the challenges of modern software

development, different lightweight approaches have been

established since the mid 1990s that can be subsumed under

the brand Agile Methods [1-2]. They “allow for creativity and

responsiveness to changing conditions” [3]. They also

emphasize on customer participation, quick reaction to

requirements‟ changes and continuous releases. These

methodologies are gaining in popularity as preferred means

for developing software as they allow organizations to deliver

software effectively in a changing environment [4].

Agile methods specify that working code should be delivered

in small pieces iteratively catering to a sub set of the

functionality asked for by the user. With every iteration, users

are encouraged to provide feedback, add, remove, change

requirements based on which the subsequent code is refined

and incremented. The main idea behind this approach is that

through emphasis on working code delivered frequently there

is a greater chance of delivering usable software which

provides business value. [4]

Software estimation is a critical component of software

development, irrespective of the development method being

adopted. Estimation defines the transformation of

requirements, skills, people and equipment into cost and effort

[5]. The main software estimation techniques are the

following:

 Analogy based: where a new project is estimated based

on its resemblance to an existing project,

 Expert opinion: where a group of experts gather together

to come to a consensus on how much time is required to

build a piece of software,

 Lines of code based: where the estimate is arrived at

based on the expected lines of code,

 Bottom up methods like work breakdown structure

where each task required for the project is estimated and

the sum of it is the total effort for the project,

 Statistical methods like Function Point Analysis which

quantify the size of the software rather than estimate the

effort directly. These methods use metrics collected from

past projects along with mathematical formulae to

estimate project costs.

Each method has its advantages and disadvantages which are

well researched and documented. Statistical methods offer a

scientific approach to software estimation, as compared to the

other methods, which are more subjective in nature, with the

exception of lines of code based sizing. These methods are

more preferred when software development is outsourced by

organizations to vendors mainly because they help in

quantifying software in a standard way irrespective of the

technology being used and such estimations can be

independently verified. The main disadvantage of statistical

methods is that they require the specifications to be articulated

in a detailed manner to provide accurate estimates [6]. Agile

development projects on the other hand are characterized by

fuzzy or evolving requirements. They are typically estimated

using a combination of analogous methods along with expert

opinion. Agile processes recommend that estimations are best

done by the team executing the project, and revisited each

iteration, using a sizing metric evolved by the team. Story

Points or Ideal days [7] are most popularly used in this

respect. The team looks to past projects or iterations, and

draws on its own experiences to produce estimates [7,8].

Caper Jones [9] states that one of the agile weaknesses is a

widespread failure to measure projects using standard metrics

such as function points.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 351

The purpose of this paper is to propose a mechanism for

calculating the size of agile iterations as Function Points

accommodating for iterative incremental development by

extending Function Point Analysis [10] techniques along with

Caper Jones activity scope for software projects [11,12].

While there have been papers published trying to establish a

theoretical relationship between Function Points and Story

Points [13, 14], we have gone one step further and tried to

establish a working model for sizing agile iterations using

FPA, in the outsourcing context. Through this we present a

standard and consistent approach to sizing agile iterations.

2 Estimating Agile Projects with Story

Points

 In agile projects the features to be developed are expressed

in the form of user stories [15] and one of the popular

methods of sizing stories is using Story Points, a subjective

unit of estimate derived by agile teams. In this method a team

compares a user story to one or more similar stories and gives

the story a size in terms of „Story Points‟ or „Ideal Person

days‟. The number of story points associated with a story

represents the overall size of the story. There is no set formula

for defining the size of a story [13]. Each team defines story

points as they see fit. One team may decide to define a story

point as an ideal day of work and another team may define a

story point as a measure of the complexity of the story [13].

Story points have emerged as industry best practice for

measuring an agile development team‟s velocity i.e. the

number of user stories delivered in an iteration [7].

The stories that may be taken up by a team in an iteration is

dependent on the experience of the team, the cohesiveness of

the team, the knowledge they have on the product, the

technology complexity involved etc. These numbers vary

from team to team. Michael Cohn [16] says that it is very

difficult to establish a direct correlation between story points

and hours and further says that the relationship between story

points and hours is typically a distribution centered on a mean

(Figure 1). Even for a given team, same story point sized

stories may take different times during different points in the

release life cycle. A team which has been working for a long

time on a specific product may be able to deliver more stories

than a newly formed team [13]. Thus while story points

provide a way for agile teams to flexibly estimate user stories,

it is not always possible to extend these metrics across teams

or at an organization level [17].

Figure 1: Hours to develop a 1 and 2 point story [16]

3 Challenges of Estimating Iteration Size

Using Statistical Methods

 In this section we attempt to show how the very nature of

iterative development makes it difficult to apply traditional

statistical methods like FPA to estimate projects. Each agile

iteration is a mix of new stories, refactoring of existing

stories, testing and bug fixes to existing stories. It is not

executed like a mini waterfall based project where a

requirement is executed, completed and signed off with a

fixed schedule in a single iteration.

One of the initial activities done at the start of a project or

release is Release Planning, where the development team

along with the customer or Product owner get together to

understand the requirements (product backlog) and estimate

roughly the size of the requirements and the number of

iterations it will take to fulfill them. Team commits to a

probable release date and the best and worst case list of

features that may be released by the release date. The team

may use Story Points to size the release or use statistical

methods like Function Points depending on the extent of

clarity they have regarding the requirements.

Iteration Planning and the Definition of Done: Every

iteration, the team commits on the number of stories that can

be accommodated. While agreeing to develop stories, the

team formulates a „Definition of Done‟ (DoD) which is a list

of activities that will be performed by the team in that

iteration towards the selected stories. DoD is a simple list of

activities (writing code, coding comments, unit testing,

integration testing, release notes, design documents, etc.) that

add verifiable/demonstrable value to the product and can be

undertaken in an iteration [18]. The team may formulate a

definition of done for the release which is a super set of the

DoD for an iteration. For example a team may decide that

they would leave integration and stress testing (which is in

scope for the release) for later iterations and only take up unit

testing and functional testing on each story in the current

iteration. Based on the activities pending, teams may later

visit user stories which where were developed in initial

iterations to complete and polish them the extent needed to

make a formal release.

Hence, the key problem in estimating the size and the effort

required in an iteration using FPA is that all activities required

to be completed towards a function or user story in a project

lifecycle may not necessarily be taken up in a single iteration.

The same story may be visited several times over subsequent

iterations either to refine it or to add more complexity or

undertake additional activities like end to end testing.

Change Management in agile Projects: In order to

accommodate change, agile methods recommend that the

customer or product owner is able to re-prioritize stories,

introduce additional complexity or add new stories into the

product backlog. During the iteration planning meeting the

team is expected to understand the new prioritized backlog

352 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

and decide which items they can take up in the iteration as per

the DoD. Hence in an agile project life cycle estimation is

something that frequently occurs and is continuously revised

and updated.

Evolutionary Design: While agile teams deliver working

code in each sprint, they do not generally have a well defined

design phase as in waterfall based projects and instead work

around evolutionary design practices. Most teams start by

having a basic working design which is refined and re-

factored as the project progresses. Sometimes more than one

design alternative may be tried out, which could cause

significant code changes to user stories which are already

developed in early iterations [4]. Another reason for design or

code refactoring may be driven by business or regulatory

needs which may demand adjustments in delivered code.

Again this is an aspect affecting estimation of an iteration.

Testing and Bug Fixes: In agile projects the code delivered

in a iteration is tested by the product owner and bugs may be

recorded which are typically taken up by project teams in

subsequent iterations. Most agile teams have dedicated

iterations where they do not accommodate any new user

stories, but only work on refining and bug fixing on existing

user stories in order to make them release worthy. This again

adds another dimension to the estimation process.

Complexity is handled by most agile teams iteratively. So a

complex user story may be broken up to show a simple

working code which is iteratively enhanced with each

iteration. An example of this is providing a multi language

capable website. In early iterations a single language page

may be developed, which is subsequently enhanced and tested

for multiple languages..

Hence, upfront committing to a function point count to be

delivered in a iteration is very difficult for an team as all these

varied dimensions are also to be considered.

4 Estimation in the OutSourcing Context

 Outsourcing with off-shoring software projects is a

popular trend in organizations whose core activity is not

developing software with the chief motive being cost

reduction [19]. Most companies outsourcing software use

competitive methods to request quotes from vendors and

chose the vendor who most closely meets their expectations

in terms of cost, quality, skill levels etc. The pre-dominant

estimation method preferred in an outsourced scenario is

Function Point Analysis (FPA) with the development process

being waterfall based and vendors working on the concept of

formal signed off requirements.

FPA is very popular when development work is outsourced

because it is a standard technique [10] and is considered a

scientific approach to sizing software and an absolute metric

which can be computed, irrespective of the team executing

the project. The organizational productivity benchmark

typically computed in hours per function point (technology

specific) is applied to the Function Point count to arrive at the

effort and the schedule for a project. It enables companies to

verify if the vendor estimates are realistic and within accepted

range.

4.1 Agile Estimation in an Outsourcing Context

 With agile development methods gaining popularity

organizations want to realize the benefits of such methods

while continuing with the trend of outsourcing. Organizations

have started expecting their vendors to execute projects using

agile development techniques.

Given their variable nature it is difficult to fix scope, budget

and schedule in agile projects. It is recommended to work

with a fixed budget or schedule keeping the scope variable or

within a range of possible features that could be delivered

[20]. However, these techniques work well only if the projects

are in-house developments of the company concerned or if

there is a high degree of trust between a customer and a

software vendor. In a competitive situation, organizations

expect vendor companies to provide an upfront effort estimate

and commit to schedules, features and resources even while

developing projects the agile way. These estimates may have

to be done during contracting and much before a team is

assembled to execute the project. Since story points are not

counted by scientific methods, they are not accepted as a

credible estimation technique in this context and customers

typically want function point based estimates.

Offshore vendors assemble bid teams consisting of

representative members to help in creating estimates for agile

projects during contracting stage either using Function Point

Analysis or work breakdown structure or other suitable

methods.. Such estimates are at a macro level and may vary

significantly once the project execution commences and micro

level details are obtained.

A common problem during project execution is the

expectation on the team to produce iteration level estimates. It

is possible that members of a team assembled for a project and

may not have worked with one another before or may not be

ones with similar experience or may not have worked in the

problem domain or technology [4]. This problem is further

complicated when there are multiple agile teams executing a

large project. So teams may not be skilled enough to produce

estimates and with the absence of organizational metrics or a

standard way to estimate the iterative development process, it

is very difficult to size agile iterations with team inputs.

Another aspect that agile methods implicitly assume is an

atmosphere of trust. They assume that developers truthfully

estimate for stories and as iterations progress, take up more

and more stories and increase their pace of working and

become better at estimating [21, 22]. Secondly customers or

product owners are expected to believe in the subjective

developer estimates and give the team enough time to achieve

a predictable pace of working and delivering user stories.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 353

This is again a difficult situation in a competitive vendor

customer relationship.

5 Proposed Solution

 Since function point based counts are standard and

accepted we propose in this paper to extend the techniques of

function point analysis to help in estimating agile iterations.

The key considerations being

 Accommodate for increasing complexity and

iterative design

 Accommodate for the same story to be worked upon

in multiple iterations based on the Definition of

Done

We have used FPA method of calculating project complexity

using a value adjustment factor [10,23] and the Caper Jones

suggested activity scope percentage for software projects [11,

12] to quantify the size of the stories taken up in agile project

iteration in the form of Function Points. Through this we

propose to provide a scientific basis for computing the size of

an iteration, such that the estimates can be verified, validated

and defended.

5.1 Function Points and General System

Characteristics

 Function Points are counted in a two step process. The

first step is to classify each feature in the system against one

of the major functions i.e. External Inputs / External Outputs /

External Queries / Internal Logical Files / External Interfaces

and arrive at the function point count, which is called the raw

or unadjusted function point [10], [23]. The raw function

points are adjusted by computing a value adjustment factor

based on the possible impact of a set of fourteen general

system characteristics (GSC) of the system to be developed.

These factors are listed in for reference in Table 1 [10, 23, 24]

GSC Description

Data

Communications

How many communication facilities are

there to aid in the transfer or exchange of

information with the application or

system?

Distributed Data

Processing

How are distributed data and processing

functions handled?

Performance Was response time or throughput

required by the user?

Heavily Used

Configuration

How heavily used is the current hardware

platform where the application will be

executed?

Transaction Rate How frequently are transactions executed

GSC Description

daily, weekly, monthly, etc.?

On-line Data

Entry

What percentage of the information is

entered On-Line?

End -User

Efficiency

Was the application designed for end-

user efficiency?

On-line Update How many ILF‟s are updated by On-Line

transaction?

Complex

Processing

Does the application have extensive

logical or mathematical processing?

Reusability Was the application developed to meet

one or many user‟s needs?

Installation Ease How difficult is conversion and

installation?

Operational Ease How effective and/or automated are start-

up, back-up, and recovery procedures?

Multiple Sites Was the application specifically

designed, developed, and supported to be

installed at multiple sites for multiple

organizations?

Facilitate

Change

Was the application specifically

designed, developed, and supported to

facilitate change?

Table 1: General System Characteristics

Each characteristic has associated descriptions that help

determine the degrees of influence of the characteristics. The

degree of influence ranges on a scale of zero to five, from no

influence to strong influence. The IFPUG Manual provides

detailed evaluation criteria for each GSC [10]. The GSC is

scored based on their influence on the system being counted

and this provides the value adjustment factor. The unadjusted

Function Point count is multiplied by the value adjustment

factor to arrive at the Adjusted Function Point count. The

resulting score can increase or decrease the Raw Function

Point count by up to 35% [10, 23, and 24].

The GSC can be adjusted to size code complexity by varying

the degree of influence of the relevant parameters. For

example the FP size of a feature‟s adherence to performance

guidelines may be estimated by varying the degree of

influence of the „Performance‟ GSC. A re-usable application

having the requirement to be configurable or having the

ability to be installed in multiple sites (or tested on multiple

devices for a mobile application) may be sized by varying the

354 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

influence of „Multiple Sites‟ and/or the „Facilitate Change‟

characteristic.

5.2 Activity Scope as described by Caper Jones

 Caper Jones in a paper [11, 12, 25] has described that

software projects include many more activities than just

coding or programming and has published a list of activity

patterns for different kinds of projects. This is a list of around

25 typical activities that are undertaken in software projects

and the percentage of effort associated with each activity. He

recommends that teams understand which of the most likely

activities would be performed in a project and use the activity

effort percentage as a guide to estimating software projects.

(Ref: Table 2)

Table 2: Caper Jones list of the 25 most applied activities in

Software Projects with their % contribution to the estimate

Activity % Weightage

Requirements 3.84

Architecture 2.25

Project Plan 1.33

Project Management 6.75

Initial Design 3.84

Prototype 4.5

Detail design 4.5

Design Reviews 3.02

Coding 13.5

Unit testing 4.5

Configuration management 0.41

Code inspection 4.5

Formal integration 2.71

Functional testing 4.5

Integration testing 3.84

System testing 3.38

QA 4.5

Field testing 3.02

Independent verification & validation 5.42

Independent third party test 3.38

Acceptance testing 1.94

Installation & training 1.94

User documentation 9.67

Reuse acquisition 1.13

Package purchase 1.63

Total 100%

5.3 Extension of 5.1 and 5.2 to accommodate

Agile Iterative Development

 Our proposition is to use the concepts in section 5.1 and

5.2 to express the size of an agile iteration in Function Points.

Release Planning: Compute the size of all the stories in a

release using Function Points based on the information

available and estimate the effort / schedule using the

organizational productivity baseline creating the macro level

estimate.

Definition of Done for a release: Discuss and come to an

agreement on the definition for done (DoD) for a release and

map it to the activities as per Caper Jones activity scope. The

weights given by Caper Jones are an indicator and they may

be adjusted as each team sees fit. Table 3 shows definition of

done for one of our reference projects. The percent of the

applicable activities in our sample project was 87.57% and

we normalized the same to100%.

Table 3 : Activities as applicable to a reference project for a

release

Sizing an Iteration: In every iteration, an agile team works

on new stories and existing stories. The size of an iteration is

the size of the quantum of work done in the iteration. We

propose to size an iteration as follows:

 Compute the total size of the stories in an iteration in

Function Points

 Identify the percentage of activities to be undertaken

towards new and existing stories, i.e. the Definition of

Done (DoD) for the New stories and DoD for existing

stories in an iteration as mapped to Caper Jones

applicable activity scope (DoD for the release)

 Apply this percentage to the total size of the stories to

arrive at the iteration size.

DoD for New Stories:. As explained in section 3, the team

may not necessarily undertake all the activities related to a

Sl No Activity Group Activity % Weightage % Applicable Normalized %

1 Requirements Requirements 3.84 3.84 4.4

2 Architecture Architecture 2.25 2.25 2.6

3 Planning Project Plan 1.33 1.33 1.5

4 Planning Project Management 6.75 6.75 7.7

5 Design Initial Design 3.84 3.84 4.4

6 Design Prototype 4.5 4.5 5.1

7 Design Detail design 4.5 4.5 5.1

8 Design Design Reviews 3.02 3.02 3.4

9 Coding Coding 13.5 13.5 15.4

10 Coding Unit testing 4.5 4.5 5.1

11 Coding Configuration management 0.41 0.41 0.5

12 Code Review Code inspection 4.5 4.5 5.1

13 Integration Formal integration 2.71 2.71 3.1

14 Testing and QA Functional testing 4.5 4.5 5.1

15 Testing and QA Integration testing 3.84 3.84 4.4

16 Testing and QA System testing 3.38 3.38 3.9

17 Testing and QA QA 4.5 4.5 5.1

18 Testing and QA Field testing 3.02 3.02 3.4

19

Independent

Testing

Independent verification &

validation 5.42 5.42 6.2

20

Independent

Testing Independent third party test 3.38 3.38 3.9

21 User Acceptance Acceptance testing 1.94 1.94 2.2

22 User Acceptance Installation & training 1.94 1.94 2.2

23 Documentation User documentation 9.67 0 0.0

24 Reuse acquisition 1.13

25 Package purchase 1.63

Total 100 87.57 100.0

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 355

story in the same iteration. New story refers to the first time a

story is worked upon in an iteration.

Table 4: Activities as applicable to new stories in a iteration

Activity Group % Weight

As Applicable for

New Stories (%)

Requirements 4.4 4.4

Base

Architecture

2.6

Planning 9.2 9.2

Design 18.1 12.7

Coding 21.0 14.7

Code Review 5.1

Integration 3.1 1.5

Testing and QA 22.0 11.0

Independent

Testing

10.0

User Acceptance 4.4

Total 53.5

For example Table 4 depicts the activities that were

undertaken towards new stories in an iteration for a reference

project. Since the applicable activities are 53.5% of the total

activities to be undertaken for the project, the size of the new

stories has been measured as 53.5% of the final size of the

same stories that were to be delivered as part of the release.

The rationale for only undertaking 53.5% of the total work in

the specific iterations is as follows.

With reference to Table 4: Only a percentage of the design as

delivered at the end of the project was undertaken in the

iteration and this was refined in subsequent iterations. This

also meant that code towards realizing the design was also

spread across multiple iterations with bulk of the initial

coding being done in the current iteration. Similarly code

review for new stories was formally done in subsequent

iterations hence this activity was not sized in the current

iteration. Testing for the stories was carried out across

iterations with about 50% of the testing activity being

undertaken in the current iteration and Independent testing

being taken up in the subsequent iteration. The remaining

46.5% of function points remaining towards realizing the

same set of stories for the release were spread across the

remaining iterations. This number is not a fixed percent but

an example to depict the iterative development cycle.

DoD for existing stories:E very iteration team would also be

working on stories delivered in earlier iterations, either for

refactoring code on account of design evolutions or an

account of testing and bug fixes. Again using the Caper Jones

activity scope identify the relevant activities applicable for the

iteration towards existing stories (DoD of existing stories)

and use the percentage to revise the size estimate of the

stories.

Table 5: Activity break up for a set of stories across multiple

iterations

Table 5 shows as an example the activity break up for a set of

new stories of total size 118.81 FP spread across 4 iterations

and user acceptance testing (UAT). Since only 97.3% of the

activities as per Caper Jones scope was applicable, the total

applicable size is 115.6 FP. The new stories were taken up in

„Iteration N‟ and the code was reworked / re-factored across

the next 3 iterations before it was released for user acceptance

testing. Code Review for the stories were taken up in Iteration

N+1 and Iteration N+2 (to accommodate for the review

process and rework on account of review comments), while

the design evolution took place across 3 iterations with about

70% of design being undertaken in Iteration N. Similarly

testing was spread across 4 iterations, with about 50% of the

testing happening in Iteration N and the remaining % spread

across the other 3 iterations. Table 5 thus gives the size of a

set of stories as spread across the multiple iterations in the

project. This table is an example and in this manner

development teams could calculate the size of new and

existing stories in each iteration.

Sizing Code Complexity: As described in Section 5.2: GSC

can be adjusted to size the impact of varying code

complexity. We propose to size the impact of increasing code

complexity as follows:

 In the initial iterations size stories with minimal

complexity based on the system general

characteristics as applicable for the iteration.

 In later iterations when the same stories have to be

enhanced for complexity like for example tuning an

application to meet performance criteria, the same

story may be sized by varying the appropriate GSC.

 The size impact on account of the enhanced

complexity would be a difference between the two

sizes.

Base Architecture: Activity towards creating a base

architecture for the application will be spread across initial

Iteration

N

Iteration

N+1

Iteraion

N+2

Iteration

N+3 UAT

Size using FPA 118.81 118.81 118.81 118.81 118.81

Applicable Size

in FP 115.60 115.60 115.60 115.60 115.60

Requirements 4.40% 4.40%

Design 18.10% 12.67% 2.72% 2.72%

Coding 21.00% 14.70% 3.15% 3.15%

Code Review 5.10% 2.55% 2.55%

Integration 3.10% 1.55% 0.78% 0.78%

Testing and QA 22.00% 11.00% 3.67% 3.67% 3.67%

Independent

Testing 10.00% 5.00% 1.67% 1.67% 1.67%

Planning 9.20% 9.20%

UAT 4.40% 2.20% 2.20%

Total Applicable

activity 97.30% 53.52% 17.86% 14.52% 7.53% 3.87%

Applicable Size

in FP 63.59 21.22 17.26 8.95 4.59

356 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

iterations and the activity percentage associated needs to be

accommodated in the sizing for an iteration. Since this affects

the whole release and is not dependant on a specific set of

stories, its size would be a percentage of the total FP size of

the release.

Change Management: Changes can be accommodated again

using the same techniques as mentioned above i.e.

 Estimate the total size of the change in FP

 Calculate the spread of the change in FP across

iterations based on the definition of done

 Estimate the impact of the change on other user

stories in FP.

We have applied these techniques on 3 reference projects that

we implemented for a client, who is one of the world‟s

leading provider of technology and services to hotels and

hotel chains.

6 Reference Projects

 Our reference project‟s objective was to enable our

client to provide their customers with hotel booking

capabilities on mobile devices. This product was to be white

labeled and used by their customers namely various hotel

chains and properties across the world. This application was

developed for deployment on Android phones, iPhone and

iPad and on mobile browsers.

The development was undertaken as three separate projects

on account of the varying technologies and development

skills required. The activity scope of these projects included

Requirement Analysis, Architecture, Design, Development

and Testing including Performance Testing and Usability

Testing. The client wanted the application to be developed

using agile-SCRUM practices. Each project had its own team

for the complete project engagement and undertook all the

required software development life cycle activities. The

application was to be deployed and tested on multiple devices

for each project and it also had to support 3 languages

(English / Spanish and Japanese). The applications had to

meet stringent performance requirements. The code

developed was formally reviewed by the client‟s technical

team. Each project had 6 iterations of 3 weeks each and a user

acceptance testing phase for 6 weeks. The teams were a mix

of experienced and junior developers and they were working

together for the first time.

We first estimated the size of the projects as delivered to the

customer in Function Points (Table 6).

Table 6: Size of each reference project with total effort in FP

Project Size in

FP

Effort (Person

Months)

Project 1 Android 468.2 31.8

Project Size in

FP

Effort (Person

Months)

Project 2 iOS for iPhone

and iPad

608.69 47.7

Project 3 Mobile Web

Project

457.2 37.5

We applied the techniques outlined in Section 5 to size the

iterations of each project. The initial iteration did not have

any existing stories to be worked upon. For all the three

projects, in the initial two iterations, the architecture and the

reference framework for the entire application were put in

place and the size of the iterations were adjusted accordingly.

The size of the initial iteration was a percentage of the total

size of the new stories along with the size of the percent of

work undertaken towards creating the base framework.

Subsequent iterations had a combination of new and existing

stories. All the stories were worked upon in the first 5

iterations and the last iteration i.e. iteration 6 was dedicated

towards testing and bug fixing , refining and polishing the

code to make it release worthy.

Table 7: Productivity calculation for Project 1 and its

variation

We checked to see if the effort expended was comparable to

the size computed using our methods. We calculated the

productivity of each iteration and checked for the variation.

Table 7 shows the size of each iteration (including UAT) and

the productivity variation for Project 1 while Table 8 , Table

9 show the same metrics for Project 2 and Project 3.

Table 8: Productivity calculation for Project 2 and its

variation

Iteration Size (FP) Effort Productivity Variation

Iteration1 55.94 4.20 12.0 11%

Iteration 2 53.98 4.13 12.2 13%

iteration 3 80.86 5.7 11.2 4%

Iteration4 87.00 5.6 10.2 -5%

Iteration5 91.44 5.5 9.6 -11%

Iteration6 75.07 4.4 9.4 -13%

UAT 23.88 2.3 15.3

468.2 31.8 10.8

Project 1 Android

Iteration Size (FP) Effort Productivity Variation

Iteration1 55.94 4.6 13.2 8%

Iteration 2 74.4 5.9 12.7 4%

iteration 3 113.50 8.9 12.6 3%

Iteration4 117.30 8.7 11.9 -3%

Iteration5 118.90 8.7 11.7 -4%

Iteration6 97.6 6.9 11.3 -7%

UAT 31 3.9 20.4

608.60 47.7 12.2

Project 2 iOs

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 357

Table 9: Productivity calculation for Project 3 and its

variation

As we can see the productivity varies between +/- 15% of the

mean showing that there is a direct correlation between effort

expended in an iteration and size computed using this

method. Another trend which can be clearly observed is that

in the initial iterations the team was new and having lesser

experience in the technologies and hence they worked with

lower productivity as compared to later iterations. We have

discarded the effort spent in user acceptance testing in our

computation. The graphs below (Figure 2, Figure 3) also

show that there was a direct correlation between the effort

expended in iteration and the size of the iteration computed

using this method in all the reference projects.

Figure 2: Cumulative Size versus Cumulative Effort for

Project 1

There is a slight flattening of the curve at the top which is on

account of user acceptance testing being conducted by the

client and our role being limited to providing support and

undertaking bug fixes.

Figure 3: Cumulative Size versus Cumulative Effort for

Project 2

7 Conclusion and Future Work

 As we can see from the data above this approach to

estimating the iteration size in agile projects has promise and

needs further exploration. We have applied this method only

on projects for mobile devices. We need to extend this idea to

larger projects. In order to standardize this technique multiple

projects will have to be sized using this method to see if

organization productivity benchmarks can be computed

reliably and used in new project estimations. The advantage

of using this approach is that we can statistically arrive at a

method of computing the number of stories which can be

realistically taken up in an iteration based on the

organization‟s productivity baseline. However this idea needs

to be verified by applying it on a live project from the outset.

In cases where requirements are not reasonably well

documented in early stages, it may be useful to initially size

iterations using story point methods and subsequently apply

the extended function point technique to validate if the effort

to stories ratio is consistent and feasible.

We have not done research on how a team‟s morale may be

affected due to an estimator making the estimates as opposed

to the team as prescribed by the agile manifesto. We need to

examine if such estimates will have the required buy in from

execution teams, through independent studies.

Another area that needs exploration is the pre-game phase or

iteration zero as called by some, where the initial work on a

project happens like putting the team together, doing release

planning, capturing basic requirements, setting up the

infrastructure etc. We have not identified a method of

estimating the size of this phase.

Variations of Function Point counting techniques like MK II

Function Points [27] have to be further explored to see if they

offer alternative methods to size iterative development.

8 References

[1] K. Beck and C. Andres. “Extreme Programming

Explained: Embrace Change”. Addison-Wesley,2nd edition,

2004

[2] A. Cockburn and J. Highsmith. “Agile Software

Development: The People Factor”. IEEE Computer,

34(11):131–133, 2001

[3] M. Doernhoefer. “Surfing the Net for Software

Engineering Notes”. SIGSOFT Software. Engineering. Notes,

31(1):5–13, 2006

[4] Experience of Executing Fixed Price Off-shored Agile

Project , A. Udayan Banerjee*, B. Eswaran Narasimhan *, C.

Kanakalata N *

[5] Agile Estimation Using Functional Metrics, Thomas

Cagley

[6] Improving Estimations in Agile Projects: Issues and

Avenues - Luigi Buglione, Alain Abran

Iteration Size (FP) Effort Productivity Variation

Iteration1 55.94 5.0 14.3 11%

Iteration 2 54.0 4.9 14.4 12%

iteration 3 80.86 6.6 13.0 1%

Iteration4 87.00 6.5 11.9 -8%

Iteration5 85.44 6.5 12.1 -6%

Iteration6 70.07 5.1 11.6 -10%

UAT 23.88 3.1 20.6

457.17 37.5 12.9

Project 3 Mobile Web

55.90

109.90

190.80

277.80

369.20

444.30
468.20

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

500.00

Cumulative Size vs. Cumulative Effort Project 1

Cumulative Size vs.
Cumulative Effort

Effort in Hours

Size
 in

 FP

55.94
130.34

243.84

361.14

480.04

577.64608.69

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

Cumulative Size vs Cumulative Effort
Project 2

Cumulative Size vs
Cumulative Effort
Project 2

358 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

[7] M. Cohn, Agile Estimation and Planning: Addison-

Wesley, 2005.

[8] Ceschi, M., Sillitti, A., Succi, G. & De Panfilis, S. (2005)

Project Management In Plan- Based And Agile Companies.

Ieee Software, 22, 21-25.

[9] Jones, Capers; Applied Software Measurement; McGraw

Hill, 2nd edition 1996; ISBN 0-07-032826-9; 618 pages

[10] http://www.ifpug.org/

[11] Software Cost Estimating Methods for Large Projects,

Caper Jones

[12] Software Cost Estimation in 2002 by Capers Jones,

Crosstalk magazine

[13] Using Function Points in Agile Projects - Célio

Santana1,2, Fabiana Leoneo2, Alexandre Vasconcelos2, and

Cristine Gusmão3

[14] Using function points in XP – considerations, Andrew M.

Fuqua

[15] A User Story Primer – Dean Leffingwell With Pete

Behrens

[16] Michael Cohn – Succeeding with Agile

[17] The Scrum Papers: Nut, Bolts, and Origins of an Agile

Framework - Jeff Sutherland and Ken Schwaber

[18] http://www.scrumalliance.org/articles/105-what-is-

definition-of-done-dod

[19] J Sauer. “Agile Practices in Offshore Outsourcing – An

Analysis of Published Experiences”, IRIS 29, Helsingborg,

Denmark, 2006

[20] Fowler, M. & Highsmith, J. (2001) The Agile Manifesto.

Software Development, August

[21] Abrahamsson, P., Warsta, J., Siponen, M. T. &

Ronkainen, J. (2003) New Directions On Agile Methods: A

Comparative Analysis. Ieee, 244-254

[22] Levy, J. V. (2003) If Extreme Programming Is Good

Management, What Were We Doing Before?

Edn, 48, 81-82, 84.

[23] http://www.softwaremetrics.com/fpafund.htm

[24] http://www.qpmg.com/fp-intro.htm

[25] Software Engineering An Introduction – Fakhar Lodhi

[26] Jones, C., Programming Productivity, McGraw-Hill,

New York, (1986)

[27] MK II Function Point Analysis Counting Practices

Manual - 1998

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 359

http://www.ifpug.org/
http://www.scrumalliance.org/articles/105-what-is-definition-of-done-dod
http://www.scrumalliance.org/articles/105-what-is-definition-of-done-dod
http://www.softwaremetrics.com/fpafund.htm
http://www.qpmg.com/fp-intro.htm

Domain specific priority based implementation of mobile
services- an agile way

Dr. Daya Gupta1, Rinky Dwivedi 2 and Sinjan Kumar 3

1, 2, 3
 Computer Engineering Department, Delhi Technological University

, Delhi, India
1 daya_gupta2005@yahoo.co.in

2 rinkydwivedi@yahoo.co.in
3 sinjan.dtu@gmail.com

Abstract - In this era of globalization mobile companies are
spreading their business across the world. This has resulted in
a wide range of customers needs and mobile service providers
are facing new challenges every day. We have examined the
issues involved and found that a dynamic requirement from
diverse domains is the most challenging task to be
implemented while developing mobile communication
software. In order to address this issue we are extending the
notion of configurability in mobile communication. We will
use traditional methodology for development of basic services
because that is stable requirement and will act as the
foundation for the further development. We will configure the
on-demand services, which we will develop using agile
methodology, on this basic component. In this paper we are
proposing a Priority based Domain specific Mobile service
Implementation (PDMI) process which helps an effective and
fast mobile service implementation with high customer’s
satisfaction.

Keywords: Agile software methods, CASE tool, Domain
specific software engineering, Requirement based Mobile
software development.

1 Introduction
First generation mobile systems were introduced in the early
1980’s. These systems were designed to carry narrow–band
circuit switched voice services and were based on analog
frequency modulation. The mobile services gained a huge
popularity and to fulfill the increasing customer demand
second generation (2G) digital mobile systems were
developed [7]. The 2G digital mobile systems were
introduced in early 90’s and are still occupying the market.
These systems are based either on GSM (Global System for
Mobile Communication) or CDMA (Code Division Multiple
Access) technologies. The third generation (3G) mobile
systems were introduced after the year 2000 that allows
simultaneously use of speech and data services with higher
data exchange rates. Presently 4G systems are under
development, mostly based on multicarrier modulation such
as Orthogonal Frequency Division Multiple Accesses
(OFDMA) or Single Carrier Frequency Division Multiple

Access (SC-FDMA). The application of mobile devices
certainly improves and supports the lives of all age groups,
but in our research we found that there exists a difference in
the usage of mobile services for users of different age groups.
The PDMI process proposed in this paper helps an effective,
quick and customer’s requirement based mobile service
implementation.

Mobile domains have challenges of addressing dynamic
requirements like gaming services, entertainment and lifestyle,
etc. The agile methods have dynamic characteristics that help
to facilitate the task of mobile software developers and to
fulfill a wide range of customer’s requirements in real quick
time. We use light weight methods for satisfying volatile
requirements for implementation purpose. The agile methods
are an example of light weight methods which we have used
for implementation. In addition to this we propose metric
based calculation to establish that agile methodologies are
suitable for dynamic requirement in mobile domain. We
extend the configuration in method engineering to integrate
agile method with traditional method which we are using for
basic services.

In the next section we discuss popular agile methods. In
section 3 we formulate our proposal for PDMI process. In
section 4, we present a set of metrics for analysis of project
characteristics that guide us to choose suitable methodology.
In section 5, we propose to configure agile methodology with
traditional method to develop services required in mobile
domain. In section 6, the proposed PDMI process is
implemented using view point oriented approach through
agile methodology.

2 Agile Methodologies
In recent past agile methodologies are gaining popularity in
project development [5, 13]. In this section we review some
popular agile methodology and highlighted their underlying
process, pros and cons and the guidelines to use them.
Agile software development is capable of producing quality
software quickly and cheaply and is suited to project with
changing requirement without excessive rework.

360 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

They do not require long term planning and use the strategy of
incremental development through the team work where
customer is also involved. As customer is directly involved in
the project development so, it minimizes overall risk and adapt
to changing requirement quickly.

2.1 Scrum
The scrum method is a general agile method that focuses on
managing iterative development and does not adapt specific
agile practices.
It has three phases, they are discussed below:-
1. Outline planning phase for designing software architecture
derived from general objective of the project. This is the
management phase where first general objectives are elicited
these are then used to design software architecture.
2. Sprint cycle consisting of a product backlog which is
converted into sprint backlog from where product is
developed and delivered in increment. The cycle is repeated
until the backlog is emptied.
3. Project closure phase which terminates the project and
prepares the termination report and user manual.
Once a shippable module is delivered, the product backlog is
analyzed for the next priority module. Module reprioritization
can also be done if required.
Pros: Scrum focuses on management activities which makes
the system more adaptive. It encourages team work enabling
the large and complicated project to be developed by multiple
teams.
Cons: Scrum projects have poor documentation which may
result in dirty programming.
Use: Best suited for large and complex product which
requires lot of management activity, cooperation between
product developer and product manager.

2.2 Extreme-Programming (XP)
Extreme Programming (XP) is very famous agile
methodologies. It takes extreme approach to iterative
development and delivers working software frequently [14].

In this, involvement of customer during development is very
essential. The development team works in very close
environment in presence of customer. There are six phases in
XP that are discussed below.

1. Requirement Phase: - In this phase users give requirements
as story that are recorded on story cards then these story cards
are prioritized.
2. Task gathering: - Here stories are broken into tasks.
3. Plan release phase: - In this phase the most prioritized
stories are selected and planned for early release.
4. Development Phase: - The design of the only most
prioritized task, which is to be developed, is done in this
phase.
5. Release Phase: - The above designed task is developed and
released for the use.
6. Evaluation of the system: - working of the released system
is evaluated and the next cycle is started.

Pros: It allows developer to focus on coding resulting in fast
software development that satisfies the user, does not require
highly technical team. Management can deliver the working
software for less cost and reduces the risk.
Cons: It requires dedicated effort from client/ user side they
should have good knowledge of training on XP for project to
be successful. Little documentation constraints the usability of
the project.
Use: It is best suitable for project which require fine
programming practices and for which testing before
development is essential.

2.3 Feature-Driven Development (FDD)

FDD is model driven methodology that releases software in
form of features in short iterations. It is suitable for large team
and consists of very short phases and delivers specific features
in each phase.
Some of the Feature Sets for our project are "Incoming Call,"
"Outgoing Call," "Messaging," and this comes under "Basic
Services" Subject Area. In FDD, we do planning, designing
and building of a feature under consideration. It consists of
five specific processes in specified order, which is discussed
below.

1. Develop an overall model: - Requirements are gathered in
top down approach where all subject areas are designed.
Subject areas are aggregation of feature set. Feature set are
combination of feature. Each feature is task to be performed.
2. Build a list of feature: - Features gathered are compiled to
form feature list.
3. Plan by feature: - Planning is done to build a feature.
4. Design by feature: - Proper designing is done for the
planned feature.
5. Build by feature: - Actual implementation of the feature is
done.

Pros: It focuses on design and code inspection which results
in high quality software. It provides excellent documentation
and support object oriented programming which are popular
among programmers.
Cons: Requires highly skilled team. Delay in release due to
design and modeling activity and cost may go up.
Use: Best suited for the development of the software in which
focus should be on all the features in detail such as banking,
insurance and finance.

3 Priority based Domain specific Mobile
service Implementation (PDMI)

We divide mobile services in various groups that act as an
input to our PDMI process.

Table1: Services provided by mobile service providers
Basic Services Incoming and outgoing calls.

Messaging (send, receive) a

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 361

message service.

Entertainment
and lifestyle

Movie reviews and movie tickets.
Music & videos, Jokes.
Chat Services.
Caller tunes.
News.

Gaming
Applications

Online Games.
Games download.

Business
Applications

Stock market news.
Mobile banking.
Finance News.

Traditional
Applications

Astrology.
Vaastu.
Spiritual listening

The basic services are considered as essential for mobile
communication, which comes as a default to the customers.
The other services are considered as optional to the customers
whom they choose as per their requirements. A survey was
conducted on 400 people of different age groups wherein the
respondents were asked to set a priority for the optional
services according to their requirements. The summary of the
results are shown in the table 2.

Table 2: Priority of mobile services for various domains
Domain Mobile Service Priority

5-15 yrs

(Group-1)

Entertainment and
lifestyle.
Gaming Applications.
Business Applications.
Traditional Applications

2

1
3
4

16-27 yrs

(Group-2)

Entertainment and
lifestyle.
Gaming Applications.
Business Applications.
Traditional Applications

1

2
3
4

28-45 yrs

(Group-3)

Entertainment and
lifestyle.
Gaming Applications.
Business Applications.
Traditional Applications

2

3
1
4

46-62 yrs

(Group-4)

Entertainment and
lifestyle.
Gaming Applications.
Business Applications.

3

4
1

Traditional Applications 2

63 yrs. Onwards

(Group-5)

Entertainment and
lifestyle.
Gaming Applications.
Business Applications.
Traditional Applications

3

4
2
1

The mobile service provider will provide basic services to all
mobiles. Based on users detail such as age it will provide the
optional services in the order of priority. Based on the survey
and the present market demand the mobile provider should
provide different type of mobiles for different domain (age
group). The highly prioritized services will be in-built and the
lower priority services will be configured on-demand. Users
are free to choose the optional services and can also omit the
low priority services. PDMI process will be used for
maintaining the priority of services for different age groups.

4 Analysis of project characteristics for
choosing suitable methodology

We have chosen 14 project metrics; some of these metrics are
taken from COCOMO model [15]. We have divided weight
between all the 14 metrics. Weights are assigned in such
manner so that the metrics having more support for traditional
has given more weight and the metrics having more support
for agile has given less weight. We have divided input
parameters in three categories. Table below describes the
numerical equivalent value for different categories.

Table 3:-Numerical equivalent value for different
category.

Category Low Medium High
Value 1 5 9

4.1 Description of different metrics
Complexity:-This metric is the measure of effort required to
develop the software. More complex project should be
developed using traditional methodology. So, the more weight
is given to this metric.
Time to Market: - How fast product is required in the
market? If it is required quickly then we should follow agile
methodology.
Risk Involved: - Impact of failure of software. If risk is high
then we should follow traditional methodology.
Flexibility: - Flexibility is the effort required to modify an
operational program. High flexibility has more support for
agile methodology.
Modularization of Task: - Is it possible to divide the product
into different modules? If its value is high that is, if
modularization is easy then we can follow agile methodology
and deliver different modules in increments.

362 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Volatility of requirements: - At later stage of development,
how much requirements may change? The more value of this
metric has more support for agile methodology.
Expendability: - The ease with which changes can be made to
the software at later stages. The more value of this metric has
more support for agile methodology.
Coupling: - The degree of interdependence between classes.
Coupling increases complexity and hence more value of this
metric has more support for traditional methodology.
Cohesion: - The larger the similarity between methods, the
more cohesive is the class. Low cohesive class is more
complex.
Tool Experience: - How much year of work experience the
developer has on the tool to be used?
Platform volatility: - How frequently the platform
(Operating system for which product is being developed) is
changing.
Application Experience: - what is the work experience of the
developer on the desired application (application may be java
or c etc.).
Programmer’s capability: - How much capable the
programmer is; for development of the project?

Table 4:- Weight, Input values and their sum of product
for decision making

Name of Metrics
(Project
Characteristics)

Weight Value of
different

metrics for
Mobile App.

Product
of

weight
and

values
Complexity 0.15 Low (1) 0.15
Time to Market 0.08 High (9) 0.72
Risk Involved 0.15 Low (1) 0.15
Flexibility 0.05 High (9) 0.45
Modularization of
Task

0.04 High (9) 0.36

Volatility of
requirements

0.05 Medium (5) 0.25

Expandability 0.04 Medium (5) 0.20
Coupling 0.15 Low (1) 0.15
Cohesion 0.05 Medium (5) 0.25
Tool Experience 0.04 Medium (5) 0.20
Platform volatility 0.05 High (9) 0.45
Platform
Experience

0.06 Low (1) 0.06

Application
Experience

0.04 Medium (5) 0.20

Programmers
Capability

0.05 Medium (5) 0.25

Total (Sum of
Product)

 3.84

Calculation:- 14
Total (sum of product) = ∑ (weight * Input value)
 i=1

Total = (0.15*1) + (0.08*9) + (0.15*1) + (0.05*9) + (0.04*9)
+ (0.05*5) + (0.04*5) + (0.15*1) + (0.05*5) + (0.04*5) +
(0.05*9) + (0.06*1) + (0.04*5) + (0.05*5)

Total=3.84
Output (Total sum of product) will range from 1 to 9. If this
value comes between 1 and 4 then it indicates that we should
follow agile methodology. If it comes between 6 and 9 then it
indicates that we should follow traditional methodology. If
value comes between 4 and 6 then we can consider any one or
hybrid methodology. This is shown on the scale given below.

Fig. 1:-Scale for selection of appropriate methodology

For our project the final outcome is 3.84 so we have chosen
agile methodology.

5 Configurability in mobile
communication domain

The IEEE glossary meaning of the configuration is “The
arrangement of a computer system or component, defined by
the number, nature, and interconnection of its constituent part”
[9, 10]. It has been used to model business processes that are
similar to one another in many ways yet differ in some other
way. Configurability uses the notion of commonality
(commonality that is uniform across a given set of objects) and
variability (how members of a family may differ from one
another) [11, 12]. We have extended the notion of
configurability in method engineering and presented a meta
model for configuring situation specific method [16]. It uses
the notion of method essentiality and method variability. We
apply this notion to configure a suitable method for mobile
domain.
According to our proposal the basic services are the essential
services and without them, mobile communication will lose its
identity. All the other services can be considered as variable
services and can be selected as per the requirement of the user.
For our PDMI process, method essentiality constitutes a
method that provides basic services. We conjecture that
traditional methodology will be suitable for it. As evaluated in
the previous section for variable mobile services agile
methodology is suitable, hence using the method
configurability a suitable method will be configured. In this
paper we focus on selection of suitable agile methodology and
the detail of the method configuration will be dealt in next
paper.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 363

Fig. 2: Configuration for Mobile Services domain.

6 Implementation of PDMI Process
through Agile Methodology

As described in section 2 agile methodology comprises of
many agile methods like XP, SCRUM, DSDM, FDD, AUP
etc. Each agile method [2, 3, 6] has its unique features and is
good for one or other task. On the basis of this study we
found that Scrum is best suitable methodology for our project,
because we are going to develop our PDMI tool which is more
lenient to project management.
For our project volatility of requirement is high. That means
the requirement may change frequently which require
reprioritizing the sprint backlog. Scrum supports
reprioritization of backlog. On the other hand, as we have
discussed that prioritization is different for different domain
(age group) so we have come to a decision that mobile
provider should target the entire domain and they should
deliver various versions of the same product on the basis of
demand in market. It requires a lot of management activity
and they have to maintain the different backlog for different
domain, so scrum is best suitable methodology for our project.

Scrum supports software development team to a great extent
and also gives them [1, 4] full independence to perform. Two
major stakeholders in a Scrum project are - Scrum master and
Product owner. Scrum master helps the team members use the
scrum framework and Product owner guides the team towards
building the right product. Scrum is a process skeleton that
contains sets of practices and predefined roles. The main
actors in Scrum projects are:

Scrum Master- Scrum master manages the whole project, it
gets project requirements from actors, decompose the
requirements into modules in association with the project
manager.
Product Owner-Product owner represents the stakeholders of
the project.
Team– A group of about 7 people develops the modules and
subsequently the project.

Our PDMI process is based on well known process of View
Point Oriented Approach [8]. For each associated actor we
create a different view, which describes the functionality of
that particular stakeholder.

1. Scrum Master View
2. Sprint Planning Meeting View
3. Development Team View

Table 5: Functionalities of associated actors
View Points Functionalities

Scrum Master
View

1. Identify project domain.
2. Enter project requirements and their

priority in association with product
owner.

3. Decomposition of project into
modules.

Sprint
Planning
Meeting View

1. Decompose highest priority module
into the task and prioritization of
tasks.

2. Select tasks to perform in current
sprint.

3. Assign the task to the appropriate
team on the basis of task complexity
and team expertise.

4. Remove task from sprint on its
completion.

Team View 1. Pickup the task to perform.
2. Make entry for already burned-

down task.
3. Submit the executables.

The idea behind using the agile methodology in our PDMI is,
agile methodology believes in releasing functional product at
the end of every iteration. The whole process starts with the
requirements gathering phase, by the scrum master from the
actors, the prioritization of requirements is done by actors in
association with the scrum master. The highest priority tasks
are forwarded to project development teams for an early
release. As the software launches in the market, it starts
generating revenues that helps the service providers to
develop and implement other priority services.

Mobile Services
{Basic services,
Entertainment &
Life style,
Gaming, Business
and traditional
application}

Essential Services
{Basic Services}

Traditional
Methodology to be

used for
development

Variable Services
{Entertainment &
Life style, Gaming,
Business and
traditional
application}

364 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

We have developed a prototype Case tool that supports scrum
development adapted to our proposal. Based on the priority of
the services it distributes the task between product backlog
and scrum backlog.

7 Conclusion
Priority based Domain specific Mobile service
Implementation process helps an effective and fast mobile
service implementation with high customer’s satisfaction.
Method configuration process can be used to integrate
traditional method for basic services and agile methodology
for variable services. This process is an advantageous solution
for both service providers and customers. Service providers
may start their services with the most basic ones and keep on
increasing the add-ons as per the priorities of the customer
whereas customers may have effective, quick and requirement
based mobile service.

8 References
[1] K. Schwaber, M. Beedle, Agile Software Development

with SCRUM, Prentice Hall, 2002.
[2] K. Petersen and C. Wohlin, A Comparison of Issues and

Advantages in Agile and Incremental Development
between State of the Art and an Industrial Case, Journal
of Systems and Software, Vol. 82, No. 9, pp. 1479-1490,
2009.

[3] Abrahamsson P., Warsta J., Siponen M.,Ronkainen J.
New directions on agile methods: a comparative analysis,
Proceedings of the 25th International Conference on
Software Engineering,2003 .

[4] A. Cockburn, Agile Software Development, Addison-
Wesley, Boston, 2002.

[5] Nerur, S., Mahapatra, R. and Mangalaraj, G, Challenges
of Migrating to Agile Methodologies, Communications of
the ACM, Vol. 48, No. 5, May 2005, pp. 72-78.

[6] Chau, T.; Maurer, F.; Melnik, G.(2003). Knowledge
sharing: agile methods vs. Tayloristic methods, Twelfth

IEEE International Workshops on Enabling
Technologies: Infrastructure for Collaborative
Enterprises, 2003. WET ICE 2003. Proceedings.

[7] Mobile Electronic Transactions Ltd. MeT White Paper on
Mobile Transactions (2003); www.mobiletransaction.org.

[8] Summerville, I., “Software Engineering” seventh edition
2003.ISBN-8129708671.Pearson Education.

[9] Coplien J., Hoffman D., Weiss D., Commonality and
Variability in Software Engineering, IEEE Software, 37-
45, 1998

[10] Weiss D. M., Lai C. T. R., Software Product-line
engineering: A Family based Sofwtare development
Process, Addison Wesley, 1999.

[11] Karlsson, F., Ågerfalk, P.J. (2004) Method
Configuration: Adapting to Situational Characteristics
While Creating Reusable Assets. In Information and
Software Technology 46, 2004, 619-633.

[12] Wistrand, K., Karlsson, F. (2004) Method Components –
Rationale Revealed. In Advanced Information Systems
Engineering 16th International Conference, CAiSE 2004,
Riga, Latvia, June 7-11, 2004, Proceedings, A. Persson,
J. Stirna, Eds. Springer-Verlag, LNCS 3084, Berlin,
2004, 189-201.

[13] Miller, G., The characteristics of agile software
processes. The 39th international conference of object-
oriented language and system(TOOLS39),Santra Barbara,
CA, 2001.

[14] Beck, K. (1999a). Embracing change with Extreme
programming. IEEE computer 32(10):70-77.

[15] Chen. Z. Finding the right data for software cost
modeling.. Center for Software Eng., Univ. of Southern
California, Los Angeles ,CA, USA
Menzies,T. ; Port,D. ; Boehm,D. Volume: 22 ,Issue:6

[16] Gupta D. and Dwivedi R. A Step Towards Method
Configuration from Situational Method Engineering
.Software Engineering: An International Journal(SEIJ),
INDIA, 2012 (51-5

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 365

366 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

SESSION

NOVEL APPLICATIONS AND CASE STUDIES +
EDUCATION

Chair(s)

TBA

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 367

368 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Using Visualization Software to Understand Complex
Healthcare Interactions in Heterogeneous System

Communities

H. Keith Edwards1, Duane Bender2, Paul Brown2, and Justin Fyfe2
1Department of Computer Science, University of Hawaii-Hilo, Hilo, Hawaii, United States

2Mohawk Applied Research Centre, Mohawk College, Hamilton, Ontario, Canada

Abstract – This research examines the role of visualization on
the understanding of complex interactions that take place in
large-scale communities of interdependent systems that
comprise Health Information Exchanges. In particular, this
paper uses a survey mechanism to examine the effectiveness of
Mohawk College’s Visualizer software on human
understanding of the transmittal of electronic health record
information in such communities of systems. The survey found
that health informatics professionals were positively poised
regarding the Visualizer’s ability to facilitate understanding of
vendor products in complex architectures, its ability to assist
in interpreting audit messages, and its ability to facilitate the
illustration of audit information. Respondents also reported a
highly statistical difference in their understanding of the
transmittal of electronic health record information when using
the Visualizer software as opposed to an architectural
diagram.

Keywords: Health Informatics, Visualization, Usability,
Audit Messages, Electronic Health Records

1 Introduction
 According to Knodel et al., “Visualization is a sound
means to facilitate understanding of complex correlations and
offers a broad variety of concepts.” [5]. As such,
Visualization can be used as a tool to understand complicated
relationships between different systems that work together in
large-scale heterogeneous communities [4].

 In healthcare, software components from numerous
vendors frequently work together in communities called
Health Information Exchanges (HIE’s) to provide services to
a variety of clients in that community. Clients can be entities
such as patients, labs, primary care physicians, specialists,
and hospitals. In addition, these communities can also
exchange data with systems from different communities.

Tools such as Mohawk’s Visualizer software can provide
important information about the complicated interactions
between the heterogeneous components from the different
vendors in these health information exchanges. The
Visualizer works by showing the connections between the

components and by animating the exchange of information
[2,9] using results derived from health care security audit
messages [8].

Figure 1 shows a screen capture of the Visualizer with two
Health Information Exchanges that take part in a Cardiologist
referral scenario.

Figure 1: Mohawk’s Visualizer

 Mohawk College has employed the Visualizer to
showcase the interactions in vendor communities at small-
scale interoperability showcases such as the COACH
conference in Canada as well as at significantly larger
gatherings such as the HIMSS conference in the United States
[15].

In this research, we want to understand whether the
visualization software has an impact on human understanding
of the information exchange process in large-scale health
informatics communities.

2 Related Work
This section of the paper explores the related work in the
area. In particular, we are interested in the application of
Visualization to the field of health informatics when it comes

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 369

to the transmittal of electronic health record information
inside of Health Information Exchanges.

As mentioned in the introduction, Visualization provides a
way to understand complex interactions and relationships in
real world data. Hence, it is not surprising that Visualization
can be employed in applications and environments relating to
health informatics.

For example, Hansen et al. developed a system to track how
hospital workers moved throughout the hospital in order to
track the spread of infections within a hospital environment.
The interface for this system employed large data sets as well
as an interactive touch screen in order to understand how
infection control experts might use such a system to prevent
outbreaks of infectious diseases [3].

It is not uncommon for visualization can be combined with
data mining techniques. For example, Lavrac et al. use data
mining techniques in conjunction with visualization to
identify areas in Slovenia that were atypical for availability
and accessibility of public health services [6]. Furthermore,
visualizations in the public health domain can also be used for
resource planning [11] or to integrate diverse epidemiological
data with the occurrence of certain types of cancers [12].

Visualization can also be employed from the viewpoint of the
physician as discussed in several papers [1, 7, 14]. For
example, Mane and Borner look at innovative ways of
viewing medical data for the purposes of diagnosis [7]. Roque
et al. discusses six visualization systems that mostly target the
physician as a primary user [14]. The systems in Roque also
make use of a timeline that allows the physician to correlate
the events in the patient’s history using the electronic health
record data.

Finally, patient centered perspectives are also possible such as
the design in featured in Rajwan and Kim’s article [13]. In
this particular work, the authors develop a system design to
support the sharing of information between patients and
physicians that uses visualization to share complex
information requiring a high volume of data.

Mohawk’s Visualizer takes a middle ground between these
approaches and the tools discussed in Howard et al. [4] in
order to display the infrastructure of the software components
and how they transmit electronic health record information to
one another.

3 Experimental Environment & Design
 In order to understand the impact of the Visualization
software on human understanding of the interactions involved
in Health Information Exchanges, we designed a survey
instrument. The survey collected demographic information
relating to the participant’s organization, role within the
organization, age range, and gender. In addition to the
demographic questions, we posed six questions concerning

the effectiveness of the Visualizer for displaying information
about the Health Information Exchanges. These latter six
questions were all constructed using a 5-point Likert scale
(strongly agree to strongly disagree) and were worded as
follows

 Using only an architectural diagram, it is easy to
understand how Electronic Health Record
information is transmitted between individual
systems in a complex architecture

 Using the Visualizer from MARC-HI enables me
to understand how Electronic Health Record
information is transmitted between individual
systems in a complex architecture

 The Visualizer from MARC-HI facilitates
understanding of various vendor products within a
complex architecture

 Interpreting standard audit messages and
illustrating this information is important

 The Visualizer from MARC-HI facilitates the
interpretation of standard audit messages

 The Visualizer from MARC-HI facilitates the
illustration of audit information

We distributed the paper-based survey to 35 participants at
the 2012 HIMSS Conference in Las Vegas, Nevada who took
part in the IHE Interoperability Showcase event. Since
surveys were only distributed to visitors to the visualization
booth, the response rate was 100%. However, this distribution
method introduced a limitation into the applicability of the
results, since the participants were all health informatics
professionals who had an interest in visualization. Hence, it is
important not to extrapolate the survey findings beyond this
audience.

4 Discussion & Results
This section of the paper contains the results from the survey.
Accordingly, the first subsection presents the demographics
of the survey population whilst the second subsection
presents the results for the Likert-scaled constructs.

4.1.1 Participant Demographics
The survey design divided the participants into five different
age ranges, specifically 18-30, 31-40, 41-50, 51-64, and 65+.
As can be observed in Figure 2, the majority of participants
fell into the 31-40, 41-50, and 51-64 categories. There were
only 2 participants in the 18-30 age range, 2 who did not
answer, and no participants over the age of 65. This
distribution was not surprising given that the sample came
from a population of individuals employed in professional
careers.

370 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Figure 2: Participant Age Ranges

Likewise, the demographics for participant gender were
skewed toward male participants as can be surmised from
Figure 3. Given that the conference attracted a large number
of computer and technical professionals, this finding is not
surprising either.

Figure 3: Participant Gender

The final piece of demographic information analyzed here is
the participant role in their organization. Figure 4 shows that
fully 2/3 of the survey participants were engaged in technical
roles with their organization while another 31% worked in
management and sales. Again, this finding reflects the general
demographics of the HIMSS conference, which was designed
to attract professionals in the field of health informatics.

In addition to the participant role, we collected free form
reporting of the participant’s organizational affiliation. The
vast majority of technical participants worked for technical
companies such as Oracle and Optum whilst most
management and sales participants worked for healthcare
institutions or for universities.

Figure 4: Participant Roles

4.1.2 Survey Question Results
This section discusses the results from the Likert-scaled
questions. For the first question, we asked participants to rate
their degree of agreement with the statement: “Using only an
architectural diagram, it is easy to understand how
Electronic Health Record information is transmitted between
individual systems in a complex architecture”.

Figure 5 shows the distribution of the responses for this
question. The mode for the responses was 4 whilst the mean
was 3.91. In general, participants were positively poised as to
the effectiveness of this approach.

Figure 5: Understand Information Transmittal (Diagram
Only)

Question 2 asked participants to rate their degree of
agreement with the following statement: “Using the
Visualizer from MARC-HI enables me to understand how
Electronic Health Record information is transmitted between
individual systems in a complex architecture”.

1 Note: Likert-scale constructs are ordinal data, so we report
the mean as a measure of central tendency for informational
purposes only. All statistical tests we conduct are non-
parametric and designed for ordinal data.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 371

As can be seen in Figure 6, the participants were positively
poised regarding the effectiveness of the Visualizer with the
mode for responses being 5 and the mean being 4.7.

Figure 6: Understand Information Transmittal (Using
Visualizer)

Question 3 asked participants to rate their degree of
agreement with the statement: “The Visualizer from MARC-
HI facilitates understanding of various vendor products
within a complex architecture”. The results for this question
are shown in Figure 7. Again, the mode for all responses was
5, and the vast majority of participants were positively poised
about the Visualizer’s ability in this regard.

Figure 7: Understand Vendor Products

 Question 4 asked participants whether interpreting
standard audit messages and illustrating them was important.
Again, the participants tended to agree with this statement. 19
reported that they strongly agreed with the statement, 11
agreed with the statement, and 3 remained neutral in this
regard. The results for this question are shown in Figure 8.

Figure 8: Interpreting Audit Messages is Important

 Question 5 asked participants whether they agreed that
the Visualizer facilitated the interpretation of standard audit
messages. This question was more contentious than previous
questions, since 2 participants disagreed and 3 left the
construct blank. There were a higher number of neutral
responses than the previous questions as can be observed
from Figure 9.

Figure 9: Visualizer Facilitates Interpreting Audit
Messages

 The final question in the survey asked subjects to rate
their degree of agreement with the statement: “The Visualizer
from MARC-HI facilitates the illustration of audit
information”. Figure 10 displays the results from this
question. Although there are no negative responses to this
question and the respondents are generally positively poised
about the subject, there were two blank responses on the
survey sheets.

372 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Figure 10: Visualizer Facilitates the Illustration of Audit
Messages

 In addition to measuring the central tendency for the six
Likert-scaled questions, we also ran non-parametric tests such
as the Mann-Whitney Wilcoxon and Mann-Whitney U-Test
in order to discern whether there were significant differences
between the distributions for the responses.

 While there were no significant differences between any
pair-wise matching of questions 2-6, there were significant
differences between question 1 and the rest of the questions.

 In particular, a Mann-Whitney Wilcoxon test between
questions 1 and 2 generates a z-value of 3.8646 and a p-value
of 0.0001. This indicates a highly statistically significant
difference between questions 1 & 2. Furthermore, the more
robust Mann-Whitney U-Test also yields a p-value of 0.0001.
Hence, we can conclude that users have a significantly easier
time understanding the exchange of electronic health record
information in health information exchange communities with
the aid of the Visualizer.

Likewise, the statistical differences between question 1 and
the rest of the questions are indicative of the fact that the
other questions (2-6) focus on the effectiveness of the
Visualizer.

5 Conclusion
Visualization is greatly useful for understanding the complex
interactions that take place in large-scale communities of
interdependent systems, such as those found in Health
Information Exchanges. Mohawk’s Visualizer software uses
audit repository messages from systems that process
electronic health record data to display the flow of
information between the systems.

This research developed a survey mechanism to evaluate the
effectiveness of this approach on human understanding. The
survey was administered to 35 health informatics
professionals who attended the IHE Interoperability
Showcase display at the HIMSS conference.

The survey found that participants were positively poised
regarding the Visualizer’s ability to facilitate understanding
of vendor products in complex architectures, assist in
interpreting audit messages, and facilitate the illustration of
audit information. Most importantly, users reported a highly
statistical difference in their understanding of the transmittal
of electronic health record information when using the
Visualizer software as opposed to an architectural diagram.

6 Future Work
 A key limitation as to the applicability of this work on a
larger scale is the fact that the survey population comes solely
from business professionals who attended the interoperability
showcase at HIMSS and stopped by the visualization booth.
Hence, future work should focus on measuring the
effectiveness of this tool and visualization for different
populations.

 In addition to surveying different user populations,
several participants suggested the ability to drill down in the
visualization in order to obtain additional information about
the various components in each Health Information
Exchange. These suggestions work well with the Visual
Information Seeking Mantra, which states “Overview first,
zoom and filter, then details on demand”[16].

 Finally, extending the software to have statistical
gathering capabilities can assist in user understanding of the
entire process as evidenced by work such as Perer and
Shneiderman [10].

7 References
[1] Social Visualization of Health Messages. In Proceedings
of the 42nd Hawaii International Conference on System
Sciences (HICSS '09). IEEE Computer Society, Washington,
DC, USA, 1-10. 2009.

[2] Bender, Duane. Edwards, H. Keith. Fyfe, Justin. Brown,
Paul. Providing Visualization Software for Large-Scale
Health Informatics Communities. Quanta. Volume 1. Issue 1.
Spring 2012.

[3] Thomas E. Hansen, Juan Pablo Hourcade, Alberto
Segre, Chris Hlady, Philip Polgreen, and Chris Wyman. 2010.
Interactive visualization of hospital contact network data on
multi-touch displays. In Proceedings of the 3rd Mexican
Workshop on Human Computer Interaction (MexIHC '10),
Eduardo H. Calvillo Gámez and Victor M. González y
González (Eds.). Universidad Politécnica de San Luis Potosí,
San Luis Potosí, S.L.P. México, México, 15-22.

[4] Stephen L. Howard, James W. Hong, Michael J.
Katchabaw, and Michael A. Bauer. 1995. Integrating
visualization into event monitoring and analysis in distributed
systems management. In Proceedings of the 1995 conference
of the Centre for Advanced Studies on Collaborative research

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 373

(CASCON '95), Karen Bennet, Morven Gentleman, Howard
Johnson, and Evelyn Kidd (Eds.). IBM Press.

[5] Jens Knodel, Dirk Muthig, Matthias Naab, and Dirk
Zeckzer. 2006. Towards empirically validated software
architecture visualization. In Proceedings of the 2006 ACM
symposium on Software visualization (SoftVis '06). ACM,
New York, NY, USA, 187-188.

[6] Nada Lavrac, Marko Bohanec, Aleksander Pur, Bojan
Cestnik, Marko Debeljak, and Andrej Kobler. 2007. Data
mining and visualization for decision support and modeling
of public health-care resources. J. of Biomedical Informatics
40, 4 (August 2007), 438-447.

[7] Ketan K. Mane and Katy Borner. 2007. Computational
Diagnostics: A Novel Approach to Viewing Medical Data. In
Proceedings of the Fifth International Conference on
Coordinated and Multiple Views in Exploratory Visualization
(CMV '07). IEEE Computer Society, Washington, DC, USA,
27-34.

[8] G. Marshall. Security Audit and Access Accountability
Message XML Data Definitions for Healthcare Applications.
Request for Comments 3881. Network Working Group.
September 2004.

[9] Mohawk Applied Research Centre. The Visualizer:
Illustrating Interoperability via Visualization of Audit
Messages. Technical Report. April 2011.

[10] Adam Perer and Ben Shneiderman. 2008. Integrating
statistics and visualization: case studies of gaining clarity
during exploratory data analysis. In Proceedings of the
twenty-sixth annual SIGCHI conference on Human factors in
computing systems (CHI '08). ACM, New York, NY, USA,
265-274.

[11] Aleksander Pur, Marko Bohanec, Nada Lavrac, Bojan
Cestnik, Marko Debeljak, and Anton Gradisek. 2007.
Monitoring Human Resources of a Public Health-Care
System Through Intelligent Data Analysis and Visualization.
In Proceedings of the 11th conference on Artificial
Intelligence in Medicine (AIME '07), Riccardo Bellazzi,
Ameen Abu-Hanna, and Jim Hunter (Eds.). Springer-Verlag,
Berlin, Heidelberg, 175-179.

[12] Shweta Purushe, Georges Grinstein, Mary Beth Smrtic,
and Helen Lyons. 2011. Interactive Animated Visualizations
of Breast, Ovarian Cancer and Other Health Indicator Data
Using Weave, an Interactive Web -- based Analysis and
Visualization Environment. In Proceedings of the 2011 15th
International Conference on Information Visualisation (IV
'11). IEEE Computer Society, Washington, DC, USA, 247-
252.

[13] Yair G. Rajwan and George R. Kim. Medical
information visualization conceptual model for patient-

physician health communication. In Proceedings of the 1st
ACM International Health Informatics Symposium (IHI '10),
Tiffany Veinot (Ed.). ACM, New York, NY, USA, 512-516.

[14] Francisco S. Roque, Laura Slaughter, and Alexandr
Tkatenko. 2010. A comparison of several key information
visualization systems for secondary use of electronic health
record content. In Proceedings of the NAACL HLT 2010
Second Louhi Workshop on Text and Data Mining of Health
Documents (Louhi '10). Association for Computational
Linguistics, Stroudsburg, PA, USA, 76-83.

[15] Rowe, Jeff (editor). Interoperability: Making the most of
IT connections. HIMSS Daily News. February 20, 2012.

[16] Shneiderman, B. The Eyes Have It: A Task by Data
Type Taxonomy for Information Visualization. In Proc.
Visual Languages(1996), 336-343.

[17] Siegal S, Castellan Jr. N.J. (1988) Nonparametric
statistics for the Behavioral Sciences 2nd. Ed. ISBN 0-07-
057357-3 0. McGraw Hill Book Company New York (Mann
Whitney Wilcoxon p128-137) (Robust Rank Order Test also
called Mann Whitney U Test p. 137-144).

374 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Training Effective Developers

M. Barjaktarovic
Department of Mathematics and Computer Science, Hawai’i Pacific University, Honolulu, Hawai’i, U.S.A.

Abstract - Many employers today complain that they
“cannot find enough talented developers.” Everyone wants
to hire only good programmers. How can higher education
produce good programmers? This paper presents the results
of our experience teaching coding to diverse audiences, from
out-of-major freshmen to more senior majors. We have
discovered through experience that, if students approach
programming as an exercise in memorizing seemingly
obscure and random programming language syntax, they
struggle with coding. We found that by teaching them the
formal basics of the syntax, students learn very quickly
(literally in minutes) and retain the knowledge well. Their
coding skills improve greatly. The language we use in this
paper is Java, but any other language can be substituted.

Keywords: design, testing, programming, curriculum,
teaching

1 Introduction
 Often, programming is taught through examples and
memorization and without a formal approach. It would be
equivalent to learning a foreign language by remembering
commonly used phrases instead of understanding the rules of
the grammar first. Although it is possible to learn this way,
this approach is inefficient. Most of us understand that when
it comes to learning foreign languages, but for some reason
we do not treat programming languages in the same way.

Students, at the start of their studies, usually do not have the
“big picture" and might not realize that there is actually a
very logical ordering to Java syntax which makes learning
Java much easier. We tell students that most high-level
imperative programming languages tend to have the same
rules except with slightly different syntax. Why that is so
might not be immediately obvious and forces them to relate
what they have learned in mathematics and basic computer
organization.

All programming languages are similar to some degree
because they languages are based on mathematics.
Mathematics is always the same because computers are
digital devices and work by processing binary data.
Therefore, every computer operation boils down to
processing binary numbers. The consequence of this very
physical fact is that programming language syntax can do
only what binary numbers can do. That limits what kinds of
problems we can program.

In other words, every computer program is really a
mathematical solution typed up in an appropriate syntax. This
simple realization demystifies programming. A computer
program is what we would do on paper in mathematics,
except that we can use only characters that can be typed into
a text editor, and we must follow certain rules dictating how
to write out the solution. Those rules are called syntax.

In programming, we use the word “syntax.” In math, we use
the word “formula.” Students are familiar with the concept of
mathematical formulas and understand that a formula is an
abstract placeholder into which we substitute values. (If they
are not familiar with that concept, it has to be reviewed
before we get into the discussion of syntax.) Programming
language syntax is, in essence, one big formula.

One of the possible formalized ways to represent syntax is
Backus-Naur form (BNF). BNF syntax is simply a way to
write anything down formally. For example, [.] means that
the item inside the [] is optional, + means that the item
before the + repeats at least once, etc. BNF is used in many
fields, for example computer networking [3]. It is important
to write syntax into a formal way in order to assure clear
communication. For example, compiler writers must have a
common specification from which to write their compilers.
Different compilers for the same programming language
should parse in the same way. A compiler is really just a text
parser, i.e. a compiler is just a program itself that reads
source code and parses it based on syntax rules.

Java syntax rules, written in BNF, can be easily seen on the
Web, e.g. on [7]. This is the complete syntax of the entire
Java language. We do show those rules in class in an
elaborate attempt to demystify programming by pointing out
its obvious structure and thus clearly manageable nature.
Students are always surprised to see the complete Java syntax
in BNF form, having learned that “it is all there is to it.” It
demystifies the programming. It opens their minds and makes
programming a lot more accessible.

We do not teach BNF syntax to students because it is more
advanced than a beginning programmer needs to know.
However, we do use a very simplified version of it when
teaching programming. In our experience, it makes learning
programming much faster and easier and we are surprised
that this approach is not more commonly used in textbooks.
We suspect that the missing link is the mathematical
prerequisite [4], which could be overcome with a short
review [1].

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 375

2 Syntax as a Formula: Java
 In order to teach the concept of syntax as a “formula,”
we chose some basic qualities for major components of Java
code.

Each < > element marks a placeholder where we have to
substitute a value into it. So, < > is akin to “x” in a formula
such as “x+2=x-2”. It is necessary to plug in a value for x,
just like we have to plug in a value for inside the < >. If a
word is not enclosed in < >, it means that it is required by the
rules of the syntax. In our lecture notes, we also like to
highlight similar items in different colors, to further
emphasize the patterns. Lines starting with // are comments.

A simplified formula for Java classes is shown below:

<accesstype>	 	 	 	 class	 	 	 	 <classname>	 	 	 {	
	 //fields	
	 <accesstype>	 	 	 <datatype>	 	 	 <fieldname>	 ;	
	
	 //constructor	
	 <accesstype>	 	 <classname>	 	
	 	 	 (<datatype>	 	 <variablename>,	 …)	 	 	 	 {	
	 	 	 	 ….	 statements	 ending	 with	 ;	
	 }

 //if	 there	 is	 no	 constructor	 specified,	 Java	 puts	 in:	 	 	 	 	 	
	 //public	 <classname>()	
	

	 //constructors	 can	 be	 overloaded,	 i.e.	 	
	 //there	 can	 be	 many	 constructors	 but	 with	 different	
arguments	
	
	 //methods	 are	 optional,	 but	
	 //we	 should	 have	 get	 and	 set	 for	 each	 private	 field	

}

A simplified formula for Java methods is shown below:

 <accesstype>	 	 	 <datatype>	 	 	 <name>	 	 	 	
	 	 	 (<datatype>	 	 <name>,	 …)	 	 	 {	
	 	 	 ….	 statements	 ending	 with	 ;	
	 }	
	 //methods	 can	 be	 overloaded,	 i.e.	 methods	 can	 	
	 //have	 the	 same	 name	 but	 different	 arguments	 	
	 }	

Each class has to be in a file named <classname>.java

Possible values for variables inside < >s are:
accesstype ϵ {public, private, protected}

name ϵ {…any possible combo of letters and numbers that
starts with a letter and excludes special words…}

datatype ϵ {primitive, non_primitive}
//primitive data types are passed / stored by value

primitive ϵ {int, float, double, boolean, character}

non_primitive ϵ
 {array of any data types, //passed by reference
 object, //passed by reference
 list, stack, queue, //abstract data types
 ….
 }
Datatypes include the special case: void, as a possible
datatype for “return” statement.

It is safer to briefly mention to the students that the above is a
notation for sets. A set consists of elements in { }. For
example, S ={1,2,3} means that set S consists of elements 1,
2 and 3. x ϵ S means that element x belong to set S.

Students also appreciate hearing this in ways they can relate
to, such as GUI: each < > is like a Java drop-down menu, and
the choices for the drop-down menu are all members of that
set.

2.1 Basic Java class formula

 This is yet another way that we try to use when
showing Java syntax. It is a very simplified version of Java
since students are in an early programming class.

A simplified Java class can be described as:

AccessIdentifier	 	 class	 Name	 	 {	 	 	
	 	 	 	 	 	 	 	 	 	 //access	 can	 be	 private	 or	 public	
	 Members	 of	 class	 (called	 fields)	 	 	
	 	 	 	 	 	 	 	 	 	 //can	 have	 private	 or	 public	 access	
	 Methods	 of	 class	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 //can	 have	 private	 or	 public	 access	
	 Special	 case	 of	 method,	 called	 constructor	
}

Constructor is a special case of method because it can only be
used with the word new to create new objects. “Regular”
methods can only be used on existing objects, e.g. to get
values or to change values of the fields.

One of the critical aspects of teaching this is emphasizing
that each class and each method is a “box” and thus it has
some “formula” or algorithm associated with it. Therefore we
need to be very clear as to what the boxes want as input, what
output they produce, who may invoke them, and where and
how they may be invoked.

For example, a constructor is a box that can only create brand
new objects; it takes zero or some parameters and produces a
brand new object; and can be invoked only with “new.” For
example, a method is a box that can be called only by

376 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

existing objects; it takes some parameters and modifies the
object or reports some info on the object.

The concept of objects and methods as boxes is useful for
teaching testing and design. Agile developers are in favor of
test driven design (TDD) [TDD]. It helps to visualize code as
flow charts [2].

Another concept we emphasize, in order to make sure to
clearly tie the prerequisite mathematical knowledge, is that a
class is a concept, an abstraction, a way to group together
related items. In other words: a class is a formula, i.e. a
“cookie cutter” that is then used to make actual objects, i.e.
“cookies”. Until we make objects based on the class
“formula”, there is nothing tangible to work with. We create
new cookies with the “new” directive and a constructor.

3 Examples
 Concepts are best illustrated with examples that are
familiar. We tried illustrating the concepts with the
traditional example of making cookies and then proceeded to
work with rectangles and restaurant orders. These examples
were concocted by discussing them with students in class and
getting their feedback. It was rather challenging to find the
restaurant analogy, but students do understand it. Code was
designed to illustrate the basic concepts as well as some
basics of software engineering: documentation, variable
names, sensible parceling into modules, and so on.

First we start with the high-level design in pseudocode.

3.1 Cookie Pseudocode

class	 Cookie	 {	
	 String	 topping;	 	 //	 topping	 Є	 {vanilla,	 chocolate,	 fruit}	
	 float	 calories;	 	 //	 calories	 Є	 Z+	
	 float	 weight;	 	 //	 weight	 Є	 R+	
	 float	 size;	 	 	 //	 size	 Є	 R+	
	 …	 constructors…	
	 …	 methods	 …	
}	
	
main()	 {	 	
//call	 one	 of	 the	 Cookie	 constructors	 to	 create	 	
//	 a	 brand	 new	 chocolate	 cookie	 called	 cc	
//	 	 	 	 	 Cookie	 cutter	 is	 the	 class	
//	 	 	 	 	 Act	 of	 applying	 the	 cookie	 cutter	 to	 the	 dough	 is	 the	 	
//	 	 	 	 	 calling	 the	 constructor	
	
Cookie	 cc	 =	 new	 Cookie(“chocolate”);	
	
//The	 only	 way	 to	 create	 a	 brand	 new	 object	 is	 to	
//	 call	 the	 constructor	
	
//call	 one	 of	 the	 Cookie	 constructors	 to	 create	 	

//a	 brand	 new	 vanilla	 cookie	 called	 cv	
	
Cookie	 cv	 =	 new	 Cookie(“vanilla”);	
	
//change	 your	 mind;	 make	 the	 vanilla	 cookie	 be	 chocolate	
	
cv.setTopping(“chocolate”);	
	
//It	 is	 not	 possible	 to	 change	 a	 cookie	 unless	 it	 already	 exists	
//i.e.	 methods	 work	 only	 on	 existing	 objects	
}	

3.2 Rectangle Pseudocode

class	 Rectangle	 {	
	 int	 length;	 	 	 //	 length	 Є	 Z+	 to	 make	 it	 simple	
	 int	 width;	 	 	 //	 width	 Є	 Z+	

	 //MS	 Word	 rectangles	 also	 have	 color,	 fill,	 border,	 etc.	
	 …	 constructors…	
	 …	 methods	 …	
}	
	
main()	 {	 	
//call	 one	 of	 the	 Rectangle	 constructors	 to	 create	 a	 	
//new	 Rectangle	 object	 of	 size	 20x30.	
	
Rectangle	 r1	 =	 new	 Rectangle(20,30);	 	
	
//make	 another	 rectangle	
	
Rectangle	 r2	 =	 new	 Rectangle(50,50);	
	
//are	 the	 two	 rectangles	 equal?	
	
if	 (r1.equals(r2))	 {	
	 print	 “rectangles	 are	 equal”;	
}	

3.3 Restaurant Order Pseudocode

class RestaurantOrder {
 String carb; // carb Є {rice, bread, noodles}
 String protein; // protein Є {chicken, beef, tofu}
 String veggie; // veggie Є {broccoli, beans, squash}
 String drink; // drink Є {soda, juice, water}
 int quanity; // quantity Є Z+
 float price; // price Є R+
 float tax; // tax Є R+
 … constructors…
 … methods …
}

//Alice,	 Bob	 and	 Charlie	 walk	 into	 the	 restaurant.	
//They	 see	 the	 menu	 on	 the	 wall;	 	 i.e.	 the	 menu	 is	 the	 class	 	
//So	 they	 order	 based	 on	 the	 menu;	
//	 i.e.	 they	 create	 new	 objects	 based	 on	 the	 class	

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 377

//What	 is	 Order	 physically?	 	 A	 plate	 of	 food	 and	 the	 bill.	
	
main()	 {	
	 //Alice	 orders	 for	 herself,	 i.e.	 she	 creates	 a	 new	 order:	
	
	 Order	 alice	 =	 new	 Order(“chicken”,	 “rice”,	 “beans”,	
“water”);	
	 	
	
	 //Bob	 orders	 for	 himself:	
	
	 Order	 bob	 =	 new	 Order(“beef”,	 “bread”,	 “none”,	
“soda”);	
	
	
	 //Charlie	 wants	 to	 order	 the	 same	 thing	 as	 Alice	
	 //so	 we	 are	 using	 copy	 constructor	
	
	 Order	 charlie	 =	 new	 Order(alice);	
	 	
	 	
	 //Bob	 changes	 his	 mind	 and	 decides	 to	 try	 broccoli	
	 	 //Since	 Bob’s	 order	 already	 exists,	 the	 only	 thing	 	
	 //we	 can	 do	 with	 it	 is	 call	 the	 set	 method.	
	 //Calling	 the	 constructor	 would	 make	 a	 new	 order.	
	
	 bob.setVeggie(“broccoli”);	
	 	
	
	 //Alice	 asks	 Bob	 to	 repeat	 what	 he	 ordered	 for	 veggie	
	
	 String	 bob_veggie	 =	 bob.getVeggie();	
	
	
	 //Charlie	 decides	 to	 try	 the	 veggie	 that	 Bob	 is	 having	
	
	 charlie.setVeggie(bob.getVeggie());	
OR	
	 Charlie.setVeggie(bob_veggie);	
	
	
	 //Charlie	 changes	 his	 mind,	
	 //	 and	 wants	 to	 eat	 the	 same	 thing	 as	 Bob	
	
	 charlie.copycat(Bob);	
	
	
	 //Alice	 clones	 her	 order	 for	 her	 friend	 Dianne	
	
	 //alice.clone();	 	 	 	 	
	 //this	 method	 returns	 an	 Order,	 	
	 //so	 you	 can	 do	 whatever	 you	 want	 with	 it	
	 //but	 cannot	 do:	 diane	 =	 alice.clone().	
	 //Why?	
	 	 //here	 are	 some	 possibilities	 with	 the	 clone:	

	 	 float	 diane_tax	 =	 alice.clone().getTax();	
	
	 //Every	 time	 you	 call	 “clone”	 it	 will	 make	 a	 new	 object	 	
	 //This	 is	 not	 the	 best	 way	 to	 code.	 It	 is	 a	 lot	 better	 to	
	 //use	 the	 copy	 constructor.	
	 }	
}	

3.4 Implementation

 So far we worked with the design. The next step is to
actually implement our design. Therefore, students get to
experience the design process and then the implementation,
thus realizing that we think on different levels of abstraction.
The classes are implemented as follows:

class	 Cookie	 {	
	 String	 topping;	 	 	 	 	 	
	 float	 calories;	 	
	 float	 weight;	 	 	
	 float	 size;	 	 	
	
	 //constructors	
	 public	 Cookie	 (String	 topping)	 {	
	 	 this.topping	 =	 topping;	
	 }	
	
	 //methods	
	 public	 void	 setTopping(String	 topping)	 {	
	 	 this.topping	 =	 topping;	
	 }	
	 public	 String	 getTopping()	 {	 	 	 return	 topping;	 }	
}	
	
class	 Rectangle	 {	
	 int	 length;	 	 	
	 int	 width;	 	 	
	
	 //constructors…	
	 public	 Rectangle(int	 len,	 int	 wid)	 {	 	
	 	 length	 =	 len;	 	
	 	 width	 =wid;	
	 }	
	
	 //methods:	
	 //getLen(),	 getWidth(),	 setLen(.),	 setWidth(.)	
	
	 public	 void	 equals(Rectangle	 r)	 {	
	 	 if	 (this.length	 ==	 r.getLength()	 &&	
	 	 	 this.width	 ==	 r.getWidth())	 {	
	 	 	 	 return	 true;	
	 	 }	
	 	 else	 {	 	 	
	 	 	 	 return	 false;	 	
	 	 }	
}	

378 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

class	 RestaurantOrder	 {	
	 String	 carb;	 	 	
	 String	 protein;	 	
	 String	 veggie;	 	 	
	 String	 drink;	 	 	
	 int	 quanity;	 	 	
	 float	 price;	 	 	
	 float	 tax;	 	 	
	
	 //constructors…	
	
	 //This	 is	 a	 “typical”	 constructor	
	 public	 Order(String	 carb,	 String	 protein,	 String	 veggie,	
String	 drink,	 int	 quantity,	 float	 price,	 float	 tax)	 {	
	 this.carb=carb;	 	 	
	 this.protein=protein;	 	
	 this.veggie=veggie;	 	 	
	 this.drink=drink;	 	 	
	 this.quanity=quantity;	 	 	
	 this.price=price;	 	 	
	 this.tax=tax;	
}	 	
	

4 Copy Constructor
 The copy constructor can be rather elusive to students if
they do not understand the basics concepts of classes. We
give an in-class exercise to attempt to write a copy
constructor and often we see the clone version of the copy
constructor. Thus we decided to formally teach it and clarify
the confusion. Therefore, we call the copy method “the
copycat method” in order to distinguish it from the cloning
version of copy.

We will continue using the example of restaurant class.

////////	 	 	 Copy	 constructor	 	 	 //////	
//Input:	 	 	 An	 existing	 order	 	
//Output:	 A	 brand	 new	 order	 based	 on	 existing	 order	
	
	 public	 Order(Order	 existingOrder)	 {	
	 	 this.carb=	 existingOrder.getCarb();	 	 	
	 	 this.protein=existingOrder.getprotein();	 	
	 	 this.veggie=existingOrder.getveggie();	 	 	
	 	 this.drink=existingOrder.getdrink();	 	 	
	 	 this.quanity=existingOrder.getquantity();	 	 	
	 	 this.price=existingOrder.getprice();	 	 	
	 	 this.tax=existingOrder.gettax();	
	 }	 	

The copy constructor creates a new object. However, we
might not want a new object. We might want to change an
existing object.

If we want to copy an existing object into another existing
object, we need to use the copycat method. The copycat
method is the only way to safely copy.

Therefore, the copy constructor and copycat method have the
same body, but they can have different calls. The copy
constructor creates brand new objects, and the copycat
method modifies existing object.

/////////	 	 Copycat	 method	 	 	 /////	
//Input:	 	 	 An	 existing	 order	 	
//Output:	 	 none.	 Copycat	 method	 will	 change	 the	 object	 	
//	 	 	 that	 called	 it;	 it	 should	 change	 all	 fields	 to	 	
//	 	 	 match	 the	 object	 we	 are	 copying	 from	
	
	 public	 void	 copycat(Order	 existingOrder)	 {	
	 	 this.carb=	 existingOrder.getCarb();	 	 	
	 	 this.protein=existingOrder.getprotein();	 	
	 	 this.veggie=existingOrder.getveggie();	 	 	
	 	 this.drink=existingOrder.getdrink();	 	 	
	 	 this.quanity=existingOrder.getquantity();	 	 	
	 	 this.price=existingOrder.getprice();	 	 	
	 	 this.tax=existingOrder.gettax();	
	 }	 	

Sometimes students write the copy method as a clone
method, not as a copycat method. The clone method is not
useful because the object returned is not easily accessible.
Every time we call the clone method, we create a new object
yet we can change its properties only once. If we do want a
new identical object, we should use the copy constructor. .

///////	 	 	 Clone	 method	 	 ///////	
//Input:	 	 	 none	
//Output:	 	 a	 brand	 new	 object	 cloned	 off	 this	 object	
	 public	 Order	 clone()	 {	
	 	 	 Order	 o	 =	 new	 Order(this.carb,	 this.protein,	 ….);	
	 	 	 return	 o;	
	 	 }	
	 }	
	
We tell students that the copy method is meant to be a
copycat method. We use an example of fashion. For example,
if Brad Pitt or Angelina Jolie are current fashion role models,
then we try to copycat them and we make ourselves look like
them. In other words, we invoke the copy method, i.e.
copycat method. The entire fashion industry works on this
principle. The copy method in the clone version would mean
that Angelina Jolie would clone herself into her twin so there
would be two identical people. However, we would not be
able to easily access the twin. This is not useful. We should
use the copy constructor instead.

4.1 Money Counterfeit Example

 The basic difference between the copy constructor and
the copy method can be easily be demonstrated by using a

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 379

money counterfeiting example. We can model printing new
money, changing existing bills to look like higher-value bills,
and also creating new bills by looking at existing ones.
Below is the pseudocode that illustrates this example.

class	 Money	 {	
	 int	 bill	 ;	
	 	
	 getBill	 {	
	 	 return	 bill	 ;	
	 }	
	 setBill(int	 amount)	 {	
	 	 bill	 =	 amount	 ;	
	 }	
	
	 //constructor:	 prints	 a	 new	 bill	
	 Money	 (int	 a)	 {	
	 	 bill	 =	 a	 ;	
	 }	
	
	 //copy	 constructor:	 prints	 a	 new	 bill,	 same	 as	 another	
	 Money	 (Money	 m)	 {	
	 	 bill	 =	 m.bill	 ;	
	 }	
	
	 	 //copycat	 method:	 changes	 the	 bill	 we	 have	 	
	 void	 counterfeit(Money	 higherbill)	 	 {	
	 	 bill	 =	 higherbill.bill	 ;	
	 }	
	
	 //clone	 method:	 prints	 a	 new	 bill,	 the	 same	 like	 we	
have	
	 Money	 clone()	 {	
	 	 Money	 m	 =	 new	 Money(bill)	
	 }	
}	
	
main()	 {	
	 Money	 low	 =	 new	 Money(5)	 ;	 	 //print	 a	 $5	 bill	
	 Money	 high	 =	 new	 Money(20)	 ;	 //print	 a	 $20	 bill	
	 Money	 low2	 =	 new	 Money(low)	 ;	 //print	 another	 $5	
bill	
	
	 low.counterfeit(high)	 ;	 	 //makes	 the	 $5	 bill	 into	 $20	 bill	
	 low.clone(high).setBill(100)	 ;	 //clone	 into	 $100	 bill	
	 //However,	 $100	 bill	 is	 not	 accessible	 anymore	
}	
	 	

5 Aggregate Classes

Aggregate classes seem quite new and complicated to
students until we review the concept that Java syntax is a
formula and that we can have fields of any data type.
Therefore, it is possible to have fields that are objects. This

very quickly clarifies aggregate classes and makes learning
them quite fast.

The discussion about copy constructor and copy method also
makes learning aggregate classes easier since students
understand the copying of objects. Writing the equals method
is a natural extension.

6 Conclusions
 This paper presents the results of teaching programming
using a formalized approach, by treating syntax as a formula.
Students learn rather quickly. For example, we have taught a
1-credit basic programming class to mechanical engineering
freshmen at the University of Hawai’i at Manoa. Within one
semester, students were able to write subprograms to multiply
matrices. For example, aggregate classes in basic Java classes
take a very short time to cover when taught using this
approach.

7 References
[1] Milica Barjaktarovic. “Teaching Mathematics and
Programming Foundations Early in Curriculum Using Real-
Life Multicultural Examples.” The 2012 International
Conference on Frontiers in Education: Computer Science and
Computer Engineering (FECS'12), July 2012.

Milica Barjaktarovic. “Teaching Design and Testing in
Computer Science Curriculum.” The 2012 International
Conference on Frontiers in Education: Computer Science and
Computer Engineering (FECS'12), July 2012.

[2] Kent Beck. “Test Driven Development (TDD).”
Addison-Wesley Professional; 1st edition, 2002.

[3] D. Crocker, P. Overell. “Augmented BNF,” RFC
5234. http://tools.ietf.org/html/rfc4234. January 2008

[4] Nancy Eickelmann. “Interview to profile ACM Fellow
David Lorge Parnas for SIGSOFT SEN”; SEN Vol. 24 Issue
No. 3, May 1999. http://www.sigsoft.org/SEN/parnas.html

[5] Paul Jarley, Dean of Lee Business School. “Where are
all IT Students.” Posted on February 20, 2012.
http://business.unlv.edu/dean/where-are-all-the-it-students/

[6] Mike Subelsky, Open Society Institute Baltimore.
“Baltimore Should Become a Software Leader.”
http://www.audaciousideas.org/2011/08/baltimore-should-
become-a-software-education-leader/ Posted on August 2,
2011.

[7] Source Forge. “BNF for Java Project.” http://bnf-for-
java.sourceforge.net/

380 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

 Infrastructure Needed for Distance Learning in

 Developing Countries Through Multimedia

 Technology Using Mobile devices

 Sagarmay Deb

 Central Queensland University, Sydney, New South Wales, Australia

Abstract - Although the developments of multimedia

technology and internet networks have contributed to

immense improvements in the standard of learning as

well as distance learning in developed world, the

developing world is still not in position to take

advantage of these improvements because of limited

spread of these technologies, lack of proper

management and infrastructure problems. Unless we

succeed in solving these problems to enable people of

developing countries to take advantages of these

technologies for distance learning the vast majority of

the world population will be lagging behind. In this

paper we explore how to develop appropriate

infrastructures for the use of mobile technology to

provide distance learning in an efficient way using

advanced multimedia tools. We recommend the use of

mobile and multimedia technology to reach this vast

population of under-developed countries to impart

quality learning in an effective way.

Keywords: Distance learning, infrastructure, mobile

technology, multimedia technology, developing

countries

1 Introduction

The concepts of distance learning are prevalent in

developing countries for last few decades and it is very

much in vogue in developed countries [1], [4]. In

developing countries it started like many other countries

did with correspondence courses where printed learning

materials used to be despatched to the students at

regular intervals and students were expected to read the

materials and answer questions. The basic philosophy

was teachers would be physically away from the

students and have to conduct the teaching process from

distance [2].

With the development of computer industry and internet

networks during the last three decades things have

changed and global communication has reached an

unprecedented height [1]. With these developments

immense scopes have come to the surface to impart

learning in a much more efficient and interactive way.

Multimedia technology and internet networks have

changed the whole philosophy of learning and distance

learning and provided us with the opportunity for close

interaction between teachers and learners with

improved standard of learning materials compared to

what was existing only with the printed media. It has

gone to such an extent to create a virtual class room

where teachers and students are scattered all over the

world. Although some of these facilities are expensive

still the developed world is in a position to take

advantage of these facilities to impart much better

distance-learning to students residing in the developed

countries. But for developing countries the story is

different as computerization and network connections

are still very limited compared to the developed world.

In this paper we focus our attention on defining the

problems infrastructures that is needed for using these

technologies for much more improved and extensive

distance-learning and suggest how we could possibly

reach these vast majority of people from the developing

countries with the improved quality of distance-learning

provided by multimedia and internet networks through

viable and affordable infrastructures that could be

created in those setup.

Section one gives an introduction of the area. Section

two presents the advancements in infrastructures

developing countries are making to make use of mobile

technologies. Section three presents the issue of usage

of mobile technology with advanced multimedia tools

in distance learning in developing countries with

appropriate infrastructures. We put our concluding

remarks in section four.

2 Analyses of Works Done

The open-universities which started functioning by late

sixties and early seventies of last century, reaching

off-campus students delivering instruction through

radio, television, recorded audio-tapes and

correspondence tutoring. Several universities

particularly in developing countries still use educational

radio as the main instructional delivery tool [1].

Print, audiocassettes, and pre-recorded instructional

television (lectures) are the lowest-cost technologies for

small numbers of students (fewer than 250), while radio

requires 1,000 students or more to achieve comparable

per-student costs. Computer conferencing is a low-cost

approach to providing interactivity between teachers

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 381

and students, but live interactive broadcasts and video

conferencing are still very high-cost technologies,

regardless of the number of students enrolled [17].

Although distance education has been around for more

than two hundred years and has been shown to be

effective in a variety of settings, the introduction of

technology and its application across global boundaries

introduces new trends, issues, and challenges. How, for

example, does one judge the quality of a degree earned

over the Internet? When should technology be used?

And which technology is best? Should countries use

programs offered by foreign institutions rather than

developing their own? These and many other questions

are confronting education policymakers and

practitioners around the world. Careful analysis,

evaluation, and research will be needed [17].

Globalization, accreditation, and competition.

Employers and universities are now drawing both staff

members and students from all corners of the globe.

Consequently, they face new challenges in evaluating

course work done at, and degrees earned from,

unknown institutions in other countries. While

accreditation has typically been controlled by individual

countries, the globalization of distance education has

created a whole new challenge in accreditation and

certification of learning. For example, the Global

Alliance for Transnational Education (GATE) has been

formed to carry out the formidable task of creating a

global certification and review process for education

delivered across borders [17].

Globalization raises other issues for countries. For

example, instructional programs broadcast from abroad

have heightened fears about the contamination of

cultures and values. Competition between local and

foreign education providers is another issue. While

competition is usually good for the consumer, in that it

often raises quality and reduces prices, local institutions

typically resist foreign competition and, in some

countries, are trying to block outsiders from operating

in local markets [17].

Quality and effectiveness. Some developing countries

are reluctant to adopt programs originating elsewhere,

despite their reputed quality, choosing instead to

develop their own; unfortunately, many lack the

expertise needed to produce high-quality materials and

support structures. Considerable time and expense are

required to produce quality programs, and countries

with limited resources may put programs together that

are inadequate [17].

Technology. Making sound investment decisions about

technology is a major challenge facing educational

policymakers and planners. New technologies offer

options to both expand educational opportunity and

improve quality, but inappropriate decisions regarding

whether to use technology or what type of technology

to use can be costly and can impede the success of a

distance education program. Unfortunately, the

information needed to make such decisions is limited.

Care should be taken to avoid allowing the novelty of

technology to drive decisions regarding the most

appropriate delivery mode for distance education

programs, overshadowing the more important decisions

regarding curriculum and instructional quality. If a

country's conventional education or teacher training

program is not effective, using a new technology to

deliver that education or training will not make it any

more effective [17].

Affordability. Distance education programs need sound

financial planning and management to ensure

sustainability. In many cases, developing countries find

that funds are not available to continue a distance

program after donor funds are terminated, so it is

important that initial investment be accompanied by

adequate funding for recurrent expenditures. A related

problem arises when the per- student cost of adding

distance education or other education technology is

large relative to a country's average per-student

financial allocation for that educational level. For

instance, if a distance mathematics program using

computers consumes financing equal to 50 percent of

the country's per-student budgetary allocation, its

financial future is likely to be bleak, despite high

putative benefits. When such a situation is encountered,

the country would be best advised to opt for pilot

programs that test less expensive alternatives than to do

away with the distance education program entirely [17].

It is useful to consider distance learning not in terms of

a technical problem but as essentially similar to

traditional learning. Distance learning can be seen as

comprising the following functions that broadly

correspond with the TrainX methodology. They are:

Course design, Development of materials, Evaluation,

Course delivery, Evaluation.

Providing support for students can be difficult with

distance learning. This can be exacerbated in

developing countries where trainees may lack other

kinds of support and be widely dispersed. The lack of

face-to-face support and human interaction can lead to

student isolation and high dropout rates.

Providing support to distance learning trainees – either

through online forums, telephone or mail, requires

proper coordination of human resources and/or the

provision of additional face-to-face training

opportunities.

Ongoing support is provided by using local networks

and trainers and through a 'training of trainers'

programme. Distance learning activities use regularly

scheduled chat sessions to provide opportunities for

feedback and questions as well as regular e-mail contact

or telephone support where appropriate.

In order to promote a wider distribution of expertise and

knowledge and so that the beneficiary countries feel

some ownership over the training, regional pedagogical

committees are established to oversee the training and

distance learning activities [20].

382 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

In Africa there is a need for utilizing resources to

effectively develop and use ICT solutions. There are a

lot of previous experiences in different African

countries like Sierra Leone and Nigeria, they use

many methodologies of the distance learning from

corresponding courses, CD-ROM, Internet, TV and

World Wide Web. Sudan As in many African countries,

poor network infrastructure is a main challenge, in

addition to lack of awareness and commitment of

teachers and institutions. The Sudan Open University is

the first initiative in this area. It is prime initial phase of

development, depends on printed material, lectures in

CD Room, cassette, TV, Radio and new one video

conference (between the main center and one state for

one time).SOU(Sudan Open University) has electronic

library on line and now enrolled 93,000 students since

2003 in (Educational, Administration, Computers

collages) .Their future plans include develop a video

conference capabilities to enable access to their online

library for their students [18].

Even though India has shown considerable progress, the

full development and large scale adoption of

e-Infrastructure-enabled distance learning still face

several challenges, including:

• Lack of course content,

• High cost of production of high quality e-learning

material,

• Lack of satisfactory quality applications in certain

areas (like genomic sciences).

Tackling these challenges requires:

• More training for greater expertise in development

and delivery of e-learning solutions,

• Additional investment in research and application and

product development,

• More reliable communication infrastructures with

higher bandwidth,

• Further development and use of standards

• Higher availability of adequate IPv6 applications [19].

3 How To Develop Proper

Infrastructures For Distance

Learning

With the extended application of information

technologies (IT), the conventional education system

has crossed physical boundaries to reach the un-reached

through a virtual education system. In the distant mode

of education, students get the opportunity for education

through self-learning methods with the use of

technology-mediated techniques. Efforts are being

made to promote distance education in the remotest

regions of developing countries through institutional

collaborations and adaptive use of collaborative

learning systems [2].

Initially, computers with multimedia facilities can be

delivered to regional resource centers and media rooms

can be established in those centers to be used as

multimedia labs. Running those labs would necessitate

involvement of two or three IT personnel in each

centre. To implement and ascertain the necessity,

importance, effectiveness, demand and efficiency, an

initial questionnaire can be developed. Distributing

periodical surveys among the learners would reflect the

effectiveness of the project for necessary fine-tuning.

After complete installation and operation of a few pilot

tests in specific regions, the whole country can be

brought under a common network through these

regional centers [2].

In developed economies, newer versions of technology

are often used to upgrade older versions, but in

developing economies where still older versions of

technology are often prevalent (if they exist at all), the

opportunities for leapfrogging over the successive

generations of technology to the most recent version are

that much greater [3].

In the conventional view, (i.e. as seen by technology

developers and donors), developing countries passively

adopt technology as standard products which have been

developed in industrialized countries and which can be

usefully employed immediately. However, successful

use of IT requires much more than mere installation and

application of systematized knowledge. It also requires

the application of implied knowledge regarding the

organization and management of the technology and its

application to the contextual environment in which it is

to be used. This implied IT knowledge often represents

experience with the deployment of previous technology

accumulated over time, such experiences contributing

towards the shaping of new technology [3].

In addition to purely technological issues, the

development of appropriate human resources skills are

required, i.e. extensive training of the people who are

going to use (and train others how to use) the resources.

Training is seen as particularly important as this is not

technology just a few people to benefit from, but for

many. As Pekka Tarjanne, Secretary General of the

ITU, made clear at Africa Telecom '98,

"communication is a basic human right" (original

emphasis). Nelson Mandela, at Telecom 95 in Geneva,

urged regional co-operation in Africa, emphasizing the

importance of a massive investment in education and

skills transfer, thereby ensuring that developing

countries also have the opportunity to participate in the

information revolution and the "global communications

marketplace"[3].

Canada's International Development Research Centre

(IDRC) runs a number of developing country projects

that involve technology leapfrogging. The Pan Asian

Network (PAN) was set up to fund ICT infrastructure

and research projects in developing countries across

Asia. Individuals, development institutions, and other

organizations should all be able to use the infrastructure

so as to share information [3].

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 383

PAN works with Bangladesh's world famous grassroots

Grameen Bank. One service here is a "telecottage",

where network services can be obtained. The

technology and the material will be tailored to meet the

needs of Grameen's typically poorly educated clients.

One of PAN's objectives is gender equity. Women, who

constitute some 95% of Grameen's borrowers, will be

prominent among PAN users in Bangladesh [3].

PAN is also responsible for linking Laos to the Internet.

The Science, Technology and Environment

Organization (STENO) of the Laos Government invited

some Laotian IT professionals living and working

overseas to return home and share their experiences

with their colleagues in the country. STENO

collaborated with PAN in designing an 18-month long

project to build the necessary infrastructure for a

dial-up e-mail service. Among the pioneer users were

"researchers working on agriculture and aquaculture

projects; journalists managing national news agencies

and newspapers; lawyers consulting on international

legal issues; travel agents planning business trips;

computer resellers tracking down suppliers and

obtaining pricing information; and about 20 others in

both the public and private sectors" [5].

Presentation of course materials through multimedia in

remote locations where in villages there could be school

structures where those presentations could be made is

feasible. Of course learning materials must be

self-explanatory and not boring. Using multimedia

facilities like videos, audios, graphics and interesting

textual descriptions, it is possible to reach the remote

locations of the world where computer technology has

not reached yet. As the areas not covered by computer

and internet technology is still profoundly vast in the

world this approach seems to be very constructive and

should be pursued.

Wherever possible distance learning through

multimedia should be imparted through internet as

internet and networks are the vehicles of multimedia.

But since bandwidth connection is still very limited in

vast areas of Asia, Africa and Latin America it would

still take long time to reach major part of the population

of the above-mentioned regions with multimedia and

web.

Mobile technology offers a very hopeful way to reach

the vast population of the developing countries as it

does not require bandwidth connections. We have to

develop distance learning using multimedia through

mobile technology. This seems to be the most viable

way to reach billions living in the rural areas of the

developing countries. Hence considerable research

efforts must be dedicated to this line. Instructions could

be sent through emails to mobiles of the distance

learners. Also relevant website addresses could be

transmitted to their emails and they could then visit

those sites of distance learning though the internet of

their mobiles.

In his book, Mayer (2001) declares that while learning

from the text-only books results in the poorest retention

and transfer performance, learning from books that

include both text and illustrations and from

computer-based environments that include on-screen

text, illustrations ,animations and narrations results in

better performance [10].

Similar to e-Learning, mobile technologies can also be

interfaced with many other media like audio, video, the

Internet, and so forth. Mobile learning is more

interactive, involves more contact, communication and

collaboration with people [14].

The increasing and ubiquitous use of mobile phones

provides a viable avenue for initiating contact and

implementing interventions proactively. For instance,

Short Message Service (SMS) is highly cost-effective

and very reliable method of communication. It is less

expensive to send an SMS than to mail a reminder

through regular postal mail, or even follow-up via a

telephone call. Further, no costly machines are required

(which is clearly the case in terms of owning a personal

computer).Besides SMS, distance learners can use

mobile phones/ MP3 players to listen to their course

lectures, and for storage and data transfer. New

technologies especially mobile technologies are now

challenging the traditional concept of Distance

Education [12]. Today the more and more rapid

development of the ICT contributes to the increasing

abilities of the mobile devices (cell phones, smart

phones, PDAs, laptops) and wireless communications,

which are the main parts of the mobile learning. On the

other hand for the implementation of mobile learning it

is necessary to use a corresponding system for the

management of such type of education [13].

The use of mobile technologies can help today's

educators to embrace a truly learner-centred approach

to learning. In various parts of the world mobile

learning developments are taking place at three levels:

 The use of mobile devices in educational

administration

 Development of a series of 5-6 screen mobile learning

academic supports f or students

 Development of a number of mobile learning course

modules [11].

 Research into the current state of play in Europe

indicates:

 1. There is a wide range of roles for mobile

technologies supporting the learner in many ways

ranging from relatively simple use of SMS texting to

the more advanced use of smartphones for content

delivery, project work, searching for information and

assessment. Some proponents of mobile learning

believe that it will only „come of age‟ when whole

courses can be studied, assessed and learners accredited

through mobile devices.

384 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

 2. Although books are now being downloaded onto

mobile devices, the authors believe that to support the

learning process a great deal of thought has to be given

to the structure of the learning and assessment material.

However, it is true that for some, mainly at higher

education level, mobile phones offer the opportunity to

access institutional learning management systems. This

provides greater flexibility to the learner without any

new pedagogical input.

 3. Costs are coming down rapidly; new first

generation simple mobile phones will not be available

on the market from 2010. All mobile phone users in

Europe will be using 3 or 4G phones within the next

two years. A welcome associated step is a move

towards some form of standardization by the mobile

phone companies as exemplified by the shift to

common charging devices over the next two years.

 4. The value which is put on possession of a mobile

phone, especially by young people is surprising and the

data on ownership suggests that this will be a

ubiquitous tool for all very shortly and that it will be

well cared for: there is evidence that ownership of

devices brings responsible use and care.

 5. Large scale educational usage in schools currently

depends on government investment but in higher and

further education it is safe to assume that all learners

will have their own devices. Institutions will need to

advise potential students on the range of devices most

suitable for the curriculum, as they do currently with

regard to computers. The convergence between small

lap tops and handheld devices will continue until they

are regarded as different varieties of the same species of

technology.

 6. There is a great potential for educational providers

to work with large phone companies, both to reduce

costs and to co-develop appropriate software [6].

