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Abstract— Persistent CAD algorithms offer the potential
to optimize power consumption for programmable chips
post development and deployment. The basic idea is that
algorithms continue to search for better design solutions
and as better solutions are found, the design is deployed to
programmable chips resulting in better performance. In this
work, we further study a persistent placement algorithm for
FPGAs and investigate a number of algorithm improvements
attempting to delay premature convergence. Our results show
that these techniques create some divergence in the solu-
tions, but in all cases what we call “inevitable convergence
occurs” in the first 2 hours of execution.

Keywords: GA, Placement, FPGA, Persistent

1. Introduction
Field-Programmable Gate Arrays (FPGAs) are pro-

grammable Integrated Chips (ICs) that continue to gain
popularity due to the challenges and costs associated with
creating an Application-Specific Integrated Circuit (ASIC).
One aspect of the FPGA, the programmability, means that
these devices, similar to general purpose processors, can
be reprogrammed. This means that even when the chip is
deployed in the field, with the appropriate functionality, these
devices can be updated with bug fixes, new designs, and
as this work examines, more efficient designs. The last of
these updates is part of what we call persistent Computer
Aided Design (CAD) where optimization algorithms, which
map designs to FPGAs, are run post chip deployment to try
and find more optimal implementations of the design. These
more optimal implementations focus on improving the power
consumption of the FPGA.

We first introduced a persistent genetic algorithm (GA)
for placement on FPGAs in [1]. This work showed how
a genetic algorithm finds improved solutions early and the
rate of these improvements slows as time increases. Our
window of measurement for a relatively small benchmark
was only one hour. In this work, we increase the time
window of observation and use a variety of modifications to
the GA to attempt to maintain diversity in the population and
to delay what we call “inevitable convergence”. Inevitable
convergence, like premature convergence [2] [3], is the lack
of diversity in a population such that new offspring are
not sufficiently diverse, therefore, resulting in suboptimal

solutions. In the case of persistent CAD, convergence is
inevitable and is likely suboptimal. The goal, therefore, is
to identify convergence (or measure population diversity [4],
[5]) as well as avoid convergence. In this work we attempt
techniques to deal with the later and leave the identification
of convergence as future work.

To study inevitable convergence for persistent placement
we implement the following algorithmic variations:

• Parallel algorithmic threads [6]
• A partial mapped crossover breeding operator [3]
• A partial mapped crossover breeding operator with

mutations
Our results show that these techniques all tend to converge

in about 2 hours. In all cases, when compared against the
baseline random solution it is evident that the large gap
between random solutions and these techniques means that
it is highly unlikely that they will ever leave their local
minimums.

The remainder of this paper is organized as follows.
Section 2 briefly describes FPGAs, CAD for FPGAs, and
the persistent FPGA placement problem. Section 3 describes
our implementation of genetic algorithm placer. Section 4
describes our experimental setup and shows results for one
MCNC benchmarks. Finally, Section 5 concludes this work.

2. Background
FPGAs are programmable ICs that can implement any

digital design. These devices consist of programmable logic
blocks and a programmable routing [7] where the pro-
grammable routing consists of wire segments that are con-
nected to either logic blocks or other wire segments via
programmable switches. The logic blocks are also called
clusters (which is the term we will use throughout this
work) where these clusters commonly consist of a combi-
nation of Look-up Tables (LUTs), flip-flops, and internal
programmable routing. The most important aspect of this
architecture for the placement problem is the cluster, and the
placement algorithm maps design clusters onto the FPGA,
which, itself, consists of an array of these clusters.

Our open source CAD flow used by VPR 5.0 [8], which
is an academic FPGA tool that allows us to experimentally
test algorithms and FPGA architectures consists of Odin
II [9] (high-level synthesis), ABC [10] (logic optimization
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and technology mapping) and tv-pack [11] (clustering). First,
a digital design is created in Verilog HDL [12] and used as
the input to this CAD flow, and a series of CAD flow stages
convert the design to a programmable bit-stream that can be
uploaded to the FPGA to implement the digital design.

This work focuses on the FPGA placement step, which
maps the design clusters onto the FPGA. This is the second
last stage and is implemented in VPR 5.0. VPR 5.0, orig-
inally, used simulated annealing (SA) for this placement,
and we have implemented a genetic algorithm within this
software framework.

2.1 Details of FPGA Placement
FPGA placement algorithms try to place the clusters,

representing the digital design, onto the array of FPGA
clusters such that the critical path (the longest path from
either a primary input to a primary output, a primary input to
flip-flop, flip-flop to flip-flop, or flip-flop to primary output)
is minimized, the power consumption of the programmable
routing is minimized, and the overall wire-length of the
mapped circuit is minimized. This problem has been shown
to be NP-complete to solve optimally, and a number of popu-
lar algorithms have been used to solve this problem including
simulated annealing ([13], [7]), which is the algorithm used
in VPR 5.0 [8], min-cut ([14], [15], [16]), analytic ([17],
[18]), and genetic algorithms (GAs) [19], [20], and [21].

We focus on SA and GA algorithms in this work since
our GA is built off the SA in VPR. The SA uses a cooling
schedule to control the acceptance of randomly selected
swaps between clusters on an FPGA. Each swap of clusters
will either improve or degrade the critical path (as well as
other metrics), and initially, all swaps are accepted regardless
if they improve the optimizations metrics or not. As the
temperature cools, only swaps that improve the critical path
are accepted. In this way, the early phases of the cooling
schedule is used to allow hill climbing that will, hopefully,
avoid local minimums in this optimization problem [7].

The two most relevant aspects of the annealer as a
placement algorithm for FPGAs are the scheduling of the
cooling and the cost function. The scheduling of the annealer
determines if a random swap is accepted and determines the
maximum Manhattan distance of the cluster swaps. As the
algorithm continues, swapping of clusters that don’t improve
the cost function are not accepted, and the distance between
the swaps is reduced.

The distance of a random swap of clusters on a X by Y
array is based on the term Rlimit. Given a 5 by 5 FPGA,
Rlimit can have a maximum value of 5 meaning that a
cluster located at the x coordinate 0 and y coordinate 0 could
be swapped with another cluster located at x coordinate 4
and y coordinate 4. As Rlimit is reduced by the annealer’s
scheduler, the distance for a swap is reduced, and this
represents the stabilizing of the placement algorithm (the
cooling and lower excitation of the molecules in a metal).
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Figure 1: Shows how the Rlimit factor affects the distance
of swaps

For example, Figure 1 shows a 5 by 5 FPGA where random
swaps could happen for the digital logic at x = 0, y = 1 with
an Rlimit = 2 (The candidate cluster to swap is surrounded
by a thick dotted line, and the clusters it can swap with are
shaded in darker grey).

The second aspect of the annealer is the cost function
used estimate the quality of the placement. The cost function
for SA in VPR 5.0 with power [22] consists of three
components defined in [7]. First is the sum of the bounding
box dimensions of all nets which estimates the total amount
of wire needed to implement the circuit (also know as wire-
length). Given N nets, bbx(i) and bby(i) are the x and y
dimensions of a bounding box for each net(i), and q(i) as a
scaling factor for better wire-length estimates, then the first
component of the cost function is defined as:

WiringCost =
N∑

i=1

q(i) · [bbx(i) + bby(i)] (1)

The second component of the cost function evaluates the
timing cost of a placement where,

TimingCost =
∑

∀i,j∈circuit

Delay(i, j)·Criticality(i, j)(CE)

(2)
where CE is a constant, Delay(i,j) is the delay of the
connection from source i to sink j, and Criticality(i,j) is a
measure of how close the given i, j path is to the global
critical path. The power component is defined as:

PowerCost =
N∑

i=1

q(i) · [bbx(i) + bby(i)] ·Activity(i) (3)
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where Activity(i) is the switching activity on a particular
net, and by reducing this component, the power consumed
over long and power hungry programmable routing lines is
reduced. The new cost function with this component is the
following:

The perceived change in the cost function for each place-
ment change is:

Cost = λ · TimingCost

PreviousT imingCost
+

(1 − λ) ·
[
(1 − γ) · WiringCost

PreviousWiringCost
+

γ · PowerCost

PreviousPowerCost

] (4)

where the previous costs are used to normalize the two
components of the cost function, and the λ parameter is
used to weight the optimization importance of each of the
two components and the γ factor is used to control the
importance of the power optimization component.

As described, the parameters γ and λ are used to control
the weighting of the cost function, or how much the cost
function cares about optimizing for a particular metric.
Previous research has shown that for a cost function that
attempts to optimize for power has a γ equal to 0.8 and a λ
equal to 0.5 [23]. In our previous research [21] we confirm
that these parameters are also suitable for our GA.

3. GA Framework and Modifications for
FPGA Placement

We previously built our genetic algorithm FPGA placer
that includes power optimizations and describe the details
of this algorithm here [21]. In this section we review some
of these details, but do not cover all the details. In particular,
we will describe genetic strings, the mutation operator, the
crossover operator, and the parameters in the GA framework.

3.1 The Genome for Placement
Genetic algorithms (GA) and evolutionary programming

algorithms have been previously implemented and explored
for FPGA placement. We use a genome similar to the
implementation by Venkatraman et. al. [19] in which they
implemented a GA based placer in VPR 4.3 (the predecessor
to VPR 5.0). In their work, each cluster’s location on the
FPGA array is a gene, and the 2-D location of each of the
clusters forms an individuals genome. Figure 2 shows how a
genome for a design consisting of 20 elements is represented.