Bangladesh Open University (BOU) is the only national

institution in Bangladesh which is catering distance

education in the country. It has extensive network

throughout the country to provide readily accessible

contact points for its learners. After passing of 15 years

since its inception, BOU has lagged behind in using

technologies. In consideration of its limit to

conventional method in teaching, a project was

undertaken to test the effectiveness and viability of

interactive television (TV) and mobile's Short Message

Service (SMS) classroom and explore the use of

available and appropriate technologies to provide ICT

enabled distance tuition. In this project, the mobile

technology's SMS along with perceived live telecast

was used to create ideal classroom situation for distance

learning through the Question Based Participation

(QBP) technique. The existing videos of BOU TV

programs were made interactive using this technologies

and technique. The existing BOU TV program and

interactive version of the same were showed to same

learners of BOU to evaluate its effectiveness. It is found

from the study that this interactive virtual classroom

significantly perform well in teaching than BOU video

programs (non-interactive) which is used at present [7].

Another paper presents and discusses NKI (Norwegian

Knowledge Institute) Distance Education basic

philosophies of distance teaching and learning and their

consequences for development of a learning

environment supporting mobile distance learners.

For NKI it has been a major challenge to design

solutions for users of mobile technology who wish to

study also when on the move. Thus, when students are

mobile and wishing to study, the equipment and

technologies they use will be in addition to the

equipment used at home or at work. The solutions must

be designed in ways to allow both users and non-users

of mobile technology to participate in the same course.

This means that we have looked for solutions that are

optimal for distributing content and communication in

courses, independent on whether the students and tutors

apply mobile technology or standard PC and Internet

connection for teaching or learning. The learning

environment must efficiently cater for both situations

and both types of students. The solutions were

developed for PDAs. During the time of the

development and research the technologies have

developed rapidly. Mobile phones are including PDA

functionalities and vice versa. In principle the aim of

developments is to design solutions that can be used on

any kind of mobile devices.

The paper builds on experiences from four European

Union (EU) supported projects on mobile learning:

From e-learning to m-learning (2000-2003), Mobile

learning – the next generation of learning (2003-2005),

Incorporating mobile learning into mainstream

education (2005-2007) and the ongoing project, The

role of mobile learning in European education

(2006-2008).

Most NKI courses are not designed to function as

online interactive e-learning programs, although some

parts of the courses may imply such interaction with

multi-media materials, tests and assignments. The

courses normally involve intensive study, mainly of text

based materials, solving problems, writing essays,

submitting assignments and communicating with fellow

students by e-mail or in the web based conferences.

This means that most of the time the students will be

offline when studying. From experience we also know

that the students often download content for reading

offline and often also print out content for reading on

paper. All aspects and functions of mobile learning in

the NKI large scale distance learning system is clearly

an additional service to the students [8].

Mobile Assisted Language Learning (MALL) describes

an approach to language learning that is assisted or

enhanced through the use of a handheld mobile device.

MALL is a subset of both Mobile Learning

(m-learning) and Computer Assisted Language

Learning (CALL). MALL has evolved to support

students language learning with the increased use of

mobile technologies such as mobile phones

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 385

(cellphones), MP3 and MP4 players, PDAs and devices

such as the iPhone or iPAD. With MALL, students are

able to access language learning materials and to

communicate with their teachers and peers at any time

anywhere [9].

3.1 Current Limitations of Mobile

Technology

Every technology has some limitations and weaknesses,

and mobile devices are no exception. They have shown

some usability problems. Kukulska-Hulme summarized

these problems as follows: 1) physical attributes of

mobile devices, such as small screen size, heavy

weight, inadequate memory, and short battery life; (2)

content and software application limitations, including a

lack of built-in functions, the difficulty of adding

applications, challenges in learning how to work with a

mobile device, and differences between applications

and circumstances of use; (3) network speed and

reliability; and (4) physical environment issues such as

problems with using the device outdoors, excessive

screen brightness, concerns about personal security,

possible radiation exposure from devices using radio

frequencies, the need for rain covers in rainy or humid

conditions, and so on. It is important to consider these

issues when using mobile devices and designing the

learning environment [15]. We expect mobile producers

would take care of these problems in the near future.

3.2 How To Overcome Any Limitations in

the Spread of Distance Learning

As we discussed in Section 2 some countries could be

concerned if they buy study materials from overseas it

would have an adverse effect on their cultures. But

these countries can always sit with the people preparing

those courses overseas and guide them how to design

the materials which would not have any adverse effect

in their countries cultures or societal setup. The

pedagogical considerations also could be settled this

way. Even in a particular country with multi-cultural

setup there could be multiple versions of the study

materials available. It would be upon the governments

of those developing to formulate a policy on distance

education according to the requirements and existing

setups and affordability. There should be schools set up

on rural areas with at least couple of computers in each

campus where students can watch and learn geography,

mathematics and so on based on multimedia approach

of text, audio, video and graphics. At the post school

level there could be some small software centres where

some IT trained persons could be deployed to help and

guide people going for distance learning through mobile

technology. This would solve the problem of learning

being isolated and would lower down the number of

dropouts.

Looking at how rapidly new mobile products are

improving, with advanced functions and numerous

applications and accessories available these days, the

technical limitations of mobile devices may be a

temporary concern. Also, the use of mobile

technologies in education is moving from small-scale

and short-term trials or pilots into sustained and

blended development projects [16].

Most developing countries do not have an extensive

infrastructure to support M-Learning, and this makes it

more complicated to implement it in these countries.

However, this developing world still maintain similar

needs for M-Learning as developed countries do. Ken

Masters (2004) proposes that the lack of infrastructure

should be no reason for developing countries to delay

implementing M-Learning. It is essential, that if the

need exists, institutions within these developing

countries should establish and commence mobile

learning efforts as soon as possible [21].

Users in developing countries have the same need for

M-Learning to be mobile, accessible and affordable, as

those in developed countries do. The very significance

of M-Learning is its ability to make learning mobile,

away from the classroom or workplace. These Wireless

and mobile technologies enable learning opportunities

to learners who do not have direct access to learning in

these places. Many learners in developing countries

have trouble accessing the internet, or experience

difficulty in affording technology that enables learning

in an E-Learning environment. Mobile devices are a

cheaper alternative compared to traditional E-Learning

equipment such as PC’s and Laptops [22].

However, to fully utilize this potential it is imperative

to explore the factors that determine mobile

telecommunications development in the developing

world[23]. Delivering mobile services on open

hardware and open software not just practically make

sense but can also lower the cost and thus increase the

possibility of offering sustainable services in the

future.[24] While the benefits of open-source software

are proven, it is important to conduct a broader study to

investigate the potential role of relatively new copyleft

approach for custom hardware, as supporting mobile

learners in their own socio-cultural contexts of

developing countries is a significant challenge[25].

Mobile learning cannot be imparted to a learner until he

or she attains certain qualifications and age. Also

socio-economic situations of the society concerned

would dictate the growth of mobile technology as we

know in many societies young population have to enter

the work force at a very early age. This shows

socio-economic development is very important for

providing distance learning in developing societies.

Also there could be problems of deploying qualified

teachers in rural setup of developing countries. But this

could be overcome if properly trained teachers are

deployed to make the curriculum and to monitor and

support distance learning from the resource centre setup

386 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

in urban areas. They could even make occasional visit

to rural areas for providing face to face learning

support.

4 Conclusion

In this paper we studied the problems of infrastructures

in imparting distance learning through multimedia in

developing countries. We suggested guidelines which

the developing countries can adapt to spread education

through distance learning in their countries using

mobile technology a viable and affordable media

through which distance learning could be imparted to

billions of people in an efficient way. We presented

some examples of achievements in this field in this

paper where we can use telephone, photography, audio,

video, internet, eBook, animations and so on in mobile

and deliver effective distance education in developing

countries. More research needs to be carried out to

improve the infrastructures required for spreading

distance learning among billions in developing

countries through mobile technology and gearing up

multimedia technology to be easily transported to those

locations.

5 References

[1] K Passerint and M J Granger. “Developmental

Model for Distance Learning Using the Internet,

Computer & Education”; 34, (1), (2000)

[2] H Rahman. “Interactive Multimedia

Technologies for Distance Education in Developing

Countries - Introduction, Background, Main focus,

Future trends, Conclusion”;

http://encyclopedia.jrank.org/articles/pages/6637/Intera

ctive-Multimedia-Technologies-for-Distance-Education

-in-Developing-Countries.html, (2000)

[3] R Davison, D Vogel, R Harris, N Jones.

“Technology Leapfrogging in Developing Countries –

An Inevitable Luxury?”; Journal of Information

Systems in Developing Countries (2000)

[4] S Ruth, J Giri. “The Distance Learning Playing

Field: Do We Need Different Hash Marks?”;

http://technologysource.org/article/distance_learning_pl

aying_field/ (2001)

[5] S Nhoybouakong, M L H Ng, R Lafond,

http://www.panasia.org.sg/hnews/la/la01i001.htm,(1999

)

[6] “Using Mobile Technology for Learner Support in

Open chooling”;www.col.org/sitecollectiondocuments/

[7] M S Alam, Y M Islam. “Virtual Interactive

Classroom (VIC) using Mobile Technology at the

Bangladesh Open University (BOU)”;

wikieducator.org/images/4/45/PID_563.pdf

[8] A Dye, T Rekkedal. “.Enhancing the flexibility of

distance education through mobile learning” The

European Consortium for the learning Organisation.

ECLO – 15th International conference, Budapest, May

15-16 (2008)

[9] Mobile Assisted Language Learning,

en.wikipedia.org/wiki/Mobile_Assisted

[10] R. E. Mayer. “Multimedia learning”; Cambridge.

Cambridge University Press (2001)

[11] “Implications of Mobile Learning in Distance

Education for Operational Activities”;

http://wikieducator.org/images/c/c6/PID_624.pdf

[12] M. Yousuf. “Effectiveness of Mobile Learning in

Distance Education. Turkish Online Journal of Distance

Education-TOJDE”; October 2007 ISSN 1302-6488, 8,

(4), Article 9, (Oct 2007)

http://www.google.co.in/search?hl=en&q=%22Effectiv

eness+of+Mobile+Learning+in+Distance+Education%

22&meta= Retrieved on 31.3.2008, (2006)

[13] E Georgieva. “A Comparison Analysis of

Mobile Learning Systems. Paper presented at

International Conference on Computer Systems and

Technologies- CompSysTech; ” (2006),

http://ecet.ecs.ru.acad.bg/cst06/Docs/cp/sIV/IV.17.pdf

Retrieved on 31.3.2008

[14] G N Vavoula. “D4.4: A study of mobile

learning practices. MOBIlearn project deliverable. The

MOBIlearn project website”;

http://www.mobilearn.org/download/results/public_deli

verables/MOBIlearn_D4.4_Final.pdf (2005)

[15] A Kukulska-Hulme. “Mobile usability in

educational context: What have we learnt?”;

International Review of Research in Open and Distance

Learning, 8(2), 1-16 (2007)

[16] J Traxler. “Defining, discussing, and evaluating

mobile learning: The moving finger writes and having

write...”; International Review of Research in Open and

Distance Learning, 8(2), 1-12 (2007)

[17] M Potashnik, J Capper. “Distance Education:

Growth and Diversity”;

https://tojde.anadolu.edu.tr/fdmarchnws.htm (1998)

[18] H M Elnour. “Distance Learning in Sudan – The

Potential and Challenges”;

//www.appropriatetech.net/files/Distance_Learning_in_

Sudan.pdf (Year Unknown)

[19] “Position statement on e-Infrastructures for

Distance Learning: Opportunities and Challenges for

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 387

http://encyclopedia.jrank.org/articles/pages/6637/Interactive-Multimedia-Technologies-for-Distance-Education-in-Developing-Countries.html
http://encyclopedia.jrank.org/articles/pages/6637/Interactive-Multimedia-Technologies-for-Distance-Education-in-Developing-Countries.html
http://encyclopedia.jrank.org/articles/pages/6637/Interactive-Multimedia-Technologies-for-Distance-Education-in-Developing-Countries.html
http://technologysource.org/article/distance_learning_playing_field/
http://technologysource.org/article/distance_learning_playing_field/
http://www.panasia.org.sg/hnews/la/la01i001.htm,(1999)
http://www.panasia.org.sg/hnews/la/la01i001.htm,(1999)
http://www.col.org/sitecollectiondocuments/
http://wikieducator.org/images/c/c6/PID_624.pdf
http://ecet.ecs.ru.acad.bg/cst06/Docs/cp/sIV/IV.17.pdf
https://tojde.anadolu.edu.tr/fdmarchnws.htm

the Indian Society”;

www.beliefproject.org/.../indian.../Indian%20Position%

20Statement

[20] “Strategy for implementing a Distance Learning

(DL) process in UNCTAD for strengthening training

capacities in international trade in developing

countries”; United Nations Conference on Trade and

Development Geneva (2004)

[21] “Offline mobile learning From Wikipedia - the

free encyclopedia”;

http://en.wikipedia.org/wiki/Offline_mobile_learning

[22]. Template:M-learning: Developing Countries

[23] G Ping, R Adnan. “Analysing the Mobile

Telecommunications Market in a Developing Country:

A Socio-Technical Perspective on Pakistan, Centre for

Development Informatics”; Institute for development

policy and management, SED. (2009)

[24] S Shrestha, J Moore, J Abdelnour-Nocera.

“Offline Mobile Learning for ICT4D", IADIS

International Conference Mobile Learning 2010,

(March 2010)

[25] S Shrestha, J. Moore, J. Abdelnour-Nocera.

"Low-cost hardware for ICT4D: what's right and what's

left?"; IIEEE Multidisciplinary Engineering Education

Magazine, 6, 1 (2011).

388 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

http://www.beliefproject.org/.../indian.../Indian%20Position%20Statement
http://www.beliefproject.org/.../indian.../Indian%20Position%20Statement
http://en.wikipedia.org/wiki/Offline_mobile_learning

A Multi-attribute Decision Making Approach for
Resource Allocation in Software Projects

A. Ejnioui1, C. E. Otero1, and L. D. Otero2

1Information Technology, University of South Florida Lakeland, Lakeland, Florida, USA
2Engineering Systems, Florida Institute of Technology, Melbourne, Florida, USA

Abstract–For most software companies, the production of
reliable software within the planned time schedule is of
paramount importance. Many times, inadequate resource
allocation can lead to high costs and low quality in software
products. Hence, it is critical to put in place well-planned
processes for personnel assignment that take into
consideration the skill sets of the personnel with the objective
of reducing costs and training time as well as increasing
product quality. To this end, this paper presents a novel
methodology that considers multiple project-specific skills for
assigning human resources to software projects. This
methodology takes into account the existing capabilities of
personnel to determine the best fit based on the required skills
for the task. Because personnel selection is essentially an
imprecise task, this methodology uses fuzzy sets to represent
the problem of personnel assignment as a fuzzy multi-attribute
decision problem. This problem is solved by ranking
personnel candidates based on the expected value operator of
fuzzy numbers. A sample case study is used to show the
methodology’s capabilities.

Keywords: : Expected Value Operator, Fuzzy Sets, Software
Engineering, Resource Allocation, Multi-Attribute Decision
Problem.

1 Introduction
Task assignment decisions in software development
environments are critical because they influence the
performance of workers and quality of products [1]. As
documented in [2], the U.S. Department of Defense (DOD)
spent nearly 8 billion dollars in 2004 to rework software.
This large financial figure serves as evidence that quality-
related issues continue to be a major struggle for software
companies. Furthermore, “evidence reveals that the failure of
software development projects is often a result of inadequate
human resource project planning” [3]. In [4], Linberg stated
that only about 16.2% of software projects are on time and
within budget. A major contributor to this problem is the
inefficient allocation of resources that may result in schedule
overruns, decreased customer satisfaction, decreased
employee morale, reduced product quality, and negative
market reputation. The inevitable consequence is a decrease
in potential profit for companies.

Despite all the research and advances in the field, software
development is still very challenging due to its unpredictable
nature. The fast pace at which new technologies and
techniques are being developed today to improve the design
and development of products increases the demand for
specialized individual skills in the workforce. Most of the
time, candidates with the required skills to work on specific
tasks are not available, and decision makers are forced to
assign resources to tasks based on subjective measures [1].
Therefore, further studies of the processes and techniques for
personnel management are necessary to provide better
solutions in terms of quality, cost, and schedule. Often,
assigning resources is not certain and can be very fuzzy.

This paper proposes a fuzzy multi-attribute decision making
approach for allocating human resources to task assignment
in software engineering. The approach uses a fuzzy function
ranking to provide a unified metric representative of the
suitability between the complete set of skills available from
candidates and skills required for tasks [5]. As such, decision
makers can quantitatively assign resources to tasks even when
the most desirable skills are not available from the existing
workforce. The approach is extensible to consider a wide
variety of project specific capabilities, such as years of
experience, level of perceived expertise on a particular
language, operating system, domain knowledge, etc.
Moreover, managers can use this methodology as a tool to
increase the efficiency of resource allocation.

This paper is divided into seven sections. Section 2 describes
the literature related to resource allocation in software
projects. Section 3 briefly describes the proposed
methodology for personnel assignment. Section 4 presents a
detailed coverage of ranking of fuzzy variables using the
expected value operator. Section 5 introduces concepts
related to how credibility spaces are used to compute the
expected values of fuzzy numbers. Section 6 presents results
of the approach on a small case study. Finally, section 7
concludes this paper.

2 Related Work
In recent literature regarding the assignment of software
developers to tasks, Acuña et al. stated that software
managers typically make assignments based on “their
experience, heuristic knowledge, subjective perception, and

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 389

instinct” [1]. In [6], Duggan et al. developed a multi-
objective optimization model for software task allocation
based on genetic algorithms. The competencies of developers
were modeled using a categorical variable with five levels.
Each competency level was associated with an expected
productivity per day, and an expected number of defects per
unit of productivity. Other studies have developed
procedures for allocating personnel to software tasks based on
the assessment of behavioral competencies [1, 7].

In [3], the authors proposed selecting resources using the
CRD method and the Taguchi’s parameter design approach.
The CRD was used because it focused on resource scheduling
rather than activity scheduling to represent human-resource
workflow and tasks’ precedence. The Taguchi’s parameter
design was used to obtain a scheme that would optimize the
selection of engineers for tasks under dynamic and stochastic
conditions. The Taguchi’s parameter design approach is
based on the concept of target value [8]; that is, any
deviations from the target value will result in additional costs.
Deviations are attributed to controllable and uncontrollable
factors. The aim is to achieve the optimal levels of the
controllable factors while minimizing the variation caused by
the nuisance (uncontrollable) factors [9].

In [3], the skill levels of resources were estimated as an
average number of software lines of code (SLOC) per day.
The authors commented on the importance of including in
their model stochastic factors affecting the selection of
resources. Specifically, emphasis was placed on the
stochastic behavior of tasks complexities, since they are very
difficult to measure or even estimate, causing most of the
variability of calculated project completion times.

Other methodologies used to evaluate staffing alternatives
include the Analytical Hierarchy Process (AHP) and linear
programming (LP). In [10], Ho-Leung used AHP to tackle
the problem of human resource substitution, considering
several organizational, client, and application attributes.
Even though the proposed model did not consider the
relationship between known and required skills, the author
commented about the importance of developing faster
methods for human resource substitution. In [11], the authors
proposed an LP assignment model to match resources to tasks
when optimum skill sets are not available. Their model takes
into account existing capabilities of candidates, required
levels of expertise, and priorities of required skills for the
task.

While the approaches described above use parameters that are
quantified as crisp values, most often qualitative criteria
cannot be precisely defined particularly when performing
capability assessment in skill-based environments. Because
these criteria tend to be imprecise, they have been modeled
using fuzzy sets. One of the earliest attempt in this direction
used fuzzy expected values to represent the capability of an
employee [12]. Others addressed this problem by modeling
competency levels using fuzzy variables [13-15]. In addition,

fuzzy relationships have been integrated in expert systems to
match employees with specific tasks [16, 17].

From the reviewed literature, it is evident that there is much
room for improved personnel assignment methodologies in
software projects. The literature shows that the most
common measure of the ability of a software developer is an
estimated value of SLOC per day. Furthermore, this
estimated SLOC value is usually a function of developers’
experience level. To the best of our knowledge, a readily
available methodology that considers complete set of
capabilities of candidates, levels of skills required, and
priorities of required skills for tasks is nonexistent in the
software development literature.

3 Proposed Approach
To properly make resource allocation decisions in software
engineering projects, decision-makers must follow a decision-
making process that takes into consideration the fundamental
efficiency metrics present in specific projects. The creation
of such process is achieved as follows. First, experienced
project leads must identify the particular skill-set required for
a particular project. Then, from the pool of available
candidates, each candidate is assessed using a small set of
skill levels based on previous performance, educational
background, or combination of both. In the proposed
approach, we suggest five skill levels: None, Novice,
Proficient, Advanced, and Expert. After each candidate is
evaluated in all required skills, these skill levels are used as
input to the proposed fuzzy multi-attribute decision problem
to compute the expected value of a weighted fuzzy function.

Figure 1. Proposed approach.

Finally, the candidates with the highest expected value of this
function get selected for the software project.

l m r l m r l m r l m r l m r
1 6 8 10 4 6 8 0 2 4 8 10 12 2 4 6
2 2 4 6 2 4 6 6 8 10 4 6 8 2 4 6
3 6 8 10 8 10 12 2 4 6 6 8 10 6 8 10
4 0 2 4 8 10 12 8 10 12 0 2 4 8 10 12
5 0 2 4 4 6 8 6 8 10 0 2 4 6 8 10
6 6 8 10 0 2 4 2 4 6 2 4 6 4 6 8
7 6 8 10 2 4 6 0 2 4 6 8 10 0 2 4
8 2 4 6 4 6 8 2 4 6 2 4 6 6 8 10
9 2 4 6 8 10 12 8 10 12 8 10 12 2 4 6
10 8 10 12 2 4 6 8 10 12 6 8 10 4 6 8

Weights 6 8 10 8 10 12 0 2 4 6 8 10 0 2 4

CostCandidate C# Windows Web Satcom

Candidate
1
2
3
4
5
6
7
8
9
10

Ranking
48.41%
33.59%
52.94%
35.34%
26.15%
28.01%
40.16%
30.79%
52.04%
44.51%

Candidate
Pool

Skill
Assessment

Weighted Skill
Set

!! = !14 !!"!! +
!

!!!
2! !!"!! + ! !!"!!

!

!!!

!

!!!
!!!!(11)

Candiate
Ranking

Proposed
Methodology

390 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

4 Preliminaries
This section introduces basic concepts in credibility theory
that are critical in developing the approach proposed in this
paper. Most of these concepts have been published in [5, 18,
19].
4.1 Fuzzy Variables and Credibility

Let Θ be a nonempty set and P(Θ) its power set. Each
element in P(Θ) is called an event. The credibility of an event
A, denoted by Cr{A}, is a number that represents the
credibility that A will occur.

Definition 1 Let Θ be a nonempty set, P(Θ) the power set of
Θ, and Cr a credibility measure. Then the triplet (Θ,P(Θ),Cr)
is called a credibility space.

Definition 2 A fuzzy variable is defined as a (measurable)
function from a credibility space (Θ, P(Θ), Cr) to the set of
real numbers.

Theorem 1 (Credibility Inversion) Let ξ b a fuzzy variable
with membership function µ. Then for any set B of real
numbers, we have

Cr 𝜉 ∈ 𝐵 = 12 sup
! ∈ !

𝜇 𝑥 + 1 − sup
! ∈ !!

𝜇 𝑥 (1)

where Bc is the complement set of B. The proof of this
theorem can be found in [18, 19].
4.2 Expected Value

Although there are many ways to define an expected value
operator, we choose to focus on the most general definition of
this operator [5, 18-21]. This definition is applicable to both
continuous and discrete fuzzy variables.

Definition 3 Let ξ be a fuzzy variable and θ a real number.
Then the expected value of ξ is defined as

𝐸 𝜉 = Cr 𝜉 ≥ 𝜃 𝑑𝜃 − Cr 𝜉 ≤ 𝜃 𝑑𝜃 (2)
!

!!

!!

!

provided that at least one of the two integrals is finite.

Definition 4 Let A = (l, m, r) be a triangular fuzzy number
characterized by its grade membership function as:

𝜇! 𝑥 =
1 − !!!

!
, 𝑚 − 𝑙 ≤ 𝑥 ≤ 𝑚

1 − !!!
!

,𝑚 ≤ 𝑥 ≤ 𝑚 + 𝑟
0, otherwise

 (3).

The values l, m, and r are respectively the left, middle and
right spreads of A.

Theorem 2 Based on Definition 3, the expected value of a
triangular fuzzy number A = (l, m, r) can be calculated as
follows:

𝐸 𝐴 = Cr 𝜉 ≥ 𝜃 𝑑𝑟
!!

!

− Cr 𝜉 ≤ 𝜃 𝑑𝑟 = 𝑚 + 𝑟 − 𝑙4 4 .
!

!!

The proof of this theorem can be found in [22].

Theorem 3 Let ξ and η be independent fuzzy variables with
finite expected values. Then for any numbers a and b, we
have

𝐸 𝑎𝜉 + 𝑏𝜂 = 𝑎𝐸 𝜉 + 𝑏𝐸 𝜂 (5).
This property is called the linearity of expected value operator
of fuzzy variables. The proof of this theorem can be found in
[18].
4.3 Ranking of Fuzzy Variables

Contrary to the set of real numbers, fuzzy variables do not
have a natural order in a fuzzy world. As such, several
approaches were devised to rank fuzzy variables [23]. One
approach is based on the expected value operator of a fuzzy
variable.

Definition 4 (Expected Value Criterion) Let ξ and η be fuzzy
variables with finite expected values. We say ξ > η if and
only if E[ξ] > E[η] where E is the expected value operator of
a fuzzy variable.

This definition can be readily applied to triangular fuzzy
numbers.

5 Expected Value Method
This section formulates the problem of resource allocation in
software projects as a fuzzy multi-attribute decision problem.
Then, it proposes a solution to this problem based on the
expected value of fuzzy numbers in the problem formulation.
5.1 Problem Formulation

In making decision to allocate resources in software projects,
we assume a set of candidates C = {C1, C2, …, Cm} and a set
of skills required to complete a project S = {S1, S2, …, Sn}.
We assume that the evaluation of each candidate with regard
to each skill has been completed by a project manager
resulting in a fuzzy decision matrix 𝐴 = [𝜉!"]!×! where each
fuzzy number 𝜉!" represents the skill level of candidate Ci in
skill Sj. In fact, each skill can be viewed as a fuzzy variable
characterized by its membership functions based on a set of
linguistic concepts defining the level of expertise in each
skill. We also assume a set of weights W = {w1, w2, …, wm}
that represents the weights of the skills in S. This formulation
is known as the fuzzy multi-attribute decision problem
(FMADM) where the skill set S represents the attributes in
the decision matrix A.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 391

5.2 Matrix Normalization

In most FMADM problems expressed in matrix form,
normalization is necessary in order to transform the matrix
and weight vector numbers to comparable values. In our
case, normalization is based on the expected value operator
[5]. For each fuzzy number ξij in A, transform this number as
follows:

If ξij is a benefit:

𝜂!" =
𝜉!"

𝐸 𝜉!"
!!

!!!

 6

for i = 1, 2, …, n and j = 1, 2, …, m.

If ξij is a cost:

𝜂!" =
𝑝! − 𝜉!"

𝐸 𝜉!"
!!

!!!

 (7)

for i = 1, 2, …, n, j = 1, 2, …, m, and
𝑝! = max! !! !! sup 𝑥!" | 𝜇!" 𝑥!" > 0 . Note that both
expressions use in their denominators the expected values of
the fuzzy variables of each column or attribute. Also, note
that the µi are the membership functions of the fuzzy
variables representing the attributes. The obtained
normalized matrix is 𝐵 = 𝜂!" !×!. In addition to the
decision matrix, the set W can be normalized as follows:

𝜔! =
𝑤!
𝐸 𝑤!!

!!!
 (8)

for j = 1, 2, …, n. The final normalized weight vector is
𝜔 = 𝜔!,𝜔!,… ,𝜔! .
5.3 Expected Value Approach

Given a normalized matrix of fuzzy numbers and a
normalized weight vector, a simple additive weighting
approach can be used to compute the following m fuzzy
variables as follows [5]:

𝑓! = 𝜔!

!

!!!
𝜂!" (9)

for i = 1, 2, …, m. Each fuzzy variable fi can be viewed as the
real-value function associated with each candidate. A utility
value function E[fi], i = 1, 2, …, m, based on the expected
value operator can be devised to rank the m fuzzy variables.
Assuming that the fuzzy variables have triangular
membership functions, this utility E[fi] can be computed using
equation (4). In this case, the real-valued function f can be
computed as follows if we assume 𝜂!" = (𝑎!" , 𝑏!" , 𝑐!") and
𝜔! = (𝑑! , 𝑒! ,𝑔!):

𝑓! = 𝑎!"𝑑! ,
!

!!!
 𝑏!"𝑒! , 𝑐!"𝑔!

!

!!!

!

!!!
 (10)

for i = 1, 2, …, m. In this case, the utility function of fi can be
computed as:

𝐸 𝑓! = 14 𝑎!"𝑑! +
!

!!!
2 𝑏!"𝑒! + 𝑐!"𝑔!

!

!!!

!

!!!
 (11)

for i = 1, 2, …, m.

6 Case Study
This section presents results of a resource allocation case
study using the proposed approach. The case study assumes a
scenario where 10 candidates are available. The identified
required skill set involves knowledge of the C# language,
Windows platform, web programming, and knowledge of the
satellite communications domain. In addition, cost is
identified as a decision making unit. Skills are modeled using
the fuzzy sets shown in Figure 2 while weights are modeled
using the fuzzy sets shown in Figure 3. The first set shows
five skill levels: None, Novice, Proficient, Advanced, and
Expert. On the other hand, the second set shows five levels
of importance: Not Important, Somewhat Important,
Moderately Important, Important, and Very Important. Costs
are modeled in five levels of severity similar to the levels
used in the weights, but their membership functions are
identical to the ones shown in Figure 2. Using synthetic data,
the skill assessment matrix is presented in tabular form as
shown in Table 1. The weights are shown in the bottom of
Table 1.

Figure 1. Fuzzy set of skill levels.

Figure 2. Fuzzy sets of weights.

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

0" 0.5" 1" 1.5" 2" 2.5" 3" 3.5" 4" 4.5" 5"

None" Novice" Proficient" Advanced" Expert"

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

0" 1" 2" 3" 4" 5" 6" 7" 8" 9" 10" 11" 12"

Not"Important" Somewhat"Important" Moderately"Important" Important"" Very"Important"

392 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Table 1. Skill assessment matrix for the case study.

Table 2. Normalized matrix.

The columns l, m, and r represent the left, middle and right
values of each fuzzy number representing a skill level in the
table. Using equations (6)-(8), the assessment matrix is
normalized as shown in Table 2. Normalization is based on
the expected values of the triangular numbers in the matrix as
equation (4) shows. This table is used to compute the ranking
of the candidates based on equation (11). As seen from this
particular scenario, candidates 8, 7, and 3 are the top three
candidates that fit the required skills. These candidates
display rankings of 52.83%, 50.74%, and 44.87% in terms of
skills for the project at hand. In fact, candidate 8 displays
expert skills in C# and Windows, as well as proficient skills
in satellite communication.

Table 3. Candidate ranking.

7 Conclusion
The research presented in this paper develops a systematic
approach for planning resource allocation in software projects
based on multiple criteria. Specifically, it presents a
methodology based on the expected value operator for
ranking fuzzy numbers. This concept is used to rank fuzzy
numbers representing skill levels for each candidate. Through
a small case study, the approach is proven successful in
providing a way for analyzing resource assignment for
application-specific projects.

There are several important contributions from this research.
First, the approach is simple and readily available for
implementation using a simple spreadsheet. This can
promote usage in practical scenarios, where highly complex
methodologies for resource allocations are impractical due to
schedule and budget constraints. Another important
contribution from the approach presented in this research is
the ability to consider numerous decision-making factors in
the decision-making process. For example, beside the skills
presented in the case study, the approach can be easily
extended to incorporate project-specific factors, such as
expected availability, level of clearances, etc. Finally, the
results provided by this approach can be used by program
managers to tailor scheduling goals to make them more
realistic. Depending on the overall skill rankings of all
candidates in a team, program managers can determine if
either more resources need to be allocated for the task, or

l m r l m r l m r l m r l m r
1 0 0 1 2.5 3.5 4.5 0 0 1 1.5 2.5 3.5 0 1 2
2 2.5 3.5 4.5 0 0 1 0 0 1 2.5 3.5 4.5 0 1 2
3 2.5 3.5 4.5 0 1 2 2.5 3.5 4.5 3.5 5 5 0 0 1
4 0 0 1 3.5 5 5 1.5 2.5 3.5 1.5 2.5 3.5 1.5 2.5 3.5
5 2.5 3.5 4.5 0 0 1 2.5 3.5 4.5 1.5 2.5 3.5 1.5 2.5 3.5
6 0 0 1 3.5 5 5 2.5 3.5 4.5 0 1 2 2.5 3.5 4.5
7 1.5 2.5 3.5 2.5 3.5 4.5 0 1 2 3.5 5 5 0 1 2
8 3.5 5 5 3.5 5 5 0 1 2 1.5 2.5 3.5 2.5 3.5 4.5
9 0 0 1 0 0 1 0 0 1 1.5 2.5 3.5 1.5 2.5 3.5
10 2.5 3.5 4.5 1.5 2.5 3.5 0 1 2 0 1 2 2.5 3.5 4.5

Weights 7 9 11 7 9 11 0 0 2 4 6 8 1 3 5

CostCandidate C# Windows Web Satcom

l m r l m r l m r l m r l m r
1 0 0 0.099 0.337 0.471 0.606 0 0 0.196 0.218 0.363 0.508 0.618 0.441 0.265
2 0.247 0.346 0.445 0 0 0.135 0 0 0.196 0.363 0.508 0.653 0.618 0.441 0.265
3 0.247 0.346 0.445 0 0.135 0.269 0.489 0.685 0.88 0.508 0.725 0.725 0.618 0.618 0.441
4 0 0 0.099 0.471 0.673 0.673 0.293 0.489 0.685 0.218 0.363 0.508 0.353 0.176 0
5 0.247 0.346 0.445 0 0 0.135 0.489 0.685 0.88 0.218 0.363 0.508 0.353 0.176 0
6 0 0 0.099 0.471 0.673 0.673 0.489 0.685 0.88 0 0.145 0.29 0.176 0 0.176
7 0.148 0.247 0.346 0.337 0.471 0.606 0 0.196 0.391 0.508 0.725 0.725 0.618 0.441 0.265
8 0.346 0.495 0.495 0.471 0.673 0.673 0 0.196 0.391 0.218 0.363 0.508 0.176 0 0.176
9 0 0 0.099 0 0 0.135 0 0 0.196 0.218 0.363 0.508 0.353 0.176 0
10 0.247 0.346 0.445 0.202 0.337 0.471 0 0.196 0.391 0 0.145 0.29 0.176 0 0.176

Weights 0.292 0.375 0.458 0.292 0.375 0.458 0 0 0.083 0.167 0.25 0.333 0.042 0.125 0.208

Candidate C# Windows Web Satcom Cost

Candidate
1
2
3
4
5
6
7
8
9
10

Ranking
34.22%
33.43%
44.87%
37.47%
27.92%
32.07%
50.74%
52.83%
14.23%
32.73%

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 393

scheduling requirements need to be relaxed to complete the
project.

8 References
[1] S. T. Acuña, N. Juristo amd A. Moreno, “Emphasizing human

capabilities in software development,” IEEE Software, vol. 23,
no. 2, pp. 94–101, March 2006.

[2] U.S. General Accounting Office (GAO), “Defense Acquisitions:
Stronger Management Practices Are Needed to Improve DOD’s
Software Intensive Weapon Acquisitions,” Document number
GAO-04-393, 2004.

[3] H. Tsai, H. Moskowitz, H. Lee, “Human resource selection for
software development projects using Taguchi’s parameter
design,” European Journal of Operational Research, vol. 151,
no. 1, pp. 167-180, November 2003.

[4] K. R. Linberg, “Software developer perceptions about software
project failure: a case study,” The Journal of Systems and
Software, vol. 49, no. 2-3, pp. 177-192, December 1999.

[5] Z. Ling, “Expected value method for fuzzy multiple attribute
decision making,” Journal of Tsinghua and Technology, vol. 11.
no. 1, pp. 102-106, February 2006..

[6] J. Duggan, J. Byrne and G. Lyons, “A task allocation optimizer
for software construction,” IEEE Software, vol. 21, no. 3, pp. 76
– 82, May-June 2004.

[7] S. T. Acuña, N. Juristo, “Assigning people to roles in software
projects,” Software-Practice and Experience, vol. 34, no. 7, pp.
675 – 696, June 2004.

[8] R. K. Roy, Design of Experiments Using the Taguchi Approach,
John Wiley & Sons, Inc., 2001.

[9] P. Ross, Taguchi Techniques for Quality Engineering, McGraw-
Hill, 1996.

[10] R. Ho-Leung, “Using Analytic Hierarchy Process (AHP)
Method to Prioritise Human Resources in Substitution
Problem,” International Journal of the Computer, The Internet
and Management, vol. 9, no. 1, 2001.

[11] L. D. Otero, G. Centeno, A. Ruiz-Torres, and C. E. Otero, “A
Systematic Approach for Resource Allocation in Software
Projects,” Computers and Industrial Engineering, vol. 56, no. 4,
pp. 1333 – 1339, May 2009.

[12] S. Petrovic-Lazarevic, “Personnel selection fuzzy model,”
International Transactions on Operation Research, vol. 8, no. 1,
pp. 89-105, January 2001.

[13] A. Golec and E. Kahya, “A fuzzy model for competency-based
employee evaluation and selection,” Computers & Industrial
Engineering, vol. 52, no. 1, pp. 143-161, February 2007.

[14] S. B. Yaakob and S. Kawata, “Workers’ placement in an
industrial environment,” Fuzzy Sets and Systems, vol. 106, no.
3, pp. 289-297, September 1999.

[15] G. S. Liang and M. J. Wang, “Personnel placement in a fuzzy
environment,” Computers and Operation Research, vol. 19, no.
2, pp. 107-121, February 1992.

[16] A. Drigas, S. Kouremenos, S. Vrettos, J. Vrettaros, and D.
Kouremenos, “An expert system for job matching of the
unemployed,” Expert Systems with Applications, vol. 26, no. 2,
pp. 217-224, February 2004.

[17] L. D. Otero and C. E. Otero, “A fuzzy expert system
architecture for capability assessments in skill-based
environments,” Expert Systems with Applications, vol. 39, no. 1,
pp. 654-662, January 2012.

[18] B. Liu, “A survey of credibility theory,” Fuzzy Optimization
and Decision Making, vol. 5, no. 4, pp. 387-408, October 2006.

[19] B. Liu and Y. K. Liu, “Expected value of fuzzy variable and
fuzzy expected value models,” IEEE Transactions on Fuzzy
Systems, vol. 10, no. 4, pp. 445-450, August 2002.

[20] B. Liu, Theory and practice of uncertain programming,
Physica-Verlag Heidelberg, 2003.

[21] Y.-K. Liu and B. Liu, “Expected value operator of random
fuzzy variable and random fuzzy expected value models,”
International Journal of Uncertain, Fuzziness and Knowledge-
Based Systems, vol. 10, no. 4, pp. 195-215, August 2002.

[22] Y. Chen, R. Y. K. Fung and J. Tang, “Fuzzy expected value
modeling approach for determining target values of engineering
characteristics in QFD,” International Journal of Production
Research, vol. 43, no. 17, pp. 3583-3604, September 2005.

[23] A. Gonzalez, “A study of the ranking function approach through
mean values,” Fuzzy Sets and Systems, vol. 35, no. 1, pp. 29-41,
March 1990.

394 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Measuring the Impact of Security and Reliable Messaging
on the Transport Layer for Medical Messaging

Applications

H. Keith Edwards1, Justin Fyfe2, Duane Bender2, and Suseelan Vigneswaran3
1Department of Computer Science, University of Hawaii – Hilo, Hilo, Hawaii, United States (hedwards@hawaii.edu)
2Mohawk Applied Research Centre, Mohawk College, Hamilton, Ontario, Canada (Justin.fyfe1@mohawkcollege.ca,

duane.bender@mohawkcollege.ca)
3Department Of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario, Canada

(s3vignes@uwaterloo.ca)

Abstract - In the realm of medical informatics, having secure
and reliable messaging is essential in order for medical
information systems to gain acceptance in clinical practice. In
addition to these system characteristics, medical practitioners
work in a time sensitive context and expect that implemented
systems will be able to provide the performance necessary to
deliver information in as expeditious a manner as possible.
The research in this paper looks at the overhead of enabling
security (the ws specification) and reliable messaging on the
transport layer for medical messaging systems. Our results
show that the factor of reliable messaging along with the
interaction of the number of users and message type play
statistically significant roles in the variance of the response
time. Furthermore, there is a tendency toward lower response
times (11/12 cases) and lower standard deviations (10/12
cases) for experiments where security and reliable messaging
were both disabled compared to when both factors were
enabled. However, this latter finding is not always true at a
statistically significant level (7/12 cases) given the noise in the
experimental environment.

Keywords: Security, Electronic Medical Records,
Performance Analysis.

1 Introduction
 Security and reliable messaging are important to the
transmission of electronic medical records in the context of
the modern health organization. This paper looks to
measure the impact of reliable messaging and security on the
transport layer of medical information systems. The rest of
this paper is organized as follows. Section 2 presents the
related work in the field. Section 3 provides an overview of
the system architecture and the experimental design for this
research while section 4 provides the results of the
experiment and a discussion of their impact. Section 5
presents the conclusions of this work. Finally, section 6
presents ideas for future work.

2 Related Work
 There are three main areas of inquiry related to the
research discussed in this paper. First, there is the area of
standards for electronic health records, which includes the
formatting of these records as well as techniques for their
transmittal and retrieval. A second important area in the
literature are societal factors and concerns, which relate
mainly to issues of privacy and misuse whilst examining how
appropriate security and policy can help to mitigate these
concerns. The final area of related research looks at
implementations of electronic health records and examines
aspects such as their organizational impact (e.g. changes in
workflow) as well as their efficiency.
2.1 Electronic Health Records: Standards,

Formatting and Messaging
 The first area of related research concerns the different
standards available in the domain of electronic health records
and ways to format electronic health records. One of the most
popular standards in the arena of eHealth is HL7 v3.
According to its creators, HL7 v3 is “the world’s leading
standard for the electronic interchange of healthcare
information.” [9]. Amongst the key concepts of HL7 v3 are:

• Use of Unified Modeling Language
• The Reference Information Model (RIM) – The RIM is

the fundamental model in HL7 and is comprised of about
70 different classes based primarily with entities, roles,
participation, acts, role links, and act relationships serving
as the fundamental classes.

• Domain Message Information Model (D-MIM) – The D-
MIM serves as messaging model for a particular
healthcare domain.

• Refined Message Information Model (R-MIM) – When
the D-MIM is further refined to a more specific set of
classes, attributes, and relationships needed for a
particular group of messages, a R-MIM is produced as a
result.

• Hierarchical Message Description (HMD) – Once an R-
MIM is developed, “it can be used to derive a model for a
specific reference area.” The derived model has a

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 395

different structure to “make it more appropriate for the
development of messages.”

• Message Type – An HMD can be further constrained to
meet the needs of a particular message resulting in a
Message Type. [10].

In addition to these elements, HL7 has the clinical document
architecture (CDA). According to Nelson, “the CDA is a
document markup standard that specifies the structure and
semantics of a clinical document (such as a discharge
summary, progress note, procedure report) for the purpose of
exchange” [14].

HL7 is a tremendously popular standard in the field of
eHealth. In a literature review relating to integration of patient
data between systems, Cruz-Correia et al. reviewed 3124
articles that were published over the period from 1994-2004
and found that HL7 was the predominant messaging standard
indicated in these papers [7].

Of course, HL7 is not the only standard in the field and there
are other standards such as OpenEHR. Furthermore, there are
several academic constructs for the structure of electronic
health records such as Kukafka et al.’s redesign of EHRs to
make them more useful to public health officials [13] or
Ammon’s architecture for a knowledge based electronic
health record [2].

2.2 Societal Factors and Concerns
 The literature in this sub-category looks at societal
concerns for health records such as privacy, misuse, and
security. Several studies [8,15,17] use ethnography as a tool
to understand how health records are used in practice. The
findings in these types of studies can be used to structure
electronic health record so that they are efficient adopted by
health care practitioners and produce a minimal amount of
social inertia when incorporated into the larger organization.

 For example, Osterlund [15] undertook a 15-month
ethnographic study exploring the work practices of doctors
and nurses in documenting patient care. The central finding in
this study is that documents have spatial and temporal
properties as well as participants. The author hypothesizes
that medical personnel can be resistant to large scale
information systems, since these disrupt neatly constructed
and maintained places for collaboration. He also explains that
since documents represent spaces, this accounts for recording
the patient history in multiple different documents.

 Osterlund also notes in a 2004 article that “In the
process of getting admitted, typical patients have their
histories taken more than 15 times and these will be recorded
in more than 34 information systems, some electronic, some
paper-based.” [16]

 In the spirit of Osterlund, Hardstone et al. [8] is another
ethnography paper on the use of health records in a clinical

setting. This paper presents an ethnography study of
community mental health teams in the United Kingdom and
the ways in which health practitioners in these contexts create
and use health records. As in Osterlund, the researchers find
that there is a collaborative nature of the work and that
documents have spatial and temporal properties. In addition,
the researchers found that practitioners used verbal
communications and hand-written notes as drafts of their
findings before formalizing these findings in electronic
medical records. The researchers argue that pure electronic
records could impact the ability of teams to revise their
findings since electronic records are viewed as final drafts.

 Patients also use electronic health records so
understanding their use in this context is important. Enrico
Maria Piras and Alberto Zanutto [17] provide a detailed look
at how patients use Personal Health Records. The researchers
in the article conducted numerous semi-structured interviews
with patients in order to see how they kept and used personal
health records.

Amongst the findings here are that no one teaches patients
how to organize the documents, but that doctors have
particular requirements for the amount of order and detail in
the records. Second, patients interact with the records by
annotating, highlighting, and integrating the records. Third,
patients have three general areas where they interact with
records:

1. Crossroads (e.g. refrigerator)
2. Archive (e.g. folder)
3. Archive in Use (e.g. diabetic records).

 A final finding is that patients have emotional
attachments to records (e.g. pregnancy book). In each case,
the researchers provide the implication for system design to
deal with these findings, e.g. support for annotations and
highlighting.

 In addition to concerns as to how medical records are
employed in actual practice, security of medical information
is of paramount importance, particularly in regard to
legislation such as HIPA (Health Insurance Privacy Act) and
other initiatives throughout the world.

 Angst and Agarwal [3] look at individual attitudes
toward the adoption of electronic health records in the wake
of privacy concerns. In order to do this, the researchers
designed a partial factorial design and surveyed 366
participants concerning their attitudes toward EHR adoption.
The researchers found that positively framed arguments can
lead people to the adoption of electronic versions of their
health records.

 In addition to having people adopt electronic health
records, securing the information and detecting intrusions
after adoption is important. Sokolova et al. [21] developed a
text analysis tool to detect personal health information (PHI)
in heterogeneous text documents. The researchers tested the

396 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

system on a variety of data and were able to eliminate most
non-PHI documents such as works of fiction and music. The
system managed to detect most files with PHI, but yielded a
couple of false positives for a health care worker resume and
for a blank insurance form.

2.3 Implementations, Case Studies and
Performance

 A final area of related work concerns actual
implementations and case studies related to the
implementation of systems that support electronic health
records. As one might expect, there are numerous
implementations in various jurisdictions around the world.
Hence, we present a representative sample of the literature on
the subject.

 Early papers such as Hooda et al. [11] in 2004 focused
solely on viewing and editing electronic health records.
However, the scope and scale of implementations have
evolved greatly in the past decade. Some of the newer
implementations focus on new paradigms such as context-
aware mobile systems [20] and the sharing of virtual
composite electronic health records from multiple distributed
sources [12].

 A second category of papers looks at implementations
that span large organizations and even nation-wide efforts.
For example, Venoit [23] examines the use of an electronic
health records system in the veteran’s administration hospitals
for the treatment of patients with diabetes. Reidl [19] also
examines the impact of an implementation across multiple
organizations by examining the implementation of an
electronic health records system in three oncology clinics in
Austria. Nationwide efforts such as Britain’s National
Programme for Information Technology (NPfLT) [4] and
Denmark’s BEHR [6] are examined have also been examined
by researchers. While accidental problems are different across
all these implementations, recurring themes from large-scale
software engineering efforts such as requirements and
workflow definitions [18,22] are common to all these efforts.

 There are quite a number of implementations such as
[1,24] that focus on security. Yee et al. [24] focuses on
creating a HIPAA compliant personal health record on a flash
device, while Adams [1] looks at employing a traffic light
metaphor (red, yellow, green) that allows patients to control
access to various aspects of their medical records, e.g. setting
one aspect to green to allow everyone to see it.

 Cruz-Correia et al. [7] conducted an extensive literature
review relating to integration of patient data between systems.
The authors reviewed 3124 articles that were published over
the period from 1994-2004. They categorized the articles by
projects and then proceeded to look at general trends. The
authors found that HL7 was the predominant messaging
standard and that message-based projects were also more
common than middleware solutions. The authors also found

that web-based services were becoming more common during
this time period as were web-based solutions. The authors
found that quite a few of the studies were missing a
discussion on error detection and discussions of impact
evaluation for the systems.

There has also been little study of performance analysis for
electronic health record systems. However, Barua et al. [5]
develop a cloud computing architecture for security and
patient-centric access control known as EPSAC. Their system
“provides an architectural model of an eHealth care system”.
The authors also demonstrate how their architecture provides
for secure communication and has a patient-centric access
control policy. The research here is mainly focused on the
secure architecture. However, the researchers do evaluate the
computation time of the encryption/decryption functions and
simulate the protocol against a DoS attack. The performance
analysis here is mostly analytic and simulation based whereas
our work is solely empirical for standard security measures
and reliable messaging in an industrial implementation
context.

3 System Architecture & Environment
In this section, we provide an overview of the system under
consideration, its implementation environment, and the
experimental design.

3.1 System Architecture & Information Flow
 This section presents an overview of the system
architecture and will provide an extensive discussion of the
transport layer. Figure 1 shows the overall architecture of the
system with its four separate subcomponents. In particular,
the system under examination has subsystems consisting of a
client, an application-programming interface (Everest), the
Windows Communication Foundation (WCF), and the
service. In the case of our experiment, the service merely
provides an echo in order to avoid any confounding effects on
the outcome variables due to differentiated services.

Figure 1: System Architecture

 The message flow begins with the client sending a
pointer in memory of the data it wants to serialize to the
Everest API. Everest takes this pointer and represents the
structure in the XML Implementable Technology
Specification (ITS); ITS is a set of rules for representing
structures "on the wire", i.e. the set of XML rules for parsing
HL7 messages. The Everest API then pushes the "on the
wire" message to the WCF.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 397

 After receiving the "on the wire" message from the
Everest API, the WCF implements a set of transport rules
such as reliable messaging, security, and ws addressing.
Depending upon the message configuration, WCF takes care
of transporting the message to the service and implementing
the proper protocols. The number of messages exchanged
between WCF and the service are dependent upon the system
configuration.

 After WCF finishes the "conversation" with the service,
it then passes an XML message (i.e. the response) back to the
Everest API. Everest then employs the ITS rules to parse the
message into the HL7 Reference Information Model (RIM) or
the Refined Message Information Model (R-MIM). The
Everest API then passes a pointer back to the client
application.

3.2 Experimental Design and Environment
 In order to test the impact of reliable messaging and
security protocols on the efficiency of transmitting electronic
health records, we utilize a full factorial design with
replications as summarized in Table 1.

Table 1: Experimental Design

 In order to best gauge the impact of reliable messaging
and security on the performance of systems transmitting
electronic health records, we include several factors. The first
factor is reliable messaging, which has two levels to indicate
whether this protocol is enabled or not. The second factor has
two levels and is indicative of whether or not there is security
enabled for the transmittal of the messages. The experimental
design also includes factors for the number of concurrent
users (1,2,4,8) and the type of message (I,II,III). The last
factor examines whether or not the type of message has any
impact on the overall performance of the system.

 The experiment examines several different response
variables including the response time, throughput, bandwidth
on the wire, and the number of errors encountered. The
experiment was run with 100 replications in order to ensure
consistent results with a minimal amount of variance due to
noise in the experimental data.

The experiment was run on a Dell Optiplex 980 with a 2.80-
gigahertz processor capability and 8 gigabytes of memory.
The machine was running under the Windows 7 64 bit
operating system with service pack 1 installed.

4 Discussion and Results
 In this section, we provide a summary of the
results from our experiment. Table 2 displays the results
of our experiment in terms of response time for the
system.

Table 2: Experimental Design

 The first observation that can be gleaned from these
results is that experiments with a greater number of users had
higher average response times. This is to be expected, since
more users will place a greater load on the system. A second
observation is that the message type by itself does not seem to
make an appreciable difference in the overall response time
when factoring in the size of the confidence intervals.

 In further analyzing the results from this experiment, it
is constructive to look at the differences between the
experiments that used both reliable messaging and security
and those that did neither. The mean response time for the
experiments that used neither reliable messaging nor security
was lower in 11 out of the 12 experiments. In addition, the
experiments that did not use reliable messaging had lower
standard deviations in 10 out of the 12 cases. However, this

398 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

amount of significance does not hold up when looking at the
confidence intervals. At a 99% level of significance, there
was only a difference between the two types of experiments
in 7/12 of the cases.

We also conducted an analysis of variance (ANOVA) on our
response time results in order to understand the impact of the
various factors involved in the experiment. The results of this
ANOVA are show in Table 3.

Table 3: Analysis of Variance

 Here, both reliable messaging and the interaction
between the number of users and message type are
significant. The interaction between the number of users and
the message type is not surprising given that each of these
factors increases the amount of network traffic. For example,
message type 3 is significantly larger than message types 1
and 2, and the number of users is a ratio level measurement.

 The impact of these factors can also be seen in Table 2
where the standard deviation for the more complicated
experiments (multiple users and larger messages) is lower
when reliable messaging is disabled. In general, disabling
reliable messaging resulted in lower corresponding standard
deviations in ¾ of the cases as shown in Table 2. In terms of
the other factors, we did not find any errors in any of the
experiments. Furthermore, the throughput and the total
bandwidth on the wire were closely related to the overall
response times shown in Table 2.

5 Conclusions and Recommendations
 It is essential to have secure and reliable messaging in
medical information systems in order to comply with
legislative and privacy requirements as well as to gain
acceptance in clinical practice. Medical Information systems
must also deliver information to practitioners in a quick and
seamless manner due to the time sensitive nature of the field.

In this research, we examined the overhead of security and
reliable messaging on the transportation of medical messages
through the use of a full factorial experiment with multiple
replications. The results of this experiment show two
significant factors in the variance of the overall response
time. First, the reliable messaging is a statistically significant
factor as is the interaction of the number of users with the
message type. In analyzing the mean response times and
standard deviations, we found a tendency toward lower
response times (11/12 cases) and lower standard deviations
(10/12 cases) when comparing experiments where both
reliable messaging and security were enabled compared to
where they were both disabled. However, the response time
was only statistically significant in 7/12 cases due to the noise
created by experimental errors and other factors. Finally,
disabling reliable messaging produced lower standard
deviations in 18/24 cases although this did not always result
in lower response times.

 This work is limited in the number of users supported by
the system and in the amount of load placed on the system.
Hence, we make no claim as to whether these lower response
times hold under industrial loading of the system.

6 Future Work
 The analysis of variance in our experiment shows the
error term to be a bit high, which limits the types of broad
conclusions that can be drawn from this experiment. For
future work, using a distributed architecture that can handle a
greater number of users may limit some of the variance due to
user type and message whilst providing more reliable results.
Our preliminary work in this area also found that a greater
number of users had more stable results when both reliable
messaging and security were disabled. Future experiments
should focus on scaling the approach to see if this finding
holds under industrial loads.

7 Acknowledgements
 The authors of this paper would like to acknowledge the
continued support of the Mohawk Applied Research Centre at
Mohawk College. The authors would also like to thank
NSERC for providing the initial funding to develop the
EVEREST framework that enabled the development of the
measurement tool.

8 References
[1] Emily K. Adams, Mehool Intwala, and Apu Kapadia.
MeD-Lights: a usable metaphor for patient controlled access
to electronic health records. In Proceedings of the 1st ACM
International Health Informatics Symposium (IHI '10),
Tiffany Veinot (Ed.). ACM, 800-808.

[2] Danny Ammon, Dirk Hoffmann, Tobias Jakob, and
Ekkehard Finkeissen. 2008. Developing an architecture of a
knowledge-based electronic patient record. In Proceedings of

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 399

the 30th international conference on Software engineering
(ICSE '08). ACM, 653-660.

[3] Corey M. Angst and Ritu Agarwal. 2009. Adoption of
electronic health records in the presence of privacy concerns:
the elaboration likelihood model and individual persuasion.
MIS Q. 33, 2 (June 2009), 339-370.

[4] David Avison and Terry Young. 2007. Time to rethink
health care and ICT? Commun. ACM (June 2007), 69-74.

[5] Mrinmoy Barua, Xiaohui Liang, Rongxing Lu, and
Xuemin Shen. 2011. ESPAC: Enabling Security and Patient-
centric Access Control for eHealth in cloud computing. Int. J.
Secur. Netw. 6, 2/3 (November 2011), 67-76.

[6] Claus Bossen. 2006. Representations at work: a national
standard for electronic health records. In Proceedings of the
2006 20th anniversary conference on Computer supported
cooperative work (CSCW '06). ACM, 69-78.

[7] Cruz-Correia R.J., Vieira-Marques P.M., Ferreira A.M.,
Almeida F.C., Wyatt J.C., and Costa-Pereira A.M. 2007.
Reviewing the Integration of Patient Data: How Systems are
Evolving in Practice to Meet Patient Needs, BMC Medical
Informatics and Decision Making, 7:14.

[8] Gillian Hardstone, Mark Hartswood, Rob Procter, Roger
Slack, Alex Voss, and Gwyneth Rees. 2004. Supporting
informality: team working and integrated care records. In
Proceedings of the 2004 ACM conference on Computer
supported cooperative work (CSCW '04). ACM, 142-151.

[9] Health Level 7. December 5, 2011. ‘About HL7’, Health
Level 7 webpage, http://www.hl7.org/, http://www.hl7.org/.

[10] Hinchley, Andrew. 2007. Understanding Version 3
Guide: A primer on the HL7 Version 3 Communication
Standard. Alexander Monch Publishing, Munich, Germany.
ISBN 3-933819-21-0.

[11] Jagbir S. Hooda, Erdogan Dogdu, and Raj Sunderraman.
2004. Health Level-7 compliant clinical patient records
system. In Proceedings of the 2004 ACM symposium on
Applied computing (SAC '04). ACM, 259-263.

[12] Jing Jin, Gail-Joon Ahn, Hongxin Hu, Michael J.
Covington, and Xinwen Zhang. 2009. Patient-centric
authorization framework for sharing electronic health records.
In Proceedings of the 14th ACM symposium on Access
control models and technologies (SACMAT '09). 125-134.

[13] Rita Kukafka, Jessica S. Ancker, Connie Chan, John
Chelico, Sharib Khan, Selasie Mortoti, Karthik Natarajan,
Kempton Presley, and Kayann Stephens. 2007. Redesigning
electronic health record systems to support public health. J. of
Biomedical Informatics 40, 4 (August 2007), 398-409.

[14] Nelson, Stuart J., Zeng, Kelly, and Kilbourne, John.
2009. Building a Standards-Based and Collaborative E-
Prescribing Tool MyRxPad. In Proceedings of the 2009 IEEE
International Conference on Bioinformatics and Biomedicine
(BIBM '09). IEEE Computer Society, 210-215.

[15] Østerlund, C. S. (2008). Documents in place:
demarcating places for collaboration in healthcare settings.
Computer Supported Cooperative Work, an International
Journal, 17(2–3), 195–225.

[16] Østerlund, Carsten (2004): Mapping Medical Work:
Information Practices Across Multiple Medical Settings.
Journal of the Center for Information Studies, vol. 5, pp. 35–
43.

[17] Enrico Maria Piras and Alberto Zanutto. 2010.
Prescriptions, X-rays and Grocery Lists. Designing a Personal
Health Record to Support (The Invisible Work Of) Health
Information Management in the Household. Comput.
Supported Coop. Work 19, 6 (December 2010), 585-613.

[18] Pressman, R. Software Engineering: A Practitioner’s
Approach. 6th Edition. McGraw Hill Publishing, 2005.

[19] Christine Reidl, Marianne Tolar, and Ina Wagner. 2008.
Impediments to change: the case of implementing an
electronic patient record in three oncology clinics. In
Proceedings of Participatory Design 2008 (PDC '08), 21-30.

[20] B. Skov and Th. Hoegh. 2006. Supporting information
access in a hospital ward by a context-aware mobile
electronic patient record. Personal Ubiquitous Comput. 10, 4
(March 2006), 205-214.

[21] Marina Sokolova, Khaled El Emam, Sean Rose, Sadrul
Chowdhury, Emilio Neri, Elizabeth Jonker, and Liam Peyton.
2009. Personal health information leak prevention in
heterogeneous texts. In Proceedings of AdaptLRTtoND '09,
Association for Computational Linguistics, 58-69.

[22] Sommerville, I. Software Engineering. 8th Edition.
Addison-Wesley Publishing, 2007.

[23] Tiffany C. Veinot, Kai Zheng, Julie C. Lowery, Maria
Souden, and Rosalind Keith. Using electronic health record
systems in diabetes care: emerging practices. In Proceedings
of the 1st ACM International Health Informatics Symposium
(IHI '10), Tiffany Veinot (Ed.). ACM, 240-249.

[24] Wai Gen Yee and Brett Trockman. 2006. Bridging a gap
in the proposed personal health record. In Proceedings of the
international workshop on Healthcare information and
knowledge management (HIKM '06). ACM, 49-56.

400 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Abstract— Mobile games play a vital role in today’s

society through entertaining and educating the mobile
consumers. This paper presents the design and
development of an unbiased (perfect information) game,
Nim, for iPhone. Nim consists of N piles each containing M
objects, where M varies between piles. Two players take
turns removing objects from the piles. This game is one of
many games found within Combinatorial Game Theory.
Many mathematicians have been studying Nim Game
theory and have designed some winning strategies enabling
players to win the game. The enhancement of the Nim
game environment to allow the game to be played on hand
held devices, particularly on Apple iPhone, is invesrigated
and analyzed. This mobile game application is designed
using photo editing tools and developed utilizing a
combination of Adobe Flash Builder IDE, Adobe Flex,
MXML, and ActionScript technologies.

Index Terms— Nim Game, Game Development, iPhone,
Software Engineering, Combinatorial Game Theory

I. INTRODUCTION

Many of the products we use today are a result of
advances in technology. Mobile phones, laptops, music
players and tablets are all the outcomes of scientific
discoveries and advanced engineering. Technological
advances have impacted our health, our life and the way
we communicate with one another. Even though there are
side effects to some aspects of technology (pollution, for
example), but generally technology has immensely
improved quality of living for most people. People
started adopting these technologies essentially for their
entertainment. Among the entertainment endeavors
available, gaming plays a major role regardless of the age
factor. Since ancient times, games have been a part of
human culture [13]. A game is a doable endeavor
involving talent, luck, and patience among parties
playing it. In general, two or more persons play a game
according to a set of rules, usually for their own pleasure.
It is possible for a computer to be one of the players.
According to Adams et al [1], “A game is a type of play
activity, conducted in the context of a pretended reality,
in which the participants try to achieve at least one
arbitrary, nontrivial goal by acting in accordance with
rules.”

A game implies structured playing, usually undertaken
for enjoyment and sometimes used as
an educational tool [12]. Key components of games are
goals, rules, challenges, and interactions. Games
commonly involve mental inspiration, physical
inspiration, or both. Claypool et al [7] developed a set of
game-centric project-based modules to allow students to
exercise and participate in various phases of software
engineering including requirement engineering, game
design, testing, maintenance, and project management.
Rankin et al [19] introduced a user centered game design
to evaluate massive multiplayer online role playing
games for second language acquisition. They concluded
that results from their experimental studies indicated that
their approach is encouraging as a language learning tool
for vocabulary acquisition. Another application was
introduced by Campbell et al [6]. They used game design
principles to promote physical activity while targeting
fun, maintainability, and performance change. The
objective of their project was to have game design play a
key role in promoting a healthier lifestyle.

Earlier mobile phones were simple communication
devices with inadequate computation and
communication capabilities. Mobile devices with
increased power, faster and relaible communications and
higher resolution displays are becoming increasingly
common. As the time advanced, mobile phones have
been encapsulated by computationally powerful devices
with high resolution colored displays and real operating
systems. This trend in mobile phone industry attracted
mobile game developers [23]. The evolution of mobile
games is comparable to the evolution of computer
games. At first, mobile games were simple single player
games with limited graphics and intelligence. For the
past few years, the revolution of smart phones has
created more jobs and appealed to more enterprenuers.
More people started developing mobile applications and
gaming business is booming. Mobile game applications
are simple and useful for education and entertainment.

Based on what has been mentioned above, it is vital to
design and develop a mobile game application using the
techniques of software engineering. Software

Developing Nim Game for iPhone
 Palani Dharanidharan, Kevin Daimi, Michael Canjar

Department of Mathematics, Computer Science and Software Engineering
University of Detroit Mercy

4001 W. McNichols Rd., Detroit, Michigan 48221
{palanidh, daimikj, canjarrm}@udmercy.edu

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 401

engineering is an engineering discipline, which is
concerned with applying adaptable engineering
processes that leads to high-quality product satisfying the
needs of the stakeholders [18], [22]. Software
engineering first emerged in the 1968 NATO software
Engineering conference [14], [26]. It is defined as “ The
application of a systematic, disciplined, quantifiable
approach to the developmnent, operation and
maintenance of software; that is, the application of
engineering to software” [26]. Currently, various tools
are available to assist software engineers in the analysis,
specification, design, implementation and verification of
software products. The first step in the mobile game
development is developing the game requirements using
requirements engineering (RE) process. Requirements
Engineering (RE) is applied to improve systems
modeling and analysis capabilities so that organizations
can better understand critical system aspects before they
actually build the system [20]. RE is generally a
sophisticated interaction and negotiation process
involving different stakeholders, such as mobile
customers, players, designers, developers, and tools
creators. The main goal of RE is to extract functional and
non functional requirements for the software product.
The functional requirements along with quality attributes
and other nonfunctional requirements will constitue the
Software Requirements Sepcification (SRS) [27]. Proper
behavior establishes the functionality of a system and
there is often a firm correspondence between particular
requirements and particular functions of the software
product [2], [25]. However, nonfunctional requirements
represent constraints or quality metrics that the system
should abide by. These requirements may be viewed as
parameters of functionality in that they determine how
quickly, how accurately, how reliably, and how securely,
these functions must operate [2], [25]. After the
requirements have been extracted and organized, the next
subprocess is to design the software. Software design is
the central focus of software engineering. Design
patterns are increasingly important. Björk et al [3] have
identified more than 300 patterns depicting game
mechanics and interaction elements in traditional games
and computer based games. Patterns are normally a
recommended approach in software engineering. They
definitely do not solve all the design problems for a
software system, however, if some patterns that fit the
problem are available, the design phase will be expedited
[8].

The development of mobile application is the process by
which an application software is developed for handheld
device,s such as mobile devices, media player and tablet
computers using their own native and supportive
programming language, tools, and operating systems.
Our propsed Nim game targets Apple’s iPhone.
Therefore, evaluating its usefulness requires

understanding Apple products and consumers. The
current releases of iPod touch, iPhone and iPad are now
seen as a critical turning point in the history of Apple. In
2010, Apple announced it is relaxing the previous
restrictions on the use of third-party development tools
for the creation of mobile applications for iOS, the
operating system that powers the iPhone [16]. Many
service providers started releasing cross platform
development tools, which allow users to use their own
programming language to develop the mobile game
application and disseminate it to the App Store with their
native language. Distribution of apple mobile application
is done through App Store. Apple requires every
developer to register and get the required approval before
being able to distribute their application in App Store.

This paper describes the design of a mobile game
application system, WinNim, guided by software
engineering code of ehtics. WinNim game is a mobile
application targeted for the Apple’s iPhone based on the
ancient Nim game. The requirements engineering
principles will be first applied to solicit and gather Nim
game’s functional and nonfunctional requirements. The
requirements are then analyzed and the game design is
pursued. Software engineering process is applied to the
the design and development of the mobile game.
WinNim is a standalone mobile application system,
which runs under the Adobe Flash Builder Platform. The
programming tools MXML and ActionScript are used to
implement the system. The rest of the paper is organized
as follows: Section II provides history, description, and
the mathematical theory behind Nim. Moble game
operation is introduced in section III. Section IV targetes
mobile game functional and non-functional
requirements. The Game design, and development are
presented in sections V and VI respectively. Finally,
conclusions and future work are presented in section
VII.

II. NIM GAME DESCRIPTION AND ITS MATHEMATICS

A. Nim Game History and Description

 It is believed that the ancient game, Nim, has its origin
in China, but that origin is unconfirmed [11]. The current
name was devised by Charles Bouton of Harvard
University [11], [15]. It is a simple combinatory game
with finite possibilities [21], illustrating basic principles
of Game Theory. The meaning of the word Nim is
“taking” [15]. Hence, the game’s rules demand taking
objects from a given piles of objects on the Nim board.
The Nim game is an unbiased, finite game. It is also
called a perfect information game, consisting of N piles
each containing M objects, where M varies between
piles.

402 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Nim is a mathematical game of strategy in which two
players take turns removing objects from distinct piles.
On each turn, a player must remove at least one object,
and may remove any number of objects provided they all
come from the same pile [4]. Nim is usually played as
“Misere” game in which the player who takes the last
object loses. Nim can also be played as “Normal” play
game, where the person who makes the last move wins.

The Nim game is played by two players (two persons, or
a person and a mobile device) using a single Nim board.
The number of objects in each pile is quite arbitrary,
except that no pile may intially contain zero objects. A
player selects one of the piles, and takes as many objects
as she/he chooses including all the objects in that pile.
Players cannot, however, pick objects from more than
pile simultaenously.

B. Mathematical Theory

The mathematical solution of WinNim game deals with
any number of initial piles and objects. The mathematical
theory dictates that there is an easily calculated way to
determine which player is going to win, and what
winning moves determine that win.

In Nim Game Theory, we say that a board is a Winning
Board (WB) or Winning Position if the current player
can force a win from that postion. The board is a Losing
Board (LB) or Losing Position if the opponent can force
a win. Every Nim Board is either a WB or LB. The Nim
winning strategy is based on determining whether the
board is WB or LB. If it is a WB, all possible winning
moves should be found.

Given a board [X1, X2, . . Xn], where n is the number of
piles, and Xi represents the number of objects in pile i,
the first step will be to express these numbers in binary
and line up their respective bits in columns. Then, the
sum of bits in each column is computed. Having done
that, the column is classified as to whether or not it is
even or odd. The board is called Even Position if every
column is even. If any column is odd, the board is an
Odd Position. Another way of determing whether a
column is odd or even is to find the binary digital sum
(exclusive or) of each column. If the result of xoring the
bits of a column is zero, the column is even. Otherwise,
it is 1 indicating the column is odd [9]. Every move from
a winning position is to a non-winning (losing) position.
From a losing position, there is at least one move into a
winning position. Figure 1 introduces an example that
illustrates what was mentioned above.

Figure 1. Even/odd sums for board [9, 8, 5, 4]

The winning strategy involves giving the opponent an
Even Position. The opponent will return an Odd
Position. This will win every Normal Game, but will
lose every Misere Game. This implies that the player
needs to change an Odd Position to Even Position. To
achieve that:

 In the first Odd Column, find one row (pile) in which

there is a “1.” There must be at least one “1” in the
first Odd Column. Since having all 0s is even.

 In that pile, change the bits in each Odd Column.

A pile is singleton if it has 1 element. A board is called
Trivial if all non empty piles are singleton. For example
let B be a trivial board with N non empty piles [1 , 1, 1 ,.
. . , 1]. We having the following conditions:

 If N= 1: We pick the last object. [Lose Misere

Game, Win Normal Game]

 If N= 2: Opponent picks the last object. [Win
Misere Game, Lose Normal Game]

 If N= 3: [Lose Misere Game, Win Normal Game]

 If N= 4: [Win Misere Game, Lose Normal Game]

Hence ,

 If N is even, then Normal Game board B is a Losing
Board, and Misere Game board B is a Winning
Board.

 If N is odd, then Normal Game board B is Winning
Board, and Misere Game board B is Losing Board.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 403

A board is a Decisive Position if it contains exactly one
non-singlton, e.g. [17, 1, 1, 1. . . 1]. Any play of a
non-trival game will pass through a Decisive Position.
There will be last non-trival position and that must be
decisive.

III. MOBILE NIM GAME OPERATION

There are two players, often called Player1 (Host Player)
and Player2 (Human or iDevice). The type of opponent
should be selected before starting the game. A player
will not be able to move when the Empty Board (no
objects at all) condition is reached. The game will ask
the Host Player to choose their opponents. The Host
Player has two options: playing against the iDevice
(Machine) or playing against another player. Each game
will ask the host player to choose the mode of playing.
The game concludes when the last object of the last pile
is taken. Based on the last object taken, the game could
be played in two modes: Normal Game (whoever takes
the last object wins), and Misere Game (whoever takes
the last object loses).

The next step will be entering the number of piles and
clicking on the “SUBMIT” button. Players will be
prompted for the number of objects to begin each pile
with. Having entered the number of objects in each pile,
the “START” button must be clicked. At this point, the
system will then decide which player to go first based on
tossing a coin. After specifying the pile to remove from,
and how many objects to remove, the system will reflect
the change in the game status. Now, it is the other
player’s turn. The player who takes the last object wins
(Normal Game), or loses (Misere Game). The system
imposes the following restrictions:

 2 ≤ n ≤ 9, where n is the number of piles.
 m ≤ 100, where m is the number of objects in a pile.
 Only letters are allowed for player’s name.
 For coin tossing, players must choose either 1 or 2.

IV. NIM SYSTEM REQUIREMENTS

A. Functional/Nonfunctional Requirements

Before starting the development of the mobile Nim
game, the first and foremost task to be considered is
engineering the requirements. The outcomes of
requirement engineering are functional and
non-functional requirements which are critical to the
success of any software project [17]. Functional
requirements dictate what functions constitutes a
solution, and nonfunctional requirements are constraints
on the functional requirements [2], [25], [5]. In what
follows, Nim and WinNim (the mobile version) will be

used interchangeably. Below is a sample requirements
set adopted by the system.

 The system should allow any of the players to start

the game.
 The system should allow players to set the options

available for the game.
 The system should allow players to choose the level

of the game such as easy, medium, or hard.
 The system should allow the host player to choose

their opponent (another player or iDevice).
 The system should allow players to go back to the

home page in order to access the home page features.
 The system should allow the player to choose the the

type of game; Normal or Misere.
 The system should allow the player to change the

game mode.
 The system should allow players to specify the

number of objects and piles.
 The system should allow players to start the game

when the number of piles and objects have been
entered.

 For Player vs iDevice, the system should allow the
iDevice to play first.

 On each turn, the system should enable one player’s
play button and disable the opponent’s play button.

 The system should not allow the same user to play
next before the other has completed his play.

 The system should not allow players to change the
setting of the board after the game starts.

 The system should not allow any of the players to
play when reaching the Empty Board condition.

 For Player1 vs Player2 game, the system should
allow players to use the coin tossing feature.

 The system should allow players to take time to read
and understand alert messages.

 The system should announce the winner based on
the last pick from the WinNim board.

 The system should not allow players to go back to
the previous move and make changes.

 The systems should take less than 5 seconds to
provide responses (display new page view).

 The system should catch inappropriate input.
 The system should save game status if the game gets

disrupted due to hardware or any other problem.

B. WinNim Use case Modeling

Use case modeling is a graphical representation form of
functional requirements [17], [18], and [22]. For this
modeling, the use case diagram is composed of a number
possible scenarios related to the usage of the WinNim
game system. In the object-oriented (OO) analysis and
design process, use cases are the fundamental input to the

404 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

design stage. From a use case diagram, a game developer
can gain an unambiguous idea about the system’s
boundary, actors involved in the system, and the actions
the actors can carry out. Figures 2 illustrate the use cases
of the WinNim Game System.

Figure 2. Use Case for WinNim Game

V. NIM GAME DESIGN

Software design is an innovative and creative task.
During the design phase, a software developer concludes
how to implement a software system to meet customer’s
need [8]. A good design should exhibit high cohesion and
low coupling [22].

A. System Characteristics

The Nim game system is a view-based mobile game
application targeted for Apple’s iPhone. This game has
four modes: Player1 vs. iDevice – Normal Game,
Player1 vs. Player2 – Misere Game, Player1 vs. Player2

– Normal Game, and Player1 vs. iDevice – Misere Game.
Each mode demands a totally different game logic.

There are three user groups involved in the system,

1. Host Player1: The host player is the owner of the

device who has the right to set the options initially
and accept opponents. Host Player1 is also in
charge of setting the number of piles and objects.

2. iDevice: The device (iPhone) acts as a decision
maker to end the game by announcing the winner. It
can also act as an opponent playing against the host
player.

3. Player2: Acts as an opponent player playing against
host player1.

The WinNim game facilitates the following:

 Controlling all the stages of WinNim mobile game’s

life cycle.
 Allowing players to choose the game type and play

mode.
 Enabling players to make changes before confirming

the board.
 Recording all the game movements and displaying

them when needed.
 Allowing players to feed the input data necessary for

playing the game.
 Offering a toss coin option to select the first player.
 Permitting players to feed the number of piles and

objects which should be placed on Nim Board.

B. System Architecture

Architecture design is a model for the system’s structure.
It illustrates how all of the system’s components are
connected, and how they collectively function to achieve
their goal [24].

WinNim architecture consists of 7 components, and each
component is further decomposed into several modules
(Figure 3). Each module focuses on a specific kind of
task. Our goal is to make these components
task-independent and easy to reuse. Hence the modules
are loosely coupled. This will enhance the flexibility and
maintainability of the entire WinNim game system.
Below is a brief description of these components.

Home View component: The home view component
encompasses four modules; the Game Start module to
handle the player’s Game Start process, the Options
module to handle various settings, such as sound, timer
and moves recording, the Challenge module to choose

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 405

between different levels of board, and the I module for
information about WinNim and its rules.

Main View Component: This component consists of two
modules: Player1 vs. iDevice module, which allows the
host player to choose the device as the opponent, and
Player1 vs. Player2, which permits the player to choose
another player as the opponent.

Play Mode View: It consists of two modules. The
Normal Game module allows players to start the game.
The winner will be the one picking the last object. The
Misere Game permits players to start the game. Here the
winner will be the one having the empty board when it is
their turn.

Tossing Coin component: The Tossing Coin component
is designed for Player1 vs. Player2 games. It declares the
player who is going to start the WinNim game first.

Settings Component: This Settings component
incorporates three modules. The Sound module allows
the player to activate or deactivate the option of having
sound for each and every button click and background
song. The Timer module controls start and stop timers to
monitor the time taken by a player when removing
objects from Nim board in order to win. When initiated
by a player, the Record Moves module enables the
system to track the opponent’s moves. This will allow
the player to play better to win.

Input Data component: The Input Data component
embraces two modules. This component handles all
possible errors made by the player while feeding input
data. The Character Module will check and only accept
the input data if it is all letters. The Number Module will
check and accept the input data if they are all digits. If
an error exists, this component will display alert
messages.

Random Piles/Objects Generator Component: The
Random Piles/Objects Generator component is
comprised of two modules. These two modules are used
by the Challenge Component. The input for number of
piles is generated by PilesRG module and the number of
objects in each pile is generated by ObjectsRG module.

Decision Maker Component: The Decision Maker
Component embraces two types of modules. The
Winning Board module will evaluate an input board as an
Odd or Winning board based on the Nim Sum. If it finds
the value of Nim Sum is non-zero it will try to convert the
given board into an odd board with a Nim sum value of
zero. The Losing Board module tries to force an Even or
Losing board. If it finds that the value of Nim Sum is

zero, then the system will randomly select any number of
objects from one pile.

Figure 3. WinNim Architecture

VI. WINNIM GAME DEVELOPMENT

Adobe technologies are popular among developers for
design and animation. Adobe Flash Platform tools and
ActionScript 3.0 code are used to build Adobe AIR (a
multi-operating system, multi-screen runtime) applications
for the iPhone and iPod. These applications are distributed,
installed, and run just like other iPhone applications [10]. It
is possible to develop mobile applications in Flex with
similar facilities and quality as the desktop platforms
[10]. Many existing Flex components have been
extended to work on mobile devices, including the
addition of support for touch based scrolling. Flex also
contains a set of new components designed to make it
easy to build applications that follow standard design
patterns for phones and tablets. The Adobe Flash Builder
IDE permits developers to select the targeting hand held
device for which the application is being developed.
Since we are developing the Nim Game for iPhone, the
operating system for Apple, iOS, was targeted.

406 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

The development of the game system was guided by the
software engineering process. Applying the game
requirements and game design principles, the Nim game
was developed using the Adobe technologies. Apple
devices and software have unique features. Hence
special attention is needed when designing software for
iPhone. There are three templates available to develop
complete systems based on the application type. These
include Blank Template, View-Based Application, and
Tabbed Application. Win Nim was developed using
View-Based Applications.

The developed WinNim game mobile application using
AIR was then run through the simulation software
targeting the output device, iPhone. The following
figures are the screenshots of the WinNim game
developed with iPhone display specification.

 Figure4. Home View

Figure 4 illustrates the WinNim Game’s main page. All
the view pages will have a title bar with different title for
each view page. This will help us maintain a unified style
of the system’s interface. The Home View of the Nim
game contains the following options:

 Game Start: Using the Game Start button, the player

can play the game by choosing the opponent for the
game and the play mode.

 Options: Using the Options page, the player can set
up the additional features to be added to the game
including sound, timer and moves recording.

 Challenge: The challenge view allows the player to
see all possible levels of Nimboard with predefined
number of piles and objects.

 I : This is the Information view, which allows the
player to learn about the WinNim game and the rules
for playing the game.

Figure 5. Menu View

The WinNim Menu View, which is demoenstrated in
Figure 5, contains the following options:

 Player1 vs iDevice: By using this button, the host

player can choose the opponent as the iDevice
(iPhone) to play Nim game against. This will take
the user to the play mode and the Nim Board
respectively.

 Player1 vs Player2: Using this button, the host
player can play against another player. The play
mode and the Nim Board will then follow.

The Nim Board View is illustrated in Figure 6. This view
is presented after selecting the opponent player and the
mode of play. The Nim Board contains ‘n’ number of
piles and ‘m’ number of objects in each pile. It has three
buttons:

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 407

 Input: The number of piles and number of objects
are the two inputs needed to set the initial Nim
Board. The system will check for constraints
violations and provide appropriate alerts if needed.

 Play: In WinNim game, each player takes objects
when it is their turn. When a player is conducting
moves, the system prevents the opponent from
carrying out any move.

 Figure 6. Nim Board View

 Taking Objects: In each turn, the system should

allow the player to remove objects from a pile. This
is achieved through overwritting the number in that
pile. The system will check for possible errors, such
as the entered number exceeding the current
contents of that pile, the entered number is greater
than 100, a negative number is encountered, or
non-digits are discovered.

 Decision Maker: The game’s logic will check for
the Empty Board condition. Once the empty board is

reached, the system will verify the game mode.
Based on the game setting, the winner is declared.

VII. CONCLUSIONS AND FUTURE IMPROVEMENTS

Games targeted for Apple devices are constantly
increasing. Since there are thousands of games available
in Apple’s App Store, it is critical for the design and
development of any mobile game not to deviate from the
approach taken by other games in the market. This paper
presented the requirement analysis, design and
development of WinNim game application for Apple
Devices, particularly for iPhone. The designed game is
for a well-known ancient mathemaics-based game, Nim.
Unlike many other games, WinNim mandates
calculations and thinking before making a move. An
unthoughtful or random move will most likely result in
losing the game.
Future developments of WinNim will include more
challenging levels for playing the game, adding
multiplayer option, and online opponents. By improving
the rich user interface with all possible available features
and targeting other apple devices, iPod touch, Mac
[Desktop Application], and iPad, it is hoped that the
upcoming version of WinNim will be available in the
App Store.

REFERENCES

[1] E. Adams, and A. Rollings, Game Design and
Development, Prentice Hall, 2007.

[2] A. Anton, “Goal-Based Requirements Analysis,” in
Proc. the 2nd IEEE International Conference on
Requirements Engineering (ICRE '96), Colorado
Springs, 1996, pp. 136-144.

[3] S. Björk, and J. Holopainen, Patterns in Game
Design, Charles River Media, 2004.

[4] C. L. Bouton, “Nim, A Game with a Complete
Mathematical Theory,” The Annals of Mathematics,
Vol. 3, No. 1 / 4, pp. 35- 39, 1992.

[5] I. Bray, An Introduction to Requirement
Engineering, Harlow Essex: Addison Wesley, 2002.

[6] T. Campbell, B. Ngo, and J. Fogarty, “Game Design
Principles in Everyday Fitness Applications,” in
Proc. the ACM 2008 Conference on Computer
Supported Cooperative Work (CSCW’08), San
Diego, 2008, pp.249-252.

[7] K. Claypool, and M. Claypool, “Teaching Software
Engineering Through Game Design,” in Proc. the
Tenth Annual Conference on Innovation and
Technology in Computer Science Education
(ITiCSE’05), Monte da Caparica, Portugal, 2005,
pp. 123-127.

[8] K. Daimi, and L. Nowicki, “Software Engineering
for Pinochle Game Development,” in Proc. the
International Conference on Software Engineering
Research and Practice, Las Vegas, 2009, pp. 77-84.

408 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

[9] D. J. Davis, “The Game of Nim: Expository Paper”,
2006, Available:
http://scimath.unl.edu/MIM/files/MATExamFiles/
Davis_MAT_Exam_ExpositoryPaper.pdf.

[10] Developing Mobile Application with Flex and Flash
Builder, Adobe Systems Inc., 2011,
Available:http://Help.Adobe.Com/En_US/Flex/Mo
bileapps/Developing_Mobile_Apps_Flex.Pdf.

[11] C. M. Freeman, NIM: Serious Math with a Simple
Game, Waco: Prufrock Press, 2005.

[12] Game, Wikipedia, 2012, Available:
http://en.wikipedia.org/wiki/Game.

[13] J. Huizinga, Homo Ludens: A Study of the
Play-Element in Culture, Beacon Press: Bostan,
1950.

[14] P. Naur, and B. Randell, “Software Engineering:
Report of a Conference Sponsored by the NATO
Science Committee,” in Proc. NATO Software
Engineering Conference, Garmisch, Germany,
1968, pp.9-65.

[15] Nim, Wikipedia, 2102 Available:
http://en.wikipedia.org/wiki/Nim.

[16] S. Perez, Apple Relaxes Restrictions on Mobile App
Development, 2010, Available:
http://www.readwriteweb.com/mobile/2010/09/appl
e-relaxes-restrictions-on-mobile-app-development.p
hp.

[17] S. L. Pfleeger and J. M. Atlee, Software Engineering
Theory and Practice, Upper Saddle River, NJ:
Pearson Higher Education, 2010.

[18] R. Pressman, Software Engineering: A
Practitioner’s Approach, McGraw-Hill, 2010.

[19] Y. Rankin, M. McNeal, M. Shute, and B. Gooch,
“User Centered Game Design: Evaluating Massive
Multiplayer Online Role Playing Games for Second
Language Acquisition,” in Proc. the ACM
SIGGRAPH Sandbox Symposium, Los Angeles,
2008, pp. 43-49.

[20] W. Robinson, S. Pawlowski, and V. Volkov,
“Requirements Interaction Management,” ACM
Computing Surveys, Vol. 35, No. 2, pp. 132-190,
2003.

[21] G.A. Sarcone, Nim Game: A Binary Challenge,
2012, Available:
www.archimedes-lab.org/game_nim/nim.html.

[22] I. Sommerville, Software Engineering, Boston:
Addison Wesley, 2011.

[23] R. Spanek, P. Kovar, and P. Pirkl (2007) “The
BlueGame Project: Ad-hoc Multilayer Mobile
Game with Social Dimension,” in Proc. The 3rd
International Conference on Emerging Networking
Experiments and Technologies (CoNEXT’07), New
York, 2007.

[24] R. N. Taylor, and A. Hoek, “Software Design and
Architecture: The Once and Future Focus of
Software Engineering,” in Proc. 2007 Future of
Software Engineering, Washington, DC, 2009, pp.
226-243.

[25] A. van Lamsweerde, Requirements Engineering:
from System Goals to UML Models to Software
Specification, Chichester: Wiley, 2009.

[26] J. A. Wang, “Towards Component-Based Software
Engineering,” Journal of Computer Science in
College, Vol. 16, No. 1, pp. 177-189, 2000.

[27] K. E. Weigers, “Karl Wiegers Describes 10
Requirements Traps to Avoid,” Software Testing
and Quality Engineering, Vol. 2, No. 1, pp. 34-40,
2000.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 409

Relational Database Schema Evolution using Fragile
Watermarking Approach

Sri S. Ravichandra and Dr. DVLN Somayajulu

Department of Computer Science and Engineering
National Institute of Technology, Warangal, (A.P.) India

ABSTRACT — This paper discusses a Hybrid

approach to Fine Grained Isolation of Changes in
Relational Database Schema for guaranteeing the integrity

of the database. Many of the researchers addressed
various issues related to Core Schema Evolution which
includes identifying and incorporating changes to the
schema while preserving the consistent state of the
schema as well as propagating the changes to the data
associated with the schema. The methods proposed by
researchers were inadequate in characterizing, localizing
and isolation of changes to the database. The nature of
change (deletion, addition or modification) cannot be
known. The proposed approach uses a method by which
changes can be localized, characterized and recovered.
This approach uses the concept of fragile watermarking to
capture the changes and design matrix is used to represent
the database schema. An algorithm is proposed for
incorporating the changes related to Schema and it can
easily be extended to find out the integrity preservation in
the presence of schema changes.

Keywords — Fine Grained Isolation, Design matrix,
Schema evolution.

1. INTRODUCTION

With enormous advancements in database technology there
is a need to integrate database systems developed earlier.
This is due to the instability of database systems in their
initial implementation. The reason for this instability is due
to the design of database schemas in a self-contained way,
which results in serving a limited application domain. Hence
integration is required for transforming and integrating the
source schemas in to global schemas. But incorporating such
integrations will initiate a variety of changes in database
schemas and also becomes more complicated if large
quantities of data are involved. Such types of changes are
becoming relatively frequent in such database integrations
and often becoming troublesome for database administrators
and developers.
Many researchers believed that there is an increase in
programmer’s effort due to database schema modifications
which is because of the differences in the estimates with
respect to resources, effort and cost. Hence the modification
in the database schemas leads to schema evolution [1]

problem which is observed while propagating schema
change. With these issues, the researchers suggested that
there should a mechanism to ensure of the integrity of the
database schema while performing such modifications. It is
necessary to propose a method which considers the issue of
schema changes by preserving the structural consistency of
database schema. Therefore it understood that there should
be a mechanism for detecting and localizing the schema
changes. The mechanism proposed in this paper is the
concept of fragile watermarking technique. Most of the
digital watermarking techniques are used in the context of
databases is only for copy protection, whereas the proposed
fragile watermarking scheme allows legal changes to the
database schema and protects the database from illegal
changes and hence it can is called fragile watermarking
[13]. It is observed that technique of fragile watermarking
on database schemas is appropriate because the database
relations contain independent tuples with little redundancy
and with no enforced relationship between the tuples. Unlike
the highly correlated multimedia data and image data whose
relative positions are fixed. All these issues are considered
as a new technical challenge for fragile watermarking in
database schemas. A fragile watermark is some kind of
information that is embedded into underlying data for
change detection, localization, ownership proof, and/or
traitor tracing purposes. Fragile watermarking consists of
two basic processes: Watermark insertion and Watermark
detection. For watermark insertion, a key is used to embed
watermark information into an original database by
producing the watermarked database which is used for
publication or distribution. With the appropriate key and
watermark information, the watermark detection process is
applied to any modified/changed database schema for
determining its legitimacy. After detecting and localizing
the changes to the database schema, it is checked against for
various kinds of integrity constraints to ensure the integrity.
After preserving the integrity of the database, the behavior
of the changes or modifications is known. If the changes are
consistent, they are allowed otherwise they are discarded. If
the changes are allowed, the effect of these changes on the
application are studied and triggered. Thus the databases can
always be ensured of integrity. In this proposed paper the
database schema is represented in the form of a design
matrix. Design matrices [15] were a better choice the
amount of information in each cell is reduced to one of 4
values. This makes it easier to encode it for recovery later. It
is easy to characterize what changes occurred using this
method, since more information about the type of attributes
is stored in a design matrix. It is very easy to check for

410 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

integrity constraints using design matrices since the
relationships between the attributes in each table are clearly
shown. Hence the proposed work in this paper can be
summarized as follows: The database schemas are converted
into design matrix representation and the watermark is
inserted. Then some structural changes were applied on the
database schema and these changes were identified by
verifying the watermark. Then the changes which are
consistent are allowed by tracking the database schema by
ensuring its integrity. Experimental results of the proposed
scheme are shown

Section 2 presents the related work and different issues
encountered while addressing the Problem. Section 3
explains the proposed algorithms with some notations used,
Section 4 is about Analysis of the present scheme, and
Section 5 is about Conclusion and Future work.

2. RELATED WORK AND SOME ISSUES
The Schema evolution problem was first addressed

based on traditional database systems. Most of the database
systems support a few simple changes automatically, such as
adding or deleting record fields, only a few systems [1][2]
support more general transformations. In these cases, the
administrator/developer is responsible for explicitly
describing how to convert the data from its old format to its
new format using a special purpose data translation
language. This approach is a powerful one, but creation of
the transformer is a manual process. Most of the researchers
addressed problems related to Core Schema Evolution
which includes identifying and incorporating changes to the
schema while preserving the consistent state of the schema
as well as propagating the changes to the data associated
with the schema. Shneiderman and Thomas examine a
system and architecture for automatically converting
relational databases following changes to its structure [2].
Borgida and Williamson discuss a method that incorporates
exceptional facts. These are facts that are consistent with the
real world (which has changed), but do not conform to the
current structure of the database (which has not changed)
[4]. Takahashi describes the concept of hybrid relations to
support schema evolution [5]. The research is relatively
simple in that it only describes the change due to addition of
new attributes to an existing relation. A commercial
relational database management system, Evolutionary
DBMS (EDBMS) has been developed by Information
Research Associates [3]. This system uses temporal
concepts to support schema evolution, specifically the
evolution of data definitions and supports dynamic
restructuring of the schema. Dadam and Teuhola's Non-
First-Normal-Form (NF2) model examines schema
evolution using temporal definitions [6]. The NF2 relational
database permits the storage and manipulation of non-first-
normal-form relations. The NF2 with temporal definitions
handles time in the form of versions of data and schemas.
Clifford and Croker introduce the concept of lifespan in
their description of Historical Relational Data Model
(HRDM) [7]. Each attribute value in HRDM is associated
with a lifespan parameter that defines its period of existence.
Ariav examines schema evolution using the Temporally
Oriented Data Model (TODM) [8]. The central data
structure proposed in this research is the data cube. The data

cube is a temporal data construct in which time, objects, and
attributes form the primary dimensions of the stored data.
Roddick describes a model that incorporates temporal
support into the metadata of the relational database [9].
Specifically, the addition of this temporal support has been
investigated with reference to semantics of null values, its
effect on integrity constraints and its impact on query
languages. Scalas et. al. discuss another model for schema
evolution in temporal relational databases [10]. Changes are
classified into two types: redefinition and revision. In
redefinition, the schema after the change is completely
independent of the schema before the change. Applying
changes to the most recent schema “revises” the schema.

3. PROPOSED ALGORITHMS AND

EXPLANATION
 The algorithm proposed in this paper is a hybrid
approach for localizing and recovering from changes. To
achieve this, design matrix representation is used for
database. This algorithm considers the following:

a) The row and column values depend on the hash value of
the respective names of the rows and columns. The
amount of information in each cell is reduced to one of
4 values. In this paper the design matrix was
represented in the following way.

i. No attribute: 0 -> 0
ii. Attribute: A ->3
iii. Foreign key: F ->11
iv. Primary key: P -> 17

b) It is very important to choose the appropriate numbers
to be multiplied into each cell. The characteristics that
these numbers should possess are as follows.

i. The numbers are not dependent on the order of
the rows or columns in the database

ii. The numbers are not dependent on the number
of rows or columns in the database

iii. It should be possible to determine these
numbers given a new database

iv. These numbers should help in characterizing
the changes occurring to the database.

c) Based on these requirements, the scheme used to find
the numbers is:

i. A number for each row and column is found
by HMAC(row name or column name)%100

ii. Assume that the maximum number of columns
possible is 100. (this number should be
determined based on the application)

iii. The preliminary number for each cell[i][j] is
found by row number[i] * maxCol +column
number [j]

iv. After finding the preliminary number, it should
be checked if it is a multiple of 3, 4,7,11 or 17
If it is a multiple, 1 is added to the number
until the number is not a multiple.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 411

d) To recover the database if the previous watermark is
known, a set of simultaneous equations must be solved.
Since only one DDL statement is being considered at a
time, only one row is changed at a time though multiple
columns may be changed. In this case:

i. Maximum number of changes (variables): number
of attributes (IAttr)

ii. Number of equations available: IAttr + 1

Hence, any single change in the form of DDL statement is
recoverable. Since it uses the concept of fragile
watermarking and design matrix representation for database
and both the concepts were combined to form a hybrid
approach for solving the schema evolution problem.

The notations used in this approach are given below:

IAttr Total number of attributes
ITables Total number of Tables
StrTable names A string array of table names

StrAttributes names A string array of attribute names
MaxCol the maximum number of attributes

expected
Ow Old Watermark
Nw New Watermark
Nd New design matrix
K Watermark embedding key

3.1 Convert to a design matrix:

 Design matrix is a representation of the database schema
which allows us to easily see the relationships between the
tables and the attributes. This representation allows for easy
checking of integrity. The main advantage of using this is
that it reduces the amount of information stored in each cell
so that it is easy to retrieve lost information.
 Consider the database:

T1: A1, A2*, A3

T2: A3, A1*, A5

T3: A2, A3*, A4

 In a design matrix representation, the above database will
be represented as:

Where P = primary key, F = foreign key, A = attribute,
T = Table etc.

 In this representation, each cell can hold only 1 of 4 values.
The design matrix was encoded with digits instead of

characters with the following substitutions: a) P = 17. b) F =
11. c) A = 3. d) Otherwise 0 and hence the previous
database will look like this:

3.2 Architecture of the proposed Algorithm

Figure 1: Architectural diagram

3.3 Proposed Algorithms
3.3.1 Algorithm for Convert to a design matrix

//Algorithm for Convert to a design matrix
Input: Uninitialized database Table
Output: Initialized design matrix
Method:
1. for i in 0 to ITables do StrTable names[i] � TableNames[i];
2. end for
3. for i in 0 to ITables do
4. for j in 0 to IAttr do
5. Strncpy (temp,strTables[i][j]);
Call the lookup function to check if this attribute is already
there in the String Attributes Names (pos=lookup ()).
6. if pos is equal to size then size++; end if
7. if pos is greater than max
8. max=pos;// Accordingly set the value of the

 Matrix[i][pos] end if
9. if the attribute is a primary key then Set the value to 17

end if
10. if the attribute is a foreign key then Set the value to 11

end if
11. if it is attribute then Set the value to 3 end if
12. max=max(lookup());
13. IAttr=max+1;
14. end for
15. end for

 A1 A2 A3 A4 A5

T1 P F A

T2 F P A

T3 P F A

 A1 A2 A3 A4 A5

T1 17 11 3 0 0

T2 11 0 17 0 3

T3 0 17 11 3 0

412 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

3.3.2 Algorithm for Finding Watermark:

//Algorithm for finding watermark
 Input: groups of data to be provided as input
 Output: if any changes occur localized and characterized
 Method:
1. Find the correct numeral for each cell
2. for i in 0 to ITables do RowNum[i] = HMAC (StrTable

Names[i]) % 100; end for
3. for i in 0 to IAttr do ColNum[i] = HMAC (StrAttributes

names[i]) % 100; end for
4. for each cell in the matrix
5. Numeral[i][j] = rownum[i]*maxCol + colnum[j]; end

for
6. while Numeral[i][j] is multiple of 3,7,4,17 or 11
7. Numeral[i][j]++; end while
8. Multiply each cell of the design matrix with the numeral
9. for each cell
10. Numeral[i][j] = numeral[i][j]*dmat[i][j]; end for
11. Find the row and column watermarks
12. for i in 0 to IAttr do, ColWatermark[i] � 0;
13. for j in 0 to ITables do, ColWatermark[i] =

ColWatermark[i] + Numeral[i][j]; end for end for
14. for i in 0 to ITables do, RowWatermark[i] �0;
15. for j in 0 to IAttr do, RowWatermark[i]=

RowWatermark[i] + Numeral[i][j] end for end for

3.3.3 Algorithm for recovery of the table

//Algorithm for recovery of the table
Input: table of data
Output: recovered table
Method:

1. if the number of row watermarks in Ow < number of
 tables in Nw, then a DROP statement was executed.

2. for i in 0 to IAttr do
3. diff[i] = Ow.ColWatermark[i] – Nw.ColWatermark[i]
4. Add a new row to the bottom of the design matrix
5. if diff[i] = = 0 then value of the cell is 0 end if
6. if diff[i] % 3 == 0 then value of the cell is 3

 (attribute) end if
7. if diff[i]%11 == 0 then value of the cell is 11

 (foreign key) end if
8. if diff[i]%17 == 0 then value of the cell is 17

 (primary key) end if
9. end for
10. end if
11. if the number of row watermarks in Ow > number of

row watermarks in Nw, then a CREATE statement was
executed.

12. Compare the new watermarks with the old watermarks
 and determine which row was added

13. Match the corresponding attributes
14. Delete that row to get the original table end if
15. if the number of row watermarks in Ow = number of

row watermarks in Nw, then an ALTER statement was
executed

16. Compare the row watermarks of Ow and Nw find
 which table is changed.

17. Match the corresponding attributes
18. To recover the original row:
19. if the diff = 0, then no change
20. Otherwise use the following table
21. end if

 4. ANALYSIS

There are certain features like watermark insertion,
watermark detection & verification, performance to be
analyzed in the present scheme .They are as Follows

Time Analysis

4.1 Watermark Insertion

Size of the Schema

Analysis on watermark Insertion

1. The Time Complexity on the whole is O(|v| x |γ|),
where v is Average no. of Tables in a group and γ
is no. of attributes in a relation

2. This graphs shows the time complexity in
embedding a watermark vs the size (in terms of
Big O notation)

3. This shows that as size of schema progresses time
complexity increases in a polynomial fashion

4. Here the size of schema may be taken as no. of
tables or total no. of attributes in the schema

5. On the whole, since it is in polynomial time, the
algorithm is scalable.

4.2 Watermark Detection and Verification

 Size of Schema

T
im

e

T
im

e

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 413

 Analysis on Watermark Detection and
Verification

1. The Time Complexity on the whole is O(|v| x |γ|),
where v is Average no. of Tables in a group and γ
is no. of attributes in a relation

2. This graphs shows the time complexity in finding a
watermark and verification vs the size (in terms of
Big O notation)

3. This shows that as size of schema progresses time
complexity increases in a polynomial fashion

4. Here the size of schema may be taken as no. of
tables or total no. of attributes in the schema

5. On the whole, since it is in polynomial time, the
 algorithm is scalable.

4.3 PERFORMANCE ANALYSIS

4.3.1 ALTER

Analysis on ALTER
This graph shows that that multiple changes made
in the same group can be detected but Localization
of changes becomes difficult as the size of schema
progresses

4.3.2 CREATE

Analysis on CREATE
From the above graph it can be inferred that any
number of columns added can be detected even as
the size of database increases.

4.3.3 DROP

Analysis on DROP
From the above graph it can be inferred that
columns dropped can be detected even as the size
of database increases.

4.3.4 CHARACTERIZATION OF CHANGES (DDL)

Analysis:
From the above graph it can be inferred that
columns added or dropped can be detected and not
all the modifications made to the attribute values

can detected and localized.

5. CONCLUSION

 In this paper we proposed an hybrid approach for
localizing and isolation of schema changes in relation
database based on fragile watermarking concept. We
also discussed the design matrix approach for
localizing, isolation of schema changes in providing
solution for schema evolution problem.

References:

[1] NAVATHE, S. Schema analysis for database
restructuring. ACM Transactions on Database
Systems. 5, 2 (June 1980), 157-184

[2] SHNEIDERMAN, B. and THOMAS, G.
Architecture for automatic relational database
system conversion. ACM Transactions on Database
Systems. 7, 2 (June 1982), 235-257

414 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

[3] EDBMS - The Evolutionary Database
Management System - concepts and summary,
Technical Report, Information Research
Associates, Austin, Texas, (1983)

[4] BORGIDA, A. and WILLIAMSON, K. E.
Accommodating exceptions in databases and
refining the schema by learning from them.
Proceedings of the 11th Very Large Databases
Conference. Pirotte, A. and Vassiliou, Y (Ed.),
Stockholm, Sweden, (August 1985), 70-81

[5] TAKAHASHI, J. Hybrid relations for database
schema evolution. Proceedings of the 14th Annual
International Computer Software and Applications
Conference. Knafl, G. J. (Ed.), Chicago IL, USA,
(1990), 465-470

[6] DADAM, P. and TEUHOLA, J. Managing schema
versions in a time versioned non-first normal form
relational database. IBM Scientific Research
Center Tech. Report 87.01.00, Germany, (1987)

[7] CLIFFORD, J. and CROKER, A. A Historical
Relational Data Model (HRDM) and algebra based
on Lifespans. Proceedings of 3rd IEEE Int.
Conference on Data Engineering, Los Angeles CA
(1987), 528-537

[8] ARIAV, G. ‘Temporally oriented data definitions -
Managing schema evolution in Temporally
Oriented databases’, Data and Knowledge
Engineering, 6, 1 (1991), 451-467

[9] RODDICK, J.F. Dynamically changing schemas
within database models. The Australian Computer
Journal, 23, 3(1991), 105-109

[10] SCALAS, M. R., CAPPELI, A., and DE CASTRO,
C. A model for schema evolution in temporal
relational databases. Proceedings of the European
Conference on Computers in Design,
Manufacturing and Production (CompEuro’93),
IEEE Computer Society Press, (1993), 223-231

[11] RODDICK, J.F, ‘Schema evolution in database
systems- an updated bibliography’, Technical
report (1994) CIS-94-012. School of computer and
Information Science, University of South Australia

[12] HUIPING GUO, YINGJIU LI, ANYI LIU,
SUSHIL JAJODIA. ‘A fragile watermarking
scheme for detecting malicious modifications of
database relations’. Information Sciences: an

International Journal, Volume 176 Issue10, May,
2006, Elsevier Science Inc. New York, NY,USA

[13] YINGJIU LI, HUIPING GUO AND SUSHIL
JAJODIA. ‘Tamper Detection and Localization for
categorical data using fragile Watermarks’,
Proceedings of the 4th ACM workshop on Digital
rights management, 2004, ACM, New York, NY,
USA

[14] YINGJIU LI, Database watermarking: systematic
View, Handbook of Database Security,
Applications and Trends, 2008, Springer US

[15] SANTIAGO GOMEZ, HOANG DUONG,
‘Towards a schema representation through design
matrices’, Proceedings of the 2005 Australian
conference on Software Engineering, IEEE
Computer Society Washington, DC, USA,2005

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 415

A Text Messaging Pay For Parking Service (iParked.ca)
D. Deugo1 and N. Matic2

1 The School of Computer Science, Carleton University, Ottawa, Ontario, Canada
2 Espirity Inc., Ottawa, Ontario, Canada

Abstract - In this paper, we present a case study of the
developerment of the iParked.ca parking service. We discuss
the service and its intillectual achievements. We also examine
its uniqueness and originality and the steps taken and timeline
to develop and launch the service.

Keywords - SMS; Parking; Mobile Phone;

1 Introduction
In this paper, we present a case study of the development

of the iParked.ca parking service. iParked.ca [1] is a Short
Message Service (SMS) text messaging based parking service
that has four simple steps that enable users to take advantage
of the ease, comfort and safety of paying for their parking
using their mobile phones. The steps, shown in Figure 1,
include a one-time, on-line registration, paying for parking
using one’s mobile phone, receiving expirations notifications
on one’s mobile phone and receiving transaction receipts via e-
mail.

	

	
Figure 1. iParked.ca User Steps

After registering one’s mobile phone number, default
license plate and credit information at iParked.ca, a user can
pay for parking using their mobile phone by sending text
messages similar to “car p2 2h” to the iParked.ca short code
727533, the numbers which correspond to the letters PARKED
on one’s mobile phone keypad. The format of the message
includes a vendor (“car”, for example, is Carleton University’s
vendor id), the lot/zone (p2) identifier and the duration (2h).
This format supports multiple vendors, lots/zones, and
durations, such as 90m for ninety minutes. Another message
format enables users to pay for parking for an automobile other
than their default-registered license plate. After confirming a
parking request by sending a text message to the user, the
service sends the user an e-mail containing their credit card
receipt. Finally, ten minutes before the user’s parking is about
to expire, they are sent a warning text message of this fact.
Vendors signing up for the service choose a three-character
identifier, e.g. “car” for the Carleton University, and provide
the lot/zone identifiers, the payment schedule for each
lot/zone, and merchant information.

By linking users and vendors, the service enables users to
pay for parking using their mobile phone from any
environment they feel safe in: their warm, dry car, at lunch,
from a meeting, from their office, from an appointment, or
wherever they happen to be. In addition, they do not have to
use or expose money or credit cards to pay. When it is cold,
when it is raining, or when a user cannot get back to their car
in time, they can simply and easily pay or renew their parking
using their mobile phone. iParked.ca is one of the first of its
kind in North America.

The remainder of the paper is organized as follows. Section
2 provides a description of the service and the intellectual
achievements required to overcome problems in the
development of the service. Also include is a discussion of the
service’s uniqueness and originality. Section 3 describes the
timeline up until the launch of the service. Sections 4 and 5
discuss the commercialization and impact of iParked.ca.

2 Description
iParked.ca pay-by-text parking solution is a trademark of

Espirity Inc. [4], and fully developed in Ottawa, Canada. For
parking payment processing, the solution uses a payment
gateway/acquirer that is fully compliant with the PCI Data
Security Standard (PCI DSS). For incoming SMS text
messages, the solution uses a certified text messaging
aggregator as per standards defined by Canadian Wireless
Telecommunication Authority (CWTA) [2] that manages and
administers Canadian short codes.

From the user’s perspective, the first step in using the
system is registration, available at the iParked.ca web site.
Registration is free and is required only once. During
registration, a user's mobile phone number, e-mail address,
language indicator, promotions indicator (for receiving
notifications about promotions and specials), license plate and
province, and billing information (VISA, Master Card are
supported) are captured. Billing information is securely stored
in the payment gateway. iParked.ca partners with a payment
processing gateway vendor to deliver a fully PCI Data Security
Standard (DSS) [3] compliant payment solution. Customer
sensitive credit card information is not stored in the iParked.ca
infrastructure. iParked.ca accesses this information through the
gateway’s electronic cash register interface technology. The
gateway vendor is a level 1 PCI DSS certified vendor.

iParked.ca users can, at any time, reset their password by
texting the message “resetpassword” to the short code 727533
(PARKED). The system will verify the user based on their
phone number, reset the user’s password and send a new one
to the e-mail account specified in the user’s iParked.ca profile.

416 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Once registered, users can text parking request messages to
the short code 727533 (PARKED) to pay for parking at any
parking location using the iParked.ca service. The parking
request is in the format "car p1 90m" where "car" indicates
Carleton University as a vendor (unique three letter identified
designated for Carleton University in the iParked.ca system),
"p1" indicates unique parking location (in this case parking lot
P1), lot, zone or space for which the parking payment is being
made, and "90m" indicates the parking duration specified in
minutes (in this case it would be for 1.5 hours of parking).
Once the text message is received, the user is verified based on
the mobile phone number. If the user is not registered, a text
message is sent to the user explaining the registration process.
The invalid request is logged within the iParked.ca system for
later error reporting and administrative support. If the user is
registered, the system validates the parking request. If the
parking request format and details are invalid, a text message
in the user's language of choice is sent both to the user's mobile
phone, and to his or her e-mail account, and the invalid request
is logged within the iParked.ca system. If the parking request
is valid, the parking payment is requested from the payment
gateway. For a billing error, a text message in the user's
language of choice is sent to the user's mobile phone, an e-mail
is sent to the user's e-mail account, and the invalid request is
logged within the iParked.ca system. For a successful payment
transaction, a parking booking is logged, a confirmation text in
the user's language of choice is sent back to the user's mobile
phone, and a receipt is sent to the user's e-mail account. The
parking confirmation text message contains details of the
parking transaction such as license plate and province, parking
expiration time, and parking payment, as shown in Figure 2:

	

	
Figure 2. Sample iParked.ca Booking

The payment gateway deposits payments to Espirity’s
merchant account. When users receive their monthly credit
card statement, parking charges are indicated with “Espirity
(iParked.ca)” as a merchant. Should a vendor desire credit card
statements showing parking vendor specific information of
parking charges, the parking vendor must open a merchant
account with our gateway. In this case, the parking payment as

well as the transaction fee charged by iParked.ca will be
deposited into the parking vendor’s merchant account.

Ten minutes before a user’s parking expires, a text message
is sent to the user's mobile phone notifying the user about the
parking expiration. At this time, the user can choose to send
another parking request message to extend the parking. If the
parking extension is allowed based on the parking rules, the
system will make another booking and the remaining time
from the original booking will be grandfathered.

For the parking request such as "car p1 90m", the booking
is made for the default license plate and province from the
user’s account. Should the user desire to make a payment for a
different license plate, a parking request must also contain the
license plate and the province. For example "car p1 90m
ddnm101 on" indicates 90 minutes of parking at P1 parking lot
at Carleton University for the Ontario license plate DDNM101.
Figure 3 illustrates the typical workflow from a user’s
perspective.

From the parking vendor's perspective the system allows
access to our servers through a web interface for running
various reports on parking bookings associated with the
parking vendor. This ability is available from a link on the
Espirity Inc. web site. The server’s functionality becomes
available once the parking vendor is known to the iParked.ca
system. The functionality includes accounting and parking
usage reports, available in web or Excel formats. These reports
include daily and weekly usage of the system with details
associated with the usage, such as a booking’s location, user’s
name and phone number, license plate, start parking time, end
parking time, and the parking payment. The administrative
functionality also allows for a search of a booking based on a
phone number for a given day.

	

	
Figure 3. Booking Workflow

The parking vendor has access to the mobile web interface
that Parking Enforcement Officers can use for validating
parking bookings based on a vehicle's license plate, or by
viewing a report of all active bookings for a given parking
location. Figure 4 illustrates typical workflow in the system
from the Parking Enforcement Officers’ perspective.

The iParked.ca solution has the capability to broadcast
messages to its users’ e-mail accounts. This is used for parking
promotions and special events. All users wanting to receive
such notifications receive them. The iParked.ca also has the
ability to send notifications via Facebook and Twitter to all
users following iParked.ca activities on these networks.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 417

	
Figure 4. Parking Enforcement Officer’s Workflow

2.1 Intellectual Achievements
The creation of the iParked.ca service required solutions to

several issues. The first related to timing and simplicity. To be
accepted, the service needed to be easy to use and responsive.
The issue of simplicity relates to how easy it is for users to
register and book their parking. Our profile registration and
update web site require a minimum amount of information
from users. This information includes their phone, address,
credit and default license plate information. By registering this
information, we minimized the amount of information needed
from users when they text message to book a parking. As
mentioned earlier, users text a vendor-id, lot/zone and duration
to make a parking booking. If they want to park a car other
than the one in their profile, they add the license plate and
province information to the text message. These two formats
are easy to remember, and do not rely on credit information in
insecure text messages. To help validate our assumption, we
log all messages sent to the service in the wrong format. If too
many users were sending illegal messages, it would be quickly
apparent that our format was too complicated. We have found
that very few users send wrongly formatted messages. Most
mistakes relate to spelling, rather than formatting errors. For
example, rather than sending "car p2 2h", they might send "cas
p2 2h" that is a simple spelling mistake made with their mobile
phone’s keyboard. We immediately send users of an invalid
message an e-mail with a description of valid message formats.
We find this attention to detail and responsiveness to users has
helped with the overall acceptance of our system.

The issue of responsiveness also meant that we had to
process and respond to the user’s request as quickly as
possible. Our system takes about 2.5 seconds to process a
request. The majority of this time is taken by our credit-card
gateway processing the transaction. Text messages sent to our
short-code are processed by our SMS aggregator, which both
receives and sends our SMS message, in less that a second.
This means that we can respond to a request in as little as four
seconds. The only delay in our system is when carriers have a
backlog of SMS messages they need to process. Users can
always check their profile to see all their bookings made in the
last thirty days, providing up-to-the-second information.

To keep within the four-second timeframe of processing
parking requests, the system was developed so that any
number of servers could be added to process text messages
from one, two, or all vendors. This means that as the load of
parking booking requests increases, we simply add more

servers to handle the load. And, if extra capacity exists, a
single server can handle the load from multiple vendors. This
feature is important for us, as we knew it would be difficult to
establish loading data until vendors signed up for the service.
However, we wanted to be able to service any vendor, no
matter what the load. Through experimentation, we determined
our request processing time and designed the service around
that number so we could always respond to requests.

Registering and keeping credit information on a corporate
server is permitted, but leads to PCI-DSS compliance issues.
To store credit card data on one’s servers a company must
complete a l self-assessment questionnaire (SAQ) and have it
reviewed. This SAQ requires that servers are locked down
almost as tightly as Fort Knox! In our system, we solved this
problem by not storing credit card data. We developed the
application so that it offloaded the credit information to the
responsibility of our credit card gateway, which is PCI DSS
certified. The result of this approach is that users’ payments for
parking are safe and secure, as is their credit information.

The issue of credit information is compounded because we
needed to support payment to the merchant accounts of other
vendors. Our solution supports multiple vendors and merchant
accounts, while still providing secure and safe storage of credit
information using our credit card gateway.

The final issue we faced was making our service available
at an affordable price. People were already familiar with
paying a service fee to text message their votes to enterprises
such as Canadian Idol. In an extreme case, we knew that users
would pay over $10.00 for the convenience of booking event
tickets using TicketMaster.com. Our belief, which has proven
correct, was that users would be willing to pay a minimal
amount for being able to pay for parking using their mobile
phones. We make a minimal amount on every parking
transaction. While we would never have enough transactions to
be profitable from a single parking lot, after registering
multiple lots, vendors and entire cities, we can be profitable.

In summary, we had many hurdles to overcome to make
our service possible and a success. Whatever we did, we knew
we could charge a minimal service fee. The service had to be
simple and easy to use, and be responsive. The service also had
to secure credit information. Through experimentation, we
discovered we could provide an affordable service that was
very responsive. Through continued thought about the issues
and research on possible solutions, we developed a way to
safely handle users’ credit information. Through the logging of
users errors, we have concluded our solution is simple and
easy to use, and that the average consumer can use our service
with confidence and ease.

2.2 Uniqueness and Originality
While the use of mobile phones to pay for parking using

text messages is not unique in the world, it is in North
America. iParked.ca is the first system of its kind that provides
a text messaging solution for booking and acknowledging
parking requests, and sending expiration notifications. The
service was first piloted at Carleton University in Ottawa, on
July 5, 2010. Since then it has seen continued growth in user
registration and usage, as shown in Figures 6.

418 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

The service can be broken into four feature areas. The first
is user profile registration and updating. The second is the
ability for vendors to validate a user’s parking and receive
daily and weekly reports on revenue collected from parking.
The third area is SMS text messaging for booking parking
requests. The final area is vendor parking payment
calculations.

From the iParked.ca web site, users can both create and
update their profiles in English or French. The information
collected is for the purpose of managing their profile,
contacting them, identifying their mobile phone, their default
car’s license plate, and their credit information. We have kept
this information to the bare minimum so user profile creation
and revision is fast and easy. We have found that the most
difficult part of the registration process is when users fill in the
reCAPTCHA [5] text at the bottom of the page above the
Register button. This is required to stop computerized systems
from automatically creating thousands of bogus users. In
addition, either from their mobile phone by sending the “stop”
message, or from their profile by marking the account inactive,
users can stop the process of using their mobile phone to pay
for parking. This is an important feature if their mobile phone
is lost or stolen.

After talking with vendors, it was established that they
required a good reporting mechanism to see the money
collected from parking bookings and that they required an easy
way to validate parking. We provide a web site where vendors
can get accounting information and expiration information. In
particular, vendors can gather information on expirations for
the current day based on lot/zone ids. The report lists active
bookings and shows license plate, province, parking location
and expiration date and time. The active bookings report looks
as follows:

DDNM101, Ont, p1, X:13:51:33, 10-04

DDNM102, Ont, p1, X:14:51:33, 10-04

DDNM103, Ont, p1, X:15:51:33, 10-04

DDNM104, Ont, p1, X:16:51:33, 10-04

DDNM105, Ont, p1, X:17:51:33, 10-04

Another page lets vendors search by license plate, and two
other pages are specific for gathering the same information
from small screen mobile devices. Vendors can retrieve
parking reports for the current day or week, based on a phone
number or just the day or week. One such report is shown in
Figure 5, containing only sample names, plates, and phone
numbers. The report gives vendors everything they need to
verify parking and the amounts charged to users and their
mobile phones.

The SMS text messages, as already described, are unique
to iParked.ca. They contain the minimum amount of
information to park, because we know the default plate and
credit information from the profile associated with the user’s
mobile phone number. If required, users still have the option to
park a different car provided they add the plate information

and province abbreviation to the message. We believe nothing
could be simpler.

2010-10-06

Request Phone
Number

License Lot Start
Time

End
Time

Amount

car p1 3h +16441234 ABC123 p1 2010-
10-06
8:10
AM

2010-
10-06
11:10
AM

$9.50

car p2 6h +11231234 DEF456 p2 2010-
10-06
8:17
AM

2010-
10-06
12:17
PM

$12.50

car p2
80m

+12221234 XYZ122 p2 2010-
10-06
8:47
AM

2010-
10-06
10:07
AM

$4.50

car p2 1h +13331234 ABC123 p2 2010-
10-06
8:56
AM

2010-
10-06
9:56
AM

$3.50

 Total $30.00

 Vendor
Total

$28.00

Total
Requests:

4

Figure 5. Figure 8. Sample Report

The final part that is unique to our system is our parking
calculators. Vendors provide us with the three-letter id that
they want, such as “car” for Carleton. They provide us with the
different lot/zone ids they would like, such as “p1”, “z1”, or
even just “a”. The ids can be as long or as short as vendors
want, although we encourage short ids to simplify parking
request messages. This allows less room for error. Vendors
also provide us with the rate information for each lot/zone. We
then take this information and create a custom-parking
calculator for the vendor that computes parking charges.
Changes can be made anytime to the calculator as lots/zone are
added, removed, renamed, or are given a new rate.

3 Development
While the development of a service like iParked.ca will

never be finished, as new features are added and current ones
enhanced, the service is now in full operation at Carleton
University, Algonquin College, and running as a pilot at Trent
University with discussions underway with other universities,
colleges, cities and private parking operators. In the following
sections, we describe the timeline that took us from the initial
idea to production.

3.1 Milestores
• Discussion about paying for parking using SMS

• Developed plan for a pilot

• Met with SMS message aggregator

• Met with vendor to discuss how parking works on a
campus

• Began discussions with Credit Card Payment Gateway

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 419

• Signed deal with SMS message aggregator

• Short code approved

• Production short code activated on participating
networks

• Merchant account approved

• Domain name iParked.ca secured

• Approached vendor about piloting service

• Vendor agreed to pilot the service

• Applied for iParked.ca trademark

• Pilot started at vendor site

• Pilot extended full service

• Received the iParked.ca trademark.

• Applied for iParked.com trademark.

• Domain name iParked.com secured.

3.2 Discussion
The development of the iParked.ca service took almost two

years from idea to pilot. Initially, we found ourselves having
difficulty with a pay-and-display machine. It was cold and
raining one night and we could not get the machine to take a
credit card. We had recently seen in other parts of the world
that it was possible to pay for parking using one’s mobile
phone. This conversation raised two questions: Had anyone
produced a parking pay-by-text service in Canada, and if not,
why? The answer to the first was no, but we could not find the
answer to the second. So we started the development of our
service and the searched for an answer as to why it had not
been done already.

After coming up with a specification for the functionality
of the service, we started to look at the unknown properties of
the system that we decided to approach first to decrease risk.
At the top of the priority list was how to automate the sending
and receiving of SMS text messages. In the early development
stage we purchased a wireless 3G device capable of sending
and receiving text messages. We developed software for the
machine to test its functionality and soon realized that the
monthly cost of the carrier connection we needed to pay to
support the levels of expected SMS messaging would not
enable us to keep the service affordable for end users and
vendors. In addition, the amount of new software needed to
support this approach seemed too large. Shortly after we gave
up on the idea of developing our own software for sending and
receiving text messages and decided to find an SMS message
aggregator we could use.

Next we researched SMS aggregators, and completed the
feature requirements for our service. As we started the
development of our system, we defined an application
programming interface (API) for how we wanted to
communicate with our SMS aggregator. We then met with an
SMS aggregator with a solid reputation, to discuss their
services and our application.

Satisfied that the SMS aggregator could meet our needs,
we continued to develop our system. While we had not signed

a deal with them, we knew how to interface to their system and
developed a simulator to send and receive text messages
exactly like their real system. This enabled us to develop and
test our system, without having to commit to the early expense
of signing a contract with the aggregator.

Later we met with a university vendor to find out how
parking worked at the university. We knew that we could not
charge users much for the service but wanted to find out what
it cost a parking vendor to support their current parking
service. This meeting revealed that the main expenses were the
cost of servicing their pay-and-display machines and credit
card transaction/transmission fees. The meeting also provided
us with the expected number of parking events per month.
From this information, we realized that our service needed to
be inexpensive from a vendor perspective, staying well below
of the cost of buying or renting pay-and-display machines and
their corresponding service.

Next we began discussions with our credit card payment
gateway that offered everything we needed to accept credit
cards and make electronic payments. Like the SMS aggregator,
we did not sign a deal immediately. However, we did gain
access to the gateway’s APIs so we could test our system with
their payment gateway in simulation mode.

Finally, we had the software developed, tested and running
in simulation mode. It was time to get real! After further
discussions with the aggregator and gateway, we determined
that we could use their services and provide affordable service.
Not much less, but given the expected high volume of parking
events we wanted to support, we could be profitable. We
signed a deal with the aggregator to provide us with the
capability to send and receive text messages. Then, with the
help of our aggregator, the short code 727533, which spells
PARKED, was officially approved. Next we signed an
agreement with our payment gateway and received a
corresponding merchant account to perform online Visa and
MasterCard transactions. We secured the domain name
iParked.ca and developed the web site for user profile
registration and updating. We applied to trademark the name
iParked.ca that was finally granted.

We approached Carleton University with the idea of
piloting the new service. From these initial discussions,
everyone at Carleton liked the service and on June 16 2010, it
was announced that Carleton would pilot the service in lot P2.
The pilot was a success and was extended to lot P1. During the
pilot, minor changes were made to make it easier for the
parking officers to use their hand-held devices to validate
parking. Since the beginning of the pilot, we have seen week-
by-week growth in user registration and weekly usage.

Looking beyond the Canadian market, we secured the
domain name iParked.com and applied for and were granted
the corresponding trademark.

4 Commercialization
The first pilot for the iParked.ca service was announced at

Carleton University on June 16, 2010 and went live on July 5,
2010. The graph in Figures 6 shows the linear growth of
registered users of the service since its start. The graph show
continued increase as more people become aware of the

420 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

service, register and use it. As the weather is cold or wet we
see greater usage.

We have been in contact with other universities and
colleges. As expected each vendor has different requirements
for parking fees. Some fees are calculated by the hour, with a
maximum four-hour time limit. Others have a flat fee paid
after a certain time such as 5:00 p.m, while other fees include a
single flat fee for the full day. In either case, our parking
calculators are customizable for each vendor’s situation. The
way parking enforcement officers operate at different
institutions is also different. Some parking enforcement
officers have wireless handheld devices that require a wireless
connection. Other enforcement officers have smart phones. In
either case, our web interface provides the data for
enforcement officers to validate parking. Since our interface
for the officers is web based, all that is actually required is a
device connected to the web.

	

	
Figure 6. Total Registration Growth

Beyond approaching cities, colleges and universities
directly, we are looking to partner with Pay & Display
vendors. We see pay-by-text as a natural extension to the pay-
and-display machines, the difference being that you do not
need to expose credit cards or money, or even be at a machine
to make your parking booking. Pay & Display vendors can use
our service to help complement theirs. And as new
technologies are developed, such as Gtechna’s automated
License [6] Plate Recognition technology, and are merged with
ours and the pay & display machines, parking and its
enforcement become easier for all parties involved.

5 Impact
The greatest impact of the iParked.ca service is that it

provides people a safe, simple, easy to use method for paying
for parking. At pay-and-display machines, a user must either
expose their money or their credit card and as a result becomes
easy prey for thieves, when out alone or at night. As one can
imagine, a user’s attention is usually fully focused on the

machine and its interface rather than on their surroundings.
When it is raining, snowing, cold, or all three, it is an
unpleasant experience to get a parking receipt from a machine.
Having to walk to the pay-and-display machine and return to
your car compounds the negative experience. With the
iParked.ca service, there is no need to expose money or your
credit card. You do not even have to get out of your locked,
warm, dry car. You are as safe as you normally are in your car.
And the parking request is completed in less than five seconds.
These features are particularly important for those with
disabilities.

In addition, when your parking expires, and you are using
the pay-and-display machines, you have to get another ticket.
With the iParked.ca service, you send another text message
booking request, taking again less the five seconds, from
wherever you are. The iParked.ca service saves you the time
that you would waste going back and forth to the machines.
The iParked.ca service also saves users the cost and
inconvenience of having to either pay or fight parking tickets,
a benefit to anyone who has ever received a ticket. The result
is that the service saves people money. Since users can make a
booking from anywhere that has mobile phone reception, we
provide a simple, easy and fast way to renew a booking. A user
will no longer have to play the game of guessing if they are
going to be ticketed because they cannot get back to their car
for another ten minutes.

The second impact of the iParked.ca service is that it will
provide jobs. As the service grows, Espirity Inc. will also grow
to support the demand for the service. Given it is currently a
very small company with only three full and three part-time
contract employees, it will need to hire office staff and
developers. It will need to rent larger office space. In short, it
will need to grow to meet the service demand. The iParked.ca
service is facilitating the birth of a service-oriented company
that is looking to expand across Canada and throughout North
America.

iParked.ca have has media coverage from across Canada
and the United States. Listed below are representative links of
articles. In addition, the service has been featured on CBC and
Live 88.5 Radio in Ottawa, and CHML Radio in Hamilton.
The following list includes samples of related news stories:

• http://www.ottawasun.com/news/ottawa/2010/06/15/1
4395616.html

• http://www.ottawacitizen.com/technology/Parking+ca
mpus+snap+with+professor/3161499/story.html

• http://www.obj.ca/Technology/2010-06-15/article-
1294871/Carleton-professor-develops-parking-
payments-by-text/1

• http://video.vancouver.24hrs.ca/archive/carleton-
unveils-text-message-payment-parking/96372747001

• http://cacm.acm.org/news/94408-parking-on-campus-
a-snap-with-carleton-professors-app/fulltext

• http://oncampus.macleans.ca/education/tag/parking-
tickets/

The response to this service has been overwhelmingly
positive. We are asked constantly asked why it took so long to

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 421

come to Canada? We are just happy we are able to make it
available now. We have asked ourselves the same question
over two years ago and the rest is, as they say, history!

6 References
[1] iParked.ca. (2012). Retrieved April 9, 2012, from http://
http://iparked.ca

[2] Canadian Wireless Telecommunication Association.
(2012). Retrieved April 9, 2012, from http://www.cwta.ca/

[3] PCI Security Standards Council. (2012). Retrieved April
9, 2012, from https://www.pcisecuritystandards.org/

[4] Espirity Inc. (2012). Retrieved April 9, 2012, from http://
http://espirity.com

[5] reCAPTCHA. (2012). Retrieved April 9, 2012, from
http://www.google.com/recaptcha

[6] GTechna. (2012). Retrieved April 9, 2012, from
http://www.gtechna.com/

422 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

SESSION

SOFTWARE QUALITY ASSESSMENT +
OPTIMIZATION METHODS + REDUNDANCY

REMOVAL + RELIABILITY ISSUES

Chair(s)

TBA

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 423

424 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Fuzzy Measure Extraction for Software Quality
Assessment as a Multi-Criteria Decision-Making

Problem
Xiaojing Wang∗, Martine Ceberio†, Shamsnaz Virani‡, Christian Del Hoyo§, Luis Gutierrez§

Computer Science Department
The University of Texas at El Paso, El Paso, Texas 79968-0518

∗ xwang@utep.edu, † mceberio@utep.edu, § cdelhoyo@miners.utep.edu, ¶ lcgutierrez@miners.utep.edu
‡ Engineering Division, Penn State Great Valley

School of Graduate Professional Studies, Malvern, PA 19355
Email: ssv1@psu.edu

Abstract—Being able to assess software quality is
essential as software is ubiquitous in every aspect of
our day-to-day lives. In this paper, we rely on existing
research and metrics for defining software quality and
propose a way to automatically assess software quality
based on these metrics. In particular, we show that
the software quality assessment problem can be viewed
as a multi-criteria decision-making (MCDM) problem.
In Multi-Criteria Decision Making (MCDM), decisions
are based on several criteria that are usually conflicting
and non-homogenously satisfied. Non-additive (fuzzy)
measures along with the Choquet integral can be used:
they model and aggregate the levels of satisfaction of
these criteria by considering their relationships. How-
ever, in practice, it is difficult to identify such fuzzy
measures. An automated process is necessary and can
be used when sample data is available. We propose
to automatically assess software by modeling experts’
decision process: to do this we automatically extract the
corresponding fuzzy measure from samples of the tar-
get experts’ decision. We were able to improve previous
approaches to automatic software quality assessment
that used machine learning techniques.

I. Introduction
Pfleeger summarizes software quality assessment in

three ways [16]:
1) The quality of product;
2) The quality of process; and
3) The quality in the context of the business environ-

ment.
This paper focuses on software product quality assess-

ment based on direct measurements of code properties.
Software product quality is important because software is
present in every aspect of normal day-to-day life. Software
problems such as server breakdowns, software crashes,
and data leaks have become common occurrences. Pre-
existing software problems do not stop software spending.
Even though there are large amounts of money spent
on developing software, the quality of this software still
remains a mystery. The obvious questions therefore are:
what is software quality and how is it measured?

In this paper, we rely on existing research and metrics
for defining software quality, as presented in Section II.
Once metrics adopted, it is relatively easy to decide, for
each metrics, which piece of software is better than the
others based on the measure / satisfaction level related to
the corresponding metrics. However, even so, the problem
of assessing software quality based on several metrics
remains since it constitutes a complex decision involving
several criteria (based on metrics such as length of code,
number of classes, inter-dependence of classes).

Experts are used to assess software quality, but it is
desired that this process could be automated so as to
ensure the consistency of the assessments as well as its
timeliness (e.g., on-the-fly assessment). Such a task has
been tackled previously by Fuentes et al. [15] using a
machine learning approach. In this article, we show that
the software quality assessment problem can be viewed as
a multi-criteria decision-making (MCDM) problem, and
we propose to extract experts’ decision process using
Fuzzy Measure Extraction for MCDM.

In what follows, we start by reviewing the state of the
art in Software Quality and Software Quality Assessment
(Section II). We then provide information about theo-
retical topics that are central to our MCDM approach
(Section III) and we show how SQA and MCDM are
related, with details about our specific approach (Sec-
tion IV). We tested our approach: our strategy along
with our experimental results and analysis are provided
in Section V. Finally, we conclude and draw directions for
future work in Section VI.

II. Software Quality Assessment (SQA):
Definitions, Current Status, and Existing

Techniques

A. SQA: definitions and current status
Pressman defined software quality as “Conformance to

explicitly stated functional and performance requirements,
explicitly documented development standards and implicit

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 425

characteristics that are expected of all professionally de-
veloped software” [19].

This definition addresses two aspects of software quality.
The first is conformance to explicitly stated functional
and performance requirements and explicitly documented
development standards. These can be found in the require-
ments document developed between the customer and
client. This requirement can be measured by counting the
number of columns and comparing the data type to that
stated in the requirements data. The performance require-
ments are also measurable. For example, the time a soft-
ware product takes to complete a given task is a measure
of performance. Functional and performance requirements
and explicitly documented development standards are thus
measurable.

The second aspect of software quality addressed in this
definition is the implicit characteristics of all profession-
ally developed software. These are characteristics such as
reusability or flexibility. These implicit characteristics are
also known as quality factors. Most software engineers,
programmers and managers believe that software quality
factors are best judged by experts. However, research has
shown that expert judgments are often inconsistent and
subjective. For example, experts such as Lorenz and Kidd
considered multiple inheritances (software property) as a
sign of bad quality code, but multiple inheritance is widely
accepted in the programming community ([10]). Inconsis-
tent expert opinion makes judgment of implicit character-
istics such as reusability difficult. There is no quantitative
measurement for quality factors such as reusability. This
subjective aspect of software quality results in making
software quality management difficult.

Solid information regarding the quality of the software
product is difficult to estimate. There is currently no tool
or process that uses quantitative information to calculate
quality factors for software products. This lack of solid
information creates problems with software project man-
agement.

Sommerville elaborates that software quality manage-
ment is difficult because of the two different aspects of
software quality [20]. The explicit aspect of software qual-
ity is to some extent measurable, but the implicit aspect of
software quality is solely based on expert opinion which is
frequently inconsistent. There is a need to directly measure
the implicit aspect of software quality.

To understand the subjective estimates and the mea-
surements, it is important to understand the software
quality research.

Theoretical models define several quality factors such as
reusability and flexibility but do not quantify them. Pre-
dictive models are models based on statistical techniques
that predict characteristics such as fault density or fault
proneness using direct measurements from code (product
metrics). Predictive models predict the faults but have no
theoretical evidence to support causality. One solution to
remedy this problem is to add prediction capability to a

theoretical model. Quality factors defined in a theoretical
model are not measurable and hence cannot be predicted.
One theoretical software quality model that defined the
quality factors and linked all of them to measurable met-
rics in object-oriented software was Bansiya and Davis’s
model [2]. Bansiya and Davis’ model is more complete than
other theoretical software quality models, so it was chosen
for analysis here. Bansiya and Davis’s model defines the
quality factors and links them to QMOOD set of metrics
defined in Table I.

Although the Bansiya and Davis model provides a
solid explanation for the design quality of object-oriented
design, it presents some limitations. The major problems
with the Bansiya and Davis model are their validation
process, data used in the research and lack of prediction
capability.

B. SQA: Existing Techniques
Machine learning is an important aspect in predicting

software product quality because the more a classifier
can learn, the better decisions it will make in building
a predictive model [12]. Osbeck et al improved the
prediction capability using J48, Part, and Random
Forest, and the ensemble learning techniques examined
were boosting, bagging, and stacking [15].

In our work, we show that SQA can be seen as a Multi-
Criteria Decision-Making Problem problem and solved
accordingly, and that, therefore, software product quality
can be predicted by using fuzzy measures and Choquet
integral.

III. Theoretical Background
In this section, we introduce important theoretical con-

cepts necessary to later understand how SQA can be
viewed as a Multi-Criteria Decision Making (MCDM)
problem as well as why Fuzzy Measure Extraction (FME)
needs to be carried out.

A. Multicriteria Decision Making (MCDM)
Multicriteria decision making (MCDM) is the making

of decisions based on multiple attributes (or criteria).
Usually, it consists of a set of consequences, a finite set
of n criteria (or attributes), and a preference relation �
on the set of consequences.

The set of consequences X is a multidimensional space,
where X ⊆ X1 × · · · × Xn, and each Xi represents a set
of values of attribute i, where i ∈ {1, · · · , n}. For each
criterion (or attribute), there is a preference relation �i

on each space Xi, such that for xi, yi ∈ Xi, xi �i yi means
that xi is preferred to yi. Then, the preference relation of
a consequence for all criteria can be combined, using an
aggregation operator, into a global value such that the final
level of satisfaction of the consequences follows the partial
preferences. A preference over the set of consequences X
will be denoted as: ∀x, y ∈ X, x � y or y � x.

426 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

TABLE I
QMOOD model [2]

Quality Factor Definition Bansiya and Davis’s Model Metric Definition (QMOOD metric)
Reusability
Reflects the presence of object
oriented design characteristics that
allow a design to be reapplied to a
new problem without significant effort.

-0.25 * Coupling + 0.25 * Co-
hesion + 0.5*Messaging +0.5*
Design Size

Design Size (DSC)
A measure of number of classes used in the design.
Hierarchies (NOH)
Hierarchies are used to represent different
generalization-specialization aspects of the design.
Abstraction (ANA)
A measure of generalization-specialization aspect of
design.
Encapsulation (DAM)
Defined as the enclosing of data and behavior within
a single construct.
Coupling (DCC)
Defines the inter dependency of an object on other
objects in a design.
Cohesion (CAM)
Accesses the relatedness of methods and attributes in
a class.
Composition (MOA)
Measures the “part-of”, “has”, “consists-of”, or
“part-whole” relationships, which are aggregation
relationships in object oriented design.
Inheritance (MFA)
A measure of the “is-a” relationship between classes.
Polymorphism (NOP)
It is a measure of services that are dynamically
determined at run-time in an object.
Messaging (CIS)
A count of number of public methods those are
available as services to other classes.
Complexity (NOM)
A measure of the degree of difficulty in understanding
and comprehening the internal and external structure
of classes and their relationships.

Flexibility
Characteristics that allow the
incorporation of changes in a design.
The ability of a design to be adapted
to provide functionality related
capabilities.

0.25 * Encapsulation - 0.25 *
Coupling + 0.5 * Composition
+ 0.5 * Polymorphism

Understandability
The properties of designs that
enable it to be easily learned and
comprehended. This directly relates to
the complexity of design structure.

-0.33 * Abstraction + 0.33 *
Encapsulation - 0.33 * Cou-
pling + 0.33 * Cohesion -0.33
* Polymorphism - 0.33 * Com-
plexity - 0.33 * Design Size

Functionality
The responsibility assigned to the
classes of a design, which are made
available by classes through their
public interfaces.

0.12 * Cohesion + 0.22 * Poly-
morphism + 0.22 * Messaging
+ 0.22 * Design Size + 0.22 *
Hierarchies

Extendibility
Refers to their presence and usage of
properties in an existing design that
allow for the incorporation of new
requirements in the design.

0.5 * Abstraction - 0.5 * Cou-
pling + 0.5 * Inheritance +0.5
* Polymorphism

Effectiveness
This refers to the designs ability to
achieve the desired functionality and
behavior using object oriented design
concepts and techniques.

0.2 * Abstraction + 0.2 *
Encapsulation + 0.2*Composi-
tion + 0.2 * Inheritance + 0.2
* Polymorphism

The common aggregation operator being used is a
weighted sum; i.e.,

u(x) =
n∑

i=1
wiui(xi),

where wi is the weight of each criterion, representing the
importance of each criterion,

∑n
i=1 wi = 1, and ui(xi)

represents the level of satisfaction assigned to alternative
xi ∈ Xi. The best consequence (x ∈ X) is the one with the
highest value of u. Although this approach is simple, easy
to use, and low complexity, using an additive aggregation
operator assumes that all criteria are independent, which,
in practice, is seldom the case: often, decisions are based
on several conflicting criteria and using linear additive
aggregation will lead to possibly very counterintuitive
decisions. Non-linear approaches also prove to lead to so-
lutions that are not completely relevant. Therefore, using
additive approach is often not good: based on our previous
work [13], we choose to use non-additive approaches, i.e.,
fuzzy measures and integrals [3].

B. Fuzzy measures and integrals
Fuzzy measures are non-additive measures. They can be

used to represent the degree of interaction of each subset
of criteria [4]. In what follows, we consider a finite set of
criteria A = {1, · · · , n}.
Definition Let A be a finite set and P(A) the power set

of A. A fuzzy measure (or a non-additive measure) defined
on A is a set function µ : P → [0, 1] satisfying the following
axioms:
(1) µ(∅) = 0
(2) µ(A) = 1
(3) if X, Y ⊆ A and X ⊆ Y , then µ(X) ≤ µ(Y)
The fuzzy measures are used to show the importance of

each subset and how each subset of criteria interacts with
others. Fuzzy measures are expensive to determine: for a
set defined over n criteria, 2n values of a fuzzy measure
are needed because there are 2n subsets of A.

Two main integrals can be used to combine fuzzy
measures: the Sugeno and the Choquet integrals. Al-
though they are structurally similar, they are different
in nature [8]: the Sugeno integral is based on non-linear
operators and the Choquet integral is usually based on

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 427

linear operators. The applications of Sugeno and Choquet
integrals are also very different [14]: the Choquet integral
is generally used in quantitative measurements, and a
MCDM problem usually uses a Choquet integral as a
representation function. In this article, we focus on the
Choquet integral.

Definition Let µ be a fuzzy measure on A. The Choquet
integral of a function f : A → R with respect to µ is
defined by:

(C)
∫

A

fdµ =
n∑

i=1
(f(σ(i))− f(σ(i− 1)))µ(A(i))

where σ is a permutation of the indices in order to have
f(σ(1)) ≤ · · · ≤ f(σ(n)), A(i) = {σ(i), . . . , σ(n)} and
f(σ(0)) = 0, by convention.

C. Determining Fuzzy Measures
In MCDM, we would expect the decision maker to be

more than likely to give the values of the fuzzy measure,
but in most circumstances this is not the case. Attempts of
making fuzzy measure identification easier for the decision
makers have been made in [3], [22].

• In [3], the authors attempt to make this task easier by
only requiring the decision maker to give an interval
of importance for each interaction.

• In [22], the author suggests a diamond pair-wise com-
parison, where the decision maker only must identify
the interaction of 2 criteria using a labeled diamond.
From there, the algorithm evaluates the values of the
numeric weights.

• In [22], the author discusses user specified weights
mixed with an interaction index denoted λ or ξ.
This algorithm is applied using an online aggregation
application [21].

However, in most cases, the decision maker either does
not understand the interactions well enough to provide
a good value of each fuzzy measure, or does not have
constant access to an expert who may give all values of the
fuzzy measures. In addition, since there are 2n − 2 values
of a fuzzy measure for a problem with n criteria expert
identification: it would be too time consuming anyway to
be practical [7]. This is where fuzzy measure extraction
comes into play.

D. Fuzzy Measure Extraction (FME) and Optimization
For lack of an expert to provide all values of the fuzzy

measure, we need seed data to give us an idea of the
preferences / decision-making process: we use sample data.
Extracting fuzzy measure is performed starting from such
seed data.
Let’s take a look at the following situation: Our MCDM

problem involves n attributes, and m sample data. If we
knew the fuzzy measure µ̃, we would be able to compute
preference values ỹj as (C)

∫
A
fdµ̃ =

∑n
i=1(f(σ(i)) −

f(σ(i − 1)))µ̃(A(i)), where f is a utility function defined
on X.

However, with the sample data, we only have access to
the preference values of a subset of X. In order to have
access to preference values of other alternatives in X, we
need to determine µ, which is, the 2n − 2 values of the
fuzzy measure. We are going to determine µ such that
the corresponding computed Choquet integral is as close
to the preference values of the sample data as possible.
As a result, we aim at minimizing the following sum (and
getting as close to 0 as possible) [9]:

e =
m∑

j=0

(
ỹj −

n∑
i=1

(f(σ(i, j))− f(σ(i− 1, j)))µ(A(i))
)2

(1)
Moreover, the optimal solution must satisfy constraints:

fuzzy measures must be monotonic and must always be
between 0 and 1.

Therefore, fuzzy measure extraction is a constrained
optimization problem, and the candidate solutions must
be evaluated to make sure they fit the constraints.

Several optimization approaches have been proposed
to extract fuzzy measures, including Gradient Descent
methods [1], Genetic Algorithms [4], [27], and Neural Net-
works [24]. Besides these, many optimization techniques
exist, such as for instance Harmony Search [6], Particle
Swarm Optimization [18], Simulated Annealing [5].

However, the main drawbacks in these techniques are
that the returned solution (found minimum of the objec-
tive function) might just be a local minimum, or even
worse, a good value. There is no guarantee that it would
be the global minimum at all.

In previous work [26], we proposed to use a tuned ver-
sion of the Bees Algorithm [17] to extract fuzzy measures.
The results show promise of the approach, and although
the results were not guaranteed to be global (same draw-
back as pointed out of the other approaches), they were
consistently better than best approaches before this one.
In this work on SQA, we used the Bees Algorithm to
extract fuzzy measures that best model experts’ decision
processes.

In what follows, we first motivate why MCDM is re-
lated to SQA and how Fuzzy Measure Extraction can
help automate SQA. We then provide details about the
specific optimization technique we use for Fuzzy Measure
Extraction.

IV. Fuzzy Measures Extraction for Software
Quality Assessment using the Bees Algorithm
As hinted earlier, Software Quality Assessment can be

seen as a Multi-Criteria Decision-Making problem. The
straightforward reason for that is the following: the general
quality assessment (i.e., final decision of software) is based
on a set of metrics (i.e., multiple criteria).

As a result, based on what we presented about fuzzy
measures and Choquet integrals, if we can find an appro-
priate fuzzy measure µ, assessing the quality of software

428 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

can be expressed as follows:
SQA(software A) = Choquet(µ,metrics values(A))

Based on the above formula, we focus on determining
µ, which can be viewed as a quantitative model for the
expert’s decision-making process. It is obtained from seed
data, namely sample data of experts’ decisions with re-
spect to known pieces of software. As a result, in the above
3-body problem, two of the components are known: the
expert’s decision and the set of metrics values, and we
aim at determining the matching µ.
In practice, we have access to a number of such ex-

pert(s)’ decision values along with the corresponding sets
of metrics values for different pieces of software Ai. As
pointed out earlier, in Section III, determining µ consists
of solving the following problem:

min e =
∑

Ai
(SQA(Ai)− Choquet(µ,metrics(Ai)))2

s.t. µ satisfies monotonicity constraints

A. Our approach: the Bees Algorithm
The Bees optimization Algorithm, proposed in [17],

uses bees’ natural food foraging habits as a model for
the exploration of the search space. The Bees Algorithm
combines a local and “global” search that are both based
on bees natural foraging habits. It roughly unwinds as
follows:

1) First a number of “scout bees” are randomly sent
out.

2) The patches of “nectar” (elements of the search space
/ candidate values for the fuzzy measure) are then
ranked according to evaluated fitness. More bees
are dispatched to look in neighboring areas of good
patches of “nectar”.

3) At each iteration, a number of “scout bees” are kept
to explore other areas in hope of better patches of
“nectar”: this keeps the algorithm searching “glob-
ally”.

4) When a new patch is found, its fitness is evaluated
and compared against previously explored patches
and a proportional number of “bees” is sent to it.
The dispatched “bees” perform a local search by
moving in a random direction from the patch of
“nectar”.

5) If a local search “bee” finds a better patch of “nec-
tar”, the location from where it was dispatched is
moved to the new location [17]. The Bees Algo-
rithm performs local search by sending an amount
of “bees” that is proportional to the patch’s fitness.

It is believed that the best ranked “patch”, when a stop-
ping criterion is met, is the optimal solution, although
there is no theoretical guarantee for it. In [17], the Bees
algorithm, in most cases, was faster than a number of
other algorithms (including genetic algorithms, simplex
method, stochastic simulated annealing), and returned a
solution within .1% of the perfect solution every time run

(in particular up to 207 times faster than the Genetic
Algorithm on the benchmarks used). On their test cases,
the Bees algorithm was also always able to reach the global
optimum and ignore local optima.

V. Experiments
A. What do we want to show and how?

Through our experiments, we aim at quantifying the
performance of our approach in automatically predict
software quality. As hinted before, the algorithm we use to
extract fuzzy measures is the Bees algorithm, as it showed
promise in previous work [26].

The metrics we use are Quality Model for Object-
Oriented Design (QMOOD) metrics, as defined in [2] and
used by Virani et al [23]. In this work, we focused on the
metrics and the quality factors related to QMOOD model,
as in [2]. Definitions for each of the quality factors and
metrics used in QMOOD model are provided in Table I.

The data at our disposal to run our tests is from 31
software packages and 2330 samples. The rating options
are bad, poor, good, fair, and excellent. Each package was
rated individually by a group of experts for each of the
metrics and for the total quality. Note that the data is
the same data set as used in [15], in which the authors
proposed a machine learning techniques to predict SQA.

Using the above-described data, our goal is to show that:
(1) our approach allows to accurately recreate decisions
(data) used to determine the reasoning process (fuzzy
measure); and that (2) it also works to predict decisions
(data) that were not included in determining the reasoning
process (fuzzy measure) but that were available to us.

We were also interested in addressing the following
questions:

1) Are experts consistent when they assess software?
Focusing on one expert at a time, we wanted to
know how well we would be able to reconstruct each
expert’s decision-making process. Again, this was
highly dependent on each expert’s original ability to
make consistent decisions.

2) Do experts agree on software assessment? or are we
able to create a “super expert”’s decision process
using our approach? Looking at one software pack-
age at a time, across experts, we wanted to get a
sense of common decision-making process among the
experts. We wanted to see how closely we would
be able to reconstruct the decisions, which is very
tightly coupled with a sense of agreement across the
experts.

B. Experimental Results
1) Reconstructing the data: Using all data and all ex-

perts. The 2330 samples we have at our disposal include
31 software packages and are evaluated by 78 experts. We
first extracted a fuzzy measure from all samples that fits
them all the best. In Table II, we report the accuracy
reached when determining the target fuzzy measure; i.e.,

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 429

the sum of the differences between the reconstructed data
and the original data for all the data.In particular, we
provide this information for different iteration counts of
our Bees algorithm: we can observe that the quality is
stabilized already after 100 iterations.

TABLE II
Optimal fuzzy measure for all samples

Iterations e

100 0.07675
1000 0.07671
10000 0.07670

Although the results are stable after 100 iterations,
it is about 10 times worse than the results of the toy
examples in [26]. This is because 78 experts were involved
the SQA evaluation and the decisions are not consistent
among different experts. Even for the same expert, the
decisions may not be consistent. This is the object of our
next experiments.

Focusing on one expert at a time. We ran experiments
to see whether experts were consistent in their decision
process; that is, for different software packages, whether
the values of the metrics are similar, then each expert’s
decision of the quality should be very close. Table III shows
the results for each expert.

TABLE III
Testing results for each expert

e # of experts

< 0.01 25
[0.01, 0.035) 25
[0.035, 0.075) 16
≥ 0.075 12
min 1.68E-05
max 0.4398

We find that most individual expert’s decision processes
(64%) are consistent, while some experts’ decision shows
big discrepancies from one sample or package assessment
to another.

For example, one expert evaluated 5 samples for 1
software package, and the result is 0.4398. We check the
sample data and find no matter how difference the value
of the metrics are, the expert always makes the same
decision, which means the expert’s opinion on the SQA is
not consistent.

Focusing on one software package at a time. We
tested to see whether the evaluation from different experts
for the same software package is consistent, that is, for
the same software package, since evaluated by different
experts, the discrepancy of the experts’ decision should
be larger than the previous results. Figure 1 shows the
results for each software package.

Fig. 1. Evaluation Results for each Software package

Since each software package was evaluated by at least 6
experts, and each expert has a different point of view for
each Software package, it is reasonable that the results for
each Software package is worse (less consistent) that the
results for each expert.
2) Predicting the data: As mentioned earlier, the goal of

this research is to test how well fuzzy measure extraction
can help predict software quality. We test it by first
extracting fuzzy measure from part of the sample data
(randomly selected) and then using the extracted fuzzy
measure to predict the software quality for the rest samples
to see if the predicted software quality matches the original
software quality. Testing results are in table IV.

TABLE IV
Testing results for randomly selected partial samples

(Iteration = 1000)

Sample numbers e

500 0.07904
1000 0.07862
2330 0.07671

C. Analysis of our results
What we have shown in above is how well the Bees

algorithm used to extract fuzzy measure. Now we want to
test how well the extracted fuzzy measure can help predict
Software quality.

We compared the evaluations we obtained to the orig-
inal experts’ decision and assessed the accuracy of our
approach using 3 different evaluation processes.

1) Eval1: We computed the average assessment over the
known experts’ decisions and considered this average
the target evaluation. Anything else would just be
considered wrong.

2) Eval2: We used the same average as before but al-
lowed for some flexibility by accepting any evaluation
within σ (standard deviation) of the target average.
This evaluation accounted for the uncertainty of the
experts’ decisions.

3) Eval3: We mapped the number of experts decisions
from 0% to 100% based on the maximum number
of votes for one rating (which would be the one to

430 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

receive 100% accuracy) and interpolated all other
possible ratings (numerical values in between posted
ratings) to determine their accuracy.

The overall evaluation results for all quality factors are
in table V, and we also list the results using machine
learning approach to compare with.

TABLE V
Accuracy using Hybrid2

Quality Factor Machine learning Eval 1 Eval 2 Eval 3
approach [15] (Average) (µ± σ)

Reusability 69.91% 41.67% 79.55% 72.34%
Flexibility 75.39% 47.89% 75.71% 66.34%
Extendibility 70.37% 42.80% 77.43% 70.91%
Functionality 78.54% 27.39% 42.74% 59.50%

VI. Conclusion and Future Work
In this article, we proposed an multi-criteria decision-

making-based approach to software quality assessment.
By viewing this assessment problem as a multi-criteria
decision making (MCDM) problem, we were able to use
fuzzy measures to model software expert’s decision making
process and help predict/evaluate software quality. We
were able to show that our approach (specifically fuzzy
measure extraction based on experts’ decisions data) helps
to predict/evaluate software quality with consistently over
60% accuracy, which is as accurate as previous approaches
to SQA conducted using machine learning techniques.

Our current approach can be further improved as fol-
lows. Although the Bees algorithm we implemented pro-
vides good and reasonably fast results for fuzzy measure
extraction, we believe we can improve it by combining
it with another solver. Moreover, the expert’s opinions
(data used to extract a decision process model) usually
are linguistic values; for example, Excellent, Good, Fair,
Poor, and Bad. These words have different meanings to
different experts, and therefore, expert’s linguistic ratings
are uncertain and their interpretation should not be uni-
form. In particular, using a continuous utility function
that assigns a precise value to each of these evaluation
results would result in losing accuracy. In order to better
fit the expert’s onions, in the future, we will use an
interval end-points approach [11] and may use non-linear
utility functions. Finally, we need to study the amount of
data that is necessary to extract meaningful and accurate
decision process models: for instance, what is the impact of
a reduced sample data set on the quality of the decisions?
What is the critical number of data w.r.t. the number of
criteria for instance?

References
[1] S. H. Alavi, J. Jassbi, P. J. A. Serra, and R. A. Ribeiro. Defining

fuzzy measures: A comparative study with genetic and gradient
descent algorithms. In Intelligent Engineering Systems and
Computational Cybernetics, pages 427–437. Springer Nether-
lands, 2009.

[2] J. Bansiya and C. Davis. A hierarchical model for object-
oriented design quality assessment. IEEE Transactions on
Software Engineering.

[3] M. Ceberio and F. Modave. An interval-valued, 2-additive cho-
quet integral for multi-criteria decision making. In Proceedings
of the 10th Conference on Information Processing and Manage-
ment of Uncertainty in Knowledge-Based Systems (IPMU’04),
Perugia, Italy, July 2004.

[4] E. F. Combarro and P. Miranda. Identification of fuzzy mea-
sures from sample data with genetic algorithms. Computers &
Operations Research, 33(10):3046–3066, 2006.

[5] L. Davis. Genetic Algorithms and Simulated Annealing. Morgan
Kaufmann Publishers Inc., San Francisco, CA, 1987.

[6] Z. W. Geem, J. H. Kim, and G. V. Loganathan. A new heuristic
optimization algorithm: harmony search. Simulation, 76(2):60–
68, 2001.

[7] M. Grabisch. A new algorithm for identifying fuzzy measures
and its application to pattern recognition. In Proceedings of 4th
IEEE International Conference on Fuzzy Systems, Yokohama,
Japan, March 1995.

[8] M. Grabisch. The application of fuzzy integrals in multicriteria
decision making. European Journal Of Operational Research,
89(3):445–456, 1996.

[9] M. Grabisch, H.T. Nguyen, and E. A. Walker. Fundamentals of
uncertainty calculi with applications to fuzzy inference. Kluwer
Academic Publishers, Norwell, MA, 1994.

[10] M. Lorenz and J. Kidd. Object-oriented software metrics: a
practical guide. Prentice-Hall, Inc., Upper Saddle River, NJ,
USA, 1994.

[11] J. Mendel. Computing with words and its relationships with
fuzzistics. Information Sciences, 177:988–1006, 2007.

[12] T. M. Mitchell. Machine Learning. McGraw-Hill, New York,
first edition, 1997.

[13] F. Modave, M. Ceberio, and V. Kreinovich. Choquet integrals
and owa criteria as a natural (and optimal) next step after
linear aggregation: A new general justification. In Proceedings
of MICAI’2008, pages 741–753, 2008.

[14] F. Modave and P. W. Eklund. A measurement theory perspec-
tive for mcdm. In Proceedings of the 10th IEEE International
Conference on Fuzzy Systems, pages 1068–1071, Melbourne,
Australia, 2001.

[15] J. Osbeck, S. Virani, O. Fuentes, and P. Roden. Investigation
of automatic prediction of software quality. In North American
Fuzzy Information Processing Society (NAFIPS’2011), El Paso,
TX, March 2011.

[16] Pfleeger. Software Engineering Theory and Practice. Prentice
Hall, 2001.

[17] D. Pham, A. Ghanbarzadeha, E. Koc, S.Otri, S. Rahim, and
M. Zaidi. The bees algorithm-a novel tool for complex opti-
mization problems. In Proceedings of 2nd International Virtual
Conference on Intelligent Production Machines and Systems
(IPROMS 2006), pages 454–459, 2006.

[18] R. Poli, J. Kennedy, and T. Blackwell. Particle swam optimiza-
tion. Swarm Intelligence, 1(1):33–57, 2007.

[19] R. Pressman. Software Engineering: A Practitioner’s Approach.
McGraw-Hill, 2005.

[20] I. Sommerville. Software Engineering. Addison Wesley Publish-
ing Company, Harlow, England, 2004.

[21] E. Takahagi. Usage: Fuzzy measure-choquet integral calculation
system (λ fuzzy measure and sensitivity analysis). http://www.
isc.senshu-u.ac.jp/~thc0456/Efuzzyweb/mant2/mant2.html.

[22] E. Takahagi. A fuzzy measure identification method by diamond
pairwise comparisons and φs transformation. Fuzzy Optimiza-
tion and Decision Making, 7(3):219–232, 2008.

[23] S. S. Virani, S. Messimer, P. Roden, and L. Etzkorn. Software
quality management tool for engineering managers. In Proceed-
ings of the Industrial Engineering Research Conference, pages
1401–1406, Vancouver, Canada, 2008.

[24] J. Wang and Z. Wang. Using neural networks to determine
sugeno measures by statistics. Neural Networks, 10(1):183–195,
1997.

[25] X. Wang, J. Cummins, and M. Ceberio. The bees algorithm
to extract fuzzy measures for sample data. In North American
Fuzzy Information Processing Society (NAFIPS’2011), El Paso,
TX, March 2011.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 431

[26] Z. Wang, K. Leung, and J. Wang. A genetic algorithm for
determing nonadditive set functions in information fusion. Fuzzy

Sets and Systems - Special issue on fuzzy measures and integrals,
102(3):463–469, 1999.

432 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

An Extension Of

The Unit Production Elimination Algorithm

X. Chen
1
, D. Pager

1

1Department of Information and Computer Science, University of Hawaii at Manoa, Honolulu, HI, USA

Abstract - Removing unit productions from LR parsing

machines can reduce the space and time cost of parsing. The

unit production elimination algorithm of Pager may result in

redundant states in the generated parsing machine. This work

introduces an extension to remove the redundancy and thus

minimize the parsing machine. We implemented the unit

production elimination algorithm and its extension algorithm

into the Hyacc parser generator. We study its performance

and discuss relevant issues here. Theoretical analysis and

experiement result show that when the extension is used, the

parser generation process uses the same amound of memory,

but more processing time. The resulted parsing machine can

be much more compact.

Keywords: unit production elimination, algorithm, extension,
LR

1 Introduction

1.1 Overview

 A unit production in a grammar is a production of the
form x � y, where symbol x is a non-terminal, and symbol y
is a terminal or non-terminal. The existence of unit
productions in a LR parsing machine can increase parsing
table size and waste significant amount of parsing space and
time [1]. Eliminating unit productions is among the most
attractive approaches to optimize LR parsers.

 Pager’s unit production elimination algorithm is among
the most discussed. It is found that the unit production
elimination algorithm of Pager, when applied, can possibly
lead to redundant states. This work extended the unit
production elimination algorithm of Pager [5] by further
eliminating redundant states and thus minimizing the parsing
machine. The extension algorithm was implemented in the
parser generator Hyacc [18][19][20]. Here we present the
algorithm, analyze its complexity, conduct empirical study on
its performance and discuss relevant issues.

 We use these acronyms for the algorithms involved in
this discussion: PGM (Pager’s practical general method) [6],
UPE (Pager’s unit production elimination algorithm) [5],
UPExt (Extension algorithm to Pager’s unit production
elimination algorithm). In addition, LHS stands for Left Hand

Side, and RHS stands for Right Hand Side. The discussion
will be based on LR(1), but should in general apply to LR(k).

1.2 Related work

 There have been various studies to eliminate unit
productions. Anderson, Eve and Horning [1] presented a unit
production elimination method, but the method can increase
the number of states in the parsing machine significantly.
Joliat [8] gave suggestions to simplify the method of
Anderson, Eve and Horning. Tokuda [15] presented a method
on bypassed LR(k) parsers, which can naturally derive the
algorithm of Anderson, Eve and Horning. The methods of
Aho and Ullman [2] and Demers [9] can avoid increasing the
number of states in the parsing machine, but require
restriction on the grammar that no two unit productions
should have the same left hand side. Pager [3][4][5] described
an algorithm that can avoid the above problems. Backhouse
[10] and Lalonde [7] developed variations of Pager’s method.
Koskimies [11][12] discussed that Pager’s method cannot be
used during the construction process of a SLR parser and need
to be used on a fully constructed SLR parser. Soisalon-
Soininen [13] discussed applying Pager’s technique only
when it does not affect the use of default reductions. Soisalon-
Soininen [14] described that Pager’s method can possibly
cause increase in the size of the parsing machine and
presented a fix. Heilbrunner [16] and Schmitz [17] discussed
practical conditions needed to correctly eliminate unit
productions.

2 Pager’s unit production elimination

algorithm

 Pager’s unit production elimination algorithm [3] is
applied to a LR parsing machine to further reduce the number
of states to achieve a more compact LR parsing machine.

 A unit production is a production x � y where both x
and y are single symbols. A leaf is a symbol that only appears
on the RHS of any unit production but never on the LHS of
any unit production. The algorithm [3] takes five steps: “1)
For each state S in the parsing machine (including new states
added in step 2), and for each leaf x where the x-successor of
S contains a unit reduction, do step 2. Go to step 3 after
finish. 2) For 1 ≤ i ≤ n, let xi be the symbols such that xi ≡> x
(including x itself), and for which shift/goto actions are

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 433

defined at state S. Let the xi-successor of S be Ti. If any state
R is or at a earlier time has been a combination of states T1,
…, Tn, then let R be the new x-successor of state S; otherwise
combine states T1, …, Tn into a new state T and make T the
new x-successor of S. 3) Delete all the transitions where the
transition symbol is on the LHS of a unit production. 4)
Delete all states that now cannot be reached from state 0. 5)
Replace all such reductions y � w by x � w, where y is the
LHS symbol of a unit production, and x is a randomly
selected leaf such that y ≡> x.”

 Example 1. Given grammar G1: E � E + T | T, T � T
* a | a. The LR(1) parsing machine of grammar G1 is shown
in Fig. 1. We have two unit productions that are the
candidates of elimination: E � T and T � a.

 An example of applying the unit production elimination
algorithm on the LR(1) parsing machine of grammar G1 is
shown in Fig. 2. First we need to find the leaves of the
grammar. This is achieved by constructing a multi-rooted tree,
which is E � T � a for G1. In this case a is the only leaf.
Then following the algorithm step 1, we see that only states 0
and 4 have a-successor that has a unit production: state 0’s a-
successor state 3 has a unit production T � a, state 4’s a-
successor is also state 3. Thus we follow step 2 to combine
successor states of state 0 and state 4. These are shown in (b)
and (c) of Fig. 2. Next, (d) follows step 3, (e) follows step 4,
(f) follows step 5 and also rearranges the states in a better-
looking layout.

3 Extension to the unit production

elimination algorithm

3.1 The extension algorithm

 It can be noted that after removing unit productions, the
parsing machine can possibly contain redundant states with
the same actions. These redundant states can be combined to
result in a more compact parsing machine. This is a natural
extension of Pager’s unit production elimination algorithm.

 Definition 1. Equivalent states are those states in a
parsing machine that have exactly the same actions (accept,
shift, goto and reduce) on each token symbol (including both
terminals and non-terminals).

 Algorithm 1 (UPExt) is shown in the next page. It
removes redundant equivalent states from the parsing
machine obtained from Pager’s unit production elimination
algorithm.

 One concern of the unit production elimination
algorithm is that it was designed for LR(k) grammars. For
non-LR(k) grammars, more conflict complications can be
derived. Under such situations, the unit production
elimination algorithm and this extension should not be used.
Another concern is for unit productions with semantic actions,

these should not be removed so as to retain the associated
semantic actions.

3.2 Complexity analysis

 In practice, this extension algorithm is O(1) in space and
does not increase the amount of memory used, since it
operates on the existing parsing machine. But it takes quite a
large percentage of the execution time, because it looks
through each entry of the entire parsing table for each state.

 The worst time performance (upper bound) is O(n2 * m),
where n is the number of states, and m is the number of tokens
(both terminals and non-terminals). The best time
performance (lower bound) is O(n * m).

 Assume the action of accessing one action of one state is
O(1). Derivation of upper bound O(n2 * m) using the best
scenario: the step of finding the set of all the equivalent states
can be done in linear time by inserting all states into a hash
table based on its actions. Since there are n states, and assume
each state has m actions in average, this is O(n * m). The next
step replaces relevant transitions. Assume those equivalent

states are S1, S2, …, Sk (k ≤ n). Let the number of actions
transiting into Si be Xi (i = 1, …, k). In the worst case all the n
other states transiting to Si and all the m actions of each state
transit to Si (although this is unlikely in practice), so 0 ≤ Xi ≤
n * m. The total number of transitions to replace is 0 ≤ X1 +
… + Xk ≤ n * (n * m). Thus O(n * m + n * (n * m)) = O(n2 *
m).

 For the lower bound O(n * m), just notice that the first
step of finding the set of all the equivalent states always takes
O(n * m), and the second step of replacement in the best case
takes no time when no equivalent states are found.

3.3 Implementation in Hyacc

 Pager’s unit production elimination algorithm and the
extension algorithm here are implemented into LR(1) parser
generator Hyacc [18][19][20].

 Implementation can be on the level of 1) the parsing
machine automata, or 2) the parsing table. In Hyacc the UPE
algorithm is implemented by manipulating the parsing table,
so the extension algorithm UPExt is implemented based on
this way. We think that manipulating the parsing table is
easier. The alternative of working on the level of the parsing
machine automata, however, may be more intuitive from a
human point of view.

 Hyacc uses reduced-space LR(1) parser generation
algorithms, such as Pager’s PGM algorithm. In general the
user of Hyacc applies the UPE and UPExt algorithms on a
parser generated from the PGM algorithm or other reduced
LR(1) algorithms. In the example and empirical studies below
we assume this scenario.

434 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Fig. 1. Parsing machine of grammar G1

Algorithm 1 (UPExt):
Input: Parsing Machine M

Output: A parsing machine M’ where all the

 equivalent states in M are removed;

1 let Shift(X, k) � Y be a Shift transition from

 state X to state Y on token k;

2 foreach state S in M do

3 find the set ∑ of all the equivalent states

 of state S;

4 foreach state S’ in ∑ do

5 foreach Shift(R, k) � S’ in M do

6 replace it by Shift(R, k) � S;

7 end

8 end

9 remove ∑ from M;

10 end

G � ● E {┤}
E � ● E + T {┤, +}
E � ● T {┤, +}
T � ● T * a {┤, *, +}
T � ● a {┤, *, +}

G � E ● {┤}
E � E ● + T {┤, +}

state 0

state 1

E � T ● {┤, +}
T � T ● * a {┤, *, +}

state 2 T � a ● {┤, *, +}

E � E + ● T {┤, +}
T � ● T * a {┤, *, +}
T � ● a {┤, *, +}

T � T * ● a {┤, *, +}

T � T * a ● {┤, *, +}

E � E + T ● {┤, +}
T � T ● * a {┤, *, +}

T � T * a if {┤, *, +}

E � E + T if {┤, +}

T � a if {┤, *, +}

 state 3

state 4

state 5 state 6

state 7

 E

 a

+

 a
 T

*

T

*

a

Accept if {┤}

E � T if {┤, +}

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 435

Fig. 2. Apply Unit Production Elimination on the LR(1) parsing machine of grammar G1

(a) Original parsing machine. (b) Combine states 1, 2 and 3 to state 8. Remove link 0 � 3
because there can be only one a-successor for state 0. (c) Combine states 3 and 6 to state 9.
Remove link 4 � 3 because there can be only one a-successor for state 2. (d) Remove
transitions corresponding to LHS of unit production: E, T. (e) Remove all states
unreachable from state 0, and remove their associated action links. (f) Replace LHS of
reductions to corresponding leaf.

436 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

3.4 An example

 Example 2. Given grammar G2: S � d i A, A � A T | є,

T � M | Y | P | B, M � r | c, Y � x | f, P � n | o, B � a | e.

In Fig. 3, (a) is the parsing machine obtained using the
practical general method, (b) is the parsing machine after
applying the unit production elimination algorithm based on
(a), (c) is the parsing machine after applying the extension to
the unit production elimination algorithm based on (b). In (b),
states 18 to 25 all have the same action A � A T for each of
the lookahead symbols in ∑ = { a, c, e, f, n, o, r, x, ┤}. Thus
states 18 to 25 are equivalent states and they can be combined
into one state, i.e., state 18 in (c).

 In this example, the parsing machine in (a) has 18 states,
in (b) has 13 states, and in (c) has only 6 states. So by
applying the extension algorithm after the unit production
elimination, (13 - 6) / 13 = 54% reduction in parsing machine
size is achieved. The following table compares the number of
states, ‘shift/goto’, ‘reduce’ and ‘accept’ actions in the
parsing machine after applying each of the PGM, UPE and
UPExt algorithms.

4 Measurements And Evaluations

 Measurement data are collected on a Dell Inspiron
600M computer with 1.7GHz Intel Pentium CPU and 1 GB
RAM. Operating system is Fedora core 4.0. In the
measurements, unit of time is in sec (second), and memory is
in MB (megabyte). Hyacc version 0.95 is used. In the
empirical study, we measure the performance on three
algorithms: PGM, UPE, and UPExt. This is because UPE is
applied after PGM is applied, and UPExt is applied after UPE
is applied. We would like to see the difference of parsing
table size, time and memory costs after applying the UPE and
UPExt algorithms. The grammars of 13 real programming
languages [21] are used for the study.

4.1 Parsing table size comparison

 Table 2 shows the parsing table size comparison. Fig. 4
is the graphic view.

 UPE may decrease the number of states as in the case of
many simple grammars. but in 12 out of the 13 real
programming languages here, UPE actually increases it.
Applying the UPExt algorithm decreases the parsing machine
size significantly: although in 10 out of the 13 real language
grammars the number of states are still bigger than that of
PGM, they are bigger only by a small margin. Therefore it is
desirable to apply the extension algorithm. In addition, the
number of rules in the parsing machine is also reduced, since
unit productions are removed.

Fig. 3. Remove equivalent states after unit production
elimination

Table 1. Parsing machine comparison after applying PGM, UPE and

UPExt algorithms

 State # shift/goto reduce accept
PGM 18 17 15 1
UPE 13 12 10 1
UPExt 6 5 3 1

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 437

Table 2. Parsing table size comparison.

 PGM UPE UPExt
Grammar State # Rule # State # Rule # State # Rule #
Ada 873 459 1074 262 805 262
Algol 60 274 169 498 92 412 92
C 349 212 786 116 380 116
Cobol 657 401 646 268 528 268
C++ 5.0 1404 665 3573 443 2255 443
Delphi 609 358 1195 200 669 200
Ftp 200 74 211 71 211 71
Grail 193 74 247 54 204 54
Java 1.1 439 266 1174 142 673 142
Matlab 174 93 374 53 178 53
Pascal 418 257 844 119 427 119
Turbo
Pascal

394 222 649 116 353 116

Yacc 128 103 134 87 134 87

Fig. 4. Parsing table size comparison.

4.2 Running time comparison

 Table 3 shows the running time comparison, and Fig. 5
is the graphic view. Compared to PGM, UPE and UPExt use
longer running time, sometimes significantly longer,
especially for the UPExt algorithm. This is as expected.

Table 3. Running time comparison

Grammar PGM UPE UPExt
Ada 0.406 1.342 3.452
Algol 60 0.290 0.566 0.931
C 0.420 1.142 1.418
Cobol 0.127 1.205 1.206
C++ 5.0 1.779 5.680 33.986
Delphi 0.335 1.347 4.371
Ftp 0.017 0.035 0.035
Grail 0.024 0.066 0.119
Java 1.1 1.026 1.563 3.328
Matlab 0.189 0.307 0.637
Pascal 0.174 1.061 1.787
Turbo Pascal 0.098 0.587 1.159
Yacc 0.026 0.043 0.043

Fig. 5. Running time comparison.

4.3 Memory usage comparison

 Table 4 shows the memory usage comparison, and Fig. 6
is the graphic view. When using UPE and UPExt, there is a
slight increase in memory. It can also be seen that UPE and
UPExt use the same amount of memory, because UPExt only
works on the existing parsing table.

Table 4. Memory usage comparison

Grammar PGM UPE UPExt
Ada 7.9 9.4 9.3
Algol 60 4.2 4.2 4.2
C 6.0 6.0 6.0
Cobol 6.3 6.4 6.4
C++ 5.0 23.9 30.9 30.9
Delphi 6.5 7.5 7.5
Ftp 2.8 2.9 2.9
Grail 2.9 2.9 2.9
Java 1.1 7.8 8.6 8.6
Matlab 3.9 3.9 3.9
Pascal 4.9 5.7 5.7
Turbo Pascal 4.3 4.3 4.3
Yacc 2.6 2.7 2.7

Fig. 6. Memory usage comparison

438 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

5 Conclusions

 Redundant states exist in the parsing machine after
applying Pager’s unit production elimination algorithm. An
extension is used to remove redundant states, and reduces the
size of the parsing machine significantly. Measurements show
that when the extension is used, parser generation takes the
same amount of meory but more time, and the resulted parsing
machine can be much more compact. Unit production
elimination algorithm and its extension should be used on LR
grammars only.

 Although the extension algorithm does not require extra
space to run other than needed by the unit production
elimination algorithm itself, it may need much longer running
time. Since parser generation is a one-time process, it should
be worth such an effort.

6 References

[1] T. Anderson, J. Eve, and J. J. Horning. Efficient LR(1)
parsers. Acta Informatica, 2:12–39, 1973.

[2] Alfred V. Aho and Jeffrey D. Ullman. A technique for
speeding up LR(k) parsers. SIAM J. Computing, 2:2, 106-
127. 1973.

[3] David Pager. On eliminating unit productions from
LR(k) parsers. Technical Report PE 245, University of
Hawaii, Honolulu. 1973.

[4] David Pager. On eliminating unit productions from
LR(k) parsers. Automata, Languages and Programming,
Lecture Notes in Computer Science, Volume 14, 242-254.
1974.

[5] David Pager. Eliminating unit productions from LR
parsers. Acta Informatics, 9:31 – 59, 1977.

[6] David Pager. A practical general method for
constructing LR(k) parsers. Acta Informatica, 7:249 – 268,
1977.

[7] Wilf R. LaLonde, On directly constructing LR(k) parsers
without chain reductions, Proceedings of the 3rd ACM
SIGACT-SIGPLAN symposium on Principles on
programming languages, p.127-133, January 19-21, 1976,
Atlanta, Georgia.

[8] M. L. Joliat. A Simple Technique for Partial Elimination
of Unit Productions from LR(k) Parsers. IEEE Transactions
on Computers, Volume 25 Issue 7, 763-764, July 1976, IEEE
Computer Society Washington, DC, USA

[9] Demers, A. J. Elimination of single productions and
merging nonterminal symbols of LR(1) grammars. Computer
Languages 1:2, 105-119. 1975.

[10] Backhouse, R. C. An alternative approach to the
improvement of LR(k) parsers. Acta Informatica 6:3, 277-
296. 1976.

[11] Koskimies, Kai {1976} Optimization of LR(k) parsers
(in Finnish). M.Sc. Thesis, University of Helsinki, Helsinki.

[12] Koskimies, Kai (1979) On a method for optimizing LR
parsers. International Journal of Computer Mathematics 7(4).

[13] Eljas Soisalon-Soininen. Elimination of single
productions from LR parsers in conjunction with the use of
default reductions. 1977.

[14] Eljas Soisalon-Soininen. On the space optimizing effect
of eliminating single productions from LR parsers. Acta
Informatica. Volume 14, Number 2, 157-174. 1980.

[15] Takehiro Tokuda. Eliminating unit reductions from
LR(k) parsers using minimum contexts. Acta Informatica.
Volume 15, Number 4, 447-470. 1981.

[16] Stephan Heilbrunner. Practical conditions for correct
elimination of chain productions from LR parsers. Length 77
pages. Hochsch. der Bundeswehr München, Fachbereich
Informatik, 1983.

[17] Schmitz, Lothar (1984) On the correct elimination of
chain productions from lr parsers. International Journal of
Computer Mathematics 15(1-4)

[18] Xin Chen. LR(1) Parser Generator Hyacc. Available:
http://hyacc.sourceforge.net. January 2008.

[19] Xin Chen, David Pager. LR(1) Parser Generator Hyacc.
Proceedings of International Conference on Software
Engineering Research and Practice, p.471-477.
WORLDCOMP'11, Las Vegas, July 18-21, 2011.

[20] Xin Chen, David Pager. Full LR(1) Parser Generator
Hyacc And Study On The Performance of LR(1) Algorithms.
Proceedings of The Fourth International C* Conference on
Computer Science & Software Engineering, p.83-92.
Montreal, Canada, May 16-18, 2011.

[21] “Yacc-keable” Grammars. Available:
http://www.angelfire.com/ar/CompiladoresUCSE/COMPILE
RS.html

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 439

Reliable Task Allocation in Distributed System
Vinod Kumar Yadav

Motilal Nehru National Institute
of Technology Allahabad,

UP-211004
Email:vkynita@gmail.com

Swagat Ranjan Sahoo
Motilal Nehru National Institute

of Technology Allahabad,
UP-211004

Email: mlswagat@gmail.com

Dharmendra Kumar Yadav
Motilal Nehru National Institute

of Technology Allahabad,
UP-211004

Email: dky@mnnit.ac.in

Abstract—This paper presents a rigorous framework
of efficient task allocation in heterogeneous distributed
environment where server nodes can fail permanently. The
system performance can be improved by increasing the
probability of serving queued tasks in the distributed computing
system (DCS) before all the node fails. For a large set of tasks
that is being allocated into a distributed environment, several
allocation methods are possible. These allocations can have
significant impact on quality of services such as reliability,
performance etc. In distributed environment reliability is highly
dependent on its network and failures of network have adverse
impact on the system performance. So, one possible way for
improving reliability is to make the communication among the
tasks as local as possible. Firstly, it divides the whole workload
into small and independent units, called tasks and determines
expectant hosts from environment. It then applying a two phase
hybrid algorithm: Simulated Annealing and Branch-and-Bound
(SABB).The Simulated Annealing algorithm finds a near
optimal allocation from expectant hosts and then find an
optimal allocation by applying the branch-and-bound (BB)
techniques by considering the Simulated Annealing algorithm
as initial solution. This algorithm overcomes the less improved
quality obtained by heuristics as well as the computational cost
of the exact algorithms.

Key Words: Reliability, Queuing Theory, Distributed Comput-
ing, Communication Links, Renewal Theory.

I. INTRODUCTION

A distributed computing system is a collection of
heterogeneous processors interconnected by a communication
network. Each processor has its own local memory and
other peripherals, and the communication between any two
processors of the system takes place by message passing
over the communication network. Such systems provide very
powerful platform for executing high performance parallel
applications, alternative to the very expensive massively
parallel machines. But the performance of the system is
highly dependent on the tasks allocation onto the available
machine. Because different application requres various
hardware and software, So these application components
will provide their expected functionality only when their
requirements will be satisfied. Such type of problem in
distributed computing system is referred as task allocation
problem.

Typically the communication networks interconnecting the
servers suffer the problem of low bandwidth. In order to

enhance the processing capabilities of distributed computing
system, workloads are partitioned into small independent units
called tasks. To allocate these tasks among the processors is
the main concern while maintaining the system reliability. For
complex application where tasks can be allocated to different
hosts in distributed environment, several tasks allocation
method are available. Some of them are more effective
than others for some given context in terms of quality of
services such as communication cost, network congestion,
dependability, performance etc.

In distributed environments network failure is the most
potential problem that can lead to disastrous effects on the
systems reliability and the software application may not
provide its expected functionality. For minimizing to this risk
one way is to make the communication among the tasks as
local as possible. In this manner the tasks that are allocated
on the same host of the DCS can communicate without any
respect to the networks status.

In this paper reliability can be achieved by carefully as-
signing the tasks onto the processors of the DCS by taking
into account to failure rate of both the communication links
as well as the processors. Here the idea is to assigning tasks
with longer execution time to more reliable processors and
communication links. This paper also solves the problem of
finding the optimal solution for reliable task allocation prob-
lem. It first determines the expectant hosts and then develops
a mathematical model based on a cost function(execution
time, inter-processor communication etc) and then apply a
two phase hybrid algorithm: first is Simulated Annealing (SA)
[1,3] and second is Branch-and-Bound(BB)[2,4,14,15]. The
Simulated Annealing algorithms finds a near optimal solution
and then find an optimal solution by applying Branch-and-
Bound algorithm by considering the results of Simulated
Annealing algorithm as initial solution.

This paper considers a graph - based approach for task allo-
cation. For maximizing the reliability of the application, peer-
to-peer distributed environment has taken into consideration. A
communication link is a peer-to-peer communication medium
with well defined characteristics and behavior [5]. In peer-to-
peer architecture two or more computers can directly com-
municate with each other without requiring any intermediate
devices [6,13,16]. In our consideration the tasks are allocated

440 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

with respect to the various parameters of communication links
that different hosts can supports in distributed environment.

Rest of the paper is organized as follow: Section II formally
defines the problem statement. Section III determines the
hosts over which tasks can be assigned. Section IV presents
a reliable task allocation model. Section V describes the
algorithm used for task allocation. Section VI shows the
experimental results. Finally Section VII concludes and outline
future works.

II. PROBLEM STATEMENT

In a distributed computing system which consists of a
set of N heterogeneous computers communicating over a
fully connected network and M independent tasks have to be
processed by the system. Each computer of the DCS has some
capabilities and communication links have some capacities and
a probability of failure is associated with each component of
the system. We also associate a vector with each task which
represents its execution cost at the different computers in the
system. The purpose is to allocate M tasks onto the processors
of the DCS in such a way that the requirements of tasks gets
satisfied and the reliability of the system is maximized.

III. DETERMINATION OF EXPECTANT HOSTS

For determining expectant hosts following steps are con-
sidered: Firstly, we allocated the application components sec-
ondly, the tasks are allocated in distributed environment and
at the end expectant hosts for application components are
determined.

A. Allocation of application components

This step specifies the set of application components
or tasks that has to be allocated onto the distributed
environment for execution. These tasks are connected by a
set of communication links that has different characteristics.
These components can be compared with nodes of the graph
and edges as communication links.These communication
links (channels) can be of several types like synchronous,
asynchronous, FIFO, etc.

B. Application components graph

Let ni represents the various components of the application
and lj represents the various communication links. Then the
component graph Cg = (Vcg, Ecg) is defined as a graph
where Vcg = {n1, n2, n3..................nN} and Ecg= {l1, l2,
l3.................lM}.

n2

n5

n3

l1

l2

l3

l4

l5

l1

l4

l6

l2

l5

n1

n6

n4

n7

Figure.1 Component Graph

C. Distributed environment

In distributed environment the tasks are allocated
independently on the basis of their requirements.

Network

H4:l1,l2,l4,l5,l6H3:l2,l3,l4,l5,l6

H2:l1,l2,l4,l5,l6

H1:l1,l2,l3,l4,l6 H5:l1,l2,l3,l5,l6

Figure.2 Distributed Environment

Because different hosts of distributed environment having
different capabilities, so they execute some specific set of tasks
whose requirement gets satisfied by the corresponding host.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 441

Figure.2 shows the heterogeneous DCS consists of five hosts
(H1, H2, H3, H4, H5). These hosts are connected by different
set of links (l1-l6).

D. Expectant hosts

For a given component graph Cg = (Vcg, Ecg), host Hj

is an expectant host for the allocation of component Ni,
only if lNi ⊆ lHj , where lNi is the communication links
required by component Ni in component graph and lHj is
the communication links supported by host Hj in distributed
environment.

Component name Expectant host
n1 H1,H4,H5
n2 H2,H5
n3 H1,H2
n4 H1,H4
n5 H4,H5
n6 H2,H4
n7 H3,H4,H5

Table-1:Shows the expectant hosts for components

Table-1 shows the candidate hosts for allocating the compo-
nents of the application from fig-1 to the target distributed
environment presented in fig-2. Here we can see that the
application components n1 can be allocated either on host H1
or H4 or H5 and task n2 can be allocated on only H2 and
H5, and task n3 can be allocated on host H1 and H2 and so
on. Only these set of hosts can satisfy the requirements of the
respective components.

IV. RELIABLE TASK ALLOCATION MODEL

Reliability of a distributed computing system can be seen
as the reliability of its processors as well as the reliability of
its communication links. Each component of the distributed
system may exist in one of the two states: operational or faulty.
For successful execution each processor must be operational
during the time of execution of tasks. The communication
links must be active during the communication between the
end processors. For reliable task allocation it is also necessary
that the cost of a task should be minimum. Cost of a task
defined in terms of its execution cost and communication cost.

The system reliability for a mission is defined as the time
interval during which the system to be active. During a
process a task may execute more than once. The Accumulative
Execution Time (AET) of a module running on a processor is
total execution time incurred for this module running on that
processor during the mission i.e. the product of the number of
times this module executes during the process and the average
time unit for each execution on that processor [7]. And the
inter-module communication (IMC) between two modules is
the product of the number of times they communicates and the
average number of words exchanged in each communication

[7]. A detailed discussion of AET and IMC can be found in
[8].

A. Notations and Descriptions

The notations specified here used in rest of the paper:
Rp- Reliability of processor P
T - The set of tasks.
tn- nth module of the task set T.
P - The set of processors.
Pi − ith processor in P.
L - Set of communication links.
lj - jth communication link in L connecting the processors
Pa and Pb.
ψi - Failure rate of processor Pi.
X - A binary matrix (M × N) corresponding to a task
assignment.
Cni- Accumulative execution cost of task n on processor Pi.
Xni - An assignment of nth task on ith processor.
ωab- Failure rate of communication link (lj)connecting the
processors Pa and Pb.
Cmnab- The cost of transferring data between task m and n
by using communication link lj (connecting to two processors
Pa and Pb).
Rs - Reliability of the distributed system i.e. the product of the
reliability of the components of distributed computing system.
Rl - Reliability of communication links.

B. Reliability of processors (Rp)

The reliability of a processor pi is the probability of being
operational during the time interval ’t’ till the execution of
tasks are completed that are assigned to it. If a failure rate
of processor pi is ψi, then the reliability of processor pi is
exp (-ψi t) [7, 9, 10]. The reliability of processor p for an
assignment X, and accumulative execution cost C for task tn
running on it is defined as:

Rp= exp (−ψi

∑
n
CniXni).....(4.1)

This expression gives the total time taken for executing
the tasks assigned on nth processor.

C. Reliability of communication links (Rl)

The reliability of a communication link li (connecting two
adjacent processor pa and pb) is the probability of being
operational during the time interval ’t’ till the communication
of task has completed between adjacent processors. If the
failure rate of communication link is ωab, then the reliability
of communication link lj is exp (-ωab t) [7, 9, 10]. The
reliability of communication link for an assignment X and
cost of transferring data between two tasks m and n which
are assigned to different processors given as:

Rl = exp (-ωab

∑
m

∑
n6=m

CmnabXmaXnb) ...(4.2)

The summation gives the required time for communication
between processors ’a’ and ’b’ by using link lj .

442 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

So the reliability of the distributed computing system Rs

is defined as the product of the reliability of components of
the distributed computing system [12].

Rs = [
∏
a
Rp][

∏
m

∏
n6=m

Rl] = exp(−s) . . . (4.3)

Where

S=
∑
a

∑
m
ψiCniXni +

∑
a

∑
b6=a

∑
m

∑
n6=m

ωabCmnabXmaXnb

. . . (4.4)

In eqn 4.4 first part of cost function determines the
unreliability due to execution of tasks on the processors of
the system and second part determines the unreliability due
to the inter-processor communication.

The reliability of processors and communication links with
respect to tasks are vectored and associated with each task,
representing the execution cost of the tasks at the different
processors in the distributed system. In figure-1 the set of
vertices ’V’ shows the set of tasks, edges ’E’ shows the set
of communication links. In figure-2 H1, H2, H3, H4 and
H5 shows the processors of distributed computing system.
Now the execution cost of each task at various nodes are
calculated. Table-2 represents the communication costs of
tasks at expectant hosts. The cost infinity represents the
requirements of task is not satisfied at that processor.

H1 H2 H3 H4 H5
n1 10 ∞ ∞ 12 8
n2 ∞ 15 ∞ ∞ 20
n3 7 6 ∞ ∞ ∞
n4 14 ∞ ∞ 40 ∞
n5 ∞ ∞ ∞ 20 6
n6 ∞ 10 ∞ 5 ∞
n7 ∞ ∞ 11 18 35

Table-2 shows the execution cost of each task
at the various processors

V. ALGORITHM FOR TASK ALLOCATION

This section presents a two phase hybrid algorithm for
task allocation. In the first phase Simulated Annealing(SA)
algorithm and in second phase Branch-and-Bound(BB)
algorithm has been used. The SA algorithm determines the
near optimal allocation and BB algorithm determines the
optimal allocation.

A. Simulated Annealing algorithm

Simulated Annealing Algorithm is a global optimization
technique which attempts to find the lowest point in an
energy landscape [3,11]. The SA method emulates the
physical concepts of temperature and energy to represents
and solves the optimization problem. It is often used when
the search space is discrete. For certain problems, Simulated

Annealing Algorithm may be more efficient than exhaustive
enumeration provided that the goal is merely to find amount
of time, rather than the best possible solution.

Simulated Annealing technique comes from metallurgy,
involves heating and controlled cooling of a material to
increase the size of its crystal and reduce their defects. Due
to heat, atoms unstuck from their position (a local minimum
of the internal energy) and moves randomly through state of
higher energy. The slow cooling gives them more chances
of finding configurations with lower internal energy than the
initial one. Each step of the Simulated Annealing algorithm
replaces the current solution by a random nearby solution,
chosen with a probability that depends both on the difference
between the corresponding function values and also a global
parameter T (called temperature). That decreased gradually
during the system equilibrium state through elementary
transformations which will be accepted if they reduce the
system energy. However as the temperature decreases, small
energy increment may be accepted and the system eventually
settle down to a low energy state.

The probability of accepting an uphill move (transition)
from the current state S to a new state S1 is specified by
an acceptance probability function P(e,e1, T), where T is the
temperature. It depends on the energies e = E(S) and e1= E(S1)
of two states. Here it is noted that the probability function P
must be nonzero when e1 > e. It means that the system may
move to the new state even when it is worse (has a higher
energy) than the current one. Here we are using the probability
function exp (−δ/T) where δ = e1 - e (energy difference).

B. Pseudo code

The pseudo code given below presents the Simulated
Annealing heuristic as described above [11]. It starts by
randomly selecting an initial state S0 and then calculates
the energy (cost) Es0 for this state. After setting an initial
temperature T, it generate a random chosen neighbor (S1)
from given set of states and calculate the corresponding
energy Es1. If the energy of S1 is less than the energy of S0,
then this solution is accepted as new solution. Otherwise, a
probability function exp (−δ/T) is evaluated to ensure that
the new solution may be accepted as a current solution. When
a thermal equilibrium is reached at the current temperature T,
the value of T is decreased by a cooling factor α, and inner
repetition is increased by an increasing factor β.

In this algorithm the neighborhoods defines procedure to
move from a solution point to another solution point. Here
it is very simple to determine neighboring solution. It can
be obtained by choosing a random task n from the current
allocation vector and assign it to randomly selected processor
P from expectant hosts processor for the task n. Selection of
initial temperature is very important parameter in Simulated
Annealing algorithm because if the initial temperature is very
high, then the execution time of algorithm becomes very

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 443

1: Select an initial solution S0

2: Calculate the cost at this solution Es0

3: Initial temperature T
4: Cooling factor α<t1
5: Inner repetition is increased by factor β>1
6: S ← S0

7: e← Es0
8: Sbest ← S, ebest ← e
9: K ← Tmin

10: while T > K do
11: Snew ← neighbor(s)
12: enew ← E(S)
13: compute δ ← enew − ebest
14: if δ<0 then
15: Sbest ← Snew

16: ebest ← enew
17: else
18: Generate a random value x in the range(0,1)
19: end if
20: if x exp (-δ/T) then
21: Sbest ← Snew

22: ebest ← enew
23: T ← T ∗ α
24: Neighbor(S) ← neighbor (S) * β
25: end if
26: end while

long and if it is very low then poor results are obtained. So
the initial temperature must be only hot enough to allow an
almost free exchange of neighboring solution.

The term cooling factor represents the rate at which the
temperature T is reduced. This is also an important factor for
the success of Annealing process [11]. The increasing factor
represents the rate at which the inner number of repetition
is increased with respect to reduction in temperature. It is
important to spend long time at lower temperature. In this
paper temperature is used as stopping condition.

C. Branch-and-Bound Algorithm

Branch-and-Bound Algorithm is a systematic method for
solving optimization problems. It is more suitable for solution
of those problems where the Greedy method and Dynamic
programming fails.

Branch-and-Bound Algorithm requires two steps. The first
one is a way of covering the feasible region by several smaller
feasible sub-regions(splitting into sub-regions), this is called
branching and second is bounding, which is a fast way of
finding upper or lower bounds for the optimal solution within
a feasible sub-region. In this paper we are using Simulating
Annealing algorithm for calculating the bound. The Branch-
and-Bound algorithm has all the elements of backtracking,
except simply stopping the entire search process any time a

solution is found. We continue processing until we get the best
solution. In addition, the algorithm has a scoring mechanism
to always choose the most promising configuration to explore
in each iteration. Because of this approach, Branch-and-
Bound is sometime called a best-first-search strategy. Starting
by considering the root problem (the original problem with
the complete feasible region), the bounding procedure are
applied to the root problem. If the bound is less than the
calculated value, prune that branch and choose another branch.

In case bound is greater than the calculated value choose
that one as the new bound. Otherwise, the feasible region is
divided into two or more regions. The algorithm is applied
recursively to the sub-problems until all the nodes have
been solved or pruned, or until some specified threshold is
met between the best solution found and the bounds on all
unsolved sub-problems

The efficiency of this method is highly depends on the
effectiveness of the bounding algorithm(Simulated Annealing
algorithm) used, bad choice could lead to repeated branching,
without any pruning, until the sub-regions become very small.

VI. EXPERIMENTAL RESULTS:

The proposed idea is tested for a large number of tasks
that are allocated onto a distributed system. The idea contains
two major parts. The first part determines the expectant hosts.
In second part it uses two phase hybrid algorithm (SABB)
for efficient task allocation. The hybrid method is coded with
object-oriented programming language over Unix platform.
The nodes are considered as heterogeneous on the basis of
reliability function.

In first part we reduce the number of nodes where a task can
be executed. For that we calculate the reliability of each node
of the DCS. On the basis of the requirements of the tasks we
set the reliability value, below that no task can be executed on
a particular node. It can be easily described by following table:

Sl.No Max Value(1000) Final Cost Node Count
1 1000 75 106
2 700 75 142
3 500 75 142
4 300 75 163
5 100 75 163

Table-3 Shows the variation of node counts

In the above table we can see that when the individual cost
assigned to any worker node is equal or greater than the Max
bound then the number of nodes visited is minimum (shown in
1st row of the table). In the next of the cases the visiting node
is increases (that increase the cost in terms of execution time).

444 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

The above simulation results are shown in the following
graphs:

x

y

3 4 5 6 7 8 9
15

20

25

30

35

40

45

2

1

Number of Tasks

CAsa

2: With Expectant Host
1: Without Expectant Host

Graph.1

Graph.1 shows the bound generated by the simulated
annealing algorithm with the consideration of expectant hosts
is lower than the bound generated without expectant hosts.
CAsa shows the average cost in Simulated Annealing method.

x

y

3 4 5 6 7 8 9
0

100

200

300

400

500

600

2

1

Number of Tasks

Avn

2: With Expectant Host
1: Without Expectant Host

Graph.2
Graph.2 shows the total number of node visited considering

both the cases explained in Graph.1. Here the number of node
visited is depends upon the bound generated by simulated
annealing algorithm. Avn shows the average number of visited
nodes.

VII. CONCLUSIONS AND FUTURE WORK:

The task allocation problem in terms of reliability is dis-
cussed in this paper. The graph based mathematical approach
has been taken to solve the problem. The number of visited
nodes have been minimized during the allocation of task
by suitably changing the bound value. The determination of
expectant hosts has reduced the number of node where a
particular task can be assigned. It enhanced the capability of
Simulated Annealing Algorithm to determine the bound for
Branch and Bound Algorithm. By dynamically updating the
bound value we have assigned the tasks in more optimal way.
Finally the total number of visited node has been reduced
that minimized the over all assignment time, which makes the
system more reliable.

The further enhancement would be the content storing
strategy of nearest worker node in current node. This may
lead to faster allocation of jobs in working nodes.

REFERENCES

[1] Y. Hamam and K. S. Hindi,“Assignment of program modules to pro-
cessors: A Simulating Annealing approach”, J. of operational research
122,pp.509-513, 2000.

[2] G. Attiya and Y. Hamam,“optimal allocation of tasks onto networked
heterogeneous computers using Minimax Criterion”, proc. of the inter-
national network Optimization conference (INOC’ 03), pp. 25-30, Evry
Paris, France 2003.

[3] E. Aarts and J. Korst,“ Simulated Annealing and Boltzmann Machine”,
John Wiley and sons, New York, 1989.

[4] W. L. Winson, “operation research: Application and Algorithms”, third
edition, wadsworth publishing company, Belmont, Califoenia, 1994.

[5] Arbab, F. Reo “A channel - based coordination model for component
composition”. Mathematical structures in computer science, 14.3 (June,
2004), 329 - 366.

[6] Schollmeier, R. “A definition of peer - to - peer networking for the
classification of peer - to - peer architectures and application”, In
proceedings of the IEEE 2001 international conference on peer - to -
peer computing (p2p 2001), link ding, Sweden, August 27-29, 2001.

[7] S.M. Shatz, J. P. Wang, and M. Goto,“Task allocation for maximizing
reliability of distributed computing system”, IEEE trans. computers, vol,
41, no. 9, pp. 1156 - 1168,1992.

[8] W.W.Chu et al,“Estimation of intermodule communication (IMC) and its
applications in distributed processing system”, IEEE trans. comput, vol.
33, no. 8, pp. 691 - 699, Aug 1984.

[9] S. Kartik and C. S. R. murthy, “Task allocation algorithms for maximiz-
ing reliability of distributed computing systems”,IEEE trans. computers,
vol.46, no.6,1997.

[10] D.P. Viyarthi and A. K. Tripathi, “Maximizing reliability of distributed
systems with task allocation using simple Genetic algorithm”, J. of system
architecture 47, pp.549 - 554, 2001

[11] G. Attiya and Y. Hamam, “Task allocation for maximizing reliability of
distributed system: a simulated annealing approach”, journal parallel and
dist. computing vol. 66. pp.1259 - 1266, 2006.

[12] G.Attiya and Y. Hamam, “Reliability oriented task allocation in hetero-
geneous distributed computing systems”, proc. ninth int’l symp. comput-
ers and comm., pp. 68 - 73, 2004.

[13] A. Heydarnoori, F. Mavaddat, “Reliable deployment of component -
based application into distributed environments”, Third international
conference IEEE 2006.

[14] A. O. Charles Elegbede, C. Chu, K. H. Adjallah, F. Yalaoui, “Reliability
allocation through cost minimization”, IEEE trans. reliab. 52 (2003) 106
- 111.

[15] S. Srinivasan and N. Jha, “Safety and reliability driven task allocation
in distributed systems”, IEEE trans. on parallel and distributed systems,
vol.10, no.3, pp. 238 - 251,1999.

[16] C. C. Hai and S. T .Chanson, “Allocating task interaction graph to
processors in heterogeneous networks”, IEEE trans. on parallel and
distributed system, vol. 8, no. 9, 1997.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 445

On Overcoming Market-Driven Software Development Challenges: requirements
refactoring

B. Isong1 and O. Ekabua2

1 Department of Computer Science and Information Systems, University of Venda, Thohoyandou, South Africa
2Department of Computer Science, North West University, Mmabatho, South Africa

Abstract - Market-driven (MD) software development
organizations are faced with several challenges resulting
from their requirements engineering (RE) processes. This is
because software is developed for a large market, rather than
for a specific customer involving large number of
stakeholdings/users and continuous requirements inflow.
Among these challenges are poor quality of requirements
writing/understanding and requirements duplication. Having
large number of stakeholders and different forms of
requirements poses a great risk for duplicating requirements
which in turn increases risk for requirements overload.
Furthermore, writing quality requirements that is traceable
and understandable is a great issue. These have posed huge
challenges to MD development organizations. To rid these
issues and improve the quality of requirements specification,
we proposed the incorporation of refactoring into MDRE
processes. Refactoring requirements will increase
requirements understanding, and facilitate detecting
inconsistencies, managing requirements changing and even
facilitate development decisions like prioritization, releases
planning, etc. The purpose of this paper is to propose the
incorporation of requirements refactoring into MDRE
processes. In addition, we present MD development
challenges, software refactoring, opportunities for
refactoring and requirements refactoring.

Keywords: Refactoring, Requirements, Code Smell, Market-
driven, Software quality

1 Introduction
 In recent years, MD software development is gaining
increased momentum and attention in the software
engineering world. This is due to the proliferation of the
market for COTS (Commercial off-the-shelf) or packaged
software [1][2][3]. In MD development, software is developed
for a large market, rather than for a specific customer, new
versions are developed in a succession of releases, and there
is a high pressure on short time-to-market, etc calling for [4].
To meet the market demand, an effective engineering of
software requirements is indispensable.

MD software development organization faces many
challenges that differ from those found in organizations
developing bespoke software. These challenges lie in the
distinct RE processes existing between them. MDRE is

characterized by continuous requirements inflow that requires
screening and selection, large number of stake-holders and
users on a large/ open market as well as schedule constraints
[3][4]. These characteristics have posed huge challenges to
MD software development organizations. Among these
challenges are the issues of writing understandable
requirements and the continuous flow of new requirements
[1][25]. The continuous flow of requirements is caused by the
variety of stakeholders with diverse ideas to contribute.
Having large number of stakeholders and different forms of
requirements [5][6] poses a great risk for duplicating
requirements which can easily increase the risk for
requirements overload [5]. In addition to stakeholder’s
characteristics is the issue of writing quality requirements
that is traceable and understandable [1][8]. Requirement is
believed to have different meaning to different people and
there is no direct link between the stakeholders and the
developers. These however, decrease the quality of the
requirements and affect other development decisions and
activities such as selection and release planning decisions,
requirements change management, requirements,
implementation, etc negatively.

To satisfy other development decisions and meet market
demands, it is important to have quality requirements since
good requirements are critical to software quality. With the
problems of requirements inflow (i.e. duplicate requirements)
and poor requirements writing, software engineers need
promising tools and techniques to address these issues. Such
a promising technique is refactoring, one of the most
important and commonly used techniques of transforming a
piece of software artifact in order to improve its
design/organization. According to [7][10], refactoring “is the
transformation from one representation form to another at the
same relative abstraction level, while preserving the subject
system’s external behavior (functionality and semantics)”.
Better software development methods and tools exist but most
requirements’ behaviors are not preserved, instead making it
more complex and hard to understand.

Refactoring has received considerable attention and has been
used in the context of software evolution to improve the
quality of the software such as maintainability, complexity,
extensibility, reusability, modularity, efficiency, etc [9].
Refactoring is one of the ways to make object oriented
software systems maintainable through reducing its

446 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

complexity by incrementally improving the internal software
quality without affecting its external behavior [24]. It has
application in software artifacts like codes, design and
requirements, etc. [10].

In most published literature, refactoring has been used in the
context of code restructuring and much has not been done on
requirements. We believe incorporating refactoring into
MDRE processes will go a long way improving requirements
quality and eliminates excessive requirements duplicate. The
goal of this paper is to propose the incorporation of
requirements refactoring into MDRE in order to improve the
quality of specifications and facilitates other development
decisions. In addition, we present the challenges faced by MD
development organizations (i.e. poor requirements writing
and requirements duplicate), refactoring activities, and the
application of refactoring to requirements. These are
discussed in subsequent sections.

2 Market-driven Development RE

Challenges

 The goal of a MD product is to take market shares by
drawing a wide range of customers, perhaps, increasing profit
[11][12]. In order to meet this objective, it is of essence for
the RE process to invent quality requirements devoid of
duplication, low quality specification etc. that can compete on
the market or facilitate other development decisions.
However, MD software development faces special challenges
resulting from stakeholdings and scheduling constraints
[3][4]. In the results of an empirical study conducted by
[1][25], several challenges were identified. These challenges
include communication gap between marketing staff and
developers, writing understandable requirements, managing
the constant flow of new requirements, requirements
volatility, requirements traceability and interdependencies,
requirements are invented rather than discovered,
implementing and improving RE within the organization,
resource allocation to RE, release planning based on
uncertain estimates, etc.

Of special interest in this paper among these challenges are
the issue of writing understandable requirements and the
continuous flow of new requirements. The continuous flow of
requirements is caused by the diverse stakeholders who have
influence on the product and like to contribute their ideas.
Requirements are continuously collected, stored in a database
for further analysis, described in natural language, and of
varying quality and nature [4][8]. With these, there is a great
risk for duplicating requirements due to large number of
stakeholders and different forms of requirements [5][6],
which in turn increases the risk for requirements overload.

In addition, the issue of writing understandable requirements
and understanding the stated requirements poses a serious

case. Many requirements are shorten and poorly written
[1][8][25]. The possible cause is that requirements have
different meaning to different people and there is no direct
link between the stakeholders and the developers. As a result,
the quality of the requirements is poor since the variety and
large set of requirements that is available in the database
cannot be handled or resolve ambiguities, find relationships,
eliminate duplicates, etc.

Consequently, this issue can affect other development
decisions and activities in MD such as selection and release
planning decisions, requirements change management,
requirements, implementation, etc negatively. Therefore
there is need to get rid of these problems and improve the
quality of requirements specification as it is critical to the
overall software quality. Hence, the need for re-engineering
techniques such as refactoring is a sine qua none to MDRE.

3 What is Software Refactoring?
 Software refactoring is as old as creation. Perhaps, many
software engineers have been carrying out refactoring
unknowingly during software development. Today
refactoring is considered an integral part of many
development projects [14]. It is one of the tools developers
use in cleaning up codes in a more efficient and controllable
manner [15]. With the need to modify existing code,
refactoring constitutes a highly disciplined approach to
restructuring the design without changing the behavior of the
code.

Refactoring is a change made to the internal structure of
software to make it easier to understand and cheaper to
modify (i.e. improving the design) without changing its
observable behavior [15]. The process of refactoring code
removes duplication, the simplification of complex logic, and
clarifies unclear code [14]. The process starts with the
identification of when an application should be refactored,
proposing which refactoring technique should be applied and
where the application of the selected refactoring is to take
place [10]. When refactoring is successfully applied to a piece
of code, its design is improved. The fact is that creating a
good design is a challenging task. Design defects cause the
system to display high complexity, improper behavior, and
poor maintainability [27]. To cope with these issues,
developers are forced to adapt the software design through
series refactorings - the only way to keep the software easier
to modify and understand [10][15].

Refactoring is an important programming practice and has
been in existence for some times now. Initiated by the
Smalltalk community, it has been applied to a great number
of programming languages or integrated development
environments (IDE), software process support (such as
software re-engineering, agile software development, and

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 447

framework-based software development) and many software
artifacts such as programs, design, and requirements [10].

4 Motivations for Software Refactoring
 Refactoring is generally motivated by detecting the
presence of a ‘smell’ (i.e. warning signs about potential
problems) in a software artifact [10][15]. The occurrence of
these ‘smells’ reduces the overall quality of the software
artifact throughout the development process [10][16]. For
instance, long method or duplicate method may exist in a
code. Once noticed, such situations can be solved by applying
the right refactoring. That is, restructuring the source code
into a new form that no longer ‘smells’ without changing its
observable behavior [15]. Failure to perform refactoring can
affects the quality of the code in terms of maintainability,
extensibility, etc in a way not anticipated. Removing the
‘smells’ early during the stages of development process
reduces the costs associated with the software changes. These
cost reductions could double five times more in later stages
than during requirements activities [17].

Major factors that have influenced program refactoring stems
from hard to read or duplicate logic/complex conditional
logic programs are hard to modify, etc [15]. Therefore
applying refactoring to codes makes it easier to add new
codes, improve the design of existing codes, and gain a better
understanding of the codes [14][15]. In a study to investigate
what motivates software engineers to refactor their code, [18]
identified major factors. The report showed that ‘smell’ is not
the only motivating factor for refactoring. Factors such as
responsibility with code authorship, self esteem, self efficacy,
achievement needs, social norm, unconscious habit, threats of
punishment, perceived value, estimated efforts, recognitions
from others, tools availability and functionality etc. All these
factors contribute to the need to perform refactoring.

5 Requirements and Refactorings
 In various published literature, software refactoring efforts
have so far be limited to source codes. Refactorings can be
applied to any type of software artifacts such as design
models, database schemas, software architectures, and
software requirements [10][15]. Like source codes,
refactoring can also be applied at the level of requirements
specifications. As suggested by [10][19], natural language
requirements specifications can be restructured by
decomposing them into a structure of viewpoints with each
having partial requirements of some system components with
interactions made explicit. When requirements are
restructured in this manner its quality is improved, increases
requirements understanding, and facilitates detecting
inconsistencies (such as duplicate requirements) and
managing requirements changes [10].

Over the past few years, MD has faced lots of challenges
arising from their RE process involving low quality of the
requirements and duplicate requirements due to constant flow
of new requirements. As reported by [1] [25], in most of the
companies interviewed, producing a well-formulated
requirements posed a great problem since many of the
interviewees finds it difficult to understand the requirements.
Requirements is very critical to software quality and any bug
not discover at this phase will be very costly when discovered
at a later phase [16]. The continuous flow of requirements is
another serious issue posing a great risk of requirements
duplicates which can trigger requirements overload.

With these and more, requirements have to be refactored in
order to enhance its clarity, remove duplicates and even
facilitates other development decisions such dependencies,
priority, release planning, etc. while preserving its behavior.
This then calls for urgent need to incorporate refactoring into
MDRE processes. Many refactorings and tools for refactoring
requirements documents exists but their focal point is on
specific techniques like use cases with no descriptions or
mechanisms to specify requirements [20]. Other approaches
that exist provide no guidelines on how to identify the
potential problems. In this work, we propose a generic
approach that tends to overcome the existing challenges.

6 Improving Requirements Quality with

Refactoring
6.1 Refactoring Opportunities

Like code refactorings, identifying a set of ‘smells’ that
could signify potential refactoring opportunities is a good
start in the right direction. In this paper we used the generic
approach to identify refactoring opportunities in requirements
by Ramos et al [21].This approach is applicable to any
requirements description technique. The refactoring
opportunities are not strict rules for automatic refactorings
application, rather decisions need to be taken first [21].
Requirements engineer need to make decisions and choose
which refactoring is more suitable for each opportunity
during the course of application.

Ramos et al [21] identified a collection of refactoring
opportunities that can be found in software requirements,
corresponding to ‘smells’ in the specification such as large
requirement, complex conditional structure, lazy
requirement, naming problems and duplicated activities. In
each opportunity, there is a description of the method to
identify occurrences of the problem and the refactorings types
that can be used to reduce the effects of the problem
occurrences. Accordingly, a collection of refactorings types to
manipulate a smelled-requirement are the extract
requirement, rename requirement, move activity, inline
requirement, and extract alternative flows. Each refactoring

448 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

contains the context, the type of solution it provides, a
motivation for the transformations, its mechanics and an
example of a refactored description [15][21]. More details
about each opportunity and types of refactoring can be found
at [21]. These approaches when applied to MDRE process
will go a long way improving the quality of the requirements
document and rids duplicate requirements.

6.2 Refactoring the Requirements

To perform the actual refactoring after identifying the
possible refactoring opportunity, the above mentioned
refactorings types can be applied. The description is based on
the format recommended by [15] for describing refactorings.
That is, each refactoring is described based on the name,
context, the solution, the motivation, set of mechanics and an
example.

Here we provide one example described by [21] based on the
above stated format. Though the example is based on use
cases, it can be applied to any requirements description
techniques. For instance, to apply extract requirement, the
following guidelines are necessary:

Name: Extract Requirement

Context: Requirement is too large or contains information
related to a feature that is scattered across several
requirements or is tangled with other concerns.

Solution: Extract the information to a new requirement and
name it according to the context.

Motivation: Apply when requirements is too large and can
be split into two or more new requirements. This large
requirements contain large amount of information that is
difficult to understand or ambiguous. This further makes it
cumbersome to locate the needed information easily.

Mechanics: The following activities should be performed:
1. Create a new requirement and name it.
2. Select the information you want to extract.
3. Add the selected information to the new requirement.
4. Remove the information from the original requirement.
5. Make sure the original requirement is acceptable without

 the removed information.
6. Update the references in dependent requirements.

Example: The use case named Complaint Specification
dealing with three different types of complaints (animal, food
or diverse) is obtained from the Health Watcher system [22].

Figure 1: Use case complaint specification [21][22]

Due to different pre-conditions, data to be manipulated and
interfaces arising from each complaint type, each type can be
extracted as a separated use case.

Figure 2: Use case complaint specification (after the
refactoring) [21]

Figure 3: Use cases register animal complaint [21]

Details about other refactorings can be found at [21]. With
extract requirement as described above, situations like
requirements duplication, requirements misunderstanding,
etc can be solved and improve the quality of the specification
which in turn will enhance the quality of the software.