3.2 Parameters in our GA Framework
Similar to other GA implementations of FPGA placement,

our GA placement algorithm framework creates a genome
based on the x and y coordinates of each cluster in the design
(see Figure 2). In addition to how the genome is represented,
we define a number of parameters within the framework
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Figure 2: Sample genome for 20 elements on a 5x5 FPGA

that control the GA. The size of a population is defined by
σ. Using this number we define the parameters ω, α, and
β as percentages where ω + α + β = 100%, and ω% of
the population is the number of individuals from the current
generation to maintain as parents in the next generation, α%
of the population are the children of the parents, and β% of
the population is randomly created new individuals.

Our GA measures an individuals fitness based on the cost
function shown previously in equation 4 and both λ and γ
control the weighting of this cost function.

3.3 Mutation Operator
One of the operators in our GA framework uses a mu-

tation operator to create new individuals in a population.
Random swaps of clusters on the FPGA are the mutation
operations for our GA framework and this is similar to
how the SA works, and therefore, this mutation is related
to the term Rlimit, which controls the distance between
clusters for a random swap. The number of mutations per
new individual is defined by the parameters local_swaps%
and global_swaps% where local_swaps% multiplied by
the number of clusters in a circuit defines the number of
mutations (or swaps) to try where Rlimit is equal to one,
and global_swaps% multiplied by the number of clusters
in a circuit is the number of mutations/swaps to try where
Rlimit is scheduled to be between 1 and the maximum size
of the FPGA array in one dimension.

Rlimit is a parameter that changes over time. In the SA
algorithm the parameter is decreased when a current set of
swaps does not result in any improvement. In our GA, we
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Table 1: Configurable parameters for the GA
Parameter Description of parameter

ω The percentage of the fittest individuals in the population to use as parents
α The percentage of the population created from the fittest individuals
β The percentage of the population that is randomly created
σ The number of individuals in the population

R_limit The distance between swaps on the FPGA array
global_swaps The percentage of the number of clusters that defines the number of global mutations for a new individual
local_swaps The percentage of the number of clusters that defines the number of local mutations for a new individual

λ A cost function parameter to weight timing optimization importance
γ A cost function parameter to weight power optimization importance

also schedule Rlimit in a similar fashion, except that our
algorithm is a persistent algorithm. Therefore, once Rlimit

equals 1 we then reset it to the maximum size of the FPGA
array in one dimension.

3.4 Crossover Operator
The crossover operator within our GA framework is

the partially mapped crossover (PMX) originally proposed
by Goldberg for the traveling salesman problem [3]. This
operator fits well with our placement algorithm since our
string of clusters requires that each cluster appears only once
in the genome string.

0 6

1

5

2

3 4 7

0 2

5 6 7

3 4 1

0 1

5 6 2

3 4 7

PARENT 1 PARENT 2

CHILD 1

0 2

1

5

7

3 4 6

CHILD 2

Figure 3: Sample PMX mutation

Figure 3 shows a sample crossover mutation for 2 parents
generating 2 children. The figure has been color coded to
show how the parent genes are crossed for the example
picked genes 0, 2, 3, and 7. Note how in child 1 the gene

1 is not colored and child 2 the gene 6 is not color coded.
In both of these instances, these gene locations are mapped
by a series of remappings that the PMX operator achieves
using a remapping list.

In our current implementation of the GA framework, two
parents are chosen at random from the most fit percent of the
population as specified by parameter ω to generate 2 children
as part of the α new population. Within the genome, 50%
of the clusters are randomly selected to stay constant from
parent 1 to child 1 and parent 2 to child 2, respectively (in
Figure 3 these clusters are in red. Then the PMX mapping is
done on the remaining clusters to map parent 2’s clusters to
child 1 and parent 1’s clusters to child 2 (as seen in Figure 3
in the orange and blue squares). The random swapping of
components is not necessarily the best choice, and this is an
area to study in the future.

4. Algorithmic Modification Results
To observe how different modifications to our persistent

genetic algorithm for placement helps delay inevitable con-
vergence we run the following experiment.

To attempt to maintain diversity we test the following
modifications:

• Parallel algorithmic threads [6] - we introduce 4 threads
initialized by different random seeds and execute these
threads in parallel

• A partial mapped crossover breeding operator [3] - we
use the PMX crossover to generate new individuals

• A partial mapped crossover breeding operator with
mutations - we use the PMX crossover to generate new
individuals and mutate these new individuals

Note that the β parameter is also a diversity factor, but this
factor was already introduced in our first study of persistent
placement with genetic algorithms, and it had very little
impact. We do, however, maintain a 10% value for this
parameter in our experiments.

Table 2 shows the parameters for our experiments. The
first column shows the parameter, the second column shows
the parameters value for the parallel GA threads, and column
three shows the parameter values for the PMX crossover with
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Table 3: The FPGA architectural parameters
Parameter W N K Fcin Fcout Fs routing transistor sizing

Value 144 10 5 0.18 0.1 3 uni-directional 27mwt

Table 2: Parameters for the GA parallel threads and
Crossover

Parameter Values for GA thread Values for GA crossover

σ 200 200
ω 20% of σ 20% of σ
α 70% of σ 70% of σ
β 10% of σ 10% of σ

R_limit Variable Variable
global_swaps 30% 30% and 0%*
local_swaps 0% 0%

PMX No Yes

λ 0.5 0.5
γ 0.8 0.8

and without (* in table) mutations. Note that λ and γ have
been experimentally determined based on out previous work.

The FPGA architectural parameters that describe the
FPGA we are mapping to are shown in Table 3. For a
more detailed explanation of these parameters please consult
[7], but for the sake of space and unnecessary details, we
do not describe these parameters here. The transistor size
for these experiments is based on our results in [22]. For
FPGA architects, note that W (channel width) is fixed to
144. This is done since we are only using one benchmark
and the constant value considerably increases the speed of
the routing algorithm. Instead of performing a binary search
and increasing W by 20% (as is normally done in CAD
experiments) we believe this fixed sized W is reasonable
for this experiment considering that persistent CAD will, in
reality, have W as a fixed parameter.

These experiments are run using the largest MCNC bench-
marks [24] where these benchmarks have been converted
to a netlist of clusters using an academic CAD flow. This
benchmark, clma, is passed into VPR 5.0 for the same FPGA
as described in Table 3. VPR 5.0 outputs the current best
placement every 30 minutes and executes for 2 days. Once
the algorithm is done, we then use these output placement
files and run them through VPR’s routing algorithm to find
the final speed and power consumption metrics, which we
report in the next section.

All the variations in the algorithms are run in Linux on
Intel Xeon 2.4 Ghz cores.

4.1 Results
Figure 4 shows the results for our experiment. The x-

axis shows the time over 2 days where we sampled the
progress of the persistent placement algorithms every 30
minutes. On the y-axis, energy consumption is shown in
terms of joules per clock. This metric is not truly reflective

of instantaneous power consumption, but at present we do
not have the capability to set the critical path in VPR 5.0.

In the figure, the upper line reflects the current best
random placement result. We use this as a baseline noting
that there is a significant difference between a random
solution and the GA versions. Next, the orange line stabilizes
after the first 30 minutes is the genetic algorithm with
crossover and no mutation. Interestingly enough, in the first
30 minutes, diversity is completely eliminated since there are
no mutations to introduce diversity back into the population.
Depending on the random seed this happens at a different
point.

The next collection of results are for the parallel threads.
First, note that the lines (particularly “ga seed 99”) some-
times seem to increase in energy consumption over the
persistent exploration. The reason for this is due to the
estimation models used to calculate the cost or fitness
function at the placement level. These models are not as
accurate as the models used after performing a complete
placement and routing of a design (which are the results
reported in this graph). In future work, it might be valuable
to perform what we call a deep fitness evaluation at intervals
to confirm population fitness at the placement level.

In general, the parallel approach shows that each thread
finds solutions that are all in the similar energy range,
but each thread itself seems to have converged relatively
early in the search. Finally, the crossover and mutation
operator performs similar to each of the parallel threads.
The population eventually becomes dedicated towards a local
minimum and cannot exit this area.

4.2 Discussion

A recent research paper by Mingjie and Wawrzynek [25]
looked at the concept of tunneling to low energy (local
optimal points) in SA for FPGA placement. Their claim is
that once an SA finds a low energy area, no hill climbing
technique can escape the localized search space. In our
examples, the parallel threads and crossover mutations are
in these low energy regions when we compare them relative
to the random results, and our tunneling capabilities are
essentially different start points (seeds).

To further persistent CAD for placement and maintain
diversity longer, we will need to address the second part
of the inevitable convergence problem, which is to identify
when a population has converged. With this capability we
can then explore if island model [26] for GAs or another
solution will better suit are persistent CAD.
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Figure 4: Energy consumption of CLMA benchmark over a 2 day execution

5. Conclusion

In this paper we explored various techniques for main-
taining a divergent population in GA for persistent FPGA
placement. Our results show that adding both parallel threads
of GA populations and including a PMX crossover operator
do not significantly impact the diversity of the population
in this domain as in all cases the populations converge in a
low energy search space. In future, we hope to take these
techniques and incorporate them into a more complex sys-
tem that will maintain divergence by searching in multiple
islands of solutions and then use our techniques to mix these
populations.
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Abstract- As field programmable gate arrays and other 

reconfigurable logic devices are increasingly used for 

aerospace and terrestrial applications, fault tolerance 

methodologies have been developed to improve reliability. 

Applying fault tolerance to an entire design may incur 

prohibitive area and energy penalties, and a need exists for 

techniques that can trade fault tolerance for lower area 

penalties. However, selecting a circuit subset that minimizes 

both the area overhead and the vulnerability to faults remains 

an open topic. Area-Constrained Partial Fault Tolerance 

(ACPFT) is a unique approach that explicitly accepts the 

device resources as an input and attempts to find a maximally 

fault-tolerant subset within this constraint. While previous 

options in ACPFT determined this subset from different 

heuristics, this paper presents an extension called ACPFT-GA 

that uses genetic algorithms for subset selection. Testing 

shows an improvement of up to 31.92% more coverage than 

the previous version. 

 

Keywords: Genetic algorithms, partial fault tolerance, 

reconfigurable logic, field programmable gate array 

 

1 Introduction 

Genetic algorithms are an established approach to solving 

difficult optimization problems. This makes them an ideal 

candidate for applying partial fault-tolerance to field 

programmable gate arrays (FPGA). An FPGA is a 

reconfigurable logic device that has the flexibility of a general 

purpose processor and can approach the computational power 

of an application-specific integrated circuit (ASIC). They are 

also off-the-shelf devices and therefore do not have the lead 

times of ASICs. They are often used in aerospace applications 

and are increasing used in terrestrial systems. As 

reconfigurable devices, they may contain millions of bits to 

store their current configurations. This makes them more 

susceptible to faults caused by electromagnetic radiation than 

other types of devices. Errors due to single event upsets 

(SEUs) are already a concern in aerospace, and as transistor 

feature sizes continue to shrink, they are becoming 

increasingly important in terrestrial uses[1, 2].  

Many applications implemented with FPGAs are not 

safety-critical. Thus, failures can be tolerated, but reducing the 

failure rate would certainly be beneficial. Currently, a circuit 

design targets an off-the-shelf FPGA containing at least 

enough cells to implement the circuit. Since the circuit does 

not fully occupy the FPGA, some logic cells will be 

unallocated. These unused resources can be leveraged to 

provide redundancy and reduce the failure rate. 

The problem of applying partial fault-tolerance can then 

be formulated as follows. The circuit's logic cells must be 

partitioned into a protected and a non-protected subset such 

that fault-coverage is maximized given a limited amount of 

additional logic cells. With circuits containing thousands of 

logic cells, this presents an incredible challenge with an 

enormous solution space. 

The author has previously proposed Area-Constrained 

Partial Fault Tolerance (ACPFT) as a solution based on triple 

modular redundancy [3]. This paper presents an extension to 

that work called ACPFT with Genetic Algorithms (ACPFT-

GA) that generates the protected subset using the well-known 

evolutionary functions of mutation, crossover, and selection. 

This paper is organized as follows. Section 2 reviews 

existing methods for applying partial fault-tolerance to FPGAs. 

Section 3 describes how ACPFT is cast as a genetic algorithm. 

Section 4 presents the experimental results, and Section 5 

concludes the paper. 

2 Related Work 

Triple modular redundancy (TMR) remains the standard 

fault-tolerance method for FPGAs [4]. It is universally 

applicable and typically adds only a small delay. Circuits 

protected by TMR are almost completely protected against a 

single fault, although voting logic may still be susceptible. 

However, it more than triples the circuit's size with a 

corresponding increase in power use. [5].  TMR is often the 

basis for partial fault-tolerance.  

A method called partial error masking is presented in [6]. 

Based on TMR, it only applies to circuits implemented with 

discrete logic gates. It uses a consistency check reduction that 

does not give precise control of the area overhead. 

 

The BYU-LANL Partial TMR Tool applies TMR in order 

of logic cell function in a course-grained approach [7]. This 

tool first protects feedback logic, logic feeding the feedback 

structures, then remaining logic. 
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Selective TMR (STMR) uses a sensitivity threshold Pth to 

partition a circuit into sensitive and non-sensitive subsets.  [8]. 

TMR is applied to the sensitive subset, and reported results 

show that there is no clear relationship between Pthr and the 

resulting area or level of fault mitigation. Reduced TMR 

(RTMR) is similar to STMR, but it focuses strictly on look-up 

table-based designs [9]. 

What could be considered a form of an evolutionary 

algorithm, automatic insertion of Partial TMR applies TMR to 

a subset of circuit registers [10]. It initially separates the 

registers into a protected and an unprotected set, implements 

and simulates the design to measure fault-mitigation, then 

updates the subset according to the Fiduccia-Mattheyses 

algorithm. It is computationally intense and can lead to an 

unacceptable amount of time even for a design with only 54 

flip-flops.   

Area-Constrained Partial Fault Tolerance (ACPFT) 

applies partial TMR and/or concurrent error detection (CED) 

to a net list [3]. One noteworthy consideration is that majority 

voters are not considered ideal and are included in the sensitive 

section of the device. ACPFT generates a cell priority for each 

logic cell, and it protects cells according to their priorities until 

extra resources are exhausted. Several priority methods, such 

as cell fan-out and logic depth,  are reported in [11]. Several 

heuristics have also been tested, such as backtracking from 

circuit outputs, a course-grained method that creates pockets of 

protected cells around highly-prioritized seed cells, and 

minimizing voters inserted into a propagation path. 

Since ACPFT is the basis for ACPFT-GA, it will be 

helpful to understand its basic principles in more detail. In 

many fault-tolerant methods using TMR, the majority voters 

are considered ideal in that they do not experience faults. This 

assumption is used for simplification and because when a large 

subset of the circuit is being protected, the cross-sectional area 

of the majority voters is significantly smaller than the tripled 

area, perhaps by several orders of magnitude. However, in a 

fine-grained approach when the protected area has a 

comparable area to the majority voter, this assumption is 

completely invalid. In fact, applying TMR to small subsets is 

useless, since the added sensitivity of the majority voter 

nullifies the added protection. 

ACPFT avoids this assumption by modifying how TMR is 

applied to a small subset. Instead of tripling only the target cell 

and applying a majority voter to the three cells' outputs, it 

triples the target cell and triples all cells that use its outputs. 

These output cells are then connected to majority voters. This 

seems to impose an extremely large area overhead for the 

reduction of a single sensitive cell. However, protecting cells 

that are connected to this subset is more efficient since some of 

the logic has already been tripled. Because of this interaction, 

selecting the subset of cells to protect is challenging and 

crucial to maximizing the fault-tolerance. 

ACPFT seems suitable for a genetic algorithm since its 

partitioning problem is similar to the well-known knapsack 

problem. In knapsack, there is a set of items, each with a 

weight and a value, and a knapsack that can hold a fixed 

weight. The combinatorial problem is to select a subset of 

items that can be carried in the knapsack with the maximum 

total value. The additional area of the FPGA relates to the 

knapsack, and the logic cells and their areas and sensitivities 

relate to items with weight and value. However, the fault-

tolerance problem is more complicated since the additional 

area required by each logic cell is not a constant value. It is a 

function of the other cells being protected. 

  

3 Implementing ACPFT as a Genetic 

Algorithm 

3.1 Algorithm Format 

Formulating ACPFT as a genetic algorithm is 

straightforward. The genome is a binary string corresponding 

to an ordered list of all cells in the target circuit. A "0" in the 

gene represents an unprotected cell, and a "1' represents a 

protected cell.  Mutation simply requires flipping a bit. Single-

point crossover swaps substrings beginning from a randomly 

selected bit. The fitness function used is the total number of 

"1"s in the chromosome, indicating the number of cells that 

have been made fault-tolerant using ACPFT's TMR scheme. 

The complexity lies in the constraint that the represented 

circuit must fit in the target FPGA. Therefore, a constraint-

satisfaction check is performed for each new chromosome in 

addition to calculating the fitness value. The constraint check 

copies the new chromosome into a temporary, integer-valued 

structure. The value of each gene represents a single copy of 

the logic cell, three copies corresponding to a protected, tripled 

cell, or three copies and a majority voter.  

ACPFT-GA begins with the chromosome having only 

single and tripled cells. Using a net list that details the 

connectivity of the circuit, the tripled cells are processed to 

determine which single cells must be converted to tripled and 

voted cells. This ensures that the resulting circuit has the 

appropriate form of partial TMR according to ACPFT's 

principles. The net list, which also contains the type of each 

logic cell, and the modified chromosome are used to calculate 

the total numbers of logic cells of each type required. If all 

sums are within the limits of the target FPGA, the binary 

chromosome is valid, and it is added to the next generation. If 

the chromosome is invalid, the original chromosome from the 

previous generation is copied into the next generation without 

modification. Thus, further attempts to find a new valid 

version may be found in future generations instead of iterating 

over the chromosome in the same generation. 

 

3.2 Software Implementation 

ACPFT was implemented in Perl, since Perl is inherently 

proficient at working on text files. The main input was a net 

list of the circuit in Electronic Design Interchange Format 

(EDIF), which is a very common, vendor neutral file format. 

This net list contained a unique name for each logic cell, its 

cell type, and to which cells it connects. ACPFT was added by 

modifying this script to output several simple text files 

containing a condensed version of the net list and a listing of 
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the general cell types used. A C++ program read these 

intermediate files and performed the genetic evolution. The 

best chromosome was converted into a list of discrete cell 

priorities, "1" to protect and "0" to not protect. The ACPFT 

script then produced a modified version of the original circuit 

in an EDIF file. The modified EDIF could then immediately be 

used to implement the partially-protected circuit on an FPGA. 

 

4 Testing and Results 

ACPFT-GA was tested using the pdc circuit from the 

ACM/SIGDA "Big 20" benchmarks. This circuit was chosen 

since it was of significant complexity with 1272 logic cells. It 

had also been used previously by the author to test ACPFT's 

heuristic techniques, so there was existing data for comparison.  