Main flow of events: This use case makes possible for a
citizen to register complaints. Complaints can be Animal
Complaint, Food Complaint or Diverse Complaint:
1. The citizen informs the kind of complaint;
2. The system registers the kind, date and time of the

 attendance;
3. The system shows the specific screen for each type of

 complaint;
4. The citizen provides the data;
5. The system saves the complaint (with the OPENED state),

return a code for the attendance, so that the citizen can take
note and query for the situation of his/her complaint.

Main flow of events:
1. The citizen chooses the kind of complaint;
2. Case the citizen chooses the animal complaint.

2.1. The main flow will follow the one described on
[Register Animal Complaint].

3. If the citizen chooses the food complaint.
3.1. The main flow will follow the one described on
[Register Food Complaint].

4. If the citizen chooses the diverse complaint.
4.1. The main flow will follow the one described on
[Register Diverse Complaint].

5. The system saves the complaint.

Main flow of events:
1. The citizen selects the option register animal complaint;
2. The system registers the kind, date and time of the
attendance;
3. The system shows the screen for the animal complaint;
4. The citizen provides the complaint description;
5. The system saves the animal complaint (with the
OPENED state), return the code for the attendance, so that
the citizen can take note and query for the situation of
his/her complaint.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 449

7 Conclusions
 MD software development organization faces many
challenges that differ from those found in organizations
developing bespoke software. In this paper, we have
presented specific challenging issues with regard to RE
challenges studies in MD software development conducted in
the industry. These challenges are the issues of writing
understandable requirements and constant flow of new
requirements. The challenges are as a result of the stake
holder’s characteristics and the constant flow of new
requirements. These however, result in having low quality
requirements and duplicate requirements that can affect other
development decisions.

To rid MD development of these problems, we have proposed
the incorporation of refactoring into its RE processes. To
apply refactoring, we proposed the collection of refactoring
opportunities that might occur in requirements and provides
a collection of refactorings that can be used to improve the
quality of requirements where these opportunities appear.
This proposal is based on the collections described by Ramos
et al. We believe that if refactoring is applied to requirements
documents like source codes, the requirements would be
made more understandable and improve the overall
organization of the project in MD software development.
That is, refactoring requirements will go along way
enhancing the quality of the design and onward development.
For future work, we plan to introduce more refactoring and
investigate several issues that may inhibit the actualization of
this proposal.

8 References
[1] Karlsson, L., Dahlstedt, A.G., Natt, J., Regnell, B. and

Persson, A.: Requirements engineering challenges in
market-driven software development - An interview study
with practitioners, ACM Information and Software
Technology, Vol 49, 2007.

[2] E. Carmel, S. Becker: A Process Model for Packaged

Software Development, IEEE Transactions on Engineering
Management. Vol. 42, pp. 50–60, 1995

[3] Sawyer, P., Sommerville, I. and Kotonya, G. Improving

Market-Driven RE Processes. Proc International
Conference on Product Focused Software Process
Improvement, 1999

[4] P. Sawyer, Packaged Software: Challenges for RE,

Proceedings of the Sixth Int. Workshop on Requirements
Engineering: Foundations of Software Quality, Stockholm,
Sweden, pp. 137–142, 2000.

[5] Karlsson, L, et al. Requirements engineering challenges in

market-driven software development - An interview study
with practitioners. Information and Software Technology
Vol. 49, 6, pp. 588-604, 2007.

[6] Natt och Dag, Johan, et al. A Linguistic-Engineering
Approach to Large-Scale Requirements Management.
IEEE Software Vol. 22, pp. 32-39, 2005.

[7] E.J. Chikofsky and J.H. Cross, “Reverse Engineering and

Design Recovery: A Taxonomy,” IEEE Software, vol. 7,
no. 1, pp. 13-17, 1990.

[8] Natt och Dag, J. Regnell, B.; Carlshamre, P.; Andersson,

M.; Karlsson, J.: A feasibility study of Automated
Natural Language Requirements Analysis in Market-
driven Development, Requirements Engineering, pp. 20-
33, 2002

[9] K. N. Reddy and A. A. Rao: A QuantitativeEvaluation of

Software Quality Enhancement by Refactoring Using
Dependency Oriented Complexity Metrics. IEEE
Computer Society, 2009

[10] Mens, T. and Tourwe, T.: A Survey of Software

Refactoring IEEE Transactions on Software Engineering,
Vol. 30, No. 2, Feb., 2004

[11] Harding, J A, et al. An intelligent information framework

relating customer requirements and product
characteristics. Computers in Industry, Vol. 44, pp. 51-65,
2001.

[12] Sivzvattian, Siv and Nuseibeh, Bashar. Linking the

Selection of Requirements to Market Value, 2003

[13] Host M, Regnell B, Natt och Dag J, Nedstam, J, Nyberg

C. Exploring bottlenecks in market-driven requirements
management processes with discrete event simulations. In:
Proceedings of the workshop on software process
simulation and modeling (PROSIM’2000), London, UK,
July 2000

[14] Lippert, M. and Roock, S.: Refactoring in large software

projects: performing complex restructurings successfully,
John Wiley & Sons Ltd, England, 2006

[15] Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.:

“Refactoring: improving the design of existing code”, in:
Object Technology Series. Addison-Wesley, 2000

[16] Boehm, B., Sullivan, K.: “Software economics: a

roadmap”, in: ICSE – Future of SE Track. pp.319–343,
2000

[17] Pressman, R.: “Software Engineering: A Practitioner’s

Approach”, McGraw-Hill, 2005

[18] Wang, Y.: What Motivate Software Engineers to Refactor

Source Code? Evidences from Professional Developers,
IEEE, 2009

[19] A. Russo, B. Nuseibeh, and J. Kramer, “Restructuring

Requirements Specifications for Managing Inconsistency
and Change: A Case Study,” Proc. Int’l Conf.
Requirements Eng., pp. 51-61, 1998

450 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

[20] Xu, J., Yu, W., Rui, K., Butler, G.: “Use case refactoring:

a tool and a case study”, in: Software Engineering
Conference, 2004. 11th Asia-Pacific, pp. 484–491, 2004

[21] Ramos, R. et al: Improving the Quality of Requirements

with Refactoring, VI Simpósio Brasileiro de Qualidade de
Software, 2007

[22] Soares, S., Laureano, E., Borba, P.: “Implementing

distribution and persistence aspects with AspectJ”, in:
Proceedings of the 17th ACM conference on Object
oriented programming, systems, languages, and
applications, ACM Press 174–190, 2002

[23] P. Van Gorp, H. Stenten, T. Mens, and S. Demeyer,

“Towards Automating Source Consistent UML
Refactorings,” Proc. Unified Modeling Language Conf.,
2003

[24] W.F. Opdyke, “Refactoring: A Program Restructuring Aid

in Designing Object-Oriented Application Frameworks,”
PhD thesis, Univ. of Illinois at Urbana-Champaign, 1992.

[25] R. La¨mmel, “Towards Generic Refactoring,” Proc.

SIGPLAN Workshop Rule-Based Programming, 2002

[26] Karlsson, L., Dahlstedt, A.G., Natt, J., Regnell, B. and

Persson, A.: Challenges in Market-Driven Requirements
Engineering - an Industrial Interview Study, Proceedings
of 8th International Workshop on Requirements
Engineering: Foundation for Software Quality, 2002

[27] Tahvildari, L. and Kontogiannis, K. “A metric-Based

Approach to Enhance Design Quality Through Meta-
Pattern Transformations”, Proc. of the Seventh IEEE
European Conf. on Software Maintenance and Reeng.
(CSMR’03), pp. 183-192, 2003

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 451

Workflow map optimization by using multiobjective

algorithms

L. Osuszek

Institute of Informatica, Silesian University, Sosnowiec, Poland

Abstract - This paper covers extending Process Definition

Language (XPDL), Workflow map and application of multi-

objective optimization algorithms to enable fully automated

optimization of the Workflow map. The mathematical model of

the business process may be subject to specific multi-criteria

optimization algorithms.

Keywords: P8 BPM, Business Process Management, XPDL,

Multiobjective Optimization, Non-Dominated Sorting

Genetic Algorithm II (NSGA2), Strength Pareto Evolutionary

Algorithm II (SPEA2) and Multi-Objective Particle Swarm

Optimization (MOPSO), IBM Case Manager, ICM, Business

Process Manager, BPM.

1 Introduction

 In the previous article we introduced BPM workflow

improvement by adopting code optimization techniques. In

this article we look at multi-objective workflow optimization

and tangible values it might brought to Business Process

Management.

Today, there are several techniques for modeling business

processes which enable mapping existing processes of the

organization, and allow for creating new ones in order to meet

growing market demand. One of the process maps - created in

IBM Case Manager (ICM) - is rendered below in figure 1. For

each company and organization, business processes and the

related decisions are the key element which provides the

momentum for their operations and determine their

competitiveness. The management of workflow and

information within process paths has a major impact on the

speed, flexibility and quality of decision-making processes.

This is why the acceleration and optimization of processes is

decisive for the success of any organization.

Figure 1. Business process map in IBM Case Manager

Processes involve people, systems and information. The

maximum efficiency is possible only if all of these elements

interoperate in an automated environment. Note also that

optimized processes enable a faster response to the changing

market situation and to new customers’ demands while

guaranteeing compliance with applicable regulations. In short,

better processes contribute towards continuous improvement

of the efficiency of company’s operations, and therefore,

allow gaining competitive advantage in the industry.

One of the factors which make the Business Process

Management systems increasingly popular is the tracking,

analysis and simulation of processes. With the monitoring of

work progress, with in-depth analysis of current and historical

processes, and with the verification of changes to processes

prior to their implementation in a production system, these

tools guarantee more accurate business decisions.

Additionally, they enable fast implementation of best business

practices, and reduce the total cost of system ownership with

reusable process definitions.

The aforementioned advantages of BPM are quite widely

spoken of, but not enough attention is paid to the optimization

problem. Today’s tools offer the functionality of business

process optimization. However, expert knowledge is required

to use them efficiently. With their experience backed up by

software-based simulations, the consultants who operate such

452 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

tools are able to specify the way of optimization of the

process concerned. The weakness of the BPM description

language is the inadequate description model. Only few

description models of business processes enable the use of

process map optimization methods and analyses to improve

the timeliness (accelerate), to ensure the optimum use of

resources, or to save money.

The objective of this paper is to show the ability to extend the

business process description model in order to enable a more

sophisticated, multi-objective optimization.

Idea of multi-objective optimization could be easily adapted

to real uses cases by combination of BVA (Business Value

Assessment) and mathematical models. BVA may be used to

perform an in-depth cost analysis of each business process

component. Such a descriptive model provides additional

analysis and optimization possibilities. This data could be

easily used to mathematical optimization algorithms. It is a

powerful tool that can suggest how to restructure the company

or customize the existing business process so as to make it

more optimal.

2 Current fields of studies

 Several models have been developed to enable

description of business processes using mathematical models.

The most popular include Integration Definition (IDEF),

Computer Integrated Manufacturing – Open System

Architecture (CIM-OSA), Object-Oriented Modeling, and the

highly popular Petri Nets. These standards were used to

develop many tools for business process modeling (ARIS,

FirstStep, PrimeObject, etc.). Zakarian [1] integrated the

Fuzzy-rule-based Reasoning Approach with IDEF in order to

extend the quantitative analysis of the process model. Grigori

[2] proposed the Business Process Intelligence, a tool which

uses data mining methods for the analysis of business

processes.

Multiple algorithms were developed to enable optimization of

business problems in the area of logistics Yu and Li [3], as

most of business models (including Business Process

Modeling Notation) are insufficient from the point of view of

the multi-criteria analysis. McKay and Radnor [4] presented a

model for the description of business processes which,

however, did not include any formal optimization methods.

Most scientific studies on business process optimization focus

on selecting the appropriate process model, or on one-

dimensional optimization (Hofacker and Vetschera [5]) which

is unsatisfactory..

2.1 Multi-objective (multi-criteria)

optimization

 Generally, there are the following optimization types:

� single-criterion optimization: if the ideal state is

required to be reached for a single evaluation

criterion;

� multi-criteria optimization (vector optimization, poly-

optimization): if reaching the ideal state depends on

multiple evaluation criteria.

A large number of criteria for the evaluation of the ideal state

often results in contradictions between them. This means that

the solution looked for does not reach the extreme values of

all criteria considered separately. Instead, it provides some

kind of compromise between them. Therefore, the poly-

optimization problem consists primarily in defining that

compromise. In many cases, the heuristic knowledge about the

optimized process allows for specifying another, substitute

criterion for searching the compromise solution.

In formal terms, poly-optimization may be specified as

follows:

Let X = {xl}, l = 1, 2,...., N be a vector of decision variables

considered as independent. Let F = {fi}, i = 1, 2,...., M be a

set of criteria (functions) for evaluating solutions when

looking for the compromise. Let the following restrictions be

imposed on the values of the solutions:

– inequality restrictions: G = {gk}, k = 1, 2, ..., K,

with: gk (X) ≤ 0;

– equality restrictions: H = {hj}, j = 1, 2,..., J, with: hj

(X) = 0;

The objective of poly-optimization is to reach a solution

which meets the following condition:

min F(X) ={ f1(X), f2 (X),...., fl (X)}

If maximization of an fl * function is required, an auxiliary

criterion may be introduced in accordance with the following

formula:

min fl (X) = -max fl* (-X)

Figure 2. Business process design with activities and

resources

 In most cases, the business process description model

includes activities and resources (figure 2). The activities are

supposed to enable meeting the objective of the business

process. The two sets of resources showed on the figure (Iglob

and Oglob) are, respectively, the initiating resources available

at the beginning of the process, and the output resources

resulting from the performance of the process.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 453

There are two categories of resources ‘flowing’ through the

entire map of the business process: physical resources (e.g.,

process participants) and information resources.

Business process optimization involves specification of the

criteria to be optimized. Usually, these will be costs and

process duration.

The literature provides numerous examples of ready-to-use

algorithms for multi-criteria optimization of various types of

problems. These algorithms may use any criteria through the

application of the corresponding mathematical model. The

unambiguous conclusion from the analysis of existing multi-

criteria optimization algorithms is that the model for the

XPDL description of business processes is simple and may be

extended with additional information enabling the

construction of a more accurate mathematical model. This

conclusion is applicable to the XPDL supported by P8 BPM,

because as most BPM models, the XPDL model can be

represented in BPMN. Let us consider the following example

of a business process:

Figure 3. Travel Agency process of holidays offering

 Figure 3 renders generic model of the operation of a virtual

travel agency. The input (initiating) data is the customer’s

guidelines as to the details of a trip, and the maximum price

the customer may pay. Then, the travel agent performs a

series of interrelated actions (activities) which compose a

business process aimed at the delivery of a proposal compliant

with the expectations.

Let us assume extension of the standard BPM model

describing the business process with additional information on

the costs and duration of each action (business step).

Additionally, detailed possible actions are specified for each

activity. A similar approach was included in IBM Case

Manager, the latest tool for describing dynamic business

processes. Table 1 describes the business process of finding

the appropriate trip proposal.

Table 1. Process map as a set of process elements, cost and

duration

Object

name
Process

element

Alternatives Cost Duration

Travel
details

Input

resource

- - -

Price limit Input

resource

- - -

1. Search from
brochures

2 9 Browse
pre-booked
packages

Activity

2. Search company
intranet

7 5

1. Browse past cases 4 8 Explore

travel

options

Activity
2. Explore new
options

6 6

1. Via intranet/e-mail 10 1 Check
availability

Activity
2. Via phone/post 5 7

1. Use specific
software

11 2 Create
tailored
package

Activity

2. Combine options
manually

5 6

Holiday
proposals

Output

resource

- - -

Payment
details

Output

resource

- - -

The customer who enters the travel agency reports his/her

request to prepare a proposal of holiday in a specific

localization. He/she also specifies the price limit to be

complied with. To reply, the travel agent may browse through

the previously prepared trip packages, or search through the

entire proposal database in order to prepare a customized

offer. There are two ways (activities) to browse through

previously prepared packages: checking the information

brochures or searching through the company’s intranet

database. If the agent decides to perform a more in-depth

exploration of the proposal database, he/she may check the

past cases or verify new options. Once the details of the

choice of the trip are determined, the agent checks the

availability of the proposal (through intranet/e-mail or

phone/mail). The last step of the proposal construction

process is the presentation of a customized trip package to the

customer. To do so, the agent may use dedicated tools, or he

may create the proposal manually. Each of the selected

actions involves the corresponding cost and duration of the

activity.

Description of the business process extended in that manner

enables creation of a mathematical model which may be

optimized with known multi-criteria optimization algorithms.

The use of Non-Dominated Sorting Genetic Algorithm II

(NSGA2), Strength Pareto Evolutionary Algorithm II

(SPEA2) or Multi-Objective Particle Swarm Optimization

(MOPSO) allows looking for process map variants optimized

for the selected criteria. The process diagrams below present

the paths optimized for the duration or for the costs generated

454 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

by the process. In this experiment SPEA2 algorithm was

choose as a core of multi-objective optimization.

The Strength Pareto Evolutionary Algorithm (SPEA) [6] is a

relatively recent technique for finding or approximating the

Pareto-optimal set for multi-objective optimization problems.

SPEA has shown very good performance in comparison to

other multi-objective evolutionary algorithms [7], and

therefore it has been a point of reference in various recent

investigations. In this experiment, an improved version,

namely SPEA2, is applied, which incorporates in contrast to

its predecessor a fine-grained fitness assignment strategy, a

density estimation technique, and an enhanced archive

truncation method.

For the purposes of this experiment, a dedicated application

was developed which optimizes the process map in function

of the selected criterion by using SPEA2 algorithm. If the

process performance time is specified as the optimization

criterion (Figure 5), the application analyzes possible

combinations of activities in order to determine the shortest

delivery path for the entire process. If the main criterion is

cost (Figure 4) algorithm build the cheapest process map.

Figure 4. Workflow path optimized for cost criterion.

Figure 5. Workflow path optimized for time criterion.

For that purpose, we create an appropriate text file which

includes the process map description:

Figure 6. Description of process map

With a proper structure which reflects business process:
zero - a 8 8 ; b 7 7

one - c 1 2 ; d 3 3

two - e 5 5 ; f 9 9

Connections

 0 1 ; 1 2

The name of the object, and the possible alternatives of

activities together with the information on the costs and

duration. The tool provides an optimized process path for the

selected criterion (or a conjunction of criteria).

2.2 The SPEA2 Algorithm

 SPEA2 was designed to overcome the aforementioned

problems. The overall algorithm is as follows:

Algorithm 1 (SPEA2 Main Loop)

Input: N (population size)

N (archive size)

T (maximum number of generations)

Output: A (non-dominated set)

Step 1: Initialization: Generate an initial population P0 and

create the empty archive

(external set) =0P ⍬. Set t = 0.

Step 2: Fitness assignment: Calculate fitness values of

individuals in Pt and tP

Step 3: Environmental selection: Copy all non-dominated

individuals in Pt and tP to 1+tP .

If size of
1+tP exceeds N then reduce

1+tP by means of the

truncation operator, otherwise if size of
1+tP is less than N

then fill 1+tP with dominated individuals in Pt and tP

Step 4: Termination: If t ≥ T or another stopping criterion is

satisfied then set A to the set of decision vectors represented

by the non-dominated individuals in
1+tP . Stop.

Step 5: Mating selection: Perform binary tournament selection

with replacement on 1+tP in order to fill the mating pool

Step 6: Variation: Apply recombination and mutation

operators to the mating pool and set 1+tP to the resulting

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 455

population. Increment generation counter (t = t + 1) and go to

Step 2.

In contrast to SPEA, SPEA2 uses a fine-grained fitness

assignment strategy which incorporates density information.

Furthermore, the archive size is fixed, i.e., whenever the

number of non-dominated individuals is less than the

predefined archive size, the archive is filled up by dominated

individuals; with SPEA, the archive size may vary over time.

In addition, the clustering technique, which is invoked when

the non-dominated front exceeds the archive limit, has been

replaced by an alternative truncation method which has similar

features but does not loose boundary points. Finally, another

difference to SPEA is that only members of the archive

participate in the mating selection process

3 Conclusions

 The approach aimed at expanding the business process

description model focuses on the mathematical analysis of the

business. The traditional approach towards business process

optimization, offered by various IBM tools (e.g., Process

Analyzer), focuses more on the aspect of actors (participants)

of the process. This allows the experts to quickly find the

system steps that may be performed in parallel, or to avoid

any dead ends or redundant iterations. However, the proper

use of such types of tools requires expert knowledge and

methodic experience in the development of business paths.

The extension of the BPM for business process description, as

proposed in this article, enables a fully automated

optimization of the business process. The mathematical model

of the business process may be subject to a specific multi-

criteria analysis in order to determine the optimum process

paths for the selected criterion.

Real life uses cases could be optimized by an in-depth

analysis of individual tasks (time consumption, costs)

comprising business processes makes it possible to identify

those areas which may generate savings upon modification.

Modification could be prompted by adopting multi-objective

algorithms like SPEA2.

Reader could also be interesting in further article. Next part

introduces conversion of XPDL workflows into Petri Network

Modeling Notation for optimization in category of time

consumption.

4 References

[1] Zakarian A., 2001. Analysis of process models: A

fuzzy logic approach. The International Journal of

Advanced Manufacturing Technology 17, 444-452.

[2] Grigori D., Casati F., Castellanos M., Dayal U., Sayal

M. and Shan M.C., 2004. Business Process

Intelligence. Computers in Industry 53, 321-343.

[3] Yu C-S. and Li H-L., 2000. A robust optimization

model for stochastic logistic problems. International

Journal of Production Economics 64, 385-397.

[4] McKay A. and Radnor Z., 1998. A characterization

of a business process. The International Journal of

Operations and Production Management18 (9/10),

924-936.

[5] Hofacker I. and Vetschera R., 2001. Algorithmical

approaches to business process design. Computers &

Operations Research 28, 1253-1275.

[6] Zitzler, E. (1999). Evolutionary Algorithms for

Multiobjective Optimization: Methods and

Applications. Ph. D. thesis, Swiss Federal Institute of

Technology (ETH) Zurich, Switzerland. TIK-

Schriftenreihe Nr. 30, Diss ETH No. 13398, Shaker

Verlag, Aachen, Germany

[7] Zitzler, E., K. Deb, and L. Thiele (1999, December).

Comparison of multiobjective evolutionary

algorithms: Empirical results (revised version).

Technical Report 70, Computer Engineering and

Networks Laboratory (TIK), Swiss Federal Institute

of Technology (ETH) Zurich, Gloriastrasse 35, CH-

8092 Zurich, Switzerland.

[8] K. Vergidis, A. Tiwari, B. Majeed Optimisation of

Business Process Designs: An algorithmic approach

with multiple objectives.

[9] J. M. Pinto and I. E. Grossmann, “Assignment and

sequencing models for the scheduling of process

systems,” Ann. Oper. Res., vol. 81, pp. 433–

466,1998

[10] F. Soliman, “Optimum level of process mapping

and least cost business process re-engineering,” Int. J.

Oper. Prod. Manage., vol. 18, no. 9/10, pp. 810–816,

1998

[11] Tiwari, K. Vergidis, and B. Majeed, “Evolutionary

multi-objective optimisation of business processes,”

in Proc. IEEE Congr. Evol. Comput.,Jul. 2006, pp.

3091–3097.

[12] W. M. P. van der Aalst, A. H. M. ter Hofstede, and

M. Weske, “Business process management: A

survey,” in Lecture Notes Computer Sciences,

Springer-Verlag, 2003, vol. 2678, pp. 1–12.

[13] WIL M. P. VAN DER AALST ET AL, Pattern-

Based Analysis of BPML and WSCI, 2004

456 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

SESSION

SOFTWARE MAINTENANCE, REUSE,
DEVELOPMENT CONCEPTS + COMPILER

TECHNOLOGIES

Chair(s)

TBA

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 457

458 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

 Documenting Java Database Access with Type Annotations

Paul L. Bergstein
Dept. of Computer and Information Science, University of Massachusetts Dartmouth

285 Old Westport Rd., Dartmouth, MA 02747
pbergstein@umassd.edu

Abstract – Enterprise applications typically include a
relational database layer. Unfortunately, the current
generation of IDE’s (Integrated Development
Environments) do not adequately capture the interaction
between the database management system and other
layers of the application. For example, current Java
IDE's do not evaluate the relationship of classes with the
database, or how a particular java method interacts with
database tables and columns. We report here our recent
progress in extending an Eclipse plug-in to use
programmer supplied documentation of database access
in the form of type annotations for providing a visual map
of interactions between Java code and relational
databases. A primary motivation is to facilitate code
maintenance in the face of database modifications.

Keywords: Software maintenance, software
visualization tools, java annotations.

1 Introduction
Modern tools have simplified the development

of enterprise applications. However, the current
generation of IDE (Integrated Development
Environment) does not sufficiently capture the
interaction between application code and the
database layer. For example, the Eclipse IDE does
not evaluate how a particular java method interacts
with database tables and columns. This makes it
difficult to maintain and enhance applications, since
a change in code may create problems that will
become known only after extensive testing. We
report here our progress in developing an Eclipse
plug-in that helps the programmer by providing a
visual map of interactions between Java code and
relational databases.

The obvious benefit of the mapping is to
facilitate code maintenance in the face of database
modifications by identifying the code-to-database
couplings. A second, and equally important, benefit
involves the easy detection of code-to-code
couplings that arise when different java methods
access the same database elements. For example,

suppose the programmer wants to make some
changes to a method and would like to know the
effects of this change on rest of the code. Ordinarily
the programmer could use the “Call Hierarchy”
feature of the Eclipse IDE to get the dependencies of
other methods and classes on this method. But
suppose the method uses an SQL statement to store a
string in the address column of the customer table,
and the developer wants to change the format of the
address. This is not easy because there may be many
other methods which are dependent on the address
format but are not related through the call hierarchy.

2 Background
We have previously reported [1,2] our

development of a tool to provide a visual mapping of
java code-to-database and code-to-code (via
database) couplings. We have implemented our tool
as a fully integrated plug-in to the popular Eclipse
development environment. Developers can view the
database and the project at various levels of
granularity and easily find the types of coupling they
are most interested in. For example, users can
choose to view couplings of code to anywhere in the
database, to a particular table in the database, or to a
specific column in a table. Similarly, they can adjust
the granularity of their project view between the
project, class, and method levels. Search facilities
enable users to quickly identify important
dependencies. For example, when a method that
stores information in the database is modified, it is
easy to find all of the methods (or classes or
projects) that retrieve the same information and
might be affected.

Until now, the database access of an application
was discovered by our tool through a combination of
static and dynamic code analysis. Each of these two
approaches has its relative advantages and
disadvantages, but share some common
characteristics. Both approaches have the advantage
of automatic discovery that makes them suitable for

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 459

maintaining legacy applications where the database
access is not well documented. However, neither is
100% effective in finding all possible interactions
between the application and the database.

The static code analyzer uses the Sun java
compiler API and the Compiler Tree API to parse
the java source and walk the abstract syntax tree. It
looks for string literals that are included either
directly or after assignment to String variables in
calls to the execute, executeQuery, and
executeUpdate methods of the JDBC Statement
class. The analyzer attempts to identify column and
table names occurring in select, from and where
clauses and record these dependencies in the
coupling repository.

The code analyzer considers certain string
concatenations including some concatenations that
are built from a combination of string literals and
variables to detect simple cases of dynamic SQL
generation in the code. However, static analysis in
general is a hard problem and it will never be
possible to detect all couplings to the database that
may occur at runtime, possibly dependent on user
input.

The main component of the dynamic analyzer is
a JDBC bridge driver that logs the database accesses
to the coupling data repository. Our driver acts as a
bridge between the application and the "real" driver
that communicates with the user's database. The
implementation is conceptually simple. Most of the
methods in our driver classes simply pass requests
on to the underlying "real" driver and return
whatever data is returned from the real driver. The
main exception is in the Statement class methods
(e.g. execute, executeQuery, executeUpdate) that
take SQL statements as arguments. These methods
receive only complete, valid, fully formed SQL
statements as arguments (unless there are errors in
the application) even if they have been built
dynamically. The SQL statements processed in the
JDBC driver are parsed to determine the database
elements that are being accessed and the coupling
information is recorded in the repository.

The main drawback to the dynamic analysis
approach is that it will only find database accesses
that occur during testing with the bridge driver in
place. Therefore the success of this technique is
highly dependent on the developer’s ability to
generate adequate test cases.

In this paper, we describe an extension of our
previous work to allow the developer to explicitly
supply the database access information in the form
of type annotations, as detailed in section 3. For new
projects, this can overcome the limitations of code
analysis techniques. In legacy projects, or when the
developer hasn't completely documented the
database access, code analysis can still be used to
supplement this information. In a future
enhancement, access information that the
visualization tool obtains through static and dynamic
code analysis may be injected into the source code in
the form of annotations to automatically document
the code.

3 Results
Database access information is stored in a

repository that is used internally by our tool. For
every code-to-database coupling that is detected by
either the static or dynamic code analyzer, there is an
entry in the repository. Each coupling entry in the
repository includes the code location (class, method,
file, and line number), the database element
(database, table, and column), the SQL statement
type (select, insert, update, etc.) and the type of
access (read, write, or read/write). The statement
type does not necessarily determine the access type.
For example, a field occurring in the set clause of an
update statement indicates a write access, but a field
occurring in the where clause of the same statement
indicates a read access.

In order to detect changes over time, the
repository also records the first time and last time
that a coupling is detected. Also, each time the tool
is run, the structure of the database is checked using
the JDBC metadata API, and any structural changes
are recorded in the repository.

Ideally, we would like to document individual
statements where database access occurs. However,
since there is currently no support for statement level
java annotations or javadoc comments, we utilize
type annotations for the documentation. Type
annotations are a backward-compatible extension of
java annotations defined in the Java Specification
Request, JSR 308 [3]. Type annotations allow the
programmer to annotate types wherever they occur
and are scheduled to be included in the release of
JDK 8. They are supported now by the Checker
Framework’s [4] type annotation compiler.

460 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

We have defined type annotations to document
the way in which java applications use Statement
and PreparedStatement objects to access database
elements. Each Statement or PreparedStatement
variable should be annotated to document the kind of
SQL statement that is to be executed (select, insert,
update, etc.), the database elements being accessed
(database, table, and column) and the type of access
(read, write, or update). The tool will associate this
information with the lines of code where these
variables are used to invoke execute, executeQuery,
and executeUpdate methods.

Note that a given statement object can be
accessed through multiple reference variables each
with its own annotation in case the programmer
wishes to reuse the same statement object for
different types of database access.

The Database annotation definition given in
Listing 1, uses Strings to specify the database and
SQL statement type. Because types in annotation
definitions are restricted to primitives, String, Class,
enums, annotations, and arrays of those types, we
have defined a second custom annotation,
DataAccess. Each Database annotation contains an
array of DataAccess annotations to specify the types
of access to specific data elements. Notice that the
definitions specify a default statement type of select,
and a default access type of read, so that those
values can be omitted where appropriate. Also, the
wildcard, *, is the default value for the column list.

Listing 2 is a code fragment showing examples
of how the annotations are used. On lines 2-3, we
obtain a Connection from the DriverManager, and
use it on line 11 to get a Statement object, stmnt1.
Lines 5-10 contain the Database annotation that
indicates this statement variable will be used to read
the eid, salary, and dept columns of the employee
table from the personnel database in a select
statement. Our tool will map this database access to
line 14 where the stmnt1 variable is used to invoke
the executeQuery method of the Statement class.

Lines 15-27 demonstrate how the same
Statement object can be reused for a different type of
database access, which is also correctly annotated.
On line 23, we declare a new variable, stmnt2, that
refers to the same object as stmnt1. The stmnt2
variable is annotated on lines 16-22 to indicate that it
will be used to read the salary and dept columns, and
update the salary column of the employee table in

the personnel database. Since there are two types of
access to the employee table (read and update), there
are two DataAccess annotations within the Database
annotation. Both of these database accesses will be
mapped by our tool to line 26 where stmnt2 is used
to invoke the executeUpdate method.

Figure 1 shows the overall architecture of our
tool. The tool uses developer supplied annotations in
addition to static and dynamic analysis of the java
code to find database couplings. The results of all
analysis methods are combined in the coupling data
repository which is also used to track changes over
time. The user interface, implemented as an Eclipse
plug-in displays the results to the user and allows
easy navigation to code based on its database
coupling.

The screenshot in Figure 2 shows the tool
interface in an Eclipse pane. On the Database View
tab the database structure is shown as a tree with
database, table, and column information arranged in
a hierarchal structure. Selecting an element from this
tree brings the associated couplings into view along
with the controls to select sorting options. In the
example in Figure 2, the tree is collapsed to a single
node (which is selected), and all couplings to the
database are displayed. Selecting a code reference
from the coupling list brings the corresponding java
source into view in an editor pane with the
appropriate line of code highlighted.

When two or more methods are coupled to the
same database element, there is a suggestion that
these methods may be coupled through the database.
The nature of the coupling can be seen from the
statement type and access type information. For
example, one method might read data that is written
to the database by another method.

Listing 1.

public @interface Database {
 String db();
 String statement() default "select";
 DataAccess[] access();
}

public @interface DataAccess {
 String type() default "read";
 String table();
 String[] columns() default {"*"};
}

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 461

Listing 2.

The interface also allows the user to browse in
the opposite direction, i.e. from code to database.
The project view tab provides a hierarchal view of
the projects where the user can select a project,
class, or method to find the database elements that it
accesses. A developer can find methods that are
coupled through the database to a method that has
been added or modified by using both views. First,
the database elements accessed by the new or
modified method can be found in the project view
tab. Then, other methods that access the same
database elements can be found in the database view
tab. In future versions, we plan to improve the
interface to automate this task.

4 Related Work
Java annotations have been widely used for

object relational mapping (ORM) in order to
automate the process of persisting java objects in
relational databases. In this case, classes and fields
are annotated to indicate the corresponding tables
and columns in a relational database. This is the
approach used in the Java Persistence API [5] and in
products like Hibernate[6] and ORMLite [7].

There is also a large body of work on software
visualization [8-12] and on database visualization.
There is also a good deal of work on reverse
engineering of databases and CASE tools that
support reverse engineering with visualization
techniques. However, we are not aware of any other

1. // Open a DB Connection
2. Connection dbConnection =
3. DriverManager.getConnection(url,username,password);

4. // Create an annotated Statement
5. @Database (
6. db = "personnel",
7. statement = "select",
8. access = {
9. @DataAccess (table="employee", columns={"eid", "salary", "dept"})
10. })
11. Statement stmnt1 = dbConnection.createStatement();

12. // Execute a query to get the eid, salary, and dept of each employee
13. ResultSet results =
14. stmnt1.executeQuery ("select eid, salary, dept from empolyee");

15. // Annotate a variable for an update reusing the same Statement object
16. @Database (
17. db = "personnel",
18. statement = "update",
19. access = {
20. @DataAccess (table="employee", columns={"dept","salary"}),
21. @DataAccess (type="update", table="employee", columns={"salary"})
22. })
23. Statement stmnt2 = stmnt;

24. // Execute a query to give sales department employees a 10% raise
25. ResultSet results =
26. stmnt2.executeUpdate (
27. "update employee set salary = salary*1.1 where dept = ‘sales’");

462 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

system designed to support the development and
maintenance of software through the visualization of
program code dependencies on the database.

5 Limitations
A significant limitation of the work described in

this paper is the current lack of support for type
annotations in Java 7. This means that code written
with type annotations must be compiled with a non-
standard compiler such as the Type Annotations
compiler that is part of the Checker Framework.
Alternatively, the annotations can be written in
comments. In this case, the Type Annotations
compiler will still recognize them, and the code can
also be compiled with any standard compiler without
modification. This limitation will disappear with the
release of Java 8, assuming that the planned support
for type annotations is not dropped before the final
release.

Another limitation is that the type annotations
are quite verbose, so that it may be difficult to
convince developers that it is worthwhile to take the
time to include them during development. This

problem will be largely mitigated when we have
incorporated functionality to automatically inject
annotations into the source code based on data
access patterns that are detected by the static and
dynamic code analyzers. When this is complete,
developers should only need to add annotations for
those few accesses that are missed by the code
analyzers, or make minor corrections to the ones that
have been generated automatically.

At first, we considered it a disadvantage that we
were not able to annotate JDBC execute statements
directly and were forced to annotate the Statement
variables instead. While this has made the
implementation of the annotation processing slightly
more difficult, our experience has shown that this is
actually an advantage for users since it requires
fewer annotations to be written. In cases where the
same type of database access occurs in multiple
places within the same method or class, we can
annotate a Statement variable once, and use it for
each access. This is another mitigating factor in the
verbosity problem.

Figure 1.

Coupling
Data

Repository

User Interface
(Eclipse Plug-In)

Static Code
Analyzer

Dynamic Code
Analyzer

Type
Annotations

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 463

Figure 2.

6 Conclusions and Future Work

Many researchers have investigated to resolve the
dependencies between different technologies involved
in an enterprise application. Our tool significantly
enhances visibility between java and relational
databases. The principal benefit is the ability to easily
detect the code-to-database couplings and couplings of
code-to-code via the database. This ability makes it
easy to maintain application code in the face of
structural changes to the database, or changes in the
format of data stored in the database.

Static and dynamic analysis of java code to
discover database couplings each have their advantages
and disadvantages. Dynamic analysis is easier to
implement and will find all couplings that occur during

testing, but will not find couplings that aren't covered
by the test cases. Static analysis may identify couplings
that are missed during the testing phase, but is harder
to implement and cannot identify couplings that only
occur dynamically (e.g. based on user input).

Explicit documentation of code to database
couplings by the developer in the form of type
annotations is intended to fill any gaps left after static
and dynamic code analysis. By combining all of the
coupling data in a repository, we get the combined
benefits of each. The repository also allows for
tracking of changes over time so that areas of code that
may be affected by a change could be flagged for the
developer. While we are focused on using the coupling
information in our visualization tool, we expect that
having this kind documentation included in the source

464 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

code (whether hand written or injected by the code
analysis tools) will prove useful for a variety of reasons
during code maintenance.

Our top priority for future work is to implement
injection of annotations into the source code from the
code analysis tools. However, we are also actively
working on improvements to the user interface based
on user feedback. In particular, our users are most
interested in automating the discovery of code-to-code
couplings through the database, and in automatic
flagging of potentially affected code when structural
changes to the database occur. We are also working on
improving the static code analyzer to reduce the
number of couplings that are only detected
dynamically.

In the long term, we plan to extend this tool to
handle additional languages and technologies. For
example, we plan to extend our java code analyzers to
support JSP by analyzing the java snippets embedded
in JSP pages, so that we can show couplings of JSP
pages to the database. This would also allow the
visualization of couplings between the presentation
layer (JSP) and business logic code that occur through
the database in a typical J2EE environment. If all these
dependencies between the various layers of a J2EE
application can be shown through a visual tool, the task
of maintaining and enhancing such applications would
be greatly facilitated. Eventually, we would also like to
support additional programming languages such as C#
and C++ and add support for ODBC applications.

7 References
[1] Paul L. Bergstein, Priyanka Gariba, Vaibhavi

Pisolkar, and Sheetal Subbanwad. An Eclipse
Plug-In for Visualizing Java Code Dependencies
on Relational Databases. In Proceedings of the
2009 International Conference on Software
Engineering Research and Practice (SERP’09),
Pages 64-69, July 13-16, 2009, Las Vegas,
Nevada. CSREA Press ISBN 1-60132-129-5.

[2] Paul L. Bergstein and Ashwin Buchipudi.
Coupling Detection to Facilitate Maintenance of
Database Applications. In Proceedings of the
2011 International Conference on Software
Engineering Research and Practice (SERP’11),
Pages 289-94, July 18-21, 2011, Las Vegas,
Nevada. CSREA Press ISBN 1-60132-201-1.

[3] JSR 308
http://download.oracle.com/otn-
pub/jcp/annotations-2012_01_23-edr2-
spec/annotations-2012_01_23-edr2-spec.pdf

[4] Checker Framework
http://types.cs.washington.edu/checker-
framework/

[5] Java Persistence API
http://docs.oracle.com/javaee/6/api/javax/
persistence/package-summary.html

[6] Hibernate
http://www.hibernate.org/

[7] ORMLite
http://ormlite.com/

[8] G. C. Roman and K. C. Cox. A taxonomy of
program visualization systems. IEEE Computer,
Vol. 26(12), Pages 11-24, 1993.

[9] Blaine A. Price, Ian S. Small, and Ronald M.
Baecker. A Principled Taxonomy of Software
Visualization. Journal of Visual Languages and
Computing, Vol. 4, Pages 211-266, 1993.

[10] Jonathan I. Maletic, Andrian Marcus, and
Michael L. Collard. A task oriented view of
software visualization. In Proceedings of the
First International Workshop on Visualizing
Software for Understanding and Analysis
(VISSOFT), Pages 32-40, 2002.

[11] Christian Collberg, Stephen Kobourov, Jasvir
Nagra, Jacob Pitts, and Kevin Wampler. A
system for graph-based visualization of the
evolution of software. In Proceedings of the
2003 ACM symposium on Software visualization,
Pages 77-86, 2003. ACM Press.

[12] M. D. Storey, K. Wong, F. D. Fracchia, and H.
A. Müller. On Integrating Visualization
Techniques for Effective Software Exploration.
In Proceedings of IEEE Symposium on
Information Visualization, Pages 38-45, 1997.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 465

Mining RCS Data

Catherine Stringfellow Swetha Myneni Raaji Vedala-Tirumala Sreya Reddy

Department of Computer Science, Midwestern State University, 3410 Taft Blvd, Wichita Falls, TX 76308

Abstract - As software systems evolve, it becomes

important to know and to track the evolution of a

system and its components. Data mining tools helps us

to find the relationships between these components

from patterns in the attributes of the data. The purpose

of this paper is to describe how relationships between

the attributes in the RCS (Revision Control System)

change data can be found. These relationships may

include which components of the system undergo

repeated maintenance, how many lines of code are

changed, the span of time in which files undergo

change, as well as the type of maintenance (according

to certain keywords used in the log). The technique is

illustrated on a flight simulator system consisting of

409 RCS files.

Keywords: maintenance, software evolution, RCS

data mining.

1 Introduction

 It is important to track the evolution of a system

and its components as changes are made repeatedly.

Components become increasingly difficult to maintain

if these changes are not managed. The identification of

these components and the classification of their

changes help in maintaining a system or building an

entirely new system properly.

 This information can be used when we need to

reengineer the components in the future. Problems will

increase, if the changes are not understood in early

stages. Late changes typically require changes to code

in multiple components, which leads to problems in

software architecture of the system [1, 7]. Software

architecture problems are far more costly to fix and

thus it is better to identify them as soon as possible.

The change reports provided by RCS files help in

finding these changes in the components. Change

reports are written whenever developers change some

part of the code. The information for each change is

stored in the logs of each RCS file of the system. A

change may affect many components. In addition, the

time, author and the nature of the change are also

recorded.

 Data mining analysis is a tool to find patterns

between attributes. Most existing analysis approaches

employ quantitative data (statistical or series

techniques) and qualitative data (such as details about

the people who fix defective components). Data

mining techniques analyze both qualitative and

quantitative data using association rule mining.

Decision tree learner is one of the most prominent

machine learning techniques that is successful in

classification problems, where attributes are discrete

values [1]. Thus, discretizing attribute values enables

association mining techniques to be more easily used.

 This paper is organized in the following way.

Section 2 describes prior research, section 3 describes

the method followed in this case study, section 4 gives

the results of applying data mining on RCS data of an

industrial application system, and finally section 5

summarizes the paper.

 2 Background

 Data mining is commonly used in a wide range

of profiling practices, such as marketing, surveillance,

fraud detection and scientific discovery [6, 10]. It is a

technique that can also be quite helpful in effectively

managing the software development process [13].

Software defect data are typically used in reliability

modeling to predict the remaining number of defects

in order to assess software quality and make release

decisions [8]. Recent work using data mining

techniques analyze data collected during different

phases of software development, including defect data

[3].

 A great deal of software engineering data exists

today and continues to grow, and already the

helpfulness of that data in improving software

development and software quality has been

demonstrated. Xie, Thummalapenta, Lo and Liu

describe categories of data, various mining algorithms

and the challenges in mining data [13].

 Sahraoui, Boukadoum, Chawiche, Mai and

Serhani [4] use a fuzzy binary decision trees technique

to predict the stability among versions of an

466 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

application developed using object-oriented

techniques. This technique gives an improved

performance in deriving association rules over the

classical decision tree technique, as well as solving the

threshold limit problem and the naive model problem,

in which decision support is not available during

development.

 As software gets more complex, testing and

fixing defects become difficult to schedule. Rattikorn,

Kulkarni, Stringfellow, and Andrews [3] presented an

empirical approach that employed well-established

data mining algorithms to construct predictive models

from historical defect data. Their goal was to predict

an estimated time for fixing defects in testing. The

accuracy obtained from their predictive models is as

high as 93%, despite the fact that not all relevant

information was collected.

 Association rule mining can help identify strong

relationships between different attribute values [3].

These relationships can also help to predict any or

many attribute values, hence, it is easy to be flooded

with association rules even for a small data set [11].

Association rules are an expression of different

regularities implied in the datasets, and some rules

found imply other rules. Some of these rules can be

meaningless and ambiguous: as a result it becomes

necessary to constrain these rules to a minimum

number of instances (e.g. 90% of the dataset) and set a

minimum limit for accuracy (e.g. 95% accuracy level).

The coverage or support of an association rule can be

defined as the number of instances for which the rule

can be predicted correctly. The accuracy or confidence

of an association rule can be defined as proportion of

correctly predicted instances to that of all instances for

which the rule applies.

 In rule mining, an attribute-value pair is called

an item and combinations of attribute-value pairs are

called item [1, 11]. Association rules are generally

sought for item sets. There are two steps in mining

association rules 1) identifying all the item sets that

satisfy the minimum specified coverage and 2)

generating rules from each of these item sets that

satisfy the minimum support and minimum

confidence. It is possible that some items sets may not

generate any rules and some may generate many rules.

 Much current software defect prediction work

focuses on the number of defects remaining in a

software system. This is to help developers detect

software defects and assist project managers in

allocating testing resources more effectively. Song,

Sheppard, Cartwright and Mair had results that show

for defect association prediction, the accuracy is very

high and the false-negative rate is very low [5]. They

also found that higher support and confidence levels

may not result in higher prediction accuracy and a

sufficient number of rules are a precondition for high

prediction accuracy. Srikant, Vu and Agrawal

describe a technique to find only rules that meet

certain constraints, building them into the mining

algorithm, in order to get a subset of rules of interest

in less execution time [6].

 Several recent studies have focused on version

history analysis to identify components that may need

special attention in some maintenance task. Nikora

and Munson found that measurements of code churn

in an evolving software system can serve as predictors

for the number of faults inserted in a system during

development, and that this predictive ability can be

improved with a clear standard for the definition of a

fault [2]. Stringfellow, Amory, Potnuri, Georg and

Andrews use RCS change history data to determine

the level of coupling between components to identify

potential code decay [7]. They looked at grouping

changes according to a common author and a small

time interval for checking in the changed files, as well

as grouping changes to files within and between

components.

 This paper uses RCS files as input. RCS systems

have many advantages: they manage multiple

revisions of files and automate the storing, retrieval,

logging and merging of revisions [7]. The automatic

logging makes it easy to know what changes were

made to a module, without having to compare source

listings. Revision numbers aid in retrieving the

changes. Included in the RCS data is the author, date,

and log message summary in files.

3 Method

The method in this study follows a mostly data-

driven approach, although the authors are focused on

the task of maintenance. It also follows the steps in

the mining methodology outlined in Xie et al. [13].

Preprocessing involved extracting data from RCS

files, scrubbing the data, importing the data into arff

files. Mining involved finding association rules using

WEKA software [10]. Witten and Frank’s book and

WEKA toolkit are excellent resources for data mining

[12].

A python program extracts attributes, from each

RCS log. The results are stored in the form of text file

that is then imported to a spreadsheet and stored in a

csv file. That file is then converted to an arff file using

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 467

a online conversion tool. Finally, the arff file is opened

in WEKA to obtain rules showing different

relationships between attributes with association rule

mining [9].

3.1 RCS data extraction

 Figure 1 shows the first part of an RCS file. The

head indicates that the last log made to the file (in this

case 1.4, indicating there are 4 logs of changes made

to the file). Each log has the date, time, and author of

the change made.

Fig 1: Change data in an RCS file with

attributes date, author, etc.

 The RCS data comes from a large flight

simulation system, consisting of 409 RCS files of type

.c,v and .h,v [8]. The RCS logs were first analyzed to

determine the ten most frequently occurring keywords

concerning changes in the RCS files. The keywords in

logs that are indicative of change were determined to

be add, delet, fix, bug, chang, fails, modify, error,

correct, mov, fault, debug, updat, problem, delet and

replac. File attributes, such as span of time from the

first to the last change and the number of logs for a file

were of interest.

 Figure 2 shows the descriptions of two changes

in the log. The descriptions are found at the end of the

RCS file after the code, after the string Desc. Log 1.3,

for example, has @d2 1, a2 1 in it, which means that

on line 2 there was one statement deleted and one

added. A programmer types in a description of the

changed in comment (inserted between two @’s).

The python program extracts attribute values from

each change log, including log number, date of

change, author, number of deletes, number of adds and

the frequency of each keyword occuring in the log

associated with change. These extracted attribute

values are stored in a csv file.

Fig 2: Example of two RCS logs.

3.2 Converting to arff

 The resulting csv file output from the python

program is converted in to arff file using an online

conversion tool, as Weka supports only arff files [10].

The arff file format is becoming an increasingly

important tool to transform these data into useful

information.

 3.3 Data mining for association rules

 Data mining is the process of extracting

rules from data. The WEKA software application is

used in this study to find a set of rules and

relationships between the change attributes extracted

from the RCS files. WEKA requires data to be

nominal. So filters are chosen to discretize these

numeric attributes. After applying bins (grouping) and

filters the rules are found and the relationships

between attributes are determined.

Discretizing is done by selecting a particular

attribute and then supplying the number of bins (and

their range of values) into which the attribute is to be

divided or grouped. Grouping data for a numeric

attribute into bins converts it into a nominal attribute.

Once all the attributes are nominal, association is

performed using an apriori filter.

Figure 3 shows a WEKA screenshot of a list

of the attributes extracted. The attribute SpanDays is

highlighted (SpanDays refers to the span of days that a

file underwent changes). It shows the six bins the

numeric counts fell into and a frequency graph. It also

shows minimum, maximum, mean, and standard

Desc @@

1.4

log

@fixed ccip/ccrp ct/hl code

@

text

@/*

1.3

log

@first checkin after tactics

@

text

@d2 1

a2 1

d61 2

a62 2

head 1.4;

1.4

date 99.08.30.21.27.54;

 author mikeh; state Exp;

next 1.3;

1.3

date 99.07.14.22.32.48;

 author mikeh; state Exp;

next 1.2;

468 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Fig3: Screenshot of the output from WEKA showing the graph for the attributes per log [7].

deviation values for those attributes. The maximum

span, for example was 481 days.

Some data scrubbing was performed. One of

the RCS files, for example, was ignored as it were not

formatted correctly for data extraction. In addition,

some data in the csv files when uploaded had zeros in

some of the columns, and these were deleted. As

already mentioned, data imported into WEKA had to

be converted from numerical format to nominal format

for data mining analysis.

4 Results

 Using association rule mining and an apriori

filter, 100 rules were found between the attributes.

From these rules, we consider those rules that have a

minimum confidence of 0.9 or above to find

relationships between the attributes. The most

significant of these rules are shown in figure 4.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 469

Fig4: Rules found from association rule mining.

Figure 4 shows eight rules which have confidence

0.9 and above. Rules 1 and 2 (and several other of the

100 rules found) indicate that for files that undergo

change in short span of time (here the bin was less

than 80 days), there are few occurrences of the

keyword add or chang (-e, -es, -ing, -ed). (In addition

there were few occurrences of the keywords updat,

remov or delet.) Also for files with a shorter span,

these few changes were done by few authors for few

logs. Rules 3-5 shows there is a strong correlation

between keywords fail, bug, move and debug – these

words can be almost taken as synonyms and probably

counted together, as a result.

The added lines by author Chris are done mostly

during the second half of the development schedule,

and he mainly added only a few lines of code (Rule 7).

Files with a few number of logged changes, had

mostly only a few number of lines added (Rule 8).

5 Conclusion

 This study shows that it is possible to mine RCS

or other subversion control data in a system to identify

certain change relationships. Identifying relationships

between the attributes in RCS data could help in

improving the performance of the system architecture

and determining the components that need repeated

maintenance. Data mining is one of the prominent

tools that could help in finding these relationships and

rules with both qualitative and quantitative data.

Mining for change relationships may improve a

system’s performance early stages of development and

save money. If the changes are found in latter stages,

changing the whole system architecture could lead to a

disaster.

6 References

[1] Anand, R., “Association rule mining for a medical

record system using WEKA, “File paper, Midwestern

State University, Fall 2006.

[2] Nikora, A., Munson J., Developing fault predictors

for evolving software systems. Proc 9th Intl Software

Metrics Symposium, Sydney, Australia, Sept 2003,

338-349.

[3] Rattikorn, H., Kulkarni, A., Stringfellow, C.,

Andrews, A., Software defect data and predictability

for testing schedules. Proc 18
th

 Intl Conf on Software

Engineering and Knowledge Engineering, SEKE’06,

San Francisco Bay, USA, Jul 2006, 715-717.

[4] Sahraoui, H., Boukadoum, M., Chawiche, H., Mai,

G., Serhani, M., A Fuzzy Logic Framework to

improve the performance and interpretation of rule

based quality prediction models for OO software, Proc

26
th

 Annual Intl Conf on Computer Science Software

and Applications, England, Aug 2002, 131-138.

 [5] Song, Q., Sheppard, M., Cartwright, M., Mair, C.,

Software defect association mining and defect

correction effort prediction. IEEE Trans on Software

Engineering, 32(2), Feb 2006, 69-82.

[6] Srikant, R., Vu, Q., Agrawal, R., Mining

association rules with item constraints. Proc 3rd Intl

Conf on Knowledge Discovery and Data Mining

(KDD’ 97), Aug 1997, 67-73.

[7] Stringfellow, C., Amory, C., Potnuri, D., Georg,

M., Andrews, A., Deriving change architectures from

Rule1: SpanInDays=1_80 184 ==>

CountOfLogs=1_4 add=0_4

updatevalue=0_1 181 conf:(0.98)

Rule2:SpanInDays=1_80 184 ==>

CountOfLogs=1_4 chang=1_6

updatevalue=0_1 181 conf:(0.98)

Rule3: fail=0_max 409 ==> bug=0_max

409 conf:(1).

Rule4: mov=0_max 409 ==> bug=0_max

409 conf:(1).

Rule5: debug=0_max 409 ==>

fail=0_max 409 conf :(1).

Rule6: bug=0_max 409 ==> fail=0_max

correct=0_max 409 conf :(1).

Rule7: Author=chris 388 <==>

DateTime=529_max NumAdds=1_6 354

conf:(0.91).

Rule8: NumLogs=0_5

DateTime=529_max 257 ==> LogNo=0_4

NumAdds=1_6 250 conf :(0.97).

470 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

RCS history, IASTED Conf. Software Engineering and

Applications, Cambridge, MA, Nov 2004, 210-215.

 [8] Stringfellow, C., Mayrhauser, A., Applying the

SRGM Selection to Flight Simulation Failure Data,

Tech Report, Colorado State University, Fort Collins,

CO, 2000, 1-16.

[9] Tkalcic, M., Online conversion tool,

Ljubljana,slavnik.fe.unilj.si/markot/csv2arff/csv2arff.p

hp.

[10] Waikato Environment for Knowledge Analysis

(WEKA). Data Mining Software in Java, Nov 12,

2006 http://www.cs.waikato.ac.nz/ml/weka/

[11] Williams, C., Hollingsworth, K., Automatic

mining of source code repositories to improve bug

finding techniques. IEEE Trans on Software

Engineering, 31(6), Jun2005, 466-480.

[12] Witten, H., Frank, E., Data mining: practical

machine learning tools and techniques, 2nd ed.,

Elsevier Publications, 2005.

 [13] Xie, T., Thummalapenta, S., Lo, D., Liu, C.,

“Data mining for software engineering,” Computer,

Aug 2009, pp. 55-62.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 471

On The Construction Of A LaTeX To gDPS Compiler

X. Chen
1

1Department of Information and Computer Science, University of Hawaii at Manoa, Honolulu, HI, USA

Abstract - The Latex2gDPS compiler is a domain-specific

compiler designed to translate the specification of a Dynamic

Programming Functional Equation (DPFE) from LaTeX

script into gDPS language. This eliminates the need for a D2P

compiler user to learn another intermediate language (gDPS),

and builds a bridge between the power of the petri net solution

and the ease of using the popular text processing system of

LaTeX. This paper describes the concept, design and

implementation issues of the Latex2gDPS compiler,

introduces its usage, development package, and how to extend

to include new DPFE types. The translation of the Matrix

Chain Multiplication DPFE is given as an example to

demonstrate how the latex2gDPS compiler works .

Keywords: Domain-Specific Compiler, LaTeX, gDPS,

DPFE.

1 Introduction

 Dynamic programming [1][2][3] is a category of

optimization techniques initially studied by Richard Bellman

since 1950s. Petri net [4][5][6] is a graphical modeling tool

for parallel and independent events invented by Carl A. Petri.

Recently, a general-purpose dynamic programming problem

solver utilizing petri net was designed and implemented by

Mauch and Lew [7][8]. In the problem solver, a DPFE

(Dynamic Programming Functional Expression) is specified

in the gDPS (general Dynamic Programming Specification)

language. Then a D2P compiler translates the DPFE

expressed in gDPS to Bellman net. The Bellman net, which is

represented as a N x N adjacency matrix, is further translated

into solver code in three formats: spreadsheet, java and PN

code. These are eventually solved by spreadsheet program,

java program and Petri Net simulator respectively. This

structure is shown in Figure 1.

 To use this general DP problem solver, a user needs to

learn the gDPS language. There is a learning curve associated

with it. To remove this learning curve, a solution is to allow

the user to specify the DPFE in a familiar language. A

domain-specific compiler then can translate from this

language into gDPS, and make the gDPS language layer

transparent to the user. Figure 2 shows how the Latex2gDPS

compiler fits into this system. This original project is based on

this idea. No related work has tackled this problem.

 The reason we choose LaTeX as the source language, is

because LaTeX is the most widely used text processing

system in the scientific and computational field. It is easy to

write DPFE formula in LaTeX, and LaTeX source code can

be conveniently processed by a third party translation system.

In comparison, some other text processing softwares, such as

MS Word, do not possess all these nice features.

 A compiler in general translates from a high level

language into a low level language, and carries a series of

tasks including lexical analysis, syntax analysis, semantic

analysis, preprocessing, code generation and optimization.

The Latex2gDPS tool translates between two high level

languages, and there is not much need for code optimization

so far. It may be more appropriately called a translator at this

time, but we just call it a compiler in the discussion.

2 The Latex2gDPS Compiler

2.1 Overview

 The Latex2gDPS compiler is built on the Lex/Yacc

system, and is written in ANSI C. In short, a Lex file is used

to provide the tokens used in the LaTeX input file, and a Yacc

file is used to provide a grammar for the DPFE formulas in

LaTeX input format; for some production rules of the

grammar a semantic action is associated, so when such a

production is recognized, the corresponding semantic action is

written to the output gDPS file.

 A two-pass parse process is used for the compiler. In the

first pass the DPFE in the LaTeX input file is scanned into a

container data structure of DPFE, and each of the functions,

variables, operators and literals (numbers, constants) gets an

entry in the symbol table. Types (number, variable or set) of

the variables and literals are determined from context

information or by using default value. In the second pass,

which is the code generation pass, the obtained information of

the DPFE is written into the gDPS output file.

 In this work, the essential functions and framework of

the Latex2gDPS compiler have been established. The

processing include: 1) translation of the DPFE formula itself,

2) translation of the declarations, 3) fill in the other sections

needed by the gDPS output. The DPFEs of fourteen types of

dynamic programming problems can be translated by the

current Latex2gDPS compiler. An API is provided which

allows easy addition of new DPFE types.

472 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Figure 1. Architecture of the dynamic programming problem solver by Mauch and Lew

Figure 2. Add Latex2gDPS compiler to the architecture of the dynamic programming problem solver

Figure 3. DPFE Type API of the LaTeX2DPS compiler

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 473

2.2 Data structures

2.2.1 Symbol table

 A symbol table needs to be provided, which is set up as

a hash table in the implementation.

 The hash table data structure is a routine for a compiler

project like this. It is appropriate and efficient in this case,

because only INSERT and FIND operations are need, and

both can be done in O(1) time on a hash table. No DELETE

operation is needed here.

 Each entry of the symbol table contains the symbol’s

variable name, variable type and hash value. It can store the

locations on which a symbol appears in the DPFE, but not at

this time.

 The collision can be solved by either open hashing

(chaining) or closed hashing (open addressing). Actually most

DPFEs only have a limited number of symbols. This is a small

symbol table. Open hashing is actually used.

2.2.2 DPFE data structure containers

 An appropriate data structure is needed to represent the

DPFE formula. We need to organize the scanned DPFE

formula in such a way that it is easy to translate it to the

output gDPS file. The relevant data structure containers are:

1) the DPFE itself, including associated name and type, 2)

DPFE optimization function, 3) DPFE base condition, 4) the

goal function of the DPFE. The data structure of the DPFE

itself is a container of the other three.

 The goal function needs to keep track of 5) the function

name, and 6) the parameter list.

 The DPFE optimization function needs to keep track of

7) the optimization type (MIN, MAX or others) used, 8) the

decision variable (s), 9) the decision operator, 10) the

decision space, 11) the terms of the function, including both

the operands and the operators, 12) the constraint condition.

 The DPFE base condition needs to keep track of 13) the

base value, 14) the constraint condition for this base value. It

is possible that more than one base condition is specified, so

the DPFE base condition data structure needs to be

implemented as a collection (a list or an array, or something

similar).

 Figure 4 depicts all these elements and their relationship.

 Data structures also are used to represent components of

the gDPS file. When the DPFE formula in LaTeX format is

scanned in, the components of the DPFE formula are

translated into the components corresponding to each section

of the gDPS file. Then in the code generation step, the parsed

information will be written to the gDPS file.

Figure 4. DPFE Data Structure Containers

2.3 The lexical analyzer

 The lexical analyzer (or lexer) breaks the input file into a

stream of tokens and feeds it to the syntax analyzer. The lexer

generation tool Lex is used. Flex works too.

 The lexer reports lexical errors on the input file. If a

symbol is not recognized as any of the tokens, the program

should report its location including line and column numbers.

The current Lex file keeps track of the line and column count

to report these information.

 Another task of the lexer is to provide the actual value

for literal tokens. For example, a token “5” is a NUMBER,

it’s value should be provided since it may be used in

calculations. This information is provided by the current Lex

file as well.

2.4 The syntax analyzer

 The syntax analyzer determines whether a stream of

input tokens can be recognized by the specified grammar and

outputs the generated compiler file. Some of the grammar

production rules have associated semantic actions. These

associated actions will be taken if such a production is

accepted. Parser generator Yacc or Hyacc [11][12] can be

used to generator the syntax analyzer here.

 The current Latex2gDPS grammar specification contains

65 terminals, 58 nonterminals and 133 production rules.

When processed by Hyacc, the generated parsing machine

contains 263 states after combine compatible states. It is a

LALR(1) grammar.

 The Latex2gDPS compiler first prints the header of

gDPS file, next parses the input LaTeX file, then writes

intermediate sections to the output gDPS file based on the

parsing, and finally writes the footer information. A debug

Base Condition

Goal Function

Optimization

Parameter List

Function Name

Optimization

Decision

Decision

Decision Space

Terms

Constraint

Base Value

Constraint

DPFE

474 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

option PNDEBUG is provided, the value of which can be set

in the head of the syntax analyzer file pn.y. If you set

PNDEBUG to 1, the generated Latex2gDPS compiler will

print intermediate information during the parsing to standard

output for debugging purpose.

2.5 Implementation challenges

 In our work, we identify the following major

implementation challenges to address, and describe our

solutions so far.

2.5.1 Type recognition

 There is no explicit declaration of variable type in the

LaTeX DPFE formula input. So the type of a variable is

determined by: 1) default type, and 2) context information.

For example, in the Matrix Chain Multiplication problem, the

default type is integer. But it is also possible the default is a

real number, like in the continuous knapsack problem. So it is

a question whether the default type should be included as part

of the LaTeX DPFE specification, i.e., add a third choice: 3)

explicit declaration of type. Use of context information is

mostly in case of operators that connect two operands. If an

operator is a set operator, then at least one of the two

operands is a set. For example, from “a NOTIN b”, we can

deduce b is a set, and a is an element of the set b. But we still

need more context information to determine the type of set b’s

element. From “a UNION b”, we can deduce that both a and b

are sets. However, from “a + b”, we can deduce that both a

and b are numbers. Currently, a term used in DPFE can have

these types: ID, Number, Real, Infinity, Greek Symbol, Set,

Index, Operator, Function and None.

2.5.2 Complete grammar specification

 One thing special about dynamic programming problems

is that each type is very different from the rest. There are big

variations among the formats of the DPFE formulas. There is

no common solutions and individual attention is needed for

each type. There are two ways of constructing a

comprehensive grammar specification:

1) Top down approach. By doing this we have an overview of

all the dynamic programming problems, and come up with a

set of general rules that can produce a grammar that fits all the

DPFEs. This in general can be a clean solution. The hard part

is to come up with such a set of general rules. We don’t know

all the types of dynamic programming problems. Even if we

do finish such a grammar specification for all the currently

know DPFE types, once we come into a new type of dynamic

programming problem, we will need to modify our grammar.

For this reason, a comprehensive top-down approach is hard

in practice since there are too many exceptions to handle.

Consequently, a bottom-up solution is taken as below.

2) Bottom up approach. We handle different types of dynamic

programming problems one by one. After we finish the work

on current available types of dynamic programming problems

and make our grammar specification compatible with their

DPFEs, we add another type and look at its DPFE, modify our

grammar to fit it in. This is a doable incremental process.

 Currently, fourteen DPFE types have been collected and

included into the Latex2gDPS compiler [7][8][9][10]. Their

acronyms and full names are listed in Table 1.

 An API to add new DPFE types is given. Some macros

are ready to use to ease the work of writing API functions. For

unhandled cases the user needs to write a small piece of

customized code. When incorporating a new DPFE type, just

provide a C source file and a header file specific for this

DPFE type, and compile again. See section 2.7 for details.

Table 1: DPFE Types In Current Implementation

Type Full name

BST Optimal Binary Search Tree Problem

COV Optimal Covering Problem

ILP Integer Linear Programming Problem

KS01 0/1 Knapsack Problem

LCS Longest Common Subsequence Problem

LSP Longest Simple Path Problem

MCM Matrix Chain Multiplication Problem

ODP Optimal Distribution Problem

RAP Production: Reject Allowances Problem

SCP Stagecoach Problem

SPA Shortest Path in an Acyclic Graph Problem

SPC Shortest Path in an Cyclic Graph Problem

TSP Traveling Salesman Problem

WLV Investment: Winning in Las Vegas Problem

2.5.3 Handling base conditions.

 The DPFE formula may specify base conditions for the

purpose of actually solving it for given parameters. A DPFE

usually contains more than one equation, for example, one for

the recursive optimization condition, and one for a base

condition. If we determine that an equation is for the base

condition, we can translate it into the gDPS DPFE_BASE

section. This sometimes means we need to know the range of

variables x and y. E.g., for “F(x, y) = 0, if x = y”, if we know

0≤x<2 and 0≤y<3, we can put “F(1,1) = 0” and “F(2,2) = 0”

to the DPFE_BASE section.

 As the solution, three methods are used: 1) The user

specifies base condition in the declaration section, 2) base

condition is given in the DPFE formula, 3) use default

specification.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 475

2.6 The Latex2gDPS development package

 Latex2gDPS works under any Unix/Linux/Cygwin/

MacOS or similar system. These tools should be available:

Gcc, Lex (or Flex), Yacc (or Hyacc [11][12]). The

Latex2gDPS open source project package is available for

download at [13]. Unzip the package to get the source files.

 The doc folder contains documentation files in the

development. The gen_func folder contains the definitions of

general functions and set values needed by some types of

DPFEs. The io folder contains input LaTeX files and output

gDPS files for all the DPFE types. The testcase folder

contains the output files of the test cases. The test.pl perl

script does automatic regression test on the Latex2gDPS

compiler. Basically it runs the Latex2gDPS compiler pn over

all the io/*/*.test.i files, and generate io/*/*.test.o files, then

compare these to the testcase/*.test.o files. If the comparison

is the same, the testcase is passed, otherwise it’s not. The

update.pl perl script is used to update all the io/*/*.o files by

running the Latex2gDPS compiler on all the io/*/*.i files. The

rest of the files are the source files of the Latex2gDPS

compiler.

 The executable file pn is the compiled Latex2gDPS

compiler, which can be rebuilt using makefile in the package

by typing the make command in a unix-like environment. If

the user makes some change and wants to make a new

distribution, type the command: make dist. The Latex2gDPS

compiler can also be built as a DOS executable in MS Visual

Studio on the windows platform. This is done by first

processing with flex and Hyacc, then compile with MS Visual

Studio. A package containing DOS executable and example

input/output files is also available for download at [13].

2.7 Add a new DPFE type

 The Latex2gDPS compiler has an open design that

allows the integration of new DPFE types easily. The API is

shown in Figure 3, which include these functions:

• GetDimension(). This can be for a variable, an array or a

matrix.

• WriteGoal(). For the goal function of the DPFE.

• WriteDpfeBase(). For the base condition(s) of the DPFE.

• WriteGeneralFunctions(). For other general function(s)

needed by the DPFE specification. E.g., Mathematics

functions.

• WriteGeneralVal(). For miscellaneous variables used by

the DPFE. Each variable has associated type, name and

value.

• WriteSetVal(). For set variables used by the DPFE.

 To add a new DPFE type, say for the LCS (Longest

Common Subsequence) problem, follow these steps:

1) Copy from existing DPFE module .c and .h files to create

source files for the new module. For example, copy from

mcm.c and mcm.h to lcs.c and lcs.h, and then modify

them.

2) Modify these files: const.h, const.c, dpfe_api.c, dpfe.h,

makefile accordingly. We are trying to minimize the

amount of changes needed. More optimization can

possibly be done to this part.

3) In the io directory, add a new subdirectory lcs to store

input/output files of this module. This is not an essential

part of the Latex2gDPS compiler, but used to include

standard examples for different DPFEs.

4) Add the following files for regression test later. In the

testcase directory, add an output file of the new DPFE

type. Change test.pl to add testing code for this new

module. Create newmod.test.i file in the io directory, and

newmod.test.o in the testcase directory. This also is not

an essential part of the Latex2gDPS compiler.

 The lcs.c file is shown in Table 2 below. Three macros

MACRO_getDimension(), MACRO_writeGeneralVar() and

MACRO_writeDpfeBase() are provided to ease the task of

writing these functions. These macros are defined in dpfe.h. If

any of these is not needed, just provide an empty function, for

example, LCS_writeSetVal() function is empty here. In

writeGeneralFunctions() and writeSetVal(), the actual general

functions and set values are defined outside the C code in the

gen_func folder, and are copied here. This way the user can

easily rewrite these and incorporate them into the output.

Table 2: The C source file for LCS DPFE: lcs.c

#include "lcs.h"

void LCS_getDimension(DPFE * dpfe, char * name, char * value,

 DimensionType type) {

 MACRO_getDimension(dpfe, name, value, type);

}

void LCS_writeGoal(FILE * fp, DPFE * d) {

 PARAMS_STRUCT * p = dpfe->params_struct;

 if (NULL == p) { return; }

 fprintf(fp, " %s(1, %d)\n", getAlias(d->gf->f_name), p->size - 1);

}

void LCS_writeDpfeBase(FILE * fp, DPFE * d) {

 MACRO_writeDpfeBase(fp, d);

}

void LCS_writeGeneralFunctions(FILE * fp, DPFE * d) {

 fprintf(fp, "GENERAL_FUNCTIONS_BEGIN\n");

 read_gen_func(fp, gen_func_LCS);

 fprintf(fp, "GENERAL_FUNCTIONS_END\n\n");

}

void LCS_writeGeneralVal(FILE * fp, DPFE * d) {

 MACRO_writeGeneralVar(fp, d);

}

void LCS_writeSetVal(FILE * fp, DPFE * d) {

 // empty

}

476 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

2.8 Usage of the Latex2gDPS compiler

 This section describes the format of DPFE declarations

to be used in the LaTeX input file, and the console commands

used to run the compiler.

2.8.1 Declarations in the LaTex input

 Some context information are not available in the DPFE

itself. To overcome this problem special declarations are used

to specify such information. Seven declaration types are used:

1) ModuleType: a one-word identifier.

2) ModuleName: a one-word identifier.

3) ModuleGoal: function_name([parameters]).

4) ModuleBase: list of “function_name([parameters]) =

value [when (condition list)]”.

5) Dimension: dimension name : list of numbers (separated

by “,” in a single array; in case of a matrix, multiple

arrays are used and are separated by “;”).

6) DataType: list of ”type ID” separated by “,”.

7) Alias: list of ”ID = ID alias” separated by “,”. An alias is

another name used for the same variable. This is used

such that a user can easily change the name of a variable

without the effort of modifying the optimization function,

which can be tedious and error prone.

 The declaration part is quoted by \begin{declaration}

and \end{declaration}. {declaration} is a LaTex environment

defined by user as: \newenvironment{declaration}{}{}. The

order of these declarations does not matter. But only one of

each declaration type can be used. In the declaration, the

keyword is enclosed by $ and following by a colon, then the

declaration content.

2.8.2 Run the Latex2gDPS compiler

 The executable is named “pn”. To run, type the

command: ./pn infile [-ah]

 Parameter infile is the input file name. Optional

parameters –a and –h are command line switches. -h shows

help message. -a tells the compiler to use alias declared in the

$Alias$ declaration section.

 In general, the input file should have suffix “.i”,

although not mandatory. The output gDPS file name will

replace the suffix with “.o”. If the “.i” suffix is not used by the

input file, then the output file name just appends “.o” to the

input file name.

3 An Example

 An example for the MCM (Matrix Chain Multiplication)

DPFE type is given below.

 The Matrix Chain Multiplication problem aims to find

the most efficient way of multiplying a sequence of matrices

together. The efficiency here is defined by the number of

multiplications and additions used. It is a classical

optimization problem that can be solved by dynamic

programming.

 Given a matrix chain multiplication A1 * A2 * A3 * A4,

which contains 4 matrices with dimensions of 3x4, 4x5, 5x2,

2x2 each. We want to find out the most efficient way of

solving it using dynamic programming.

 The MCM DPEF is shown below. Here we have goal =

f(1, n), n = 4. For i = 1 to 4, matrix Ai has dimension di-1 * di,

D = {3,4,5,2,2}.

=

<+++
=

−
−∈

.:0

:}),1(),({min
},(

1
)1,...,(

jiif

jiifdddjkfkif
jif

jki
jik

 The corresponding LaTeX specification and output are

shown in Table 3 and Table 4.

4 Conclusion

 In this paper we present our work on a domain-specific

compiler Latex2gDPS, which translates a DPFE (Dynamic

Programming Functional Equation) from its LaTeX source to

the gDPS language. We review the background, go over

problems and challenges, and describe the design and

implementation.

 Essential functions and framework of the Latex2gDPS

compiler have been established. A pluggable design is given

and relevant API interface functions are provided to

accommodate new DPFE types. So far fourteen DPFE types

are incorporated.

 The future work will add more DPFE types, and further

refine the Latex2gDPS compiler.

5 Acknowledgement

 Thanks to the support and guidance of Dr. Art Lew, who

provided abundant help in ideas and material throughout the

project. His dedication to research has always been an

inspiration.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 477

Table 3: LaTeX source specification for a MCM problem

\begin{declaration}
$ModuleType$: MCM
$ModuleName$: MultipleChainMultiplication
$ModuleGoal$: f(0, 0)
$ModuleBase$: f(i, j) = 0 if (i = j)
$Dimension$: d = {3, 4, 5, 2, 2}
$Alias$: i = firstIndex, j = secondIndex, d =
dimension
\end{declaration}
\begin{equation}
f(i,j)=
\left\{
\begin{array}{ll}
 {\displaystyle \min_{k \in \} i, \ldots, j-1\}}
 \{ f(i,k)+f(k+1,j)+d_{i-1}d_{k}d_{j} \} } &
\mbox{if $i<$j}\\

0 & \mbox{if $i = $j.}\\
\end{array}
\right.
\end{equation}

Table 4: gDPS specification translated from LaTeX source

BEGIN

 NAME MultipleChainMultiplication;

GENERAL_VARIABLES_BEGIN
 private static int[] d = {3, 4, 5, 2, 2};
GENERAL_VARIABLES_END

STATE_TYPE: (int i, int j);

DECISION_VARIABLE: int k;
DECISION_SPACE: decisionSet(i, j) = {i, ..., j - 1};

GOAL:
 f(1, 4)

DPFE_BASE:
 f(i, j) = 0 WHEN i = j;

DPFE:
 f(i, j)
 = MIN_{k IN decisionSet}
 {
 f(t1(i, j, k)) + f(t2(i, j, k)) + r(i, j, k)
 };

REWARD_FUNCTION:
 r(i, j, k) =
 d[i - 1] * d[k] * d[j];

TRANSFORMATION_FUNCTION:
 t1(i, j, k) = (i, k);
 t2(i, j, k) = (k + 1, j);

END

6 References

[1] Richard E. Bellman. (1957). Dynamic Programming.

Princeton University Press.

[2] Richard E. Bellman, Stuart E. Dreyfus. (1962). Applied

Dynamic Programming. Princeton University Press, 1st

edition.

[3] Moshe Sniedovich. Dynamic Programming: Foundations

and Principles, Second Edition. (2010). Chapman &

Hall/CRC Pure and Applied Mathematics. 2nd Ed.

[4] Carl A. Petri. Communication with automata. PhD

thesis, University of Bonn and Darmstadt University of

Technology, (1962).

[5] R. Valette, B. Bako. Software Implementation of Petri

nets and Compilation of Rule-based Systems. Advances in

Petri nets 1991, Lecture Notes in Computer Science 524,

Springer Verlag, 1991, pp.296-316.

[6] K. Jensen and G. Rozenberg (eds.): High-level Petri

Nets. Theory and Application. ISBN: 3-540-54125 X or 0-

387-54125 X, Springer-Verlag, 1991.

[7] H. Mauch. Automated Translation of Dynamic

Programming Problems to JAVA Code and their Solution via

an Intermediate Petri Net Representation. PhD thesis,

University of Hawaii, March 2005.

[8] A. Lew, H. Mauch. (2007). Dynamic Programming: A

Computational Tool. Springer, 1st Ed.

[9] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein.

(2009). Introduction to Algorithms. The MIT Press, 3rd Ed.

[10] F. S. Hillier, G. J. Lieberman. (2002). Introduction to

operations research. McGraw-Hill Science/Engineering/

Math, 7th Ed.

[11] Xin Chen. LR(1) parser generator Hyacc. (2008).

Available: http://hyacc.sourceforge.net

[12] Xin Chen, David Pager. LR(1) Parser Generator Hyacc.

In Proceedings of International Conference on Software

Engineering Research and Practice, p.471-477. Las Vegas,

July 18-21, 2011.

[13] Xin Chen. Domain-specific compiler Latex2gDPS.

(2008). Available: http://code.google.com/p/latex2gdps/

478 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Software Cloning Detection Techniques: Comparison
Criteria

A. Baqais1, M. Ahmed2

1College Of Computer Science and Engineering, KFUPM, Dhahran, Saudi Arabia
2College Of Computer Science and Engineering, KFUPM, Dhahran, Saudi Arabia

Abstract - Cloning code is becoming an increasing activity
done by several programmers especially when there is a
tight schedule to finish their tasks. The difficulty of detecting
clone code lies in the intentional modification of some
segments of the code by the programmers which may result
in difficult-to-track debugs and increasing cost of
maintenance. There have been different approaches and
techniques proposed in the literature to solve this issue.
However, these approaches either target a specific aspect of
the issue or biased to some criteria rather than others. A
comparison study of these techniques –based on some
criteria- is proposed by this paper favoring approaches
borrowed from artificial intelligence discipline. A final
analysis is provided to layout the foundation for a new
proposed solution that outweighs previous approaches.

Keywords: Software cloning, Code duplication, Code
cloning, Code Similarity.

1 Introduction
 Software cloning is an active research area in the field
of software engineering. A considerable amount of papers
has been published to address this issue from different
perspectives. Some papers discuss the implication and the
sequences of software cloning while others devote large
sections to devise some techniques to identify the cloning
fragments. Moreover, some papers provide a framework to
compare the different techniques, tools and approaches
targeting this domain.

Though it is considered as bad practice, Code duplication is
quite popular in industrial software for many reasons. Due
to the pressure of meeting deadlines, many programmers opt
to copy some snippets of code and paste them somewhere in
their program. Another reason is that the original code may
have been fully tested and validated and as such some
developers intentionally prefer to duplicate them especially
when the code segment has advanced algorithms that
consider different branches and computations. A third
reason resides in the skills and the capability of the
development team. Fresh or junior programmers tempt to
duplicate a method or class if they feel they don’t have the

necessary programming skills to code it themselves.
Moreover, some code sections are not really intentionally
duplicated, it’s just the similar construct across different
 programming languages or the accidental duplication
of functionality makes software cloning tools detect them as
duplicated. For example, two for loops could be detected as
clone segment even though it computes two different
functions. As figure 1 illustrates, these are two functions
that are mainly calculating the area of 10 objects and the
square of10 numbers. Clone detection will detect these as a
cloning candidate code because they have almost the same
number of lines, the same iterative variables; they only
differs in the name of the returning variable. This is reported
in the literature as false positive, that is, fragment of codes
that look similar but actually semantically different and
can’t be classified as clones.

 Researchers show strong interest in studying duplicated
code because it helps in refactoring, evaluating code quality
or reveal hidden bugs. Refactoring refers to the activity of
reconstruction code structure without altering its intended
behavior which conceptually similarly to software cloning
where different codes perform the same function with
different code structure. Code duplication is a strong
indication of a design flaw and affects the code quality since
it hinders other design techniques (such as abstraction or
inheritance) of being implemented. In addition, duplicated
code exhibits the same errors that its original has. Hence, a
bug in an original code will be transferred to all duplicated
code. For example, using CP-Miner has uncovered 28 bugs
in Linux and 23 in FreeBSD[14].

 It has been assorted that cloning increases maintenance
time. Readability [1] is an interesting issue of studying
software cloning. Another researcher Says [2] that
duplicating code make it difficult to be understood, while
states that it helps to understand the system since it provides
sufficient information about the domain. There is no
contrary in the above two views. The practice of code
duplication reduces the readability of the program per se;
however, it gives information on the system as a whole since
it points out to important segments of code where
duplication occurs more frequently.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 479

Figure 1: Two loops that falsely could be detected as clones.

2 Previous Work
 There have been many surveys investigating and
comparing the different techniques and solutions addressing
the area of code cloning. Each one has a different purpose
and methodology to set up the comparison framework, and
so does this paper. Bellon et al[3] have taken six approaches
and tested them. Roy et al [4] provides a scenario and apply
different techniques on that scenario while in [5] they
provide a lengthy comprehensive comparison based on
qualitative judgment. A recent systematic review has been
undergone by [6] aiming to determine the role of cloning
code during software evolution. In this paper, our attempt is
to study different approaches aiming to discover hidden
patterns that could guide interested researchers in their quest
for solutions to the code cloning problem. This survey is
different than previous studies in the sense that it’s goal-
guided to the solution. It simulates Artificial intelligence
approach in finding heuristic function to determine the goal
area of a certain problem by just exploring few branches of
the problem rather than extensively and exhaustively
exploring all the branches as in breadth first or going deeply
to one aspect of the problem as in depth first. Here, the
problem is software cloning, several approaches and
criteria has been chosen carefully to get enough insight to
the problem hoping that by studying and comparing these
approaches, some interesting solutions may emerge and
stem out of this discussion.

3 Software Cloning Metrics:
 In this section, different methods (metrics) of detecting
clones in code are presented. A short summary of the
approach, algorithms and techniques used in each paper is
presented. The metrics are:

• FIT (Frequent Itemset Techniques) [7].
• Tree-based [8].
• Near-Miss (Flexibly pretty printing and code

normalization) [9].
• AST (Abstract Syntax Tree) [2].
• Function Metrics [10].
• Dependence Graph [11].
• Language independent [12].
• IR [13].
• Structural Clone (Data Mining for structural Clones)

[1].
• FSM (Frequent Subsequence Mining)[14]

FIT (Frequent Itemset Techniques) [7]:.The process starts
by converting from source language to XML, apply mining
frequent items while supplying configuration file to the
result. It works by using frequent Item set technique, a
popular technique in data mining. The process works by
merging two frequent subsets to generate a combined
frequent set of header and nested body. This can be clear in
deleting common cloning constructs that have some headers
but different bodies.

Tree-based: The paper provides a novel algorithm for clone
detection. It has two steps: characteristic vectors and
locality sensitive hashing. Characteristic vectors of a sub
tree represented as <c1, c2…cn> refer to the occurrence of
relevant nodes under the root of this sub tree. Afterwards,
vector merging is applied among certain sub trees to
generate merged vector for the combined code segments.
Then we cluster the merged vectors using distance measure
on vectors and report two vectors having same
characteristics as clones.

AST: It uses abstract syntax tree (AST) to reconstruct the
text into tree-like shape. The technique is conducted via a
prototype tool called Asta that finds the number of
occurrence of different patterns due to large outcome
generated, thinning and ranking is performed. Thinning is a
technique to reduce number of holes and nodes by providing
an option list of parameters. Hole refers to the leaves of any
sub trees pattern that can be resembled by wildcard”?”
Ranking can be controlled based on some criteria: size,
frequency or similarity.

Language independent: The paper presents a language
independent approach for detecting software clones. It
transforms the source code into condensed format where
spaces and content lines are removed. The different
algorithm steps are applied on the new file. First, an
optimized string matching mechanism is performed and the
result of modeling is recorded on a matrix. A diagonal line
in the matrix denotes a cloning line. For the algorithm to
effectively extract clone segments where some lines are
changed, a post processing extraction method is used to
represent the clone in either report-like or visual format.

FSM: It’s based on frequent subsequence mining technique,
where it calculates the number of occurrences of a subset
(or subsequent) across the whole database (sequence
database). It must be noted that this algorithm doesn’t
require contingency in performing its matching. An
optimized version of this algorithm called cloSpan is used
to identify only closed subsequence. (Its support is different
than its super sequence). The steps are as follow: parsing
some codes to build a sequence database, applying mining
and prune false positive, further, cloSpan algorithm is
adjusted by specifying the gap constraint to accommodate
the problem of software cloning. It provides some

480 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

techniques of pruning false positive result and detection
bugs emerged from cloning practice.

Dependence Graph: .The paper introduces a new approach
for detecting software cloning that – as the authors claim-
doesn’t suffer from the tradeoff between recall and
precision. Their approach doesn’t only consider syntax
duplication but it dives deeply to extract any potential
cloning based on the semantic. It reports that code as a
graph consisting of vertices and associated arrows be-tween
theses vertices. These arrows indicated dependency among
vertices connected to them. The algorithm runs by
computing two graphs to see level of similarity among
different segment of code. Since such an algorithm is
considered NP-complete, another approximation is applied
where maximal sub matching is used.

Function Metrics: Assessment metrics of a source code for
the purpose of detecting potential clone is proposed in this
paper. An analyzer tool is used to transform the code into an
intermediate form where metrics can be captured and
illustrated graph of the code is shown. This approach is not
aiming at detecting syntactical similarity only but it looks
further to any similarity in the control flow of the two
source codes. There are around 21 metrics used which are
divided into four categories and being assessed using a scale
of 1-8 for level of code similarity. This scale represents the
level of similarity where level one indicates exact copy and
level 8 refers to distinct control flow.

Near-Miss: It’s based on TxL Transformation mechanism
that applied on source code directly. It’s per-formed on
three steps:

─ Parsing where the source code is converted into
context free-grammar.

─ Transform using a specified set of rules.

─ Unparsed to provide a text output of the code.

The proposed idea of this paper is to address near-miss
intentional cloning code. Near miss intentional cloning
refers to the behavior of copying a code on purpose and
changes it slightly for the sake of being appropriate to the
new context. The solution proposal is based on three major
steps: flexible pretty-printing, code normalization and
filtering. Flexible pretty-printing is an enhanced version of
pretty-printing which allows for further breaking of code
segments into single lines and allow line by line
comparison. Normalization refers to converting a segment
of code into an abstract form. The three preprocessing steps
above are fed into LCS (Longest common subsequence)
algorithm. Two items are considered cloned if they appear
in the LCS of two sequences. This algorithm is computing –
intensive, so a further dynamic clustering is used to reduce

the number of comparison to only items contained in one
class or cluster.

IR: It’s based on Latent semantic indexing (IR) algorithm
which is popular in information retrieval field. This
algorithm basically finds any relationship between original
documents and the terms contained within these documents.
The paper uses a third-party tool to detect clones and
categorize them into classes. Then, all redundancy of
subclasses that appear in super classes is removed. Then
another tool is used to transfer all the terms into an XML
and generate term-document matrix (name of identifier and
clone classes) and compute SVD using MATLAB. The
results are clustered using Cluto tool and manual post
processing analysis of the clusters is attempted.

Structural Clone: It introduces a formalization of structural
clone, applies data mining techniques and implements a
clone miner tool. Structural clones refer to the structure of
many simple clones that may itself be replicated. Further, it
classifies structural clones into different levels. Basically,
the algorithm of this paper is detecting simple clones and
increasingly finds relationship with other clones that may
lead to structural clones. Two data mining techniques are
used which are closed frequent set mining and clustering.
The approach attempts to find different simple clones across
various methods and files.

4 Framework of Comparison
In this section we will provide different criteria that set the
framework of our comparison to the metrics discussed
beforehand. The criteria are chosen carefully to test for
competency and novelty of these metrics. Competency of
metrics is referred to the common criteria that most of the
metrics achieve but with different scale. This provides an
insight to the superiority of some metrics over others.
Novelty in this context refers to the uniqueness or features
that some metrics provide while others don’t. Brief
explanation of these criteria is laid out below:

Recall: this criterion indicates the whole number of clones
detected by various metrics whether the result is correct or
false positive.

Accuracy: refers to the number of correct cloned codes
detected and output by each metric.

Clone types: this refers to the types of clones detected by
each approach. There are three types of software cloning as
presented in the introduction section. Some metrics clearly
state which types of clones are able to detect, others may not
state it clearly. To compare different metrics fairly under
this criterion, a human review by the author is conducted to
determine unstated detection of cloning types.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 481

Sensitivity to software size: this criterion refers to the fact
that some tools are able to detect clones in small sections of
code. The ability of the proposed approach of each metric
to scale to larger software is an important criterion that must
be considered.

Sensitivity to clone density: some tools work perfectly if the
two codes under testing are slightly cloned. However, if the
two codes are almost identical with many different types of
clones, then the performance degrades drastically and may
even lead to crashing the tool.

Use of AI Technique: this criterion specifies whether any of
the artificial intelligence techniques has been applied in the
proposed metrics.

Preprocessing & post-processing: preprocessing in this
context refers to the sophistication of the approach under
study in reducing the complexity of the problem. Post
processing refers to the step each approach per-forms in
order to get a better result or to introduce hid-den pattern.

Language & environment: this indicates the languages
targeted by each metric and the environment where different
approaches have been tested within.

A tool implementation: this indicates whether an
implementation tool of the proposed metric has been
provided or not.

5 Comparison Framework
Setting the framework of comparison is a crucial step as
many discoveries and patterns can be revealed just by the
structure of the framework. If the framework is structured
and presented very well, hidden patterns will flash out
quickly in front of the eyes of interesting readers. For
example, the framework that can distinguish approaches
very well based on some criteria resembles a decision tree
where the best criteria are the best attribute with a highest
information gain. On the other hand, framework that has too
little information to give a decision on the superiority of
approaches in getting to the solution would be as similar as
a tree with many branches with same strength and no clue
on which path is better in leading to the solution.

 There has been different attempted to provide
sophisticated framework that provides a strong insight to the
capabilities and limitations of each approach. A side by side
comparison where all approaches are evaluated against one
criterion is commonly used in the literature of comparisons.
Another approach would be to give cascaded view of the
comparison by showing the criteria of each approach on its
own. Both of the previous comparison framework strategies
has some advantages and disadvantages relating to the
objective of using any of them. The objective of this paper

is to point out the dimension of the problem that an
interested researcher should focus on with some hints on
which techniques has been used to attain this goal. Hence, a
creative strategy has been developed in accordance with the
aforementioned objective as figure 2 illustrates.

Fig 2: An overview of the developed comparison framework
strategy

The developed strategy composes of three components:
Categorization, Table and Bar Chart where each component
is used to represent the suitable criteria. Table is used for
criteria where a short description of how the approach
implements these criteria is sufficient. For Example, tool
implementation, programming languages and environment
is very suitable to be represented by tables. Bar chart is
more appropriate for criteria that can be quantified or
leveled which can be used effectively in the two criteria: Pre
& post processing and the use of AI Techniques as the bar
chart provides us with the relation of the strength of these
criteria and its effect in providing better solutions. For
Instance, the paper that have higher value in the
aforementioned two criteria reported to have a better impact
on the overall solution. The third component called
categorization is useful when the interest is not on the
quantity of performance each approach scores under a
specific criterion; but rather on which category of
performance each approach falls in relatively to other
approaches. For example, precision is divided into three
categories: Medium, high and Higher and each approach are
placed on the most appropriate category based on the level
of convincing and the level of empirical validity it shows.
Five criteria are represented by categorization which are:
Recall, Precision, Clone Types, and Sensitivity to size and
density.

482 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

5.1 Table

5.1.1 Language & environment:

Approach Description
Function
Metrics

Applied for procedure languages only.

Language
independent

C, Smalltalk, Python and Cobol

Dependence
Graph

C Program

FIT Java, C++ and Prolog.
FSM On Linux, FreeBSD, Apache,

PostgresSQL. C & C++
Tree-based On C and Java and it targets Linux OS.

AST Java and C#, can’t work with logical
paradigm

Near-Miss On C.
Structural

Clone
J2SE 1.5 & Case Studies

IR Microsoft NT Kernel, C

5.1.2 A tool implementation:

Approach Description
Function Metrics -

Language independent -
Dependence Graph -

FIT -
FSM CP-Miner.

Tree-based DECKARD.
AST ASTA.

Near-Miss NICAD
Structural Clone Enhanced Clone-Miner

IR -
5.2 Bar Chart

5.2.1 Pre Processing & Post Processing

Figure 3: Preprocessing & Post processing

Figure 3: Preprocessing & Post processing

5.2.2 Use Of AI Techniques

 Figure 4:Use of AI Techniques

5.3 Categorization

5.3.1 Recall:

Figure 5: Categorization of Recall Criterion

5.3.2 Accuracy:

Figure 6: Categorization of Accuracy Criterion

Discussion: The level of accuracy is also categorized under
this criterion comparatively among the approaches under
study.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 483

5.3.3 Clone Types:

Figure 7: Categorization of Clone Type Criterion

Discussion: Some Approaches can detect clone types 1 and
2, while others are very sophisticated to detect type three as
well. Moreover, some approaches are able to provide better
insight at clone types and extend these types to include
structural clone or bug related clones.

5.3.4 Sensitivity to software size:

Figure 8 : Categorization of Sensitivity to Software Size

Discussion: Some Approaches are very scalable and able to
detect clones even when the granularity of the code is very
large. On the other hand, some approaches are using some
algorithms that are very efficient working on a small size of
code. When the code is getting larger, the algorithm either
collapses or don’t perform as it’s supposed.

5.3.5 Sensitivity to clone density:

Figure 9: Categorization of Sensitivity to clone Density

Discussion: Some approaches are able to detect clones even
when the density of the clones are very high and overlap

each other. This criterion is related mostly to accuracy and
clone types since approaches who are able to identify
overlap, redundancy and structural clones are more capable
to be accurate.

6 Analysis:
 The previous sections open our eyes to various
techniques of clone detecting applied by different authors.
These techniques are designed to target some aspects of the
issue and to be optimal under certain context parameters.
The criteria provided in the last sections illustrate the
capabilities and limitations of these approaches.
Interestingly, it illuminates the researchers to the different
perspectives of the clone code problem while providing an
extending definition to the issue. The types of clone
criterion justify the above argument where some authors
only consider identical clones with some renaming only.
Subsequent authors noted that clones can be composed
together to form a picture of structural clone. The idea of
structural clone is very helpful in removing redundant
overlapping clones. Accuracy and recall represents a
challenging tradeoff that many authors attempt to achieve
optimally. The number of clones that can be generated by
any tool is apparently to the level of accuracy these tools
provide. The use of pre and post processing techniques
accompanied by the emergence of structural clone concept
reduce the severity of this issue. The introduction of the
criterion (sensitivity to larger code) implies the scalability
of the approach to be used in large software contexts.
Sensitivity to the clone density sets a rigorous test for these
approaches. Many of the techniques are based on specific
exemplary source code implemented in a certain
environment, where the number of clones is known to be of
moderate size. However, introducing this criterion shows
the limitations of some approaches to work with source
codes that are overwhelmed by copy-paste practice. Though
such artificial set-up can be argued that isn’t imaginary or
not reflecting real world application, it still provides an
insight to robustness and adaptability of the approach.
Artificial intelligence attempts to optimize the way
machines find solutions and its application has been well-
received with wide recognition and acceptance. Approaches
based on different AI branches such as machine learning,
data mining, information retrieval have been favored by
authors as it increases the performance and accuracy. AI
techniques extend the detection of syntactical clones to
semantic and structural clone. An omission of applying
fuzzy logic is surprising though. As presented in the
following section, the comparison survey leads to the
necessity of soft computing techniques.

 The remaining criteria (pre and post processing,
languages and tool implementation) give descriptive view
on the context and mechanism of the various approaches.
Their impact on achieving the solution is of lower value.

484 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Any successful approach can be ported with some
modification to a different environment. These criteria may
enlighten the interesting researcher to limitation and
abstraction level of each metric, so a further enhanced
version of algorithm can be implemented and then
published. However, it must be noted that the main
contribution is to provide high precision and recall coupled
with scalability and robustness whether it requires pre and
post processing step or not and whether the research was
guided by a certain language or not.

7 Conclusion and Future Works
 The previous sections provide an overview of the gaps
and holes where many approaches fail to achieve. It’s
evident that our understanding of code clone has evolved
through the years from exact copying into ability of
detecting structural clones. There is a distinct difference
between copy-paste practice in the sense of reusability and
with the purpose of plagiarism. Plagiarism is considered bad
under any argument, but the code cloning issue has shown
an interesting feature that urge researchers to study it in
depth. Though the previous approaches target similarity in
source code, it should be understood that clones may crept
to the designing and testing phase as well.

 Interesting unattempt approaches to the issue of software
clones has not been discussed in the literature and set as
objectives to interesting researcher to investigate deeply.
One dimension of the problem is how to determine that
similar code are cloned and how to avoid the overlapping of
code clones particularly when it’s taken on larger software
size. Fuzzy logic with its capability to provide a range of
membership for all instances to be categorized might
address this issue. The ability of an algorithm to survive in a
larger code can be addressed by machine learning
techniques. Machine learning is significant in finding
patterns of code clone in a certain context and able to follow
that pattern in a larger context. The issue of the tradeoff of
recall/precision can be solved by using neural network
allowing the errors of detecting code clone to be kept to a
minimum.

8 Acknowledgement
 The authors wish to acknowledge King Fahd University
of Petroleum and Minerals (KFUPM) for the use of various
facilities in carrying out this research.

9 References

[1] H. A. Basit and S. Jarzabek, “A Data Mining
Approach for Detecting Higher-Level Clones in Software,”
IEEE Transactions on Software Engineering, vol. 35, no. 4,
pp. 497–514, Aug. 2009.

[2] W. S. Evans, C. W. Fraser, and Fei Ma, “Clone
Detection via Structural Abstraction,” in 14th Working
Conference on Reverse Engineering, 2007. WCRE 2007,
2007, pp. 150–159.
[3] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E.
Merlo, “Comparison and Evaluation of Clone Detection
Tools,” IEEE Transactions on Software Engineering, vol.
33, no. 9, pp. 577–591, Sep. 2007.
[4] C. K. Roy and J. R. Cordy, “Scenario-Based
Comparison of Clone Detection Techniques,” in The 16th
IEEE International Conference on Program
Comprehension, 2008. ICPC 2008, 2008, pp. 153–162.
[5] C. K. Roy, J. R. Cordy, and R. Koschke,
“Comparison and Evaluation of Code Clone Detection
Techniques and Tools: A Qualitative Approach,” SCIENCE
OF COMPUTER PROGRAMMING, p. 2009, 2009.
[6] J. R. Pate, R. Tairas, and N. A. Kraft, “Clone
evolution: a systematic review,” Journal of Software
Maintenance and Evolution: Research and Practice.
[7] V. Wahler, D. Seipel, J. Wolff, and G. Fischer,
“Clone detection in source code by frequent itemset
techniques,” in Fourth IEEE International Workshop on
Source Code Analysis and Manipulation, 2004, 2004, pp.
128–135.
[8] Lingxiao Jiang, G. Misherghi, Zhendong Su, and S.
Glondu, “DECKARD: Scalable and Accurate Tree-Based
Detection of Code Clones,” in 29th International
Conference on Software Engineering, 2007. ICSE 2007,
2007, pp. 96–105.
[9] C. K. Roy and J. R. Cordy, “NICAD: Accurate
Detection of Near-Miss Intentional Clones Using Flexible
Pretty-Printing and Code Normalization,” in The 16th IEEE
International Conference on Program Comprehension,
2008. ICPC 2008, 2008, pp. 172–181.
[10] J. Mayrand, C. Leblanc, and E. M. Merlo,
“Experiment on the automatic detection of function clones
in a software system using metrics,” in , International
Conference on Software Maintenance 1996, Proceedings,
1996, pp. 244–253.
[11] J. Krinke, “Identifying similar code with program
dependence graphs,” in Eighth Working Conference on
Reverse Engineering, 2001. Proceedings, 2001, pp. 301–
309.
[12] S. Ducasse, M. Rieger, and S. Demeyer, “A language
independent approach for detecting duplicated code,” in
IEEE International Conference on Software Maintenance,
1999. (ICSM ’99) Proceedings, 1999, pp. 109–118.
[13] R. Tairas and J. Gray, “An Information Retrieval
Process to Aid in the Analysis of Code Clones.”
[14] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, “CP-Miner: a
tool for finding copy-paste and related bugs in operating
system code,” in Proceedings of the 6th conference on
Symposium on Opearting Systems Design &
Implementation - Volume 6, Berkeley, CA, USA, 2004, p.
20–20.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 485

A Multiplicity Approach for Equilibrium-Driven Complexity Control

K. O. Chow
City University of Hong Kong

Hong Kong
cspchow@cityu.edu.hk

Abstract - This paper uses a software technology approach to
tackle the problem of complexity control. A multiplicity of system
models, abstraction levels and development primitives are employed,
with special attention paid to the use of relationship in the tackling
process. The paper explains the steps needed to locate the balance
point between competing factors in the search of the final
equilibrium state. The benefits include extracting the part and
relationship ideas found in software techniques and applied into
controlling complexity.

Keywords: Complexity control, equilibrium, balance,
relationship, software method.

1 Introduction
 Tackling complexity is an important study with a
satisfactory solution remaining elusive. The issue of
complexity exists in many subject areas and its study is multi-
disciplinary [1, 2]. In the computer science discipline,
complex computer systems abound after the proliferation of
electronic computers in the past fifty years. Significant
progresses have been made, although variation in success
exists in different sub-areas such as the rapid hardware
advance versus desired software productivity improvement.

Software study is an area that awaits significant progress in
productivity, as in Brooks’s paper on ‘No Silver Bullets’ [3].
Two important ingredients in complexity discussion are parts
and relationships. Software engineering has studied these two
items extensively in an effort to develop quality software
products through a sound development process. Examples are
entity and relationship [4] and, object and relationship [5-9].
In tackling software complexity, the key concern is to control
complexity. A number of key concepts evolved, like
abstraction, decomposition and classification. These ideas
share similarities with other disciplines, though differed in
multi-modeling and relationships.

Due to the complicated intricacy and the subsequent effort
to seek a better understanding through a systematic
methodology, the study of complexity is often tied to system
study, forming complex systems. In this paper, we adapt
findings from computer science and take a system
methodology approach to analyze, understand and solve the
intertwining relationship in the task of complexity control.
Important ideas include multi-modeling, abstraction hierarchy
and development primitive. System modeling makes it easier

to see connections, relationships and patterns of interaction, as
multiple perspectives put things in better context. We will
show that these ideas have generic attribute and can be applied
to other disciplines.

 This paper is organized as follows. Section 2 states the
key concepts related to complexity control, equilibrium and
balance. Section 3 discusses the software engineering ideas
used in controlling complexity. Section 4 presents the
proposed approach. The last section evaluates the proposal
and gives the conclusion of the paper.

2 Complexity and Equilibrium
 This section presents the key concepts relevant to the
paper proposal, namely complexity control, balance and
equilibrium.

2.1 Complex System

 A complex system is commonly defined as a system with
numerous parts. And many times these parts are arranged
intricately. Although parts and intricacy have been the
conditions to be investigated, they tend to emphasize on the
structural arrangement of parts, with less attention given to
interaction, transition and processing. A comprehensive
consideration should include both structure and behavior, as
behavior is affected by structure and both are closely related.
Structure-based behavior includes object interaction, state
transition and function processing.

2.2 Equilibrium and Balance

 An important consideration in the study of complexity is
system equilibrium. Equilibrium is a system condition in
which competing forces are balanced. Balance point is the
desirable point among opposing forces. For example, the
balance point in decomposing a function is seven or less sub-
functions, as we want to avoid ending too many sub-parts and
become over-decomposition. The ability to maintain balance
is important to achieving system equilibrium. System balance
is a state condition enabled by interaction behavior and
function processing, and is obtained by:

• Locate factors to be included in balance
considerations

• Identify balance point

486 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

• Act on factors to move closer to balance point

2.3 Complexity Control

 Complexity control is meant to prevent from aggravating the
degree of complexity in a task. A number of techniques have
been evolved. The key idea centers in limiting the part number
and consequently the scope of consideration. The techniques
include:

• Classify into types of units
• Decompose into levels of units
• Compose units into groups

A number of control effects are resulted in the process of

controlling complexity. They include:

• A leveled structure formed, with levels of parts
• The number of parts reduced, via composition into

larger units
• Relationships between parts become explicit

These results can be viewed from a perspective of

relationship and translated into having generalization,
aggregation and composition relationships.

In sum, software development methodology is suitable to
the complex system study. Because of the similar attributes
exhibited, useful system properties include modeling, nesting,
system structure, interaction behavior and conditional state.
The followings are derived from this section:

• Include behavior into considerations
• Incorporate relationship and state condition
• Adopt the use of multiple techniques

3 Software Development Concepts
 This section states the key concepts in the system
methodology approach, with the aim to extract relevant ideas
for an equilibrium-driven complexity control.

3.1 System Perspectives

Abstraction In computer science, an abstraction is a simplified
view of a system which contains selected system details
important for a particular purpose. In other disciplines, such as
humanity and business, the concept of abstraction has also
existed for a long time. Like stepwise refinement and
information hiding, abstraction is an important concept in
computer science. In software engineering, it is the issue of
system complexity, equivalent to Brooks’s essential
complexity, which motivates the search for more effective
solution. Model-driven software development is the key idea
in both the classical and modern structured and object-
oriented methodologies, and is a central tool in complexity
control. This importance is due to the raising of the abstraction

level in software development. A weakness in abstraction is
that it is not clear when should abstraction be stopped. This is
so because the nature of abstraction implies that the process
should be complete when essential features are obtained.
However, the task of separating the essentials from non-
essentials is a lengthy iterative process and necessitates
continuous refinement. Other weakness includes imprecise
abstraction.

Multiple Perspectives Abstraction is closely related to
modeling. The essence of abstraction is to identify essential
properties and ignore unnecessary details. In other words,
abstraction involves selective attention and selective
ignorance. This focus of concern is based on the modeling
perspective. The historical progression of the software
technology shows a transition from a serial execution
emphasis to one of function processing and later towards
oriented towards objects. These emphases reflect perspectives
taken in understanding and modeling the system. The current
trend in software development is to migrate from a single
perspective to multiple perspectives, that is, model a system
with different perspectives. Multi-modeling is the prevailing
trend in current software development, as is shown in UML
[10]. There are different proposals in terms of 2-model, 3-
model and others. The more common one is a dual model,
comprising structural model and behavioral model. Multiple
models create a shortcoming of inconsistencies among system
models. The inclusion of multiple models complicates the
abstraction process. Other weaknesses are domain specificity
and domain dependency.

3.2 Hierarchical Levels

When a system is decomposed into levels, a hierarchy of
system is formed. These abstracted hierarchical levels can be
grouped into high and low levels, and interpreted as shown in
Figure 1 below:

High Level What, General, Abstract, More information
hidden

Low Level How, Detailed, Concrete, Less information
hidden

Figure 1. Abstraction Level

Using the concept of levels, software method devises the
techniques of decomposition and composition and uses them
to organize parts. However, no relationships exist between the
hierarchical levels. This applies to the structured approach as
well as the object-oriented approach. The standardized UML
incorporates meta-model, using a more generic abstraction.
This has the benefit of domain-independent characteristic. But
the weakness is that it still has to involve domain-specific
data. On the other hand, traversing between levels may
involve changing of views. This implies that we can unify
views through traversal of abstraction levels.

In addition to the lack of relationships, there are three other

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 487

shortcomings. It is not clear what constitute high and low
levels. Abstraction level is a relative term, with no absolute
value. Inconsistencies exist between abstraction levels. In
addition, inconsistencies may also exist between models and
abstraction levels.

3.3 Relationships

Relationship is also an under-investigated area in
complexity study. The inclusion of the relationship concept in
software development is a relatively new idea in computer
science and happens only with paradigm shifts. It is only with
the coming of the data modeling with entity relationship [4]
and the object modeling [5-9] that the concept of relationship
is explicitly included. The preceding paradigm of structured
approach only embodies the hierarchy concept and does not
have any relationships.

Similar to abstraction, the concept of classification exists in
many disciplines such as biology, economics. Classification
uses the idea of commonality to group similar things into
types, forming the a-kind-of relationship. At the same time, the
hierarchical level concept is employed to produce an
organized depiction of parts. In the design of a complex
system, classification is used to control complexity by
reducing the amount of details that a designer needs to
consider in similar groups. To manage a system more
abstractly, the idea of subsystem is used. A subsystem may
recursively include other subsystems.

The object-oriented methods in the 90s usually prescribe the
basic relationships of association, aggregation and inheritance.
Currently, the UML 2 [10] includes the following
relationships, namely aggregation, association, composition,
dependency and generalization. Using the dual model concept,
a more complete list of relationships is shown in Figure 2
below.

A weakness is the lack of relationships between the
structural and behavioral models. This paper proposes to use
relations to maintain balance in complex systems.

Structural
relationship

Aggregation, association, composition,
generalization

Behavioral
relationship

Sequence, dependency, aggregation,
realization

Figure 2. List of Relationships

3.4 Process Primitives

It will be more effective in complexity control if activities
are organized in terms of path and direction, together
constituting basic activity primitives. A pattern of activities
gives rise to a progression path. There are different patterns.
They can be linear, fixed, dynamic or iterative. There are
different directions of movement, such as top-down, bottom-
up, middle-out. It is the combination of the development
process stages and the process primitives that gives rise to a

variety of process models. A full list of the primitives is given
in Figure 3 below.

Path Sequence, iteration, linear, singular, parallel, fixed,
dynamic

Direction Top-down, bottom-up, middle-out, forward,
backward, inside-out, outside-in

Figure 3. Activity Primitive

4 Multiplicity for Equilibrium
This section links the ideas described in Sections 2 and 3

and explains the proposed equilibrium-driven complexity
control.

4.1 Multiplicity Approach

As has been described in Section 3, the key idea is in the
exhibition of a multiplicity characteristic. They become the
building blocks, or parts, in complexity control. The key
multiplicity elements are summarized follows:

• Multiple models
• Multiple hierarchical levels
• Multiple relationships
• Multiple paths and directions

4.2 Proposal

As has been described in Section 2, the key ideas to achieve
equilibrium are to obtain the followings:

• Condition state
• Balance point
• Competing factor

We propose to map and unify these ideas to form the

building blocks for the proposal. We use the software
development methods as exemplary elements in the proposal.
Figure 4a gives a mapping between the structural and
behavioral models. Figure 4b describes the structure-
dependent behavior model by organizing the dual models into
two hierarchical levels.

Structure Behavior
 Behavior

Class, relationship Use case
scenario

Property Interaction
sequence

Method Activity
processing

 Structure

 Fig 4a. Structural/Behavioral Models Fig 4b. Dependency

The structural model is of primary importance in software
development. Subsequently it takes a primary role, a major

488 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

share and a leading order. It will first give the earliest
meaning. It also forms the lower level in a hierarchy of model
dependency. The behavioral model is based on, and dependent
upon, the structural model, serving as a guide in development
direction and a dependency relationship. Figure 5 shows the
mapping among equilibrium criteria, competing consideration
factors and relationships employed.

Equilibrium Criteria Competing Factors Relationship Used
Importance Primary vs.

secondary
Generalization,

aggregation
Share/weight Major vs. minor Ordering sequence

Directional guide Based on, driven
by, oriented to

Dependency

Figure 5. Building Blocks

 The competing factors are used as opposing forces to
locate the balance point in searching for equilibrium state. For
example, the balance strategy between primary and secondary
factors will be primary first. The relationships of
generalization and aggregation are employed as structure with
leveled parts classified, decomposed and composed. The
behavior includes interaction between parts, state transition
and function processing. All these are based on the structural
model built previously. Equilibrium is the final state where
the primary and secondary factors are balanced. Complexity is
controlled in the process.

4.3 Complexity Control Steps

From the relationships derived in previous section, the
sequence of modeling is to first create a structural model, and
then a behavioral model. This sequential order conforms to the
recommendations given in most object-oriented methods.
Figure 6 lists the procedural steps.

Modeling Extract essentials

 Select emphases
 Create models
 Identify parts
 Form hierarchies
 Establish relations among parts
 Relate dual models

Design Sequence activities with primitives
 Set condition states
 Consider competing factors
 Establish balance point for equilibrium

Figure 6. Steps

5 Conclusions
 We have presented an approach to tackle the question of
complexity control. In our proposal, we advocate a

multiplicity approach, encompassing multiple dimensions of
system modeling and development activity. The paper
explains the steps needed to locate the balance point between
competing factors in the search for final equilibrium state. The
benefits include extracting the part and relationship ideas
found in software techniques and applied into controlling
complexity. There are a number of outstanding issues. These
include:

• Work towards domain-independent proposal by
resolving the problem of domain specific and domain
dependence

• Derive a detailed list of relationships
• Establish relationships between structural and

behavioral models to remove inconsistencies, and
relationships between hierarchical levels to ensure
correct mapping

The proposal will also require realistic applications for

further verification. Future works include incorporating
modeling language and developing a software tool.

6 References
[1] Weaver, Warren, Science and Complexity, American Scientist

36:536, 1948. Retrieved from
http://www.ceptualinstitute.com/genre/weaver/weaver1947b.ht
m.

[2] Johnson, Neil F., Two’s Company, Three is Complexity: A
simple guide to the science of all sciences. Oxford: Oneworld,
2007.

[3] Brooks, F.P., “No Silver Bullet – Essence and accident in
Software Engineering”, Computer 20, 4, pp. 10-19, 1987.

[4] Chen, Peter, “The Entity-Relationship Model - Toward a
Unified View of Data”, ACM Transactions on Database System,
1(1):9-36, 1976.

[5] Booch, Grady, “OO Analysis & Design with Applications, 2nd
Ed. Addison-Wesley, 1994.

[6] Rumbaugh, James et al., Object-Oriented Modeling and Design,
Prentice-Hall, 1991.

[7] Shlaer, S and Mellor, S., Object Life Cycles: Modeling the
World in States, Yourdon Press, 1992.

[8] Jacobson, Ivar, et al., Object-Oriented Software Engineering: A
Use Case Driven Approach, Addison-Wesley, 1992.

[9] Martins, James, Principles of Object-Oriented Analysis and
Design, Prentice-Hall, 1993.

[10] Booch, Grady, Jacobson, Ivar & Rumbaugh, James, OMG
Unified Modeling Language Specification, Version 1.3 2000.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 489

490 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

SESSION

WORKSHOP ON NONLINEAR SOFTWARE
ENGINEERING REVOLUTION BASED ON

COMPLEXITY SCIENCE

Chair(s)

Jay Xiong

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 491

492 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

NSE Extracts Software Models from Source Code
 - Software Modeling Revolution Based on Complexity Science

Liana Ye
 1
, Jay Xiong

2

PeaceNames.com, USA
1
, NSESoftware, LLC, USA

2

Abstract

Software specification and implementation are intertwined.

Model driven software development is considered harmful

if the models are outcomes of reductionism and

superposition of linear software development processes.

Successful software products are outcomes of a non-linear

approach. This paper introduces a nonlinear, holistic, and

dynamic software modeling approach based on complexity

science, driven by platform-independent Java source code

or platform-dependent programming language source code,

called NSE modeling. NSE modeling enables software

design automation from stubs in top-down pre-coding

design, and enables the coding process to be bottom-up to

further design, and effectively incorporates model-driven

software design into a non-linear process.

Keywords: software modeling, MDE, MDA, MDD,

software requirement engineering, software design, coding,

testing, quality assurance, maintenance

1. Introduction

“A model of a system is a description or specification of

that system and its environment for some certain purpose”

(OMG). “A model is an abstraction of a (real or language

based) system allowing predictions or inferences to be

made.” [1]

Claimed by Jim Arlow and Ila Neustadt in their book,

[2] MDA, a set of large software system standards, “The

future of UML may be a recent OMG initiative called

Model Driven Architecture (MDA). MDA defines a

vision for how software can be developed based on

models. In MDA, software is produced through a series

of model transformations aided by an MDA modeling tool.

An abstract computer-independent model (CIM) is used

as basis for a platform-independent model (PIM). The

PIM is transformed into a platform-specific model (PSM)

that is transformed into code.”

Critic of MDA Harry Sneed pointed out [3]: “Model

driven considered harmful:

* Model-driven tools magnify the mistakes made in

the problem definition;

* Model-driven tools create an additional semantic

level to be maintained;

* Model-driven tools distort the image of what the

program is really like;

* The model cannot be directly executed. It must first

be transformed into code which may behave other than

expected;

* Model driven tools complicate the maintenance

process by creating redundant descriptions which have to

be maintained in parallel;”

* Model driven tools are designed for top-down

development;

* Top-down functional decomposition creates

maintenance problems.”

Opposing MDA is Architectural Driven Modernization,

ADM. It produces Knowledge Discovery Meta-

model (KDM) for model-based reverse engineering of

legacy systems.

KDM describes information systems in

terms of various assets (programs, specifications, data, test

files, database schemas, etc.) shown in Fig. 1.

Fig. 1 KDM structure from OMG ADM group.

In summary, if a UML design can really replace the

programming code as envisioned by some, then it becomes

just another programming language. The question is,

which is easier to change, the design documents or the

programming language. Harry Sneed: “This depends on

the nature of the problem and the people trying to solve it.

If they are more comfortable with diagrams, they can use

diagrams. If they are more comfortable with text, they

should write text. Diagrams are not always the best means

of modeling a solution. A solution can also be described in

words. The important thing is that one model is enough –

either the code or the diagrams. They should be

reproducible from one another.”

2. ADM Approach Drives to NSM revolution

 Many excellent software development approaches or

methodologies have been developed to streamline a

process. All these tools can be used by people for holistic

examination for a software system in development. But

people do forget some details. ADM group has provided

KDM view from existing large systems, which are

developed from many nonlinear processes in the past.

ADM approach sets the direction for NSM revolution but

extracts from machine code, creating another layer under

existing source code. In fact, it throws away existing

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 493

http://en.wikipedia.org/wiki/Knowledge_Discovery_Metamodel
http://en.wikipedia.org/wiki/Knowledge_Discovery_Metamodel

source code, which is the result of successful past non-

linear processes. Automating model creation from legacy

source code systems, studying and improving these

working models from the past, and incorporating new

requirements into code generation can revolutionize

software engineering.

 From practical experience, the existing software

engineering paradigm has always been divide and conquer,

thus an outcome of linear thinking, reductionism, and

superposition.

Fig. 2 MDA Agile software development process [5]

Products woven together with these approaches are un-

maintainable. Any requirement change or code

modification will make the products unstable as current

software processes ever larger amount of dynamic data, as

experience has already shown. Today, most critical

software defects are introduced into a software product in

the requirement development phase and then the design

phase. Yet dynamic testing of the product is performed

after coding. The National Institute of Standards and

Technology’s study [6] said: “Briefly, experience in

testing software and systems have shown that testing to

high degrees of security and reliability is from a practical

perspective not possible. Thus, one needs to build security,

reliability, and other aspects into the system design itself

and perform a security fault analysis on the

implementation of the design.” Working models from

legacy systems need to be re-examined to satisfy these

new requirements.

2.1. ADM approach has problems to work out

 According to ADM structure in Fig. 1, ADM has to

rewrite the source code of a legacy system in KDM. If we

use the code generated by MDA, it will take a large

amount of resources to cover an existing legacy system in

detail, unless the models are ugly enough with a lot of

detailed information making these models hard to view.

 Either MDA or ADM may provide two sources

approach to software modeling (Fig. 3) with one in

models or diagrams format for people to understand a

complex software system, and the other in textual format,

or source code, for computers to interpret the system.

There is a big gap between the two sources.

Fig. 3 Two-Source Approach in software modeling

Traditional code-driven engineering approaches do not

support software modeling for high-level abstraction,

making the developed software product hard to understand

and hard to maintain.

Similar to ADM legacy system approach, a proposed

Nonlinear Software Modeling (NSM) [4] takes only source

code as the single source for both human and machine

understanding, instead of avoiding the old code, as both

MDA and ADM are doing. NSM creates models of a

complex software system with colorful, dynamic, virtual,

interactive, traceable, linkable, auto-convertible, accurate,

precise display, assuring model consistency with the source

code.

2.2. Requirements to satisfy NSM

 The foundation of NSM is laid in Fig 4. To count for

all the elements indicated in the framework and using

existing technologies and best practice today, the following

requirements to satisfy NSM are feasible.

Fig. 4 The framework for NSM development

(1) Models or diagrams should be meaningful for

describing both high-level abstraction and low-level

program logic from the same source.

(2) Models or diagrams should be holistic, colorful,

interactive, dynamic, and traceable.

(3) Programming sources should be stable and platform-

independent, such as Java-DSL or C++, without changes

for high-level abstraction to generate new models or

diagrams.

(4) Tools should be fully automated to generate models or

diagrams directly from such source codes.

(5) Models or diagrams should not take a large amount of

space in static storage.

(6) Bi-directional traceability must be supported.

(7) Developed software products should be truly

maintainable, counting in all related models, diagrams,

documents, test cases, and the source code.

3. NSM solution

 Shown in Fig. 5 in NSM, one source is used for both

human understanding and computer understanding of a

software product.

494 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Fig. 5 NSM (Nonlinear Software Modeling approach)

The models and diagrams are automatically generated

from their source code, either stub modules (having an

empty body, or only a set of function call statements), or a

regular program, through reverse engineering. The

generated models, diagrams and the source code are fully

traced. Further, dynamic design and coding are fully

integrated in a non-linear way as shown in Fig. 6.

Fig. 6 Design and coding in NSE

NSE modeling methods are using 3J-graphics, and

HAETVE techniques with Transparent testing box from

running source code.

4. 3J-Graphics

Three types of models and diagrams are created called J-

Chart, J-Diagram, and J-Flow.

Fig. 7 J-Chart notations

4.1. J-Chart is not only used to represent class

inheritance relationships, function call graphs, and the

class-function coupling structure of a software product,

but also is used to display the orders of incremental unit

testing or related test coverage, where quality data in bar

graphics is overlaid on each module-box. to show overall

results of the test. J-Chart is easy for software modeling,

system understanding, inspection, test planning, test result

display, re-engineering, and software maintenance. J-

Chart can be automatically generated from a stub program

of “Bone Programming” for high-level abstraction, or a

regular program including legacy programs. J-chart

notations are shown in Fig. 7.

4.2. J-Diagram notations are shown in Fig. 8. J-Diagram is

automatically generated from source code in all levels,

including class hierarchy tree, class structure diagram, and

class member function logic diagram with un-executed

class/function/segments/condition outcomes being

highlighted. J-Diagram is automatically linked together for

an entire software product to make the diagrammed code

traceable in all levels. J-Diagram can be automatically

converted into J-Flow diagram. J-Diagram is particularly

useful in Object-Oriented software understanding,

inspections, walkthroughs, testing, and maintenance.

 Fig. 8 J-Diagram notations

4.3. J-Flow The majority of traditional control flow

diagrams are un-structured. They often use the same

notation to represent different program logic, and cannot

display logic conditions and source code locations. J-Flow

diagram is Object-Oriented and structured. It uses different

notations to represent different logic with capability to

show logic execution conditions and corresponding source

code locations. J-Flow is particularly useful in logic

debugging, path analysis, test case, code correspondence

analysis, and class/function level test. The test coverage

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 495

result is displayed with unexecuted elements (paths,

segments, and unexecuted condition outcomes)

highlighted.

 J-Flow diagram in Fig. 9 can be converted to and from

J-Diagram automatically. In NSM, J-Flow not only

shows program control flow, but also shows the best path

for testing on mostly untested branches. Its execution

conditions are automatically extracted for semi-automatic

test case design in unit testing.

Fig. 9 J-Flow notations

 J-Flow plays an important role in software traceability

among all related documents, such as requirements

specification, models, diagrams, test requirements, test

cases and source code. All traceability operations use J-

flow forwardly and backwardly. When a user selects a

requirement and clicks a related test case in a window,

that implementation is forwarded and that window will

automatically show the test case in blue, while its

corresponding test coverage result is shown in J-Flow in

another window with its classes, functions, and branches

are tested and highlighted in red.

 The dynamic and interactive 3J-graphics, Object

Oriented charts, logic diagram control flow diagram, and

a chart generator, are a trinity. The trinity is always

running when a chart is shown. 3J-Graphics are generated

directly from the source code of the platform-independent

Java programs or a platform-dependent program written

in C, C++, or VB. With the 3J-Graphics and the

corresponding tools and languages, high-level abstraction,

such as Actor and Action notations similar to Use Case

diagram of UML can be generated.

5. HAETVE [hayn-tiv] Technique

HAETVE means Holistic, Actor-Action and Event-

Response driven, Traceable, Visual, and Executable

techniques for dynamic software modeling. With

HAETVE the graphical notations for representing an actor

and its action using Java language are shown in Fig. 10 A,

where the notation used for representing an actor is

designed for representing a recursive program module

bellow:

public class notations {

 public static void Bank_Customer ()

 { Bank_Customer () ; }
 public static void Deposit_Money ()

 { } }

 Java is a platform independent programming language.

Results obtained in modeling from Java should be

independent from target languages and platforms. If there

is a need, the stub java source code can be transformed to a

target language source code.

The notations for representing an actor and its action using

C/C++ programs are shown in Fig. 10 B.
void Bank_Customer ()

{ Bank_Customer (); }

 Void Deposit_Money ()
 { }

 A. for Java B. for C, C++

Fig. 10 Notations for representing an actor and its action model
from different programming languages.

For the Actor-Action type applications, HAETVE is similar
to Use Case approach [4], and is easy to map to Use Case

notations as shown in Fig. 11 and Fig. 12.

Fig. 11 Mapping from Use Case to HAETVE

 A. Use case to B in HAETVE

Fig. 12 Notation mapping from Use case A to HAETVE B.

The analysis result of Use Cases can also be mapped to

HAETVE as shown in Fig. 13

496 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Fig. 13 Analysis notation mapping from Use Case (UML)

to HAETVE.

A process example is shown in Fig. 14 and Fig. 15.

Fig. 14 A process example of Use Case Analysis

(A) Function notations (B) Class member notations

Fig. 15 Mapping to Use Case Analysis shown in Fig. 14

With HAETVE, event-responds notation is shown in Fig. 16.

Fig. 16 Event-responds notation with event table in comments

 A class is represented in J-Chart, J-Diagram, J-Flow

diagram and Action-Plus diagram shown in Fig. 17.

Fig. 17 A class is represented in four different notations.

A traditional Activity Diagram can be mapped to a

combination of these notations and can be viewed in

multiple windows.

Besides Actor-Action diagram, Event-Response diagram,

and Activity diagram, all the models can also be

automatically generated from a regular program or a legacy

software product at all levels. It is a holistic solution.

5.1. Holistic HAETVE Models and diagrams can be

generated from an entire software product with its source

code written in platform-independent Java language or a

platform-dependent programming language to show the

product structure, class relationship, and overall static and

dynamic properties of the product in Fig. 18 and

comparative detailed views of two versions of the product

shown in Fig. 19.

Fig. 18 A system level logic chart

Fig. 19 A file level source code version comparison to

guide code level understanding within the holistic system

view.

5.2. Fully Automatable and Visual

Fig. 20 A query on a model in a system level J-chart.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 497

 All models and diagrams can be automatically and

completely generated from the source code as shown

above in Fig.20. Many models and diagrams of UML are

not automatable, such as Use Case diagram in Fig. 21,

because it is not yet included in the software systems

being developed.

Fig. 21 Actors of a Use Case diagram are outside the

software product under development.

Unlike UML models, all parts of models and

diagrams in HAETVE are inside the software system

under development. Actors of the Actor-Action

relationship diagrams are easy to take requirement

validation and verification, and will not affect the

program execution as shown in Fig.22, Fig. 23, and Fig.

24.

Fig. 22 HAETVE mapping to Use Case of Fig. 21.

Fig. 23 Static check of the Actor-Action relationship.

Fig. 24 Dynamic check on the actor-action relationship

without affecting the product dynamic behaviors.

(a) (b)

Fig. 25 Dynamic checks found an error and corrected:

(a) An error – “New_Order” function does not executed

 Source of error, a typing mistake:

 if(strcmp(argv[1],"New_Ordor")==0)

 New_Order();
 (b) Corrected: Chang New_Ordor to New_Order.

HAETVE’s colorful screen representation includes model

status and interactive response to user without penalty in

speed.

5.3. Traceable and Executable models

 Fig. 23-25 also show the model is traced back to source

code to be able to identify and correct human errors after

source code change. The traceability facilitates execution

of the correction process.

 With HAETVE, when a model is shown, the

corresponding model generator is always working and

waiting for users’ operation commands through the graphic

interface. Users can request corresponding chart generator

to show extra information such as the code test coverage,

the percentage of the run time spent in each function. Fig.

26 shows how a user selects any function box as a new root

to generate a sub-call graph from a J-Chart.

Fig. 26 An application example of the interactive J-Chart

for generating a sub-call graph and shows the process to

request the model generator to display the location where a

runtime error happened (shown with an ‘EXIT’ word

added) in the J-Flow diagram in Fig. 27.

Fig. 27 The operation process for displaying the location

where a runtime error happened.

 If a diagram is better than a thousand words in

describing a complex system, then an interactive and

dynamic diagram will be much better than ten thousand

words to represent a complex system.

498 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

6. Transparent-Box Method

 As opposed to conventional black box or white box

diagnosis method, NSE introduces a transparent testing

box to combine functional testing and structural testing

seamlessly and dynamically in the entire software

development lifecycle. Fig. 28 shows bi-directional

testing in every aspect of a software product.

Fig. 28 Transparent-box testing method

The transparent testing box has made HAETVE

implementation a reality. In addition, the fully

implemented bi-directional traceability extends beyond a

hosting product to incorporate a third party product with

specific formats, or to play back captured GUI operations

for regression testing. Fig. 29 and 30 shows a traceable

UML model in Panorama++.

Fig. 29 An example of making UML models/Diagrams

traceable from requirement

Fig. 30 An example of making UML models or Diagrams

traceable from source code.

With bi-directional traceability, NSE supports software

development, captures real time communication, manages

multiple related projects, and fully supports UML

modeling. Software maintenance can be performed

nonlinearly, holistically, and globally, prevents side-effect

from either requirement or code change using NSE

Panorama++.

We have the right to be wrong, but we also have the

right to be right: NSM makes design become pre-

coding, and the coding becomes further design.

7. Conclusion

 Existing linear software modeling approaches

including MDE, MDA, and MDD are outcomes of linear

thinking, reductionism, and the superposition principle that

the whole of a complex system is the sum of its

components. NSM automating software modeling brings

revolutionary changes to software modeling by replacing

manual modeling on legacy systems with automating

model creation from the legacy source code, studying and

improving these working models from the past, and

incorporating new requirements into code generation,

enabling software coding becomes further design.

 NSM has been implemented, and fully supported by

product Panorama++. The downloadable Panorama++ for

C/C++ on Windows trial version, is on

http://www.NSEsoftware.com.

 "The next century will be the century of complexity"

(Stephen Hawking，January 2000). Opportunities exist in

developing platform-independent programming languages

which are more suitable for high-level abstractions of a

software product; Opportunities are also available in

designing better tools to remodel legacy software products

written in Cobol, ADA, or FORTRAN programming

languages through nonlinear software modeling, etc. In

NSM, it can be true, that “The Code is the Design”.[7]

8 References
[1] Thomas K¨uhne, http://www.mm.informatik.tu-

darmstadt.de/staff/kuehne_old/publications/papers/what

-is-a-model-dagstuhl.pdf

[2] Jim Arlow and Ila Neustadt in their book, “UML 2 and

the Unified Process: Practical Object-Oriented Analysis

and Design (Second Edition)”, Person Education, Inc.

2006

[3] Harry Sneed, The Drawbacks of Model driven Software

Evolution, IEEE CSMR 07- Workshop on Model-

Driven Software Evolution, Amsterdam, 20 Mar. 2007

[4] Jay Xiong, New Software Engineering Paradigm Based

on Complexity Science, Springer, March 2011

(http://www.springer.com/physics/complexity/book/97

8-1-4419-7325-2)

[5] “An Analysis of Model Driven Architecture (MDA)

and Executable UML (xUML)”,

http://www.powershow.com/view/30871-

MjU5N/An_Analysis_of_Model_Driven_Architecture_

MDA_and_Executable_UML_xUML_flash_ppt_prese

ntation)

[6] “Requiring Software Independence in VVSG 2007:

STS Recommendations for the TGDC," Nov. 2006

http://vote.nist.gov/DraftWhitePaperOnSIinVVSG2007

-20061120.pdf

[7] Jack W. Reeves,

http://developers.slashdot.org/story/05/03/01/2112257/t

he-code-is-the-design

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 499

http://www.nsesoftware.com/
http://www.mm.informatik.tu-darmstadt.de/staff/kuehne_old/publications/papers/what-is-a-model-dagstuhl.pdf
http://www.mm.informatik.tu-darmstadt.de/staff/kuehne_old/publications/papers/what-is-a-model-dagstuhl.pdf
http://www.mm.informatik.tu-darmstadt.de/staff/kuehne_old/publications/papers/what-is-a-model-dagstuhl.pdf
http://www.springer.com/physics/complexity/book/978-1-4419-7325-2
http://www.springer.com/physics/complexity/book/978-1-4419-7325-2
http://www.powershow.com/view/30871-MjU5N/An_Analysis_of_Model_Driven_Architecture_MDA_and_Executable_UML_xUML_flash_ppt_presentation
http://www.powershow.com/view/30871-MjU5N/An_Analysis_of_Model_Driven_Architecture_MDA_and_Executable_UML_xUML_flash_ppt_presentation
http://www.powershow.com/view/30871-MjU5N/An_Analysis_of_Model_Driven_Architecture_MDA_and_Executable_UML_xUML_flash_ppt_presentation
http://www.powershow.com/view/30871-MjU5N/An_Analysis_of_Model_Driven_Architecture_MDA_and_Executable_UML_xUML_flash_ppt_presentation
http://vote.nist.gov/DraftWhitePaperOnSIinVVSG2007-20061120.pdf
http://vote.nist.gov/DraftWhitePaperOnSIinVVSG2007-20061120.pdf
http://vote.nist.gov/DraftWhitePaperOnSIinVVSG2007-20061120.pdf
http://developers.slashdot.org/story/05/03/01/2112257/the-code-is-the-design
http://developers.slashdot.org/story/05/03/01/2112257/the-code-is-the-design

NSE Dynamic Software Documentation
- Software Documentation Revolution Based on Complexity Science

Liana Ye
 1
, Lin Li

2

1
PeaceNames.com, USA

2
NSESoftware, LLC, USA

Abstract

This paper introduces Nonlinear Software Engineering

(NSE) Documentation Paradigm based on complexity

science. By making software documents automatic,

graphical, colorful, traceable, virtual, maintainable, and

always consistent with source code dynamically, NSE brings

revolutionary changes to software documentation.

Keywords: software documentation, software document,

visualization, diagram, testing, maintenance

1. Introduction

 eHow contributor O Paul pointed out that software

documentation pervades the software life cycle. It is the

visible part of the software process. Without it, software

cannot be maintained, users are hard to train and the

software is virtually unusable. Without it, new developers

would have to re-invent the wheel in software development.

Software documentation is the most important manifestation

of software. It is the guide through the software maze [1].

 Experience has shown that technical software

documentation is unsatisfactorily maintained. The

implications of outdated documentation are costly and can

damage businesses (http://www.sig.eu/en/Services/DocGen).

 Software documentation has been created manually with

"cut and paste", or generated by a semi-automated tool for a

large software product. Often the documents obtained with

current software documentation techniques and tools are

* not traceable,

* not accurate,

* not precise, and

* not consistent with the source code, and

* cannot be holistic.

 This paper discusses a source code based software

documentation approach based on complexity science

solving all of the problems listed above efficiently, and

bringing revolutionary changes to software documentations.

2. What Does a Revolution in Software

Documentation Mean?
 According to “The Structure of Scientific Revolutions”

[2], a revolution in software documentation means:

(1) Bringing drastic, complete, and fundamental change to

the software documentation paradigm

(2) Resolving some outstanding and generally recognized

problems in software documentation;

(3) There is no other way to efficiently resolve those

outstanding and generally recognized problems in

software documentation.

3. Documentation Paradigms

 Documentation is a software production process,

reflecting multiple levels of decision-making by people,

especially software engineers. Fig.1 shows the mapping

from requirements to source code production cycles in

waterfall model on a reductionism base.

Fig.1. Three-dimensional software production cycles need

documentation

Documentation is required for software development in the

large arrow direction, where engineers are focused on

coding and maintenance. Unconnected words indicate

standardization efforts and numerous internal debates about

software development.

3.1. Software documentation revolution condition (1)

NSE software documentation paradigm brings drastic,

complete, and fundamental change to the software

documentation paradigm by paradigm shift of the

foundation of software documentation from the

reductionism base of Fig 1, which is manually and partially

traced, and its marketing, design and coding documents and

specifications are strongly top-down typed and hard to

500 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

change. NSE is a complexity science based, innovative

framework FDS shown in Fig. 1’.

Fig. 1’. FDS (Five-Dimensional Structure Synthesis

method) framework

3.2. Software documentation revolution condition (2):

The outstanding and generally recognized problems in

software documentation are characterized by:

(a) Reductionism and superposition principle: the whole of a

complex system is the sum of its components, and almost all

tasks and activities in software documentation are

performed linearly, partially and locally.

(b) Linear process models: where workflow goes linearly in

one direction with only one track without counting upstream

movement. It requires software developers to always

document their software with no errors and no wrong

decisions.

(c) Constructive holism: the components of a complex

system are completed first, then the system as a whole is

assembled from its components.

(d) Impossible to be holistic: many small pieces of

documents are generated with no automated summation of

the entire system, missing the big picture of the software

product. Even if some tools can be used to document an

entire software product, short of automated and self-

maintainable traceability, its system level graphical

documentation contain too many connection lines as shown

in Fig. 2, making the documents hard to understand and

almost useless.

Fig. 2 A traditional call graph without traceability. Source:

http://keithcu.com/bookimages/wordpress_html_m1e9af381.jpg

(e) Graphic documents and source code are separated

making it hard to keep them consistent, especially after

product modification.

(f) Documents are generally not traceable.

(g) Documents obtained are stored statically as images in

Postscript, XML, or other formats, requiring huge

amounts of space and long loading times.

(h) Manually or graphic editor created graphic documents

are not automatically generated, time-consuming to draw,

hard to change, and hard to maintain.

(i) Documentation is error prone and may not be accurate.

(j) The obtained documents are not precise. They can not

directly and graphically show whether a code branch or

condition combination has been tested or not.

3.3 Solution from NSE software documentation

(a) Based on complexity science, particularly the

nonlinearity principle and the holism principle, all software

documentation tasks and activities are performed

holistically and globally, as shown in Fig. 3.

Fig. 3 An example in NSE documentation on a complex

software holistically

 (b) Nonlinear process model: Workflow goes nonlinearly

through two-way interaction with multiple tracks,

supporting both upstream and downstream movement as

shown in Fig. 1.

(c) Generative holism: The whole of a complex system

comes first in embryonic form. It grows up with its

components.

(d) Holistic: Documents for an entire software product are

automatically generated to make it easy to view the

documents and understand internal connections, as shown in

Fig. 4.

Fig. 4 An application example for NSE to trace a module

and all its related modules upstream and downstream.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 501

http://keithcu.com/bookimages/wordpress_html_m1e9af381.jpg

(e) Source code (either a stub program or a functional

program) is the source for most graphical document

generation. The graphic document is the visual face of the

corresponding source code. They are always consistent with

each other.

(f) Documents are traceable to and from the source code.

Fig. 5 Static visibility example – Forward tracing a test case

to view which modules can be tested

(g) Documents are consistent with their source code after

product modification with updates to database:

Fig. 6 Requirement Changes: Defect Prevention using

forward tracing through the related test cases to determine

which modules should be modified for a requirement

change.

(h) Documents are dynamically generated directly from the

source code. Corresponding databases are virtual without

images in memory or on hard disk (with user option to print)

to greatly save space and make the speed of display about

1000 times faster than established practice.

(i) Generated graphical documents are accurate to the code.

(j) Generated graphical documents are precise. They can

directly and graphically show whether a code branch or

condition combination has been tested or not.

NSE software documentation supports the entire software

development process, from requirement development

through software maintenance.

3.4. Software revolution condition (3): No other method

can efficiently resolve those outstanding and generally

recognized problems in software documentation except

generating documents automatically from source code.

 Although there are many software documentation tools

available on the market, they are disjoint tool sets. Alistair

Cockburn, characterizing people as non-linear, first-order

components in software, development: “We methodologists

and process designers have been designing complex systems

without characterizing the active components of our systems,

known to be highly non-linear and variable (people).”
http://alistair.cockburn.us/

From source code to generated documents, NSE produces

automatically generated documentation from source code,

displays coded decisions made by people keeping bi-

directional traces for every symbolic connection in the

system, updates function call statements or testing

conditions dynamically with graphical representation for

highly non-linear and variable people, with precise

quantitative information about how many requirements may

be affected and how many function call statements may

need to be modified. We see no other way to efficiently

resolve previously mentioned outstanding and generally

recognized problems but to take automatically generated

documentation from source code.

4. Documentation in NSE is Dynamic

 Source code is the ultimate software system

documentation. Complete graphical relationship

representation of each component is determined when the

source code is compiled. NSE collects all information on

the software system, then generates holistic, graphical,

interactive, and traceable documents automatically,

including a stub program meeting development and product

specifications and a functioning program for forward

engineering or reverse engineering.

Fig. 7 Traceability among all related documents, test cases,

and source code

502 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

http://alistair.cockburn.us/

 As shown in Fig. 7, source code is the source for

automatically generating graphic design documents, while

those graphic design documents become visual faces of

source code. The design becomes pre-coding, and coding

becomes further design. The graphical documents are

traceable for static review and executable for dynamic

defect removal, as shown in Fig. 4.

 Self-maintainable documentation facility is established

through dynamic traceability among design documents, test

cases and the source code, as shown in Fig. 7. After the

source code is altered following a requirement change, the

design documents and modified source code are

automatically incrementally updated, facilitating defect

prevention, as shown in Fig. 6.

4.1. Workflow in NSE Documentation Paradigm

Workflow for NSE software documentation paradigm

consists of source code of regular programs and stub code of

design documents:

Fig. 8 The workflow of NSE documentation paradigm

 The objectives of NSE documentation paradigm are:

(a) combining software programming and graphical

software documentation seamlessly;

(b) making one source for both human understanding and

computer “understanding” - through static review by people

of the graphical documents and dynamic program execution

to ensure the upstream quality of a software product.

(c) realizing all kinds of documents (both manually drawn

and generated by third party tools) traceable to source code

to keep them consistent with each other through the

established transparent-box method, combining functional

testing and structural testing together seamlessly with the

capability of establishing bidirectional traceability.

(d) generating most software documents automatically, as

much as possible.

(e) making software documents visible, as much as possible.

(f) making a software product truly maintainable and

adaptive to the changed or changing environment.

4.2. NSE software visualization notations

 A majority of NSE documentation paradigm is

visualization in 3J (J-Chart, J-Diagram, and J-Flow diagram)

graphics. For example, Classes, using HAETVE model, are

represented in several graphical notations: J-chart,

ActionPlus Diagram, J-flow and J-Diagram as shown in Fig.

9.

Fig. 9 NSE Graphical representation for a class

Time-Event table documents testing events
Time-event tables are written in the comment part of a stub

program or regular program. An example is listed below:

 /* Time-Event table:

 ...

 */

4.3. J-Diagram documents message sending & receiving
Graphically representing massage sending and receiving in

the automatically established “click-to-jump” facility as

shown in Fig. 10.

Fig. 10 Click-to-jump facility automatically established for

showing message sending and receiving.

4.4. Software product is visible in multiple views

(a) Static view of the cyclomatic complexity of a program.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 503

Fig. 11 An example of Cyclomatic complexity analysis

 (b) Dynamic view of a program

Fig. 12 An example of performance analysis

4.5. From macro to micro with MC/DC test coverage

(a) Holistic analysis for an entire product, Fig 13:

Fig. 13 Holistic MC/DC (Modified Condition/Decision

Coverage) test coverage analysis

(b) Detailed MC/DC test coverage analysis for an individual

class or function, Fig. 14.

Fig. 14 An application example of detailed test coverage

analysis of a module

4.6. From procedure to data

(a) Function cross-reference analysis, Fig. 15.

Fig. 15 an example of function cross-reference analysis

(b) Data analysis, Fig. 16.

Fig. 16 An application example of variable analysis

4.7. From System level to file level to statement level

(a) System-level version comparison, Fig. 17.

Fig. 17 An example of holistic version comparison at system level.

(b) File-level version comparison, Fig. 18.

Fig. 18 An example of file-level version comparison

(c) Statement version comparison, Fig. 19.

504 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Fig. 19 An example of statement version comparison

4.8. Dynamic visibility: Tracing a test case not only to find

what modules can be tested, but also to directly play the

captured test operations back through the batch file (.bat)

specified in the @BAT@ keyword within the test case

description part – see Fig. 20.

Fig. 20 Dynamic visibility – tracing a test case to play the

captured operations back

4.9. Interactively traceable

With NSE the generated documents are interactive – for

instance, the user can click on a module-box to use that

module as a root to generate a sub-call-graph, Fig. 21.

Fig. 21. Interaction example: click on a module-box to

generate an isolated sub-call-graph

Most of the generated documents are traceable, Fig. 22.

Fig. 22 Tracing a module to see all the related modules

4.10. Linkable and convertible

With NSE, different graphical documents can be linked

together - see Fig. 23. Generated logic diagrams can be

converted to control flow diagrams – see Fig. 24.

Fig. 23 An application example - linking a call graph to the logic

diagram

Fig. 24 An example of diagram conversion from a logic

diagram to control flow diagram

4.11. Local documentation to Internet

With NSE, many static and dynamic analysis reports can be

automatically generated as in Fig. 25.

Fig. 25 An application example of static and dynamic

program analysis and reporting

Generated reports for static and dynamic program analysis

can be saved in HTML format to be used as web pages, Fig.

26.

Fig. 26 Code analysis reports saved in HTML format to be

used as web pages

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 505

4.12. Preventing requirement conflicts: Perform backward

tracing to the modified modules (in this example, two

requirements are related), Fig. 28

4.13. Project management: Through keywords used in

testing traced back to project management view, Fig. 29

5. Major Features of NSE Documentation

Paradigm
 The graphical documents generated by NSE

documentation paradigm are:

 Holistic – NSE documentation paradigm generates

holistic charts and diagrams to document an entire software

product.

 Interactive – the generated graphical documents are

interactive, the generated charts/diagrams themselves are

also the interfaces to accept user’s commands.

 Traceable – with NSE most of the generated documents

are traceable, useful for validation, verification, and semi-

automated inspection and walk through,

 Accurate – Source code to NSE, including a stub

program, is also the source to automatically generate most

graphical documents, so that the generated documents are

accurate and consistent with the source code.

 Precise – the generated graphical documents are precise,

and the corresponding documents can show how many

times a branch is executed, and what code branches and

conditions have not been executed.

 Virtual – with NSE, most graphical documents are

dynamically generated from source code, so there is no need

to save their hard copy images in memory or disk, so that a

huge amount of space can be saved. The display speed is

about 1000 times faster compared with established practice

under comparable and similar operational environment. The

generated holistic charts and diagrams are shown within one

window, no more and no less. When scrolling occurs, the

new portion of the chart will be generated dynamically.

From a users’ point of view, there is no difference between

virtual charts and the regular charts occupying a huge

amount of space in computer memory.

 Massive – the graphical documents are generally about

100 times the size in disk space of their source code. It can

be automatically generated at system-level, file-level, and

module-level. For each class or function, NSE

documentation paradigm automatically generates the logic

diagram shown in J-Diagram notation with untested

branches and untested conditions highlighted, control flow

diagram shown in J-Flow diagram notations, quality

measurement result shown in Kiviat diagram, etc. The

graphic display capability is massive.

6. Application
NSE documentation paradigm has been commercially

available and supported by Panorama++. All screenshots

shown in this paper come from real application examples.

7. Conclusions
 The established software documentation paradigm

based on reductionism and superposition is outdated. NSE

software documentation paradigm resolves the outstanding

and generally recognized problems in software

documentation, and causes a paradigm shift to complexity

science based principles, making the whole of a complex

system greater than the sum of its components. The

characteristics and behaviors of the whole emerge from

interaction of its components.

 Source code is not the best documentation of a

software product, but source code is the best source to

directly and automatically generate holistic, interactive,

traceable, consistent, accurate, precise, massive, and

graphical documentations for the software concerned.

There is no way to solve the problem of inconsistency in

documentation except to generate documentation directly

from source code. Panaroma++ demonstrates the feasibility

of such an approach, turning software reverse engineering

into a software documentation revolution.

8. References
[1] (http://www.ehow.com/about_6706857_importance-

software-documentation.html).

[2] Kuhn T (1962) The structure of scientific revolutions.

The University of Chicago Press, Chicago

506 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

SESSION

SOFTWARE ENGINEERING RESEARCH AND
PRACTICE: NOVEL SYSTEMS AND METHODS

Chair(s)

Prof. Hamid R. Arabnia

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 507

508 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

*Contact author. This paper was submitted to the Int. Conference on Software Engineering Research and Practice (SERP 2012)

Early Usability Evaluation in Model-Driven
Video Game Development

Adrian Fernandez, Emanuel Montero, Emilio Insfran*, Silvia Abrahão, and José Ángel Carsí
ISSI Research Group, Department of Information Systems and Computation

Universitat Politècnica de València, c/ Camino de Vera, s/n 46022 Valencia, Spain
{afernandez, emontero, einsfran, sabrahao, pcarsi}@dsic.upv.es

Abstract—Usability is considered a relevant quality factor in
video games. However, usability evaluations are usually
performed too late in the game development lifecycle. We present
a usability evaluation strategy that can be used in early stages of
model-driven video game development approaches. The usability
evaluation is based on a Video Game Usability Model, which
extends the usability characteristic of the ISO/IEC 25010
(SQuaRE) standard by incorporating measurable attributes and
measures related to the video game domain. The traceability
established between the models that are produced in a model-
driven development process and the corresponding source code
allows performing usability evaluations on these models,
facilitating the early detection/correction of usability problems
that may appear in the final video game application. To show the
feasibility of this approach, we have performed an early usability
evaluation of a video game for the XBOX360 platform.

Keywords: Video Game, Usability Model, Usability Evaluation,
Model-Driven Video Game Development.

I. INTRODUCTION

The video game development industry is a strong economic
sector that deals with the development of highly interactive
software, i.e., video games, for a wide variety of technology
platforms such as PCs, consoles, Web browsers, and mobile
devices. The interaction between the game and the players is a
critical factor in the success of a video game.

Usability and playability are considered to be the most
important quality factors of video games [15]. Usability is
defined as the degree to which the video game can be
understood, learned, used and is attractive to the user, when
used under specified conditions [11]. Playability is defined as
a collection of criteria with which to evaluate a product’s
gameplay or interaction [12]. Playability is often evaluated by
using early prototypes and iterative cycles of playtesting
during the entire video game development cycle. However, the
evaluation of usability is deferred to late stages in the game
development cycle, thus signifying that usability problems
from early stages may be propagated to late stages of the
development, and consequently making their detection and
correction a very expensive task.

Traditional video game development approaches do not
take full advantage of a usability evaluation of the game
design artifacts that are produced during the early stages of the
development. These intermediate artifacts (e.g., screen mock-
ups or screen flow diagrams) are used to guide game

developers but not to perform usability evaluations. Moreover,
since the traceability between these intermediate artifacts and
the final video game is not well-defined, performing usability
evaluations by considering these artifacts as input can be a
difficult task. This problem may be alleviated by using a
model-driven development approach due to its intrinsic
traceability mechanisms that are established by the
transformation processes. Platform-independent models (PIM)
such as screen flow diagrams may be transformed into
platform-specific models (PSM) that contain specific
implementation details of the underlying technology platform.
These platform-specific models may then be used to generate
the source code of the video game (Code Model – CM), thus
preserving the traceability among platform-independent,
platform-specific and source code artifacts.

A model-driven video game development approach
therefore provides a suitable context for rapid iteration early in
the development cycle. Platform-independent (or platform-
specific) models can be evaluated during the early stages of
video game development to identify and correct some of the
usability problems prior to the generation of the source code
of the final video game application. We are aware that not all
the usability problems can be detected based on the evaluation
of models since they are limited by their own expressiveness
and, most important, they may not predict the user behavior
and preferences. However, studies such as the one by Hwang
and Salvendy [10] claims that usability inspections, applying
well-known usability principles on software artifacts, would
be capable to find around 80% of usability problems. In
addition, as suggested by previous studies [4], the use of
inspection methods for detecting usability problems in product
design (models in our context) can be complemented with
other evaluations performed with end-users before releasing a
video game to the public.

In this paper, we present a usability evaluation strategy that
can be used in early stages of model-driven video game
development. This strategy is based on a Video Game
Usability Model which decomposes the usability characteristic
proposed in the ISO/IEC 25010 (SQuaRE) standard [11] with
new usability attributes for the video game domain. These
attributes are quantified through their association with generic
measures that can be operationalized by establishing a
mapping between their generic definition and the specific
modeling primitives of the software artifacts to be evaluated.
This allows our Video Game Usability Model to be used not

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 509

only in model-driven video game development processes but
also in any other video game development process (e.g.,
traditional, agile).

This paper is organized as follows. Section 2 discusses
usability evaluation techniques for video game development.
Section 3 describes the Video Game Usability Model. Section
4 proposes a strategy to apply this model for performing early
usability evaluations in model-driven video game
development. Section 5 presents a case study to illustrate the
approach. Finally, Section 6 presents our conclusions and
further work.

II. RELATED WORK

The state of the art for game development in software
engineering has been recently summarized in a systematic
literature review [3]. The results of this review show a
significant lack of studies in the key dimensions of video
game quality: playability and usability. However, some efforts
have been made to integrate current usability evaluation
techniques into the game development industry and game
research, and a brief review of current game usability
techniques has been provided in [15]. Usability evaluation
techniques can principally be classified into two groups:
empirical techniques and inspection techniques.

Empirical techniques are based on capturing and analyzing
usage data from real players. Some representative examples
are think-aloud techniques and focus group techniques [8]. In
think-aloud techniques, the player sits down to play the video
game and narrates his experiences while a user experience
evaluator sits nearby listening and taking notes. In focus group
techniques, game developers gather a small group of potential
game players together to discuss their opinions of the design
of the interface, along with the game mechanics and story.

Inspection techniques, which have emerged as an
alternative to empirical methods, are performed by expert
evaluators or game designers and are based on reviewing the
usability aspects of software artifacts (which are commonly
game user interfaces) with regard to their conformance with a
set of guidelines. The most representative example is heuristic
evaluation, which is a common inspection method for
evaluating the usability of video game interfaces in both early
and functional game prototypes. Examples of heuristic
evaluation techniques were presented in the work of Federoff
[6] and Pinelle et al [17], in which a set of guidelines for
creating a good game were defined, based on the experience of
a game development case study, and PC game reviews,
respectively.

In this paper, we focus on usability inspection techniques
since they do not involve the players’ participation and can be
employed during the early stages of the game development
process. In addition, current approaches that are based on
heuristic evaluations are too generic and dependent on the
evaluator expertise, and in most cases, result solely in a plain
checklist of desired features with no specific guidelines on
how they can be applied. In order to minimize, at least to some

extent, the degree of subjectivity that appears in the majority
of inspection methods for video games, we propose a usability
inspection technique based on the use of a Video Game
Usability Model in a model-driven development context. In
this way, we provide specific video game attributes and
measures that can be quantified automatically by means of
model-transformations. Model-driven development provides a
suitable context for early usability evaluations since
traceability between high-level software artifacts (models) and
source code is maintained throughout the development process
[1]. The evaluation of these high-level artifacts during the
early stages of development is a means to detect and correct
problems that may appear in the final software product.

Finally, approaches based on usability models have been
successfully employed as inspection techniques with which to
evaluate software artifacts in other domains, such as model-
driven software development [2] and model-driven Web
development [7]. However, as far as we know, no usability
model has been applied to model-driven video game
development.

III. DEFINING THE VIDEO GAME USABILITY MODEL

Since the usability concept has not been homogeneously
defined in the literature, we use the ISO/IEC 25010 (SQuaRE)
standard [11] as the basis for defining our Video Game
Usability Model. In the SQuaRE standard the usability of a
software product can be decomposed into the following sub-
characteristics: Appropriateness Recognisability, which refers
to how the software product enables users to recognize
whether the software is appropriate for their needs;
Learnability, which refers to how the software product enables
users to learn its application; Ease of Use, which refers to how
the software product makes it easy for users to operate and
control it; Helpfulness, which refers to how the software
product provides help when users need assistance; Technical
Accessibility, which refers to how the software product
provides help when users need assistance; and Attractiveness,
which refers to how appealing the software product is to the
user.

However, these sub-characteristics are too abstract to be
directly measured in a video game development context. We
therefore propose the decomposition of these sub-
characteristics into more representative and measurable
attributes of video games, and the subsequent decomposition
of each one of these attributes into specific measures, which
can be calculated depending on the characteristics of the
artifact to be evaluated.

A. Usability Attributes for Video Game Usability

The decomposition of the sub-characteristics into attributes
is presented as follows, and is summarized in the second
column of Table I. These attributes have been defined by
considering and adapting both the knowledge gained from
other domains such as Web development [5],[7], and the
underlying usability principles from game development
knowledge [13],[16].

510 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

The attributes defined for the sub-characteristics are:

 Appropriateness Recognisability contains all the
attributes of the video game that ease the
understanding of the game. This sub-characteristic is
decomposed into the following attributes: Visibility,
which focuses on visual recognisability, and legibility
by measuring the ease of perception of the game’s
graphic information; Interface Simplicity and Control
Simplicity, which evaluate the complexity of the
graphical user interface and the game controls,
respectively; and Consistency, which focuses on the
degree of similitude and coherence between the
elements of the video game.

 Learnability contains the attributes of the video game
that allow players to learn how to play the game. This
sub-characteristic is decomposed into the following
attributes: Feedback support, which focuses on the
game capability to provide information about the
current state of the game and its players; and Tutorial
Support, which verifies whether the game offers a
tutorial to teach the players how to play it.

 Ease of Use contains all the attributes of the video
game that facilitate players’ control and operation, both
inside and outside gameplay. This sub-characteristic is
decomposed into the following attributes: Control
Consistency, which refers to the degree of semantic
similitude of the players’ actions with regard to the
game controls (i.e., mapping similar concepts onto the
same control element to facilitate learning); Internal
Navigational Simplicity, which refers to how to
navigate between the menu options of a single screen;
and External Navigational Simplicity, which concerns
how to navigate between game screens.

 Helpfulness contains all the attributes of the video
game that provide help when the players need it. Most
video games lack a help option, and players must rely
solely on eventual hints and goals. This sub-
characteristic is decomposed into the following
attributes: Hint Support, which refers to the game’s
capability to provide useful hints with which to guide
the players; and Goal Support, which refers to the
video game’s capability to provide clear goals for the
players to pursue.

 Technical Accessibility contains all the attributes that
allow physically impaired users to play the video
game. This sub-characteristic is decomposed into the
following attributes: Subtitle Support, which refers to
the game’s capability to provide adequate subtitles for
hearing impaired players; and Magnifier Support,
which concerns the game’s capability to provide
adequate sized subtitles for visually impaired players.

 Attractiveness contains all the attributes that make a
video game more appealing to the players. This sub-
characteristic is decomposed into the following
attributes: Customization, which refers to how players

can alter the game’s graphical user interface and
controls to fit their preferences; and Wait Reduction,
which refers to the degree of inactive waiting the
players are forced to undergo.

TABLE I. DECOMPOSITION OF THE SQUARE INTO MEASURABLE ATTRIBUTES

AND GENERIC MEASURES

Sub-characteristics Attributes Measures
Appropriateness
Recognisability

Visibility Percentage of Screen Usage
Interface Simplicity Total Number of GUI Elements
Control Simplicity Total Number of Control Mappings
Consistency Ratio of Similitude Between Screens

Learnability Feedback Total Number of GUI Elements Displaying
State Changes
Ratio of GUI Elements Highlighting State
Changes
Ratio of Meaningful Messages

Tutorial Support Tutorial Interactivity
Tutorial Coverage

Ease of Use Control
Consistency

Ratio of Similitude Between Colliding
Game Actions

Internal Nav.
Simplicity

Internal Menu Navigation Depth

Internal Menu Navigation Breadth
External Nav.
Simplicity

Shortest Path To Gameplay
Shortest Path To Exit
Shortest Return Path To Gameplay

Helpfulness Hint Support Availability of Hints
Hint Understandability

Goal Support Goal Visibility
Goal Understandability

Technical
Accessibility

Subtitle Support Availability of Subtitles
Subtitle Support for Hearing Impaired
Players
Subtitle Style Differentiation

Magnifier Support Subtitle Resize Support
Attractiveness Customization Control Remapping

Interface Customization
Wait Reduction Inactive Wait

Skip Capability of Non-interactive Content

B. Generic Measures for Video Game Usability

Once the measurable usability attributes have been
identified, generic measures are then associated with these
attributes in order to quantify them. The measures are generic
in order to ensure that they can be operationalized in different
software artifacts (from different abstraction levels) from
different video game development methods. The values
obtained from the measures will allow us to determine the
degree to which these attributes help to achieve a usable video
game.

Due to space constraints, a subset of the proposed measures
from the Video Game Usability Model is presented in the third
column of Table I. Then, some of these measures are
described in more detail in Table II.

IV. APPLYING THE VIDEO GAME USABILITY MODEL

In order to apply the Video Game Usability Model to a
specific video game development, we propose a usability
evaluation strategy. A typical video game development
process consists in the following activities: requirements
specification, game design, implementation, and playtesting,
along with the usability evaluation.

The usability evaluation is conducted by applying the
following three steps:

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 511

TABLE II. SUBSET OF PROPOSED MEASURES FROM THE VIDEO GAME

USABILITY MODEL

Measure Percentage of Screen Usage (PSU)
Attribute Appropriateness Recognisability / Visibility
Description Percentage of screen covered with GUI elements
Formula Sum of all GUI elements size / screen size
Scale Real value between 0 and 1
Interpretation Values near 1 indicate that the GUI covers the entire screen, leaving

no room for gameplay elements, thus making the video game
difficult to understand

Measure Total Number of GUI Elements (TNGUIE)

Attribute Appropriateness Recognisability / Interface Simplicity
Description Total number of elements of the graphical user interface (UI) on a

game screen
Formula Sum of all GUI elements on the screen
Scale Integer greater than or equal to 0
Interpretation Lower values indicate that the GUI has fewer elements, resulting in a

simple UI.

Measure Total Number of Control Mappings (TNCM)
Attribute Appropriateness Recognisability / Control Simplicity
Description Total number of control elements that players can use to perform an

action in the game
Formula Sum of all the controls in the game
Scale Integer greater than or equal to 0
Interpretation Lower values indicate that the control mapping has fewer elements,

resulting in a simple control schema which is easy to understand

Measure Shortest Path To Gameplay (SPTG)
Attribute Ease of Use / External Navigational Simplicity
Description Minimum number of screens that players have to navigate in order to

start playing.
Formula Minimum number of steps between the initial screen and the

gameplay screen
Scale Integer greater than or equal to 0
Interpretation A value of 0 signifies that the game has no menu screens, and begins

directly at gameplay. Higher values indicate that players have to
navigate various screens before the game starts. If the value is too
high, players may get anxious before reaching gameplay as a result
of the navigational complexity

Measure Shortest Path To Exit (SPTE)
Attribute Ease of Use / External Navigational Simplicity
Description Minimum number of screens that players have to navigate in order to

exit from the game when playing
Formula Minimum number of steps needed to exit from the game via the

gameplay screen.
Scale Integer greater than or equal to 0
Interpretation A value of 0 signifies that the game has no menu screens, and

players can exit directly from gameplay. Higher values indicate that
the players have to navigate many screens before leaving the game.
If the value is too high, players may get anxious before reaching the
game exit as a result of the navigational complexity

1. The establishment of evaluation requirements. All the

factors that will condition the evaluation of the game are
determined in this phase. Evaluation profiles are chosen in
order to specify which game development method is
employed, which type of video game is developed, what the
target technological platform is, and at which target players
the game is aimed. Given a specific game development
method, software artifacts (models) and attributes from the
Video Game Usability Model are selected to perform early
usability evaluations. The measures associated with the
selected attributes are operationalized to provide both an
instantiation of the generic formula for a specific software
artifact (model) and thresholds for the measure values in
accordance with the specific evaluation profile.

2. Early usability evaluation. In this phase, each selected
video game software artifact (model) is evaluated with a set of
measures. Each measure returns a numeric value within a
specific threshold that indicates whether there is a usability
issue in the video game. A usability report is consequently
generated which details both the usability problem and
suggestions to solve it.

3. Usability evaluation in-use. Even when early usability
evaluation is performed on the video game software artifacts
(models), the game may also need further usability in-use
evaluation in a specific context with players. This usability-
centered playtesting is well documented in the video game
bibliography [8]. Since this paper focuses on early usability
and model-driven development, usability in-use evaluation is
not within the scope of this work.

After usability evaluations, game developers should
perform refinements to solve the usability problems. Early
usability issues detected in the game design phase can be
directly refined in the game design stage. Usability in-use
issues, however, may need refinements in all the phases of
game development. In some cases, when the game meets all
the evaluation requirements but the players are still not
experiencing good usability, usability evaluation forces a re-
check of the evaluation requirements, thus re-establishing the
thresholds for the measures. In all cases, the game must be re-
evaluated to verify whether the changes have solved the
usability problems detected. This means that both game
development and evaluation are iterative processes.

V. CASE STUDY

In order to show the feasibility of our approach, the Video
Game Usability Model was applied to a specific example - a
2D fighting game for the XBOX 360, which is similar to the
commercial Capcom’s Street Fighter IV™ for the same
platform. The example game was designed by following a
specific model-driven video game development methodology.
Section 5.A provides an overview of this specific video game
development methodology. Section 5.B describes the activities
concerned in the establishment of the usability evaluation
requirements. Finally, Section 5.C shows how the
operationalized measures were applied in order to perform an
early evaluation of the selected artifacts.

A. Model-Driven Video Game Development

Model-driven video game development [14] is a game
development methodology that focuses on defining platform-
independent models which provide a precise high-level
specification of the gameplay, control, and graphical user
interface of the video game under development.

In this paper we focus only on the platform-independent
models that offer the most suitable modeling primitives for
usability evaluation. These platform-independent models are
described as follows:

512 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Screen Navigation Diagram. Video games display visual
information on different game screens through which players
can navigate. Fig. 1 shows the screen navigation metamodel.
A screen navigation diagram can be specified by using screen
nodes and screen transitions.

Fig. 1. Screen Navigation metamodel

A game screen represents a game state in the screen
navigation. Two special screen nodes denote the initial and
final states that define the screens on which a video game
starts and ends. Screen transitions represent a change of state
in the screen navigation, i.e., moving from one screen to
another. Screen transitions are triggered by screen events such
as control interactions, time, or rule executions.

Screen Layout Diagram. When the flow of screens is
clearly defined in a screen navigation diagram, each game
screen GUI should be further specified by using a screen
layout diagram. Fig. 2 shows the screen layout metamodel.

A screen layout diagram can be specified by different GUI
display primitives that can be positioned and sized on the
screen. These primitives provide a visual representation of a
game attribute which is previously defined in the gameplay
perspective. There are four types of GUI display primitives:
numeric containers and textual containers which represent
information as plain numbers or text, image containers which
represent information using 2D images or animations, and
progress containers which represent the progress of
information as a relative percentage of a colored bar or a
succession of small icons.

Fig. 2. Screen Layout metamodel

Control Mapping Diagram. A game control mapping
defines how players interact with controller devices in order to
communicate with the game. Fig. 3 shows the control mapping
metamodel. A controller is a device that players use to
communicate with the game. Controllers are made up of
smaller control elements such as keys, buttons, joysticks and

triggers that players use to communicate atomic game
interactions. Control element interactions such as pressing or
releasing a button, moving a joystick, or pulling a trigger,
activate the specific action rules of a player’s character.

A control mapping diagram specifies which control
elements and interactions are associated with gameplay
actions.

Fig. 3. Control Mapping metamodel

B. Establishment of the usability evaluation requirements

The evaluation profile of the example 2D fighting game
used in the case study is as follows:

 Game development method: the application is designed
by using the model-driven development method
discussed in Section 5. The main software artifacts
(models) involved in the early usability evaluation are
the screen navigation diagram, the screen layout
diagram and the control mapping diagram.

 Type of video game: the example game belongs to the
2D fighting genre.

 Target technological platform: the example game is
developed for the XBOX 360 video game console.

 Target audience: the example game, like most 2D
fighting games, is targeted at a hardcore audience of
players who have a great deal of previous experience in
games of the same genre, and who thus know and
expect certain common genre conventions.

For the sake of simplicity, only two usability sub-

characteristics of the Video Game Usability Model were
evaluated in the selected models: Appropriateness
Recognisability and Ease of Use.

The selected attributes for the case study were Visibility,
Interface Simplicity, Control Simplicity and External
Navigation Simplicity, whose associated measures are shown
in Table I.

The operationalizations of the aforementioned measures are
presented in Table III. Note that all the measure thresholds
defined in the operationalizations are defined in accordance
with specific information from the evaluation profile of the
example game used in the case study.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 513

TABLE III. OPERATIONALIZED MEASURES FOR THE CASE STUDY

Measure Percentage of Screen Usage (PSU)
Attribute Appropriateness Recognisability / Visibility
Artifact Screen Layout Diagram (PIM)
Operatio-
nalization

Each display primitive of the Screen Layout Diagram has attributes for
its width and height. The screen metaclass also has attributes for its width
and height. Both the primitive display size and the screen size can be
defined as the product of their width and height

Formula PSU = (∑ display primitives width x height) / (screen width x height)
Thresholds The XBOX 360 is typically played on a high-resolution TV, which

benefits visibility. Hardcore players are also well trained in the specific
genre conventions of 2D fighting games, thus minimizing the space
needed to convey the game’s visual information.
Critical Usability Problem: [PSU > 0.5]
Low Usability Problem: [0.1 < PSU ≤ 0.2]
Medium Usability Problem: [0.2 < PSU ≤ 0.5]
No Usability Problem: [PSU ≤ 0.1]

Measure Total Number of GUI Elements (TNGUIE)
Attribute Appropriateness Recognisability / Interface Simplicity
Artifact Screen Layout Diagram (PIM)
Operatio-
nalization

Each display primitive of the Screen Layout Diagram is a GUI of the
screen

Formula TNGUIE = Sum of all display primitives of the Screen Layout Diagram
Thresholds Hardcore players are experienced in the genre conventions of 2D fighting

games and therefore expect their typical interface layout, with a number
of GUI elements between 3 and 10.
Critical Usability Problem: [TNGUIE > 10]
Low Usability Problem: [3 < TNGUIE ≤ 5]
Medium Usability Problem: [5 < TNGUIE ≤ 10]
No Usability Problem: [0 ≤ TNGUIE ≤ 3]

Measure Total Number of Control Mappings (TNCM)
Attribute Appropriateness Recognisability / Control Simplicity
Artifact Control Mapping Diagram (PIM)
Operatio-
nalization

Each control element of the Control Mapping Diagram is associated with
a control interaction primitive and, with an action rule primitive

Formula TNCM = Sum of all control elements associated with an action rule.
Thresholds The XBOX 360 offers many buttons, triggers and joysticks. Hardcore

players are experienced in the complex control interactions required by
the 2D fighting genre.
Critical Usability Problem: [TNCM > 12]
Low Usability Problem: [8 < TNCM ≤ 10]
Medium Usability Problem: [10 < TNCM ≤ 12]
No Usability Problem: [0 ≤ TNCM ≤ 8]

Measure Shortest Path To Gameplay (SPTG)
Attribute Ease of Use / External Navigational Simplicity
Artifact Screen Navigation Diagram (PIM)
Operatio-
nalization

Each screen primitive of the Screen Navigation Diagram can be
associated with a game screen

Formula SPTG = Minimum number of transitions between the initial screen node
and the gameplay screen node

Thresholds Hardcore players typically value direct gameplay over cumbersome
menu interfaces.
Medium Usability Problem: [SPTG > 3]
No Usability Problem: [0 ≤ SPTG ≤ 3]

Measure Shortest Path To Exit (SPTE)
Attribute Ease of Use / External Navigational Simplicity
Artifact Screen Navigation Diagram (PIM)
Operatio-
nalization

Each screen primitive of the Screen Navigation Diagram can be
associated with a game screen.

Formula SPTE = minimum number of transitions between the gameplay screen
node and the final screen node.

Thresholds The XBOX 360 offers a built-in interface to exit from the game at any
moment. Hardcore players value immediateness of menu interfaces.
Medium Usability Problem: [SPTE > 2]
No Usability Problem: [0 ≤ SPTE ≤ 2]

Measure Shortest Return Path To Gameplay (SRPTG)
Attribute Ease of Use / External Navigational Simplicity
Artifact Screen Navigation Diagram (PIM)
Operatio-
nalization

Each screen primitive of the Screen Navigation Diagram can be
associated with a game screen.

Formula SRPTG = minimum number of transitions between the game over screen
node and the gameplay screen node.

Thresholds Hardcore players value immediateness of menu interfaces.
Medium Usability Problem: [SRPTG > 2]
No Usability Problem: [0 ≤ SRPTG ≤ 2]

C. Early usability evaluation of software artifacts

With regard to the Screen Layout Diagram (see Fig. 4), we
apply the two specific measures shown for this artifact in
Table III in order to evaluate the Visibility and Interface
Simplicity attributes of the video game.

 By applying formula of the Percentage of Screen
Usage we obtain PSU = 0.09 (by dividing the sum of
the size of all the display primitives by the screen size).
This indicates that there is no usability problem related
to the Visibility attribute since PSU is in the threshold
[PSU ≤ 0.1]. By applying the formula of Total
Number of GUI Elements we obtain TNGUIE = 13
(by counting all the display primitives in the diagram),
which leads to a critical usability problem related to the
Interface Simplicity attribute since the value obtained is
[TNGUIE > 10]. Table IV shows the usability report
associated to this usability problem (UP001).

Fig. 4. Street Fighter IV screenshot and its Screen Layout Diagram

TABLE IV. USABILITY REPORT FOR USABILITY PROBLEM UP001

ID UP001
Description There are too many GUI Elements on the same game screen.
Affected attribute Appropriateness Recognisability / Interface Simplicity
Severity level Critical [TNGUIE=13 > 10]
Artifact evaluated Screen Layout Diagram
Problem source Screen Layout Diagram
Recommendations Collapse GUI elements that render the same information, such

as the image and the text container that portray the fighter
portrait and name

With regard to the Control Mapping Diagram, we can apply
a measure from Table III in order to evaluate the Control
Simplicity attribute of the video game:

 By applying the formula of Total Number of Control
Mappings we obtain TNCM = 7 (by counting all the
control elements: 1 x 2-Dimensional control element +

514 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

6 x 1-Dimensional control element). This signifies that
there is no usability problem related to the Control
Simplicity attribute since the value obtained is in the
threshold [0 ≤ TNCM ≤ 8]. The game uses a small set
of controls for the basic game actions.

Fig. 5 Street Fighter IV Screen Flow Diagram

With regard to the Screen Flow Diagram (see Fig. 5), we
can apply three specific measures from Table III in order to
evaluate the External Navigation Simplicity attribute
belonging to the video game’s Ease of Use sub-characteristic:

 By applying the formula of Shortest Path To
Gameplay we obtain SPTG = 4 (by counting the
minimum number of screen transitions between the
intro and gameplay screens), which leads to a medium
usability problem related to the External Navigation
Simplicity attribute, since the value obtained is in the
threshold [SPTG > 3]. Table V presents the usability
report associated with this usability problem (UP002).

 By applying the formula of Shortest Path To Exit we
obtain SPTE = 0, since there is no final screen node.
This value shows that there is no usability problem.
Most XBOX 360 games use the built-in console
interface rather than an in-game option to exit from the
game. This measure ensures that the XBOX 360
interface shortcut to exit from the game enhances
videogame usability.

 By applying the formula of Shortest Return Path To
Gameplay we obtain SRPTG = 4 (by counting the
screen transitions from gameplay, result, and vs
screens), which leads to a medium usability problem
related to the External Navigation Simplicity, since the
value obtained is in the threshold [SRPTG > 2]. Table
VI presents the usability report associated with this
usability problem (UP003).

TABLE V. USABILITY REPORT FOR USABILITY PROBLEM UP002

ID UP002
Description There are too many screens that render redundant or non-

interactive information
Affected attribute Ease of Use / External Navigational Simplicity
Severity level Medium [SPTG = 4 > 3]
Artifact evaluated Screen Flow Diagram
Problem source Screen Flow Diagram
Recommendations Allow players to skip the introduction cut-scene and the fighters

versus screen.(or collapse non-interactive information screens)

After applying the measures, we can conclude with regard
to the Appropriateness Recognisability sub-characteristic that
the video game has poor Interface Simplicity but very good
Visibility and Control Simplicity, i.e., the game has a complex
interface but effectively manages to keep gameplay visible
and the control schema simple. With regard to the Ease of Use
sub-characteristic, we can conclude that the video game has
poor External Navigational Simplicity, i.e., the game has a
complex flow of screens which makes it difficult to start and
restart the game.

TABLE VI. USABILITY REPORT FOR USABILITY PROBLEM UP003

ID UP003
Description Need to navigate through several screens to restart the game
Affected attribute Ease of Use / External Navigational Simplicity
Severity level Medium [SRPTG = 4 > 2]
Artifact evaluated Screen Flow Diagram
Problem source Screen Flow Diagram

Recommendations
Add a shortcut (e.g., retry) from the game-over screen to the
gameplay screen

VI. CONCLUSIONS AND FURTHER WORK

This paper presented a usability evaluation strategy that can
be used in early stages of model-driven video game
development. The strategy relies on a Video Game Usability
Model that has been developed specifically for the video game
domain. This model is aligned with the SQuaRE standard and
allows the evaluation and improvement of the usability of
video games developed according to a model-driven
development process. Thus, our strategy does not only allow
to perform usability evaluations when the video game is
completed, but also in early stages of its development.
Usability is therefore considered throughout the entire game
development, thus enabling a more usable video game to be
developed and thereby reducing the maintenance effort.

The inherent features of model-driven development provide
a suitable context in which to perform usability evaluations
since usability problems that may appear in the final
application can be detected and corrected at the model level.
Model-driven development also allows automating common
usability evaluation tasks that have been traditionally
performed by hand (e.g., generating usability reports).
Although the proposed usability model has been
operationalized to a specific video game development method,
it can also be applied to other methods by specifying the
relationships between the generic measures from the usability
model and the modeling primitives of the different software
artifacts of the selected game development method. Finally, it
is worth mentioning that the proposed usability model can be
used to discover deficiencies and/or limitations in the
expressiveness of the model primitives to support certain
usability attributes.

Future work include the application of the strategy to
industrial case studies and the definition of aggregation
mechanisms for combining the values obtained from
individual measures into usability indicators. We also plan to

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 515

empirically validate the completeness and effectiveness of the
proposed usability evaluation strategy (and the video game
usability model) by means of controlled experiments in which
the results of the evaluations obtained at the model level will
be compared to the ones obtained when players interact with
the generated video game application.

ACKNOWLEDGMENTS

This research work is funded by the MULTIPLE project
(MICINN TIN2009-13838), the FPU program (AP2007-
03731) from the Spanish Ministry of Science and Innovation,
and the FPI program (199880998) from the UPV.

REFERENCES

[1] Abrahão S., Iborra E., Vanderdonckt J.: Usability Evaluation of
User Interfaces Generated with a Model- Driven Architecture
Tool. Maturing Usability: Quality in Software, Interaction and
Value, Springer, pp. 3-32 (2007)

[2] Abrahão S., Insfran E.: Early Usability Evaluation in Model-
Driven Architecture Environments. In: 6th IEEE International
Conference on Quality Software (QSIC’06), Beijing, China.
IEEE Computer Society, pp. 287-294 (2006)

[3] Ampatzoglou A., Stamelos I.: Software engineering research for
computer games: A systematic review. In: Information and
Software Technology, Volume 52, Issue 9, pp. 888-901 (2010)

[4] Andre T.S, Hartson H.R, Williges R.C.: Determining the
effectiveness of the usability problem inspector: a theory-based
model and tool for finding usability problems. Human Factors
45(3): 455-82 (2003)

[5] Calero C., Ruiz J., Piattini M.: Classifying Web Metrics Using
the Web Quality Model. Emerald Group Publishing Limited.
Vol. 29, Issue 3, pp. 227-248 (2005)

[6] Federoff M.: Heuristics and Usability Guidelines for the
Creation and Evaluation of Fun in Video Games. Indiana
University Master of Science Thesis (2002)

[7] Fernandez A., Insfran E., Abrahão S.: Integrating a Usability
Model into a Model-Driven Web Development Process. 10th

International Conference on Web Information Systems
Engineering (WISE 2009), pp. 497-510, Springer-Verlag (2009)

[8] Greenwood-Ericksen A., Preisz E., Stafford S.: Usability
Breakthroughs: Four Techniques To Improve Your Game. In:
Gamasutra (2010),
http://www.gamasutra.com/view/feature/6130/usability_breakthr
oughs_four_.php.

[9] Hall A., Chapman R.: Correctness by construction: Developing
a commercial secure system. IEEE Software, 19(1), 18–25
(2002)

[10] Hwang W., Salvendy G.: Number of people required for
usability evaluation: the 10±2 rule. In Communications of the
ACM 53(5), 130-133 (2010)

[11] ISO/IEC: ISO/IEC 25010 Systems and software engineering --
Systems and software Quality Requirements and Evaluation
(SQuaRE) -- System and software quality models (2011)

[12] Järvinen A., Heliö S. Mäyrä F.: Communication and Community
in Digital Entertainment Services. Prestudy Research Report,
Hypermedia Laboratory, University of Tampere, Tampere
(2002), http://tampub.uta.fi/tup/951-44-5432-4.pdf.

[13] Microsoft: Best Practices for Indie Games 3.1,
http://create.msdn.com/en-
US/education/catalog/article/bestpractices_31.

[14] Montero E., Carsí J.A.: A Platform-Independent Model for
Videogame Gameplay Specification. In: Digital Games
Research Association Conference (DiGRA’09), London, UK
(2009), http://www.digra.org/dl/db/09287.28003.pdf.

[15] Nacke L.: From Playability to a Hierarchical Game Usability
Model. In: FuturePlay at Game Developers Conference Canada,
Vancouver, Canada (2009)

[16] Nokia: Top Ten Usability Guidelines for Mobile Games. In:
Design and User Experience Library v2.0,
http://library.forum.nokia.com/topic/Design_and_User_Experie
nce_Library/ top10_usability.pdf

[17] Pinelle D., Wong N., Stach T.: Heuristic Evaluation for Games:
Usability Principles for Video Game Design. In: Proceedings of
the Special Interest Group in Computer Human Interaction
(SIGCHI’08), ACM, pp. 1453–1462 (2008)

516 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Tool Support for Quality Aware Product Configuration in Software Product Lines Guoheng Zhang, Huilin Ye, and Yuqing Lin School of Electrical Engineering and Computer Science University of Newcastle Callaghan 2308, NSW, Australia Abstract - Quality aware product configuration (QAPC) is the process of configuring a product from a feature model based on the customers’ functional requirements as well as quality requirements. The key issue of achieving QAPC is to measure the interdependencies between features and quality attributes. Existing QAPC approaches have several limitations on this issue, such as lacking of an appropriate method for measuring the interdependencies and lacking of a complete tool support for product configuration. To overcome these limitations, a tool for QAPC is developed based on a systematic approach for interdependency measurement. The measured results will be represented as knowledge for product configuration in a quality attribute knowledge base (QAKB) that is incorporated into the tool to guide the QAPC process. A case study based on a tourist guide software product line is presented to demonstrate how the tool works. Keywords: product configuration; quality attributes; software product line; feature models; tool. 1 Introduction Cost, product, and time-to market have been the main concerns in software engineering since 1960s [1]. Software product line approach emerges as an attractive software reuse approach to address these concerns. A software product line is defined as “a set of software-intensive systems sharing a common, managed set of features that satisfy specific needs of a particular market or mission, and that are developed from a common set of core assets in a prescribed way” [2]. In a software product line, software products are developed in a two-stage process: domain engineering and application engineering. In domain engineering, the commonalities and variabilities of software product line members are identified and implemented into a set of reusable software artifacts. In application engineering, the new software applications are derived from the software product line by composing a subset of the reusable artifacts. As an important artifact developed in domain engineering, a feature model is used to capture and represent the common and variable characteristics of software product line members in terms of features and to specify the

constraints among features. In application engineering, a feature model is used to capture the configuration rules for a software product line and it serves as configuration tools to configure specific software applications from a software product line. The process of deriving a member product from a feature model by selecting the desired features based on the customers’ requirements is named as feature based product configuration (FBPC). In most cases, application engineers select functional features based on the customers’ functional needs in FBPC. However, only functional requirements are not sufficient for the satisfaction of the final products. Non-functional requirements, also called system quality attributes, are also major concerns of different stakeholders for the target product. The need of deriving a product that satisfies the quality requirements from a software product line motivates the quality aware product configuration, the process of configuring a product from feature models with a full consideration of the customers’ functional requirements as well as the customers’ quality requirements. To achieve quality aware product configuration, we must understand the interdependencies between functional features and quality attributes in a feature model. The contributions to a quality attribute made by individual functional features must be estimated. Then these individual contributions need to be analyzed to quantify the aggregated impact on the quality attribute of a configured product. Current existing approaches either require real final products or involve heavy domain experts’ judgments for measuring interdependencies. However, the real products are usually not available during the product configuration stage and the manual one by one judgment on quality levels of configured products is time-consuming. To overcome these limitations, we have proposed an approach to modelling quality attributes in feature models in our early works [3]. A pair-wise comparison method called analytic hierarchical process [4] is adapted to measure individual functional features’ contribution to a quality attribute. The collective impact of these contributions on a quality attribute can be estimated based on the defined quantitative assessment. Once the interdependencies between functional features and quality attributes have been recognized, this knowledge can be used for assessing quality attribute levels for any configured product, i.e., no need to assess the products one by one. As a result, the domain

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 517

experts’ efforts involved in the assessment have been significantly reduced. The quality knowledge of a software product line can be stored in a knowledge database named as Quality Attribute Knowledge Base (QAKB) to facilitate quality aware product configurations in the software product line. Most product configuration approaches need tool support, as it is time-consuming for application engineers to manually configure products from feature models [5]. In the context of quality aware product configuration, the tools are even more important, as the product configuration process becomes more complex when involving the customers’ quality requirements. Most existing QAKB approaches neglect tools [6-10] or only provide incomplete tool support [11-15]. To fill this gap, two tools have been developed; one tool named as QAMTool aims to help domain engineers to model quality attributes in a feature model and the other named as QAPCTool aims to assist application engineers in the process of quality aware product configuration. The reminder of this paper is organized as follows: Section 2 will introduce the related works on quality aware product configuration and their supporting tools. Section 3 will introduce the QAMTool which is used for quality attributes modelling in feature models. Section 4 will introduce the QAPCTool which is used to conduct quality aware product configuration process. Finally, we conclude this paper and identify the future work in section 5. 2 Related works In literature, several approaches on quality attributes modelling in feature models and quality aware product configuration have been proposed and some of them have provided tool support. For example, Lee et al. develops a quality attribute feature diagram and relates the QA features with functional features using some qualitative labels [6]. Yu et al. uses a goal model to represent stakeholders’ goals and trace goals to features [7]. Sinnema et al. uses a dependency to represent a system property and specifies how the selection of variants at different variation points influence the value of the system property [12]. The limitation of these approaches is that they only support rough quality attributes assessments as they use qualitative values to represent the impact of features on quality attributes. To support more precise assessments, several approaches propose quantitative analysis methods by testing the generated products [8, 11, 13]. Although these approaches can support more precise assessments, they are inefficient as it is a costly and time-consuming task to generate real products in practice. To avoid generating products for interdependency measurement, Zhang et al. proposed an approach using Bayesians Belief Network to represent the quantitative impact of a feature configuration on a quality attribute [10]. Bagheri et al. proposes an approach for prioritizing features based on system concerns [15]. Although real products are not required in these

approaches, they need heavy domain experts’ efforts involved in judgments. Some of the above approaches have provided tool support. For example, Siegmund et al. develops SPL Conquerer to automate interdependency measurement, computation of the product sets, and approximation of a feature’s non-functional property [11]. Sinnema et al. develops Mocca for managing variability and dependency which represents non-functional properties [12]. Sincero et al. extends Linux Kernel Configuration Tool to display the non-functional property of a feature selection [13]. White et al. develops a tool named as Scatter to output a specific product based on the resource constraints [14]. Bagheri et al. extends Feature Model Plug-in (fmp) to provide application engineers with the rankings of variant features under a variation point [15]. However, none of these tools provide a complete support for activities from domain engineering to application engineering. Our early proposed approach [3] can overcome the limitations of the existing approaches. In the following sections, we aim to introduce our developed tools that implement the concepts of the early approach. 3 Tool support for modelling quality attrbutes in feature models In this section, we will introduce the Quality Attributes Modelling Tool (QAMTool) that supports our early approach of modelling quality attributes in feature models. In our early approach [3], we first identify the quality attributes that are critical for a software product line by adapting non-functional requirements framework and extend feature models with a sub-feature tree called quality attribute (QA) feature diagram to organize the identified quality attributes. Second, we measure the interdependencies between functional features and the identified quality attributes based on a pair-wise comparison method called analytic hierarchical process (AHP). The relative impacts of individual features on a quality attribute and the inter-relationships among features with respect to affecting a quality attribute are estimated based on the domain experts’ judgments using AHP. Then the overall quality of a configured product can be assessed by aggregating the relative impact of features included in the configured product. Third, we store the quality knowledge about the measured interdependencies and the inter-relationships among different quality attributes into a knowledge database called quality attribute knowledge base (QAKB). A tourist guide software product line is used to illustrate how QAMTool supports our approach. As shown in Figure 1, the feature diagram shows the feature model of the tourist guide software product line [3] and the QA feature diagram shows the quality attributes of this software product line. The

518 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

process of identifying these quality attributes for the tourist guide software product line can be found in [3].

 Figure 1 Feature Diagrams of Tourist Guide SPL in QAMTool Once the quality attributes of a software product line are identified and represented as quality attribute features in a QA feature diagram, we need to measure the interdependencies between features and quality attributes. A set of sub-steps need to be followed to measure the interdependencies. Step 1: Identify the contributors of a quality attribute (QA): A quality attribute (QA) is related to a set of features whose inclusions or exclusions will have either positive or negative impact on QA. The set of features affecting a quality attribute are named as contributors of the quality attribute. The first step of measuring interdependencies is to identify the contributors of a quality attribute QA. The identification process can be achieved based on NFR framework [16] and domain experts’ knowledge and experience. As shown in Figure 2, QAMTool can help to model the positive contributors and negative contributors for a quality attribute. Figure 2 shows that we have identified the contributors of data transfer speed (DTS) as “Encryption”, “Mobile”, “Modem19200”, “Modem9600”, “LAN”, “PDA” and “WAN”. Among these contributors, “Encryption” has negative impact on DTS and others have positive impact on DTS when they are selected into product configuration. Step 2: Prioritize the contributors of QA: The identified contributors have different impacts on QA. We adapt a popular pair-wise comparison method, analytic hierarchical process (AHP), to prioritize the identified contributors based on their relative importance for satisfying the quality attribute. Domain experts compare each pair of features among the contributors of QA and assign each comparison with a value (-9.0 ~ +9.0) which represents domain experts’ belief about how much a feature is more important or less important than another feature in terms of affecting QA. Then a comparison matrix which uses the contributors of QA as both the column members and the row members is made based on the pair-wise

comparisons. From the comparison matrix, we can calculate a priority vector which consists of the relative impact of each contributor of QA. We define Relative Importance Value (RIV) to represent the calculated relative impact of individual contributors and use RIV (QA, F) to represent the RIV of feature F on quality attribute QA. As shown in Figure 3, QAMTool supports to prioritize the contributors of a quality attribute based on AHP method. In Figure 3, domain experts use QAMTool to generate a comparison matrix for the contributors of data transfer speed (DTS). Modem 19200 in the row is moderately more important than Mobile in the column, so a value “+5” is assigned to the corresponding cell of the matrix. Mobile in the row is absolutely less important than LAN in the column, so a value of “-9” is assigned. The details of importance intensity can be found in [3]. Based on the priority vector calculated from the comparison matrix in Figure 3, we can know that RIV (DTS, WAN) =28.74 and RIV (DTS, LAN) = 33.91, which means LAN is more important than WAN for satisfying data transfer speed.

 Figure 2 Function of Identifying Contributors for a Quality Attribute

 Figure 3 Function of Prioritizing Contributors of a Quality Attribute

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 519

Step 3: Identify the relationships among contributors of QA: Once we have calculated the impact of individual contributors of QA, we can calculate the overall impact on QA made by a set of contributors. We define Overall Importance Value (OIV) to be the overall impact of a combination of contributors and use OIV (QA, fg) to represent the OIV of a set of contributors fg from the contributors of QA. Intuitively, the simplest way to calculate OIV (QA, fg) is to add the RIV of all the contributors in fg. However, in many cases, some contributors of QA will affect QA interdependently, i.e. they are related with each other in terms of affecting QA. The overall impact of two related contributors may not be the sum of their relative impact. To recognize the relationships among some contributors in terms of affecting QA, we define four types of feature groups: SumGp, AvgGp, MinGp and MaxGp. If the OIV on QA made by the selected contributors from a feature group can be considered as an average of the RIV of individual selected contributors, the feature group is called AvgGp. The definitions of other feature groups can be found in [3]. The current version of QAMTool supports the above four types of feature groups. With the QAMTool, domain experts can model four feature groups among the contributors of data transfer speed: {Modem19200, Modem9600} and {PDA, Mobile} are two AvgGp, {Encryption} is a SumGp; and {LAN, WAN} is a MinGp. Step 4: Calculate and normalize the overall impact of a configured product on QA: The QA level of a configured product is determined by the overall impact of the set of contributors included in the configured product cp, which can be represented as OIV (QA, cp). The calculation of OIV (QA, cp) is based on the RIV of contributors included in the configured product and feature groups these contributors belong to. As the calculated OIV of a configured product cannot represent its relative QA level in the application domain comparing with other SPL members, we use formula (1) to normalize OIV into normalized overall importance value (NOIV) in [0…1] where “1” represents the highest QA level, “0” represents the lowest QA level and a number between “0” and “1” represents the relative QA level comparing with the highest one and the lowest one. To use formula (1), we must obtain the maximum OIV and the minimum OIV among all software product line members. Figure 4 shows the function of calculating the maximum OIV and minimum OIV in QAMTool. We adapt FAMA [17] to find all valid products of a software product line and use our tool to calculate the OIV for each valid product. Then we can find the maximum OIV and the minimum OIV among all valid products. As shown in Figure 4, for data transfer speed (DTS) in the tourist guide SPL, the maximum OIV is 59.00 and the minimum OIV is 31.75. () (())(,) (()) (())ii iOIV VS MIN OIV VSNOIV QAVS MAX OIV VS MIN OIV VS−= − (1)

 Figure 4 Function of Calculating Overall Importance Value By the above steps, we can establish the interdependency between a quality attribute and its contributors. For a specific quality attribute QA, the interdependency should include all the contributors of QA and their RIV, the feature groups that the contributors belong to, and the maximun and minimum OIV. This interdependency can be used as a reusable artifact of a software product line to predict the quality attributes of a configured product. However, if the predicted quality attributes of a configured product cannot satisfy the customers’ quality requirements, we cannot use this interdependency to find solutions of modifying the existing product to satisfy the customers’ quality requirements. For example, we can include some features or exclude some features to achieve the desired QA level based on the interdependency between QA and its contributors. However, it is not clear that what impact this modification will have on other quality attributes. In this case, we find that the information missing in the interdependency are the relationships among related quality attributes. Without the explicit knowledge of the related quality attributes, it is difficult for application engineers to configure a product that satisfies the customers’ quality requirements in an informed and rational way. Therefore, we develop another resuable artifact, a quality attribute knowledge base (QAKB), to manage the relationships among related quality attributes. A QAKB is a kind of knowledge database which stores the information about the relationships among related quality attributes in a software product line. We design a QAKB as multiple tables, each of which representing the relationships among a set of related quality attributes. An example of QAKB table is shown in Table 1. The columns of the table represent a set of related quality attributes in a software product line while the rows of the table represent the valid selections with respect to this set of related quality attributes. Herein, a valid selection in a QAKB table is a valid combination of features among the contributors of the set of related quality attributes in the QAKB table. The

520 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

corresponding cell NOIV (QAi, VSj) in the table represents the QAi level of valid selection VSj. Table 1 QAKB Table QA1 … QAi … QAm VS1 NOIV(QA1, VS1) … NOIV(QAi, VS1) … NOIV(QAm, VS1) … … … … … … VSj NOIV(QA1, VSj) … NOIV(QAi, VSj) … NOIV(QAm, VSj) … … … … … … VSn NOIV(QA1, VSn) … NOIV(QAi, VSn) … NOIV(QAm, VSn) To develop a QAKB table as Table 1, we need to achieve two tasks: first, we need to derive all the valid selections with respect to the related quality attributes {QA1, QA2…QAm}. We draw a new feature diagram which includes the contributors of {QA1, QA2…QAm}. The selection constraints among the included features can be derived from the original feature diagram. From such a feature diagram, we can derive a set of valid selections with respect to {QA1, QA2…QAm}. The second task is to calculate NOIV (QAi, VSj) for each cell in the table. The calculation of NOIV (QAi, VSj) can be achieved based on the interdependency between QAi and its contributors. In the example of tourist guide software product line, we can generate a QAKB table for two related quality attributes data transfer speed (DTS) and data transfer security (DTSS) as shown in Table 2. Table 2 A QAKB Table of DTS and DTSS Valid Selections for DTS and DTSS NOIV for DTSS NOIV for DTS VS1 WAN, Web-Based, PDA 0.0 0.57 VS2 WAN, Web-Based, PDA, Mobile 0.0 0.57 VS3 WAN, Web-Based, PDA, VirusFilter 0.05 0.57 VS4 WAN, Web-Based, PDA, Mobile, VirusFilter 0.05 0.57 VS5 WAN, Web-Based, PDA, VirusFilter, Encryption 0.74 0.0 VS6 WAN, Web-Based, PDA, Encryption 0.68 0.0 VS7 WAN, Web-Based, Mobile 0.0 0.56 VS8 WAN, Web-Based, Mobile, VirusFilter 0.05 0.56 VS9 LAN, Modem 9600 0.27 0.89 VS10 LAN, Modem19200 0.27 1.0 VS11 LAN, Modem 9600, Encryption 0.95 0.32 VS12 LAN, Modem19200, Encryption 0.95 0.43 VS13 LAN, Modem 9600, Encryption, VirusFilter 1.0 0.32 VS14 LAN, Modem19200, Encryption, VirusFilter 1.0 0.43 VS15 LAN, Modem 9600, VirusFilter 0.32 0.89 VS16 LAN, Modem19200, VirusFilter 0.32 1.0 Once the QAKB of a software product line is generated, we can use this knowledge database to assist application

engineers to derive a product with desired software qualities in quality aware product configuration process. 4 Tool support for quality aware product configuration In this section, we will introduce the Quality Aware Product Configuration Tool (QAPCTool) we developed to assist application engineers in the quality aware product configuration (QAPC) process. In QAPC, we first validate the customers’ quality requirements to check whether these exists any conflicts in the requirements. Then we select or remove features based on the customers’ functional requirements to generate a configured product. Finally, if the configured product fails to satisfy the customers’ quality requirements, we provide solutions of modifying the existing configured product to achieve the desired quality attributes. 4.1 Validating quality requirements In some cases the customers’ quality requirements cannot be achieved by a software product line, which means none of the software product line members can satisfy the customers’ quality requirements. For example, a customer may expect to configure a product with high security, high performance and low purchase cost. Obviously, it is impossible to configure such a product from a software product line as these three quality attributes conflict with each other. Therefore, the first step in quality aware product configuration is to validate the customers’ quality requirements. The method of validating the customers’ quality requirements is straightforward. If none of the valid selections in QAKB tables can satisfy the customers’ quality requirements, we can say that the customers’ quality requirements are invalid.

 Figure 5 Function of Validating Customers' Quality Requirements Figure 5 shows the function of validating the customers’ quality requirements in QAPCTool. First, application engineers interpret the customers’ quality requirements into a number in [0…1] scale. In the example of Figure 5, the

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 521

customers’ quality requirements are interpreted as 0.5 for data transfer speed (DTS) and 0.5 for data transfer security (DTSS). Then QAPC can check whether the customers’ requirements on DTS and DTSS conflict with each other. As none of the valid selections in QAKB of Table 2 can satisfy the above quality requirements, the QAPCTool returns “Invalid Quality Requirements”. The customers need to modify their desired levels on these two quality attributes. In this example, the customers modify their quality requirements as 0.4 for DTS and 0.4 for DTSS, which are valid by QAPCTool checking. 4.2 Making Decisions on Variation Points After validating the customers’ quality requirements, application engineers will make decisions on variation points in product configuration process. The product configuration is an iterative decision making process. At each step, application engineers select a variation point) and make decisions based on the customers’ functional requirements. A configured product is derived from the feature model if decisions on all variation points have been made.

 Figure 6 Function of Making Decisions on Variation Points Figure 6 shows the function of making decisions on variation points in QAPCTool. The inclusion or removal of a feature is achieved by selecting the feature in the feature diagram and pressing the button “Select” or “Remove” respectively. The selection or removal of a feature will be propagated to other features automatically based on the constraint propagation algorithm we developed in [18]. Therefore, inconsistent decisions can be avoided in QAPCTool. If application engineers made a wrong decision, the QAPCTool has the “Rollback” function which can recover all the features affected by the wrong decision. In the example of Figure 6, application engineers select LAN based on the customers’ functional requirements and the inclusion of LAN leads to the inclusion of Modem (colored in black) and the removal of WAN, Web-Based, Terminal Device, Mobile and PDA (colored in grey). When all features are selected or removed in the feature diagram, a configured product is derived.

4.3 Modifying Product Configuration After making decisions on all variation points, a configured product can be obtained. If the configured product can satisfy the customers’ quality requirements, it can be used as the final product for further software development; otherwise it must be modified to achieve the desired software qualities. In the latter case, the customers have no knowledge about how to modify the existing configured product to achieve their quality requirements. In this step, we provide application engineers with a set of solutions of modifying the configured product to achieve the desired quality requirements. Then application engineers can choose their desired solution with a full consideration of the changed functionalities and the changed quality attributes. The idea of finding the modification solutions for satisfying the quality requirements is to find all valid selections that satisfy the customers’ quality requirements in QAKB tables and compare these valid selections with the existing configured product. Figure 7 shows the function of modifying the existing configured product to achieve the desired software qualities in QAPCTool. If the predicted quality attributes of the configured product cannot achieve the customers’ quality requirements, all the modification solutions will be returned in the list box “Modification Solutions” in QAPCTool. Each solution will provide the set of features that need to be included, the set of features that need to be removed, and quality attribute levels of the modified product. In the example of Figure 7, two modification solutions are provided, as the predicted quality attributes of the configured product cannot satisfy the quality requirements. A modification solution shown in Figure 7 is removing Encryption and VirusFilter from the current product and the quality attribute levels of the modified product is 0.43 for DTS and 1.0 for DTSS. Finally, application engineers select a desired solution and exports the final product into an xml file.

 Figure 7 Function of Modifying Product Configuration

522 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

5 Conclusion and future work In this paper, we develop tools that support the activities of our approach on quality attributes modelling in feature models [3] and quality aware product configuration from feature models. With our tools, we can derive a product from a feature model with a full consideration of the customers’ functional requirements as well as the customers’ quality requirements in a more informed and rational way. Comparing with other related tool support, our tool provides a more complete support for software product line engineering. In the future, we would like to study how to model quality attributes into software product line architectures. 6 References [1] Sinnema, M. and S. Deelstra, Classifying Variability Modeling Techniques. Information and Software Technology, 2006. 49(7): p. 717-739. [2] Clements, P. and L. Northrop, Software Product Lines: Practices and Patterns. The SEI Series in Software Engineering. 2002, Boston: Addison-Wesley. 573. [3] Zhang, G., H. Ye, and Y. Lin. Quality Attributes Assessment for Feature-Based Product Configuration in Software Product Line. in Asian Pacific Software Engineering Conference. 2010. Sydney, Australia. [4] Hallowell, D., L., Analytical Hierarchical Process (AHP)-Getting Oriented. ISixSigma.com Retrieved 2007-08-21, 2007. [5] Botterweck, G., et al. Visual Tool Support for Configuring and Understanding Software Product Lines. in 12th International Software Product Line Conference. 2009. Limerick [6] Lee, K. and K.C. Kang. Usage Context as Key Driver for Feature Selection. in 14th International Conference on Software Product Line 2010. Jeju Island, South Korea,. [7] Yu, Y. and A. Lapouchnian. Configuring Features with Stakeholder Goals. in ACM Symposium on Applied Computing. 2008. New York. [8] Etxeberria, L. and G. Sagardui. Variability Driven Quality Evaluation in Software Product Lines. in 12th International Software Product Line Conference. 2008. Limerick. [9] Jarzabek, S., B. Yang, and S. Yoeun, Addressing Quality Attributes in Domain Analysis for Product Lines. Software, IEE Proceedings, 2006. 153(2): p. 61-73.

[10] Zhang, H., S. Jarzabek, and B. Yang. Quality Predicition and Assessment for Product Lines. in Proceedings of 15th International Conference on Advanced Information Systems Engineering. 2003. Klagenfurt, Austria. [11] Siegmund, N., et al. Scalable Prediction of Non-functional Properties in Software Product Lines. in Software Product Line Conference. 2011. Munich, Germany. [12] Sinnema, M., O.d. Graaf, and J. Bosch. Tool Support for COVAMOF. in International Workshop on Software Variability Management for Product Derivation -Towards Tool Support. 2004. [13] Sincero, J., W. Schroder-Preikschat, and O. Spinczyk. Approaching Non-Functional Properties of Software Product Lines: Learning from Products. in 17th Asian Pacific Software Engineering Conference. 2010. Sydney, Australia. [14] White, J. and D.C. Schmidt. Automating Product-Line Variant Selection for Mobile Devices. in 11th International Software Product Line Conference. 2007. Kyoto, Japan. [15] Bagheri, E., et al. Stratified Analytic Hierarchy Process: Prioritization and Selection of Software Features. in 14th International Software Product Line Conference. 2010. Jeju Island, South Korea. [16] Chung, L., et al., Non-Functional Requirements in Software Engineering. International Series in Software Engineering. Vol. 5. 2000: Kluwer Academic. 476. [17] Benavides, D., et al. FAMA:Tooling a Framework for the Automated Analysis of Feature Models. in the First International Workshop on Variability Modelling of Software Intensive Systems 2007. Limerick, Ireland. [18] Zhang, G., H. Ye, and Y. Lin. Feature Model Validation: A Constraint Propagation-Based Approach. in SERP'11-10th International Conference on Software Engineering Research and Practice. 2011. USA.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 523

A New Architecture for Logging and Auditing in Distributed
Systems

Elnaz B. Noeparast, Reza Ravani

Department of Computer Engineering, Islamic Azad University, Central Tehran Branch, Tehran, Iran

Abstract - Due to widespread communications and unsafe
accesses in distributed systems, controlling and auditing of
events are considered as one of the major challenges to
achieve security goals. Several methods have been introduced
with some drawbacks such as the integrated information
accuracy concern, server overhead and impossibility of client
management in emergency situations. This paper presents a
new architecture for logging and auditing systems.
Tampering and losing data prevention, reducing server
overhead during data collection and integration and notifying
the clients' status to server to apply suitable security policy
are the main goals of the proposed architecture. In our system
architecture, system events are classified to four categories,
negligible, marginal, critical and catastrophic. Only the
information of critical and catastrophic events will be sent to
the server during emergencies. Also, this paper presents a
method for data encryption which has a validity period and it
will be updated periodically from the server.

Keywords: Distributed Systems, Event-Oriented
Architecture, Auditing, Data Integration

1 Introduction
 With extensive operations between different systems in
distributed systems, we need a mechanism that provides
essential and necessary information for keeping track of
important events. This is informed us about the status of each
system during its operations and its operation’s accuracy.
This mechanism is system logs auditing which is considered
as a necessary and valuable part of each system. Since
recording events in distributed systems are performed in
various and unsecure systems, on one hand, it is difficult to
integrate information for analysis and on the other hand, it is
possible to loss or manipulate information.

 The previous researches have provided methods such as
using public key cryptography [1,2], tamper-resistant
hardware [3,4] and information symmetric encryption
[3,5,6,7]. The main problems of these methods are their high
implementation cost, need for being online during logging
operations and the probability of the detection of encryption
algorithm keys. As mentioned above, another problem is the
information integrating from all systems for auditing and
tracking system errors or detecting hacker attacks and illegal
entries into the system. So far, the methods that have been
proposed to resolve these problems are divided into two

groups. In one group, each system's logs are stored locally
and alerts are generated on client-side, then the local
information is transmitted to a central server through
methods like network-based sensors [8]. In second group, in
addition to storing data locally and generating warning on the
client-side, some parts of audit operations are performed on
client-side and then required result will be sent to server for
analysis [9].

 According to the mentioned problems, we need a
method and system architecture that provides data integration
from all systems (which may work offline), and also ensures
the integrated information accuracy.

 This paper organizes as follows: in the next section,
first the Event- Driven Architecture is explained and then
features of the proposed auditing system are presented. After
that, a high-level architecture will be provided based on these
features. This section also covers the description of the
structure and the function of this architecture. In section 3,
we will evaluate and compare our new architecture with
previous methods. Finally we finish the paper with concluded
remarks and future works.

2 System Architecture
 Event-Driven Architecture (EDA) is an architectural
style which includes two or more software components
related together based on the events with minimal
dependencies. Here, minimal dependency means that the
relationship between sender and receiver is unidirectional
and the sender doesn’t transmit any data to receiver by
receiving a request [10], rather when an event occurs, a
notification is generated and sent to receivers which have
subscribed for it before [11]. Accordingly, three components
publisher, subscriber and communication infrastructure play
the fundamental roles in this architecture [12]. Publisher is a
software component that produces information and publishes
them on communication infrastructure. Subscriber is the
consumer (receiver) of some information that is produced
and published by various publishers. This information is
events and the method of providing them is called
notification. The communication infrastructure is a service
bus which manages events. Subscribers register in this bus
for events that they want to have notified about their
occurrence, without having any information about their
publishers. The subscribed information is stored in the bus

524 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

and is not sent to publishers. By creating an event, the
publisher notifies the bus about its happening through the
publishing operation, and the bus informs the event
subscribers through notification [13].

 The architecture is presented in this paper is an EDA.
By an event occurrence, server services are invoked which
have registered for that event. This reduces the dependencies
between server and client application and enhances the
security, because communication infrastructure sends a
message to the system which has registered for this event.
Logging and auditing system proposed in this article has
additional features and advantages as follows:

1- Protecting the security of local data:

 To increase auditing data security in a client system and
preventing the destructive manipulation, it is necessary to
store this information in encrypted formed and after sending
it periodically to server, decryption will be done on the
server-side. Instead of receiving the encryption key which
has been stored in the client system in specific time-intervals,
it is necessary that servers receive a signed encryption
algorithm via a web-service. But since there is the probability
to detect the encryption algorithm, data is still at risk. The
encryption algorithm should be different for each client and
could be changed and updated in regular time-intervals. To
achieve this goal, this article applies Aspect-Oriented
Programing (AOP) [14] on the client-side to utilize an
encryption algorithm. Therefore, storing logs structure which
contains an encryption algorithm is received from the server
as a file in specific time-intervals. Then, the program stores it
in a specific local path and uses it to store logs (audit data).
Each time the new algorithm is sent to a client, its decryption
algorithm and the relevant timing information are stored in
the server database. So, whenever the server receives
information from clients, it uses the decryption algorithm to
decrypt data according to the recording time of data on the
client-side.

2- Storing messages and preventing the lost

 In distributed systems, sometimes it may not be
possible to have a communication between server and client
for some reasons such as the communication lines traffic,
busy servers, the offline clients and etc. Thus, a mechanism
should have used in such situations that can store messages
and prevent losing messages. Since the role of service bus is
enabling essential cooperation between various service
components in a range of different platforms and it can also
store messages inside the related queues [15], so it is a
suitable option for this purpose. The proposed architecture
uses this infrastructure for communication between the client
and the server.

3- Reducing overhead due to audit data transmission from
client to server

 If transmitting audit data to the server is performed in
short time-intervals, it increases overhead and server
communication buses traffic. On the other hand, if this
interval is long, it causes that the server does not aware of
issues that happens on the client side. Thus, it is necessary to
classify the events and audit data types, so each data is sent
to the server at a specific time according to its classification.
Therefore, audit data (different types of system events) are
divided into the following four categories in this paper.

 Negligible events: An event that effects on non-
operational functions and slightly enhanced the cost and
time.

 Marginal events: This is an event that reduces the
system functionality and its technical performance.

 Critical events: An event that not only causes the delay
of system performance and increasing operating costs,
but also it causes that some parts of the non-essential
functions do not work properly.

 Catastrophic events: The events which prevent the
normal operation of the essential parts of the system are
catastrophic. Some of these events may even lead to
disconnect the client completely.

 If the audit data type is critical or catastrophic, it is sent
to the server as soon as it occurs. The difference between
these two types of data is the transfer mechanism. In
catastrophic events, audit data will be sent through HTTP
protocol in text-based format to reduce transmission time, but
sending critical audit data will be done again through the
HTTPs protocol but in encrypted format. In the latter case, if
the message is received by a third party, it could not be aware
of the semi-safe situation of the client. Sending periodic audit
data based on the time intervals is specified in the
configuration file and it includes marginal, critical and
catastrophic data. Negligible audit data is sent to server only
when critical or catastrophic data is available in the local
database. In this case, these audit data will be transmitted
together with critical or catastrophic data. This information
may help for more accurate analysis of the critical or
catastrophic incidents on the server-side.

4- Increasing the client flexibility due to server changes

 The configuration file contains information about the
address of services which are offered by the server, the
specific scheduling for client to send date periodically to
server and service names that are subscribed for various
types of events. This file can be received from the server
whenever a client connects to the server. This increases the
client flexibility to updates itself if the scheduling policies
and service addresses changes on the server side. Also, the
type and priority of the audit data could be changed on
server-side based on analysis on the received audit data from
clients. So, it is necessary for clients to receive updated data
type configuration and recognition settings in regular time-
intervals from the server.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 525

 Till now, we have presented our system architecture
features and characteristics. Now, we will more focus on the
client-side and server-side detailed architectures and
workflow.

2.1 Client-Side Architecture
 Auditing system in client-side follows component-
oriented design. For this purpose, this system includes 8
different components which are explained as follows. The
block diagram and relationship between different
components has been shown in Figure 1.

 Organizer component: This component is responsible
for five major following tasks:

o Receives configuration file from the server: Each
time the client system is connected to the network,
Organizer component sends a request to the server
via Service Provider component and based on SSL
protocol. After receiving the configuration file, it
saves this file in a specific local path for future
purpose.

o Receives encryption algorithm from the server:
This component receives Logger component
assembly file from the server in regular time-
intervals periodically and saves it to the program
installation path. This assembly file contains the
encryption algorithm to encrypt the log data.

o Receives the audit data type recognition settings:
Organizer component sends a request to server in
regular time-intervals via Service Provider
component for requesting this file. Then it will
received an XML file which will be saved in a
specific local path.

o Publishes critical and catastrophic data: as soon as
Organizer component detects a critical or
catastrophic type of audit data (which indeed has
been acquired by Auditing component and
forwarded to Organizer), it publishes this data via
Service Provider component. The detection
configuration settings is based on XML pattern
recognition file.

o Publishes audit data periodically: According to the
scheduling which is listed in the configuration file,
Organizer component publishes audit data to the
server via Service Provider component.

 Service Provider component: This component
communicates with server through HTTP and HTTPs
service protocols. It consists of two types of service
calls. Invoking services which subscribe for special
events and calling services that are invoked directly.
Calling subscription services is for sending critical and
catastrophic event data when it happens and sending
audit data periodically. Invoking methods directly is
used for receiving Logger assembly settings,

configuration and pattern recognition files from the
server via HTTPs protocol.

 Service Provider Interface: This component will handle
the communication with services offered by server
through the addresses and "service contracts" that have
been registered before.

 Auditing Interface: This interface provides methods for
recording the information related to an action or
changing an object. Since Audit component is
considered as a part of a software system in this paper,
an explicit call to Audit component is required for
performing relevant operations.

 Logger component: This component is responsible for
encryption and storing data in local database. This
component is an assembly file which is generated by the
server based on each request and has a validation time-
interval.

 Event Aggregator component: In case of critical or
catastrophic event, this component invokes related
subscribed service from Service Provider component.
This component also sends audit data periodically
whenever the system timing will be equal to schedule
timing stored in configuration file [16].

 Auditor component: This component is responsible to
analyze and refine the information which is provided by
the system software. This information is converted to
data audit after analysis.

 Aspect Loader component: This component operates
based on the AOP rules and standards. It loads the
Logger component assembly from a specific path of the
installed program and then stores an encrypted audit data
into the local database.