The test used a set of 4096 chromosomes. Each initial 

chromosome was initialized to a string of "0"s, representing a 

fully unprotected circuit. The mutation factor was 1/1272, the 

reciprocal of the number of logic cells. In each generation, the 

top 256 chromosomes were carried over into the next 

generation. 1920 were selected using elitism for mutation, and 

each gene was checked for a mutation using the above 

probability. The remaining 1920 chromosomes were generated 

by selecting a pair of chromosomes and crossing them at a 

random gene. Mutations were not applied to chromosomes 

created through crossover.  

The algorithm needed to be tested using differing amounts 

of additional circuit resources. Since the size of pdc was fixed 

and actual FPGAs come in relatively few discrete sizes, an 

array of hypothetical FPGAs was used, as was done when 

previously testing ACPFT. The number of circuit resources in 

pdc was used as a baseline "perfect-fit" device and contained 

one inverter, 56 multiplexors, and 1215 4-input look-up tables 

for internal logic cells. A larger device was emulated by 

increasing the number of each resource by a constant 

multiplier and rounding down. This method created 21 more 

theoretical FPGAs, from 10% to 210% additional resources 

increments of 10%.  Note that at 210%, there were sufficient 

resource for full TMR, and partial fault-tolerance would no 

longer be necessary.  

ACPFT-GA was run ten times on each of the 21 larger 

FPGAs. Each evolution was allowed to run for 5000 

generations. Figure 1 shows the maximum, minimum, and 

average fitness values over the ten runs on pdc using 20% 

additional resources. The graph shows data for only the first 

500 generations since no improvements were found in later 

generations. The C++ program tracked the times required for 

mutation, crossing, and calculating the fitness functions and 

constraint conditions. It also logged the current best 

chromosome whenever a new maximum fitness value was 

found.  

The results of ACPFT-GA were compared against the 

Backtracking method from previous research. This algorithm 

showed the best performance of the heuristic methods for the 

pdc circuit. Backtracking attempted to minimize the resources 

used as majority voters by first selecting a logic cell that 

directly fed an output signal. Future selections were limited to  

 

Figure 1 Cell coverage of pdc with 20% additional resources 

 

 

 

the subset of cells that either fed an output cell or had already 

been protected. Essentially, it started at the outputs and 

"backtracked" to the inputs. 

Table 1 shows the cell coverage of Backtracking and the 

minimum, average, and maximum cell coverages over the ten 

runs of the genetic algorithm. The genetic versions performed 

significantly better with up to 40% additional resources in 

which even the lowest fitness values were still better than 

Backtracking.  ACPFT-GA performed slightly better from 

50% to 70% additional resources. Backtracking provided a 

little more coverage in the remaining tests, with noticeably 

better performance at 130% additional resources. This pattern 

can be explained by recalling that the efficiency of partial 

fault-tolerance is linked to the ratio of additional resources 

used for copying logic cells versus those used for majority 

voters.  At low amounts of resources, the Backtracking 

method's selection was limited to a small subset of cells 

emanating from the outputs. However, the genetic algorithm 

was free to select cells with more efficient patterns throughout 

the circuit.  

Most tests demonstrated that maximal fitness values were 

found in fewer than 1000 generations. Figure 2 gives the 

minimum, maximum, and average number of generations 

taken to reach the peak values found. As can be seen by 

comparing the maximums to the averages, there were a few 

sets of tests where one or two runs found a slight improvement 

in a late generation. For low to moderate amounts of resources, 

the number of generations required increased as the amount of 

resources increased.  
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Table 1 Coverage of ACPFT-GA compared to ACPFT with 

the Backtracking method 

 

Additional 

Resources 

ACPFT 

Backtracking 

Coverage 

ACPFT-GA Coverage 

min/ave/max 

Percent 

Improvement 

10% 47 59/61.3/62 31.91% 

20% 96 112/116.3/121 26.04% 

30% 151 155/165.9/175 15.89% 

40% 194 203/216.2/228 17.53% 

50% 254 252/264.4/277 9.06% 

60% 313 306/315.9/327 4.47% 

70% 373 340/360.6/382 2.41% 

80% 429 391/406.5/422 -1.63% 

90% 491 442/466.5/491 0.00% 

100% 558 513/530.4/551 -1.25% 

110% 624 497/580.2/608 -2.56% 

120% 688 563/628.6/666 -3.20% 

130% 755 630/650.3/677 -10.33% 

140% 816 717/723.9/736 -9.80% 

150% 890 793/807.9/826 -7.19% 

160% 960 865/882/900 -6.25% 

170% 1024 954/966.9/985 -3.81% 

180% 1092 1051/1059.2/1069 -2.11% 

190% 1159 1133/1138.71149 -0.86% 

200% 1217 1208/1209.7/1211 -0.49% 

210% 1234 1217/1220.2/1226 -0.65% 

 

 

 

Most tests demonstrated that maximal fitness values were 

found in fewer than 1000 generations. Figure 2 gives the 

minimum, maximum, and average number of generations 

taken to reach the peak values found. As can be seen by 

comparing the maximums to the averages, there were a few 

sets of tests where one or two runs found a slight improvement 

in a late generation. For low to moderate amounts of resources, 

the number of generations required increased as the amount of 

resources increased.  

 The breakdown of the algorithm's running times is shown in 

Figure 3. The test computer used a Core i7 processor at 2.6 

GHz with 6 GB of RAM. As with many genetic algorithms, 

evaluating the fitness function required the majority of the 

time. Since validating the constraints in ACPFT-GA is related 

to the number of cells that have been protected, the evaluation 

time was expected to increase slightly as the amount of 

additional resources increased.  

 

 

 

 

Figure 2 Number of generations required to reach maximal 

fitness value 

 

 

 

 

Figure 3 Time required for primary functions per generation 

with a population size of 4096 
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 Looking at both Figure 2 and Figure 3, it can be seen that 

the total time required to find the maximal values ranged from 

less than one minute at 10% additional resources to about 30 

minutes with 210% additional resources. 

 In evaluating the overall performance of ACPFT-GA, it is 

important to remember the context of partial fault-tolerance in 

FPGAs. A designer typically selects the smallest FPGA that 

has sufficient resources for the original, unprotected circuit to 

minimize the amount of unused resources on the chip and 

hence the cost of the device. Having 100% or more unused 

resources often indicates that the FPGA is over-sized and a 

smaller device would suffice. Although tests were performed 

up to 210%, in practice it is far more likely for partial fault-

tolerance algorithms to have less than 100% additional 

resources available. In this area, ACPFT-GA generally showed 

better coverage than previous methods. Also, the run times for 

genetic evolution in this region were usually less than 5 

minutes, making the method very practical. 

 

5 Conclusions 

This research applied a genetic algorithm to partition a logic 

design into protected and non-protected subsets for partial fault 

tolerance with ACPFT. Experimental results demonstrated a 

significant improvement in coverage for cases with small to 

moderate amounts of additional resources, which is the 

expected environment for this type of fault-tolerance. 
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Abstract—This paper studies the ability of evolutionary 
Imperialist Competitive Algorithm (ICA) to coordinate 
overcurrent relays. Also, in order to show its greater power in 
optimization, the ICA is compared to the Genetic Algorithm 
(GA). For this purpose, the two algorithms are used to coordinate 
overcurrent relays, with the main optimization parameters being 
similar. The coordination of overcurrent relays by these two 
algorithms is implemented on a six-bus transmission system. 
More specifically, the algorithms were compared in terms of the 
mean convergence speed, mean convergence time, convergence 
reliability, and the tolerance of convergence speed in obtaining 
the absolute optimum point.  This paper shows that at the first 
stage of optimization where getting close to the absolute optimum 
point is of importance the ICA is more powerful, while the GA 
shows greater power at the second stage where obtaining the 
exact absolute optimum point is the key question. 

Keywords- imperialist competitive algorithm, genetic algorithm, 
Power sytem protection, relay  

I. INTRODUCTION (HEADING 1) 
Accurate setting and coordination of overcurrent relays is 

vital for power systems. Researchers have described various 
methods of optimizing overcurrent relay settings [1]. Due to 
the complexity of the techniques used in nonlinear 
optimization, the traditional methods of optimizing overcurrent 
relays were usually performed through linear programming 
techniques, such as simplex [2, 3], two-phase simplex [4] and 
dual-simplex methods [1, 5]. It is difficult to solve the problem 
of coordinating protection relays, which is constrained by 
discrete optimization, through conventional optimization 
techniques [6]. Thanks to advances in the development of 
processors in recent years, optimization problems have made 
extensive use of various methods which are based on artificial 
intelligence and random search. 

Of all intelligent algorithms, the Imperialist Competitive 
Algorithm (ICA), proposed by [7], leads to the best results in 
optimization. Algorithms such as Genetic Algorithm (GA), 
IGA, and PSO and their combinations have been repeatedly 
used in optimization problems. Also, the GA has been 
improved through various operations. In contrast, the 
potentiality of the young ICA has yet to be studied in its 
entirety. 

A GA-based method for the optimization of the relay 
coordination [8] had two problems. One was lack of 
coordination and the other was that there was no solution for 
discrete Time Setting Multiplier (TSM) or Time Division 
Setting (TDS) [9]. The next algorithm used for this purpose 
was Evolutionary Algorithm, which had the same problems. 
However, its only advantage was that it made concrete the 
discrete TSM or TDS being made [6, 10, 11]. 

D. Birla et. Al. made some attempts to obtain additional 
constraints in coordinating directional overcurrent relays so 
that problems such as sympathy trips could be solved. The 
previous objective function was further improved which 
resulted in better coordination. In other words, lack of 
coordination for concrete and discrete TSM or TDS has been 
handled by introducing a new parameter and adding a new term 
to the existing objective function [9].. 

In the method used in [10], relay coordination is optimized 
by Evolutionary GA. However, ICA is more preferable because 
of its fast operation. ICA starts with an initial population in 
which two sets of countries are included, colonies and 
imperialists. Each imperialist takes possession of some 
colonies to form an empire. Competition between the empires 
forms the basis of Evolutionary GA. During this competition, 
the weakest empire gives one colony to the most powerful 
empire. In the long run, a powerful empire is created whose 
imperialist shows the optimum point. Fig. 1 is the flowchart of 
this algorithm [7]. 

Here is a summary of the innovations in this paper:  

• Solving the problem of relay coordination with 
evolutionary ICA. 

• Comparing the operation of ICA with that of GA by 
considering the mean of convergence speed, mean of 
convergence time, convergence reliability, and the 
tolerance of convergence speed to reach the optimum 
point. 

• Combining these two algorithms and proposing a new 
algorithm called ICA-GA capturing the best points of 
each algorithm. 
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• Providing a method to find the best point for switching 
from ICA to GA in combinational algorithm. 

• Analyzing the operation of these algorithms by 
changing their initial population and countries. 

• Analyzing the Imperialist Competitive Algorithm as a 
new method of producing population in evolutionary 
algorithms. 

• Improving ICA by adding a new term to the formula 
used to determine the power of empires. 

• Proposing a new method to determine the number of 
colonies possessed in any iteration of ICA. 

Fig. 1. Flowchart of Imperialist Competitive Algorithm 

II. COMPARISON THEORY 

A. Description of ICA as it relates to relay coordination 
The variables of relay coordination are TSM or TDS. So, 

the time setting of the relays is taken as a parameter to 
determine the power of a country in ICA. The initial population 
of the countries is created randomly. In order to create a 
country, a vector of random numbers is created in which the 
rows are equal in number to time settings and each arrays 
represents a time setting. In order to determine the power of  
each country, the value of its time settings is placed in the 
objective function. Afterwards, a number of powerful countries 
are selected as imperialists and the rest are called colonies of 

these imperialists. All the colonies are randomly divided 
among the imperialists. More powerful imperialists take 
possession of more colonies. An imperialist together with its 
colonies is called an empire. In each iteration, these colonies 
start moving toward their imperialist country. This movement 
is done in a special way which is the main character of this 
algorithm. Then, the power of each empire is calculated again 
and the most powerful empire takes control of a colony from 
the weakest empire. After a number of iterations, weak empires 
collapse and eventually there will be a single powerful empire 
whose imperialist arrays are those time settings which are used 
to optimize the objective function. 

B. Comparison factors 
The intelligent methods of GA and ICA are used in relay 

coordination. In this paper, convergence speed of algorithms is 
based on the number of iterations which any algorithm requires 
in order to obtain the absolute optimum point. Although 
convergence speeds are ranked, at the end of this paper, 
according to the length of time required to get the absolute 
optimum point, this factor depends on the program used. 
Accordingly, it is more advisable to base the ranking on the 
number of iterations. 

Equation below determines the tolerance of convergence 
speed: 
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where Xi is the convergence speed of any implementation, 
is the total number of implementations, and X is the mean of 
convergence speed in various implementations. In this paper, 
40 iterations are done for each algorithm. The ratio of 
successful to unsuccessful implementation is called 
convergence reliability.  

III. TEST RESULTS 

A. General discussion 
The main factors taken into consideration in the tests are as 

follows: 

• The end point in both algorithms is obtaining the 
optimum point. 

• In the ICA, the algorithm is stopped if there is no result 
after 15000 iterations. This happens in the GA 
algorithm after 15000 generations. 
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• The number of countries in ICA and the population 
size in GA is set to be 5000. 

• For bigger iterations, absolute optimum point is proved 
(TABLE I) but in testing the algorithms, the problem is 
studied in following two states in order to have 
reasonable results for convergence reliability; The 
algorithm is regarded convergent when OF 2.8102 and 
the algorithm is regarded convergent when OF 2.8110. 

TABLE I. OBTAINED RESULTS FOR TSMS IN ABSOLUTE OPTIMIZATION 
(OF=2.8101) 

Relay 
Number 

TSM Before 
Latest Rounding 

Rounded 
TSM 

TSM1 0.0958 0.10 
TSM2 0.0765 0.08 
TSM3 0.1145 0.11 
TSM4 0.1404 0.14 
TSM5 0.1421 0.14 
TSM6 0.0715 0.07 
TSM7 0.1228 0.12 
TSM8 0.0538 0.05 
TSM9 0.1059 0.11 
TSM10 0.1086 0.11 
TSM11 0.0884 0.09 
TSM12 0.0500 0.05 
TSM13 0.0500 0.05 
TSM14 0.0751 0.08 

B. Applied objective function 
The objective function used here is proposed in [9].  
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where:  

∆tmbk =tbk -tmk-CTI 

OF: Objective function 

∆tmbk: Operation time difference and coordination time interval 
for the kth pair relay 

ti: operation time of the i’th relay to close the breaking circuit 
of the i'th relay when a fault occurs 

tbk and tmk: operation time of main and backup relays to close 
the breaking circuit of the main relay. 

N: number of relays 

P: number of P/B pairs  

K: is used to represent each P/B pair and varies from 1 to P 

i: is used to represent each relay and varies from 1 to N 

CTI: is coordination time and can be set to be 0.3 or 0.4 
depending on the accuracy of the system. 

β: the parameter of lack of coordination  

α1 and α2: used to determine the weight of the two terms. 

C. The network under study 
Fig. 2 illustrates the network studied in this paper. This 

network includes 7 lines, 6 buses and one transformer. The 
relays of this network are assumed to be of a normal inverse 
type and their specification is calculated from the relation 
below: 
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where M is the ratio of the relay’s current to the pickup’s 
current. M is the ratio of the relay’s current to the pickup’s 
current. a1, a2, a3, a4, and a5 are scalar values which identify the 
characteristics of modeled relay and are assumed as below: 
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The network data are presented in TABLE II to TABLE IV. 
R(pu) and X(pu) are per-unit values based on 100MVA and 
150KV. The data of P/B relays are given in TABLE V. TSM 
relays are assumed to be discrete and vary between 0.05 and 
1.3 at intervals of 0.01. The TSMs of the relay are first 
calculated as concrete and then are converted to discrete 
values. 

Fig. 2. Sample network  

TABLE II. LINE INFORMATION 

Line R (pu) X (pu) V (kV) 
1 0.0018 0.0222 150 
2 0.0018 0.0222 150 
3 0.0018 0.02 150 
4 0.0022 0.02 150 
5 0.0022 0.02 150 
6 0.0018 0.02 150 
7 0.0022 0.0222 150 
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TABLE III. GENERATOR INFORMATION 

Generator R (pu) X (pu) V (kV) 
1 0.000001 0.1 10 

TABLE IV. TRANSFORMATION INFORMATION 

Transformer R (pu) X (pu) 
1 0.000001 0.026666 

TABLE V. P/B PAIR INFORMATION 

Main 
Relay 

Backup 
Relay 

Primary 
Relay SC 
Current 

Backup 
Relay SC 
Current 

8 9 4961.7704 410.8226 
8 7 4961.7704 1520.8911 
2 7 5362.2983 1528.0660 
2 1 5362.2983 804.8782 
3 2 3334.5191 3334.5191 
4 3 2234.3306 2234.3308 
5 4 1352.8751 1352.8751 
6 5 4695.0442 411.3675 
6 14 4695.0442 1522.9084 
14 1 4232.7243 794.0920 
14 9 4232.7243 407.2292 
1 6 2682.4959 2682.4959 
9 10 1443.6699 1443.6699 
10 11 2334.6515 2334.6515 
11 12 3480.7511 3480.7511 
12 14 5365.0609 1529.3638 
12 13 5365.0609 805.5618 
13 8 2490.7454 2490.7454 
7 5 4232.6340 407.2472 

IV. DISCUSSION 

A. A comparison of convergence speed and other parameters 
in the two algorithms in obtaining the absolute optimum 
point 2.8102 
This comparison is drawn in order to obtain the absolute 

optimum point 2.8102 and prove that ICA is more powerful 
than GA in achieving the absolute optimum point. The diagram 
for algorithm convergence for this network is given in Fig. 3. 
This diagram shows the objective function for the number of 
iterations. This figure shows the result of 40  implementations 
of both algorithms and selecting the nearest  case to the mean 
of convergence speed calculated for these 40 implementations. 
In these implementations, the initial number of countries in 
ICA and corresponding initial population in GA is assumed to 
be 5000. ICA obtains the optimum point through 5683 
iterations; GA through 6720 generations. This convergence 
diagram can be used to compare GA and ICA and to show the 
precedence of ICA. 

Fig. 4 gives a schematic representation of convergence 
speed of the two algorithms in various implementations. The 
tolerance of convergence speed in ICA is not suitable to find 
the absolute optimum point. TABLE VI presents the mean of 
convergence speed, mean of convergence time, convergence 
speed reliability, and the tolerance of convergence speed for 
both algorithms in order to obtain the optimum point. As it is 
obvious in this table, there is not a significant difference 
between the two algorithms in terms of convergence time. 

However, this is not a suitable comparison factor due to 
different programming methods used in the two algorithms. If 
the optimum point is not obtained after more than 10000 
iterations or generations, the algorithm will be regarded 
divergent. TABLE VII shows the optimum point obtained in 
this sample. 