Figure 1 The client-side auditing system architecture

526 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

 The workflow diagram of client-side auditing system is
shown in Figure 2. By initializing Audit module, the software
system sends required information to the Audit component
by a method call whenever an action is performed by user or
an object is changes. After analyzing and refining
information in Audit component, the audit data is sent to the
Organizer component through a method call. Then the
Organizer component publishes an audit data according to
the pattern recognition file if the data type was critical or
catastrophic. The Event Aggregator component extracts the
service address which is subscribed for this event from the
configuration file. Then it sends a notification to the server
via Service Provider component. Parallel to this operation,
the Auditor component sends an audit data to the Aspect
Loader component by a method call. After that, this
component initializes Logger component by using AOP
methods and stores an encrypted audit data in the local
database. This operation repeats if the Auditor component's
method is called again.

Figure 2 Workflow diagram of the client-side auditing system

Figure 3 The server-side auditing system architecture

2.2 Server Side Architecture
 The server’s Auditing system is responsible for the
information collection and integration from clients and the
management/coordination of clients audit process. It includes
6 different components which are explained as follows. The
block diagram and relationship between different
components has been shown in Figure 3.

 Decision Maker component: This component makes
decision about clients which a critical or catastrophic
events has been occurred during their operation.
Considering different condition, this decision could be
notifying system administrator, disconnecting client
temporary or etc. based on the configuration files have
been specified by system administrator in the server's
database as security policies.

 Analyzer component: This component analyzes the
reasons of a specific event based on the collected
auditing data and original configuration data in the
database. Then it sends the results of this analysis to the
Decision Maker component through a method call.

 Service Provider Interface: This interface shows the
service addresses and contracts for invoking services
offer by server by clients Auditing component.

 Service Provider component: This component provides
following services:

o A secure service for receiving audit data
periodically

o A secure service for receiving critical type of audit
data

o A text-based service for receiving catastrophic
type of audit data

o A service for providing client requested files

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 527

 File Generator component: This component generates a
configuration file, an event type recognition Pattern file
(XML file) and an assembly file of client’s Logger
component which consists of the encryption algorithm.
These file will be generated according to the time and
the client specifications like client’s identifier code,
username and password.

 Logger component: By receiving auditing data, this
component retrieves its decryption algorithm from the
database based on the data creation time and client
specifications. Then, it decrypts the data and stores it in
the database. For critical or catastrophic audit data types,
its creation time is equal to the receiving time. But if an
audit data has been sent periodically, its creation time is
the last time when the client has received a Logger
assembly file (this data is encrypted by the last
assembly).

Figure 4 Workflow diagram of the server-side auditing system

 Considering above details specification of server-side
auditing system, the auditing system workflow is explained
on the following way (Figure 4). When a service from the
server is invoked by a client and it is about a receiving file
request, then the desired file is generated by File Generator
component and will be sent to the client. But if this is a
request for data collection and integration invoked by server
itself, then this data is decrypted by the Logger component
and stored in database. After that, it is sent to the Analyzer
component by a method call. Analyzer component receives
this data and analyzes it based on the information which has
been stored in database. If the reasons of the problem are
unauthorized entry, data manipulation or hacker attacks, then
a request is sent to the Decision Maker component. This
component makes a decision according to the stored security
policies in database which the server administrator has
defined them in advanced.

3 Architecture Analysis and Evaluation
 As mentioned in Introduction section, there are different
methods for the audit data protection. One of the simplest
techniques is to use a bug-free tamper-resistant hardware (to
prevent audit data manipulation) and maintaining a secure
communication channel between clients and the server (to
upload runtime data) [17]. Forwarding secure signature is
another proposed scheme for storing secure information. In
forwarding secure signature, a sender digitally signs each
data item as soon as it is stored. Then the sender improves its
secret keys, removes previous ones and uses new keys for
signing next data items [18]. A group of these schemes relies
on the use of the symmetric cryptography and the others
utilizes the Public Key Cryptography (PKC). Each of these
methods has its own benefits and drawbacks that are
comparable with our proposed architecture in this paper.

 Efficiency: A group of schemes which relies on the
symmetric cryptography uses Message Authentication
Codes, semi-random number generation or one-way hash
chain for data encryption, all of these methods result to
computational complexity [17]. The proposed algorithm
for encryption could generate better (in worse case
equal) performance results, depending on the encryption
policy.

 Storage and Communication Overhead: Due to
accumulating signatures from data items in forwarding
secure signature method and also the need to maintain
and transmit an authentication tag for each log, signing
data items continuously causes to significant
communication and storage overheard [17]. But in the
proposed architecture, encryption algorithm is generated
according to each client in the Logger file, which is
replaced the previous one on the client-side. So it is not
required to store any information about this algorithm,
because its generated time would be store in the server
database. With this method, the client storage overhead

528 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

is decreased. Also in this architecture, only essential data
is sent to the server as soon as it happens, as a result, the
communication overhead is reduced.

 Ability of Public Audit: Methods use symmetric
encryption could not offer public audit. Because they
need a complete symmetric keys distribution or an
online TTP support. The complete symmetric keys
distribution brings a significant storage overheard for
system entities. Supporting online TTP causes
architectural difficulties, increases the communication
overhead and makes vulnerabilities against the system
attacks [17]. But in our architecture auditing operations
will be done on the client-side and the results of this
process will be sent to the server for analyzing. By this
method, operation overhead on the server-side is
reduced. Essential filtered information is sent to the
server, so the server doesn’t process unnecessary or
insignificant information of clients.

 Applicability: Maintain a secure communication
channel between the clients and server for modern
computer systems is impractical. Because in distributed
systems, it is not possible to reserve an end-to-end real-
time communication channel between the client and
server. Also, it could not be assumed that a tamper-
resistance hardware (which must be bug-free) will
guarantee to be compatible with all platforms [19]. The
proposed architecture can be used in distributed systems
and by all distributed applications, because of its low
structural/data coupling between client and server. Also,
this architecture could be implemented on all platforms
as long as they support programing languages which
supports AOP, Event and Service concepts. In this
architecture, the server information is easily updatable
on the client-side, so it is possible to change or extend
the information to the multiple servers.

4 Conclusions and Future Works
 In this paper, an event-oriented architecture in a
distributed system for log, collecting/integrating and
analyzing of audit data has been proposed to manage and
coordinates separate nodes with different tasks. In this
architecture, Aspect-Oriented Programming (AOP) will be
utilized on the client-side to encrypt audit data. This
encryption algorithm has a limited validation time and after
expiration new configuration for another algorithm will be
generated and transmitted by server to client to update its
current algorithm. During audit data collection and
integration, server decrypts each audit data with a specified
algorithm considering to its encrypted time. So, the
possibility of unauthorized access to encryption algorithm
and consequently audit data will be decreased.

 We have also presented a classification and
transmission method of audit data to server to reduce the

server overhead due to receiving different types of audit data
from different clients while it could be informed when an
important event happens in a client. As a result of comparing
our architecture and previous methods, it can be easily
understood and verified that the proposed architecture has a
more general applicability than previous ones. Also, the
proposed method provides ability of public audit in
distributed systems and causes less communication and
memory overhead for these systems. The infrastructure
service bus details has not been mentioned in this paper,
because this bus can be any of-the-shelf (COTS) bus depends
on the platform.

 A high-level architecture for a logging and auditing in
distributed system has been discussed in this paper. In the
near future full implementation of this architecture
considering system-level design limitations and concerns will
be presented. Using autonomic computing for the Decision
Maker component in server or anticipating the weakness
points of distributed systems by applying the integrated audit
data analysis results, are some of the challenges that need to
be studied more.

5 References
[1] Rafael Accorsi. “BBox: A Distributed Secure Log
Architecture”; Proceedings of the 7th European conference
on Public key infrastructures, services and applications
(EuroPKI'10), Vol. 6711, 109—124, 2011.

[2] Wensheng Xu, David Chadwick, Sassa Otenko. “A
PKI-based Secure Audit Web Service”; Proceedings of the
IASTED International Conference on Communication,
Network, and Information Security (CNIS 2005), Nov 2005.

[3] Di Ma, Gene Tsudik. “Forward-Secure Sequential
Aggregate Authentication”; IEEE Symposium on Security
and Privacy, 86—91, 2007.

[4] Daniel Halperin, Thomas S. Heydt-Benjamin, Kevin
Fu, Tadayoshi Kohno, William H. Maisel. “Security and
Privacy for Implantable Medical Devices”; IEEE Pervasive
Computing, Vol. 7 Issue. 1, 30—39, Jan 2008.

[5] Mihir Bellare, Bennet Yee. “Forward-security in
private-key cryptography”; Proceedings of the 2003 RSA
conference on The cryptographers' track (CT-RSA'03), 1—
18, 2003.

[6] Bruce Schneier, John Kelsey, Bruce Schneier, John
Kelsey. “Cryptographic support for secure logs on untrusted
machines”; In Proceedings of 7th USENIX Security
Symposium, 53—62, 1998.

[7] Bruce Schneier, John Kelsey. “Secure audit logs to
support computer forensics”; ACM Transactions on

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 529

Information and System Security (TISSEC), New York, NY,
USA, Vol. 2 Issue. 2, 159—176, May 1999.

[8] Ambareen Siraj, Rayford B. Vaughn, Susan M. Bridges.
“Intrusion Sensor Data Fusion in an Intelligent Intrusion
Detection System Architecture”; Proceedings of the 37th
Hawaii International Conference on System Sciences
(HICSS'04), Jan 2004.

[9] Mike Davis, Ed Coyne, Craig Winter. “Security Audit
architecture For Audit As A Service”, Office of CIO, Health
Information Architecture Office, Feb 2006, http://hssp-
security.wikispaces.com/file/view/HIA_20060310_Security+
Audit+Architecture+V1.doc, Downloaded on [28 04 2012].

[10] K. Mani Chandy. “Event-Driven Applications: Costs,
Benefits and Design Approaches”; Presented at the Gartner
Application Integration and Web Services Summit, Jun 2006.

[11] K. Mani Chandy, W. Roy Schulte. “Event Processing:
Designing It Systems for Agile Companies”. McGraw-Hill.
2010.

[12] David Trowbridge, Ulrich Roxburgh, Gregor Hohpe,
Dragos Manolescu, E.G. Nadhan. “Integration Patterns”.
Patterns & Practices . Avail. at www.microsoft.com. 2004.

[13] Patrick Th. Eugster, Pascal A. Felber, Rachid
Guerraoui, and Anne-Marie Kermarrec. “The many faces of
publish/subscribe”; ACM Computing Surveys, Vol. 35 Issue.
2, 114—131, Jun 2003.

[14] Dharma Shukla, Simon Fell, and Chris Sells. "Aspect-
Oriented Programming Enables Better Code Encapsulation
and Reuse"; MSDN Magazine, Mar 2002.

[15] David A. Chappell. “Enterprise Service Bus”. O'Reilly
Media. 2004.

[16] Martin Fowler: Information on
http://martinfowler.com/eaaDev/EventAggregator.html

[17] Attila Altay Yavuz, Peng Ning. “BAF: An Efficient
Publicly Verifiable Secure Audit Logging Scheme for
Distributed Systems”; Proceedings of the 2009 Annual
Computer Security Applications Conference, 219-228, 2009.

[18] Attila Altay Yavuz, Peng Ning. “Hash-Based
Sequential Aggregate and Forward Secure Signature for
Unattended Wireless Sensor Networks”; Proceedings of the
Sixth Annual International Conference on Mobile and
Ubiquitous Systems: Computing, Networking and Services
(MobiQuitous 2009), Jul 2009.

[19] Attila Altay Yavuz, Peng Ning, Michael K. Reiter.
“Efficient, Compromise Resilient and Append-only
Cryptographic Schemes for Secure Audit Logging”; in

Proceedings of 2012 Financial Cryptography and Data
Security (FC 2012), 2012.

530 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Requirements Metrics for Requirements Statements

Stored in Database

Chao Y. Din
1
, David C. Rine

2

1
NuWave Solutions LLC, McLean, Virginia, USA

2
Computer Science Department, George Mason University, Fairfax, Virginia, USA

Abstract - In a software development project, a requirements

document, either a hard copy or stored in a database,

summarizes the results of requirements analysis and becomes

the basis for subsequent software development. In many

cases, the quality of the requirements statements dictates the

success of software development. The need for determining

the quality of requirements statements is acute when the target

applications are large, complicated, and mission critical. The

purpose of this research is to (1) summarize our previous

research on the quality indicators that indicate the quality of

requirements statements in a requirements document and (2)

report our current research to expand the previous quality

indicators to evaluate the quality of requirements statements

stored in a database. A suite of complexity metrics of

requirements statements is proposed as quality indicators and

is developed based upon research of noun phrase (NP)

chunks.

Keywords: Metrics, Cohesion, Coupling, Requirements,

Software Quality

1 Introduction

 This paper asserts that a set of requirements statements either

documented in a requirements document or stored in a database, is

the single artifact produced through the requirements engineering

process. Its quality inevitably becomes the main focus of

requirements management. Research studies repeatedly confirm that

requirements quality has the greatest impact on the overall quality of

software applications and hence has been associated with the highest

repairing cost [12,23,27].

 The purpose of this research is two folds: (1) summarize our

previous research on a set of metrics to indicate the quality of

requirements statements in a requirements document and (2) propose

a modified set of metrics to indicate the quality of requirements

statements stored in a database. The quality factors are presented by

a set of goodness properties. The indicators will be able to identify

requirements statements with low goodness property values.

 The previous research [4] used statistical and partial parsing

approaches to obtain a subset of noun phrases, named Noun Phrase

(NP) chunks. Abney indicated that chunks are the basic language

parsing unit, and they correspond to “the basic concepts” for human

brains to comprehend a text document [1]. NP chunks are hence

adopted as the basic processing units in this research.

 The previous research [4] developed three core complexity

metrics: count of NP chunks (NPC-Count), cohesion of

requirements sections (NPC-Cohesion), and coupling of

requirements sections (NPC-Coupling).

 A two-phased empirical case study was performed [4] to

evaluate the proposed complexity metrics. Phase I of the case study

compared the NPC-Cohesion and NPC-Coupling metrics with the

cohesion and coupling metrics proposed by Ricker [24]. Ricker’s

research demonstrated the correlation between the complexity

metrics and understandability, or comprehension, of the

requirements. By demonstrating the consistency between the two

sets of metrics, the previous research [4] proved to be correlated to

understandability, one of the goodness properties, of the

requirements statements. Furthermore, the case study showed that

the NP chunk based complexity metrics possess the following two

additional capabilities: (1) they differentiate nouns from other

syntactic categories (or word classes) – an important capability to

differentiate object methods and properties from object classes, and

(2) they adopt the spatial distance of NP chunks as the measuring

units – an important capability in a cognition complexity model [2].

 The phase II case study then demonstrated how the three core

metrics can be used to identify low quality requirements statements.

 Based upon the two phased case study, it was assured that the

proposed complexity metrics indicate the content goodness

properties of requirements.

 This paper further discusses updates to the previously

developed requirements metrics for requirements statements stored

in a database. Requirements statements printed on a requirements

document is presented in a linear order, while requirements

statements stored in a database can be viewed in various orders

depending on the interaction between the users and the viewer

applications.

2 Research Problem and Its Importance

 How to identify low quality requirements statements in a

requirements document or in a database is an intricate research

question. This research answers the question in a constrained

environment where the current best practices of identifying

requirements and eliminating requirements defects are adopted. The

constraints are as follows.

1) A systematic requirements method such as Viewpoint Oriented

Requirements Definition (VORD) has been followed to produce

the requirements statements [28].

2) The requirements statements are grammatically correct and

spelling errors have been checked.

3) Traditional requirements guidelines to avoid ambiguous terms

(large, many, user friendliness) and week phrases (as applicable,

as required, as a minimum) have been followed [25].

4) A domain thesaurus and/or company term definitions have been

supplied.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 531

5) A requirements inspection method has been adopted to eliminate

requirements defects.

 Certain requirements defects are hard to identify and remove.

Capers Jones concluded in his study that (1) formal inspection is the

most efficient way to remove defect and (2) formal inspection

together with defect prevention can achieve the best overall quality

[12]. This research will expand the current practices in identifying

low quality requirements, and hence preventing requirements

defects. However, this research will not and has never intended to

replace the current practices in identifying requirements defects.

 The proposed suite of complexity metrics can be used to

identify high complexity and hence low quality requirements. Once

low quality requirements are identified, analysis of the low quality

requirements can be conducted so that they can be classified into

categories of potential risks. Appropriate management actions can

then be considered. Wilson, Rosenberg & Hyatt [29] identified

several categories of system risks due to low quality requirements.

 Low quality requirements are not only the source of system

product risks but also the source of system development resource

risks, which includes cost overrun and schedule delay. Using the

proposed suite of complexity metrics as quality indicators, an impact

assessment and threats classification of the identified low quality

requirements can be performed. Such an early warning is vital to

rescue a possibly failing project.

 The development of high quality systems depends on

management’s awareness of such low quality requirements, their

ability to expediently assess the impacts of those low quality

requirements, and the capability to develop a plan to rectify the

problem. This identification of low quality requirements and the

subsequent risk analysis of those requirements provide the

foundation for the development of high quality systems.

 The proposed complexity metrics to indicate the quality of

requirements statements can be developed using computer programs.

This will provides a way to quickly identify potential requirements

defects, and hence substantially improve the time to identify low

quality requirements and expedite the rescue of a troubled project.

3 Background

3.1 Quality and Content Goodness Properties

 Schneider proposed 11 goodness properties as a better

coverage of quality factors [26]: Understandable, Unambiguous,

Organized, Testable, Correct, Traceable, Complete, Consistent,

Design independence, Feasible, and Relative necessity.

 In this research, the main concerns are the four goodness

properties: Understandable, Unambiguous, Organized, and Testable.

These four goodness properties are named as Content Goodness

Properties and are the only goodness properties on which the

remainder of the research will focus.

3.2 Complexity, Complexity Metrics and

Measurement

 Complexity is a major system characteristic that controls or

influences quality. It has been widely accepted as an indirect

indicator of quality and hence the content goodness properties

[8,10,14,16]. The remainder of the research focuses the discussion

on complexity.

 Purao and Vaishnavi [21] provide a survey of complexity

metrics and identified five out of 375 metrics that are related to

requirements. Unfortunately, none of those five metrics are used to

measure the natural language descriptions of the requirements.

Ricker’s research [24], not listed on the survey, developed a set of

requirements metrics: cohesion, context, and coupling. One of the

contributions [24] made is the demonstration of a positive

correlation between cohesion, context, and coupling metrics and

understandability of requirements statements. In [24], the context

metric is assessed by the relationships between the sentences of a

section and their section title. This research does not consider the

context metric.

 In another survey published about the same time, seven

research papers were identified that were relevant to requirements

metrics for documents written in natural languages [19]. Two of the

research papers discussed the same research study. Hence six

research studies were identified. However, the main focus of most

of the six research studies were quality attributes of requirements,

and most of the quality indicators presented in those research studies

depended heavily on human intervention to collect the measurement

values. For example, understandabilities were defined as the number

of requirements that could be understood divided by the total

number of requirements. Here the number of requirements that

could be understood could only be manually determined through an

expensive data collection effort. Two of the six research studies did

developed automated tools to measure requirements [7,25].

Unfortunately, these automated tools tried to identify ambiguous

terms and weak phrases, which is a prerequisite of this search.

 A more recent research on requirements metrics presented by

Iqbal and Khan [11] also defined the understandability metric as the

number of requirements that could be understood divided by the

total number of requirements, which again requires heavy human

intervention to obtain the measurement value.

3.3 Readability Index

 When measuring the quality of documents written in natural

languages, the readability indexes or metrics may be considered. In

general the written communication skills are measured in terms of

readability and hence the use of readability indexes. Readability

indexes are designed to access the suitability of a piece of writing for

readers at particular grade levels or ages.

 Factors considered in the readability indexes are number of

words, number of syllables in words, number of words in sentences,

…, etc. Scores of the readability indexes are compared with scales

based on judged linguistic difficulty or reading grade level.

 Unfortunately, readability indexes are not comparable with our

research for the following reasons:

1) The readability indexes are designed for the whole documents,

instead of sections of documents.

2) The readability scores are not reliable indicators when the

document under evaluation has less than 200 words [17].

However, many of the requirements statements have less than 50

words.

3) The definition of cohesion used with readability indexes is

different from the definition of cohesion used in Computer

Science, and there are no coupling metrics for readability

indexes [9,18].

532 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

4 NP Chunk Based Complexity Metrics

 Because humans tend to read and speak texts one chunk at a

time, Abney proposed using what is called chunks as the basic

language parsing unit. There are several categories of chunks

similar to the traditional categories of phrases. For example, there

are Noun Phrase (NP) chunks, Verb Phrase (VP) chunks,

Prepositional Phrase (PP) chunks, … etc [1]. Our research focuses

on NP chunks and ignores other types of chunks.

4.1 Three Core Metrics

 It is believed that a small subset of existing metrics can enable

parsimonious evaluation, prediction and control of software

complexity [13]. Our research hence proposes three types of

complexity metrics, NPC-Count, NPC-Cohesion, and NPC-

Coupling, for measuring the complexity of requirements statements

in a requirements document and in a database.

 Size counts are the oldest method of measuring complexity.

For software design and coding, the most popular size count is Line

of Code (LOC). The wide acceptance of LOC as a complexity

metric is due to its simplicity, ease of application, inertia of tradition,

absence of alternative size metrics, and its intuitive appeal [5, 15].

Based upon the above reasons, two distinct metrics (NPC-Sentence

and NPC-Req) are developed to count the NP chunks of a text, and

these two metrics are collectively named as NPC-Count.

 Darcy and Kemerer believe that cohesion and coupling are

effective metrics and they can represent the essential complexity

measures for the general software design tasks [3]. Hence, NPC-

Cohesion and NPC-Coupling are chosen in our research to represent

the complexity of requirements. To assist the identification of low

quality requirements, a composite metric (NPC-Composite) that

combine cohesion and coupling measures is also proposed and

studied in the research.

 In addition, Regnell etc [22] suggested that “the complexity of

a set of requirement is heavily related to the nature of

interdependencies among requirements.” The cohesion and couple

metrics presented in this research is one way to measure the

interdependencies among requirements.

4.2 Sentence/Requirements Statement Level

Complexity

 The sentence level complexity metric, or NPC-Sentence, can

be calculated as follows. For each NP chunk, the occurrence count

in a sentence is divided by the total occurrence counts in all

sentences. Then all the frequency distributions of the NP chunks in

the sentence are added together to form the final complexity value.

 The requirements statement level complexity metric, or NPC-

Req, is the aggregation of NPC-Sentence of the component

sentences.

 The above calculation for the sentence and requirements level

complexity is applicable to requirements statements in requirements

documents and requirements statements stored in a database.

4.3 Intra-Section Level Complexity

 The NPC-Cohesion metric for requirements statement in a

requirements document is a normalized cluster size that can be

calculated using the sum of all cluster sizes in a requirement section

divided by the size of the requirements section. Here a cluster is

defined as the collection of adjacent sentences in a requirements

section that shares the same NP chunks. For example, if sentence 1

contains NP chunk A, sentence 2 contains NP chunk A and B, and

sentence 3 contains NP chunk B, then the three sentences form a

single cluster.

 On the other hand, the requirements statements in a database

do not possess the spatial distance property and the type of clusters

we defined. A simple NPC-Cohesion metric is defined as the

number of NP chunks appears in a requirements section divided by

the product of the total number of NP chunks and the total number

of sentences in the requirements section. For example, assume there

are five different NP chunks in a requirements section that contains

six sentences. If the five NP chunks appears 15 times in the section,

the NPC-Cohesion is 15/(5 X 6) = 1/2.

4.4 Inter-Section Level Complexity

 The NPC-Coupling metric for a requirements document is the

sum of the spatial distances between its internal and external NP

chunks. If an NP chunk belongs to a cluster, then the centroid of the

cluster is used to calculate its distance to the external NP chunks.

 The NPC-Coupling metric for requirements statements stored

in a database can be calculated as follows. For each sentence in the

current requirements section, count the number of sentences in other

requirements sections that have common NP chunks. Adding all

these counts together and then divided it by total number of

sentences outside the current requirements section. The result is a

normalized NPC-Coupling metric value.

5 Empirical Case Study

 An empirical case study [4] was conducted and the results

confirmed the NP chunk based metrics are more effective than the

term based metrics. More importantly, the proposed metrics can

serve the quality indicators for requirements statements in

requirements documents.

 First, the previous research on NP chunk based metrics for

requirements statements in a requirements document is presented.

Requirements documents exhibit a linear order on requirements

statements. Hence the concept of spatial distance and cluster

distance can be applied.

 This section of the paper then describes the current research

that revises the NP chunk based metrics so that they can be applied

to requirements statements stored in a database, which does not

exhibit a linear order on requirements statements.

5.1 Case Study Methodology

 The case study methodology [30] is an empirical research

strategy commonly used in psychology, sociology, political science,

social work, business, community planning, and economics. The

case study methodology adopted here consists of five components,

which form a logic plan for the research design of case studies.

1) A study’s questions

2) Study propositions, or hypotheses

3) Unit(s) of analysis

4) The logic linking of the data to the propositions

5) The criteria for interpreting the finding

 There are three types of case studies: exploratory, descriptive,

and explanatory. In a nutshell, an exploratory case study is either

used to define the questions and hypotheses of a subsequent case

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 533

study or to determine the feasibility of a subsequent research, i.e., an

explanatory case study. A descriptive case study presents a complete

description of a phenomenon. An explanatory case study explains

the cause-effect relationships indicated in the research question [30].

5.2 Two Phased Case Study for Requirements

Statements in a Requirements Document

 The goal of our previous research [4] was to answer the

constraint question about identifying low quality requirements

statements in a requirements document with the specified

constraints. This question was divided into two sub-questions.

Q1. Can NP chunk based complexity metrics be more effective than

the term based complexity metrics in terms of measuring

requirements content goodness properties?

Q2. How and why NP chunk based complexity metrics measure the

content goodness properties of requirements statements?

 The two phases of the case study, exploratory in phase I and

explanatory in phase II, were designed to answer the two sub-

questions, respectively. The first sub-question and hence the phase I

case study was an evaluation of NP chunk based complexity metrics.

If NP chunk based complexity metrics could not produce consistent

results as the term based complexity metrics proposed by [24], there

was no reason to perform further study on the research question.

Ideally, the NP chunk based complexity metrics should be more

effective than the term based complexity metrics; otherwise, the

research provided little contribution to the research question.

 The second sub-question and the corresponding phase II case

study assumed the phase I case study had positive outcomes. The

phase II study then explained how and why the NP chunk based

complexity metrics worked. Evidence and findings to support the

proposed metrics were presented one by one in this case study.

5.3 Exploratory Case Study – Phase I for

Requirements Statements in a

Requirements Document

 The five components of the phase I case study are described as

follows.

Study Question: The study question was “Can NP chunk based

complexity metrics be more effective than the term based complexity

metrics in terms of measuring requirements content goodness

properties?”

Study Propositions, or Hypotheses: The purpose of the phase I

case study was to determine whether the NP chunk based complexity

metrics could measure content goodness properties of requirements

documents. The term based complexity metrics published by Ricker

[24] revealed positive correlation to understandability, one of the

content goodness properties of requirements documents. Ernst and

Mylopoulos [6] also adopted terms, or keywords, to measure quality

requirements. Since their measures are not related to

understandability, a comparison with their research cannot be

performed.

 Another term based system is presented by [20], where two

sets of requirements for the same project were compared against

each other. One set of the requirements came from customers, and

the other set of requirements came from product development team.

Again, it is not appropriate to compare our research with [20].

 The derived specific study hypotheses/propositions were as

follows.

P1. Consistency: The NP chunk based complexity metrics are

consistent with the term based complexity metrics.

 Ricker proposed three term based complexity metrics: context,

cohesion, and coupling, for requirements statements. However, the

published metric values, or measures in [24] focused mainly on the

cohesion and coupling metrics. The only metrics that could be

compared against were cohesion and coupling metrics. Hence, the

above proposition was divided into the two sub-propositions: one

for cohesion and the other for coupling.

P1.1. Cohesion: NPC-Cohesion, the NP chunk based cohesion

metric, is consistent with the term based cohesion metric.

P1.2. Coupling: NPC-Coupling, the NP chunk based coupling

metric is consistent with the term based coupling metric.

 For simplicity reason, the degree of consistency for the above

two propositions were categorized into three ordinal values: strongly

consistent, somewhat consistent, and cannot-determine. The degree

of consistency must be strong in order to claim the two sets of

metrics were consistent to each other.

P2. Sensitivity/Accuracy: The NP chunk based complexity metrics

are either more sensitive or more accurate than the term based

complexity metrics.

 The degree of sensitivity or accuracy was categorized into

three ordinal values: strongly sensitive/accurate, somewhat

sensitive/accurate, and cannot-determine. The degree of

sensitivity/accuracy must be strong to claim the proposed metrics

were more sensitive or accurate than Ricker’s metrics.

P3. Additional Information: The NP chunk based complexity

metrics can provide additional information on the

requirements content goodness properties than the term based

complexity metrics.

 The linking of derived data to the above proposition was

categorized into two ordinal values: “yes” (it provides additional

information) and “no” (it does not provide additional information).

Unit(s) of Analysis: The unit of analysis for the phase I case study

was a requirements document of a Federal Aviation Agency (FAA)

project available in [24].

The Logic Linking of the Data to the Propositions Criteria for

Interpreting the Findings: The logic linking of the data to the

propositions was the first step of data analysis in the case study

design, which was divided into two sub-steps: cohesion and

coupling. The second step of data analysis was to interpret the

findings using the evaluation criteria stated above.

Cohesion Metrics: Based upon the proposed NPC-Cohesion metric

defined previously, the NPC-Cohesion measures and the cohesion

measures published in [24] were consistent with each other except in

one section – section 11 of the FAA requirements document.

 The mismatch between the two cohesion metrics could be

explained as follows. Section 11 of the FAA requirements document

consisted of two sentences. By examining the two sentences, it was

found that there were no common NP chunks between the two

sentences. This was why the NPC-Cohesion metric gave a low

cohesion measure for the above requirements section. On the other

hand, Ricker used terms to measure the cohesion of the section, and

the word “outputs” appeared in the first sentence as a noun, while

the word “output” appeared in the second sentence as a verb.

534 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Ricker’s algorithm did not consider syntactic categories and hence

linked the two sentences.

 It is believed that a word in different forms, i.e., verbs and

nouns, in different sentences should not always be considered as

cohesive, since the two words in the two forms can refer to two

totally different objects. When closely examining the two sentences,

it was found that the word “output” in the two sentences indeed

refers to two different things or two different concepts. Hence, the

proposed cohesion metrics was more effective.

 As indicated above, the evaluation criterion for the cohesion

proposition (P1.1) was whether the two sets of metrics were strongly

consistent with each other. Since there was only one mismatch and

the mismatch can be explained, the degree of consistency was

strong. For the additional information proposition (P3), the

evaluation criterion for linking the data to the proposition was

whether the NP chunks based complexity metrics could provide

additional information. Since the NP-Cohesion metric could

differentiate word classes, the NP-Cohesion metric did provide

additional information. It was hence concluded that NPC-Cohesion

supported proposition P1.1 and P3.

Coupling Metrics: The coupling measures based on the NPC-

Coupling metric were consistent with the coupling measures in [24]

except in one section – section 4 of the requirements document.

 The discrepancy between the two coupling metrics could be

explained as follows. Section 3 was titled as “routing processing”,

and Section 4 was titled as “additional routing processing.” Since

the fourth section was a supplement to the third section, its coupling

in Ricker’s method was very high.

 On the other hand, the coupling value for section 4 was low

for the NPC-Coupling metric because the spatial distance between

the two sections was low. In other words, the effect of spatial

distance was counted in the NP-Coupling metric, while Ricker’s

method did not consider the spatial distance.

 Since there was only one mismatch and the mismatch could be

explained, the degree of consistency was strong. For the additional

information proposition (P3), the evaluation criterion for linking the

data to the “additional information” proposition was whether the NP

chunks based complexity metrics could provide additional

information. Since the NPC-Coupling metric could measure spatial

distance, the NPC-Coupling metric did provide additional

information. It was hence concluded that NPC-Coupling supported

proposition P1.2 and P3.

Sensitivity/Accuracy: The NPC-Cohesion metrics are relative

measures. They are normalized and fall in the range of 0 to 1.

Comparing such relative measures derived from different

requirements documents may not be logical. Hence, it could not

determine whether P2 proposition was supported or not.

 Although the NPC-Coupling metrics for requirements

statements in a requirements document were based upon spatial

distance between NP chunks, they were not normalized. Comparing

NPC-Coupling metrics with Ricker’s metric which used different

units of measurement did not seem to be logical either. All in all,

the evaluation for the derived data from the case study and the P2

proposition resulted in the “cannot-determine” ordinal value.

Summary: Based upon the above analysis, it were concluded that

the derived data from the case study met the evaluation criteria for

the consistency proposition (P1) and additional information

proposition (P3). On the other hand, no evidence supported the

opposite argument. Hence, the phase I study question was asserted.

It is clear that the NP chunk based complexity metrics were more

effective than the term based complexity metrics.

5.4 Explanatory Case Study – Phase II for

Requirements Statements in a

Requirements Document

Study Question: The phase II study question was “How and why

NP chunk based complexity metrics measure the content goodness

properties of requirements statements?”

Study Propositions, or Hypotheses: The study question above was

decomposed into three propositions.

P4. NP Chunk Counts: The NP-Count, as a simple form of

complexity metric, can measure the content goodness properties

of the requirements statements.

P5. Cohesion: NP chunk based cohesion complexity metrics such

as the NPC-Cohesion metric can measure the content goodness

properties of the requirements statements.

P6. Coupling: NP chunk based coupling complexity metrics such

as the NPC-Coupling metric can measure the content goodness

properties of the requirements statements.

 The evaluation criteria for the linking of derived data from the

case study to the above three propositions was whether the linking

could explain the cause-effect relationship. For simplicity reason,

the cause-effect relationship was categorized into three ordinal

values: strong, medium, and weak/no cause-effect relationship.

Unit(s) of Analysis: In the phase II research design, the unit of

analysis was also requirements documents. Two sources of

requirements documents were used for the case study: (1) four

versions of the Interactive Matching and Geocoding System II

(IMAGS II) requirements documents for U. S. Bureau of Census and

(2) the FAA requirements document used in the phase I study.

The Logic Linking of the Data to the Propositions Criteria for

Interpreting the Findings: In this section the three major

categories of metrics, sentence/requirements complexity metrics,

cohesion metrics, and coupling metrics, were discussed separately.

NPC-Sentence (Sentence Level Complexity Metrics): The NPC-

Sentence metric was basically a way to count the NP chunks, and it

could be used to identify complex requirements.

 Section 3.4 of the IMAGS II requirements document was used

to illustrate how the NPC-Sentence metric works. The complexity

measures were first obtained from Section 3.4 of both the version 2

and version 3 of the requirements documents. The complexity

measures were then compared between the two versions of the

requirements. The NPC-Sentence measures of Section 3.4 of the

version 2 requirements document showed that sentence 10, 11, and

12 have high degree of complexity. Subsequent iteration of

requirements review indeed identified those three sentences as

“difficult to understand”. A new set of sentences were then

developed in the version 3 of the requirements document. The

comparison of the two versions of the requirements section showed

that the complexity measures of the three sentences were improved

in the new version of the requirements document.

NPC-Req (Requirements Level Complexity Metrics): Another

section of the IMAGS II requirements document was used to

illustrate the capability of the NP chunk complexity metrics at the

requirements level.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 535

 The NP-Req metric values were compared between two

versions of Section 3.2 of the IMAGS II requirements document:

version 2 and 3. During the third iteration of the requirements

gathering phase, four modifications were made, and the version 2

NPC-Sentence measures did not show clearly which sentences

should be improved or re-written.

 On the other hand, the version 2 NPC-Req metrics show that

two requirements were the most complex requirements in the

section. This coincided two of the modifications shown on the

version 3 requirements document.

 Based upon the above analysis, it was clear that NP chunk

counts could measure the complexity of requirements statements and

hence showed the strong cause-effect relationship to the content

goodness properties of requirements statements. In other words, the

proposition P4 was supported.

Cohesion and Coupling Metrics: The cohesion measures for the

version 1 to version 4 of IMAGS II requirements documents could

be illustrated by the differences between the two adjacent versions of

IMAGS II requirements documents. The results were three sets of

measures, and they revealed that the iteration from version 1 to

version 2 and from version 2 to version 3 had substantial changes.

On the other hand, the iteration from version 3 to version 4 was

bounded in a relatively narrow range.

 Similar to the cohesion metrics, the coupling metrics also

showed that the iteration from version 3 to version 4 of the

requirements stayed in a relatively narrow range.

 In addition to NPC-Cohesion and NPC-Coupling, NPC-

Composite was used in the study. For the IMAGS II project, NPC-

Composite showed that Section 30 is the worst requirements section.

After examining the requirements document, it was found that

Section 30 was for reports. Reports requirements typically

referenced all other sections and were independent of each other.

The next low quality requirements sections were Section 3, 6, and

33. Section 3 was the requirements for the overall operations, which

included multiple requirements for suspend and shutdown some

operations but leaved others operational. Section 3 indeed contained

complicated requirements. Section 6 discussed the address import,

and Section 33 provided performance related requirements. These

two sections did not seem to be complicated.

 For the FAA project, the most complicated requirements

section indicated by NPC-Composite was Section 13, which had the

highest number of sentences and the cohesion value for Section 13

was zero. This section is indeed complicated. The next set of low

quality requirements sections were Section 6, 19, and 22. Although

the NP chunk count of Section 6 was not the highest, the coupling

value was the highest. The problem with Section 19 and 22 was

evident by their zero cohesion value.

 The Phase I case study provided evidence that the proposed

NPC-Cohesion and NPC-Coupling metrics were consistent with

Ricker’s metrics which were correlated to understandability, a

content goodness property, of requirements statements. This section

again reported evidence that the NPC-Composite metric had a strong

cause-effect relationship to the content goodness properties of

requirements statements. In other words, NPC-Cohesion supported

the proposition P5, and NPC-Coupling supported the proposition

P6.

Summary: Based upon the evidence discussed above, the

hypothesis that the proposed complexity metrics could identify low

quality requirements statements in a requirements document was

asserted.

5.5 Two Phased Case Study for Requirements

Statements in a Database

 We are currently conducting a two phased case study, similar

to the above study, on the NP chunk metrics for requirements

statements in a database. For NPC-Count, one of the three core

metrics, the way to count NP chunks remains the same and is not

affected by the locations of each sentence. Hence, the conclusions

we have derived for NPC-Count in the previous study are still valid.

 On the other hand, the previous NPC-Cohesion and NPC-

Coupling utilize the concept of spatial distance and clustering, which

are not applicable in the database environment. At least they are not

applicable in the vector space constructed by NP chunks.

 Although we calculate NPC-Cohesion and NPC-Coupling

metrics differently in the two environments, documents and

database, NPC-Cohesion/NPC-Coupling for documents can be used

when printing requirements statements from a database. A

requirements statements printout, either from a document or a

database, shows requirements statements in a linear order. To

maximize NPC-Cohesion and minimize NPC-Coupling for the

printout should still utilize the NPC-Cohesion/NPC-Coupling for

documents, not NPC-Cohesion/NPC-Coupling for databases.

6 Summary

 This research made two contributions: (1) the invention of a

suite of complexity metrics to measure the content goodness

properties of requirements statements and (2) the empirical case

study to evaluate the invented suite of complexity metrics.

 The invented complexity metrics are researched and developed

to identify low quality requirements statements. In the previous

empirical two phased case study, it was demonstrated that the

proposed metrics could measure the content goodness properties of

requirements statements.

 The research demonstrates the feasibility of using NP chunks

as the elements of measurement for complexity metrics. In addition

the invented suite of complexity metrics provides requirements

engineers and managers with a tool to measure the quality of the

requirements statements. These metrics can be used to identify low

quality requirements. They can also be used to identify requirements

and requirements sections that may require more rigorous testing.

Potential flaws and risks can be reduced and dealt with earlier in the

software development cycle.

 At a minimum, these metrics should lay the groundwork for

automated measures of requirements in documents or in databases.

7 References

[1] S. Abney, “Parsing By Chunks”. Robert Berwick and Steven

Abney and Carol Tenny (eds), Principle-Based Parsing, Kluwer

Academic Publishers, 1991.

[2] S. Cant, D. R. Jeffery, and B. Henderson-Sellers, “A

conceptual model of cognitive complexity of elements of the

programming process”, Information and Software Technology,

37(7), 351-362. 1995.

[3] D.P. Darcy and C.F. Kemerer, Software Complexity: Toward a

Unified Theory of Coupling and Cohesion, MIS Research

536 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Center, Carlson School of Management, University of

Minnesota, February 8, 2002.

[4] C.Y. Din, Requirements Content Goodness and Complexity

Measurement Based On NP Chunks, Doctoral Dissertation,

George Mason University, Fairfax, VA, 2007. Reprinted by

VDM Verlag Dr. Muller, 2008. A short summary of the

research was published on Journal of Systemics, Cybernetics

and Informatics (JSCI), 7(3), 2009, pp.12-18.

[5] H.E. Dunsmore, “Software Metrics: An Overview of an

Evolving Methodology”, Information Processing and

Management, 20(1-2), 183-192, 1984.

[6] N.A. Ernst and J. Mylopoulos, “On the perception of software

quality requirements during the project lifecycle”, In

International Conference on Requirements Engineering:

Foundation for Software Quality, pages 143-157, Essen,

Germany, June 2010.

[7] F. Fabbrini, M. Fusani, S. Gnesi, and G. Lami, “An Automatic

Quality Evaluation for Natural Language Requirements”, In 7th

International Workshop on RE: Foundation for Software

Quality REFSQ0'01, 2001.

[8] N.E. Fenton and M. Neil, “Software metrics: roadmap”

Proceedings of the International Conference on Software

Engineering (ICSE), 357-370, 2000.

[9] A.C. Graesser, D.S. McNamara, M.M. Louwerse, and Z. Cai

“Coh-Metrix: Analysis of Text on Cohesion and Language”,

Behavioral Research Methods, Instruments, and Computers,

36(2), 193-202, 2004.

[10] B. Henderson-Sellers, Object-Oriented Metrics – Measures of

Complexity, Prentice Hall PTR, New Jersey, 1996.

[11] S. Iqbal and M.N.A. Khan, “Yet another Set of Requirement

Metrics for Software Projects”, In International Journal of

Software Engineering and Its Applications, Vol. 6, No. 1,

January, 2012.

[12] C. Jones, Software Quality in 2008 : A Survey of the State of

the Art. Technical Report, Software Quality Institute, 2008.

[13] C.F. Kemerer, “Progress, Obstacles, and Opportunities in

Software Engineering Economics”, Communications of ACM,

41, 63-66, 1998.

[14] T. Klemola, “A Cognitive Model for Complexity Metrics”, 4th

International ECOOP Workshop on Quantitative Approaches in

Object-Oriented Software Engineering, June 13, 2000.

[15] S. Lee, Proxy Viewpoints Model-Based Requirements

Discovery, Doctoral Dissertation, George Mason University,

2003.

[16] A.V. Levitin, “How to Measure Size, and How Not to”, Proc.

Tenth COMPSAC 1986, Chicago, Oct 8-10, 1986, IEEE

Computer Society Press, Washington DC, 314-318, 1986.

[17] D.S. McNamara, “Reading both high and low coherence texts:

Effects of text sequence and prior knowledge”, Canadian

Journal of Experimental Psychology, 55, 51-62, 2001.

[18] D.S. McNamara, E. Kintsch, N.B. Songer, and W. Kintsch,

“Are good texts always better? Text coherence, background

knowledge, and levels of understanding in learning from text”,

Cognition and Instruction, 14, 1-43, 1996.

[19] M.M. Mora and C. Denger, “Requirement Metrics: An initial

literature survey on measurement approaches for requirement

specifications”, IESE-Report No. 096.03/ Version 1.0, October

1, 2003.

[20] J. Natt och Dag, B. Regnell, V. Gervasi, and S. Brinkkemper,

“A linguistic-engineering approach to large-scale requirements

management”, Software, IEEE, 22 (1), pg. 32-39, January 2005.

[21] S. Purao and V. Vaishnavi, “Product Metrics for Object-

Oriented Systems”, ACM Computing Surveys, 35(2), 191-221,

2003.

[22] D. Regnell, R.B. Svensson, and K. Wnuk, “Can We Beat the

Complexity of Very Large-Scale Requirements Engineering?”,

In International Conference on Requirements Engineering:

Foundation for Software Quality, Vol. 5025, Lecture Notes in

Computer Science, pages 123-128, Montpellier, France, 2008

[23] D.J. Reifer, “Profiles of Level 5 CMMI Organizations”,

Crosstalk: The Journal of Defense Software Engineering,

January, 2007.

[24] M. Ricker, Requirements Specification Understandability

Evaluation with Cohesion, Context, and Coupling, Doctoral

Dissertation, George Mason University, Fairfax, VA, 1995.

[25] L.H. Rosenberg, T.F. Hammer, and L.L. Huffman,

“Requirements, Testing, and Metrics”, In 15th Annual Pacific

Northwest Software Quality Conference, 1998.

[26] R.E. Schneider, Process for building a more effective set of

requirement goodness properties, Doctoral Dissertation, George

Mason University, Fairfax, VA, 2002.

[27] C. Schwaber, “The Root of the Problem: Poor Requirements”,

IT View Research Document, Forrester Research, September,

2006.

[28] I. Sommerville, Software Engineering: update, 8th Edition,

International Computer Science, Addison Wesley, 2006.

[29] W.M. Wilson, L.H. Rosenberg, and L.E. Hyatt, “Automated

Quality Analysis of Natural Language Requirement

Specifications”, Fourteenth Annual Pacific Northwest Software

Quality Conference, October, 1996.

[30] R.K. Yin, Case study research, 3rd edition. Thousand Oaks,

CA: Sage Publications, 2003.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 537

Proposal and Development of Markers-type Mouse
System with Considering Practical and Entertainment

Kazuya Murata, Takayuki Fujimoto

Graduate School of Engineering, Toyo University
Kujirai2100, Kawagoe-City, Saitama, Japan
gz1100108@toyo.jp, me@fujiotokyo.com

Abstract - We proposed the new mouse interface that does
not need operation restrictions of the existing mouse, and
developed the prototype system. Our mouse system was
developed using Augmented Reality Technology. This system
attaches a mouse function to the marker attached to the
object, makes a computer recognize it, and operates. All the
things that attached the marker with a mouse function by this
system can be used as a mouse interface. As a result, we
realized the mouse interface system that does not have
restrictions in mouse operation.

Keywords: Marker, Augmented Reality technology, Mouse
interface, Mouse function

1 Introduction
 Currently, the computer has spread to a home as a tool
useful for anyone. In the background, there is development of
the user interface for computer operation. Moreover, a mouse
interface is famous also in a user interface. As a large factor,
there is existence of the mouse interface developed by
Douglas Engelbart in 1961.

 After a mouse interface is invented, various mouse
interfaces in consideration of convenience, a design, etc. have
been developed. A mainstream mouse interface has three
functions, “Left-click”, “Right-click” and “Cursor
movement”. Currently, a mouse interface with these three
functions is in use. Moreover, the mouse of an elliptical form
called “two Button type” with a minimum function for
controlling a computer is general. The design and structure of
the "two Button type" are being fixed as a “form” of today's
mouse interface.

 However, the environment and the purpose of a computer
are also diversified in recent years. Therefore, as for the
interface for computer operation, diversification is demanded.
Still now, various mouse interfaces are proposed and
developed.

 In this paper, we propose the new mouse system with a
different concept by using the Augmented Reality
Technology, and develop a prototype system.

 In the prototype system developed by this study, the
"marker" to which the function of the mouse was attached is
used. By using this marker, even if there is no existing mouse,
the function of a mouse is realizable. Moreover, if it is a thing
that can attach a marker, it is utilizable as a mouse. As a result,
a user's favorite thing can also be utilized as a mouse.

2 Purpose of Study
 A mouse in recent years is divided into two classifications.
First, it is a mouse operated using rotation of a trackball.
Second, it is a mouse that makes the bottom of a mouse
possess LED, is made to reflect LED in a plane floor etc., and
is operated.

 Although the mouse that LED possesses on the bottom in
recent years is in use, the operation method is mentioned as
the reason. When cursor operation is considered, with the
mouse of a trackball, a ball is rotated in person. Therefore,
precise operation cannot be performed if the hand of cut and
moderate rotation is not taken into consideration.

 When it is the mouse that LED possesses on the bottom to it,
the same motion as a direction to move on a flat place is
performed. By that, there is an advantage that can perform
cursor movement easily satisfactorily. However, when a flat
place does not exist, there is a danger that operation is
impossible. Moreover, while the use environment of a
computer is diversified, the form of the interface used for the
operation is also asked for diversity. But, a sufficient proposal
or development is not necessarily made.

 So, we aim at the interface that does not need restriction of
the existing mouse interface. In order to realize this aim, we
used the marker of Augmented Reality Technology. We
propose the new mouse interface that uses the marker of
extended actual feeling technology and makes computer
operation possible. In addition, based on the proposed
interface, and we develop a prototype system.

538 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

3 Background of Study
 The mainstream of the present computer operation is a
mouse interface. However, the present mouse interface
requires a flat place. Moreover, in the track pad type of a
notebook computer, operation area is narrow, and it is not fit
for efficient operation. Furthermore, use becomes difficult
when there is no place for placing a trackball type mouse
interface. Currently, there are restrictions that a flat place is
required for the mouse interface proposed and offered.
Therefore, although restrictions of a mouse interface are not
needed, the new mouse interface with a basic function can
predict diversification. Then, we thought that there was big
interest in a new mouse interface.

4 Summary of System
 In this system, not using the existing mouse interface, the
new mouse interface that conquers the fault of a mouse
interface is realized. As the method, we propose the system
that sticks a "marker" on a familiar thing and as which it
operates it as a mouse interface. From this, it becomes
possible to use mouse function even if there is no existing
mouse interface. Moreover, the new mouse interface that does
not need the flat place that is a fault of the existing mouse
interface is realized.

 The outline of this system is described below. In this system,
the function of a mouse interface is given to a marker, and
even if there is no existing mouse interface, the function of a
mouse interface is realized. Augmented Reality Technology
is used for giving the function of a mouse interface to a
marker. Augmented Reality Technology recognizes the
marker with the Web camera attached to a computer.
Therefore, if it is a computer with a camera function, it can
use also by a general computer. Augmented Reality
Technology can display three-dimensional graphics, if a
marker can be recognized with a camera. The marker of
Augmented Reality Technology has two processing. It is
“when recognize” and “when cannot recognize”. This system
the function of a mouse interface is realized using this
processing.

 In addition, when the functions of a common mouse
interface is considered, there are three functions, “Left-click”,
“Right-click” and “Cursor movement”. The functions
realized by this system are these three functions.

4.1 Marker Attached Mouse Functions
 This system realizes a mouse function with the marker of
Augmented Reality Technology. It is operated by processing
“when recognize” and “when cannot recognize”. In addition,
when considering the minimum function of a mouse, there are
six functions “Left-click”, “Right-click”, “Movement on
cursor”, “Movement under cursor”, “Movement left cursor”
and “Movement right cursor”. Therefore, the six markers for
them are needed.

 Figure 1 show the markers to use in this paper. An upper
two markers are marker for a click. The marker of an arrow is
a marker for cursor movement. The markers in Figure 1 are
one example. A design can be changed into a free design if
recognition conditions are fulfilled by Augmented Reality
Technology.

Figure 1. Example of the marker used for the prototype
system.

5 How to Operate the Marker
 This study developed a prototype system using the proposed
method. In this chapter, the usage of the prototype system is
described.

5.1 Mouse Click Operation
 A case of click operation, “when recognize” has nothing
happen. And, “When cannot recognize” click operation is
performed.

 As an example, the procedure of the click operation is
shown below.

(1) The click marker can be recognized from the camera.
(Click button leave)

(2) The click marker cannot be recognized by the finger etc.
(Click button push)

(3) The click marker can be recognized from camera again.
(Click button leave)

(4) The click function operates.

 The example of click operation is shown in Figure 2.

Figure 2. Example of click operation

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 539

5.2 Mouse Cursor Movement Operation
 Four markers of the lower berth of Figure 1 were used for
cursor movement.

 A case of cursor movement operation, “When cannot
recognize” has nothing happen. And, “When cannot
recognize” cursor movement is performed. The operation
procedure of the cursor movement is shown below.

(1) The cursor movement marker cannot be recognized
from the camera. (Cursor move stop)

(2) The cursor movement marker can be recognized.
(Cursor move start)

(3) The cursor movement marker cannot be recognized
from the camera again. (Cursor move stop)

 At this time, if a marker can be recognized, it can attach
anywhere. For example, it is a PET bottle, a writing case, and
a purse etc. If a marker can attach, anything can realize the
function of a mouse. Figure 3 shows one example of
“Extempore mouse interface” used to experiment. These were
able to use a minimum function of the mouse.

 (a) (b)

 (c) (d)

Figure 3. Example of “Extempore mouse interface” (a)empty

can, (b)Plastic bottle, (c)book, (d)mobile phone

6 Example of System Operation
Procedures

 In this system, by attaching the marker in which the
function of the mouse is incorporated, anything can be used
as a mouse. As the example of operation of this prototype
system, “Unnecessary box” was used. Of course, even if this
is not “Unnecessary box”, if a marker can be attached, it can
use anything.

 The example of operation is described below. As an
example, operation of starting “Internet Explorer” on a

desktop is performed. Usually, in order to start a browser, it
carries out at the following three steps.

(1) A cursor is moved to on an icon.
(2) Double-click the left click of mouse.
(3) The browser start.

 Therefore, this system also needs to perform same operation.
A cursor movement marker is attached on an “Unnecessary
box” and a mouse click marker is arranged. In this stage,
“Unnecessary box” serves as an interface with a mouse
function.

 First, the “Unnecessary box” that stuck the marker so that it
might be visible from a camera is arranged. Next, a cursor
movement marker is made to recognize and a cursor is moved.
The actually used box is shown in Figure 4, and a system
startup state is shown in Figure 5. In addition, the three-
dimensional graphics currently displayed on Figure 5 is
graphics of a fundamental quadrangle. These graphics are
made intelligible in an experiment. Of course, the graphics in
consideration of entertainment, etc. can be changed freely.

Figure 4. Example which attached the marker of the mouse
function on the “Unnecessary box”

Figure 5. Example of starting of the whole system

540 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

 Next, if movement of a cursor is completed, it prevents
from recognizing a mouse click marker with a finger etc.
Then, the click Operated and “Internet Explorer” starts.

Figure 6. Starting form the icon by click operation

7 Conclusion and Consideration
 In this paper, we proposed the mouse interface according to
the new concept. In addition, we proposed a new mouse
interface using Augmented Reality Technology, and
development a prototype system.

 This prototype sytem, mouse functions can be realized
without the need for operational constraints of the existing
mouse interface. Moreover, this system is possible to display
three-dimensional graphics by using Augmented Reality
technology. That is, application in consideration of
entertainment is possible. From this, the value of
entertainment that was not in an old mouse interface can be
added.

 This system dose not needs the operation restrictions of
existing mouse interface. But, there is a problem that cannot
be used without the camera for recognizing a marker.
However, the recent notebook computer has a small built-in
web camera. From this, we think that it is not a difficult
problem. Therefore, this system for general computer user
dose not requires a special environment and constraints. In
addition, the existing mouse interface and operation
constraints are not needed. From the above, we think that it
can contribute for general-purpose use, choice of a mouse
interface and extension of diversity.

 Especially, the marker type mouse system in particular
proposed by this study is not the new mouse interface
mounted by a simply different concept. Rather, we think that
the deployment possessing entertainment of a new mouse
system and the possibility of application of welfare apparatus
etc. could also be suggested.

8 Problem Point
8.1 Problem of Cursor Movement

operation
 This In this system, in realizing the function of mouse
interface by a marker, six minimum functions were mounted
“Left Click”, “Right Click”, “Up Move”, “Down Move”,
“Left Move”, and “Right Move”. As a result, the cursor
movement has been fixed vertically and horizontally. That is
the problem that nonlinear movement cannot be performed
has occurred.

8.2 Problem of Click operation
 In The problem that should improve also about click
operation remained. The marker designed the system that
performs click operation, “cannot be recognized”. As a result,
if recognition of a marker becomes impossible in some
accidents, an error may occur. In addition, when the state
where a marker cannot be recognized continues, there is a
problem that malfunction of click operation generates. We
would like to consider it as a future examination subject.

9 Relevant study and Similar Study
 In this study, there is ARDesktop as related study.
ARDesktop is the three-dimensional graphics library that
applied ARtoolkit and was manufactured. If the graphics of a
marker are touched in the graphics currently displayed,
operation corresponding to it will be performed. Moreover, it
is possible to operate it so that using two or more markers
may hold graphics.

 There is a mouse interface of OZUPAD as similar study.
Incorporated Company Blue Mouse Technology developed
OZUPAD. OZUPAD is a multifunction mouse interface that
can operate not only as the function of a mouse interface bus
as a joystick and the presentation function also has. Moreover,
it is wireless, and it can be operate even if there is no flat
place like this study.

 In this study, the proposal and the prototype were
performed based on the concept of “realizing the function of a
mouse interface using a marker not using the existing mouse
interface.” However such a mouse system exists in neither the
existing study nor similar study, so it is thought that novelty
is high.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 541

10 References
[1] T. Tanijiri, “Augmented Reality Technology Programing
Technique to Achieve Augmented Reality,” CUTT System,
Ltd. 2008

 [2] T. Tsuchiya and K. Takahashi, “Development of AR
system Using Hand Gesture,” The science and engineering
review of Doshisha University 50(3), [107]-113, 10-2009,
Doshisha University.

[3] Y. Teramae, Y. Ban and K. Uehara, “The Development of
MR-based Desktop Collaboration System,” IEICE technical
report, PRMU, pattern recognition and media understanding
104(572), 1-6, 13-01-2005.

[4] T. Wada, M. Takahashi, K. Kagawa and J. ohta, “Method
to Realize Mouse functions Using Laser Pointer,” journal of
the institute of Image Information and Television Engineers
63(5), 657-664, 01-05-2009

[5] T. Kurata, T. Okuma, M. Kourogi and K. Sakaue, “The
Hand-mouse : A Human Interface Suitable for Augmented
Reality Environments Enabled by Visual Wearables,” IEICE
technical report, PRMU 100(565), 69-76, 11-01-2001

[6] GIGAZINE:
http://gigazine.net/news/20081204_mouse_over_the_years/

542 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

ERADICATING COMPLEXITY IN SOFTWARE INTERFACE FOR
INCREASED PRODUCTIVITY

Increasing Effectiveness of Enterprise Systems
Felix Bollou, Edmund Balogun, and Inah Usang

School of Information Technology and Communication (SITC),
American University of Nigeria, Yola Adamawa State, Nigeria

Abstract	 -‐Enterprise Resource Planning Systems (ERPs)
are usually complex in terms of conception, design and in
terms of usability for the average users. This situation was
tolerated for a long time because the majority of users
where either computer technical personnel or the few
privileged educated elite with good computer literacy. The
complexity of ERPs interface is legendary and no matter
how long ERP systems have been used, the users have
difficulties to intuitively run the transactions.
In order to incorporate the new requirements, efforts by
programmers to create more intuitive and interactive
systems have been somewhat successful yet there still
remain the tendency to introduce complexity and too much
sophistication in interface design. This paper gives an
insights into some paradigms associated with interface
designs and also provides contextual case studies.

Keywords: ERP, Interface design, Human-Computer
Interaction, Complexity in Interface Design

1 CHAPTER ONE

1.1 Introduction

In the world of computing today, the importance of a grand
interface design cannot be overemphasized. Before the
advent of personal computers in the late 1970s, the main
people who often used and interacted with computers were
software developers, computer scientists and information
technology professionals. Computing has evolved overtime
and the existence of personal computers has created an
avenue for humans to interact with computers. Personal
computers have played a major role in the development of
mankind, as they have been applied to daily lives and
activities. Computer applications have been developed for

virtually all sectors, ranging from medicine, banking to
education. The most important factor for the proper use of a
computer program is the interface; however in recent times,
some computer programs have become highly intricate and
uneasy to manipulate because of the complexity of their
interfaces.

The use of computers in today’s world has
become a widespread phenomenon. Computers have
basically been developed to aid man in certain endeavors.
As computers are increasingly becoming service oriented,
the need to design and implement a user-friendly interface
is on the rise. Systems ranging from Automated Teller
Machines (ATMs), Cell Phones, and Personal Computers
(PCs) to Digital blood pressure apparatus are all engineered
to be service oriented. The way humans interact with a
particular system is important and as such the major goal of
system developers and designers should be to provide a
tremendous user interface based on the functionality and
the intuitiveness of the system. Nowadays most companies
strive to employ Ubiquitous Information Systems (UIS) to
aid their operations. UIS offers a medium for organizations
to provide users and workgroups with services of
ubiquitous computing technologies in real-time. “UIS come
with more complex requirements than the more strongly
constrained Information Systems for office settings”
(Maass, 2012), and as such introduces some complexity in
its structure. Similarly some systems introduce complexity
by trying to meet the functionality of the system and often
disregard the concerns of the user.

 Human-Computer Interaction deals with certain paradigms
of how humans relate and respond to computers.
Consequently, this paper would offer an insight into such
paradigms and examine from a contextual view, the
importance of interface designs especially in service
oriented systems. Considering a scenario where a user
stands in front of an ATM machine for several minutes,
trying to manipulate the ATM and is unable to perform a

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 543

	
	

smooth operation. This dawdling process can be attributed
to so many factors, one of which is intricate interface
design. In the course of this research, similar situations
would be pointed out and properly examined to determine
how complexities can affect productivity, especially in
organizational environments. Consequently, it is deceptive
to see that an SAP expert will require additional training
before becoming proficient on Oracle business suite.
Today, computing has become ubiquitous; even people that
apparently don’t have any business with computers are
exposed to information to be processed on daily basis.
Therefore, the way to present information must be adapted
to the new, diverse and broader audience. To gain an
understanding of how users’ can be affected by an
interface, some users’ feedback were studied on the Banner
higher education system at the American University of
Nigeria. Some findings were that users were reluctant to
the user interface because it is too technical and lacks ease
of use. Further, we suggest that ERP systems introduce
some standards to ease technician’s move from one to the
other.

1.2 The problem of Interface Complexity.

The problem of complex interface sometimes

affects users performances and leads to low productivity
especially in organizations that use extensive Information
Systems and self-service systems for their business
transactions. Management Information Systems as a field
that deals with the interaction of computers, procedures,
and people in an organization should clearly play a central
role in deciding some of the design principles and
techniques to be adopted in programs used by
organizations. Most Organizations spend huge sums of
money in correcting errors in their processes. These errors
can be attributed to many factors: These factors include
time delays in performing a task, inconsistency, incomplete
information and inaccurate data. Most of the time, these
problems are caused by un-easy user Interfaces.

 Human-Computer Interaction addresses issues
that deal with the design methodologies of user-interface
and guidelines for proper interface designs. HCI in
Information Systems is an imperative stream that tends to
merge both fields to solve common problems associated in
both areas. Further research have sprung up under this
topic, but this present work focuses on identifying and
proposing solutions to certain identified complexities in
systems encountered by users, particularly users in
organizations. Several techniques, guidelines, and design

solutions are highlighted in this research that can be
adopted by developers to further enhance interface design.

2 CHAPTER TWO

2.1 Literature review

Attempts have been made by several researchers to define
Human-Computer Interaction (HCI). Human-Computer
Interaction is an area of research that began in the 1980s as
a branch in computer science (Carroll, 2009). HCI is
viewed as a discipline concerned with the design,
evaluation and implementation of interactive computing
systems for human use (Thomas , et al., 1996). HCI is a
multidisciplinary study that deals with both art and science;
it illustrates the interdependence of a software system and
its interface. (Nanni, 2004). According to Tufte (1989) HCI
can be seen as “two powerful information processors, i.e.
the human and the computer attempting to communicate
with each other via a narrow bandwidth, highly constrained
interface” (Tufti, 1989). It is imperative that we have an
understanding of what has been said about Human-
computer Interaction and how it relates to interface design.
Usability in interface design is of importance because it is
the degree to which an “interface takes into account the
human psychology and physiology of its users”
(Wachowiak, Wachowiak--Smolikova, & Friya, 2010).
Therefore we can say that HCI deals with the
methodologies of how computers and humans interact and
how interdependent they are. HCI, in consanguinity to
interface design is vital, and it has been estimated that
about 48% of works on system development goes to the
design and implementation of the user interface (Myers &
Rosson , 1992).
When designing user interface for systems, the
communication between users and computers must be
taken into consideration because the user’s attributes do not
often match computer features. (Fetaji, Suzana, Bekim, &
Mirlinda, 2007). The significance of interface designs and
issues in Human-Computer Interaction has not risen to a
high level in information systems; its importance has long
gone unrecognized (Peslak, 2005). Zhang, et al. highlights
some opinions on the significance of HCI considerations in
business applications and how essential it is in the
development of a system. They further suggest that some
information systems failures can be credited to “faulty
design choices resulting from the lack of emphasis on the
human/social aspects of system use” (Zhang, Jane, Dov, &
Marilyn, 2004).

544 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

	
	

Complexities are sometimes introduced in
interface designs, and as such reduce users’ ability to
utilize full functionality of the system. Suggestions have
been made for developers and students in design areas to
develop competency through guided learning in
understanding and devising user-friendly systems and
solutions (Peslak, 2005). Consequently (Quaye, 1990),
further conducted an investigation of HCI and how the
quality of an interface affects users both on personal and
enterprise levels. Comprehensive works from various
researchers have been done on HCI and have showcased
different topics and raised many concerns as well as
contributions. According to (Danino, 2001) certain
questions arise when conferring about HCI and how it
relates to interface design. Questions like; why do some
people become so good in navigating new systems
effortlessly while others scuffle to learn? Why are some
websites easier to navigate than others? Why do some users
encounter difficulties in operating electrical devices?

The relevance of this work would be to infer ways
in which these problems can be alleviated. This project also
offers insights into some minor interface problems often
neglected by developers which sometimes cause time
wastage, reduces performance and usability both on small
and large scale basis.

2.2 What is Human-Computer Interaction?

Early computers were mostly used by scientists
for research and by business organizations for several
analytical and production functions. Today, the number of
computer user’s increases due to the availability of PCs.
The increase in computer users triggered the need for good
interface designs to enhance the interaction between
humans and computers, which sprung a research stream
known as Human-Computer Interaction (HCI). The study
of how people make use of various mediums of computer
technology tools to perform their daily activities is what we
define as Human-Computer Interaction. Consider user-A
using an ATM machine to perform a transaction or user-B
using a cell phone to make a phone call. The interaction
between the user-A and the ATM’s interface or user-B and
the cell phone is a basic idea of the concept of Human-
Computer Interaction, though it can be viewed with more
complex examples. The study of HCI integrates different
disciplines like computer science, engineering, graphic
design, psychology, philosophy and ergonometric.

The interaction between humans and computer
systems is made possible through a medium called the User
Interface (UI). The user interface acts like a middleman

between computer system and humans. The user interface
gives the users a first impression of a system therefore if
the interface is not properly designed, users may not make
optimal use of the system. To enhance interactivity, the
study of HCI is recommended for software developers for
the production of user-friendly interfaces. Most software
developers focus on the functionality of the system
disregarding the fact that the users are also stakeholders of
the software. Functionality of a system is the tasks or action
that the system can perform. One major key to designing a
good interface is by understanding the need of the potential
user. To enhance user interactivity with computer systems,
there should be a balance between the functionality and the
usability of the system. Usability on the other hand is the
degree in which the various functions of a system can be
used to achieve the goal of the user (Fakhreddine, Milad,
Jamil, & Mo, 2008).

HCI can also be linked with the integration of
Computer Science and Cognitive Science (study of
thought, learning and mental organization). To better
understand how humans relate with computer systems, it is
best to understand how mental activities prompt certain
behavior. For this reason, cognitive science plays a vital
role in the study of HCI. The study of cognitive science
helps designers develop more intuitive systems. It also
helps interface designers understand their user which
makes it easy for interface designers to know what exactly
the users want.

2.3 A Brief History of HCI

As stated earlier, before the 1970s, Information
Technology Professionals mostly carried out computing
and all this changed with the introduction of Personal
computers (PC) in the early 1980s. PCs enhanced
individual computing greatly by making software such as
spreadsheet, gaming applications and computing platforms
(Operating Systems) accessible to ordinary people. The
existence of Personal Computers basically led to the
extinction of machines like typewriters, adding machines
and dedicated word processors because PCs had large
processing capability and ease of use. Although the PCs
made it possible for users to do more, a major setback was
the complex and perplexing interface (Carroll, 2009). As
PC users increased, there was a need for software
developers to understand user requirement and produce
intuitive and interactive systems.

Cognitive Science is an area related to HCI that
has also been under research since the late 1970s. It is the

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 545

	
	

study of thought, learning and mental organizations.
Scientist from different disciplines like Artificial
Intelligence, Cognitive Psychology, Philosophy of the
mind, Linguistics and Cognitive Anthropology converged
to form the field of Cognitive Science. Some cognitive
scientist made use of computer systems for their research
leading to their understanding of how computers could be
used by people to solve problems (Mary & Carroll M.,
2002). The merging of Cognitive Science and computer
science brought about HCI, which was the first branch of
Cognitive Engineering. Most users judge systems based on
the interface and not the internal components of the system

Also in the late 1970s, the Xerox Park Research
Project was in progress though the scientists had no clear
idea what HCI was exactly. The major goal of this research
was to make computer software and systems more
interactive for users to enhance productivity of
organizations. This research led to the redesign of the
computer mouse technology, which was invented earlier by
Douglas Engelbart in 1953 (Vochin, 2009). The use of
desktop icons was another important area of the research, a
starting point of the more advanced user interface we make
use of today (IconLogic, 2006).

The study of HCI grew as it influenced most
branches of Information Technology. Software engineers in
the 1970s developed complex and confusing systems
because they emphasized more on developing systems and
did not really consider user interactivity. Therefore the
need for more interactive and intuitive systems cannot be
overemphasized because it plays a vital role for subsequent
generations of computing.

Another major impact of HCI is the GOMS (goals,
operators, methods and selection rules) project, which was
setup in 1983 by Staurt Card, Thomas P. Moran and Allen
Newell. This project provided facts on the usability of a
system through the study of the human mental activities.
The GOMS model operates by collecting user
specifications and description of task that the user can
perform with the system and makes predictions based on
the data collected. The GOMS model can make predictions
of the time it would take a user to perform a task or learn to
use a system. This often helps to save resources because
data would not need to be empirically collected during
design (Mary & Carroll M., 2002).

 Usability

Figure 2.1 illustrates the three perspectives of usability
engineering.

Source: Usability Engineering: Scenario Based
Development of Human-Computer Interaction1

3 CHAPTER THREE

3.1 Survey on Banner User Interface (Case
Study)

The American University of Nigeria uses Banner
for managing its student data and other processes. The
Banner software is an administrative software program that
was developed specially for managing data in higher
institutions. A survey was conducted on four main
administrative departmental users of banner at AUN. The
departments are

Ø Finance
Ø Registrar
Ø Academic
Ø Housing/admission

The departments listed above are greatly affected by the
performance of banner because they use it on a daily basis
to compile information of both students and staffs.
The survey was limited to the interface of banner and did
not analyse or examine the effectiveness or functionality of
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
(Mark	 &	 Scott)1	 	

	

	

Human	
performance,	 time	

and	 errors	

	

Collaboration	
group	

dynamics	 and	 workplace	
context	

	

Human	

cognit
ion,	

mental	

models	 o
f	

plans	 a
nd	

action
s	

	

	

Collaboration	 group	 dynamics	 and	 workplace	 context	
	

546 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

	
	

banner operations. Questionnaires were developed and
shared to staffs in the four departments listed above. The
questions asked are listed below:
KEY QUESTIONS

Q 1 Does an Interface affect your Performance?

Q2 Do you think Banner is more difficult than the
traditional spreadsheets like excel?

Q3 How long have you been using banner?
Q4 Are You Satisfied with the Banner Interface?
Q5 Has Banner improved your performance?
Q6 Are you conversant with banner operations?
Q7 Do you perform your work better with banner?
Q8 Do you think Banner system is highly

interactive?
Q9 Are you 100% comfortable using banner?
Q10 Is the interface user friendly?
Q11 Do you think banner is some worth complex and

uneasy to use?

Q12 Do you perform your work faster with banner?
Q13 Do you think banner wastes your time and does

not really provide a learning environment?
Q14 What are some of the challenges you face when

using banner, please specify.
Q15 If you have a better and more interactive

interface would you use it instead of banner?

After collecting all the questionnaires, SPSS (Statistical
Package for the Social Sciences) was used to analyse the
results. The questions were represented with codes on
SPSS, to enable a smooth computation of the data. The
graphical representation of the results for each question is
shown below.

Question 1 showed that about 45% of the users admitted
that an interface affected their overall performance, 35%
were uncertain if an interface affected their performance
and 20% of the respondents said an interface did not affect
their performance.

Quite similar to question 6, Question 7 asked users if they
performed their work faster with Banner and about 50% of
the respondents were affirmative that they performed their
job faster with Banner, while 25% each said they
performed faster with banner sometimes and to some
extent.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 547

	
	

As noted earlier, users in the four departments have not
being exposed to any software for performing tasks like
banner; hence, in Question 8, 55% of users from all
departments felt Banner was highly interactive, while 25%
said it was not interactive, the remaining 20% said it was
interactive to some extent.

On Question 9 respondents were asked if they were 100%
comfortable using Banner to perform daily activities and
did not have any issues with it, 55% of respondents were
not completely satisfied with it, 25% were not satisfied at
all and the remaining 20% were satisfied.

Question 10 was the most relevant for this research;
respondents were asked if they taught the banner user
interface was user friendly, and 65% said it was not user
friendly, while 35% said it was.

Question 11 was also very relevant for the research
because 55% of the users in all departments said Banner
was complex and uneasy to use.
Question 12 basically asked users if the worked faster with
banner and it was similar to Question 7 and recorded the
same results.
Question 13 was similar to the results of Question 11,
because 55% of the respondents felt that banner wasted
their time basically because of incomplete information and
time wastage. The remaining 35% said it did not really
waste their time.

548 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

	
	

On Question 14, users were asked to write down some of
the challenges they faced with Banner, and the following
conclusion was drawn from their responses.

1. Respondents felt Banner was technical
2. They said it was some worth complex
3. They said the interface was not user friendly

Question 15 was the last and Users were asked if they had
a more user- friendly software, if they would stop using
banner and move. 90% of respondents answered
affirmative to this question.

3.2 Limitations of Survey
The survey on the Banner system was basically to
determine users’ opinion on the software to determine how
the interface affected their performance and productivity
and what they thought about the software in general. The
survey did not in any way analyse the functionality of
Banner, nor did it evaluate its performance and operations.
It only strived to get an insight on the perspective of its
users.

3.3 Comparison of SAP and OPEN ERP

To further illustrate examples of bad interface, we
compared the interface of OPEN ERP and SAP, two
important Enterprise Resource planning (ERP) applications
widely used in Companies around the world. Closely
examining both applications, SAP interface was not as
interactive as OPEN ERP. SAP stands for "Systems,
Applications, and Products in Data Processing". It is one of
the world’s leading enterprise application software. SAP
basically integrates all functional areas of a business and

makes the business run faster. SAP has been very effective
in maintaining businesses around the world. Despite its
success and effectiveness, SAP faces some design
challenges as compared to other Enterprise Resource
Planning applications like OPEN ERP.

Users of both applications can immediately tell the
difference between them. While OPEN ERP is easier to
navigate and much more intuitive, SAP is some worth
complex and requires experience. For instance if a user
wants to create a sales order on SAP, the user has to go
through series of steps before he/she can create the order.
On the other hand, to create a sales order using OPEN ERP,
the process is much more interactive and easy to create.
The figure below shows SAP interface. As shown in the
figure, to create a sales order the user has to understand
each button and click five steps to find the create button
before a sales order can be created.

Figure 3.1 SAP Interface

Figure 3.2 SAP create order screen

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 549

	
	

Alternatively, using OPEN ERP to perform a similar
operation to create the sales order, the user is seamlessly
able to navigate the application without going through the
dawdling process associated with SAP. Once the user logs
in, icons are displayed that represent each function the user
can perform. To perform a sales order, the user only needs
to click on the sales icon. The figures below show OPEN
ERP screen and

Figure 3.3 OPEN ERP Home Screen Interface

Figure 3.4 OPEN ERP create order screen

4 CHAPTER FOUR

4. 1 What is Complexity?

Scholars from different disciplines have defined
complexity. Before providing a definition of complexity
that relates to the present research, it is important that we
examine the definitions of other researchers on complex
systems. “A complex system is a collection of elements,
parts or agent that interacts and are interwoven defined by
the structure of the system, the interaction between parts
and the dynamics and patterns of the system that emerge
from these interactions” (C.A. Manduca and D.W. Mogk,
2006). A complex system can also be “a system with
numerous components and interconnections, interaction or
interdependence that are difficult to describe, understand,
predict, manage, design or change” (Magee Christopher
and de weck Oliver, 2004)

Having looked at these definitions of complexity, we
therefore define complexity of a system as an interaction
between components or parts of a system that is difficult to
comprehend which results in inefficiency for most users.

4.2 Sources of Complexity in Interface Design

Designing an interface requires skill and patience of the
designer; we identified three major sources of complexity.
Implementation complexity, Interface complexity and

550 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

	
	

Codebase complexity are sources of complexity discussed
below (Raymond, 2003);

Implementation Complexity: This is the challenge a
designer or programmer faces while trying to understand a
program and debug it. If a developer does not completely
understand the program, the programmer tends to design
systems that are harder to debug, maintain and most
especially, uneasy to use (Raymond, 2003).

Interface Complexity: This complexity is mostly
experienced by regular users of a system. A bad UI causes
users to make errors and spend much time performing a
simple task. When users have to remember so many
commands, concepts and gesture usability is reduced
causing a decline in productivity in organizations and
customer satisfaction.

Codebase Size: This is the effect of the sources mentioned
above. It is basically the number of lines of code present in
a given system. Developers often try to reduce the lines of
code for systems and in some cases omit some important
features of the system from the interface.

Having examined the three major causes of complexity, it
is important to also outline types of complexity:

Essential Complexity: In this case, it is almost impossible
to carry out simplicity in the design process because the
features are complex and need to be added to the design for
full functionality. A typical example is a jetliner. They are
often too many equipment, channels, interface and
subsystems that are controlled by one person; this
complexity is in most cases unavoidable.

Accidental Complexity: the designer usually causes this
complexity. It occurs when the programmer doesn’t find an
easy way to implement certain features for an interface.
This complexity can be reduced by good designing or
redesign.

Optional Complexity: This occurs when certain features
are desired in the project objectives. The only way to get
rid of this complexity is by changing the project objective.

The diagram below best describes the relationship between
sources and kinds of complexity:

Figure 4.2, Sources and kinds of complexity2

From the diagram above, the relationship between kinds
and sources of complexity is highlighted. The terms
premature optimization, Non-Orthogonality, and SPOT etc.
are further explained below

Non-Orthogonality: Occurs when interface operations do
not perform exactly one task. This makes the interface
more complicated, which causes interface complexity as
shown in the diagram above.

Premature Optimization: This makes the code harder to
understand when performing a task. Difficulty in
understanding code (premature optimization) leads to an
increase in implementation complexity.

SPOT (Single Point Truth): This rule lays emphasis on
repetition of code because this is the major cause of
inconsistency in UI design. When there is too much
repetition, modifying the code when there is an error might
be a problem. Also, code repetition increases the codebase
size complexity as shown in the diagram.

Convenience Features: These are features that make usage
of the system easier and they are not necessarily needed for
proper functioning of the program. Sometimes adding too
much “convenience features” can increase codebase size
complexity thus making the interface more complicated.
Better tools for development can be used to improve
codebase size complexity. Using better algorithms can curb
implementation complexity; additionally better interaction
design can positively reduce complexity. Designers need to
understand their users’ psychology (Raymond, 2003).

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
2	 (Raymond,	 2003)	

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 551

	
	

4.3 Characteristics of a Good User Interface
Design

Having examined pervious literature on interface design,
some of the characteristics of an Interactive Interface
design are discussed subsequently.

Responsiveness: This is essentially the speed of the
interface or the software behind it. Users may get fed-up
and abort the system if it takes too long to load or process
information. Responsiveness may also refer to feedback
from the interface. Feedback gives the user satisfaction
because users always want to know what is going on. A
spinning wheel or a progress bar could mean the
application is loading; this gives the user a sense of
comfort. A sample of a spinning wheel gotten from an
article written by Brandon Walkin is shown below:

Familiarity: Here the designer tries to make the interface
look like something the user has seen before. The key is
making the interface something the user can naturally relate
to integrating intuitive features to your design. For
example, all close or cancel buttons are red. Making the
close or cancel button on your design green may give the
user a different idea of that feature.

Clarity: User Interface designers should always ensure that
the tone, visual noise, design and hierarchy of elements are
clear and easy to understand. A clear interface sends a
direct message to users’, making it easy for them to
navigate through the interface. If an interface is clear
enough, a user may not need to use a manual to understand
the functionalities of the site and the user would be able to
carry out task effectively. A Wordpress application
provides a tooltip over each icon making it easy for users to
understand the functions of each element. A diagram is
shown below:

Concision: It is good to make an interface clear but over
doing this can make the interface complex. Each time a

description is added to an icon or any other element, the
interface adds mass. It’s best to use short and concise
words or sentences as the case may be. If bulky sentences
are used to describe an element, it takes the user a lot of
time to read and understand therefore making it stressful to
navigate. The diagram below shows how small icons are
used to represent the scale from low to high of OS X
volume control:

Forgiveness: A designer must understand that users are
bound to make mistakes. The interface should be designed
to save users when they make a mistake. For example, if a
user mistakenly deletes a file, the interface should provide
an option to undo last action or should give the user the
option of retrieving the document. The diagram below
shows how Gmail helps you undo last action:

Efficient: UI designers should develop interface that is fast
and easy to navigate with less effort. It is best to identify
what your interface wants to achieve and design it to
achieve that without any unnecessary additions. Make
available only functions that need to be on the interface.
The diagram below shows how apple identified the major
task users perform with pictures on their Phone and
provides an efficient interface to accomplish this:

Consistent: Designing a UI to be consistent makes it easy
for users to understand or identify the elements of the
interface in subsequent versions. This makes the user easily

552 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

	
	

identify usage patterns therefore reducing the time it takes
to perform a given task. Consistency enables users to
perform task effectively and efficiently therefore aiding
user satisfaction. The diagram below shows the
consistency of Microsoft Office:

Figure 4.2, Microsoft Office (word, excel and PowerPoint)3

5 CHAPTER FIVE

5.1 Discussion
It is true that an interface can greatly affect productivity. A
good interface would positively affect productivity and a
bad interface will cause major problems in the utilization of
an Information System. Many users like in the case of the
Banner system in our study resented the system, they
preferred to use their spreadsheets and self made access
database rather than bother to understand the too technical
processes associated with the interface and functionalities
of the Banner system. As a consequence, there might have
been instances of inconsistent data being entered into the

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
3	 (Walkin,	 2009)	

system; also all processes done using banner are much
slower than even the previous manual system. Apparently
all the blame cannot be put on the Banner system alone;
another contributor of the difficulties of usage experience
at the American University of Nigeria is the poor training.
Users were not well trained enough to fully understand the
system in order to use it effectively.

Many attempts to solving IS interface complexity have
been made to address these problems. Recurrent notions of
some solutions are: Interface consistency over versions on
the software in order to create familiarity, Concision of
messages, interactive help system, user involvement in
the interface conception and ease of use. Some of the
solutions have improved software usability and increased
user satisfaction. The question is why do we still have
complex and non-user friendly interfaces at this time and
are there new ways this problem can find definite solution.

The reason people stand more than five minutes in front of
an ATM machine or a self check-in post at the airport is
because these systems lack intuitiveness. The system
expects the human being to act like a robot, executing
instruction in a predetermined and fixed order. But that is
not the way the human being thinks and acts. In today’s
application-driven computing era, much is expected from
software designers. Software solutions are supposed to
solve human problems rather than imposing them a
mechanical way of doing things. A few examples are being
able to exit a process at any point. A user that does not
want to go back to the previous page or pages would like to
get where he wants to go just in one click. Further, the user
would like to choose what to do rather than being asked to
do things or being forced to answer questions. Finally the
user wouldn’t want to have any encounter with technical
terms at all. Messages should be clear and in the everyday
language. This is because nobody chooses to process
information today, all of us are virtually forced to deal with
IS interfaces one way or the other in this era of pervasive
information system.

Conclusion
Human Computer Interaction and software interface design
were intensely studied in the nineties. In those days
Information System was still technology driven therefore
some constraints that came from the limitation of the
system were understandable and forgiven. Today the
paradigm has completed shifted from the technology-
driven IS to a more demanding application-driven IS.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 553

	
	

Because of the pervasiveness of IS, millions of users expect
IS to behave a certain way well known to them. Imagine an
IS where the delete function would be implemented under a
floppy disk icon. This would be the best way to delete
millions of files in the world. Almost all of us will expect
that icon to perform the ‘save’ function and will validate
the following message without even reading it. How many
people still bother reading the user manual of the brand
new handset or even the new laptop they just bought. The
expectation is that it should operate exactly the same way
the previous device did. Exception to that will cause a
problem to the human being’s cognitive mind. To make
business flow well and consultant proficient at all time and
all systems, ERP developers should begin to introduce
some sort of standardization, consistency and ease of use in
the design of their interface. This would help businesses
productivity in that sense that when an expert is hired with
knowledge in SAP he can be expected to be competent at
the same level on Oracle.

References

C.A. Manduca and D.W. Mogk. (2006). Earth and Mind:
How Geologists Think and Learn about the Earth. GSA
Books Boulder.

Carroll, J. M. (2009). Human Computer Interaction (HCI).
Retrieved March 12, 2012, from Interaction-design.org:
http://www.interaction-
design.org/encyclopedia/human_computer_interaction_hci.
html

Carroll, J. M. (2009). Human Computer Interaction.
Retrieved February 12, 2012, from Interaction-Design.org:
http://www.interaction-
design.org/encyclopedia/human_computer_interaction_hci.
html

Danino, N. (2001, November 14). Human-Computer
Interaction and Your Site. Retrieved February 21, 2012,
from Sitepoint.com: http://www.sitepoint.com/computer-
interaction-site/

Fakhreddine, K., Milad, A., Jamil, A. S., & Mo, N. A.
(2008, March). Human-Computer Interaction: Overview on
State of the Art. Retrieved from International Journal on
Smart Sensing and Intelligent Systems:
http://www.s2is.org/Issues/v1/n1/papers/paper9.pdf

Fetaji, M., Suzana, L., Bekim, F., & Mirlinda, E. (2007).
Investigating human computer interaction issues in
designing efficient virtual learning environments. Balkan
Conference in Informatics, (pp. 313-324). Sofia, Bulgaria.

IconLogic. (2006). Human Computer Interaction.
Retrieved from Icon Logic Learning Series:
http://www.iconlogic.com/pdf/HCI.pdf

Maass, W. (2012). Ubiquitous Information Systems (UIS),.
Retrieved April 18, 2012, from http://iss.uni-
saarland.de/en/research/ubiquitous-information-systems/

Magee Christopher and de weck Oliver. (2004). Complex
SYstem Classification. International Council On Systems
Engineering (INCOSE).

Mark, S. A., & Scott, D. M. (n.d.). Privacy Issues and
Human Computer Interaction . O'Reilly & Associates , 6.

Mary, B. R., & Carroll M., J. (2002). Usability
Engineering: Scenario Based Development of Human
Computer Interaction. San Francisco: Morgan Kaufmann
Publishers, Academic Press.

Myers, B., & Rosson , M. (1992). Survey on User
Iinterface programming. Proceedings SIGCHI'92: Human
Factors in Computing Systems., (pp. 195-202). Monterrey.

Nanni, P. (2004, November 5). Human-Computer
Interaction: Principles of Interface Design. Retrieved
Feburary 12, 2012, from VHML:
http://www.vhml.org/theses/nannip/HCI_final.htm

Peslak, A. (2005). A Framework and Implementation of
User Interface and Human-Computer Interaction
Instruction. Journal of Information Technology Education ,
190-205.

Quaye, A. K. (1990). An Investigation of Human-Computer
Interface Design Quality And Its Effects On User
Satisfaction. University of South Carolina.

Raymond, E. S. (2003). The Art of Unix Programming .

Thomas , H. T., Baecker, R., Card, S., Carey, T., Gasen, J.,
Mantei, M., et al. (1996). Human-Computer Interaction.
New York: The Association for Computing Machinery.

Tufti, E. R. (1989). Visual Design of the User Interface.
New York: IBM Corporation.

Vochin, A. (2009, July 17). History of the computer mouse.
Retrieved from Softpedia:

554 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

	
	

http://gadgets.softpedia.com/news/History-of-the-
Computer-Mouse-3938-01.html

Wachowiak, M. P., Wachowiak--Smolikova, R., & Friya,
G. D. (2010). Practical Considerations in Human-
Computer Interaction for e-Learning Systems for People
with Cognitive and Learning Disabilities . North Bay,
Canada: International Journal of Information Studies.

Walkin, B. (2009, August 10). Managing UI complexity.
Retrieved january 29, 2012, from Brandon Walkin Blog:
http://www.brandonwalkin.com/blog/2009/08/10/managing
-ui-complexity/

Zhang, P., Jane, C., Dov, T., & Marilyn, T. (2004).
Integrating Human-Computer Interaction Development into
SDLC: A Methodology. Proceedings of the Americas
Conference on Information Systems, New York, August, (p.
1). New York.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 555

Software Development Methodology Revolution Based on

Complexity Science - An Introduction to NSE Software

Development Method

Chi-Hung Kao
1
, Jay Xiong

2

1
The Jumpulse Center of Research and Incubation of Northwestern Polytechnic University

2
 NSEsoftware., LLC., USA

Abstract - This article introduces NSE (Nonlinear Software

Engineering) methodology based on complexity science.

Complying with the essential principles of complexity science,

especially the Nonlinearity and the Generative Holism

principles results that the whole of a complicated system may

exist before building up its components. The characteristics

and behaviors of the whole system emerge from the

interactions of its components, so that NSE software

development methodology suggests almost all software

development tasks and activities are performed holistically

and globally Complying with W. Edwards Deming’s product

quality principle that “Cease dependence on inspection to

achieve quality. Eliminate the need for inspection on a mass

basis by building quality into the product in the first place.”,

NSE software development methodology is driven by defect

prevention and traceability from the first to the final step in

order to ensure the quality of a software product. NSE

software development methodology supports top-down plus

bottom-up software engineering, makes software design

become pre-coding, and coding become further design.

Keywords: software traceability, requirement traceability,

validation, verification, testing, quality assurance ，

maintenance

1 Introduction - Almost All Existing

Software Development Methodologies

Are Outdated

Almost all existing software development methodologies are

outdated because

(1) they are based on reductionism and superposition

principle that the whole of a nonlinear system is the sum of its

parts, so that almost all software development tasks and

activities are performed linearly, partially, and locally.

(2) they are complied with the Constructive Holism principle

that software components are developed first, then, as stated

in CMMI, “Assemble the product from the product

components, ensure the product, as integrated, functions

properly and deliver the product.” [1]

2. Outline of the Revolutionary Solution

Offered by NSE

The revolutionary solution offered by NSE in software

development methodology will be described in detail in this

article later. Here is the outline of the solution:

(1) It is based on complexity science by complying with the

essential principles of complexity science, particularly

the Nonlinearity principle and the Holism principle that

the whole of a complex system is greater than the sum of

its components – the characteristics and behaviors of the

whole emerge from the interaction of its components, so

that with NSE almost all tasks and activities in software

development are performed holistically and globally. For

instance, requirement changes are welcome to enhance

customers’ market competitional power, and

implemented holistically and globally with side-effect

prevention through various traceability to avoid

“Butterfly Effects”.

(2) It complies with the Generative Holism principle of

complexity science that the whole of a complex system

exists (as an embryo) earlier than its components, then

grows up with them. As pointed by Frederick P. Books

Jr. that “Incremental development – grow, not build

software … that the system should first be made to run,

even though it does nothing useful except call the proper

set of dummy subprograms. Then, bit by bit it is fleshed

out, with the subprograms in turn being developed into

actions or calls to empty stubs in the level below.”[2]

“An Incremental-Build Model Is Better – Progressive

Refinement … we should build the basic polling loop of

a real–time system, with subroutine calls (stubs) for all

the functions, but only null subroutines. Compile it; test

it. … After every function works at a primitive level, we

refine or rewrite first one module and then another,

incrementally growing the system. Sometimes, to be

sure, we have to change the original driving loop, and or

even its module interface. Since we have a working

system at all times.

(3) We can begin user testing very early, and we can adopt a

build-to-budget strategy that protects absolutely against

schedule or budget overrun (at the cost of possible

functional shortfall).”[3] From the point of view of

quality assurance, the NSE software development

556 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

methodology is driven by defect-prevention, defect

propagation prevention, and traceability that a software

quality is ensured from the first step down to the final

one supported by various automated and self-

maintainable traceability and software visualization.

With NSE software development methodology software

testing is performed dynamically in the entire software

development lifecycle (including the requirement

development phase, the product design phase, the coding

phase, the testing phase, and the maintenance phase)

using the innovated Transparent-box testing method (see

Fig. 1 (B2)) [4] which combining functional testing and

structural testing together seamlessly – to each test case,

it not only checks if the output (if any, can be none –

having a real output is no longer a condition to use this

software testing method dynamically) is the same as

what is expected, but also checks whether the real

program execution path covers the expected one

specified in J-Flow (a new type control flow diagram

innovated by Jay Xiong), and then establishes the

automated and self-maintainable traceability among the

related documents, the test cases, and the source code to

help users finding and removing the inconsistent defects.

It means that the NSE software development

methodology complies with W. Edwards Deming’s

product quality principle that “Cease dependence on

inspection to achieve quality. Eliminate the need for

inspection on a mass basis by building quality into the

product in the first place.” [5].

(4) The defect prevention and defect propagation prevention

also performed through software visualization in the

entire software development process.

Fig. 1 shows a comparison of the software design

strategy and the quality assurance strategy between the

existing software development methodologies (part A)

and the NSE software development methodology (part

B).

(A1)

(A2)

(A3)

Part B, the NSE software development methodology:

(B1)

 (B2)

(B3)

 Fig. 1 A comparison of the software design strategy and

the quality assurance strategy between the existing software

development methodologies (part A) and the NSE software

development methodology (part B) - (A1): The software

product development strategy based on Constructive Holism

principle that the components of a software product are

developed first, then the whole system is built with the

components; (A2): The quality assurance strategy for the

incremental software development method – mainly depends

on testing after coding using the black-box functional testing

approach and structural testing approach [6]; (A3): The

quality assurance strategy for the iterative software

development method – also mainly depends on testing after

coding using the black-box functional testing approach and

structural testing approach [6]. (B1): The software product

development strategy based on the Generative Holism

principle that the whole of a software product exists first, then

grows up with its components. (B2): The quality assurance

strategy for the NSE software development methodology -

mainly depends on defect prevention through dynamic testing

using the Transparent-box testing method [4] combining

functional testing and structural testing together seamlessly –

to each test case it not only checks whether the output (if any,

can be none when applied in requirement development phase

and the design phase – having an output is not a condition to

dynamically use this method) is the same as what is expected,

but also checks whether the real execution path covers the

expected path indicated in control flow diagram, and then

establishes automated and self-maintainable traceability

among all related documents and the test cases and the source

code through Time Tags automatically inserted into both the

test case description part and the product test coverage

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 557

measurement database for mapping them together, and some

keywords written in the test case description part to indicated

the types of the related documents, the file locations, and the

bookmarks for opening the traced documents from the

corresponding locations, so that it can be used to find

functional defects, structural defects, and inconsistency

defects in the entire software development lifecycle. (B3):

The defect prevention is performed mainly through dynamic

testing using the Transparent-box testing method in all phases

of a software development lifecycle.

The major features of NSE software development

methodology:

(1) It is visual – with NSE, the entire software

development process and the obtained results are

visible, supported by the NSE Software

Visualization Paradigm.

(2) The preliminary applications show that compared

with the old-established software development

methodologies based on reductionism and the

superposition principle, it is possible for NSE

software development methodology (working with

the NSE software development process model) to

help software development organizations increase

their productivity, lower their cost, improve their

product quality tenfold several times, and raise their

project success rate.

(3) It brings revolutionary changes to the CBSD

(Components-Based Software Development)

approaching by shifting the software component

development foundation base from reductionism and

the superposition principle to complexity science in

order to greatly ensure the quality of the components

themselves, and further make the components

adaptive and maintainable as well. According to the

principle of complexity science that the behavior and

characteristics of a complex system is determined by

both the whole of the system and its components,

with NSE a software component used for CBSD

should at least satisfy the following listed conditions:

* being 100% tested using the MC/DC (Modified

Condition/Decision Coverage) test coverage metric,

no matter whether it is provided as a class (a class

can not be directly executed, so that the test coverage

data should be collected through its instances) or a

regular function;

* being verified that there is no memory leak or

memory usage violation found;

* being verified that it will not become a performance

bottleneck to the application system;

* being verified that it will not bring bad effects to the

file and the I/O systems for the applications;

* being verified that it satisfies the quality standard in

the corresponding applications;

* being verified that it is provided with the related

documents, the test cases, and (if possible) the

source code traceable from and to the documents.

3 The Driving Forces for the Innovation

of the NSE Software Development

Methodology NSE Software

Development Methodology is driven by

defect-prevention and various automated

and self-maintainable traceabilities

NSE Software Development Methodology is driven by

defect-prevention and various automated and self-

maintainable traceabilities：

（A）Defect prevention

 Repeatable Defect Prevention through:

(a) causal analysis,

(b) preventive actions,

(c) increase awareness of quality issues,

(d) data collection, and

(e) improvement of the Defect Prevention Plan.

New Defect Prevention (more useful) through bi-

directional traceability to prevent

(a) inconsistent or changed requirement definitions

that may contain conflicts

(b) inconsistent designs or design changes

(c) inconsistent coding (such as inconsistencies

between function definitions and calling

statements)

(d) inconsistent source code modification, etc.

（B）Traceabilities, including

(a) automated and self-maintainable traceability among

documents, test cases and source code, including

the documents obtained from project planning,

requirement development, product design, coding,

testing, and maintenance. This type of traceability

is essential to software validation, verification,

debugging, and the identification of unimplemented

requirements, useless source code modules,

558 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

requirements that are related to a module to be

changed (for consistent modification), test cases

that can be used for regression testing (whereby the

efficiency of regression testing can be improved

tenfold!), etc. This kind of traceability is

established through dynamic testing using the

Transparent-box method. Some Time Tags

automatically inserted in the test cases description

and the test coverage database would build the

traceability between test cases and the source code.

(b) the traceability between test cases and the source

code has been extended to include all related

documents using some keywords written in the

description part of a test case to indicate the

document formats, the file paths, and the

corresponding bookmarks for showing the

corresponding locations of the documents.

(c) automated and bidirectional traceability within the

source code, among source files, classes, functions,

and detailed statements is established by

diagramming the entire program. For instance,

creating the traceability automatically between

header file and "#include" statement, program tree

and function body, function definition and function

call statement, class instance and class definition,

goto statement and label, etc. these types of

traceabilities are essential for an efficient source

code inspection and walkthrough, testing, bug

checking, consistent source code modification, etc.

(d) capability to trace a runtime error to the execution

path and the related functions, This type of

traceability is useful for debugging with testing.

(e) automated traceability in a systematic analysis of

software changes such as version comparison

results at the system level, source file level, class

and function level, and statement level would be

displayed graphically. For instance it includes

identifying which modules are deleted (shown in

brown), added (shown in green), changed (shown in

red), and unchanged (shown in blue). For a changed

module, we can further trace the detailed source

code to find which statements are deleted, added,

and modified. This type of traceability is very

useful for version comparison and debugging,

particularly in the maintenance phase when some

bugs have been removed but new bugs are found.

(f）automated traceability among documents such as

those for requirement management as specified in

CMMI, including documents for requirement

specifications, changes, comprehension, etc., in

order to realize this type of automatic traceability,

we use a set of predesigned templates in

HTML/XML format. These templates will link

together by themselves.

(g) automatic traceability through all possible execution

paths for each module from a call graph, this kind

of traceability is useful in identifying which other

modules may be affected due to a change.

4 The related NSE software engineering

process model

The NSE software development methodology works

seamlessly with the NSE software engineering process model

shown in Fig. 2.

NSE software engineering process model consists of three

parts – the preprocess, the main process, and the support

facility for automated and self-maintainable traceability

among the related documents such as the requirement

specification, the test cases, and the source code.

The main purpose of the preprocess is to assign priority to the

requirements according to the importance, perform

prototyping for the important and unfamiliar requirements to

reduce risk, execute the function decomposition for functional

requirements and system preliminary design through dummy

programming to form the whole of a software system. For

instance, an embryo using dummy modules contains an empty

body including only some calling statements for other low-

layered ones without detailed programming logic – see the

Completeness Percentage axis of the graphical description of

the NSE software development methodology shown in Fig. 3.

The “Bone” system (about 5% of the product effort, the first

milestone) is obtained in the preprocess.

The implementation of requirements is performed with the

main process incrementally through two-way iteration

supported by automated and self-maintainable traceability. It

is recommended to complete the implementation of about

20% of the most important requirements to form an essential

version of the product – see the Completeness Percentage axis

of the graphical description of the NSE software development

methodology shown in Fig. 3; corresponding to the

“Essential” version (second milestone) of the product

completeness.

After that, the whole system grows up with more incremental

implementations of the requirements, until the final product is

completed. With the NSE software development

methodology, all versions including the “Bone” system are

executable (even if there is no real output provided), and

delivered to the customer for review and the feedback may be

used for improvement.

As shown in Fig. 2, the NSE software engineering process

model is a nonlinear one which assumes that the upper phases

might introduce defects or some mistakes, so to check the

inconsistency with the upper phases to improve the product is

required – as a critical issue is found, there may be a need

going back to the preprocess to design a better solution

method for the corresponding requirement(s), and perform the

prototyping again.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 559

Fig. 2 The NSE Process Model which includes the preprocess

part, the main process part, and the automated and self-

maintainable facility to support bi-directional traceability

using Time Tags automatically inserted into both the test case

description part and the corresponding test coverage database

for mapping test cases and the tested source code, and some

keywords to indicate the related document types such as

@WORD@, @HTML@, @PDF@, @BAT@, @EXCEL@

written in the test case description part followed by the file

paths and the bookmarks to be used to open the traced

documents from the specified positions.

5. Graphical Presentation of the NSE

Software Development Methodology

The graphic description of the NSE software development

methodology is shown in Fig. 3.

As shown in Fig. 3, there are three axes representing the

Work Flow, the Time, and the Completeness Percentage

separately.

Fig. 3

Fig. 3 NSE software development methodology

In the Work Flow axis, it not only includes the phases of

requirement development, design, coding, testing, and

maintenance, but also includes the project management, the

product delivery, and the support for the product web site and

BBS for communication – it combines the product

development and maintenance together, and furthermore

integrates software development and project management

together. No matter in what phase, defect prevention and

defect propagation prevention is performed to ensure the

quality of the product being developed. It does not always

follow a linear order – as shown on the right side, upstream

movement is supported through traceability for two-way

iteration, if necessary.

The Time axis represents the progress. The Completeness

Percentage axis shows how many percents of the product are

completed – there are three milestones: the first one is the

“Bone” system completed through dummy programming; the

second one is about 20% of the most important requirements

have been implemented; the third one is the final product. The

"Bone" version is completed through the preprocess – after

prototyping and risk analysis, system decomposition of the

functional requirements will be performed, then the

decomposition result will be used for the preliminary design

to establish the “Bone” system through dummy programming

(each dummy module has an empty body or a list of function

call statements without detailed program logic). The

“Essential” version of the product is completed in the main

process incrementally for most important requirements (about

20% of the initial requirements).

Often in the final product, the number of the requirements

will be doubled or even more – NSE supports requirement

changes in both the software development process, and the

software maintenance process with side-effect prevention

through various traceabilities.

Additional instructions on sections and subsections

Avoid using too many capital letters. All section headings

including the subsection headings should be flushed left.

6 Application

560 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

As described above, the NSE software development

methodology is driven by defect prevention, defect

propagation prevention, and traceability mainly through

dynamic testing using the Transparent-box testing method,

and software visualization in the entire software development

process.

NSE software development methodology supports top-down

plus bottom-up approach – design becomes pre-coding, and

coding becomes further design as described graphically in Fig.

4.

Fig. 4 With NSE software development methodology design

becomes pre-coding, and coding becomes further design

With NSE, the preliminary design of the whole of a software

system is performed in the preprocess (see Fig. 2) through

stub programming using dummy modules based on the results

of the function decomposition following the functional

requirements and the description in the non-functional

documentations.

Directic coding from the design result:

With NSE software development methodology, coding can be

performed directly by editing the dummy modules designed to

extent the program logic as shown in Fig. 5.

Fig. 5 Directly coding from a call graph generated in design

process

 With NSE software development methodology, coding

becomes further design - for instance, in the case that the

design shows function A calls function B, but the coding

engineers find the function A should call function C and

function C should call function B - after coding they can

update the design documents by rebuilding the database to

make the design result consistent with the code (in this

case, they may choose the way to modify the design first,

then edit and change the code) as shown in Fig. 6 and Fig.

7.

Fig. 6 Two function call statements are added in the coding

process of the state4::transition(unsigned char) module

designed without using them

Fig. 7 After rebuilding the database, the design result can be

updated automatically

Holistic development ：

With NSE software development methodology, the whole of a

software system will be designed first using stub programs

using dummy modules as shown in Fig. 8.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 561

Fig. 8 A holistic call graph designed

Static traceability for defect removal through review:

With NSE software development mothdology, the design

results are traceable for static defect removal as shown in Fig.

9.

Fig. 9 A module and the related modules highlighted for static

defect prevention and defect propagation prevention

System growing up incrementally with defect prevention:

With NSE software development mothdology, a software

system being developed will grow up incrementally as shown

in Fig. 10 and Fig. 11.

Fig. 10 Incremental coding ordering support

 Fig. 11 Defect prevention through incremental

ordering and visualization

Coding style independent visualazation support:

With NSE software development mothdology, it is

supported by a coding-style-independent graphical

representation technique and tools, so that the source code

written by others is also easy to read and understand – see

Fig. 12;

Fig. 12 code-style-independent program representation

Dynamic traceability among documents and test cases

and source code for defect removal:

With NSE software development mothdology,. quality is

ensured mainly through defect prevention and defect

propagation prevention based on dynamic testing using the

innovated transparent-box testing method to establish bi-

directional traceability as shown from Fig. 13 to Fig. 16.

562 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Fig. 13 Tracing a test case to find two inconsistency

defects:

(1) The real execution path did not cover the expected

execution path main (int, char**) {s0, s3} – segment

s3 is highlighted as untested;

(2) The bookmark for opening the global routing section

of the prototyping document, g_router, pointed to

the wrong section – the global placement section.

Removing the defects:

(1) find the location for the first defect and modify the

main() program：

(2) find the mistake related to the bookmark, g_router

(Fig. 14), and fix it (Fig. 15):

Fig. 14 Locating the mistake of the bookmark, g-router

 Fig. 15 Fixing the bookmark mistake

Fig. 16 Verifying that the two defects have been removed

through backward tracing from segment s3 (the test case

2 was traced and the related documents were opened

without defects)

7 Conclusion

This article presentes the NSE software development
methodology based on complexity science. It is driven by
traceability, defect prevention, and defect propagation
prevention through dynamic testing using the
Transparent-box testing method and software
visualization. Preliminary applications show that
compared with the existing software development
methodologies it is possible for the NSE software
development methodology (with NSE process model and
the support platform) to help software development
organizations efficiently solve many critical issues in
software development to ensure software quality and
increase software development productivity.

8 References

[1] Mike Phillips, CMMI Program Manager, CMMI V1.1

and Appraisal Tutorial, http://www.sei.cmu.edu/cmmi/,

slide 118, titiled “Product Integration”.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 563

http://www.sei.cmu.edu/cmmi/

[2] Brooks, Frederick P. Jr., “The Mythical Man-Month”,

Addison Wesley, 1995, P200

[3] Brooks, Frederick P. Jr., “The Mythical Man-Month”,

Addison Wesley, 1995, P267

[4] Jay Xiong, Jonathan Xiong, A Complete Revolution in

Software Engineering Based on Complexity Science,

WORLDCOMP'09 – SERP （ Software Engineering

Research and Practice 2009），109-115.

[5] Deming, W. Edwards (1986). Out of the Crisis. MIT

Press. ISBN 0-911379-01-0. OCLC 13126265

[6] Alistair Cockburn, Using Both Incremental and Iterative

Development, CrossTalk, May 2008 Issue

564 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

http://www.informatik.uni-trier.de/~ley/db/conf/serp/serp2009.html#XiongX09
http://www.informatik.uni-trier.de/~ley/db/conf/serp/serp2009.html#XiongX09
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/0-911379-01-0
http://en.wikipedia.org/wiki/Online_Computer_Library_Center
http://www.worldcat.org/oclc/13126265

Software Engineering Process Revolution

Chi-Hung Kao
 1
, Jay Xiong

 2

1
 NSEsoftware., LLC, USA

2 Northwestern Polytechnic University

Abstract - This article introduces the NSE (Nonlinear

Software Engineering paradigm) process model based on

complexity science indicating that almost all tasks/activities

are performed holistically and globally. Some applications

show that the techniques and supporting platforms of NSE

process model can not only make revolutionary changes to

almost all aspects in software engineering for efficiently

handling software complexity, invisibility, changeability, and

conformity, but solve the critical problems such as low

productivity and quality, high cost and risk, existing with the

old-established software engineering paradigm. The NSE

helps software developers raising productivity, dropping

costs, and removing dramatic amount of the defects in their

products.