Fig. 3. Algorithm convergence in relay coordination (2.8102) 

Fig. 4. Diagram of algorithm convergence speed (2.8102) 

TABLE VI. OBTAINED RESULTS FOR OPTIMIZATION FROM 10 RUNS 
(OF=2.8102) 

 ICA GA 
Mean Convergence Speed 5683 6720 
Mean Convergence Time (Sec) 601 612 
Convergence Speed Reliability 0.9 1 
Convergence Speed Tolerance 61% 15% 
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TABLE VII. OBTAINED RESULTS FOR TSMS IN ABSOLUTE OPTIMIZATION 
(OF=2.8102) 

 

Relay 
Number 

TSM Before Latest Rounding Rounded TSM ICA GA 
1 0.0950 0.0965 0.10 
2 0.0750 0.0771 0.07 
3 0.1125 0.1152 0.11 
4 0.1382 0.1411 0.14 
5 0.1398 0.1430 0.14 
6 0.0707 0.0720 0.07 
7 0.1212 0.1233 0.12 
8 0.0536 0.0540 0.05 
9 0.1059 0.1063 0.11 
10 0.1079 0.1089 0.11 
11 0.0884 0.0886 0.09 
12 0.0500 0.0500 0.05 
13 0.0500 0.0501 0.05 
14 0.0784 0.0756 0.07 

Comparison of the two algorithms in obtaining the absolute 
optimum point is categorized below: 

• Convergence speed in ICA is more than in GA. 

• Consumed time for convergence in the two algorithms 
is approximately equivalent. 

• The tolerance of convergence speed in GA is better 
than in ICA. 

• Convergence speed reliability of GA is better than that 
of ICA.  

B. A comparison of the two algorithms in terms of 
convergence speed and other parameters in obtaining the 
relative optimum point 2.8110 

This comparison is drawn to find the relative optimum 
point 2.8110 in order to prove that ICA is much more powerful 
and its convergence reliability enhances. According to all 
considerations, this algorithm is the best option for real-time 
optimization. Fig. 5 is the diagram of algorithm convergence. 
This diagram illustrates the objective function according to the 
number of iterations, and is the result of implementing the two 
algorithms 40 times and then selecting the nearest case to the 
mean of convergence speed which is calculated from these 40 
implementations. In these implementations, the initial number 
of countries in ICA and the initial population in GA is assumed 
to be 5000. GA obtains the optimum point through 2777 
iterations; ICA through 455 iterations. Fig. 6 illustrates the 
convergence speed for the algorithms in various 
implementations. This figure shows that the mean convergence 
speed in ICA is lower than in GA but that the ICA’s variation 
of convergence speed is comparable to the GA’s in various 
implementations. TABLE VIII presents the mean convergence 
speed, mean convergence time, convergence speed reliability, 
and convergence speed tolerance of the two algorithms in 
finding the relative optimum point. Implementations that last 
for more than 3000 iterations or generations are assumed to be 
divergent. It can be seen that ICA is better than in GA in all 
respects except in the tolerance of convergence speed. 

Fig. 5. Convergence diagram (2.8110) 

Fig. 6. Diagram of algorithm convergence speed (2.8110) 

TABLE VIII. OBTAINED RESULTS FOR OPTIMIZATION FROM 10 RUNS 
(OF=2.8110) 

 ICA GA 
Mean Convergence Speed 455 2777 
Mean Convergence Time (Sec) 44 253 
Convergence Speed Reliability 1 0.88 
Convergence Speed Tolerance 44% 7% 

V. CONCLUSION 
In this paper, the two algorithms of ICA and GA were used 

to optimally coordinate overcurrent relays and the results were 
compared. The mean convergence speed, mean convergence 
time, convergence speed reliability, and the tolerance of 
convergence speed were analyzed and compared for the two 
algorithms. It was proved that ICA is much more powerful than 
GA in the first stage of optimization which is finding the 
approximate location of the optimum point. However, in the 
proximity of the optimum point, where the absolute optimum 
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point should be accurately located, GA operates more 
powerfully. It was also proved that in the first stage of 
optimization, convergence speed, convergence time, and 
convergence reliability was better in ICA. It was also shown 
that the tolerance of convergence speed is better in GA than in 
ICA. 
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Abstract - The most common clustering methods are based on  
metrics that allow the determination of the similarity between  
elements of a given data set. This similarity allows us to divide  
the  data  set  into  subsets  (clusters)  that  contain  "highly  
similar"  elements.  The  use  of  a  metric  imposes  two  
constraints. First, the shape of the found clusters is generally  
hyper-spherical (in the space of the metric) due to the fact that  
each element in a cluster lies within a radial distance relative  
to a given center. Second, the metric may be sensitive to the  
probability density function of the data set. Following this fact  
several  methods based on statistical approaches have become  
an  attractive  and  powerful  option.  These  involve  the  
estimation of the probability density function (pdf) of the  data  
set  which minimizes an optimality criterion. Generally this is  
a  highly  non-linear  and  usually  non-convex  optimization  
problem which disallows the use of  traditional  optimization  
techniques.  In  this  paper  we  propose  a  statistical  method  
based on Shannon's Conditional Entropy which uses a rugged  
genetic algorithm to find the optimal pdf. Each individual of  
the Genetic Algorithm is a possible solution of  a clustering  
problem.  The  fitness  of  an  individual  is  determined  by  
Shannon´s entropy encoded in its genome and an additional  
constraint  related  to  the  "quality"  of  this  solution.  The  
"quality"  is  measured  through  a  validity  index  of  the  
clustering  process.   A  novel  and  important  aspect  of  our  
method is the form of representation of the objects of the data  
set in order to reduce the computational complexity due to the  
high  dimensionality.  We  show  that  our  proposal  has  high  
effectiveness  relative to methods as k-means,  fuzzy c-means  
and Kohonen Maps with a synthetic data set.

Keywords: Clustering,  Information  Theory,  Genetic 
Algorithms, Bayesian Classifier, Data Mining.

1 Introduction
 The clustering process is an optimization problem that 
maximizes  the  similarity  between  objects  or  elements  that 
belong to same cluster and minimizes the similarity between 
elements  of  different  clusters.  The  effectiveness  of  a 
clustering  method  is  given  by  several  factors  such  as  the 
metric and the desired number of clusters. 

Particularly, the use of a metric imposes some constraints on 
the  shape  of  clusters  found.  These  shapes  generally  are 

hyperspherical (in the space of the metric) due to the fact that 
each element in a cluster lies within a radial distance relative 
to a given center. In other words the elements of a cluster tend 
to group around a single mean value (center) which sometimes 
disallows the extraction of hidden patterns in the data set.

In this paper  we propose an alternative method based on a 
statistical  approach.  Our proposal  does not  use explicitly a 
metric to determine the elements that belong to given cluster. 
Overall,  this  proposal  is  an  iterative  search  of  a  partition 
model  of the data set  in which the entropy (uncertainty) is 
minimized. In order to determine the entropy of the data set 
for   a  particular  partition  model,  the  estimation  of  its 
probability  density  function  (pdf)  is  necessary.   This 
estimation can be  achieved statistically from three  different 
methods:  parametric,  semi-parametric  and  non-parametric 
[15].  Unlike  parametric  and  semi-parametric  methods,  the 
non-parametric methods do not make any assumption about of 
the pdf of the data set.  The Parzen window [5]  is among the 
most widely-used non-parametric density estimation method. 

Different clustering methods have been proposed around these 
non-parametric methods and minimum entropy principle [9],
[15],[16]. These methods can be seen as an iterative search of 
an optimal pdf of the data set such that the entropy is minimal. 
However,  depending  on  the  dataset  the  search  may  be 
unfeasible or may yield local optimal solutions. Thus, this is a 
highly  non-linear  and  usually  non-convex  optimization 
problem which disallows the use of traditional optimization 
techniques or pdf  estimation methods. 

We propose a method which uses  a rugged genetic algorithm 
(the so-called Vasconcelos's GA [12]). Each individual of GA 
is a possible solution of a clustering problem which represents 
a pdf of the data set. The fitness of an individual is based on 
the minimum entropy principle and an additional  constraint 
related  to  the  "quality"  of  the  solution.  The  "quality"  is 
measured through an validity indices of the clustering process. 
Several validity indices have been developed and introduced 
[4],[8], [11]. A novel and important aspect of our proposal is 
the  form  of  representation  of  the  objects  of  the  data  set. 
Generally the properties of each object are represented as real 
values of vector in a Euclidean space. The dimensionality of 
this vector is given by the number of such properties. Its value 
is an important element of the computational complexity of a 
clustering algorithm. 
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In order to reduce the dimensionality, statistical techniques as 
such  as  Pearson's  correlation  analysis  [3]  and/or  principal 
components'  analysis  [17]  have  been  used.  In  many cases, 
however, these techniques are sensitive to the data distribution 
and  impair  the  effectiveness  of  the  clustering  process.  To 
avoid this fact we map the n-dimensional vector space of the 
data set to the space of all possible strings (words) that can be 
built using the symbols of an alphabet ∑. This transformation 
allows us to represent an object of data set as a word of length 
n (for  a  n-dimensional  space)  and  a  cluster  as  a  subset  of 
words  with  some "degree  of  similarity".  The  entropy  of  a 
cluster  is  determined  by  the  probability  distribution  of  all 
words that belong to that cluster.

Our work begins with an account of several concepts which 
are  needed  to  expose  our  method.  Then,  we  expound the 
fundamental process of our proposal. Finally we show several 
numerical results and the respective conclusions.

2 Theoretical Aspects
In  what  follows  we  make  a  very  brief  mention  of  the 
theoretical aspects having to do with the proper understanding 
of  our  proposal.  The  reader  may find  more  details  in  the 
references.