Keywords: software process model, software engineering

revolution, methodology, testing, quality assurance,

productivity, maintenance

1. Almost All of the Existing

Software Engineering Process

Models Are Outdated

 Almost all existing software engineering process

models, no matter if they are waterfall models,

incremental development models, iterative development

models, or a new one recommended by Alistair

Cockburn combining both incremental and iterative

development together[1], are outdated because they are

linear models with only one track forward in one

direction without upstream movement at all, requiring

software developers and the customers always do all

things right without making any mistake or any wrong

decision – but it is impossible, complying with the

superposition principle that the whole of a system is the

sum of its parts, so that almost all tasks/activities are

performed linearly, locally and partially, making the

defects introduced into a software product at the upper

phases easy to propagate to the lower phases and the

defect removal cost increase tenfold several times.

 The common drawbacks of the existing software

process models also include:

(a) None of them are created to efficiently handle

the essential issues existing with software

products – complexity, invisibility,

changeability, and conformity, defined by

Brooks[2].

(b) None of them are able to efficiently solve the

most critical problems with software

development - low quality and productivity,

and high cost and risk.

(c) None of them are able to make significant

improvement to the software project success

rate, so that today the software project success

rate is still at about 30%[3] - it is unacceptable

in any other industry.

(d) Incomplete - None of them are able to

efficiently support software maintenance

which takes 75% or more of the total effort

and cost for software product development[4],

because they do not satisfy the following listed

essential conditions for an efficient software

maintenance support:

(1) being able to greatly reduce the amount of

defects introduced into a software product

and the defects propagated to the software

maintenance phase through defect

prevention and defect propagation

prevention;

(2) being able to help users perform software

maintenance holistically and globally;

(3) being able to help users prevent the side-

effects for the implementation of

requirement changes or code modifications;

(4) being able to provide necessary means to

help users greatly reduce the time, cost, and

resources in regression testing after

software modification, such as the

capability for test case minimization, and

intelligent test case selection through

backward traceability from a modified

module or segment (a set of statements with

the same execution conditions);

(5) being able to help the customer side

maintain a software product developed by

others with almost the same conditions as it

is maintained by the product development

side (see table 2 about the “Software”

definition).

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 565

 NSE process model with “two-way iteration and multiple

tracks” satisfies the five conditions. It is possible for the NSE

process model with the support techniques and tools to help

software development organizations reduce 2/3 of the total

effort and total cost spent in software maintenance - equal to

double their productivity and halve their cost. It is important

to point out that with NSE there is no major difference

between the software development process and the software

maintenance process, because:

* both processes support requirement changes and code

modifications with side-effect prevention through various

bidirectional traceabilities.

* When the NSE nonlinear process model is followed, the

quality of a software product is ensured from the first step

(see section 7) down to the last step in maintenance through

defect prevention and defect propagation prevention, so that

the defects propagated to the maintenance phase are greatly

reduced.

2. The foundation of NSE and the

NSE process model – complexity

science

 Complexity science has been called the science of the

21st century by Stephen Hawking and Edward O. Wilson.

The essential principles of complexity science complied with

by the NSE process model include the:

 Nonlinearity principle

Holism principle - that all the properties of a given system

cannot be determined or explained by its components alone.

Instead, the characteristics and behavior of the whole of a

complex system emerge from the interaction of its

components and the interaction between it and the

environment.

 Initial Condition Sensitivity principle

 Sensitivity to Change principle

 Dynamics principle

 Openness principle

 Self-organization principle, and

 Self-adaptation principle

 NSE engineering process model is innovated through

the use of a paradigm-shift framework, FDS (the Five-

Dimensional Structure Synthesis method - a paradigm-shift

framework innovated by Jay Xiong) as shown in Fig. 1.

Fig. 1 The Five-Dimensional Structure Synthesis method - a

paradigm-shift framework

3. Advanced techniques innovated to

support NSE and the NSE process

model

 Fourteen advanced software engineering techniques are

innovated to support NSE process model as shown in Fig. 2.

Our two related papers titled as “Automated and Self-

maintainable Traceability” and “Software Testing

Revolution” are accepted by CrossTalk for publication. About

the other 12 techniques, please see table 2, or read our

published article titled as “A complete revolution in software

engineering based on complexity science”[5]

Fig. 2 The support techniques and the targeted issues

4. Description of the NSE process

model

566 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

http://en.wikipedia.org/wiki/System#_blank

 Number section and subsection headings consecutively

in numbers and type them in bold. Use point size 14 for

section headings and 12 for subsection headings and 10 for

subsection within a subsection.

The NSE process model (Fig. 3) consists of the pre-

process part and the main process part which is supported by a

facility for automated and bi-directional traceability using

Time Tags for data mapping and bookmarks for opening a

document traced from the corresponding location.

Fig. 3 The NSE Process Model and the automated and self-

maintainable traceability facility

The objectives of the pre-process are:

a) Assigning priority to the requirements for better control of

the development schedule and the budget, implementing the

important requirements earlier;

b) Performing prototyping design and evaluation for some

unfamiliar requirements to reduce project development risk;

c) Performing function decomposition of the functional

requirements using the Holistic, Actor-Action and Event-

Response driven, Traceable, Visual, and Executable

technique (HAETVE) to replace the Use Case approach

which is not holistic, and the results obtained are not traceable

and not directly executable for defect removal. d) Making a

primary version of the requirement specification document

using standard templates provided to prevent defects of

missing something;

e) Carrying out Synthesis Design of the system using the

“Dummy programming” technique through the use of dummy

modules to complete a dummy system. According to the

Generative Holism Theory of complexity science, the whole

of a complex system may not be “built” from its components,

but exists (like a human embryo) earlier than its parts, then

“grows up” with its parts;

f) Organizing the document hierarchy using bookmarks,

including the test scripts and the test case numbers, so that

when there is a need to modify a requirement, it is easy to

find the related test scripts and the test cases to perform

forward tracing to find the related documents and the source

code.

The Major Steps Of The Main Process

Step 1: According to the project development plan, the

priority assigned to the requirements, take one or a set of

requirements to implement visually. It is recommended to

select the critical and essential requirements (about 20% of

the initial requirements) first to implement and form an

essential version of the software product through incremental

integration development to make a software system grow up

incrementally.

The NSE process model supports the NSE software

development methodology based on Generative Holism and

driven by defect prevention and various traceabilities - see

Fig. 4.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 567

Fig. 4 NSE software development methodology

Step 2: Apply the Synthesis Design and Incremental

Implementation, Iteration, and Integration Technique with the

Holistic And Traceable Diagram Generation technique to

further perform preliminary design for the selected

requirement(s) according to the detailed requirement

specification to improve the corresponding part of the dummy

system obtained in the preprocess phase, then perform formal

inspection and review using traceable documents, and design

the corresponding test cases to dynamically test the result of

the preliminary design using the Transparent-box method (see

table 2) to prevent inconsistency defects through bidirectional

traceability established automatically. After that, perform

detailed design for the selected requirement(s) according to

the result of the preliminary design with formal inspection

and review using traceable documents, and dynamic testing

like what was done in the preliminary design process. If

something critical is found, go to the requirement

development phases, or if the solution method does not

satisfy the requirement(s), go back to the preprocess.

Step 3: Apply the Synthesis Design and Incremental

Implementation, Iteration, and Integration Technique to

perform incremental coding: on the generated system

decomposition chart, highlight the corresponding key

module(s) and the related modules for the selected

requirement(s), then assign an incremental bottom-up coding

order to the modules automatically with the NSE support

platform.

When we are writing a function call statement to a called

module which has been coded according to the order

assigned, we can read the diagrammed source code in another

window to know how many parameters are needed, their

types, and their sequence to prevent inconsistency defects

between the module interfaces.

If something critical is found in the coding process, go to the

upper phases through backward tracing, or if the solution

method does not satisfy the requirement(s), go back to the

preprocess again.

Step 4: Perform incremental unit testing with integration

testing, and finally system testing, mainly using the

transparent-box method to combine functional and structural

testing together. At the same time, perform MC/DC

(Modified Condition/Decision Coverage) test coverage

analysis, performance analysis, memory leak analysis and

memory usage violation check. According to the incremental

coding and unit testing order, when we code a module, all

modules called by it must have been coded already so that

there is no need to design and use a stub module to replace a

called module – in this way the unit testing also becomes

integration testing with all modules being called together.

If something critical is found in the testing process, go to the

upper phases through backward tracing, or if the solution

method does not satisfy the requirement(s), go back to the

preprocess again.

In the system testing process, NSE offers the capability to

capture users’ GUI operations and play them back

automatically for regression testing, and the capability for

MC/DC test coverage analysis for the entire product, plus

performance analysis, test case efficiency analysis and test

case minimization for efficient regression testing after code

modification. With system testing, an automated and

bidirectional traceability among all artifacts including the

source code will be established for defect prevention.

Step 5: Perform systematic, disciplined, and quantifiable

software maintenance using the Holistic, Global, and Side-

Effect-Prevention Based Software Maintenance Technique:

(1) Respond to requirement changes and new

requirements or code modifications in real-time to

implement them holistically and globally with

side-effect prevention.

(2) Bring great savings to regression testing after

requirement changes or code modification through

test case efficiency analysis and test case

minimization, plus intelligent test case selection

through backward traceability between test cases

and the source code.

(3) Make it possible to reduce the cost and effort spent

in software maintenance from 75% or more of the

total with the old-established paradigm to about

25% of the total with NSE through side-effect

prevention. If there is still something wrong after

the implementation of requirement change or code

modification, perform intelligent version

comparison to help users locate the defects in

system-level, file-level, module-level, and

statement level.

568 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Step 6: Closely combine the project management process and

the product development process together, making the project

plan, schedule charts, and cost estimation reports traceable

with the requirement implementation and the source code, for

better control of the cost and project development schedule.

Step 7: Establish a project web site and the related technical

forum for real time communication and technical discussion

among team members to report progress of the project, and to

open technical discussions for brainstorming, reporting a

variety of related events, error handling processes and results,

and especially unexpected events in order to discuss the

response, which can all be traced back through the bi-

directional and automatic traceability mechanism to update

them in real time.

Step 8: Frequently deliver working products to the customer

for review and evaluation, even if there is no real output for a

dummy system designed in the requirement development

phase. Get the customer’s feedback to improve the product

development.

5. Quality assurance with NSE

process model –NSE SQA

 The quality assurance priority of NSE-SQA is as

follows:

a) Defect prevention in all phases for preventing repeatable

defects and possible new defects

b) Defect propagation prevention (removing defects from the

source) through:

(1) semi-automated inspection and walkthrough using

traceable artifacts and diagrammed source code; (2)

transparent-box testing in all phases

c) Refactoring based on complexity analysis (20% of

complex code causes 80% of the defects)

d) Deep and broad testing, and quality measurement.

5.1. Highlights of the NSE-SQA

 (a) based on defect prevention, defect propagation

prevention, inspection and review in the entire lifecycle using

traceable documents and source code, refactoring based on

complexity measurement and performance analysis, and

deeper and broader software testing plus quality measurement

 (b) possible to remove 99% to 99.99% of defects of a

software product - a detailed comparison on defect removal

efficiency is shown in table 1 (The data reported by SPR [6]

through the analysis of more than 12,000 projects with the

old-established software engineering paradigm is shown in

italic; data with NSE SQA is shown in bold).

6. The major features of NSE

process model

 The major features and characteristics of the NSE

process model include:

(1) Dual-process: NSE model consists of the pre-

process and the main process. They are different

but also closely linked together.

(2) Nonlinear: The NSE model is nonlinear, complying

with the Nonlinearity principle and the Holism

principle.

(3) Parallel with Multiple tracks: “Much of software

architecture, implementation, and realization can

proceed in parallel.” [7]. For reducing waiting time

and speeding up software development processes,

the NSE process model supports tasks being

performed in parallel with multiple tracks through

bidirectional traceability.

(4) Real time: “Timely updating is of critical

importance.” [8].

(5) Incremental development with two-way iteration:

The NSE process model supports incremental

development with two-way iteration, including

refactoring to handle highly complex modules and

performance bottlenecks with side-effect

prevention. When a critical issue is found in the

main process, the work flow may go back to the

preprocess for selecting a better solution method,

and so on.

(6) The software development process and software

maintenance process are combined together

seamlessly: With the NSE process model, there is

no big difference between the software

development process and the software maintenance

process – both support requirement changes

through side-effect prevention.

(7) The software development process and the project

management process are combined together

closely: all documents including the project

management documents such as the project

development plan, the schedule chart, and the cost

estimation report are traceable with the requirement

implementation and the source code for better

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 569

control of the product development. NSE process

model also supports the critical requirements and

most important requirements being implemented

early with the assigned priority to avoid budget

overuse – if necessary, some optional requirements

and not so important requirements can be ignored

temporarily.

(8) Adaptation focused rather than predictability

focused: the entire world is always changing, so

the NSE process model is adaptation focused rather

than predictability focused – it supports

requirement changes, code modifications, data

modifications, and document modifications to

make them consistent and updated with side-effect

prevention.

(9) Defect prevention driven

(10) People are considered as the first order driver for

software development - When people consider

“people as the first-order” to software

development, they focus on how to trust and

support people better for their jobs, but ignore the

other side of people’s effect on software

development – almost all defects introduced into

software products are made by people, the

developers and the customers. So NSE supports

people in two ways: one is to support them with

better methodology, technology, and tools; another

one is to prevent the possible defects to be

introduced into the software products by people -

it is done mainly through various automated and

bidirectional traceabilities.

7. Conclusions

 This paper described a new revolutionary software

engineering process model based on complexity science – the

NSE process model, where almost all software engineering

tasks/activities are performed holistically and globally.

Preliminary applications show that compared with the

existing linear process models it is possible for NSE to help

users double their productivity and halve their cost, and

remove 99% to 99.99 defects in their software products.

8. References

[1] Alistair Cockburn, Using Both Incremental and Iterative

Development, CrossTalk, May 2008 Issue

[2] Brooks, Frederick P. Jr., “The Mythical Man-Month”,

Addison Wesley, 1995, P182

[3] Watts S. Humphrey, The Software Engineering Institute，

Why Big Software Projects Fail: The 12 Key Questions，

CrossTalk Mar 2005

[4] Scott W. Ambler. “A Manager’s Introduction to The

Rational Unified Process (RUP)”, Ambysoft. 2005

 [5] Jay Xiong, Jonathan Xiong, A Complete Revolution in

Software Engineering Based on Complexity Science,

WORLDCOMP'09 – SERP （Software Engineering Research

and Practice 2009），109-115.

[6] Jones, Capers, SOFTWARE QUALITY IN 2002: A

SURVEY OF THE STATE OF THE ART, Six Lincoln Knoll

Lane， Burlington, Massachusetts 01803

http://www.SPR.com July 23, 2002

[7] Brooks, Frederick P. Jr., “The Mythical Man-Month”,

Addison Wesley, 1995, P233

[8] Brooks, Frederick P. Jr., “The Mythical Man-Month”,

Addison Wesley, 1995, P235

[9] Pressman, Roger S., “Software Engineering: A

Practitioner’s Approach”, McGraw-Hill, 2005, P4

570 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

http://www.stsc.hill.af.mil/crosstalk/2005/03/index.html
http://www.informatik.uni-trier.de/~ley/db/conf/serp/serp2009.html#XiongX09
http://www.informatik.uni-trier.de/~ley/db/conf/serp/serp2009.html#XiongX09
http://www.spr.com/

Software Testing Revolution Based on Complexity Science

- An Introduction to NSE Software Testing Paradigm

 WanYuan Huang1
 , Jay Xiong

 2

1
The Jumpulse Center of Research and Incubation of Northwestern Polytechnic University

2
NSEsoftware, LLC., USA

Abstract - This paper presents a new software

testing paradigm (NSE software testing paradigm)

based on complexity science using the Transparent-Box

testing method which combines functional testing and

structural testing together seamlessly with close logic

connection and a capability to automatically establish

bidirectional traceability among the related documents

and test cases and the corresponding source code. To

each test case it checks not only whether the output (if

any, can be none when it is dynamically used in

requirement development phase and design phase) is the

same as what is expected, but also helps users to check

whether the real execution path covers the expected one

specified in the control flow, and whether the execution

hits some modules or branches which are prohibited for

the execution of the corresponding test case, so that it

can be used to find functional defects, logic defects, and

inconsistency defects. Having an output is no longer a

condition to apply this method, so that it can be used

dynamically in the entire software development lifecycle

for defect prevention and defect propagation prevention.

With NSE (Nonlinear Software Engineering paradigm)

software testing is performed nonlinearly, holistically.

Globally, and quantitatively in all phases of a software

product development.

Keywords: software testing, method, reliability, quality

assurance

1. Introduction
 The purpose of software testing is to validate/verify

whether a software product meets the customers’ needs

and the requirement specifications, find and fix bugs to

help users increase the reliability of a software product.

 Unfortunately, current software testing methods are

outcomes of linear thinking, reductionism, and the

superposition principle that the whole of a nonlinear

system is the sum of its parts, so that with them almost

all software testing activities are performed linearly,

partially, locally, qualitatively, inefficiently, and blindly

such as the regression testing of the implementation of

requirement changes or code modifications. For instance,

as shown in Fig. 1 most critical software defects are

introduced into a software product in the requirement

development phase and the design phase, but current

dynamic software testing is performed after detailed

coding – it is inefficient and too late.

Fig. 1 Current software testing is inefficiently

performed after coding

2. The major existing software testing methods,

techniques, and tools are outdated

 Current software quality assurance is mainly

based on (1) functional testing using Black-Box testing

method being applied after the entire product is

produced; (2) structural testing using White-Box testing

method being applied after each software unit is coded;

and (3) product review using untraceable documents and

untraceable source code. It violates Deming’s Product

Quality Assurance Principles that “Cease dependence

on inspection to achieve quality. Eliminate the need for

inspection on a mass basis by building quality into the

product in the first place.”[1]

Both testing methods are applied separately

without internal logic connection. The white-box testing

is mainly performed in unit testing to test an Existing

product rather than a Required product, while the

black-box testing is mainly performed in system testing,

so that both methods and the corresponding techniques

and tools cannot be used dynamically in the requirement

development phase and the software design phase. Even

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 571

if a requirement development defect or a design defect

can be found by both methods after coding, it is too late:

the cost for removing the defect will increase tenfold

several times.

For those software testing methods, NIST (National

Institute of Standards And Technology) concluded that

“Briefly, experience in testing software and systems has

shown that testing to high degrees of security and

reliability is from a practical perspective not possible.

Thus, one needs to build security, reliability, and other

aspects into the system design itself and perform a

security fault analysis on the implementation of the

design.” (“Requiring Software Independence in VVSG

2007: STS Recommendations for the TGDC."

November 2006

Those software testing methods and the related

techniques and tools are designed to work with the old-

established software engineering paradigm based on

linear thinking and the superposition principle that the

whole of a system is the sum of its parts, so that almost

all tasks/activities are performed linearly, partially, and

locally, making the defects introduced in upper phases

easy to propagate to the lower phases to increase the

defect removal cost more than 100 times. This old-

established software engineering paradigm is entirely

outdated, and should be replaced by a new revolutionary

software engineering paradigm based on nonlinear

thinking and complexity science[2].

3. The Transparent-Box testing method

The Transparent-Box testing method is graphically

described in Fig. 2.

Fig. 2 Transparent-Box testing method

As shown in Fig. 2, with the Transparent-Box testing

method, to each test case, the corresponding tool will not

only check whether the output (if any, can be none when

it is dynamically used in the requirement development

phase and design phase) is the same as what is expected,

but also check whether the execution path covers the

expected one specified in control flow, and whether the

execution hits some modules or branches which are

prohibited for the execution of the corresponding test

case, so that it can be used to find functional defects,

logic defects, and inconsistency defects. Having an

output is no longer a condition to apply this method, so

that it can be used dynamically in the entire software

development lifecycle for defect prevention and defect

propagation prevention.

The bidirectional traceability between test cases and

the source code tested is established through the use of

Time Tags to be automatically inserted into the

description of the test cases and the database of the

source code test coverage analysis for mapping them

together accurately. Examples of Time Tags are

automatically inserted into the description path of test

cases shown in Fig. 3.

Fig. 3 Time Tag Examples

 For extending the traceability to include the related

documents, Some keywords such as @word@,

@HTML@, @PDF@ , @BAT@ are used for

automatically opening the corresponding documents

traced at a location specified by a bookmark.

 The simple rules for designing a test case description

are as follows:

 a ‘#’ character at the beginning position of a

line means a comment.

 an empty line means a separator between

different test cases.

 Within comments, users can use some

keywords such as @WORD@, @HTML@,

@PDF@ , and @BAT@ to indicate the

format of a document, followed by the full

path name of the document, and a

bookmark.

572 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

 Within comments, users can use [path] and

[/path] pair to indicate the expected path for

a test case.

 Within comments, users can use Expected

Output to indicate the expected value to be

produced.

 Within comments, users can also use

Not_Hit keyword to indicate modules or

branches (segments) which are prohibited to

enter for the related test case.

 After the comment part, there is a line to

indicate the directory for running the

corresponding program.

 The final line in a test case description is the

command line (which may start a program

with the GUI) and the options.

An sample test case script file with some test

case descriptions is listed as follows

(TestScript1) :

test case 1 for New Order

@HTML@

C:\Billing_and_Payment10\Requirement_s

pecification.htm#New_Order

@WORD@

C:\Billing_and_Payment10\Prototype_des

ign.doc bmname New_Order

@WORD@

C:\Billing_and_Payment10\TestRequireme

nts.doc bmname New_Order

[path] main(int, char**) {s0, s1,

s9} [/path]

Expected output : none

C:\Billing_and_Payment10

Billing_and_Payment.exe new_order

Confirm

test case 2 for Pay Invoice

#@HTML@

C:\Billing_and_Payment10\Requirement_s

pecification.htm#Pay_Invoice

#@WORD@

C:\Billing_and_Payment10\Protorype_des

ign.doc Pay_Invoice

@BAT@

C:\isa_examples\ganttpro\ganttpr9.bat

#[path] main(int, char**) {s1, s6, s9,

}B-Pay_Invoice(void) [/path]

Expected output : none

C:\Billing_and_Payment10

Billing_and_Payment.exe Pay_Invoice

……

4. The new software testing paradigm based on

complexity science using the Transparent-Box

testing method

Based on complexity science using the

Transparent-box method, a new revolutionary software

testing paradigm is established which offers

comprehensive functions and capabilities for software

testing, including the support not only for functional

testing, but also for MC/DC (Modified

Condition/Decision Coverage) test coverage analysis,

memory leak and usage violation check, performance

analysis, runtime error type analysis and the execution

path tracing, GUI operation capture and selective

playback, test case efficiency analysis and test case

minimization for efficient regression testing after code

modification, incremental unit testing and integration

testing combined together seamlessly, semi-automatic

test case design, and more.

Application examples of this new software testing

paradigm in the requirement development phase for

finding logic defects and inconsistent defects efficiently

with the Holistic, Actor-Action and Event-Response

Driven, Visual, Traceable, and Executable (HAETVE)

software requirement development technique innovated

by Jay Xiong to be used to replace the Use Case

approach (which is not holistic, not suitable for event-

response type applications, not traceable, and not

directly executable for defect removal) are shown in Fig.

3 to Fig. 4.

Fig. 4 An application result of the HAETVE technique

for the function decomposition of the functional

requirements of a Billing_and_Payment product through

dummy programming using dummy modules (there are

some function call statements in the body of a module

(or an empty body) without real program logic)

The dummy programming source code of the

main() module is listed as follows:

void main(int argc,char** argv)

{

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 573

int key;

if(argc==1 /* Missing a parameter * /

 || argc > 2 /* Having an extra parameter */)

 {

 cout << "Invalid Commands: \n" << argv;

 }

else

{

if(strcmp(argv[1],"New_Order")==0 ||

strcmp(argv[1],"New_order")==0

 || strcmp(argv[1],"new_order")==0)

 {

 A_New_Order();

 cout << "*** A_New_Order () called. ***\n";

 }

else if (strcmp(argv[1],"Confirm_Order")==0 ||

 strcmp(argv[1],"Confirm_order")==0

 || strcmp(argv[1],"confirm_order")==0)

 {

 C_Confirm_Order();

 cout << "*** C_Confirm_Order () called.

***\n";

 }

else if (strcmp(argv[1],"Invoice_Buyer")==0 ||

 strcmp(argv[1],"Invoice_buyer")==0

 || strcmp(argv[1],"Invoice_buyer")==0)

 {

 D_Invoice_Buyer();

 cout << "*** D_Invoice_Buyer() called. ***\n";

 }

else if (strcmp(argv[1],"Pay_Invoice")==0 ||

 strcmp(argv[1],"Pay_invoice")==0

 || strcmp(argv[1],"pay_invoice")==0)

 {

 B_Pay_Invoice();

 cout << "\n *** B_Pay_Invoice() called. ***\n";

 }

else if (strcmp(argv[1],"Send_Reminders")==0 ||

 strcmp(argv[1],"Send_reminders")==0

 || strcmp(argv[1],"send_reminders")==0)

 {

 E_Send_Reminders ();

 cout << "\n *** E_send_Reminders() called.

***\n";

 }

else

 cout << "Invalid Commands: \n" << (char**)

argv <<endl;

 cout << " *** Executed. *** \n" << (char**) argv

<<endl;

 }

}

After the execution of the test script file,

TestScript1, using this new software testing paradigm

through the Panorama++ product, one logic defect and

another inconsistency defect were found as shown in

Fig. 5.

Fig. 5 Two defects found through dynamic testing

using the Transparent-Box method when performing

a forward tracing operation (Note: all the related

documents are opened from the locations indicated

by the corresponding bookmarks)

 After checking the source code, we can easily find

that there is a defect coming from an extra space

character:

An extra space character is added: |

 V

if(argc==1 /* Missing a parameter * /

 || argc > 2 /* Having an extra parameter

*/)

 {

 cout << "Invalid Commands: \n" << argv;

 }

else

{

if(strcmp(argv[1],"New_Order")==0 ||

strcmp(argv[1],"New_order")==0

 || strcmp(argv[1],"new_order")==0)

 {

 A_New_Order();

 cout << "*** A_New_Order () called.

***\n";

 }

After checking the bookmarks, we found that in the

TestRequirements.doc file the bookmark

Now_Oder is pointing to the Pay Invoice Treatment

position rather than the New Order Treatment

position. After removing the two defects, a correct

result is obtained as shown in Fig. 6.

574 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Fig. 6 After modification, the two defects shown in

Fig. 5 are removed

When this new software testing paradigm is

applied to test a software program without the source

code, we can design a virtual main() to indicate the

corresponding operations and call the program

indirectly through dummy programming too. In this

way the GUI operation can be captured and

automatically play back after code modification with

the capability to establish bidirectional traceability to

find the inconsistency defects among the test cases,

the test requirements, and user’s manual, and other

related documents even if the source code is not

available.

5. The major features of the new software testing

paradigm

The new presented software testing paradigm brings

revolutionary changes to software testing. The major

features of the new software testing paradigm include:

 It is based on the Transparent-Box testing

method which combines functional testing

and structural testing together seamlessly

with close logic connection and a capability

to automatically establish bidirectional

traceability among the related documents

and test cases and the corresponding source

code tested, as shown from Fig. 3 to Fig. 5.

 It can be used in the entire software

development lifecycle dynamically, from

the requirement development phase down to

the maintenance phase.

 It can be used to find functional defects,

structural defects, inconsistency defects,

memory leaks and memory usage violation

defects, and performance bottlenecks.

 It supports MC/DC test coverage analysis

required for the RTCA/DO-178B level A

standard, being able to show the test

coverage analysis results graphically with

untested branches and conditions

highlighted as shown in Fig. 7.

Fig. 6 MC/DC test coverage analysis and the

analysis results shown graphically

 It supports memory leak analysis and

memory usage violation check. An

application example is shown in Fig. 87

Fig. 7 A report on memory leak and usage

violation check

 It supports performance analysis with the

capability to report the branch execution

frequency to locate performance bottlenecks

better as shown in Fig. 8.

Fig. 8 An application example of performance

analysis performed by Panorama++

 It supports efficient test case design by

automatically choosing a typical path with

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 575

the most untested branches and

automatically extracting the execution

conditions of the chosen path as shown in

Fig. 9.

Fig. 9 Assisted test case design performed by

Panorama++

 It supports embedded software testing too,

as shown in Fig. 10.

Fig. 10 An application example shows that the

MC/DC test coverage data are sent from the

target to the test server

6. A general comparison between the new

software testing paradigm and the old one

(a) The defect finding efficiency

The old testing paradigm used for incremental

software development is shown in Fig. 11[3].

Fig. 11 Traditional software testing performed with

incremental software development

 The old testing paradigm used for the iterative

software development is shown in Fig. 12.

Fig. 12 The old testing paradigm used for the iterative

software development

The presented new software testing paradigm

used for incremental or iterative software development

is shown in Fig. 13.

Fig. 13 The presented new software testing paradigm

used for incremental or iterative software development

Comparing Fig. 11, Fig. 12, and Fig. 13, it

is clear that the new software testing paradigm is

576 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

much more efficient in finding defects in a

software product development process.

(b) The timing in finding the defects

The traditional software testing methods can

be performed after coding, but it is too late;

in comparison, the new presented software

testing paradigm can be used in all phases of

a software development lifecycle, including

the requirement development phase and the

design phase.

(c) The defect types that can be found

The traditional black-box method can be

used to find functional defects; the traditional

structural white-box method can be used to find

some structural defects for the Existing product

no matter it is the customer-required product or

not.

The presented new software testing paradigm

can be used to find functional defects, structural

defects, logic defects, and inconsistency defects.

Some functional defects can not be found by

the black-box method, but can be found by the

new software testing paradigm as shown in Fig.

14.

Fig. 14 An application example of transparent-box

testing: a bug found even if the output is the same as

what is expected (this defect comes from that a

“break” statement is missing, so that the result 4 is

produced through 2 times 2 rather than 2 plus 2)

(d) The graphical representation techniques

for displaying the test results

The test results obtained from the

applications of most traditional software

testing methods and tools are shown in

textual formats or value tables.

But the test results obtained from the

applications of the presented new software

testing paradigm is graphically shown in the

system-level and in the detailed source code

level as shown in Fig. 15.

Fig. 15 An example of test coverage analysis result

obtained using the presented new software

testing paradigm (the untested branches and

conditions are highlighted with small black

boxes)

(e) The capability to support automated

traceability

It is only supported by the presented new

software testing paradigm.

Conclusion

This paper presented a new software testing

paradigm based on the Transparent-Box testing method

which brings revolutionary changes to software testing

in the 21
st
 century by combining structural testing and

functional testing together seamlessly with internal logic

connections, which can be used dynamically in the

entire software development lifecycle from requirement

development down to maintenance.

References
[1] Deming W E. Out of the Crisis. MIT Press, 1982.

[2] Jay Xiong, Tutorial, A Complete Revolution in Software

Engineering Based on Complexity Science,

WORLDCOMP'09, Las Vegas, July 13-17, 2009.

[3] Alistair Cockburn, Using Both Incremental and Iterative

Development, CrossTalk, May 2008 Issue

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 577

Software Quality Assurance Revolution Based on
Complexity Science - An Introduction to NSE-SQA

WanYuan Huang1
 , Linda Li

2

1
The Jumpulse Center of Research and Incubation of Northwestern Polytechnic University

2
ISA Shanghai, China

Abstract -The old-established software quality assurance paradigm is an outcome of linear thinking, reductionism, and the

superposition principle that the whole of a complex software system is the sum of its components, so that with it almost all

software quality assurance activities are performed linearly, partially, and locally through inspection and testing after

production – violating Deming’s product quality principle of “Cease dependence on inspection to achieve quality.

Eliminate the need for inspection on a mass basis by building quality into the product in the first place.”

 This paper describes a new software quality assurance paradigm based on complexity science by complying with the

essential principles of complexity science, particularly the Nonlinearity Principle and the Holism Principle, so that with it

almost all software quality assurance activities are performed nonlinearly, holistically, and globally through defect

prevention and defect propagation prevention performed with dynamic testing using the innovated Transparent-box testing

method and semi-automatic inspection supported by bi-directional traceability in the entire software development lifecycle

from the first step down to the retirement of a software product.

Keywords: software quality assurance, defect prevention, software testing, software maintenance, complexity science

1 Introduction

 Today software has become the driving force for the

development of all kinds of businesses, engineering,

sciences, and the global economy. As pointed by David Rice,

“like cement, software is everywhere in modern civilization.

Software is in your mobile phone, on your home computer,

in cars, airplanes, hospitals, businesses, public utilities,

financial systems, and national defense systems.” But

unfortunately, software itself is not well engineered. For

instance, the reliability of today’s cloud computing software

is too low to be accepted - only in 2011 many cloud

computing systems failures were reported (Tim Perdue,

2011), including the following listed ones caused mainly by

software problems:

 Sony’s Playstation Network (4/21/2011)

 Amazon Web Services (4/21/2011)

 Twitter Service (2/25/2011)

 Netflix Streaming Service (3/22/2011)

 Intuit Service and Quickbooks (3/28/2011)

 NIST (National Institute of Standards and Technology)

concluded that “Briefly, experience in testing software and

systems has shown that testing to high degrees of security

and reliability is from a practical perspective not possible.

Thus, one needs to build security, reliability, and other

aspects into the system design itself and perform a security

fault analysis on the implementation of the design.”

 This paper introduces a new software quality assurance

paradigm based on complexity science, called NSE-SQA

with which software quality is ensured mainly through defect

prevention and defect propagation prevention supported by

various bi-directional traceability established dynamically

using the innovated Transparent-box testing method.

2 What Does a Revolution Mean?

 According to “The Structure of Scientific Revolutions”

（ Kuhn T ， 1962 ） , science does not progress

continuously, by gradually extending an established

paradigm. It proceed as a series of revolutionary upheavals.

A revolution means a drastic, complete, and

fundamental change of paradigm to resolve some

outstanding and generally recognized problem that can

be met in no other way.

 Kuhn described that there are three phases with

Scientific Revolutions: the first phase, which exists only

once, is the pre-paradigm phase, in which there is no

consensus on any particular theory, though the research

being carried out can be considered scientific in nature – this

phase is characterized by several incompatible and

incomplete theories; the second phase is the normal science

– if the actors in the pre-paradigm community eventually

gravitate to one of these conceptual frameworks and

ultimately to a widespread consensus on the appropriate

choice of to increased insights, then the normal science

begins, in which puzzles are solved within the context of the

dominant paradigm. As long as there is general consensus

within the discipline, normal science continues; the third

phase is the revolutionary science phase – over time,

progress in normal science may reveal anomalies, facts

which are difficult to explain within the context of the

existing paradigm. While usually these anomalies are

resolved, in some cases they may accumulate to the point

where normal science becomes difficult and where

weaknesses in the old paradigm are revealed; Kuhn refers to

this as a crisis. After significant efforts of normal science

within a paradigm fail, science may enter the third phase,

that of revolutionary science, in which the underlying

578 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

http://newtech.about.com/bio/Tim-Perdue-81959.htm
http://blog.us.playstation.com/2011/05/10/psn-restoration-timeline-update/
http://aws.amazon.com/message/65648/
http://status.twitter.com/post/5084616143/elevated-error-rates
http://twitter.com/Netflixhelps/status/50446116474470400
http://community.intuit.com/important-message

assumptions of the field are reexamined and a new paradigm

is established. After the new paradigm’s dominance is

established, scientists return to normal science, solving

puzzles within the new paradigm. A science may go through

these three phases cycles repeatedly, though Kuhn notes that

it is a good thing for science that such paradigm shifts do not

occur often or easily.

3 Bringing drastic, complete, and

fundamental changes to Software

Quality Assurance Foundation

3.1 The foundation of the Existing Software Quality

Assurance paradigm is wrong

Software and software engineering paradigms are complex

systems where a small change may bring big impact to an

entire software product – « Butterfly-Effects ». But the

existing software quality assurance paradigm is based on

linear thinking, reductionism, and the superposition principle

that the whole of a nonlinear system is the sum of its parts,

so that with it almost all software quality assurance activities

are performed linearly, partially, and locally.

3.2 The corresponding software modeling approaches

with the old-established software quality assurance

paradigm are outdated

 The existing software modeling approaches are outdated

because they are outcomes of the reductionism and

superposition principles, using different sources for human

understanding and computer understanding of a software

system separately with a big gap between them (see Fig.1).

The obtained models are not traceable for static defect

removal, not executable for debugging, not testable for

dynamic defect removal, not consistent with the source code

after code modification, and not qualified as the road map for

software development.

Fig. 1 The Two Source Approach for software modeling

(TSA)

3.3 The corresponding software process models are

wrong

 All existing software process models are linear ones.

3.4 The corresponding software development methods

are outdated

components are developed first, then the system of a

software product is built through the integration of the

components developed. From the point of view of quality

assurance, those methodologies are test-driven but the

functional testing is performed after coding - it is too late.

These methodologies handle a software product as a machine

rather than a logical product created by people. They all

comply with the superposition principle. With those

methodologies, all activities are performed linearly, partially,

and locally too.

Fig. 3 Software development methods based on

constructive holism

3.5 The corresponding software testing methods with the

old-established software quality assurance paradigm are

outdated

 The current software testing paradigm is mainly based on

functional testing plus structural testing, load testing, and

stress testing, being performed after coding. It is too late. The

functional testing approach using the Black-box method

cannot be performed in the requirement development phase

and the design phase dynamically, so that there is no way to

find defects introduced in the requirement development

phase and the design phase dynamically using the existing

software testing paradigm.

3.6 The corresponding software maintenance paradigm

with the old-established software quality assurance

paradigm is wrong

 The existing software maintenance paradigm offers a

blind, partial, and local approach for software maintenance

without support of various traceabilities. There is no way to

prevent the side-effects of the implementation of requirement

changes or code modifications. Local and partial software

maintenance is risky - each time when a bug is fixed, there is

a20%-50% of chance of introducing another into the

software product. It is why today, software maintenance

takes more than 75% of the total effort and total cost for

software product development.

3.7 The existing visualization paradigm, documentation

paradigm, and project management paradigm are also

outdated Conclusion:

 those issues show that only improving the quality

assurance process, the visualization, and the management

process without making revolutionary changes to the

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 579

foundation of software engineering, the software modeling

approaches, the software development methodologies, the

software testing methods, and the software maintenance

paradigm, will be

mpossible to greatly improve the quality and reliability of a

software product.

4. The Solution Offered

 The solution provided is called New Software Quality

Assurance Paradigm Based on Complexity Science. It

consists of two major steps: (1) Making revolutionary

changes to all the major components of the software

engineering paradigm from that based on linear

thinking,reductionism, and the superposition principle (so

that with it almost all software quality assurance activities

are performed linearly, partially, andlocally) to that based on

nonlinear thinking and complexity science (so that with it

almost all software quality assurance activities are performed

nonlinearly, holistically, and globally);(2) After the

revolutionary changes done to all the major components of

the software engineering paradigm, making the desired

characteristics and behaviors of the whole software quality

assuranceparadigm emerge from the interactions of the all

major software engineering components – for instance,

making all the components of the new software engineering

paradigm work together to ensure the quality of software

maintenance through side-effect prevention in the

implementation of software changes supported by various

traceabilities automatically established by the new software

testing paradigm, new software visualization paradigm, new

documentation paradigm, and new software maintenance

paradigm.

 As shown in Fig. 4, with the existing software quality

assurance paradigm, improving the quality of a software

product will reduce the productivity or increase the cost.

Fig. 4 The relationship among quality, productivity, cost, and

risk with today’s software development

 Fig. 5 shows the objectives of the solution offered –

making it possible to help software development

organizations double their productivity, halve their cost, and

improve their product quality tenfold many times, compared

with the existing approaches.

Fig. 5 The objective of the NSE-SQA solution

4.1 Foundation of the solution

 This solution is based on complexity science by

complying with the essential principles of complexity

science, particularly the nonlinearity principle and the holism

principle that the whole of a complex system is greater than

the sum of its components, and that the characteristics and

behaviors of the whole emerge from the interaction of its

components, so that with it almost all of the tasks and

activities in software quality assurance are performed

nonlinearly, holistically, and globally.

4.2 Dynamic Software Modeling driven by source code

(DSM)

 The basic idea of DSM and the major differences between

TSA and DSM is shown in Fig. 1 (TSA) and Fig, 6 (DSM).

DSM is the key technique to ensure software quality in

software requirement development and software design.

Fig. 6 Dynamic Software Modeling driven by source Code

 As shown in Fig. 6, with DSM, one kind of source is

used for both human understanding and computer

understanding of a software product. The models/diagrams

are automatically generated from the source code, either a

dummy program using dummy modules having an empty

body or only a set of function call statements, or a regular

program through reverse engineering. The generated diagram

and the source code are traceable.

 With TSA, there is an one-time design process that

complying with the linear process models (either a one time

waterfall model, or an iterative/incremental model which is

580 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

“a series of Waterfalls”[4]) without upstream movement at

all – the designers have no right to be wrong. But we are

human beings rather than God – people are nonlinear and

easily make mistakes in thinking, reading, writing, hearing,

making wrong decisions, etc.

 With DSM, we have the right to be wrong in the design,

but we also have the right to be right – in the coding phase, if

we find something wrong with the product design, then we

correct them with coding – we can easily update the design

by rebuilding the database for automatically generating all

related design documents/diagrams making design become

pre-coding, and coding become further design

(top-down plus bottom-up).

 HAETVE technique:

 With DSM, three type of interactive and traceable

diagrams (J-Chart, J-Diagram, and J-Flow innovated by Jay

Xiong) can be automatically generated at any phase from the

source code of a dummy program (in forward engineering) or

regular program (in reverse engineering).

 J-Chart notations are shown in Fig. 7.

Fig. 7 J-Chart notations

 HAETVE means Holistic, Actor-Action and Event-

Response driven, Traceable, Visual, and Executable

technique for dynamic requirement

modeling. With HAETVE the graphical notations for

representing an actor and an action for C/C++ programs are

shown in Fig. 8 where the notation used for representing an

actor is originally designed for representing a recursive

program module.

Fig. 8 Notations for representing actor and action for

 C/C++

 The corresponding dummy source code written in

 C/C++ is listed as follows separately:

 Bank_Customer ()

 {

 Bank_Customer ();

 }

 Void Deposit_Money ()

 {

 }

 For the Actor-Action type applications, HAETVE is

similar to the Use Case approach, and is easy to map

to Use Case notations as shown in Fig. 9 and Fig. 10.

Fig. 10 Notation mapping between Use Cases (Top) and

HAETVE (Bottom)

 The analysis result of Use Cases can also be mapped to

HAETVE as shown in Fig. 11.

Fig. 11 Analysis notation mapping between Use Cases

 (UML) and HAETVE

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 581

But there are some special things with HAETVE:

(a) The obtained results are traceable for static defect

removal - see Fig. 12 – found and fixed a defect

through traceability: the Order_Handler should

handle Order_Confirmation too.

Fig. 12 Defect removal through review with traceability

(b) The obtained results are executable for dynamic

defect removal using the Transparent-box testing

method innovated by me which not only checks

whether the output (if any, can be none) is the same

as what is expected, but also helps users to check

whether the execution path covers the expected one,

and establish automated traceability among related

documents and test cases and source code using

Time Tags to map test cases with the source code

tested (see Fig. 13),keywords to indicate the

document formats, and bookmarks to open the

traced documents (see Fig. 14).

Fig. 14 Self-maintainable facility for bi-directional

traceability

 Fig. 15 shows two defects are found; Fig. 16 shows the

correct result after the two defects are removed.

Fig. 15 Two defects found: the execution path didn’t cover

the expected one; one bookmark used is wrong.

Fig. 16 New result: after the two defects removed

4,3 NSE process model

 The NSE process model is nonlinear, consisting of the

pre-process part and the main process part. The detailed

process steps are shown in Fig.17.

 Fig. 17 NSE process model

582 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

4.4 NSE software development methodology

 Fig. 18 shows that the NSE software development method

is based on Generative Holism.

 Fig. 18 Generative Holism based software development

 Fig. 19 shows that the NSE software development

methodology is driven by defect prevention and defect

propagation prevention.

Fig. 19 NSE software development methodology

 Fig. 20 shows that with assigned bottom-up coding

orders, inconsistent defects in the interface design can be

prevented.

Fig. 20 An example for defect prevention

4.5 The innovated Transparent-box method for software

testing

 See Fig. 21, where the Transparent-box testing method

combines functional testing and structural testing together –

to each test case it checks whether the output (if any, can be

none) is the same as what is expected, but also helps users

check whether the code execution path covers the expected

one.

Fig. 21 The Transparent-box testing method

 Fig. 22 shows the comparison result of the defect

detection efficiency.

Fig. 22 Defect detecting efficiency: (A) traditional

approaches; (B) Transparent-box testing method

 Fig. 23 shows the supported capability for Modified

Condition/Decision Coverage analysis.

Fig. 23 MC/DC test coverage analysis supported

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 583

（A）

(B)

(C)

(D)

(E)

(F)

Fig. 24 Implementation of a requirement change with side-effect prevention: (A) From the requirement to be changed to

find the related test cases through the document hierarchy description table; (B) Perform forward tracing from the test

case(s) to find the related program modules; (C) Perform backward tracing from the module(s) to be modified to find how

many requirements are related (in this case, two requirements are related, so that the modification must satisfy both); (D)

Tracing the module to be modified to find how many other modules are related (which may need to be modified too) from

the corresponding call graph; (E) Check the consistency between a modified module and all the statements calling it using

the logic diagram automatically generated from the source code with traceability; (F) Tracing a modified source code

segment (a set of statements with the same execution conditions) or a modified module to find the corresponding test

case(s) which can be used to re-test it efficiently.

4.6 NSE Software Maintenance paradigm

 As shown in Fig. 24, with the NSE Software Maintenance

paradigm software maintenance is performed holistically and

globally with side-effect prevention through various

traceabilities.

 The corresponding software maintenance process model is

show in Fig. 25.

584 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Fig. 25 The NSE software maintenance processn model

As shown in Fig. 26, with the new software maintenance

paradigm, it is possible to save about 2/3 of the effort and

cost spent in software maintenance because (1) most defects

ntroduced into a software product in the requirement

development phase and the design phase can be removed

through dynamic modeling driven by source code; (2) the

entire software development process are driven by defect

prevention and defect propagation prevention; (3) There is

no major difference between the software development

process and the software maintenance process – both support

changes with side-effect prevention through various

traceabilities automatically established.

Fig. 26 Possible effort and cost savings

5. The Applications
 With the new revolutionary paradigm for software

quality assurance (NSE-SQA), it is possible to remove

99.99% of the defects in a software product - see Table 1.

Note: the item and the data written in italics come from the

published reports provided by Software Productivity

Research based on the analysis of 12000 software projects

[5]).

Table 1 Defect Removal Efficiency

5. Conclusion
 This paper introduced a new software quality assurance

paradigm based on complexity science (NSE_SQA). With it,

almost all software quality assurance activities are performed

non-linearly, holistically, and globally through defect

prevention and defect propagation prevention in the software

development lifecycle.

References

[1] David Rice, GEEKONOMICS The Real Cost of Insecure

Software, 1E, Pearson Education,inc, Publishing as

Addison Wesley, 2008

[2] Jones, Capers, Social and Technical Reasons for

Software Project Failures, CrossTalk, Jun 2006 Issue

[3] Alistair Cockburn, Using Both Incremental and Iterative

Development, CrossTalk, May 2008 Issue

[4] Condensed GSAM Handbook, chapter 2,

 CrossTalk, 200

[5] Jones, Capers, SOFTWARE QUALITY IN

 2002: A SURVEY OF THE STATE OF THE

 ART, http://www.SPR.com July 23, 200

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 585

Software Traceability Establishment Revolution Based on

Complexity Science

Po-Kang Chen
 1
 , Jay Xiong

 2

1
Y&D Information system, Inc. USA

2
International Software Automation, Inc. (ISA, currently being reorganized), USA

Abstract - software becomes system of complexity in

the modern time. 40 years passing, modern software design tends to

complexity and precision. Until 2012, software design tool doesn’t

support excellent model’s and function’s traceability during design

program. On the other hand, software design won’t adapt on modern

software design, which needs a methodology based on complex

science for its maintenance and design. Traceability is a important

factor influencing quality of software. This paper presents

automated, dynamic, accurate, precise, and self-maintainable

traceability among related software documents and test cases and

source code, established through test case execution and some

keywords used within the test case descriptions to indicate the

format of the documents as well as the file paths and the bookmarks

for automatically opening the documents from the corresponding

positions when the related test case is selected for forward tracing or

traced from the corresponding source code backwardly. When a

test case is executed a Time Tag will be automatically inserted into

both the test case description and the database of the test coverage

measurement results for mapping them together. No matter if the

contents of a document is modified, or the parameters of a test case

are changed, or the corresponding source code is modified, after

rerunning the test case the traceability will be updated

automatically without any manual rework. Here a “document”

means a regular file for requirement specification, design

description, test requirement specification, user manual, project

development plan, cost report, or a web page as well as a batch file

for dynamically running a related program such as a tool for

selectively playing back the GUI operations captured with the test

case execution, and displaying the test coverage measurement result

shown in a new type control flow diagram which is interactive and

traceable with untested source modules and branches highlighted at

the same time for automated software acceptance testing. Above all,

it will bring drastic, complete, and fundamental change of paradigm,

resolving some outstanding and generally recognized problems. No

other way can efficiently resolve those outstanding and generally

recognized problems.

Keywords: : software traceability, requirement

traceability, validation, verification, testing, quality

assurance， maintenance

1 1. Introduction

 Software is a nonlinear complex system where a

small change can ripple through the entire system to cause

major unintended impacts – “Butterfly-Effects”, so that

prior to performing the actual change, maintainers need

facilities in order to understand and estimate how a change

will affect the rest of the system. Traceability offers

benefits to organizations in the areas of project

management, process visibility, requirement validation and

verification, and software maintenance. Traceability needs

to be hardcoded into a process to be replicated iteratively on

each and every project[1]. Without bidirectional

traceabnilities software maintenance can not be performed

globally and holistically to prevent side-effects. Local and

blind software changes will make the software product

unstable and unlierable.

1.1 The problems addressed

 The lack of traceability among software documents, test

cases, test results, and source code is caused by several

factors, including: (1) the fact that these artifacts are written

in different languages (natural language vs. programming

language); (2) they describe a software system at various

abstraction levels (requirements vs. implementation); (3)

processes applied within an organization do not enforce

maintenance of existing traceability links; (4) a lack of

adequate tool support to create and maintain

traceability[2]，（5）there are many different types of

documents, some of which are created manually, some of

which are generated automatically by internal tools, some of

which are generated automatically by third parties’ tools,

some of which are designed using graphic editors; (6) some

documents are stored locally, some documents are stored in

other places through a network; (7) some related documents

are web pages, which can be read through the internet only;

(8) some documents are related to the software

development, while some documents are related to the

project management which should also be traceable; and (9)

some documents are not static materials, must be viewed

dynamically through a program execution. Unfortunately,

neither manual traceability methods nor existing COTS

traceability tools available on the market are adequate for

the current needs of the software engineering industry. Poor

methods and tool support are perhaps the biggest challenge

to the implementation of traceability - when those tools are

used, the traceability information is not always maintained,

nor can it always be trusted to be up-to-date and accurate.

[1]. Studies have shown that existing commercial

traceability tools provide only simplistic support for

traceability [3]. Why does software maintenance take 75%

586 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

or more of the total effort and total budget[4] in most

software project development? One of the critical issues is

the lack of bidirectional traceabilities among the

requirement specification, the design documents, the test

cases, the test results, and the source code of a software

product.

1.2 The solution

 The new requirement traceability approach proposed and

implemented by the authors is graphically shown in Fig. 1.

Figure 1. The facility for automated, bi-directional, and

self-maintainable traceability among the documents and

the test cases and the source code of a software product

The objectives of this traceability facility are:

Helping software developers to prevent side-effects in the

implementation of software changes;

Solving the inconsistency issue to make the documents and

the source code traceable with each other to keep

consistency;

Removing the problems existing with a man-made

Requirement-Traceability-Matrix which is inaccurate, time

consuming to do, and almost un-maintainable;

Making the software development process visible;

Making the requirement validation and verification much

easy to perform;

Making the software product much easy to understand, test,

and maintain.

As shown in Figure 1, this facility for bidirectional

traceability consists of two parts:

(1) Part 1

Part 1 of the facility is related to the traceability between

test cases and the corresponding source code executed by

running the test cases. It is done with the use of Time Tags

which are automatically inserted into both the test case

descriptions and the corresponding test coverage database.

For instance, if test case 1 is executed at 09:00 AM on

September 2, 2009, and test case 2 is executed at 10:00 AM

on the same day, and test case 3 is executed at 11:00 Am on

the same day, then the three different Time Tags will be

inserted into the three test cases and the corresponding test

coverage database separately. So, when test case 2 is

selected for forward tracing, the Time tag of 10:00 AM on

September 2, 2009 will be taken from the test case

description to search the test coverage data with the same

time tag, so the corresponding test coverage data will be

read and the corresponding modules and branches will be

highlighted on a control flow diagram. On the other hand,

when a module or code segment shown on a control flow

diagram is selected, the related time tags (which can be

more than one) used to indicate what time the module or

segment was executed will be taken to search the test case

descriptions to see how many test cases with the mapping

time tags through backward tracing, then highlights all test

cases mapped on the window showing the test case script.

(2) Part 2

 Part 2 of the facility is to extend the bi-directional

traceability from test cases and the source code to include

all related documents, the test cases, and the source code. It

is done using some key words (written into the comment

part of the description of a test case) such as @WORD@,

@HTML@, @BAT@, @PDF@, and @EXCEL@ followed

with the corresponding file path and a bookmark to indicate

the format of the document, the full path name of the file,

and the corresponding location in the document, so that

when a test case is selected for forward tracing, or traced

from a module or segment backwardly, the corresponding

document will be opened and shown from the location

indicated by the bookmark.

It is recommended to organize the requirement specification

and the related documents hierarchically (even if some

documents have not been really designed) with inherited (or

meaningful) bookmarks as shown in table 1.

Table 1 Document Hierarchy.

It is important to make the document hierarchy include the

test case scripts (test cases numbers) so that when a

requirement needs to be changed or selected for validation,

it is easy to find what test cases to be used.

The major steps for establishing and applying the

bidirectional traceability are as follows:

Step 1: Organize the requirement specification and the

related documents hierarchically with the bookmarks,

clearly indicate each requirement and the corresponding

test scripts and the test case numbers;

Step 2: Design the test case scripts with the corresponding

keywords to indicate the formats and the file paths and the

bookmarks for the related documents;

Step 3: Perform code instrumentation for test coverage

analysis to the entire program;

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 587

Step 4: Compile the program instrumented;

Step 5: Execute the test case scripts with the corresponding

tool.

Step 6: Show the modified test case script files with time

tags inserted in a window;

Step 7: Show the program test coverage measurement result

using a control flow diagram in another window;

Step 8: Perform forward tracing from a test case with a tool

to map and highlight the corresponding modules and code

branches tested by the test case through the inserted time tag

– at the same time, open the related documents according to

the document formats, file paths, as well as the bookmarks

(or run the corresponding batch file if a @BAT@ keyword

is used);

Step 9: Perform backward tracing from a program module

or code branch with a tool to map and highlight the related

test cases though the inserted time tags - at the same time,

open the related documents according to the document

formats, file paths, as well as the bookmarks (or run the

corresponding batch tile if a @BAT@ keyword is used);

Step 10：After the implementation of code modifications,

go to step 3.

Step 11: If a related document is modified in the contents

only without changing the bookmarks, there is nothing to

do; but if the bookmarks are modified (such as the name of

a bookmark is changed), modify the corresponding test

case scripts according to the new bookmarks, then go to

step 5;

Step 12: if only the test cases are modified, go to step 5;

Step 13: if the source code is modified, go to step 3;

Step 14: If it is the time to perform requirement validation

and verification (V&V), use the document hierarchy

information organized in step 1 to get each requirement and

the corresponding test cases to perform forward tracing one

by one to see whether the requirement is completely

implemented;

Step 15: if a requirement is needed to modify: (1) get the

test cases related to this requirement to perform forward

tracing to locate the documents needed to update, and the

source modules or branches needed to modify; (2) perform

backward tracing from those modules or braches to see

whether more requirements are related – if it is related to

more requirements, the implementation of the code

modification must satisfy all of the related requirements to

avoid requirement conflict.

Step 16: if it is the time to perform regression testing after

modification, get the modules or branches modified to

perform backward tracing to collect the corresponding test

cases which can be used to re-test the modified program

efficiently. Sometimes, there may be a need to add new test

cases.

2 The major features

2.1 Automated

 This facility works automatically with the capability to

insert the Time Tags into both the test cases description part

(see Fig. 2) and the database of the program test coverage

measurement result, and highlight the test cases selected

on the corresponding test script window, and the source

code modules/branches shown in a control flow diagram on

the corresponding source code window, or vice versa, as

well as open the related documents traced from the locations

pointed by the bookmarks.

 and headers (final page numbers and running heads

will be inserted by the publisher). Select a standard size

paper such as A4 (210 X 297 mm) or letter (8.5 X 11 in)

when preparing your manuscript.

2.2 Self-maintainable

 This facility is self-maintainable no matter if the contents

of a document is modified, the parameters of a test case is

modified, or the source code is modified - after rerunning

the test case scripts, the traceability will be automatically

updated without manual rework.

2.3 Methodology-independent

 This facility is methodology-independent no matter

which methodology or process models are used to develop

the product.

2.4 Nonlinear, bidirectional, and parallel

 This facility works in a nonlinear, bidirectional, and

parallel style as shown in Figure 3 and Figure 4. For

example, when a design defect is found after the product

delivery, the developers can perform forward tracing to

check the related requirement, and backward tracing to find

and fix the related source code, etc. as shown in Figure 5.

588 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

 (A)

(B)
 Figure 3 Supporting parallel work: (A) application in

requirement validation through forward traceability; (B)

application for defect prevention in code modification

Figure 4 Safe implementation of a requirement change with

side-effect prevention

Figure 5 Fixing a design defect through forward and

backward traceability

2.5 Accurate

 This facility is based on the dynamic execution of the

test cases and test coverage measurement and the time tags

to map the test cases and the source code tested, so that it is

accurate. After code modification or parameter changes of

the test cases, we can re-run the test cases to automatically

update the facility.

2.6 Precise

 This facility is precise to the highest level – up to the

code statement/segment (a set of statements to be executed

with the same conditions) level bi-directionally. It is

particularly useful for side-effect prevention in software

maintenance.

2.7 Extended to include software project

management documents

 This facility is extended to include not only the software

development documents, but also include the project

management documents such as the product development

schedule charts, the cost estimation reports, and so on to

combine the software development process and the software

management process together. If a project management

document (such as a gantt chart) is designed using a third

party’s tool, a corresponding batch file should be designed

and used with the @BAT@ keyword to indicate the

location of the batch file in the test case description part

such as the following example:

 @BAT@ C:\isa_examples\ganttpro\ganttpro.bat

2.8 Extended to include web pages

 For supporting web-based software development and

applications, this facility is extended to include web pages

to be traced and automatically opened through the use of

@HTML@ keyword to indicate the URL address and the

bookmark (#NAME) such as the following example:

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 589

 @HTML@

http://www.stsc.hill.af.mil/CrossTalk/2010/01/index.aspx

When the corresponding test case is selected for forward

tracing or traced backwardly form a source code module or

a source code branch mapped to the test case, the

corresponding CrossTalk web page will be opened

automatically if the internet is connected.

2.9 Extended for multi-project support

This facility is extended to support multi-project

development by making the related project progress, special

event reports, schedules, budget control documents, and

cost reports traceable between two related projects (or

among more related projects) as shown in Figure 6.

Figure 6 Multi-projects development support

3 Dynamic

 This facility is extended to have the capability to trace a

batch file and dynamically execute the batch file for many

kind applications such as playing back the captured GUI

operations selectively through the time tags in automated

acceptance testing, or running a third party’s tool to handle

the corresponding documents generated by that tool (see

Fig. 7), or dynamically execute a related program for other

purposes.

Fig. 7 An application example of the dynamic traceability to

run a batch file to open a gantt chart showing a project

development schedule generated by a third party’s tool

3.1 Easy to add on at any time, in any status

 This facility can be added on at any time and in any status

of a software product development project, even if in the

requirement development phase where the product design and

coding have not started yet – in this case we can design a

dummy main program without a real output but can be

executed for checking the consistency between requirement

specifications, prototype design documents, test requirements,

and test scripts – it is recommended to design the test scripts

with the requirement specifications at the same time before

the product design. In the case this facility is used for a

product developed or being developed using other

methodologies, the users only need to set bookmarks to the

related documents and modify the test case description with

simple rules listed as follows:

 a ‘#’ character at the beginning position of a line

means a comment.

 an empty line means a separator between

different test cases.

 Within comments, users can use some keywords

to indicate the format of any document, followed

by the full path name of the document, and a

bookmark.

 After the comment part, there is a line to indicate

the directory for running the corresponding

program.

 The final line in a test case description is the

command line (which may start a program with

the GUI) with the options.

Other work can be done automatically by the corresponding

tools.

4 Conclusions

 This automated and self-maintainable traceability

technique has been successfully applied in requirement

validation and verification, side-effect prevention for the

implementation of requirement changes and code

modifications, inconsistency checking among documents and

test cases and source code, efficient regression testing

through backward tracing from a modified module or branch

to select the corresponding test cases, and quality assurance

in the entire software development lifecycle through defect

prevention and defect propagation prevention. That is Why

software traceability is important. Current tools doesn’t

support efficient way to traceability, but our tools can be

done it ; That is difference to other solution.

5 References

590 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

http://www.stsc.hill.af.mil/CrossTalk/2010/01/index.aspx

[1] Andrew Kannenberg, et al. Why Software

Requirements Traceability Remains a Challenge, CrossTalk,

Jul/Aug 2009 Issue.

[2] Juergen Rilling， et al. CASCON 2007 Workshop

Report，Traceability in Software Engineering - Past, Present

and Future，IBM Technical Report: TR-74-211 October 25,

2007

[3] Ramesh, Balasubramaniam, and Matthias Jarke.

Toward Reference Models for Requirements Traceability.

IEEE Transactions on Software Engineering 1 (2001): 58-93.

[4] Ambler S W. A Manager’s Introduction to The Rational

Unified Process (RUP), Ambysoft. 2005

[5] Jay Xiong, Tutorial, A Complete Revolution in

Software Engineering Based on Complexity Science,

WORLDCOMP'09 - , Las Vegas, July 13-17, 2009.

[6] Jay Xiong, Jonathan Xiong, A Complete Revolution in

Software Engineering Based on Complexity Science,

WORLDCOMP'09 – SERP （Software Engineering Research

and Practice 2009），109-115.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 591

http://www.informatik.uni-trier.de/~ley/db/conf/serp/serp2009.html#XiongX09
http://www.informatik.uni-trier.de/~ley/db/conf/serp/serp2009.html#XiongX09

Software Visualization Revolution Based on Complexity Science
- An Introduction to NSE Software Visualization Paradigm

Po-Kang Chen 1 , Jay Xiong 2

1Y&D Information system, Inc. USA
2NSEsoftware, LLC., USA

Abstract

This article presents a component of the Nonlinear Software Engineering paradigm (NSE) – the NSE software visualization
paradigm, with which the automatically generated charts and diagrams are colorful, interactive, holistic, virtual, dynamic, and
traceable. It is innovated for making the entire software development life-cycle and the obtained work products visible. "One
picture is worth ten thousand words." (Chinese idioms) – a holistic, interactive, colorful, visual, dynamic, and traceable
chart/diagram will be more useful in the description of a complex software product. NSE software visualization paradigm makes
a software product much easier to develop, understand, test, and maintain.

Keywords: Software Visualization, Software Diagramming, Call Graph, Logic Diagram, Control Flow, Tool, NSE

1. introduction － the old-established

software engineering visualization
paradigm is outdated

The old-established software engineering visualization

paradigm is outdated because it is：
a. based on reductionism, and superposition principle

that the whole of a system is the sum of its parts -
so that almost all diagramming tasks and activities are
performed locally and partially.

b. not Holistic – often the application results obtained
consist of many small pieces without a complete
chart/diagram to show an entire complex software
product.

c. not automated in most cases - most charts/Diagrams
are created using graphic editors, not automatically
generated.

d. not interactive - most charts/diagrams generated are
not interactive, hard to manipulate.

e. not traceable - even if a complete chart/diagram for an
entire software product can be obtained using a few
diagramming tools, it is still useless because that
without traceability and the capability to highlight an
element with all of the related elements, there are too
many connection lines to make the chart/diagram hard
to view and hard to understand.

f. not accurate - often when the source code is modified,
the generated charts and diagrams can not be
automatically updated to keep consistency with the
source code.

g. not precise - for instance, when a logic diagram is
used to show the result of program test coverage
measurement, it can not show whether an invisible
“else” part (a “if” statement without an explicit “else”
part) is tested or not. Almost all existing visualization
tools can not graphically show whether a condition in a
decision statement is tested or not when applied to

show the result of MC/DC (Modified
Condition/Decision Coverage) test coverage
measurement results.

h. often not consistent with the source code - the
charts/diagrams obtained are often not consistent with
the source code after software modification.

i. not consistent among all related charts and
diagrams - often they are created/generated with
different formats using different information, hard to
keep consistency among them.

j. not virtual - the charts and diagrams obtained are stored
in hard copies or XML or Postscript format in the
memory and/or hard disk, requiring much more spaces
to store and long loading time to display.

k. not complete -the traditional software engineering
visualization techniques and tools do not integrated
together to efficiently support the following
visualizations:
 visualization of the entire software engineering

lifecycle
 visualization for software inspection
 visualization for software testing
 visualization for software maintenance
 visualization for the source code of an entire

software product
 visualization of dynamic program behavior
 visualization for software debugging

2. The Revolutionary Solution Offered
by NSE Visualization Paradigm

 The revolutionary solution offered by NSE[1] for
software visualization will be described in details in this paper late.
Here is the outline of the solution:

a. Based on nonlinear thinking and complexity science
b. Holistic
c. Automatic

592 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

d. Interactive
e. Traceable
f. Accurate
g. Precise
h. Consistent among all related charts and diagrams
i. Linkable automatically between different charts

and diagrams
j. Virtual
k. Complete in software engineering visualization,

including
 visualization of the entire software engineering

lifecycle
 visualization for requirements engineering
 visualization for design engineering
 visualization for coding engineering
 visualization for software inspection
 visualization for software testing
 visualization for software maintenance
 visualization for software

verification/validation
 visualization for software architectures
 visualization for the source code of an entire

software product
 visualization for reverse engineering
 visualization of dynamic program behavior
 visualization for software debugging

3. The Foundation for Establishing NSE
Visualization Paradigm

NSE software visualization paradigm is established through
FDS (the Five-Dimensional Structure Synthesis method - a
paradigm-shift framework innovated by me) by complying with the
essential principles of complexity science, particularly the
Nonlinear principle and the Holism principle – with NSE software
visualization paradigm, almost all diagramming tasks/activities are
performed holistically and globally to make the entire software
product and the entire software development process visible.

4. 3J graphics (J-Chart, J-Diagram, and
J-Flow)

The 3J graphics (J-Chart – a new type call graph, J-
Diagram – a new type logic diagram, and J-Flow – a new type
control flow diagram) are innovated by me and implemented by
me and my colleagues. J-Chart/J-Diagram/J-Flow is a trinity: an
Object-Oriented and structured chart/logic diagram/Control flow
diagram, the chart/diagram generator which is always running
when the chart/diagram is shown, and the interface (using the
chart/diagram itself) between the generator and the user for
controlling the chart/diagram dynamically.

J-Chart

J-Chart not only can be used to represent the class
inheritance relationship, the function call graph, and the class-
function coupling structure graphically, but can also be used to

display incremental unit test order or the related test coverage and
quality data using bar graphics overlaid on each object-box
(module-box) to help users view the overall results of testing and
quality measurement. J-Chart is useful in system design,
understanding, inspection, test planning, test result display, and re-
engineering. The J-Chart notations are shown in Fig. 1.

A comparison between J-Chart and

the most traditional call graphs

J-Chart Traditional

 Call Graph

Is it holistic for directly showing a very

 complex software product? Yes No

Is it interactive for highlighting a path or

 getting related information? Yes No

Is it traceable to highlight a module with the

 all related modules? Yes No *1

Is it supported to use a module as the root to

 generate a sub-chart? Yes No

Can a bar-chart be added to a module-box to

 show related information? Yes No

Can the source code be directly edited from

 a module-box? Yes No

Can the logic diagram be linked from a

 module-box? Yes No

Can the control flow diagram be linked from

 a module-box? Yes No

Can a bottom-up coding orders be assigned

 to the modules? Yes No

When used for software version comparison, can

 different colors be used to show “un-changed”

 modules ”, “changed modules”, ”deleted modules”,

 and “added new modules” separately? Yes No

*1: Some tools claim that they can provide dynamic function call

graph, but I have not seen their application examples provided.

J-Diagram

J-Diagram not only can be automatically generated from
source code in all levels including the class hierarchy tree, class
structure diagram, and the class member function logic diagram
with un-executed class/function/segments/conditions highlighted,
but also can be automatically linked together for an entire software
product to make the diagrammed source code traceable in all
levels. J-Diagram can be automatically converted into J-Flow
diagram. J-Diagram is particularly useful in Object-Oriented
software understanding, inspections, walkthroughs, testing, and
maintenance.

J-Diagram notations are shown in Fig. 2. Interactive and

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 593

traceable J-Diagram not only makes a software product much
easier to read, understand, test, and maintain, but also makes the
code inspection and walk through much easier to perform in a
semi-automated way (see Fig. 5 B1).

The major differences between

J-Diagram and most Flow Charts

 J-Diagram Flow Charts

Is it structured? Yes No

Can it show an entire software product

 very complex? Yes No

Is it uniqueness? Yes No

Is the location of the program logic indicated? Yes No

Can it show the result of test coverage

 measurement? Yes No

Can it show the branch execution frequency? Yes No

Does it offer traceability between related

 elements? Yes No

Can it be converted to a control-flow diagram? Yes No

Does it exist virtually without huge space
 to store? Yes No

 Interactive and traceable J-Diagram not only
makes a software product much easier to read,
understand, test, and maintain, but also makes the
code inspection and walk through much easier to
perform in a semi-automated way.

J-Flow

Most traditional control flow diagrams are un-structured.
They often use the same notation to represent different program
logic, and cannot display the logic conditions and the source code
locations. J-Flow diagram, on the other hand, is Object-Oriented
and structured, uses different notations to represent different logics
with capability to show logic execution conditions and the
corresponding source code locations. J-Flow is particularly useful
in logic debugging, path analysis, test case and code
correspondence analysis, and class/function level test coverage
result display with unexecuted elements (path, segments, and
unexecuted condition outcomes) highlighted.

The notations of J-Flow diagram are shown in Fig. 3.
Interactive and traceable are the important features of J-Flow
diagram, particularly useful for software testing.

The major differences between J-Flow
and traditional control flow diagram:

 J-Flow Traditional

 Control Flow

Is it structured? Yes No

Can it show an entire software

 product very complex? Yes No

Is it uniqueness? Yes No （arbitrary）

Is the source code locations of the

 control flow indicated? Yes No

Can it show the result of test

 coverage measurement? Yes No

Can it show the branch execution

 frequency? Yes No

Can it be automatically converted to

 a logic diagram? Yes No

Can it highlight a path with most

 untested elements? Yes No

Does it exist virtually without
 huge space to store? Yes No

 Interactive and traceable are the important features of J-Flow
diagram, particularly useful for software testing.

5. Applications
 NSE Software Visualization Paradigm has been
successfully applied in the entire software development process
and the maintenance process for a software product development.
 Figure 4 shows some application examples of J-Chart, J-
Diagram, and J-flow separately.
 Figure 5 shows some application examples combining J-Chart
and J-Diagram together, J-Chart and J-Flow diagram together, etc.

6. Conclusion
NSE software visualization paradigm is based on

complexity science, complying with the Nonlinearity principle and
the Holism principle, so that with NSE almost all visualization
tasks/activities are performed holistically and globally to
automatically generate virtual, interactive, colorful, and traceable
3J graphics (J-Chart, J-Diagram, and J-Flow) innovated to make
the entire software development process and the obtained work
products visible. NSE software visualization paradigm makes a
software product much easier to design, understand, test, and
maintain.

References
[1] Jay Xiong, Jonathan Xiong, A Complete Revolution in

Software Engineering Based on Complexity Science,
WORLDCOMP'09 – SERP （Software Engineering Research
and Practice 2009），109-115.

[2] Brooks, Frederick P. Jr., “The Mythical Man-Month”, Addison
Wesley, 1995, P249.

594 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Non-member function

Press the right mouse button to pop up a function menu.

Member function

Press the right mouse button to pop up a member function menu.

Macro function

Press the right mouse button to pop up a function menu.

Overloading non-member function

Press the right mouse button to pop up an overloading menu.

Overloading member function and virtual function

Press the right mouse button to pop up a function menu.

Overloading member function

Press the right mouse button to pop up a function menu

Virtual function

Press the right mouse button to pop up a function menu

Class

Press the right mouse button to pop up a class menu.

Template Class

Press the right mouse button to pop up a class menu.

Fig. 1 J-Chart notations

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 595

Fig. 2 J-Diagram notations

596 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Fig. 3 J-Flow notations

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 597

(A1)

 A2

(Bi)

(B2)

(C1)

(C2)

Fig. 4 Application examples of 3J graphics - A1: a call graph shown in J-Chart notations with test coverage analysis result (a small bar
chart on the bottom of each module-box presents the percentage of the source code tested) ; A2: A call graph shown with Cyclomatic
complexity (the number of decision statements) measurement result, and the traceability – tracing a module with the all related modules
calling and called by it; B1: A J-Diagram shows a program logic and the related information as well as the traceability facility; B2: A
J-Diagram shows that the logic diagram is independent from the writing styles of source code; C1: A J-flow diagram used for semi-
automated test case design by automatically choosing a path with most untested elements and the test conditions extracted; C2: A J-
Flow diagram used for automated debugging (through an “EXIT” word automatically added at the runtime error location).

598 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

(A1)

(A2)

(B1)

(B2)

(C1)

 C2

Fig.5 Combination applications of the 3J graphics – A1: An overview of the test coverage measurement
results of an entire software product shown holistically in J-Chart with the untested branches and untested
conditions of a module being highlighted in J-Diagram using small black boxes; A2: An overview of the
performance measurement result of an entire software product shown holistically in J-Chart with the branch
execution frequency of a module shown in J-Flow diagram for locating the performance bottleneck easier; B1:
A J-Chart showing the version comparison result of an entire software product (where a unchanged module is
shown in blue, changed in red, deleted in brown, and added in green) with the detailed differences of the source
code of a changed module shown in different colors in two separated Windows; B2: AN example of converting
J-Diagram to J-Flow diagram automatically; C1: Tracing a test case (automatically shown in blue) to the
source code with the tested segments highlighted in red color in J-Flow diagram; C2: Tracing a source code
segment shown in J-Flow (automatically shown in blue) to find the corresponding test cases (in red) and the
related documents open.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 599

Software Maintenance Engineering Revolution

Po-Kang Chen
 1
 , Jay Xiong

 2

1
Y&D Information system, Inc. USA

2
International Software Automation, Inc. (ISA, currently being reorganized), USA

Abstract - software tends to make system of complexity in the

modern software system. 40 years passing, software

maintenance hasn’t been an excellent solution. Software

always costs a amount of payment for its maintenance

because they don’t have efficient solutions to maintained

problems. This article presents a revolutionary paradigm for

software maintenance engineering – the NSE (Nonlinear

Software Engineering) software maintenance engineering

paradigm based on complexity science by complying with the

essential principles of complexity science, particularly the

Nonlinearity principle and the Holism principle, so that with

this paradigm almost all software maintenance tasks/activities

are performed holistically and globally with side-effect

prevention through many kinds of automated and self-

maintainable traceabilities. Preliminary applications show

that compared with the old-established software maintenance

engineering paradigm, it is possible for the NSE software

maintenance engineering paradigm to help software

development organizations reduce about 2/3 of the total effort

and total cost spent in software product maintenance.

Keywords: software maintenance, defect prevention,

traceability, software testing, nonlinear， complexity science

1 The Old-Established Software

Maintenance Engineering Paradigm Is

Outdated

 After delivery, software products need to be modified

for meeting requirement changes, fixing bugs, improving

performance, and keeping it usable in a changed or changing

environment.

But unfortunately, the old-established software

maintenance engineering paradigm is outdated because:

It is based on reductionism and the superposition principle

that the whole of a complex system is the sum of its

components, so that almost all of the tasks and activities in

software maintenance engineering are performed partially and

locally.

The corresponding software development process models

used are linear ones with no upstream movement at all -

requiring software engineers to do all things right at all times

without making any mistake, but that is impossible.

 With the linear process models, the defects brought into a

software product in the upper phases easily propagate down to

the maintenance phase to make the maintenance tasks much

harder to perform.

 The corresponding software development methodologies

do not offer “maintainable design” without support of various

kinds of bidirectional traceabilities.

 It is not systematic – the old-established software

maintenance engineering paradigm does not offer systematic

approaches for software maintenance: there is no systematic

software maintenance process model defined.

 It is not quantifiable – for instance, when a module is

modified, there is no facilities provided to get quantifiable

data about how many requirements and how many modules

may be affected.

 It is not disciplined – there is no engineering approach and

model defined to guide maintainers to perform software

maintenance step by step to prevent side-effects and ensure

the quality of the modified products.

 It is invisible – the maintenance engineering process and

the results obtained are invisible, making it hard to review and

evaluate.

 It is blind – for instance, after the implementation of a

requirement change or code modification, it requires the

maintainers to use all test cases to perform regression testing

blindly, no matter whether a test case is useful or useless to re-

test the modified software product.

 It is costly - As pointed out by Scott W. Ambler, “The

Unified Process suffers from several weaknesses. First, it is

only a development process… it misses the concept of

maintenance and support…. It’s important to note that

development is a small portion of the overall software life

cycle. The relative software investment that most

organizations make is allocating roughly 20% of the software

budget for new development, and 80% to maintenance and

support efforts.”[1].

 It makes a software product being maintained unstable day

by day – As pointed out by Frederick P. Brooks Jr.,“The

fundamental problem with program maintenance is that fixing

a defect has a substantial (20-50 percent) chance of

introducing another. … All repairs tend to destroy the

structure, to increase the entropy and disorder of the

system.”[2]

 It makes a software product developed by others much

harder to maintain at the customer site – today a software

product is delivered with the program, the data used, and the

documents separated from the source code without

bidirectional traceability and intelligent agents (intelligent

tools) to support testability, visibility, changeability,

600 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

conformity, reliability, and maintainability.

 It is easy to become a project killer or even a business

killer - as pointed out by Roger S. Pressman, “Over three

decades ago, software maintenance was characterized as an

‘iceberg’. We hope that what is immediately visible is all

there is to it, but we know that an enormous mass of potential

problems and cost lies under the surface. In the early 1970s

,the maintenance iceberg was big enough to sink an aircraft

carrier. Today, it could easily sink the entire navy!”[3].

2 Outline of the Revolutionary Solution

Offered by NSE

 The revolutionary solution offered by NSE for software

maintenance will be described in detail in this article later.

Here is the outline of the solution:

It is based on complexity science that the whole of a complex

system is greater than the sum of its components – the

characteristics and behaviors of the whole emerge from the

interaction of its components, so that with NSE almost all of

the tasks and activities in software maintenance engineering

are performed holistically and globally.

 The corresponding software development process model

used is a nonlinear one with two way iteration (see Fig. 1)

supported by automated and self-maintainable traceability to

prevent defects brought into software products by the product

developers and the customers.

Fig. 1 The NSE Process Model which includes the preprocess

part, the main process part, and the automated and self-

maintainable facility to support bi-directional traceability

using Time Tags automatically inserted into both the test case

description part and the corresponding test coverage database

for mapping test cases and the tested source code, and some

keywords to indicate the related document types such as

@WORD@, @HTML@, @PDF@, @BAT@, @EXCEL@

written in the test case description part followed by the file

paths and the bookmarks to be used to open the traced

documents from the specified positions.

 With the nonlinear process models used, most of the

defects brought into a software product can be efficiently

removed through defect propagation prevention mainly by

dynamic testing in the entire software development life cycle

using the Transparent-box testing method [4] innovated by me

to combine functional testing and structural testing together

seamlessly: to each test case it not only checks whether the

output (if any, can be none when the method is applied in the

requirement development phase and the design phase - having

an output is no longer a condition to use this software testing

method dynamically) is the same as what is expected, but also

checks whether the real execution path covers the expected

one specified in J-Flow (a new type control flow diagram

innovated by me), and automatically establishes bidirectional

traceability among the related documents, the test cases, and

the source code to help the developers remove inconsistency

defects. NSE complies with W. Edwards Deming’s product

quality principle, “Cease dependence on inspection to achieve

quality. Eliminate the need for inspection on a mass basis by

building quality into the product in the first place.” [5]

The corresponding software development methodology offers

“maintainable design” supported by various kinds of

bidirectional tracreabilities for defect prevention, defect

propagation prevention, and side-effect prevention in the

implementation of requirement changes and code

modification [4]– as pointed out by Frederick P. Brooks Jr.,

“Clearly, methods of designing programs so as to eliminate or

at least illuminate side effects can have an immense payoff in

maintenance costs.”[2].

It is systematic – NSE software maintenance engineering

paradigm offers systematic approaches for software

maintenance: there is a systematic software maintenance

process model defined to guide users to perform software

maintenance holistically and globally (see section 4).

It is quantifiable – for instance, when a module or even only

one statement of the source code is modified, NSE software

maintenance engineering paradigm can help users get

quantifiable data on exactly about how many requirements

and other modules may be affected.

It is disciplined – there is a defined engineering approach and

model to guide maintainers to perform software maintenance

step by step to prevent side-effects, ensure the quality of the

modified products, and perform regression testing efficiently.

It is visible – with NSE the maintenance engineering process

and the results obtained are visible and easy to review and

evaluate, because it is supported with a set of Assisted Online

Agents including software visualization tools to automatically

generate huge amount of graphical documents which are

interactive and traceable – see Fig. 2 a sample call graph

shown in J-Chart notations innovated by me.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 601

Fig 2 An automatically generated call graph shown with the

cyclomatic complexity (the number of decision statements

such as ‘if’, ‘for’, ‘while’,‘do’, ‘switch’) measurement result

and a module highlighted with the all related modules calling

and called by it

It is not blind – for instance, after the implementation of a

requirement change or code modification, it help the

maintainers efficiently select the useful test cases through

backward traceability and test case minimization for

performing regression testing efficiently.

It is not costly – it is possible for NSE software maintenance

engineering paradigm to help software organization to greatly

reduce the cost and effort spent in software maintenance

because that With NSE, quality assurance is performed in the

entire lifecycle through defect-prevention and defect

propagation prevention using the Transparent-box testing

method dynamically, plus inspection using traceable

documents and traceable source code, so that the defects

propagated into the maintenance phase are greatly reduced.

The implementation of requirement changes and code

modifications are performed holistically and globally, rather

than partially and locally.

The side-effects in the implementation of requirement changes

and code modification are prevented through various kinds of

automated and self-maintainable traceabilities.

Regression testing after software modification is performed

efficiently through backward traceability to select the

corresponding test cases and test case minimization to select

the useful test cases to greatly reduce the required time,

resources, and cost.

It makes a software product being maintained stable – with

NSE there is no big difference between the product

development process and the product maintenance process: in

both processes, requirement changes are welcome to support

the customers’ market strategy, and implemented holistically

and globally with side-effect prevention through various kinds

of traceabilities.

It makes a software product developed by others easy to

maintain at the customer site – even if a software product is

maintained at the customer site rather than the product

development site, software maintenance engineering can be

performed with almost the same conditions as those at the

product development site, because with NSE the delivery of a

software product includes not only the computer program, the

data used, and the documents traceable to and from the source

code, but also the database built through static and dynamic

measurement of the program, and a set of Assisted Online

Agents to make the software adaptive and truly maintainable

(see section 5 to know how those Assisted Online Agents

work together to support testability, reliability, changeability,

visibility, conformity, traceability, adaptability, and

maintainability).

NSE software maintenance engineering paradigm becomes a

key to make it possible for NSE to help software organization

double their productivity and halve their cost in their software

product development – with the NSE, not only the most

defects are removed in the development process through

defect prevention and defect propagation prevention, but new

defects are also prevented in the maintenance process through

various kinds of traceabilities and dynamic testing using the

Transparent-box testing method - all software maintenance

tasks are performed holistically and globally with side-effect

prevention, so that the effort and cost spent in the software

maintenance will be almost the same as that spent in the

software development process – each one takes about 25% of

the original cost: about half of the total effort and total cost

can be saved.

It can be efficiently applied to the worst case where no

documents exist at all – in this case, NSE software

maintenance engineering paradigm will use the Assisted

Online Agents to automatically generate huge amount of

various documents through reverse engineering, then help

users set bookmarks in the generated documents. After users

re-design the test cases with some simple rules and re-test the

product, NSE software maintenance engineering paradigm

will automatically establish various automated and self-

maintainable traceability to make the product adaptive and

maintainable.

3 The Foundation for the Establishment of

NSE Software Maintenance Engineering

Paradigm

 The foundation for the establishment of NSE software

maintenance engineering paradigm is complexity science by

complying with the essential principles of complexity science,

particularly the Nonlinearity principle and the Holism

principle that the whole of a complex system is greater than

the sum of its components, and that the characteristics and

behaviors of the whole emerge from the interaction of its

components, so that with the NSE software maintenance

paradigm almost all software maintenance engineering

tasks/activities are performed holistically and globally to

prevent the side-effects in the implementation of requirement

changes or code modifications.

The establishment of the NSE software maintenance

paradigm is done through the use of the FDS (the Five-

Dimensional Structure Synthesis method - a paradigm-shift

framework innovated by me) as shown in Fig. 3.

602 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Fig. 3 The framework for establishing NSE software

maintenance engineering paradigm

4 Description of NSE Software

Maintenance Engineering Paradigm

With NSE a software maintenance process model is

defined as shown in Fig. 4.

Fig. 4 NSE Software Maintenance Process Model

As shown in Fig. 4, the major steps for performing

software maintenance engineering are as follows:

Step 1: Begin.

Step 2: Check the maintenance task type. If it is for the

implementation of a new requirement, go to step 3;

otherwise go to step 4.

Step3: Perform the implementation of the requirement through

the preprocess and the main process regularly as what was

performed in the software development process.

Step 4: Is a critical change of the requirement? If not, go to

step 14.

Step 5: Perform solution design.

Step 6: Go through the solution review process.

Step 7: If the review result is not good enough, go to step 5.

Step 8: Perform risk analysis.

Step 9: If the risk analysis result is good enough, go to step

12.

Step 10: Give up? If not, go to step 5.

Step 11: End the process without changes.

Step 12: Is a critical change? If so, go to step 3.

Step 13: Find the modules to be modified through forward

traceability (from requirement -> the corresponding test

cases -> the corresponding source code, see section 5 an

application example). Go to step 15.

Step 14: Is it not for changing the source modules? If so, go to

step 17.

Step 15: Find the related requirements and documents through

backward traceability from each module to be modified.

Step 16: Make modifications carefully to satisfy all of the

related requirements (often a module is used for the

implementation of more than one requirement) and update

the related documents. If necessary, add some new

modules and perform unit testing (including memory leak

measurement and performance measurement) for the new

modules. Go to step 18.

Step 17: Is it to change a global or static variable? If not, go to

step 20 (end the process).

Step 18: Find the related modules through calling path

analysis from each module/variable modified, and modify

them too if necessary.

Step 19: Find the related test cases through backward

traceability and perform test case minimization, then

perform regression testing efficiently (including MC/DC

test coverage analysis, memory leak measurement,

performance measurement, quality measurement, and

runtime error location through execution path tracing, see

section 5 for an example), and version comparison

holistically.

Step 20: End the process.

5 Application

 As described, with NSE a software product will be

delivered with the computer program, the data used, and the

documents traceable to and from the source code, plus the

database built though static and dynamic measurement of the

program, and a set of Assisted Online Agents to support

testability, visibility, changeability, conformity, traceability,

and maintainability. Those Assisted Online Agents are listed

as follows:

(1) NSE-CLICK interface

(2) OO-Browser for generating interactive and

traceable call graphs and class inheritance charts

shown in J-Chart notations

(3) OO-Diagrammer for generating interactive and

traceable logic diagrams shown in J-Diagram

notation or control flow diagram in J-Flow

notation innovated by me

(4) OO-V&V for Requirement Validation and

Verification through bidirectional traceability

(5) OO-SQA for software quality measurement

(6) OO-MemoryCheck for checking memory leaks

and usage violations

(7) OO-Analyzer for dynamic and static program

measurement

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 603

(8) OO-Performance for performance measurement

(9) OO-DefectTracer for tracing each runtime error to

the execution path

(10) OO-MiniCase for test case efficiency analysis and

test case minimization in order to perform

regression testing efficiently after code

modification

(11) OO-Playback for GUI operation capture and

playback after code modification

(12) OO-CodeDiff for holistic and intelligent software

version comparison, etc.

6 Conclusions

As described in the NSE software maintenance process model

and shown in the application examples, the major features of

NSE software maintenance engineering paradigm can be

briefly summarized as follows: Based on complexity science

Performed holistically and globally, side-effect prevention

driven, supported by various traceabilities, visual in the entire

software maintenance process, intelligent in the test case

selection for regression testing through backward traceability

systematic, quantifiable, and disciplined conclusion.

 Today software maintenance takes 75% or more of the

total effort and total cost in software product development,

because the existing software maintenance engineering

paradigm is based on reductionism and the superposition

principle, so that almost all of the tasks and activities in

software maintenance engineering are performed partially and

locally.

 This article presented the NSE software maintenance

engineering paradigm based on complexity science. Wiith

NSE software maintenance engineering paradigm almost all

software maintenance tasks/activities are performed

holistically and globally with side-effect prevention in the

implementation of requirement changes and code

modifications through various traceabilities. Preliminary

applications show that compared with the old-established

software maintenance engineering paradigm, it is possible for

NSE software maintenance engineering paradigm to reduce

about 2/3 of the total effort and total cost in software

maintenance to help software organization double their

productivity and halve their cost in their software product

development.

7 References

[1] Ambler S W. A Manager’s Introduction to The Rational

Unified Process (RUP), Ambysoft. 2005

[2] Brooks, Frederick P. Jr., “The Mythical Man-Month”,

Addison Wesley, 1995, P120

[3] Pressman, Roger S., “Software Engineering: A

Practitioner’s Approach”, McGraw-Hill, 2005, P409

[4] Jay Xiong, Jonathan Xiong, A Complete Revolution in

Software Engineering Based on Complexity Science,

WORLDCOMP'09 – SERP （Software Engineering Research

and Practice 2009），109-115.

[5] Deming W E. Out of the Crisis. MIT Press, 1982.

604 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

http://www.informatik.uni-trier.de/~ley/db/conf/serp/serp2009.html#XiongX09
http://www.informatik.uni-trier.de/~ley/db/conf/serp/serp2009.html#XiongX09

Should Linear, Partial, Local, and Qualitative Software
Engineering Paradigm Be Replaced by Nonlinear, Holistic,
Global, and Quantitative Software Engineering Paradigm?

Jay Xiong

 NSEsoftware, LLC., USA
jayxiong@yeah.net; jay@nsesoftware.com

Abstract
This paper summarizes the major drawbacks of the old-established software engineering paradigm offering linear, partial,
local, and qualitative approaches for software product development, and lists the reasons why the old-established software
engineering paradigm should be replaced by a new one offering nonlinear, holistic, global, and quantitative software product
development approaches.

Keywords: Software engineering paradigm, complexity science, nonlinear system, software development methods, software maintenance

1. Introduction
 As pointed out by Capers Jones that “Major software
projects have been troubling business activities for more
than 50 years. Of any known business activity, software
projects have the highest probability of being cancelled or
delayed. Once delivered, these projects display excessive
error quantities and low levels of reliability.”[1]
 Why? What is the root cause?
 There are many different answers to this
question:
 Several researchers have suggested that
“CMM does not effectively deal with the social
aspects of organizations” [2].
 Timothy K. Perkins believes that “the cause
of project failures is knowledge: either managers
do not have the necessary knowledge, or they do
not properly apply the knowledge they have.”[3].
 Capers Jones concluded that “Both technical
and social issues are associated with software
project failures. Among the social issues that
contribute to project failures are the rejections of
accurate estimates and the forcing of projects to
adhere to schedules that are essentially impossible.
Among the technical issues that contribute to
project failures are the lack of modern estimating
approaches and the failure to plan for
requirements growth during development.
However, it is not a law of nature that software
projects will run late, be cancelled, or be
unreliable after deployment. A careful program of
risk analysis and risk abatement can lower the
probability of a major software disaster.”[1].

 Joe Marasco pointed out that “All the effort has gone
into two areas: managing requirements and something called
‘requirements traceability.’ Requirements management is
the art of capturing requirements, cataloging them, and
monitoring their evolution throughout the development
cycle. Requirements are added, dropped, changed, and so on,
and we now have requirements management systems that
allow us to keep track of all this. That is a good thing.
Traceability is a bit more ambitious. It attempts to link later-
stage artifacts, such as pieces of a system and their test cases,
back to the original requirements. That way, we can assess
if we are actually meeting the requirements that were called
out. This is a harder problem, but, once again, there has
been substantial progress. To all this I say, wonderful, but
not good enough.” (For more information, see the Standish
Group Website at http://www.standishgroup.com/).
 “Poor Estimation: Major Root Cause of Project
Failure” (Galorath Incorporated,
http://www.galorath.com/wp/poor-estimation-major-root-
cause-of-project-failure.php).
 “IT projects have been considered a tough undertaking
and have certain characteristics that make them different
from other engineering projects and increase the chances of
their failure. Such characteristics are classified in seven
categories (Peffers, Gengler & Tuunanen, 2003; Salmeron
& Herrero, 2005): 1) abstract constraints which generate
unrealistic expectations and overambitious projects; 2)
difficulty of visualization, which has been attributed to
senior management asking for over-ambitious or impossible
functions, the IT project representation is not
understandable for all stakeholders, and the late detection of
problems (intangible product); 3) excessive perception of
flexibility, which contributes to time and budget overrun
and frequent requests of changes by the users; 4) hidden
complexity, which involves difficulties to be estimated at
the project's outset and interface with the reliability and
efficiency of the system; 5) uncertainty, which causes
difficulty in specifying requirements and problems in

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 605

implementation of the specified system; 6) the tendency to
software failure, which is due to assumptions that are not
thought of during the development process and the difficulty
of anticipating the effects of small changes in software; 7)
the goal to change existing business processes, which
requires IT practitioners' understanding of the business and
processes concerned in the IT system and good processes to
automate and make them quicker. Such automation is
unlikely to make a bad process better.” （ International
Management Review, 2009 by Al-Ahmad, Walid, et al.，A
Taxonomy of an IT Project Failure: Root Causes ，
Business Publications，
http://findarticles.com/p/articles/mi_qa5439/is_200901/ai_n
31965631/?tag=content;col1）

In the article “Why Big Software Projects Fail: The
12 Key Questions”[4], Watts S. Humphrey listed those
questions as follows:

“Question 1:Are All Large Software Projects
Unmanageable?

Question 2:Why Are Large Software Projects Hard
to Manage?

Question 3:Why Is Autocratic Management
Ineffective for Software?

Question 4:Why Is Management Visibility a
Problem for Software?

Question 5:Why Can't Managers Just Ask the
Developers?

Question 6:Why Do Planned Projects Fail?
Question 7:Why Not Just Insist on Detailed Plans?
Question 8:Why Not Tell the Developers to Plan

Their Work?
Question 9: How Can We Get Developers to Make

Good Plans?
Question 10: How Can Management Trust

Developers to Make Plans?
Question 11:What Are the Risks of Changing?
Question 12:What Has Been the Experience So

Far?”

 “Root causes of project failure …
 Ad hoc requirements management.
 Ambiguous and imprecise communication.
 Brittle architectures.
 Overwhelming complexity.
 Undetected inconsistencies in requirements,

designs, and implementations.
 Insufficient testing.
 Subjective project status assessment.
 Failure to attack risk.
 Uncontrolled change propagation.
 Insufficient automation. ” (devdaily ,

http://www.devdaily.com/java/java_oo/node7.shtm
l)

In my opinion, they are reasonable answers to the
question, but not the fundamental reason for software
project failure.

According to the essential principles of complexity
science, particularly the Nonlinearity principle and the
Holism principle, software is a nonlinear complex system
where the whole is greater than the sum of its parts, the
behaviors and characteristics of the whole emerge from
the interaction of its parts and the interaction between
the system and its environment, small differences in the
initial condition or a small change to the system may
produce large variations in the long term behavior of the
system – the “Butterfly-Effect”. But unfortunately,
the existing software engineering paradigm is
based on linear thinking, reductionism, and the
superposition principle that the whole is the sum
of its parts, so that almost all tasks/activities are
performed linearly, partially, locally, and
qualitatively. It means that the foundation of the
existing software engineering paradigm is wrong.
The wrong foundation makes almost all things
wrong in software engineering, particularly the
process models, the development methods, the
modeling approaches, the visualization paradigm,
the testing paradigm, the quality assurance
paradigm, the documentation paradigm, the
maintenance paradigm, and the project
management paradigm – in fact the existing
software engineering paradigm is entirely
outdated.

2. The Major Drawbacks of the Old-
Established Software Engineering
Paradigm

 The Major Drawbacks of the Old-Established Software
Engineering Paradigm can be summarized as follows:
(a) Incomplete – for instance, there is no defined process

model and support for software maintenance which
takes 75% or more of the total effort and cost for a
software product

(b) Unreliable – the quality of a software product mainly
depends on software inspection and testing after
production which has been proven impossible to ensure
high quality

(c) Invisible – the existing visualization methods,
techniques, and tools do not offer the capability to make
the entire software development lifecycle visible, the
generated charts and diagrams are not holistic and not
traceable

(d) Inconsistent – the documents and the source code are
not traceable to each other and not consistent after code
modification again and again

(e) Unchangeable – the implementation of requirement
change or code modification is performed locally and
blindly with high risks

606 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

(f) Not maintainable – software maintenance is performed
partially, locally, and qualitatively without support for
bidirectional traceability to prevent side effects, so that
each code modification will have a 20–50% of chance
to introduce new defects into the software product

(g) Low productivity and quality – most resources are
spent in inefficient software maintenance, the quality
cannot be ensured with the blind and local
implementation of software changes

(h) High cost and risk – most cost is spent in blind and
local maintenance of the software products, which
makes a software product unstable day by day in
responding to needed changes

(i) Low project success rate – it is still less than 30% for
projects with budgets over $1 million

(j) Often the software projects developed with the old-
established software engineering paradigm are
capable of becoming a monster of missed schedules,
blown budgets, and flawed products – because the
old-established software engineering paradigm is based
on linear thinking, reductionism, and superposition
principle, so that almost all tasks/activities are
performed linearly, partially, locally, and qualitatively
It is clear that those problems are related to the entire
software engineering paradigm with all of its
components, including the process models, the software
development methodologies, the modeling approaches,
the visualization paradigm, the software testing
paradigm, the quality assurance paradigm, the
documentation paradigm, the maintenance paradigm,
the project management paradigm, and the related
techniques and tools. It means that a local, partial, and
qualitative solution will not work – we need a holistic,
global, and quantitative solution in almost all
aspects of software engineering: a complete
revolution.

3. What Is NSE
 For solving those critical problems existing with
today’s software development efficiently, a new software
engineering paradigm, NSE (Nonlinear Software
Engineering paradigm based on complexity science) is
established. The essential difference between the old-
established software engineering paradigm and NSE is how
to handle the relationship between the whole and its parts of
a software system. The former adheres to the
reductionism principle and superposition principle that
the whole is the sum of its parts, so that nearly all software
development tasks/activities are performed locally, such as
the implementation of requirement changes. The latter
complies with the Holism principle of complexity science,
that a software product is a Complex Adaptive System
(CAS [5]) having multiple interacting agents
(components), of which the overall behavior and
characteristics cannot be inferred simply from the
behavior of its individual agents but emerge from
the interaction of its parts, so that with NSE nearly all
software development tasks/activities are performed

globally and holistically to prevent defects in the entire
software lifecycle [6], [7]. Some primary applications show
that the NSE paradigm with its support platform,
Panorama++, can make revolutionary changes to almost all
aspects in software engineering to efficiently handle
software complexity, invisibility, changeability, and
conformity, and solve the critical problems (low
productivity and quality, high cost and risk) existing with
the old-established software engineering paradigm – NSE
makes it possible to help software development
organizations double their productivity, halve their cost, and
remove 99.99% of the defects in their software products.

4. Should Linear, Partial, Local, and
Qualitative Software Engineering
Paradigm be replaced by Nonlinear,
Holistic, Global, and Quantitative
Software Engineering Paradigm?

4.1 Linear Engineering Vs. Nonlinear
Engineering

 The old-established software engineering paradigm
offers linear engineering for software development. Fig. 1
shows various different linear approaches whose process
models are linear with no upstream movement at all.
 The major drawbacks of linear software engineering:
(a) It violates the nature law of human that people are

nonlinear, easy to make mistakes in thinking, working,
reading, and wring so that there is a need for them to
correct the mistakes by themselves.

(b) Linear software engineering assumes that customers
know their all requirements in details at the beginning
of the corresponding software project, but it is
impossible – customers need time to learn by
themselves to understands what they really need.

(c) Linear software engineering makes software defects
introduced in upstream to easily propagate to
downstream and the defect removal cost increase by
several orders of magnitude.

(d) Linear software engineering makes software design
documents inconsistent with source code after code
modification again and again.

(e) Linear software engineering makes a software product
much difficult to change and maintain.

Differently, NSE offers nonlinear software engineering

whose process model is shown in Fig. 2. The major features
of NSE nonlinear engineering approach :
(a) NSE process model always assumes that there may be

defects introduced in the upper phases so that there is a
need to check and remove the defects in the upper
phases through dynamic testing using the innovated
Transparent-box method (see Fig. 3) and backward

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 607

traceability that is established automatically using Time
Tags ans some keywords to indicate the format of the
documents, the file paths, and the bookmarks
 (see Fig. 4) . Similarly, changes made in the upper
phases may affect the work products obtained in lower
level phases, so that there is also a need to check and
remove the inconsistency defects in lower level phases
through forward traceability.

(b) NSE offers source code driven approach for dynamic
software modeling and top-down plus bottom-up
software development through stub programs using
dummy modules (having an empty body or only a list
of function call statements without detailed program
logic) in forward engineering, or regular programs in
reverse engineering. With it all models/diagrams are
automatically generated from source code.

(c) NSE makes design become pre-coding, and coding
become further design – after coding, all related
models/diagrams and documents can be automatically
updated through rebuilding the corresponding database.

(d) With NSE software documents are consistent and
traceable with the source code to make a software
product much easy to change and maintain.

4.2 Partial Engineering Vs. Holistic
Engineering

 With the old-established software engineering
paradigm, software engineering is performed partially rather
than holistically. For instance, in the modeling process,
many small pieces of models/diagrams will be drawn
partially but missing the big picture of the entire software
product – software components will be completed first, then
the entire software product will be built through integration
from the components.

 Differently, with NSE software engineering will be
performed holistically. For instance, in the modeling process
the models/diagrams for the entire system will be generated
from the stub programs as shown in Fig. 5, then the whole
system with dummy modules as an embryo will grow up
incrementally with the detailed module design and coding,
so that customers can try the entire system early (even if it
could be a stub system) and the system-level testing can be
performed early, and that when defects are found while the
system is growing up incrementally (each time only a
module is allowed to be added to the system), the defects
will be much easy to locate.

4.3 Local Engineering Vs. Global
Engineering
 The old-established software engineering paradigm
offers local engineering for software development, such as
the process of the implementation of requirement changes or
code modifications according to the tom-down linear
process model and the lack of bi-directional traceability, so

that each time when a bug is fixed, there is a 20-50% of
chance to introduce another to the system.

 Differently, NSE offers global engineering for software
development, such as the process of the implementation of
requirement changes or code modifications according the its
nonlinear process model and the rich support of bi-
directional traceability to prevent the possible side-effect.
Fig. 6 shows that when a class member function of a Java
program is modified what class member functions man be
affected globally; Fig. 7 shows how many statements may
be affected in system-level globally.

4.4 Qualitative Engineering Vs.
Quantitative Engineering

 Software is a logic product, not a machine product.
The algorithm is the soul of software. For realizing a
solution to solve a problem, such as the sorting issue for
student names, different people innovate different
algorithms to solve the same problem efficiently or
inefficiently. Algorithm innovation should not follow
engineering steps, otherwise the algorithms created by
different people will be very similar.
 But the implementation of any algorithm for solving
any problem should follow engineering rules and steps,
otherwise the quality of a software will be very difficult to
ensure.
 Unfortunately, current software engineering is a
qualitative engineering which in fact is not a real
engineering. For instance, when a program unit needs to be
modified in software maintenance, the software maintainers
do not know how many requirements are related to that unit,
how many other program units may be affected by the
change of that unit, and how many test cases can be
efficiently used to re-test the software product, and more.
 Often a software product developed with qualitative
engineering is not reliable and not maintainable
 Qualitative software engineering is the fundamental
reason why the critical issues (low quality and productivity,
and high cost and risk) have existed for more than 40 years.
 A quantitative software engineering paradigm is
established by complying with the essential principles of
complexity science, particularly the Nonlinearity Principle
and Holism Principle, and supported by automated, bi-
directional, and self-maintainable traceability among
requirements and test cases and source code.
 For instance, in responding to a requirement changes,
with the current qualitative software engineering paradigm,
the maintainers do not know

(a) how many classes and program modules are related
to the change;

(b) If a related class or function needs to be modified,
how many other requirements may be affected;

(c) If a related class or function needs to be modified,
how many classes or functions may also need to be
modified;

608 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

(d) If a related class or function needs to be modified,
how many test cases can be used to re-tested the
modified system;

(e) How many global variables and static variables
may be affected;

(f) How many documents may need to be modified;
and more.

 With NSE supporting quantitative software engineering
in responding to a requirement changes, the maintainers
know the all information listed above.
 Some application examples of quantitative software
engineering are shown in Fig. 8 and Fig. 9 for safe
implementation of a requirement change.

5. Conclusion

It is concluded that for efficiently solving the critical
issues (low quality and productivity, and high cost and risk)
existing with today’s software development, the old-
established linear, local, and qualitative software
engineering paradigm should be replaced by nonlinear,
holistic, global, and quantitative software engineering
paradigm such as NSE.

References
[1] Capers J (2006) Social and technical reasons for

software project failures. CrossTalk, Jun Issue

[2] Ngwenyama O, Nielsen PA (2003) Competing values in

software process improvement: an assumption analysis of

CMM from an organizational culture perspective. IEEE

Trans Eng Manag 50(1):100–112.

doi:10.1109/TEM.2002.808267

[3] Perkins TK (2006) Knowledge: the core problem of

project failure. CrossTalk, Jun Issue

[4] Humphrey WS (2005) The Software Engineering Institute,
Why big software projects fail: the 12 key questions.

CrossTalk, Mar Issue

[5] Holland JH (1995) Hidden order: how adaptation builds

complexity. Addison- Wesley, Reading

[6] Jay X (2009) Tutorial, a complete revolution in

software engineering based on complexity science,

WORLDCOMP’09, Las Vegas, July 13–17, 2009

[7] Jay X, Jonathan X (2009) A complete revolution in

software engineering based on complexity science,

WORLDCOMP’09 – SERP (Software Engineering Research

and Practice 2009), pp 109–115

(a) Waterfall process model

(b) Incremental process model

(c) Spiral model

(d) Prototype model

(e) XP process model

(f) RUP process model

(g) MDA Agile process model

Fig. 1 Various linear software engineering process models

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 609

Fig. 2 NSE nonlinear process model

Fig. 3 Transparent-box software testing method

Fig. 4 The facility for automated and self-maintainable

traceability

Fig. 5 A call graph of a entire software product designed
(on the left side) and a module with its all related modules

traced/highlighted

Fig. 6 A call graph with a class member function and all

related class member functions traced

Fig. 7 statements which may be affected globally by the
modification of the class member function
Jconter::resetCounter

Fig. 8 From the requirement(s) to be changed to find the
related test cases through the document hierarchy
description table

610 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Fig. 9 Defect prevention for requirement changes performed by the NSE support platform, Panorama++: (A) Performs
forward tracing for a requirement change (through the corresponding test cases) to determine what modules should be
modified. (B) Performs backward tracing to check related requirements of the modules to be modified for preventing
requirement conflicts (in this example, two requirements are related). (C) Checks what other modules may also need to be
changed, with the modification (in this case, six modules). (D) After modification, checks all related call statements for
defect prevention (in this case, six statements). (E) Efficient regression testing through related test case selection based on
backward traceability (in this case, only one test case). (F) Performs backward tracing to find and modify inconsistent
documents after code modification.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 611

GeneralGeneralGeneralGeneral ComparisonComparisonComparisonComparison betweenbetweenbetweenbetween thethethethe Old-EstablishedOld-EstablishedOld-EstablishedOld-Established
SoftwareSoftwareSoftwareSoftware EngineeringEngineeringEngineeringEngineering ParadigmParadigmParadigmParadigm andandandand NSENSENSENSE (Nonlinear(Nonlinear(Nonlinear(Nonlinear
SoftwareSoftwareSoftwareSoftware EngineeringEngineeringEngineeringEngineering Paradigm)Paradigm)Paradigm)Paradigm)

Jay Xiong
NSEsoftware, LLC., USA

jayxiong@yeah.net, jay@nsesoftware.com
AbstractAbstractAbstractAbstract
This paper describes the major differences between the old-established software engineering paradigm and a new software
engineering paradigm called NSE (Nonlinear software engineering paradigm based on complexity science) in detail. The
essential difference between them is how to handle the relationship between the whole and its parts of a software system. The
former adheres to the reductionism principle and superposition principle that the whole is the sum of its parts, so that nearly
all software development tasks/activities are performed partially and locally, such as the implementation of requirement
changes. The latter complies with the Holism Principle of complexity science, that a software product is a Complex Adaptive
System having multiple interacting agents (components), of which the overall behavior and characteristics cannot be inferred
simply from the behavior of its individual agents but emerge from the interaction of its parts, so that with NSE nearly all
software development tasks/activities are performed globally and holistically to prevent defects in the entire software
lifecycle.