2.1 Minimum Entropy Principle

Shannon's entropy [20] allows us to measure the uncertainty 
associated  with  a  random  variable  X.  Mathematically, 
Shannon's entropy of X with a probability mass function p(x) 
is defined as:

H ( X )=−∑ p ( x ) log ( p ( x ) ) (1)

The possible values of a random variable X occur with certain 
probability  p(X=x) or  simply  p(x).  When  p(x) is  uniformly 
distributed we say that the uncertainty is greatest or that the 
process represented by the random variable  X has a highest 
degree of “disorder”. Figure 1 represents the entropy for two 
possible  values  of   X with probabilities  p and  1-  p;  when 
p=0.5 the entropy is maximum. 

Figure 1. Entropy in the case of two possibles values with probabilities p 
and (1-p)

In  the  context  of  the  clustering problem we assume that  a 
cluster is a subset of the data set which has minimum entropy. 
It means that a cluster is a partition of data set with minimum 
degree  of  “disorder”.  The  entropy  of  a  cluster  is  directly 

related to its elements. In terms of probability, the entropy of 
the cluster depends of the pdf of its elements. In what follows 
we expound on this fact.

Let  D be the data set with  K partitions (clusters) and  x an 
element that belong to D. Then the pdf of x is given by:

p ( x )=∑
i

K

p ( x∣i ) p (i ) (2)

where  p(i) is  the prior  probability for the  i-th partition and 
p(x|i) is the prior probability of x given the  i-th partition.  In 
Figure  2   we  show  an  intuitive  representation  of  the 
probabilities p(x|1) and p(x|3), the probability p(x|2) is zero. 

However we would like to know the dependence of pdf of the 
i-th partition with respect to  x. This dependence is given by 
Bayes Theorem [10] :

p ( i∣x )=
p ( x∣i ) p (i )

p ( x )
(3)

When p(i|x) is uniformly distributed for all i,  we can say that 
the element x belongs to any partition and thus the uncertainty 
is maximum (see Figure 3a.). On the other hand if all  p(i|x) 
but  one  are  zero  (one  having the value unity) then we are 
certain of the partition to which x belongs (see Figure 3b).

Now, let  C be a random variable whose possible values are 
1,2,..K which represent the partitions of D. Let X be a random 
variable whose possible values are all elements x that belong 
to D. Then the entropy of C given X is:

H (C∣X )=−∑
i=1

K

p ( i∣x ) log ( p (i∣x )) (4) 

Figure 2.  Probability  space  of  a  data  set  with  three partitions.  The 
element x belongs to partition 1 and 2 with a probability greater than 
zero.

Figure 3.   a)  Uniform probability of p(i|x) . b) Probability of p(1|x) 
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where p(i|x) is a posteriori pdf. Thus, our goal is to find this 
function such that  H(C|X) is minimum. For reasons already 
mentioned we use a genetic algorithm. The entropy given by 
Equation 4 is called Conditional Entropy [1].

2.2 Genetic Algorithms

Genetic Algorithms (an interesting introduction to GA's and 
other  evolutionary  algorithms  may  be  found  in  [2])  are 
optimization  algorithms  which  are  frequently  cited  as 
“partially  simulating  the  process  of  natural  evolution”. 
Although this a suggestive analogy behind which, indeed, lies 
the  original  motivation  for  their  inception,  it  is  better  to 
understand them as a kind of algorithms which take advantage 
of the implicit (indeed, unavoidable) granularity of the search 
space  which  is  induced  by  the  use  of  the  finite  binary 
representation  in  a  digital  computer.  In  such  finite  space, 
numbers originally conceived as existing in  Rn actually map 
into Bm space. Thereafter it is simple to establish that a genetic 
algorithmic  process  is  a  finite  Markov  chain  (MC)  whose 
states are the populations arising from the so called genetic 
operators: (typically) selection, crossover and mutation [19]. 
As such they display all of the properties of a MC. From this 
fact one may prove that:

1.  The  final  results  of  the  evolutionary  process  are 
independent of the initial population and

2.  A GA preserving  the  best  individual  arising  during  the 
process  will  converge  to  the  global  optimum  (albeit  the 
convergence process is not bounded in time).

Their  most outstanding feature is  that,  as  opposed  to  other 
more  traditional  optimization  techniques,  the  GA  iterates 
simultaneously over  several  possible  solutions.  Then,  other 
plausible solutions are obtained by combining (crossing over) 
the codes of these solutions to obtain hopefully better ones. 
The solution space (SS) is, therefore, traversed stochastically 
searching for increasingly better plausible solutions. In order 
to guarantee that the SS will be globally explored some bits of 
the encoded solution are randomly selected and changed (a 
process  called  mutation).  The  main  concern  of  GA-
practitioners  (given  the  fact  that  well  designed  GAs,  in 
general,  will  find  the  best  solution)  is  to  make  the 
convergence as efficient as possible. The work of Forrest et al. 
has determined the characteristics of the so-called Idealized 
GA (IGA) which is impervious to GA-hard problems [6].

2.2.1 Vasconcelos's Genetic Algorithm 

The implementation of  the IGA is  unattainable in practice. 
However, a practical approximation called the Vasconcelos’s 
GA (VGA) has been repeatedly tested and proven to be highly 
efficient  [12].  The  VGA,  therefore,  turns  out  to  be  an 
optimization  algorithm  of  broad  scope  of  application  and 
demonstrably high efficiency. A statistical analysis was done 
by minimizing a large number of functions and comparing the 
relative  performance of  six  optimization  methods  of  which 

five  are  GAs1.  The  ratio  of  every  GAs absolute  minimum 
(with probability p = 0.95) relative to the best GAs absolute 
minimum  may  be  found  in  Table  1  under  the  column 
“Relative Performance”. The number of functions which were 
minimized  to  guarantee  the  mentioned  confidence  level  is 
shown under “Number of  Optimized Functions”.  It  may be 
seen that VGA, in this study, was the best of all the analyzed 
variations. Interestingly the CGA (the classical or "canonical" 
genetic  algorithm) comes at  the bottom of the list  with the 
exception of the random mutation hill climber (RHC) which is 
not an evolutionary algorithm. According to these results, the 
minimal found with VGA are,  in the worst case,  more than 
25% better than those found with the CGA. Due to its tested 
efficiency, we now describe in more detail VGA.

As  opposed  to  the  CGA,  VGA  selects  the  candidate 
individuals deterministically picking the two extreme (ordered 
according  to  their  respective  fitness)  performers  of  the 
generation  for  crossover.  This  would  seem  to  fragrantly 
violate the survival-of-the-fittest strategy behind evolutionary 
processes  since  the  genes  of  the  more  apt  individuals  are 
mixed with those of the least apt ones. However, VGA also 
retains the best n individuals out of the 2n previous ones.

Table 1: Relative Performance of Different Breeds of Genetic 
Algorithms

Algorithm Relative 
Performance

Number  of  Optimized 
Functions

VGA 1.000 2,736

EGA 1.039 2,484

TGA 1.233 2,628

SGA 1.236 2,772

CGA 1.267 3,132

RHC 3.830 3,600

The net effect  of this dual strategy is to give variety to the 
genetic  pool  (the  lack  of  which  is  a  cause  for  slow 
convergence)  while  still  retaining a  high degree  of  elitism. 
This  sort  of  elitism,  of  course,  guarantees  that  the  best 
solutions are  not lost.  On the other  hand,  the admixture of 
apparently  counterpointed  plausible  solutions  is  aimed  at 
avoiding  the  proliferation  of  similar  genes  in  the  pool.  In 
nature as well as in GAs variety is needed in order to ensure 
the efficient exploration of the space of solutions. As stated 
before,  all  elitist  GAs will eventually converge  to  a  global 
optimum. The VGA does so in less generations. Alternatively 
we may say that VGA will outperform other GAs given the 
same number of generations. Besides, it is easier to program 
because we need not simulate a probabilistic process. Finally, 
VGA is  impervious  to  negative  fitness’s  values.  We,  thus, 
have a tool which allows us to identify the best values for a set 
of  predefined  metrics  possibly  reflecting  complementary 
goals.  For  these  reasons  we use  in  our  work  VGA as  the 
optimization method. In what follows we explain our proposal 
based in the concepts mentioned above.

1VGA:  Vasconcelos’  GA;  EGA:  Eclectic  GA;  TGA:  Elitist  GA;  SGA: 
Statistical GA; CGA: Canonical (or Simple) GA; RMH: Random Mutation 
Hill Climber.
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3 Methodology
We begin our explanation by discussing the preprocessing of 
the  data  set.  It  will  allow  us   to  change  the  vector 
representation  of  the  data  in  order  to  facilitate  subsequent 
calculations.  Second,  we show the  details  of  the  genome's 
encoding in the context of the clustering problem. Finally we 
show the way to evaluate each solution or individual in order 
to find the best.

3.1 Preprocessing of the data set.

Let Σ be an alphabet and w a string that contains symbol of Σ. 
Let D be a data set. Let xi = {a1, a2,...an} be an n-dimensional 
vector such that xi є D where  ai є R and D є Rn . 

Let  ⊥ak,  a⊤ m  be  the minimal and maximal value  a∀ i є D . 
Let Δ be the difference between a⊤ m and  ⊥ak, then we assign 
to every symbol of  Σ an interval value as following:

Table 2: Assigning values to symbols of Σ
Symbol Interval Value

so  [.⊥ak ,⊥ ak+
Δ

∣Σ∣]
s1 [s0 max ,s0max+

Δ
∣Σ∣]

... ...

sm [sm−1 max , sm−1 max+
Δ

∣Σ∣]

Where si max is the maximum interval value of Si and  |Σ| is the 
cardinality of Σ (m=|Σ|). Now we assume that Σ  is conformed 
by the letters of the English alphabet and a⊤ m=1 and  ⊥ak=0. 
In  accordance  with Table  2  we can  determine  the  interval 
values of  Σ as  shown in Table 3.