Keywords: Silver Bullet, software engineering paradigm, modeling testing, quality assurance, maintenance

1. Introduction
Low quality, productivity, and project success rate, and
high cost and risk are the critical issues which have existed
with the old-established software engineering paradigm for
more than 40 years. The root cause is that software is a
nonlinear system where a small change may bring big
impact to the entire system – the “Butterfly-Effect”, but the
old-established software engineering paradigm is an
outcome of reductionism and the superposition principle
that the whole of a nonlinear system is the sum of its parts,
so that with it almost all software engineering activities are
performed linearly, partially, and locally.

NSE (Nonlinear Software Engineering paradigm) was
first time introduced in our previous paper titled “A
Complete Revolution in Software Engineering Based on
Complexity Science” published in 2009 with SERP’09[1],
and described in more detail in my book, “New Software
Engineering Paradigm Based on Complexity Science”
published in 2011 [2]

This paper will further compare the differences
between the old-established software engineering paradigm
and NSE in almost all parts, including the modeling
approaches, the software development methods, the
software development processes, the testing paradigms, the
quality assurance paradigms, the documentation paradigms,
the visualization paradigms, the maintenance paradigms,
and the project management paradigms.

2. General Comparison between the Old-
Established Software Engineering

Paradigm and NSE

2.1 Software Definition

A. The software definition of the old-established
software engineering paradigm

Software is defined as
* instructions (computer programs) that when executed
provide desired features, function, and performance;

* data structures that enable the programs to adequately
manipulate information; and

* documents that describe the operation and use of the
programs [3].

B. The software definition of NSE

Software is defined as
* instructions (computer programs) that when executed
provide desired features, function, and performance;

* data structures that enable the programs to adequately
manipulate information; and

* documents that describe the operation and use of the
programs (including the test case script files too); plusplusplusplus

**** thethethethe databasedatabasedatabasedatabase builtbuiltbuiltbuilt thoughthoughthoughthough staticstaticstaticstatic andandandand dynamicdynamicdynamicdynamic
measurementmeasurementmeasurementmeasurement ofofofof thethethethe programs;programs;programs;programs; andandandand

**** aaaa setsetsetset ofofofof AssociatedAssociatedAssociatedAssociated OnlineOnlineOnlineOnline AgentsAgentsAgentsAgents (AOA,(AOA,(AOA,(AOA, automatedautomatedautomatedautomated
andandandand intelligenceintelligenceintelligenceintelligence toolstoolstoolstools workingworkingworkingworking withwithwithwith thethethethe database)database)database)database) forforforfor
supportingsupportingsupportingsupporting testability,testability,testability,testability, reliability,reliability,reliability,reliability, visibility,visibility,visibility,visibility,

612 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

mailto:jayxiong@yeah.net
mailto:jay@nsesoftware.com

changeability,changeability,changeability,changeability, conformity,conformity,conformity,conformity, andandandand traceabilitytraceabilitytraceabilitytraceability totototo makemakemakemake
thethethethe softwaresoftwaresoftwaresoftware programprogramprogramprogram maintainable,maintainable,maintainable,maintainable, adaptive,adaptive,adaptive,adaptive, andandandand thatthatthatthat
thethethethe staticstaticstaticstatic andandandand dynamicdynamicdynamicdynamic measurementmeasurementmeasurementmeasurement resultsresultsresultsresults cancancancan bebebebe
viewedviewedviewedviewed easily,easily,easily,easily, andandandand thethethethe acceptanceacceptanceacceptanceacceptance testingtestingtestingtesting cancancancan bebebebe
dynamicallydynamicallydynamicallydynamically donedonedonedone inininin aaaa fullyfullyfullyfully automatedautomatedautomatedautomated waywaywayway throughthroughthroughthrough
mousemousemousemouse clicksclicksclicksclicks onlyonlyonlyonly....

2.2 Software Engineering foundation

A. The old-established software engineering
paradigm

The old-established software engineering foundation is based on
linear thinking, reductionism, and the superposition principle
that thethethethe wholewholewholewhole ofofofof aaaa systemsystemsystemsystem isisisis thethethethe sumsumsumsum ofofofof itsitsitsits parts,parts,parts,parts, so that withwithwithwith
itititit almost all software development tasks/activities are
performed linearly, partially, and locally.

B. NSE

The NSE foundation is based on complexity science with
a set of essential principles including the NonlinearityNonlinearityNonlinearityNonlinearity
principle, the HolismHolismHolismHolism principle that aaaa wholewholewholewhole isisisis greatergreatergreatergreater
thanthanthanthan thethethethe sum ofofofof itsitsitsits parts ---- thethethethe characterscharacterscharacterscharacters andandandand thethethethe
behaviorbehaviorbehaviorbehavior ofofofof aaaa complexcomplexcomplexcomplex systemsystemsystemsystem isisisis anananan emergentemergentemergentemergent propertypropertypropertyproperty
ofofofof thethethethe interactionsinteractionsinteractionsinteractions ofofofof itsitsitsits componentscomponentscomponentscomponents (agents),(agents),(agents),(agents), the
DynamicsDynamicsDynamicsDynamics principle, the Self-organizationSelf-organizationSelf-organizationSelf-organization principle, the
Self-adaptationSelf-adaptationSelf-adaptationSelf-adaptation principle, the OpennessOpennessOpennessOpenness principle, the
InitialInitialInitialInitial ConditionConditionConditionCondition SensitivitySensitivitySensitivitySensitivity principle, the SensitivitySensitivitySensitivitySensitivity totototo
ChangeChangeChangeChange principle, the ComplexityComplexityComplexityComplexity ArisesArisesArisesArises FromFromFromFrom SimpleSimpleSimpleSimple
RulesRulesRulesRules principle, etc., so that with NSE, almost all
tasks/activities are performed globally and holistically
through a nonlinear process.

2.3 Software Development Methods

A. The old-established software engineering
paradigm
A Top-Down or Bottom-Up method is used linearly.

B. NSE
A nonlinear Top-Down plus Bottom-up

method is used, driven by defect prevention
supported by various traceability (see Fig. 1).

Fig. 1 NSE Software development method

2.4 Software Engineering Process Models

A. The old-established software engineering
paradigm
With the old-established software engineering paradigm
all software engineering process models are linear with
no upstream movement at all as shown in Fig 2.

(Source: “An Analysis of Model Driven Architecture (MDA) and
Executable UML (xUML)”, http://www.powershow.com/view/30871-
MjU5N/An_Analysis_of_Model_Driven_Architecture_MDA_and_Executa
ble_UML_xUML_flash_ppt_presentation

Fig. 2 Various Linear Software Engineering Process Models with
No Upstream Movement at All

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 613

http://www.businessdictionary.com/definition/sum.html
http://www.businessdictionary.com/definition/part.html
http://www.powershow.com/view/30871-MjU5N/An_Analysis_of_Model_Driven_Architecture_MDA_and_Executable_UML_xUML_flash_ppt_presentation
http://www.powershow.com/view/30871-MjU5N/An_Analysis_of_Model_Driven_Architecture_MDA_and_Executable_UML_xUML_flash_ppt_presentation
http://www.powershow.com/view/30871-MjU5N/An_Analysis_of_Model_Driven_Architecture_MDA_and_Executable_UML_xUML_flash_ppt_presentation

B. NSE

With NSE a nonlinear software engineering process
model is offered as shown in Fig. 3.

Fig. 3 NSE software engineering process model

The major features of NSE process model include:
**** Dual-processDual-processDual-processDual-process: NSE model consists of the pre-process

and the main process. They are different but also
closely linked together.

**** Nonlinear:Nonlinear:Nonlinear:Nonlinear: The NSE model is nonlinear, complying
with the Nonlinearity principle and the Holism
principle.

* ParallelParallelParallelParallel withwithwithwith MultipleMultipleMultipleMultiple trackstrackstrackstracks:::: ““““Much of software
architecture, implementation, and realization can
proceed in parallel.” [4]. For reducing waiting time
and speeding up software development processes, the

NSE process model supports tasks being performed in
parallel with multiple tracks through bidirectional
traceability.

**** RealRealRealReal timetimetimetime: “Timely updating is of critical importance.”
[4]

* IncrementalIncrementalIncrementalIncremental ddddeeeevelopmentvelopmentvelopmentvelopment withwithwithwith two-waytwo-waytwo-waytwo-way iteration:iteration:iteration:iteration:
The NSE process model supports incremental
development with two-way iteration, including
refactoring to handle highly complex modules and
performance bottlenecks with side-effect prevention.
When a critical issue is found in the main process, the
work flow may go back to the preprocess for selecting
a better solution method, and so on.

* TheTheTheThe softwaresoftwaresoftwaresoftware developmentdevelopmentdevelopmentdevelopment processprocessprocessprocess andandandand softwaresoftwaresoftwaresoftware
maintenancemaintenancemaintenancemaintenance processprocessprocessprocess areareareare combinedcombinedcombinedcombined togethertogethertogethertogether
seamlessly:seamlessly:seamlessly:seamlessly: With the NSE process model, there is no
big difference between the software development
process and the software maintenance process – both
support requirement changes through side-effect
prevention.

* TheTheTheThe softwaresoftwaresoftwaresoftware developmentdevelopmentdevelopmentdevelopment processprocessprocessprocess andandandand thethethethe projectprojectprojectproject
managementmanagementmanagementmanagement processprocessprocessprocess areareareare combinedcombinedcombinedcombined togethertogethertogethertogether closely:closely:closely:closely:
all documents including the project management
documents such as the project development plan, the
schedule chart, and the cost estimation report are
traceable with the requirement implementation and the
source code for better control of the product
development. NSE process model also supports the
critical requirements and most important requirements
being implemented early with the assigned priority to
avoid budget overuse – if necessary, some optional
requirements and not so important requirements can
be ignored temporarily.

* AdaptationAdaptationAdaptationAdaptation focusedfocusedfocusedfocused ratherratherratherrather thanthanthanthan predictabilitypredictabilitypredictabilitypredictability
focusedfocusedfocusedfocused: the entire world is always changing, so the
NSE process model is adaptation focused rather than
predictability focused – it supports requirement
changes, code modifications, data modifications, and
document modifications to make them consistent and
updated with side-effect prevention.

* DefectDefectDefectDefect preventionpreventionpreventionprevention drivendrivendrivendriven
**** PeoplePeoplePeoplePeople areareareare consideredconsideredconsideredconsidered asasasas thethethethe firstfirstfirstfirst orderorderorderorder driverdriverdriverdriver forforforfor

softwaresoftwaresoftwaresoftware developmentdevelopmentdevelopmentdevelopment - When people consider
“people as the first-order” to software development,
they focus on how to trust and support people better
for their jobs, but ignore the other side of people’s
effect on software development – almost all defects
introduced into software products are made by people,
the developers and the customers. So NSE supports
people in two ways: one is to support them with better
methodology, technology, and tools; another one is to
prevent the possible defects to be introduced into the
software products by people - it is done mainly
through various automated and bidirectional
traceabilities.

2.5 Software Modeling Approaches

614 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

A. The old-established software engineering
paradigm

Offering linear, partial, and local software modeling
approaches through two kinds of sources with one in
graphics drawn by hands or using a graphic editor for
human understanding of a software product, and another
one in test format for computer understanding of the
software product – there is a big gap between the two
kinds of sources as shown in Fig. 4.

Fig. 4 Existing software modeling approaches

B. NSE

Offering nonlinear, holistic, and global software modeling
approach (called NSM – Nonlinear Software Modeling
approach) using one kind of source (the source code of a
stub program using dummy modules having an empty
body or only some function call statements without
detailed program logic, or the source code of a regular in
forward engineering or reverse engineering) for both
human understanding of a software system using better
graphics automatically generated from the source code for
high-level system abstraction, and computer
understanding of the software system using the source
code directly as shown in Fig. 5.

Fig. 5 NSE software modeling approach

The major features of NSE software modeling approach
include:

(1) NSM is based on complexity science, complying with
the essential principles of complexity science, particularly
the Nonlinearity Principle, the Dynamic Principle, and the
Holism Principle, so that with NSM almost all software
modeling and engineering activities are performed
nonlinearly, holistically, and globally, rather than linearly,
partially, and locally.

(2) NSM uses one kind source (the source code of a
platform-independent programming language (such as
Java/Java-DSL) or even a platform-dependent
programming language) for human understanding of a
complex software product through the colorful and
meaningful Models/Diagrams automatically generated
from the source code for high-level abstraction, and
computer understanding of the complex software product
using the source code or the transformed source code, so
that with NSM the models/diagrams are always consistent
with the source code.

(3) NSM makes design become pre-coding, and coding
become further design – offering Top-Down plus Bottom-
Up software development approach.

(4) NSM offers dynamic software modeling approach rather
than static one: (a) with NSM, the generated
models/diagrams are existing dynamically - when a chart
or a diagram is shown, the corresponding generator is
always working for users’ commands to operate to meet
users’ needs through the interface – using the
chart/diagram itself; (b) with NSM, the generated
models/diagrams are dynamically executable through the
corresponding source code; (c) with NSM, the generated
models/diagrams are dynamically traceable to the
requirements and he source code.

(5) NSM completely solves the inconsistency issues
between the generated models/diagrams and the source
code.

(6) NSM brings revolutionary changes to software modeling
quality by making the generated models/diagrams
traceable for static defect removal, and executable
through the corresponding source code for dynamic defect
removal.

(7) The models/diagrams generated with NSM are accurate
and precise to the source code.

(8) With NSM a software product developed through
nonlinear software modeling and engineering is much
easier to understand, review, change, test, and maintain.

2.6 Software Testing Paradigm

A. The old-established software engineering
paradigm

Functional testing and structural testing are separated,
performed after coding, can not be used to find defects in

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 615

requirement development phase and design phase
dynamically..

B. NSE

Functional testing and structural testing are combined
together seamlessly using the innovated Transparent-box
testing method which not only checks whether the output
(if any, can be none) from a software product being
developed is the same as what is expected, but also helps
users to check whether the real program execution path
covers the expected program execution path, then
automatically establishes bi-directional traceability among
related documents and test cases and the source code
according to the description of the test cases through Time
Tags (when a test case is executed) and some special
keywords (see Fig. 6 and Fig. 7)

Fig. 6 The innovated Transparent-box testing method

Fig. 7 Automated and self-maintainable traceability

2.7 Software Quality Assurance Paradigm

A. The old-established software engineering
paradigm

Software quality assurance is mainly based on inspection
and software testing after coding, violates W. Edwards
Deming’s product quality assurance that “Cease
dependence on inspection to achieve quality.
Eliminate the need for inspection on a mass
basis by building quality into the product in the
first place.” [5].

B. NSE

Software quality assurance is based on defect prevention
and defect propagation prevention performed in the entire
software development process from requirement
development down to maintenance through program
execution using the innovated Transparent-box testing
method dynamically, plust inspection using traceable
documents and traceable source code automatically
diagrammed.

2.8 Software Documentation Paradigm

A. The old-established software engineering
paradigm

Software documents are separated from the source code
without bi-directional traceability between them, and
often inconsistent with source code after code is modified
again and again..

B. NSE

Software documents are combined with source code
through various traceability, and consistent with source
code after code modification through backward
traceability to update the related documents directly or
updating the corresponding database for re-generating
most documents from source code – see Fig. 8.

Fig. 8 NSE documentation paradigm

2.9 Software Visualization Paradigm

616 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

A. The old-established software engineering
paradigm

Partially supported in the modeling process using UML
and the support tools.

B. NSE

With the NSE process model and the support platforms,
the entire software development process is visible from
the first step to the maintenance phase using integrative
and traceable 3J graphics (J-Chart, J-Diagram, and J-Flow
innovated by me) and the corresponding diagramming
tools, which generate all charts and diagrams globally and
holistically with various kinds of traceabilities to make
the software product being developed much easier to
understand, test, and maintain - see Fig. 8.

Fig. 9 An application example of NSE software
visualization paradigm

2.10 Software Maintenance Paradigm

A. The old-established software engineering
paradigm

Based on linear process models without facilities for
various bidirectional traceabilities, or very limited
traceability made manually; software maintenance is
performed locally and partially with no way to prevent the
side-effects for the implementation of requirement
changes or code modifications, so that often when a bug is
fixed, there is a 20% to 50% chance to introduce a new
one to the software product. Often the regression testing
is performed by reusing all test cases – it is time
consuming and costly. It is why software maintenance
takes more than 75% of the total cost and total effort in a
software system development.

B. NSE

Based on the NSE nonlinear process model with the
support of facilities for various bidirectional traceabilities

that are automatically established, software maintenance
is performed globally and holistically with side-effect
prevention. There is no big difference between the
software development process and the maintenance
process, because with NSE requirement changes are
welcome at any time to support the customer’s market
competition strategy, and responded to in real time where
the side-effects for the implementation of requirement
changes or code modifications can be prevented to assure
the quality through various bidirectional traceabilities.
The regression testing after code modification can be
performed with minimized test cases to greatly save the
cost and time. In the case that only a few code branches
are modified, only some related test cases will be selected
for regression testing through backward tracing from the
modified branches to the test case scripts. The regression
testing will use the Transparent-box method which
combines functional testing and structural testing together
seamlessly with the capability to establish the new
bidirectional traceabilities, and the capability to perform
performance measurement, memory leak and usage
violation check, and MC/DC (Modified
condition/Decision Coverage) test coverage measurement.
If something wrong is found after the code modification, a
global and holistic version comparison will be performed
for helping users to find and fix the problem quickly.

2.11 Software Project Management

A. The old-established software engineering
paradigm

The project management processes are separated from the
product development processes – the project
plan/schedule information and the cost information are
not traceable with the requirement implementation, so that
often a software becomes a monster of missed schedules
and blown budgets.

B. NSE

The project management processes and the product
development processes are combined together, making the
project plan/schedule information and the cost
information traceable with the requirement
implementation and the source code, assigning
implementation priorities to the requirements according
to the importance and market needs, so that the schedules
and budgets can be controlled better. Particularly, the
NSE nonlinear process model is used with defect
prevention for the implementation of requirement changes
or code modification to greatly reduce the cost spent in
the software development process and the software
maintenance process, and ensure the quality from the first
step to the end of a software development project.

An application example is shown in Fig. 10.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 617

Fig. 10 An application example of making project
management documents traceable with requirements and

source code

3. The Essential Differences between he
Old-Established Software Engineering
Paradigm and NSE

The Essential Differences between the Old-Established
Software Engineering Paradigm and NSE is how to
handle the relationship between the whole of a nonlinear
system and its parts – the old-established software
engineering paradigm is based on reductionism and the
superposition principle that the whole of a nonlinear
system is the sum of its components, so that with it
almost all software engineering activities are performed
linearly, partially, and locally; but NSE is based on
complexity science by complying with the essential
principles of complexity science, particularly the
Nonlinearity principle and the Holism principle that the
whole of a nonlinear system is greater than the sum of its
parts, the characteristics and behaviors of the whole of a
non l;near system emerge from the iteration of its parts,
can not be inferred simply from the behavior of its individual
components, so that with NSE almost all software engineering
activities are performed non linearly, holistically, and globally.

4. Conclusion

Why have the critical issues (low quality and productivity,
and high cost and risk) existed for more than 40 years? The
main reason is that software is a nonlinear system where a
small change may bing big impact to the entire system. Each
one of the critical issue, such as the low quality issue, is
related to the all parts of software engineering, including the
software development method, and software modeling
approach, the software engineering modeling approach, the
software testing paradigm, the documentation paradigm, the
visualization paradigm, and the maintenance paradigm, so
that only improve the quality assurance method and tools
without improving the other parts of an entire software
engineering paradigm will not be able to efficiently solve
the software quality issue – for efficiently solving the all

critical issues in software development, we need a complete
revolution in software engineering based on complexity
science as described in this paper.

References

[1] Jay Xiong, 2009, Tutorial, A Complete Revolution
in Software Engineering Based on Complexity
Science,WORLDCOMP'09 - , Las Vegas, July
13-17, 2009 (http://www.world-academy-of-
science.org/worldcomp09/ws/tutorials/tutorial_x
iong)

[2] Jay Xiong, 2011, New Software Engineering Paradigm
Based on Complexity Science, Springer
(http://www.springer.com/physics/complexity/book/978-
1-4419-7325-2)

[3] Pressman R. S. Software Engineering: A
Practitioner’s Approach, McGraw-Hill, 2005

[4] Brooks, Frederick P. Jr., “The Mythical Man-
Month”, Addison Wesley, 1995

[5] Deming W E. Out of the Crisis. MIT Press,
1986

618 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

http://www.world-academy-of-science.org/worldcomp09/ws/tutorials/tutorial_xiong
http://www.world-academy-of-science.org/worldcomp09/ws/tutorials/tutorial_xiong
http://www.world-academy-of-science.org/worldcomp09/ws/tutorials/tutorial_xiong
http://www.springer.com/physics/complexity/book/978-1-4419-7325-2
http://www.springer.com/physics/complexity/book/978-1-4419-7325-2

SilverSilverSilverSilver Bullet:Bullet:Bullet:Bullet: SlayingSlayingSlayingSlaying SoftwareSoftwareSoftwareSoftwareWerewolvesWerewolvesWerewolvesWerewolves EfficientlyEfficientlyEfficientlyEfficiently
Jay Xiong

NSEsoftware, LLC., USA
jayxiong@yeah.net, jay@nsesoftware.com

AbstractAbstractAbstractAbstract
This paper introduces a Silver Bullet for slaying software werewolves efficiently by shifting software engineering foundation
from reductionism to complexity science. The Silver Bullet complies with the essential principles of complexity science,
including the Nonlinearity Principle, the Holism Principle, the Dynamics Principle, the Self-Organization Principle,
the Self-Adaptation Principle, the Openness Principle, and more, so that with the Silver Bullet almost all software
engineering tasks are performed nonlinearly, holistically, globally, and quantitatively to bring revolutionary changes to almost all
areas of software engineering. The Silver Bullet has been fully implemented and supported by Panorama++ platform. Theoretical
comparisons and preliminary applications show that compared with the old-established software engineering paradigm, it is possible for
the Silver Bullet to help software development organizations double their productivity and project success rate, halve their cost, improve
the quality of their products in several orders of magnitude, and slay software werewolves ("a monster of missed schedules,
blown budgets, and flawed products”) efficiently.

Keywords: Silver Bullet, software engineering paradigm, modeling, testing, quality assurance, maintenance

1.1.1.1. IntroductionIntroductionIntroductionIntroduction
Software “Werewolves” is defined by Brooks in his paper

"No Silver Bullet: Essence and Accidents of Software
Engineering" published in 1984 [1] as that “Of all the monsters
who fill nightmares of our folklore, none terrify more than
werewolves, because they transform unexpectedly from the
familiar into horrors” , “The familiar software project has
something of this character (at least as seen by the nontechnical
manager), usually innocent and straightforward, but capable of
becoming a monster of missed schedules, blown budges, and
flawed products.”.

“No Silver Bullet” - Brooks also pointed out that “There is
no single development, in either technology or management
technique, which by itself promises even one order-of-magnitude
improvement within a decade in productivity, in reliability, in
simplicity.”

Here it is clear that, the “werewolves” is a monster of missed
schedules, blown budges, and flawed products” – these issues
relate to the entire software engineering paradigm, including the
process models, the software development methodology, the
quality assurance paradigm, the software testing paradigm, the
project management paradigm, the software documentation
paradigm, the software maintenance paradigm, the self-
organization capability, the Capability Maturity of the
organization and the team, and more. But the “Silver Bullet”
defined by Brooks is a “single development, in either technology
or management technique, which by itself promises even one
order-of-magnitude improvement within a decade in productivity,
in reliability, in simplicity.” – how can a single technology or
management technique solve the issues offff missedmissedmissedmissed schedules,schedules,schedules,schedules,
blownblownblownblown budges,budges,budges,budges, andandandand flawedflawedflawedflawed productsproductsproductsproducts which are not only
technology or technique issues but strongly related to people (the
customers and the developers) and the project management?

The answer is that the "Silver Bullet" defined by Brooks can
not slay the “werewolves” defined by him:
(1) In theory, it is impossible
According to complexity science, the whole of a complex
system is greater than the sum of its parts, the characteristics
and behaviors of the whole of a complex system emerge
from the interaction of its components, can not be inferred
simply from the behavior of its individual components. It means

a single development, in either technology or management
technique, the individual characteristics and behaviors can not
be inferred simply by the whole of the software engineering
paradigm, so that it is impossible for the single development, in
either technology or management technique to slay the software
monster of missed schedules, blown budges, and flawed
products - those problems come from the whole of the old-
established software engineering paradigm....

(2) From practices, it is impossible
After analyzing more than 12,000 software projects, Capers
Jones pointed out in his article titled ““““Social and Technical
Reasons for Software Project Failures”””” that “Major software
projects have been troubling business activities for more than
50 years. Of any known business activity, software projects
have the highest probability of being cancelled or delayed.
Once delivered, these projects display excessive error quantities
and low levels of reliability. Both technical and social issues
are associated with software project failures. Among the social
issues that contribute to project failures are the rejections of
accurate estimates and the forcing of projects to adhere to
schedules that are essentially impossible. Among the technical
issues that contribute to project failures are the lack of modern
estimating approaches and the failure to plan for requirements
growth during development. However, it is not a law of nature
that software projects will run late, be cancelled, or be
unreliable after deployment. A careful program of risk analysis
and risk abatement can lower the probability of a major
software disaster.”[2] – it means that the issues of missed
schedules, blown budges, and flawed products are not only
technology issues, but also social issues, can never be solved by
a single development, in either technology or management
technique.
With the same reasons, CMMI (Capability Maturity Model

Integration, focusing on Software Process Improvement and
project management improvement only) or SEMAT (Software
Engineering Method and Theory, mainly focusing on the
improvement of software development methodology)
without bringing revolutionary changes to the entire software
engineering paradigm will not be able to efficiently slay software
“werewolves” too.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 619

mailto:jayxiong@yeah.net
mailto:jay@nsesoftware.com
http://blog.paluno.uni-due.de/semat.org
http://blog.paluno.uni-due.de/semat.org

This paper describes Silver Bullet which is, in fact, a
complete revolutionary software engineering paradigm based on
complexity science.

2.2.2.2. WhatWhatWhatWhat DoesDoesDoesDoes aaaa QualifiedQualifiedQualifiedQualified SilverSilverSilverSilver BulletBulletBulletBullet Mean?Mean?Mean?Mean?

Before answering this question, let us consider what make the
software “werewolves” exist:
(a) The existing process models (no matter if they are waterfall
models, incremental development models which is “a series of
Waterfalls””””[[[[3333]]]],,,, or iterative development models on which each
iteration is a waterfall) which are based on reductionism and
superposition principle that the whole of a complex system is
the sum of its components, so that with them almost all software
process tasks and activities are performed linearly, partially, and
locally without upstream movement at all, making the defect
introduced into a software product in upstream easy to propagate
down to the maintenance phase and the final defect removal cost
increase tenfold many times.

(b) The software development methodologies based on linear
process, reductionism, superposition, and constructive holism
principle, so that with them almost all software development
tasks and activities are performed linearly, partially, and locally
for the components of a software product first, then the
components are “assembled” (CMMI) to form the whole of the
software product, making the quality of the software product
very hard to ensured, and software maintenance much hard to
perform.

(c) The top-down software modeling approaches including MDA,
MDD, and MDE based on UML, with which the obtained
models/diagrams are not traceable for static defect removal, not
executable for debugging, and not dynamically testable for
dynamic defect removal, so that nobody knows whether they are
complete, correct, and consistent with each other - t they are not
qualified as the road map for project implementation.

(d) The software testing paradigm which ignores the fact that most
critical software defects are introduced to a software product in
the requirement development phase and the product design
phase, can only be dynamically used after coding, so that NIST
(National Institute of Standards and Technology) concluded that
“Briefly, experience in testing software and systems has shown
that testing to high degrees of security and reliability is from a
practical perspective not possible. Thus, one needs to build
security, reliability, and other aspects into the system design
itself and perform a security fault analysis on the
implementation of the design.” (("Requiring Software
Independence in VVSG 2007: STS Recommendations for the
TGDC," November 2006,,,,
http://vote.nist.gov/DraftWhitePaperOnSIinVVSG2007-
20061120.pdf....). Even if a defect has been found through
dynamic software testing after coding, the defect removal cost
will increase tenfold several times.

(e) The quality assurance paradigm base on inspection and
software testing after production, which violates W. Edwards
Deming’s product quality principle that “Cease dependence on
inspection to achieve quality. Eliminate the need for inspection
on a mass basis by building quality into the product in the first
place.” [4], making software quality hard to ensure.

(f) The software visualization paradigm which mainly supports
visual modeling only, does not make the entire software
development and maintenance process and the work products
visible, so that software engineers and maintainers need to spend
much more time to understand and maintain a software product.

(g) The software documentation paradigm with which the
documents are not traceable with the source code, and often do

not consistent with the source code, making a software hard to
understand and hard to maintain.

(h) The software maintenance paradigm with which the
implementation of requirement changes and code modifications
are performed blindly, partially, and locally, so that fixing a
defect has a substantial (20-50 percent) chance of introducing
another[1], making a software product unstable day by day.

(i) The project management paradigm with which software project
management process and the software development process are
separated, the software management documents are not
traceable to the implementation of requirements and the source
code, making the schedule is hard to meet, and the budget is
hard to control.

(j) The corresponding software development techniques and tools
which are designed to work with linear process models, hard to
be used to handle a complex software which is nonlinear
complex system.

(k) The entire software engineering paradigm which is based on
reductionism and superposition principle, hard to efficiently
handle a nonlinear software system where a small change may
bring big impact to the entire system - Butterfly-Effects.

It means that almost all parts of the old-established software
engineering paradigm are making the possibility for the software
werewolves to exist.

Now it is the time we can answer the question: only such a
Silver Bullet can be used to slay software werewolves:
(1) it is based on complexity science, complying with the essential
principles of complexity science, particularly the Nonlinear
principle and the Holism principle, so that with it almost all
software development tasks and activities are performed
holistically, globally, and quantitatively;

(2) it not only can bring revolutionary changes to the all parts of
the software engineering paradigm, but also can make the
required characteristics and behaviors of the whole emerge from
the iteration of its all parts.
In fact, aaaa qualifiedqualifiedqualifiedqualified ““““SilverSilverSilverSilver BulletBulletBulletBullet”””” beingbeingbeingbeing ableableableable totototo slayslayslayslay softwaresoftwaresoftwaresoftware

““““werewolveswerewolveswerewolveswerewolves”””” meansmeansmeansmeans aaaa completecompletecompletecomplete revolutionrevolutionrevolutionrevolution inininin softwaresoftwaresoftwaresoftware
engineeringengineeringengineeringengineering throughthroughthroughthrough paradigm-shiftparadigm-shiftparadigm-shiftparadigm-shift fromfromfromfrom thethethethe oldoldoldold oneoneoneone basedbasedbasedbased onononon
reductionismreductionismreductionismreductionism andandandand superpositionsuperpositionsuperpositionsuperposition principleprincipleprincipleprinciple totototo aaaa newnewnewnew oneoneoneone basedbasedbasedbased
onononon complexitycomplexitycomplexitycomplexity science.science.science.science.

3.3.3.3. AAAA SilverSilverSilverSilver BulletBulletBulletBullet forforforfor SlayingSlayingSlayingSlaying SoftwareSoftwareSoftwareSoftware
werewolveswerewolveswerewolveswerewolves EfficientlyEfficientlyEfficientlyEfficiently

A Silver Bullet[5][6] with the support platform, Panorama++,
consisting of more than 10,000 function points and one million
lines of source code) for slaying software werewolves efficiently
has been innovated through the "Five-Dimensional Structure
Synthesis Method" (FDS) framework (Fig.1) and implemented by
me and my colleagues. Silver Bullet is based on complexity
science by complying with the essential principles of complexity
science, particularly the Nonlinearity principle and the Holism
principle so that with Silver Bullet almost all software engineering
tasks are performed nonlinearly, holistically, globally, and
quantitatively to bring revolutionary changes to almost all areas of
software engineering, including
•••• TheTheTheThe foundationfoundationfoundationfoundation
FromFromFromFrom: that based on reductionism and superposition principle

that the whole is the sum of its parts, so that nearly all
software development tasks/activities are performed linearly,
partially, and locally, such as the implementation of
requirement changes.

620 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

http://vote.nist.gov/DraftWhitePaperOnSIinVVSG2007-20061120.pdf
http://vote.nist.gov/DraftWhitePaperOnSIinVVSG2007-20061120.pdf
http://vote.nist.gov/DraftWhitePaperOnSIinVVSG2007-20061120.pdf

ToToToTo: that based on complexity science - to comply with the
essential principles of complexity science, particularly the
Nonlinear Principle and the Holism Principle that the whole
of a complex system is greater than the sum of its parts - the
characters and the behavior of a complex system is an
emergent property of the interactions of its components
(agents), so that with Silver Bullet nearly all software
development tasks/activities are performed nonlinearly,
holistically, and globally to prevent defects in the entire
software life-cycle – for instance, if there is a need to change
a requirement, with Silver Bullet and the support platform
Panorama++ the implementation of the change will be
performed nonlinearly, holistically, and globally through
various bidirectional traceabilities: (1) Performs forward
tracing for the requirement change (through the corresponding
test cases) to determine what modules should be modified. (2)
Performs backward tracing to check related requirements of
the modules to be modified for preventing requirement
conflicts. (3) Checks what other modules may also need to be
changed with the modification by tracing the modules to find
all related modules on the corresponding call graph shown in
J-Chart innovated by me. (4) Checks where the global
variables and static variables may be affected by the
modification. (5) After modification, checks all related
statements calling the modified module for preventing
inconsistency defects between them using the diagrammed
source code with traceability shown in J-Diagram notations
innovated by me. (6) Performs efficient regression testing
through backward tracing from the modified module or
statement to find the related test cases. (7) Performs
backward tracing to find and modify inconsistent documents
after code modification.

•••• TheTheTheThe processprocessprocessprocess model(s)model(s)model(s)model(s)
FromFromFromFrom: linear ones based on reductionism principle and

superposition principle, including the waterfall models, the
incremental development models, the iterative development
models, or the incremental and iterative development models,
with which there is only one track in one direction - no
upstream movement at all, always going forward from the
upper phases to the lower phases, so that defects introduced
in the upper phases will easily propagate to the lower phases
to make the defect removal cost greatly increase.

ToToToTo: a nonlinear one (the Silver Bullet process model, see Fig. 2
and Fig. 3) based on complexity science with this model there
are multiple tracks in two directions through various
traceabilities to prevent defects and defect propagation, so
that experience and ideas from each downstream part of the
construction process may leap upstream, sometimes more
than one stage, and affect the upstream activity. With Silver
Bullet, the software development process and software
maintenance process are combined together closely, the
software development process and the project management
process are also combined together closely so that the project
management documents are traceable with the
implementations of software requirements and the source
code. With the Silver Bullet process model, requirement
validation and verification can be done easily through forward
traceability in parallel, and code modification can be done
with side-effect prevention through backward traceability in
parallel too.

• thethethethe softwaresoftwaresoftwaresoftware developmentdevelopmentdevelopmentdevelopment methodologiesmethodologiesmethodologiesmethodologies
FromFromFromFrom: the software development methods based on Constitutive

holism ---- ““““buildingbuildingbuildingbuilding” a software system with its components –
the components are developed first, then the system of a
software product is built through the integration of the

components developed. From the point of view of quality
assurance, those methodologies are test-driven but the
functional testing is performed after coding; it is too late.
These methodologies handle a software product as a machine
rather than a logical product created by human beings. They
all comply with the reductionism principle and superposition
principle.

ToToToTo: the software development method (Silver Bullet software
development method, see Fig. 4) based on Generative Holism
of complexity science - having the whole executable dummy
system first, then ““““growinggrowinggrowinggrowing upupupup” with its components. From
the point of view of quality assurance, it is defect-prevention
driven to ensure the quality of a software product.

• TheTheTheThe softwaresoftwaresoftwaresoftware modelingmodelingmodelingmodeling approachesapproachesapproachesapproaches
From:From:From:From: that based on reductionism, offering linear, partial, local,

and static modeling approaches, the obtained models/diagram
from which are not traceable for static defect removal, not
executable for debugging, and not dynamically testable for
dynamic defect removal, so that it is very hard to ensure the
quality of the modeling results.

To:To:To:To: that based complexity science, offering nonlinear, holistic,
global, and dynamic modeling approach, the obtained
models/diagram from which are traceable for static defect
removal, executable for debugging through the corresponding
source code of a stub program using dummy modules or
regular programs in reverse engineering, and dynamically
testable for dynamic defect removal to ensure the quality of
the obtained modeling results.

• TheTheTheThe softwaresoftwaresoftwaresoftware testingtestingtestingtesting paradigmparadigmparadigmparadigm
From:From:From:From: that mainly based on functional testing using the Black-

Box testing method being applied after the entire product is
produced, plus structural testing using White-Box testing
method being applied after each software unit is coded. Both
testing methods are applied separately without internal logic
connections.

To:To:To:To: that mainly based on the Transparent-box method (Fig.5)
innovated by me to combine functional testing and structural
testing together seamlessly: to each set of inputs, it not only
verifies whether the output (if any, can be none) is the same
as the expected value, but also helps users check whether the
execution path covers the expected path, with the capability to
automatically establish bidirectional traceability among all of
the related documents and test cases and the source code for
helping users remove inconsistency defects.

• TheTheTheThe qualityqualityqualityquality assuranceassuranceassuranceassurance paradigmparadigmparadigmparadigm
From:From:From:From: a test-driven approach, mainly using black-box testing

method plus structural testing method and code inspection
after coding.

ToToToTo: NSE-SQA – defect prevention-driven approach innovated by
me, mainly using the Transparent-box testing method in all
phases of a software development life-cycle from the first step
to the end because having an output is no longer a condition
to use the Transparent-box testing method dynamically. The
priority of NSE-SQA for ensuring the quality of a software
being developed is ordered as (1) defect prevention; (2) defect
propagation prevention; (3) Refactoring applied to highly
complex modules and module(s) that are performance
bottlenecks; (4) Deep and broad testing.

• TheTheTheThe softwaresoftwaresoftwaresoftware visualizationvisualizationvisualizationvisualization paradigmparadigmparadigmparadigm
FromFromFromFrom: drawing the diagrams manually or using graphic editors
or using a tool to generate partial charts/diagrams which are
neither interactive nor traceable in most cases. Even if some
charts/diagrams for an entire software system can be
generated, they are still not useful because there are too many
connection lines to make the charts/diagrams hard to view and

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 621

http://www.businessdictionary.com/definition/sum.html
http://www.businessdictionary.com/definition/part.html

hard to understand without a capability to trace an element
with all the related elements.

To:To:To:To: holistic, interactive, traceable, and virtual software
visualization paradigm innovated by me to make an entire
software development life-cycle visible. The charts/diagrams
are dynamically generated from several Hash tables from the
database and the source code through stub programming or
reverse engineering virtually without storing the hard copies
in hard disk or memory to greatly reduce the space. The
generated charts/diagrams are interactive and traceable
between related elements – users can highlight an element
with all of the related elements easily.

• TheTheTheThe documentationdocumentationdocumentationdocumentation paradigmparadigmparadigmparadigm
From:From:From:From: (a) separated from the source code without bi-directional

traceability; (b) inconsistent with the source code after code
modifications; (c) requiring huge disk space and memory
space to store the graphical documents; (d) the display and
operation speed is very slow; (e) hard to update; (f) not very
useful for software product understanding, testing, and
maintenance.

ToToToTo: (a) managed together with the source code based on
bidirectional traceability; (b) consistent with the source code
after code modification; (c) most documents are dynamically
generated from several Hash tables and exist virtually without
huge storage space; (d) the display and operation speed is
very fast; (e) most documents can be updated automatically;
(f) very useful for software product understanding, testing,
and maintenance.

• TheTheTheThe softwaresoftwaresoftwaresoftware maintenancemaintenancemaintenancemaintenance paradigmparadigmparadigmparadigm
From:From:From:From: that based on reductionism, with which software

maintenance is performed blindly, partially, and locally
without the capability to prevent the side-effects for the
implementation of requirement changes or code modifications,
takes about 75% of the total effort and cost in the software
system development in most software organizations.

ToToToTo: that based on complexity science with which software
maintenance is performed visually, holistically, and globally
using a systematic, disciplined, quantifiable approach
innovated by me to prevent the side-effects for the
implementation of requirement changes or code modifications
through various automated traceabilities; takes only about
25% of the total effort and cost in software system
development, because with Silver Bullet there is no big
difference between the software development process and the
software maintenance process – both support requirement
changes or code modification with side-effect prevention.

• TheTheTheThe softwaresoftwaresoftwaresoftware projectprojectprojectproject managementmanagementmanagementmanagement paradigmparadigmparadigmparadigm
From:From:From:From: that based on reductionism with which software project

management is performed separately from the software
product development process, often makes the necessary
actions being done too late.

ToToToTo: that based on complexity science with which software project
management is performed closely with the software
development process, makes the project management
documents such as the product development schedule, the
cost reports, and the progress reports traceable with the
requirement implementation and the corresponding test cases
and the source code, making the necessary actions being done
in time.

4.4.4.4. TheTheTheTheMajorMajorMajorMajor FeatureFeatureFeatureFeature andandandand CharacteristicsCharacteristicsCharacteristicsCharacteristics ofofofof
NSENSENSENSE (Silver(Silver(Silver(Silver Bullet)Bullet)Bullet)Bullet)

The Major Feature and Characteristics of NSE(Silver
Bullet) are listed as follows:

• ItItItIt isisisis basedbasedbasedbased onononon aaaa solidsolidsolidsolid foundationfoundationfoundationfoundation ---- complexitycomplexitycomplexitycomplexity
science:science:science:science: the entire NSE paradigm is established by
complying with the essential principles of complexity
science, particularly the Nonlinearity principle and the
Holism principle.

• ItItItIt isisisis completecompletecompletecomplete –––– NSE itself is complete, including its
own process model, software development
methodology, dynamic modeling approach,
visualization paradigm, testing paradigm, QA
paradigm, documentation paradigm, maintenance
paradigm, management paradigm, support techniques
and tools and platform.

• ItItItIt bringsbringsbringsbrings revolutionaryrevolutionaryrevolutionaryrevolutionary changeschangeschangeschanges totototo almostalmostalmostalmost allallallall
aspectsaspectsaspectsaspects ofofofof softwaresoftwaresoftwaresoftware engineeringengineeringengineeringengineering –––– it makes them
changed from the old one based on linear processes
and the superposition principle to the new one based
on complexity science.

• ItItItIt offersoffersoffersoffers bothbothbothboth ““““whatwhatwhatwhat totototo dodododo”””” andandandand ““““howhowhowhow totototo dodododo”””” ––––
different form some popular models which only offer
“what to do” but ignore “how to do”, NSE offers both.

• WithWithWithWith itititit almostalmostalmostalmost allallallall softwaresoftwaresoftwaresoftware engineeringengineeringengineeringengineering
tasks/activitiestasks/activitiestasks/activitiestasks/activities areareareare performedperformedperformedperformed holisticallyholisticallyholisticallyholistically andandandand
globallygloballygloballyglobally –––– with NSE, from requirement development
down to maintenance, all tasks/activities are
performed holistically and globally with defect
prevention including side-effect prevention for the
implementation of requirement changes and code
modification.

• ItItItIt combinescombinescombinescombines thethethethe softwaresoftwaresoftwaresoftware developmentdevelopmentdevelopmentdevelopment processprocessprocessprocess andandandand
softwaresoftwaresoftwaresoftware maintenancemaintenancemaintenancemaintenance processprocessprocessprocess togethertogethertogethertogether closelycloselycloselyclosely ––––
with NSE, requirement changes are welcome at any
stage and implemented with side-effect prevention
though various bidirectional traceabilities .

• ItItItIt combinescombinescombinescombines thethethethe softwaresoftwaresoftwaresoftware developmentdevelopmentdevelopmentdevelopment processprocessprocessprocess andandandand
softwaresoftwaresoftwaresoftware managementmanagementmanagementmanagement processprocessprocessprocess togethertogethertogethertogether closelycloselycloselyclosely –––– it
makes all documents including the management
documents such the schedule chart and the cost reports
traceable to the implementation of requirements and
the source code to control a software project better and
to find and fix the related issues in time.

• ItItItIt ensuesensuesensuesensues softwaresoftwaresoftwaresoftware productproductproductproduct qualityqualityqualityquality fromfromfromfrom thethethethe firstfirstfirstfirst
stepstepstepstep totototo thethethethe finalfinalfinalfinal stepstepstepstep throughthroughthroughthrough defectdefectdefectdefect preventionpreventionpreventionprevention
andandandand dynamicdynamicdynamicdynamic testingtestingtestingtesting usingusingusingusing thethethethe Transparent-boxTransparent-boxTransparent-boxTransparent-box
testingtestingtestingtesting methodmethodmethodmethod –––– NSE offers many means to prevent
defects introduced into a software product by people
(the customers and the developers) with dynamic
testing using the Transparent-box testing method
which combines functional testing and structural
testing seamlessly, can be dynamically used in the
cases where there is no real output from the software
system such as a dummy system with dummy modules
only without detailed program logic.

• WithWithWithWith NSENSENSENSE thethethethe designdesigndesigndesign becomesbecomesbecomesbecomes pre-codingpre-codingpre-codingpre-coding (top-(top-(top-(top-
down),down),down),down), andandandand thethethethe codingcodingcodingcoding becomesbecomesbecomesbecomes furtherfurtherfurtherfurther designdesigndesigndesign
(bottom-up)(bottom-up)(bottom-up)(bottom-up) – with NSE, in most cases the design
through dummy programming using dummy modules
becomes pre-coding, and the coding becomes further
design through reverse engineering. ItItItIt makesmakesmakesmakes
softwaresoftwaresoftwaresoftware documentsdocumentsdocumentsdocuments traceabletraceabletraceabletraceable totototo andandandand fromfromfromfrom sourcesourcesourcesource
codecodecodecode –––– with NSE all related documents and test cases
and the source code are traceable forwards or
backwards though automated and self-maintainable

622 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

traceabilities.
•••• ItItItIt supportssupportssupportssupports realrealrealreal timetimetimetime communicationcommunicationcommunicationcommunication throughthroughthroughthrough

traceabletraceabletraceabletraceable webwebwebweb pagespagespagespages andandandand traceabletraceabletraceabletraceable technicaltechnicaltechnicaltechnical forumforumforumforum
– with NSE, the bidirectional traceability is extended
to include web pages and BBS for real time
communication.

•••• ItItItIt makesmakesmakesmakes thethethethe entireentireentireentire softwaresoftwaresoftwaresoftware developmentdevelopmentdevelopmentdevelopment processprocessprocessprocess
visiblevisiblevisiblevisible fromfromfromfrom firstfirstfirstfirst stepstepstepstep downdowndowndown totototo thethethethe finalfinalfinalfinal stepstepstepstep – the
NSE visualization paradigm is capable of making the
entire software development process visible through
dummy programming and reverse engineering.

•••• ItItItIt makesmakesmakesmakes aaaa softwaresoftwaresoftwaresoftware productproductproductproduct muchmuchmuchmuch easiereasiereasiereasier totototo read,read,read,read,
understand,understand,understand,understand, test,test,test,test, andandandand maintainmaintainmaintainmaintain –––– with NSE a
software is represented graphically and shown in both
the overall structure of the entire product and the
detailed logic diagram and control flow diagram with
various traceabilities and that the untested conditions
and branches are highlighted.

• ItItItIt cancancancan bebebebe appliedappliedappliedapplied atatatat anyanyanyany timetimetimetime inininin anyanyanyany stagestagestagestage forforforfor aaaa
softwaresoftwaresoftwaresoftware productproductproductproduct developmentdevelopmentdevelopmentdevelopment usingusingusingusing anyanyanyany otherotherotherother
methodmethodmethodmethod originallyoriginallyoriginallyoriginally –––– NSE can be added onto a
software product being developed using any other
approach by adding bookmarks in the related
documents and modifying the test cases to use some
keywords to indicate the format of a document and the
file path plus the bookmark, then other work can be
performed by the NSE support platform automatically.

• ItItItIt requiresrequiresrequiresrequires muchmuchmuchmuch lesslesslessless time,time,time,time, resources,resources,resources,resources, andandandand man-man-man-man-
powerpowerpowerpower totototo apply,apply,apply,apply, comparedcomparedcomparedcompared withwithwithwith otherotherotherother existingexistingexistingexisting
approachesapproachesapproachesapproaches – one just needs to re-organize the
document hierarchy using bookmarks and modifying
the test case description using some simple rules; all
of the other work can be performed automatically by
the NSE support platform with many automated and
intelligent tools integrated together, including the
creation of huge amount of traceable and virtual
documents based on static and dynamic measurement
of the software, the diagramming of the entire
software product to generate holistic and detailed
system call graphs and class inheritance charts, the
holistic and detailed test coverage measurement results
shown in J-Chart and J-Diagram or J-Flow diagram
with untested conditions and branches highlighted, the
holistic and detailed quality measurement results
shown in Kiviat diagram for the entire software
product and each class or function, the holistic and
detailed performance measurement results shown in J-
Chart and bar chart with branch execution frequency
measurement result shown in J-Diagram or J-Flow
Diagram to locate the performance bottleneck better,
the software logic analysis results shown in J-Diagram
with various kinds of traceability for semi-automated
code inspection and walk through, the software control
flow analysis results shown in J-Flow with untested
conditions and branches highlighted, the GUI test
operation capture and selective playback for
regression testing after code modification, the test case
efficiency analysis and test case minimization to form
a minimized set of test cases to replace the all test
cases to speed up the regression testing process and
greatly save the required time and resources, the
establishment of bidirectional traceability among all
related documents and the test cases and the source
code, the generation of more than 100 reports based on

the static and dynamic measurement of the software –
the reports can be stored in HTML format for being
used on the internet, the Cyclomatic complexity
measurement results shown in J-Chart and J-Flow
diagram for performing refactoring on the over
complicated modules to reduce possible defects, and
more.

• ItItItIt isisisis possiblepossiblepossiblepossible forforforfor NSENSENSENSE totototo helphelphelphelp softwaresoftwaresoftwaresoftware
organizationsorganizationsorganizationsorganizations doubledoubledoubledouble theirtheirtheirtheir productivity,productivity,productivity,productivity, halvehalvehalvehalve theirtheirtheirtheir
cost,cost,cost,cost, andandandand reducereducereducereduce 99.99%99.99%99.99%99.99% defectsdefectsdefectsdefects inininin theirtheirtheirtheir softwaresoftwaresoftwaresoftware
productsproductsproductsproducts –––– with NSE the quality of a software product
is ensured from the first step through defect prevention
and defect propagation prevention rather than testing
after coding, so that the amount of defects introduced
into a software product is greatly reduced, and that the
defects propagating to the maintenance phase are also
greatly reduced; the software maintenance is
performed holistically and globally with side-effect
prevention; the regression testing after software
modification is performed using a minimized test case
set and some test cases selected through backward
traceability from the modified modules and branches;
software testing is performed in the entire software
development process dynamically using the
Transparent-method which combines functional
testing and structural testing together seamlessly, and
can be dynamically used in the case that there is no a
real output in running some test cases, when it is used
in the requirement development phase and the
software design phase.

5555.... ApplicationsApplicationsApplicationsApplications

Theory comparison and preliminary applications show that
compared with the old one it is possible for Silver Bullet to help
users double their productivity and project success rate, halve their
cost, and remove 99.99% of the defects in their software products.

(a)(a)(a)(a) EfficientlyEfficientlyEfficientlyEfficiently SolvingSolvingSolvingSolving thethethethe IssueIssueIssueIssue ofofofof MissedMissedMissedMissed SchedulesSchedulesSchedulesSchedules

(1) Helping the project development team and the customer
work together closely to assign priority to requirements
according to the importance (see the preprocess part
shown in Fig. 1), so that the important requirements
will be implemented early to meet the market needs. If
necessary some optional requirements can be
temporally ignored .

(2) Making the project plan, the schedule chart and other
related documents traceable with the implementations
of requirements and the source code as shown in Fig. 6,
so that the management team can find and solve the
schedule issue in time.

(3) Helping the software development team set a project
web site and technical forum, and making the web
pages and the topic pages of the technical forum
traceable to the implementations of requirements and
the source code, so that any schedule delay will be
known by the members of the team, and each member
may make his/her contribution to solve the issue
quickly – see Fig. 7 an application example.

(4) See section (c(c(c(c) “Efficiently Solving the Issue of Flawed
Products – Removing More Than 99.99% of the
Defects” –––– through greatly reducing the amount of

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 623

defects to help the development team much easy to
meet the project development schedule.

(5) See section (d) “How Is It Possible for NSE to Help
Users Double Their Productivity” - through defect
prevention and defect propagation prevention in
upstream to greatly reduce the defects propagated into
the downstream, and side-effect prevention in the
implementation of requirement changes and code
modifications to make it possible to reduce 2/3 of the
total effort spent in software changes and maintenance
to help the development team to meet the project
development schedule better.

(b)(b)(b)(b) EfficientlyEfficientlyEfficientlyEfficiently SolvingSolvingSolvingSolving thethethethe IssueIssueIssueIssue ofofofof BlownBlownBlownBlown BudgetsBudgetsBudgetsBudgets

(1) Assigning priority to the requirements according to the
importance ((a) must have, (b) should have, (c) better
to have, (d) may have or optional…) to make the
critical and important requirements be implemented
early to form an essential working version (about 20%
of the requirements) first, then making the working
product grow up incrementally according to the
assigned priority (see Fig. 8 and Fig. 9), to avoid the
issue of blown budgets – if necessary some optional
requirements can be ignored or implemented in the
future.

(2) Complying with the Generative Holism principle of
complexity science, helping users to form the whole of
a software product first through dummy programming
as an embryo through the use of HAETVE (Holistic,
Actor-Action and Event-Response drive, Traceable,
Visual, and Executable) technique for requirement
development, and the SynthesisSynthesisSynthesisSynthesis DesignDesignDesignDesign andandandand
IncrementalIncrementalIncrementalIncremental growinggrowinggrowinggrowing upupupup (Implementation(Implementation(Implementation(Implementation andandandand
Integration)Integration)Integration)Integration) Technique for product design, to help
users estimate the cost/budget better.

(3) Making the cost estimation chart, the budget plan, and
other related documents traceable with the requirement
implementation and the source code, so that the
management team can know the situation in time and
control the budget better.

(4) Making the web pages or topic pages of the technical
forum traceable to the implementations of requirements
and the source code, so that any budget issue can be
known by the members of the team early, and each
member may make his/her contribution to solve the
issue quickly.

(5) Helping users to make the product grow up
incrementally, according to the requirement priority.

(6) See section (c(c(c(c) “Efficiently Solving the Issue of Flawed
Products – Removing More Than 99.99% of the
Defects” –––– through greatly reducing the amount of
defects to help the development team much easy to
develop the product within the budget.

(7) See section (d) “How Is It Possible for NSE to Help
Users Double Their Productivity” - through defect
prevention and defect propagation prevention in
upstream to greatly reduce the defects propagated into
the downstream, and side-effect prevention in the
implementation of requirement changes and code
modifications to make it possible to reduce 2/3 of the
total effort spent in software maintenance to help the

development team develop the product within the
budget better.

(8) See section (e) “How Is It Possible for NSE to Help
Users Halve Their Cost” – through greatly reducing the
cost to further ensuing the product being developed
under the budget.

(c)(c)(c)(c) EfficientlyEfficientlyEfficientlyEfficiently SolvingSolvingSolvingSolving thethethethe IssueIssueIssueIssue ofofofof FlawedFlawedFlawedFlawed ProductsProductsProductsProducts ––––
RemovingRemovingRemovingRemoving MoreMoreMoreMore ThanThanThanThan 99.99%99.99%99.99%99.99% ofofofof thethethethe DefectsDefectsDefectsDefects mainlymainlymainlymainly
throughthroughthroughthrough DefectDefectDefectDefect PreventionPreventionPreventionPrevention andandandand DefectDefectDefectDefect PropagationPropagationPropagationPropagation
PreventionPreventionPreventionPrevention

(1) Helping users efficiently remove defects particularly
upstream defects through
* defect prevention by (a) providing some templates

such as requirement specification template (see
appendix A) to prevent something missing; (b)
helping users apply the HAETVE technique for
requirement development though dummy
programming and making the dummy program
executable through dynamical testing using the
Transparent-box method combining functional and
structural testing together seamlessly, can be used
dynamically in the entire software development
lifecycle; (c) supporting incremental coding to
prevent inconsistency between the interfaces;

* defect propagation prevention mainly through
dynamic testing using the Transparent-box testing
with capability to perform MC/DC (Modified
Condition/Decision Coverage) test coverage
measurement, memory leak and usage violation
check, performance analysis, and the capability to
automatically establish bidirectional traceability to
help users check and remove the inconsistency
defects among the related documents and the source
code, plus inspection using traceable documents and
source code.

* refactoring for those modules with higher Cylormatic
complexity (the number of decision statements) and
performance bottleneck modules with side-effect
prevention – often 20% higher complex modules
have about 80% of the defects.

(2) supporting quality assurance from the first step to the
end through dynamic testing using the Transparent-box
method;

(3) providing techniques and tools for quality
measurement to the entire software product and each
component for finding and solving the quality
problems in time.

(4) helping users perform software maintenance
holistically and globally with side-effects prevention
though various bidirectional traceability.

(5) see section (f) “How Is It Possible for NSE to Help
Users Reduce the Risk” and section (g) “Efficiently
Handling the Issue of Changeability” for more
information about quality assurance with NSE.

(d)(d)(d)(d) HowHowHowHow IsIsIsIs ItItItIt PossiblePossiblePossiblePossible forforforfor NSENSENSENSE totototo HelpHelpHelpHelp UsersUsersUsersUsers DoubleDoubleDoubleDouble TheirTheirTheirTheir
ProductivityProductivityProductivityProductivity

(1) With the old-established software engineering
paradigm, linear process models are used and dynamic
testing is performed after coding, so that defects are
easy introduced into a software product in upstream,
and the defects are easy to propagate to the

624 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

maintenance phase in which the implementation of
requirement changes and code modifications are
performed partially and locally, so that software
maintenance is very difficult to perform – usually
takes 75% or more of the total efforts in a software
development; But with NSE, nonlinear NSE process
model is used which combines software development
process and maintenance process together, ensures
software quality from the first step down to the final
step through defect prevention, defect propagation
prevention, refactoring, and software testing
dynamically using the Transparent-box method in the
entire software system development lifecycle, so that
the defects propagated into maintenance phase are
greatly reduced, plus that the implementation of
requirement changes and code modifications are
performed holistically and globally with side-effect
prevention – the result is that the effort spent in
software maintenance will be almost the same as that
spent in the software development process, it means
about 2/3 efforts originally spent in software
maintenance can be saved – about half of the total
effort can be saved (equal to double the productivity).

(2) As described in section (c), with NSE about 99.99% of
the defects can be removed. So that as Capers Jones
pointed, “Focus on quality, and productivity will
follow”[Jon94].

(3) NSE also supports the reuse of qualified components to
increase software productivity.

(4) With NSE software documentation paradigm and NSE
software visualization paradigm, software document
and source code are traceable, making a software
product much easy to read, understand, test, and
maintain to increase the productivity.

(5) With NSE there are more means to help users increase
their productivity:
� Provides techniques and automated tools to help

users manage and control their software projects
better

� Provides automated tools and templates for helping
users execute their project development plan easily

� Provides techniques and visual tools to help users
perform requirement development, product design,
and bug fixing quickly

� Supports reverse engineering to generate a lot of
design documents automatically

� Supports incremental and visual coding
� Provides techniques and automated complexity

analysis tools to help users design their test plan
quickly

� Provides techniques and tools to help users perform
test case design efficiently through un-executed
path analysis

� Provides techniques and tools for capturing GUI
operation and playing back automatically

� Provides techniques and automated tools for test
case efficiency analysis and test case minimization,
to help users perform regression test quickly (at
least 5 times fast)

� Provides techniques and automated tools for
incremental data base management, so that
unchanged source files do not need to analyze
twice to speed up the regression process (10 times
faster than other tools without incremental data
base management capability).

� Provides techniques and automated tools to analyze
the system structure, data usage, logic flow of a
users’ software product to help them manage the
product better

� Provides intelligent version comparison tools to
help users maintain their product versions easier.

(e)(e)(e)(e) HowHowHowHow IsIsIsIs ItItItIt PossiblePossiblePossiblePossible forforforfor NSENSENSENSE totototo HelpHelpHelpHelp UsersUsersUsersUsers HalveHalveHalveHalve TheirTheirTheirTheir CostCostCostCost

(1) All of the techniques and tools used for helping users
double their productivity are also useful for reducing the
software development cost.

(2) All techniques and tools provided for reduce 99.99% of
the bugs are also useful for reducing the software
development cost.

(3) With the old-established software engineering paradigm,
software maintenance takes 75% or more of the total cost
in a software development; But with NSE, nonlinear
NSE process model is used which combines software
development process and maintenance process together,
ensures software quality from the first step down to the
final step through defect prevention, defect propagation
prevention, refactoring, and software testing dynamically
using the Transparent-box method in the entire software
system development lifecycle, so that the defects
propagated into maintenance phase are greatly reduced,
plus that the implementation of requirement changes and
code modifications are performed holistically and
globally with side-effect prevention – the result is that
the effort spent in software maintenance will be almost
the same as that spent in the software development
process, it means about 2/3 cost originally spent in
software maintenance can be saved – about half of the
total cost can be saved as shown in Fig. 10.

(4) Provides techniques and tools to diagram the entire
system of a users’ product , links the related parts each
other, making code inspection and walkthrough much
easier to perform.

(5) Supports efficient regression testing using minimized test
cases.

(6) Provides techniques and tools to capture users’ GUI
operations, and play them back to reduce regression test
cost, plus

� Provides techniques and visual tools to help users
quickly perform requirement development,
functional decomposition, and bug fixing

� Supports reverse engineering to automatically
generate design documents

� Supports incremental and visual coding
� Provides automated tools for complexity analysis

to help users design their test plan rapidly
� Provides tools to help users perform efficient

test-case design
� Provides techniques and tools for capturing GUI

operations and playing them back
� Provides techniques and automated tools for test-

case efficiency analysis and test case
minimization

� Provides techniques and tools to diagram the
entire system of a user’s software product for
immediate product comprehension and
understanding

� Provides techniques and automated tools to
analyze the system structure, data usage, and

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 625

logic flow of users’ software products for better
product management

� Provides intelligent version comparison tools to
help users maintain their product versions
effortlessly

� Provides forward and backward traceability
among requirement specifications, design
documents, test cases, source code, and test
cases, making the software product easier to
understand, test, and maintain

(f)(f)(f)(f) HowHowHowHow IsIsIsIs ItItItIt PossiblePossiblePossiblePossible forforforfor NSENSENSENSE totototo HelpHelpHelpHelp UsersUsersUsersUsers ReduceReduceReduceReduce thethethethe RiskRiskRiskRisk

(1) Helping users work with the customer to assign priority
order to requirements according to the importance for
making the important requirements be implemented early.

(2) Helping users perform prototype design and test for
important and unfamiliar requirements to prevent
unrealized requirements.

(3) Helping users estimate the cost better using the designed
dummy system through dummy programming.

(4) Making it possible to help users remove 99.99% of the
defects in the designed product, double their productivity,
halve their cost – further reducing the risk.

6.6.6.6. ConclusionConclusionConclusionConclusion
Silver Bullet is a qualified solution for slaying software

Werewolves efficiently.

ReferencesReferencesReferencesReferences

[1] Brooks, Fredrick P., “No Silver Bullet: Essence and
Accidents of Software Engineering,” Computer, Vol 20,
No 4 (April 1987), pp. 10-19

[2] Jones, Capers, Social and Technical Reasons for Software
Project Failures,ures,ures,ures, CrossTalk, Jun 2006 Issue

[3] Condensed GSAM Handbook, chapter 2, CrossTalk, 2003
[4] Deming W E. Out of the Crisis. MIT Press, 1986.
[5] Jay Xiong, Tutorial, A Complete Revolution in Software

Engineering Based on Complexity Science, WORLDCOMP'09
- , Las Vegas, July 13-17, 2009.

[6] Jay Xiong, Jonathan Xiong, A Complete Revolution in
Software Engineering Based on Complexity Science,
WORLDCOMP'09 – SERP （Software Engineering Research
and Practice 2009），109-115.

Fig, 1 The paradigm-shift framework

Fig. 2 The Silver Bullet process model

Fig. 3 The automated and self-maintainable traceability

626 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

http://www.informatik.uni-trier.de/~ley/db/conf/serp/serp2009.html
http://www.informatik.uni-trier.de/~ley/db/conf/serp/serp2009.html

Fig. 4 Silver Bullet software development methodology

Fig. 5 The Transparent-box software testing method

Fig. 6 AN application example to make project
development schedule chart traceable with the
implementation of requirements and the source code

Fig. 7 An example of making web pages traceable to the
implementation of requirements and the source cod

Fig. 8 Incremental development support with
assignment of bottom-up coding order

Fig. 9 Incremental development support

Fig. 10 Estimated effort and cost spent in software
development and software maintenance

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 627

A Software Engineering Tool for Pedagogy:

Reporting Performance Test Results

J. Crunk, M.M. North, and S.M. North

Visualization & Simulation Research Center

Southern Polytechnic State University, Georgia, United States of America

Abstract—As an innovative and useful tool of the software

engineering pedagogy, performance testing may be

conducted to show how a system will perform in a post

production environment. It is common to report the

results of the test as a quantitative result; this often leaves

the reader of the results with their own interpretation

which can be subjective. The purpose of this paper is to

discover if there is a way to give the same information as a

result of the performance test to the people that need it,

but in a mixture of qualitative and quantitative

methodologies. It is believed that by providing this

information, the results of the performance test activities

will be better supported and less likely to be

misinterpreted. In turn, it provides a useful tool for

software engineering pedagogy.

Index Terms— Performance Test Reports. Software

Engineering, Pedagogy,

I. INTRODUCTION

It is common to use varieties of tools to teach

software engineering concepts, of most interesting and

effective tools are the innovative and useful ones. For

instance, a mixture of qualitative and quantitative

methodologies integrated in reporting software

performance testing, is described in this paper.

A performance test is run and the results are

reported giving the users information about the test, the

results reported show numbers that range from less than

a second to a minute for certain actions (Mar 2007,

Pully 2007, Tyagi 2007). One user of the system will

determine that the results are too slow and that

something is wrong, while another user will accept the

results not knowing that there is a problem. It is

proposed that part of the reason for this is that the

results are quantitative in nature and do not give the

users information about what is really seen in the

application when the final report is complete. Allowing

the users to see qualitative information in the results

will allow them to know exactly what is happening

during the application and actually be able to see them

doing a specific action. Users need to be able to see the

action performed to make better decisions about what is

going on; qualitative reporting of results is how they

can see this.

To accomplish this, information about how people

are currently gathering results and presenting them will

be collected from several experts in the field. These

results are expected to be presented in a quantitative

way since performance testing is primarily about the

time that it takes to complete an action.

Once the current method that experts are using is

established, a new methodology will be determined

from this that integrates qualitative reporting methods

as a part of the presentation into the final results. It is

expected that this will be more informative to the

experts in the field. Finally, this information will be

given back to these experts for consideration and

possible further modification.

II. REPORTING METHODS

Reporting methods have been adopted to help in

making clear different ways of presenting material.

There are three types of reporting methods that will be

discussed here; they are qualitative, quantitative, and

mixed methods.

A. Quantitative Method

The quantitative method of reporting is one that

involves numeric description of trends, attitudes, or

opinions of a population by studying a sample of that

population (Creswell 2003). We see this when reporting

results from performance testing too. During a

performance test run, we find that numbers are captured

and logged, in the end; these numbers are collected into

a presentation of charts and graphs that are presented to

people with business interest in the project for review.

B. Qualitative Method

 Qualitative procedures employ different

claims, strategies of inquiry, and methods than

qualitative procedures rely on. The processes are

similar, but they have unique steps in data analysis, and

628 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

draw on diverse strategies of inquiry (Creswell 2003).

Qualitative research takes on some of these

characteristics according to Creswell (2003).

1) Research takes place in a natural setting

2) Research uses multiple methods that are interactive

and humanistic

3) Research is emergent rather than tightly prefigured

4) Research is fundamentally interpretive

5) The researcher views social phenomena holistically

6) The researcher systematically reflects on who he or

she is in the inquiry and is sensitive to his or her

personal biography and how it shapes the study.

As can be seen here, many of these aspects of

qualitative procedures are also the goals of reporting the

results when a performance test is run. For this reason,

it only makes sense to include this information in the

performance test.

III. REPORTS CURRENTLY

Reports that are currently presented after a

performance test has been run typically concentrate on

numerical results as the chart in figure 1. Results like

this one simply collect numbers and then present them

in this form at the end.

Test results like these are subjective and leave

much to interpretation. Names can mislead the users to

thinking that results are one thing when they are

something else and numbers reflected can indicate

different information to different users. Solutions to this

problem are easy, but take some work to develop.

Other problems that confuse the readers of these

reports are the presentation of too much information at

one time. When too much information is presented in a

report, it only serves as garbage as is depicted in figure

2. Graphs like this one depict too much information to

be processed, and even though there are colors for the

separate information that is portrayed, it is not enough.

This graph does not provide useful information to the

audience.

IV. SOLUTIONS IN REPORTING

There are some solutions that can make the

information that is presented during testing more

relevant and meaningful. These solutions are found in

quantitative reporting methods. The question is, how

can we integrate this reporting methodology into

something that is typically qualitative?

We can find answers to this by looking to the

definition of qualitative. Qualitative has some shared

aspects about it that is the goal of performance testing.

Those shared components are Creswell (2003):

1) Testing takes place in a natural setting

2) Testing uses multiple methods that are interactive

and humanistic

3) Testing is emergent rather than tightly prefigured

4) Testing is fundamentally interpretive

5) The tester views social phenomena holistically

6) The tester systematically reflects on who he or she

is in the inquiry and is sensitive to his or her

personal biography and how it shapes the study.

Notice that we have replaced the word research

with test and come up with a meaning that seems to fit

both. Reporting on this is the next logical step. We must

not create a report that demonstrates the ability to show

what is going on during our test.

One such way of introducing qualitative

information into a report of this nature is a transaction

traversal table (Tyagi 2007) as can be seen in figure 3.

This table outlines exactly what is occurring in the

application at each step. Follow this table the user

should be given the information as presented above so

that they are able to clearly understand what occurred in

the application and what they are being told. Figure 4

(Badi 2007) shows the quantitative information that

coincides with the transaction traversal table.

As can be clearly seen, the readers of this report

can see exactly what is happening in the application

while they are looking at the numbers. Improvements in

the system are reported and bottlenecks were identified.

It is also clear where further improvements are needed.

The Homepage is still a problem and needs further

evaluation based on clear identification of that page

from figure 3.

Is this enough though to show users of a given

system exactly what will be going on in their

application during performance testing? It is proposed

that this is probably not sufficient to give the audience

of the test results what they are looking for. Numbers

are great, telling them what is happening while the test

run is better, but in the end; showing them what

happened is best.

A current project that I was a part of had

contracted a company to perform the performance test

for us. This application was a VRU (Voice Response

Unit) where they would dial numbers for us under load.

We could log into a web site while the test was running

and not only see the results of the system under load,

but we could listen to the actual calls that were taking

place. We could actually hear what happened on the

calls and even drill down on where problems occurred

so that we could fix the problems.

This is real results; a test that gives the user the

ability to see the results as they occurred is what the

readers want to see. In the case of the application

mentioned earlier, they want to view the screens that

displayed for each user as they occurred. If they error,

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 629

they don’t want to see a log of the error, they want to

see the error message on the screen when it happened.

This gives weight to the expression, “seeing is

believing”. If they can’t see the conditions as they

would as a user of the system, then it cast doubt on

whether it really occurred or not.

V. DISCUSSION AND CONCLUSSION

We have evaluated qualitative and quantitative

reporting methods of performance test results. It has

been proposed that there is a large gap in the way that

reports have typically been done that serve to confuse

the reader of reports.

As a result, it is proposed that the reports include

information that shows the audience those reports are

directed toward more about what is going on in the

application and not just the numbers that were captured.

Flows of operation through transaction traversal tables

and actual interface captures of the application are both

helpful in giving valuable information to the readers.

Some problems may arise in attempting to give

some of this information through the reports. Current

reporting methods will need to be researched and

modified to allow an interface that the audience can

navigate through and view as the desire. Some of this is

available on a limited scale, but other methods will

need to be developed for further abilities.

ACKNOWLEDGMENT

This effort was partially supported by a grant from the

DoD/National Security Agency. The content of this

work does not reflect the position or policy of the DoD

and no official endorsement should be inferred.

REFERENCES

Creswell, J. W. (2003). Research design: Qualitative,

quantitative, and mixed methods approaches (2nd ed.).

Thousand Oaks, CA: Sage Publications. ISBN:

0761924426.

Trochim, W. M. K. (2006). Introduction to validity. Retrieved

August 15, 2007, from

http://www.socialresearchmethods.net/kb/introval.php

Trochim, W. M. K. (2006). Qualitative validity. Retrieved

August 15, 2007, from

http://www.socialresearchmethods.net/kb/qualval.htm

California.com (2003), Performance Testing, Retrieved

11/10/07 from

http://www.bestpractices.cahwnet.gov/.%5Cdownloads%

5CTopic%20-%20performance%20testing.pdf

Loadrunner User Group, (2007), Loadrunner User Group,

Retrieved 11/10/07 from

http://tech.groups.yahoo.com/group/LoadRunner/?yguid

=165069635

Pully, J. (2005), Handicaped Results, Sent via Email from

James Pully

Mar, W. (2007), Performance Test Results, Retrieved

11/10/07 from http://www.wilsonmar.com/1loadrun.htm

Mar, W. 2007, Correspondence with Wilson Mar via Email

Tyagi, A., (2007) Correspondence with Ashish Tvagi via

Email

Podelko, A., 2007, Multiple Dimensions of Performance

Requirements, Sent from Alexander Podelko via Email.

AgileTesting, (Feb 2005), Blog Spot, Performance Testing,

Retrieved 11/23/07 from

http://agiletesting.blogspot.com/2005/02/performance-

vs-load-vs-stress-testing.html

Badi, K. (2007), Email correspondence with Kiran along with

documents sent to me from him.

630 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Figure 1. Test Results in numerical form

Figure 2. A graph with overwhelming presentation of information

View Current Development Plan

Homepage Open the home page using student link

Log On Log on to the system using student id
Open Course Launch AA course
Navigate to page 2 Click on next button on course
Close course first time Close course window
Open Course second time Launch course second time
Navigate to last page Click on next button on all pages
Click Completed Button Click on Completed Radio Button to view completed course

Logout Logout of the system

Figure 3. Transaction Traversal Table

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 631

Figure 4. Transaction Results for Transaction Traversal Table

Transaction Name

Initial run After tuning Improvement %

Average 90% Average 90% Average 90%

Homepage 13.93 14.54 4.888 5.278 65% 64%

Logon 6.904 7.637 4 4. 16 42% 46%

OpenCourse 5.702 7.745 2.995 3.285 49% 58%

NavigateToPage2 10.387 13.122 5.051 5.392 51% 59%

CloseCourseFirstTime 11.511 12.368 4.822 5.033 58% 59%

OpenCourseSecondTime 20.344 21.654 5.073 5.394 75% 75%

NavigateToLastPage 17.386 17.858 0.252 0.275 98% 98%

ClickCompletedButton 8.734 8.903 0.166 0.188 98% 98%

632 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Using Neural Network for Security Analysis in Software Design

A. Adebiyi, Johnnes Arreymbi and Chris Imafidon
School of Architecture, Computing and Engineering,

 University of East London,

 London, UK

adetunjib@hotmail.com, J.Arreymbi@uel.ac.uk, C.O.Imafidon@uel.ac.uk

Abstract: Security is often is considered as afterthought for
many developers whose primary aim is to produce software

quickly and release it into the market under tight deadlines.

However Integrating security into software applications after

deployment or at a later stage of software development

lifecycle (SDLC) has been found to be more costly than when

it is integrated during the early stages of SDLC. Previous

research shows that design flaws still outnumber all other

types of security flaws. Therefore designing software with

security in mind will go a long way in developing secure

software. In this paper, a new method of analysing security in

software design by using neural network trained to identity

attack patterns is presented. This research found out that the
neural network was able to match attack patterns to software

design scenarios presented to it. The result of performance of

the neural network is presented in this paper.

Keywords- Neural Networks, Software security, Attack Patterns

I. INTRODUCTION

Software security flaws have been attributed to defects
unintentionally introduced during SDLC especially during the
design and the implementation phase. Therefore, it is now an
on-going challenge for the software industries to look into
ways through which software defects can be reduced during
SDLC in order to produce more secured software. As reliance
on network security and other host based security measures to
protect software no longer provide adequate security, a new
research field called software security emerged in the last
decade with the aim of building security into software
application during development. In this approach, security is
viewed as an emergent property of the software application
under development. With this in mind, security is considered
all through SDLC

One of the critical areas in this approach is the area of
software design and security which proactively deals with
attacking security problems at the design phase of SDLC.
Reportedly, 50% of security problems in software products
today have been found to be design flaws [17]. Design-level
vulnerability has been described as the hardest category of
software defect to contend with. Moreover, it requires great
expertise to ascertain whether or not a software application has
design-level flaws which makes it difficult to find and
automate [9]. Many authors also argue that it is much better to
find and fix flaws during the early phase of software
development because it is more costly to fix the problem at a

late stage of development and much more costly when the
software has been deployed [6][29][30]. Therefore, taking
security into consideration at the design phase of SDLC will
help greatly in producing secured software applications.

There is much advancement in the tools currently used for
integrating security at the implementation phase of SDLC.
However, software design security tools and technologies for
automated security analysis at the design phase have been slow
in coming. This is still an area where many researches are
currently being undertaken. Neural Networks has been one of
the technologies used during software implementation and
testing phase of SDLC for software defect detection in order to
intensify software reliability and it has also been used in area of
application security and network security in technologies such
as cryptography and intrusion detection systems (IDS). This
research takes a further step by using neural networks as a tool
for analysing security of software design at the design phase of
SDLC.

II. CURRENT APPROACHES IN INTEGRATING SECURITY

INTO SOFTWARE DESIGN

Different approaches are currently being used in the
software industry to integrate security into software design.
Some of these approaches are discussed below.

Architectural risk analysis is used to identify vulnerabilities
and threats at the design phase of SDLC which may be
malicious or non-malicious in nature due to a software system.
It examines the preconditions that must be present for the
vulnerabilities to be exploited by various threats and assess the
states the system may enter after a successful attack on the
system. One of the advantages of architectural risk analysis is
that it enables developers to analyse software system from its
component level to its environmental level in order to evaluate
the vulnerabilities, threats and impacts at each level [17].

Threat modelling is another important activity carried out at
the design phase to describe threats to the software application
in order to provide a more accurate sense of its security [1].
Threat modelling is a technique that can be used to identify
vulnerabilities, threats, attacks and countermeasures which
could influence a software system [18]. This allows for the
anticipation of attacks by understanding how a malicious
attacker chooses targets, locates entry points and conducts
attacks [24]. Threat modelling addresses threats that have the
ability to cause maximum damage to a software application.

Attack trees is another approach used to characterize
system security by modelling the decision making process of
attackers. In this technique, attack against a system is
represented in a tree structure in which the root of the tree

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 633

represents the goal of an attacker. The nodes in the tree
represent the different types of actions the attacker can take to
accomplish his goal on the software system or outside the
software system which may be in the form of bribe or threat
[6],[23]. “Attack trees are used for risk analysis, to answer
questions about the system’s security, to capture security
knowledge in a reusable way, and to design, implement, and
test countermeasures to attacks” [24].

Attack nets is a similar approach which include “places”
analogous to the nodes in an attack tree to indicate the state of
an attack. Events required to move from one place to the other
are captured in the transitions and arcs connecting places and
transitions indicate the path an attacker takes. Therefore just as
attack trees, attack nets also show possible attack scenarios to a
software system and they are used for vulnerability assessment
in software designs [6].

Another related approach is the vulnerability tree which is a
hierarchy tree constructed based on how one vulnerability
relates to another and the steps an attacker has to take to reach
the top of the tree [23]. Vulnerability trees also help in the
analysis of different possible attack scenarios that an attacker
can undertake to exploit a vulnerability.

Mouratidis and Giorgini [19] also propose a scenario based
approach called Security Attack Testing (SAT) for testing the
security of a software system during design time. To achieve
this, two sets of scenarios (dependency and security attack) are
identified and constructed. Security test cases are then defined
from the scenarios to test the software design against potential
attacks to the software system. Essentially SAT is used to
identify the goals and intention of possible attackers based on
possible attack scenarios to the system. Software engineers are
able to evaluate their software design when the attack scenarios
identified are applied to investigate how the system developed
will behave when under such attacks. From this, software
engineers better understand how the system can be attacked
and also why an attacker may want to attack the system. Armed
with this knowledge, necessary steps can be taken to secure the
software with capabilities that will help in mitigating such
attacks

For most of the approaches discussed above, the need to
involve security experts is required in order to help in in
identifying the threats to the software technology, review the
software for any security issues, investigate how easy it is to
compromise the software’s security, analyse the impact on
assets and business goals should the security of the software be
compromised and recommend mitigating measures to either
eliminate the risk identified or reduce it to a minimum. The
need for security experts arises because there is an existing gap
between security professionals and software developers. The
disconnection between this two has led to software
development efforts lacking critical understanding of current
technical security risks [22].

In a different approach, Kim T. et.al [12] introduced the
notion of dynamic software architecture slicing (DSAS)
through which software architecture can be analysed. “A
dynamic software architecture slice represents the run-time
behaviour of those parts of the software architecture that are
selected according to a particular slicing criterion such as a set

of resources and events” [12] DSAS is used to decompose
software architecture based on a slicing criterion. “A slicing
criterion provides the basic information such as the initial
values and conditions for the ADL executable, an event to be
observed, and occurrence counter of the event” [12] While
software engineers are able to examine the behaviour of parts
of their software architecture during run time using the DSAS
approach, the trade-off is that it requires the software to be
implemented first. The events examined to compute the
architecture slice dynamically are generated when the Forward
Dynamic Slicer executes the ADL executable. This is a
drawback because fixing the vulnerability after implementation
can be more costly [6].

Howe [10] also argues that the industry needs to invest in
solutions that apply formal methods in analysing software
specification and design in order to reduce the number of
defects before implementation starts. “Formal methods are
mathematically based techniques for the specification
development and verification of software and hardware
systems” [7] Recent advances in formal methods have also
made verification of memory safety of concurrent systems
possible [7]. As a result, formal methods are being used to
detect design errors relating to concurrency [10]. A software
development process incorporating formal methods into the
overall process of early verification and defects removal
through all SDLC is Correct by Construction (CbyC) [24].
CbyC has proved to be very cost effective in developing
software because errors are eliminated early during SDLC or
not introduced in the first place. This subsequently reduces the
amount of rework that would be needed later during software
development. However, many software development
organizations have been reluctant in using formal methods
because they are not used to its rigorous mathematical
approach in resolving security issues in software design. Model
checkers also come with their own modelling language which
makes no provision for automatically translating informal
requirements to this language. Therefore, the translation has to
be done manually and it may be difficult to check whether the
model represent the target system [21]

III. THE NEURAL NETWORK APPROACH

Our proposed Neural Network approach in analysing
software design for security flaws is based on the abstract and
match technique through which software flaws in a software
design can be identified when an attack pattern is matched to
the design. Using the regularly expressed attack patterns
proposed by Williams and Gegick [6], the actors and software
components in each attack pattern are identified. To generate
the attack scenarios linking the software components and actors
identified in the attack pattern, online vulnerability databases
were used to identify attack scenarios corresponding to the
attack pattern. Data of attack scenarios from online
vulnerability databases such as CVE Details, Security Tracker,
Secunia, Security Focus and The Open Source Vulnerability
Database were used.

From the online vulnerability databases a total of 715 attack
scenarios relating to 51 regularly expressed attack patterns by
Williams and Gegick’s were analysed. This consisted of 260
attack scenarios which were unique in terms of their impact,

634 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

mode of attack, software component and actors involved in the
attack and 455 attack scenarios which are repetition of the
same type of exploit in different applications they have been
reported in the vulnerability database. The attacks were
analysed to identify the actors, goals and resources under
attack. Once these were identified the attack attributes below
were used to abstract the data capturing the attack scenario for
training the neural network. The attack attributes includes the
following.

1. The Attacker: This attribute captures the capability of
the attacker. It examines what level of access
possessed when carrying out the attack.

2. Source of attack: This attributes captures the location
of the attack during the attack.

3. Target of the attack: This captures the system
component that is targeted by the attacker

4. Attack vector: This attributes captures the mechanism
(i.e. software component) adopted by the attacker to
carry out the attack

5. Attack type: The security property of the application
being attacked is captured under this attribute. This
could be confidentiality, integrity or availability.

6. Input Validation: This attributes examines whether
any validation is done on the input passed to the
targeted software application before it is processed

7. Dependencies: The interaction of the targeted
software application with the users and other systems
is analysed under this attributes.

8. Output encoding to external applications/services:
Software design scenarios are examined under this
attributes to identify attacks associated with flaws due
to failure of the targeted software application in
properly verifying and encoding its outputs to other
software systems

9. Authentication: This attribute checks for failure of the
targeted software application to properly handle
account credentials safely or when the authentication
is not enforced in the software design scenarios.

10. Access Control: Failure in enforcing access control by
the targeted software application is examined in the
design scenarios with this attribute.

11. HTTP Security: Attack Scenarios are examined for
security flaws related to HTTP requests, headers,
responses, cookies, logging and sessions with this
attribute

12. Error handling and logging: Attack scenarios are
examined under this attributes for failure of the
targeted application in safely handling error and
security flaws in log management.

A. The Neural Network Architecture

A three-layered feed-forward back-propagation was chosen
for the architecture of neural network in this research. The
back-propagation neural network is a well-known type of
neural network commonly used in pattern recognition problems
[25]. A back-propagation network has been used because of its
simplicity and reasonable speed. The architecture of the neural
network consists of the input layer, the hidden layer and the
output layer. Each of the hidden nodes and output nodes apply
a tan-sigmoid transfer function (2/(1+exp(-2*n))-1) to the
various connection weights.

 The weights and parameters are computed by calculating the
error between the actual and expected output data of the neural
network when the training data is presented to it. The error is
then used to modify the weights and parameters to enable the
neural network to a have better chance of giving a correct
output when it is next presented with same input.

B. Data Encoding

The training data samples each consist of 12 input units for
the neural network. This corresponds to the values of the
attributes abstracted from the attack scenarios. The training
data was generated from the attack scenarios using the
attributes. For instance training data for the attack on webmail
(CVE 2003-1192) was generated by looking at the online
vulnerability databases to get its details on the attributes we are
interested in. This attack corresponds to regularly expressed
attack pattern 3. Williams and Gegick [6] describe the attack
scenario in this attack pattern as a user submitting an
excessively long HTTP GET request to a web server, thereby
causing a buffer. This attack pattern is:

(User)(HTTPServer)(GetMethod) (GetMethodBufferWrite)(Buffer)

Table 1: Sample of Pre-processed training data from attack

scenario

S\N Attribute Observed data

1 Attacker No Access

2 Source External

3 Target Buffer

4 Attack Vector Long Get Request

5 Attack Type Availability

6 Input Validation Partial Validation

7 Dependencies Authentication & Input Validation

8 Output Encoding None

9 Authentication None

10 Access Control URL Access

11 HTTP Security Input Validation

12 Error None

In this example, the data generated from the attack scenario
using the attribute list is shown in Table I. Using the
corresponding values for the attributes; the data is then encoded
as shown in the Table II.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 635

Table II: Sample of Training data after encoding
S\N Attribute Value

1 Attacker 0

2 Source 1

3 Target 9

4 Attack Vector 39

5 Attack Type 5

6 Input Validation 2

7 Dependencies 6

8 Output Encoding 0

9 Authentication 0

10 Access Control 2

11 HTTP Security 3

12 Error 0

The second stage of the data processing involves converting
the value of the attributes in Table II into ASCII comma
delimited format before it is used in training the neural
network. For the expected output from the neural network, the
data used in training network is derived from the attack pattern
which has been identified in each of the attack scenarios. Each
attack pattern is given a unique ID which the neural network is
expected to produce as an output for each of the input data
samples. The output data sample consists of output units
corresponding to the attack pattern IDs. For instance, the above
sample data on Webmail attack which corresponds to regularly
expressed attack pattern 3, the neural network is trained to
identify the expected attack pattern as 3.

C. The Neural Network training

To train the neural network the training data set is divided
into two sets. The first set of data is the training data sets (260
samples) that were presented to the neural network during
training.

TABLE I. TRAINING AND TEST DATA SETS

Number of

Samples

Training Data Test Data

Data Set 1 143 26

Data set 2 117 25

Total 260 51

The second set (51 Samples) is the data that were used to
test the performance of the neural network after it had been
trained. At the initial stage of the training, it was discovered
that the neural network had too many categories to classify the
input data into (i.e. 51 categories) because the neural network
was not able to converge. To overcome the problem, the
training data was further divided into two sets. The first set
contained 143 samples and the second set contained 117
samples. These were then used for training two neural
networks. Mat lab Neural Network tool box is used to perform
the training. The training performance is measured by Mean
Squared Error (MSE) and the training stops when the
generalization stops improving or when the 1000th iteration is
reached.

D. The Result

It took the system about one minute to complete the
training for each the back-propagation neural network. For the
first neural network, the training stopped when the MSE of
0.0016138 was reached at the 26th iteration. The training of the
second neural network stopped when the MSE of 0.00012841
was reached at the 435th iteration.

TABLE II. COMPARISION OF ACTUAL AND EXPECTED OUTPUT FROM

NEURAL NETWORK

s\n Attack Pattern

Investigated

Actual Output Expected

Output

Results from Neural Network 1

1 Attack Pattern 1 1.0000 1

2 Attack Pattern 2 2.0000 2

3 Attack Pattern 3 2.9761 3

4 Attack Pattern 4 4.0000 4

5 Attack Pattern 5 4.9997 5

6 Attack Pattern 6 5.9998 6

7 Attack Pattern 7 7.0000 7

8 Attack Pattern 8 8.0000 8

9 Attack Pattern 9 9.0000 9

10 Attack Pattern 10 7.0000 10

11 Attack Pattern 11 11.0000 11

12 Attack Pattern 12 12.0000 12

13 Attack Pattern 13 12.9974 13

14 Attack Pattern 14 13.772 14

15 Attack Pattern 15 15.0000 15

16 Attack Pattern 16 16.0000 16

17 Attack Pattern 17 16.9999 17

18 Attack Pattern 20 19.9984 20

19 Attack Pattern 21 21.0000 21

20 Attack Pattern 22 22.0000 22

21 Attack Pattern 23 23.0000 23

22 Attack Pattern 24 23.9907 24

23 Attack Pattern 25 25.0000 25

24 Attack Pattern 26 26.0000 26

25 Attack Pattern 27 27.0000 27

26 Attack Pattern 28 28.0000 28

Results from Network 2

27 Attack Pattern 29 28.999 29

28 Attack Pattern 30 29.9983 30

29 Attack Pattern 31 31.0000 31

30 Attack Pattern 32 31.998 32

31 Attack Pattern 33 32.8828 33

32 Attack Pattern 34 33.9984 34

33 Attack Pattern 35 32.8828 35

34 Attack Pattern 36 35.9945 36

35 Attack Pattern 37 36.6393 37

36 Attack Pattern 38 37.9999 38

37 Attack Pattern 39 37.9951 39

38 Attack Pattern 40 39.1652 40

39 Attack Pattern 41 40.9669 41

40 Attack Pattern 42 41.9998 42

41 Attack Pattern 43 42.998 43

42 Attack Pattern 44 43.9979 44

43 Attack Pattern 45 44.9991 45

44 Attack Pattern 46 45.8992 46

45 Attack Pattern 47 46.9956 47

46 Attack Pattern 48 47.9997 48

47 Attack Pattern 49 48.9999 49

48 Attack Pattern 50 49.8649 50

49 Attack Pattern 51 50.9629 51

50 Attack Pattern 52 50.6745 52

51 Attack Pattern 53 52.7173 53

636 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

To test the performance of the network, the second data sets
were used to test the neural network. It was observed that the
trained neural network gave an output as close as possible to
the anticipated output. The actual and anticipated outputs are
compared in the Table IV. The test samples in which the
neural network gave a different output from the predicted
output when testing the network includes tests for attack
patterns 10, 35, 39, 40 and 52. While looking into the reason
behind this, it was seen that the data observed for these attack
patterns were not much. With more information on these attack
patterns for training the neural network, it is predicted that the
network will give an enhanced performance. During the study
of the results from the neural networks, it was found that the
first neural network had 96.51% correct results while the
second neural network had 92% accuracy. The accuracy for
both neural networks had an average of 94.1%. This
subsequently shows that the neural nets may not correctly
identify attack patterns presented to it all of the time.
Nevertheless given the accuracy of the neural networks, it
shows that neural networks can be used to evaluate software
from its design.

IV. FUTURE WORK

To further improve the performance of the neural network
system as a tool for evaluating software design, we are
currently looking into the possibility of the system suggesting
solutions that can help to prevent the identified attacks.
Current research on solutions to software design security flaws
gives a good insight in this area. Suggested solutions such as
the use security patterns [11] and introduction of security
capabilities into design in the SAT approach [19] are currently
investigated.

The regularly expressed attack pattern used in training the
neural network is a generic classification of attack patterns
Therefore; any unknown attack introduced to the neural
network will be classified to the nearest regularly expressed
attack pattern. Nevertheless the successfulness of the neural
network in analysing software design for security flaws is
largely dependent upon the input capturing the features of the
software design presented to it. As this requires a human
endeavour, further work is required in this area to ensure that
correct input data is retrieved for analysis. In addition, the
neural network needs to be thoroughly tested before it can gain
acceptance as a tool for evaluating software design for security
flaws.

V. CONCLUSION

Previous research works have shown that the cost of fixing
security flaws in software applications when they are deployed
is 4–8 times more than when they are discovered early in the
SDLC and fixed [27]. For instance, it is cheaper and less
disruptive to discover design-level vulnerabilities in the design,
than during implementation or testing, forcing a pricey
redesign of pieces of the application [3]. Therefore, integrating
security into a software design will help tremendously in
saving time and money during software development

Therefore, by using the proposed neural networks approach

in this paper to analyse software design for security flaws the
efforts of software designers in identifying areas of security
weakness in their software design will be reinforced.
Subsequently, this will enhance the development of secured
software applications in the software industry especially as
software designers often lack the required security expertise.
Thus, neural networks given the right information for its
training will also contribute in equipping software developers
to develop software more securely especially in the area of
software design.

REFERENCES

[1] Agarwal, A. 2006), “How to integrate security into your SDLC”,

Available at:
http://searchsoftwarequality.techtarget.com/tip/0,289483,sid92_gci1174

897,00.html, (Accessed 24/10/2010)

[2] Ahmad, I., Swati, S.U. and Mohsin, S. (2007) “Intrusion detection
mechanism by resilient bpck Propagation (RPROP)”, European Journal

of Scientific Research, Vol. 17(4), pp523-530

[3] Arkin B, (2006), “Build security into the SDLC and Keep the bad guys
out”, Available at,

http://searchsoftwarequality.techtarget.com/qna/0,289202,sid92_gci1160
406,00.html,(Accessed 24/10/2010)

[4] Cannady, J. (1998), “Artificial neural networks for misuse detection”,

Proceedings of 21st National Information Systems Security Conference,
pp368-381

[5] Croxford, M. (2005), “The challenge of low defect, secure software- too

difficult and too expensive”, Secure Software Engineering, Available at:
http://journal.thedacs.com/issue/2/33 (Accessed 25/02/2012

[6] Gegick, M. and Williams, L. (2006), “On the design of more secure
software-intensive systems by use of attack patterns”, Information and

Software Technology, Vol. 49, pp 381-397

[7] Hinchey, M et al, (2008), “Software engineering and formal methods”,
Communications of the ACM, Vol.51(9), pp54-59

[8] Ho, S. L.; Xie, M. and Goh, T. N. (2003), “A Study of the connectionist

model for software reliability prediction”, Computer and Mathematics
with Applications, Vol. 46, pp1037 -1045

[9] Hoglung, G and McGraw G. (2004), “Exploiting software: The Achilles’

heel of cyberDefense”, Citigal, Available at:
http://citigal.com/papers/download/cd-Exploiting_Software.pdf

(Accessed 02/12/2011)

[10] Howe (2005), “Crisis, What Crisis?” IEEE Review, Vol. 51(2), p39

[11] Kienzle, D. M and Elder, M. C. (2002) “Final Technical Report:
Security Patterns for Web Application Development”, Available at

http://www.scrypt.net/~celer/securitypatterns/final%20report.pdf,
(Accessed 26/01/2012)

[12] Kim, T., Song, Y. Chung, L and Huynh, D.T (2007) “Software
architecture analysis: A dynamic slicing approach, ACIS International

Journal of Computer & Information Science, Vol. 1 (2), p91-p103

[13] Lindqvist, U, Cheung, S. and Valdez, R (2003) “Correlated attack
Modelling (CAM)”, Air Force Research Laboratory, New York, AFRL-

IF-RS-TR-2003-249

[14] Lyu, M. R, (2006), “Software reliability engineering: A roadmap”,
Available at: http://csse.usc.edu/classes/cs589_2007/Reliability.pdf

(Accessed 21/09/2011)

[15] Karunanthi, N., Whitley, D. and Malaiya Y. K, (1992), “Using neural
networks in reliability prediction”, IEEE Software, pp53-59

[16] McAvinney, A. and Turner, B. (2005), “Building a neural network for

misuse detection”, Proceedings of the Class of 2006 Senior Conference,
pp27-33

[17] McGraw, G. (2006), “Software security: building security in”, Addison-

Wesley, Boston, MA

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 637

[18] Meier, J. D., Mackman, A. And Wastell, B. (2005), “Threat modelling

web applications”, Available at: http://msdn.microsoft.com/en-
us/library/ms978516.aspx (Accessed 24/10/2010)

[19] Mouratidis, H. and Giorgini, P (2007), “Security attack testing (SAT)-

testing the security of information systems at design time”, Information
Systems, Vol. 32, p1166- p1183

[20] Pan, J. (1999), “Software reliability”, Available at:

http://www.ece.cmu.edu/~koopman/des_s99/sw_reliability/#introductio
n, (Accessed 21/09/2011)

[21] Palshikar, G. K. (2004), “An Introduction to model checking”,

Embbedd.com, Available at
http://www.embedded.com/columns/technicalinsights/17603352?_reque

stid=12219,(Accessed 20/02/2012)

[22] Pemmaraju, K., Lord, E. and McGraw, G.(2000), “Software risk
management. The importance of building quality and reliability into the

full development lifecycle”, Available at:
http://www.cigital.com/whitepapers/dl/wp-qandr.pdf, (Accessed

07/06/2011)

[23] Ralston, P.A.S; Graham, J.H and Hieb, J. L. (2007), “Cyber security risk

assessment for SCADA and DCS networks”, ISA Transaction,
Vol.46(4), pp583-594

[24] Redwine, S. T. Jr and Davis, N.; et al, (2004), “Process to produce

secure software: Towards more secure software”, National Cyber
Security Summit, Vol. 1

[25] Srinivasa, K.D. and Sattipalli, A. R, (2009), “Hand written character

recognition using back propagation network”, Journal of Theoretical and
Applied Information Technology, Vol. 5(3), pp 257-269

[26] Tamura, Y.; Yamada, S. and Kimura, M. (2003), “A software Reliability

assessment method based on neural networks for distributed
development environment”, Electronics & Communications in Japan,

Part 3: Fundamental Electronic Science, Vol. 86(11), pp13-20.

[27] Telang, R. and Wattal, S.(2004), “Impact of software vulnerability
announcement on market value of software vendors- an empirical

investigation”, The Third Workshop, University of Minnesota, 13-14
May, Minnesota.

[28] Threat Risk Modelling (2010) Available at:

http://www.owasp.org/index.php/Threat_Risk_Modeling, (Accessed
24/10/201)

[29] Mockel C and Abdallah, A.E (2011) ‘Threat Modelling Approaches and
Tools for Securing Architectural Designs of E-Banking Application’,

Journal of Information Assurance and Security’, Vol. 6(5), pp 346-356

[30] Spampinato, D. G. (2008), ‘SeaMonster: Providing Tool Support for
Security Modelling’, NISK Conference, Available at:

http://www.shieldsproject.eu/files/docs/seamonster_nisk2008.pdf (Last
Accessed: November 2011)

[31] Joseph, A., Bong, D.B.L. and Mat, D.A.A (2009) ‘Application of Neural

Network in User Authentication for Smart Home Systems’ World
Academy of Science, Engineering and Technology, Vol. 53, pp1293-

1300.

638 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

http://www.shieldsproject.eu/files/docs/seamonster_nisk2008.pdf

A proposal of New Scheduling System on Smartphone with Interactive

Eigo Ito

Dep. of Information System, Toyo University
2100 Kujirai, Kawagoe, Saitama, 350-8585,

JAPAN
e-mail@e-ito.jp

Takayuki Fujimoto
Dep. of Information System, Toyo University
2100 Kujirai, Kawagoe, Saitama, 350-8585,

JAPAN
me@fujimotokyo.com

Abstract

Today, many information systems are
integrated in mobile device. One of that is a
scheduling system. In the past, we make
schedules with a notebook. Dates are taken the
form of lists or calendars, and schedules are
filled in the attendant white spaces. This system
is good for checking the day has schedules and
finding the day’s space. A new device –
smartphone – is using the same system.
However, they need large display size and high-
resolution: like notebooks. In addition, this
system needs less-restriction input interface.
Even now, scheduling system on notebooks has
more benefits than that on smartphones.

This paper is written about scheduling
systems that suit smartphones. One of the ways
is using roll type view. This view uses a shape of
3D cylinder. This model can make us get time
line with the perspective. The visual effects
cause intuitive operations: to spin, to parallel
shift, to change the scales. We propose the Roll
Type Scheduling System.

Keywords: Video Image; Video Sharing, Social Network,
Communication, Post TV

1. Introduction

Today, we live by time. Clocks make
accurate running public transportation service.
In addition, clocks make accurate scheduling us.
We can have many appointments. Then it is the
most important things for daily life that we keep
to schedules. Scheduling systems support this
bustling life.

Pervading systems for scheduling are 2 types
(Fig. 1). One is “List Type Scheduling”. List
Type scheduling is a list of appointments.
Schedules are lined up widthwise or endwise.
Other system is “Calendar Type Scheduling”.
This system uses table of days. The rows are
weeks. And columns are days of the week. Both
of the two type scheduling systems use blank
space with each day. If we get appointments, we
write on the blank space a summary of the
appointments. We can check details of a
schedule by this system. And we can check that
schedule is fully booked up. Notebooks are the
most popular devices that use those systems
because notebooks are the most popular mobile
devices. But today, many systems are integrated
in smartphone. Recently, scheduling systems is
porting to smartphone.

Smartphone is high functionality device.
However, display size and high-resolution is
smaller than notebooks. Existing scheduling
system aim showing total image. Smartphone’s
display is not match existing scheduling system.
In addition, smartphone’s input system is
different to notebook’s one. On notebook, we
use pen to input and we can write anything:
letters, pictures and decorations. On the other
hand, smartphone’s input system is touch-
keyboard. Tough-keyboard allow us to input
letters’ data. It is not visceral. So, smartphone is
not popular device to use scheduling device, yet.

In this paper, we propose a new scheduling
system for smartphone, named Roll Type
Scheduling System. This system aims to show
schedule with import. Schedule import is
variable because appointments are close to time.

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 639

We focus to that import is depended by time.
An appointment, which has less time difference
from the time, is important. Roll Type
Scheduling System shows only important term
that is shorter than existing system. In addition,
this system’s view uses a shape of 3D cylinder.
Appointments with time look like on the surface.
Center that is approximate to user is normally
showing. The most important schedule is fixed
on the center. Some appointments that have
some time difference by the time are putting on
over or under the center. The position is
followed time difference. This view is look like
on the cylinder; the less import appointments
are shadowy background color and font color. In
addition, the less import appointment’s letters is
shrunk lengthwise.

Fig.1 Calendar Type and List Type Scheduling System

2. Roll Type Scheduling System

2.1. View

Roll Type Scheduling System aim showing
schedule with import. When we want to check
schedule, we want to get closing data form
schedule system. List Type Scheduling System
on notebooks and Calendar Type Scheduling
System on notebooks are match this goal. But
those systems on smartphone are not match the
goal because of smartphone’s display. It is too
small and too less-resolution to show total

image. We must scroll to use those systems on
smartphone.

Roll Type Scheduling System have a new
view system. Using horizontal 3D cylinder
makes us visceral cognize (Fig. 2). The most
important schedule – when we want to check
plans on the time, an appointment on the time is
the most important – is fixed in the center of
cylinder. Other appointments that have time lag
from the center are putting on the over or under
the center. This position is determined by time
difference. This view look like List Type
Scheduling System’s one, but this system’s
schedule list is on the 3D cylinder’s surface.
Appointments view is shadowy and shrunk
lengthwise by time differences. This system
makes us visceral cognize.

This visceral view is not only to show
schedule by times. Above is written about hours
on a day. If it shows schedules on a month, the
system checks appointments each days. But, this
system can use 3D cylinder view to show days
on a month. In a similar way, Roll Type
Scheduling System can show months schedules
on a year by 3D cylinder view. This changing is
called “scale shift” in this paper.

3D cylinder allows us visceral operations.
This shape connect roll. This cylinder is
horizontal, so we think that this will roll vertical.
This system is supported to the visceral image.
Scrolling endwise cause schedule list view
changing. When display is scrolled up to down,
the center time get back. On the other hand,
when display is scrolled down to up, the center
time gaining time.

3D cylinder connects parallel cylinders (Fig.
3). Parallel cylinder has the same center hour
and different date, because our life is cyclic by
the days. When display is scrolled right to left,
the cylinder is shift a day before. And when
display is scrolled left to right, the cylinder is
shift a day after. This operation is high visceral
as vertical scrolling.

640 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

Fig.2 Schedule List on 3D Cylinder

Fig.3 Parallel Schedule Lists

2.2. Schedule Data

In order to use this system, the function to
input the schedule data to manage is required.

The usual schedule management system
performs a simple character representation.
There was no obstacle in giving visual operation
guidance. However, in this system, vision
expression of the time information on a
schedule is carried out. Presenting of
information other than a schedule narrows a
display domain. Moreover, the display gives
unnecessary information. Therefore, a schedule
input is performed on entire another screens,
and the immediately time after starting is taken
as the center time.

Double-touch-upping on the 3D cylinder
performs the shift to the input screen. A clock
time, a title, and a detail exist as schedule data.
User is inputting all these information and
registers schedule data. These pieces of input
can perform edit and deletion from a schedule
detailed screen.

3. Conclusion

The existing scheduling system is a list type
and a calendar type suitable for a handwritten
input and display. However, it is not suitable for
smartphones because of the resolution and
screen size. These systems on smartphone
cannot avoid a problem that is the recognition
nature of a character.

In this paper, we seem to that the importance
of a schedule was related from the time lag
centering on the center time and it. A schedule
with a smaller time lag from the center time has
higher importance. And it displays so that it
may be easier to sight a more important
schedule. The schedule with low importance
changed the longitudinal width of a character,
the character color, and the background color so
that it might be hard to sight on the contrary.

The method of this display serves as a solid
display, which arranges the character on the 3D
cylinder surface. Since it is as close to a user as
a center, the thing and the user also with high
importance recognize naturally. Moreover, the
form of a 3D cylinder made scroll operation
more nearly intuitive, and made recognition of
the time lag easy.

4. Future Tasks

In this system, recognition of the time lag was
made easy by indicating a schedule list the form
that can be caught more sensuously.

However, it eventually makes the pliability in
a display fall. In the present trial production
system, in order to avoid crossing the new-line
and display domain in a schedule list, the title is
set up aside from detailed contents. By this
method, the amount of information acquired on
one screen will be reduced, and the opportunity
of a detailed check will be increased.

Now, changes of a page will increase and the
simplicity of use important as a schedule
management system will be lost. On the other
hand, it is difficult to make character size small
for the number reservation of characters per one
line, in order to change the longitudinal width of
character size in this system. Therefore, it is
necessary to verify the method of a time display

Int'l Conf. Software Eng. Research and Practice | SERP'12 | 641

or the display for which it is more suitable about
character size by subject experiment. Moreover,
when the time of a schedule is very near, there
is a problem that the display will overlap.

Visibility has also here sufficient thing, a
thing which can be shifted to the upper and
lower sides or right and left so that it may not
overlap, and room to inquire in the present state.

By this system, since only the short schedule
of a period can be checked simultaneously, a
possibility of becoming unsuitable for grasping
the existence of a schedule is also considered.

However, using the existing calendar type
and a List style display type can solve this. By
the schedule system proposed by this research,
by making it the system that can display other
kinds, and the system that can share schedule
data, if it becomes a system suitable for more
nearly actual use, it will think.

We advance examination of the mechanism
as a system with higher practicality also
including an interface design from now on.

5. References

[1] A.B. Smith, C.D. Jones, and E.F. Roberts
JMA Management Center Inc., “Survey about
how to use a Notebook for Scheduling 2011”,
http://www.jmam.co.jp/new/newsrelease/12604
31_1362.html.

[2] Takashi Yoshino, and Takayuki Yamano,
“Casual Scheduling Management and Shared
System Using Avatar”, IPSJ SIG Technical
Reports, 52(3), March 2011.

642 Int'l Conf. Software Eng. Research and Practice | SERP'12 |