 Table 3: Possible assignment of values for letters of the 
English alphabet

Symbol Symbol Value

A
 [0,0+

1
26 ]

B [ 1
26

,
1

26
+

1
26 ]

... ...

Z [25
26

,1]
Moreover,  if we assume a data set  D in  R3 such that  some 
x=[0.038,0.022,0.99]. Then x may be represented by w=AAZ. 
Thus, ∀x є D,  ∃w є  Σ*. We represent the set of all strings or 
words  w as  D'.  For  practical  reasons  we  use  the  English 
Alphabet  although the method described does not depend on 
any  particular  symbol  set.  However  this  method  will  be 
affected by the cardinality of  Σ. For example, if  |Σ| =1 we 
have that all elements of the data set are represented by the 
same word regardless of their degree of similarity. Otherwise 

when the value of     |Σ| is higher we will have more precision 
but the performance will be affected.

3.2 Encoding of the genome.

The  individuals  of  the  algorithm  have  been  encoded  as 
follows.  a)  The  length  of  the  genome  is  equal  to  the 
cardinality of D'.  b) Each gene is associated with a word of 
D'. The  value  of  each  gene  corresponds  to  a  label  (for 
practical purposes we use 1,2,...K) of the cluster to which the 
word belongs.  Thus,  the  i-th  gene represent  the cluster  to 
which the i-th word belongs.  Figure 4 exemplifies a genome 
for K=3. 

Figure 4. Genome of the individual (K=3)

3.3 Fitness 

Each individual is a possible solution of a clustering problem 
which   is  evaluated  through  a  fitness  function.  In  what 
follows  we  explain  how  this  function   is  defined   in  the 
context of our method.

Suppose that D'={AAA, ACA, MOM, NPM, ADE, UVT, VXT,  
NQP, VWV}  and  K=3. Let  Ii  be the  i-th individual of the 
population whose genome are shown in Figure 5.

As discussed above we use the Minimum Entropy Principle. 
In Equation 4 X is a random variable whose set of possibles 
values belongs to D. Thus, if the data set D is transformed to 
set  D'  (conformed  by words  w)  then   Equation  4  may be 
rewritten as:

H (C∣W )=−∑
i=1

K

p ( i∣w ) log ( p (i∣w )) (5)

Where  W  is  a  random variable  whose possibles  values  are 
strings of the  Σ  alphabet. We can calculate  H(C|W) for all 
individuals  based  on  their  genomes.  This  entropy  may  be 
expressed as the sum of  entropies for each cluster as follows:

Figure 5. Possible solution given by an Individual for K=3. Here are 
shown the words associated to each gene.
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H (C∣W )=∑
i=1

K

H (i∣W ) (6)

Where  H(i|W) is  the  entropy  of  cluster  i.  The  idea  is  to 
minimize  the  entropy  for  each  cluster.  However,  this  fact 
involves  a  multi-objective  optimization  problem  because 
minimizing the entropy of a cluster affects the entropy of any 
other. To resolve this problem we apply  Pareto's Efficiency 
[18]. Our objective function  may be written as:

min [ H (1∣W ) ,H ( 2∣W ) .. . H ( K∣W ) ] (7)

So,  the  GA  must  find  the  individuals  that  minimize  this 
function which is represented as a vector of K   dimensions. In 
what  follows  this  vector  is  called  Entropy  Vector.  Each 
individual has a Entropy Vector whose values are given by its 
genome.  In order  to  determine the individual  with the best 
vector,  we apply  the  principle  of  Pareto  Dominance  [18]. 
The Pareto Dominance says that a Y vector dominates to Y* if 
∀yi є Y, yi ≤ yi* and  ∃yp  such that  yp< yp* . In the context of 
VGA, a solution vector X of an Individual will dominate other 
solution vectors.  The number of vectors dominated by X are 
called  the  dominance  value.  Thus,  individuals  with  higher 
dominance  value  will  be  the  best.  The  result  of  the 
evolutionary process yields a  Pareto Front[18].  The fitness 
function for  i-th individual (Ii) may be written as:

f ( I
i ) =dom

i (8)
Where  domi  is  the  dominance  value  of  the  ith  individual. 
However  this  function  does  not  always  assure  that  an 
individual with maximal dominance value is the best solution 
to the clustering problem. We,  therefore  propose a quality 
measure.

Our  quality  measure  is  based  on  the  concept  of  Mutual 
Information (MI) [21]. It is a symetric measure that quantifies 
the mutual dependence between two random variables or the 
information that these share.  In the context of our problem, 
the MI between two cluster u and v is given by:

I (u,v )=∑
i=1

R

∑
j=1

S

p (w i
,w

j )log
p (w i ,w j )

p (w i ) p ( w
i )

(9) 

where R and S are |u| and |v| respectively and p(wi, wj) is the 
probability  that  the  words   wi   and wj   are  similar.  This 
probability is given by:

p ( w
i
,w

j )=
∣wi∩w j∣

length (w i )
(10)

where  the  intesection  between  two word  is  given  by  their 
common symbols.  Clearly,   all  words of  D'  have the same 
length. 

If  u ≠  v then  the  value  of  I(u,v)  will  be  called   Mutual  
Information Intercluster (MIInter) .  Otherwise this value  will 
be called  Mutual Information Intracluster (MIIntra).  A lower 
value  of  MIInter  and  higher  value  of  MIIntra means  better 
clusters. So, we propose a quality measure given by:

Q=

∑
i= 1

K

MI
Intra

( i,i )

∑
i,j≤K,i≠ j

MI
Inter

( i,j )
(11)

An individual with higher value of Q means a better solution. 
Therefore  the  fitness  function  of  the  ith  individual may be 
defined as:

f ( I
i ) =dom

i
Q

i (12)

However, we observe that  an individual with a “good” fitness 
value does not always represent  a global optimum. Thus, we 
assume that each individual must be subject to the following 
constraint  : The probability  for all  partition  (cluster)  of  D  
must be greater than zero. Mathematically p(i)>0  i=1,2,..K∀  
(see Equation 2 and Equation 3). 

This constraint ensures that the individuals consists  of  non-
empty clusters  whose  entropy  is  minimal.    Otherwise  the 
solutions will be  outside of the feasible region. To encourage 
reproduction of feasible individuals (which represents feasible 
solutions)   in  every generation  of  VGA,  we appeal  to  an 
penalty  method  [14]  whose  goal  is  to  punish   unfeasible 
individuals.  

Here the penalty for unfeasible individual Ii  is given by:

 P ( I
i )=J −∑

i=1

s
J
m

(13)

where  J  is  a large constant  [O(109 )],  m  is the number of 
constraints and  s  is  the  number of  these which have been 
satisfied.

4 Numerical Experiment
In what follows we  briefly describe how the test data set was 
generated.   Subsequently  we  show several  parameters  and 
features of the performed tests. Finally we show the results. 
We call our proposal has been called  Entropic Evolutionary  
Clustering  (EEC).
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4.1 The data set

Three  data sets are analyzed in this work. We shall call them 
“A”,  “B”  and  “C”  respectively.   Every set  is  composed  of 
vectors (in a 3D space) that belong to three different spheres 
which we call sphere 1, 2 and 3 respectively. There are 10,000 
vectors in each one of the spheres. They were generated from.

x=x
0

+r sin θ cosϕ (14)

y=y
0

+r sin θsin ϕ (15)

z=z
0

+r cos θ (16)

from uniformly distributed values for  r  [0,1)∈ ,  (0 ≤  ≤ 2πϕ  
and 0 ≤ θ ≤ π). For set A the three centers of the spheres were 
chosen so that the spheres would not intersect. In set  B, the 
chosen centers yield partially overlapping data. Finally, in set 
C, the spheres shared a common center. However, in the last 
set for sphere 1  r  [0,1)∈ ;  for sphere 2 r  [0,  0.666)∈ ;  for 
sphere 3 r  [0, 0.333)∈ . In this case, then, spheres 1, 2 and 3 
share the same space where the density of 2 is larger than that 
of 1 and the density of 3 is larger than the other two. Our 
intent  is  to  choose  vectors  in  set  A,  B  and  C  whose 
distribution is not uniform but Gaussian. To achieve this, we 
determined to divide the space of probabilities of a Gaussian 
curve in 20 equally spaced intervals. The area under the curve 
for a normal distribution with μ = 0 and σ = 1 between -4 and 
+4 is very closely equal to one. Therefore, it is easy to see that 
5%, of the observations will be between −4 and −1.654; 5%, 
will be between −1.654 and −1.280, etc. The required normal 
behavior  may  be  approximated  by  selecting  50  of  the 
uniformly distributed values from the interval  [−4,−1,654); 
another 50 from the  interval  [−1.654,−1.280), etc. In all we 
will end up with 1000 vectors for every sphere. These vectors 
will now be very closely Gaussian.  When data is  normally 
distributed, a Bayesian classifier is optimal. The behavior of 
one such classifier will serve as a base point. To stress: when 
the  distribution  of  the  data  set  to  classify  is  Gaussian,  a 
Bayesian  classifier  yields  the  best  theoretical  results  (by 
minimizing  the  probability  of  classification  error 
independently  of  the  degree  of  overlap  between  the 
distributions  of  the  clusters)  [7].  Hence,  we  resorted  to 
Gaussian  distributed  data  in  order  to  establish  a  behavior 
relative  to  the  best  theoretical  one  when  measuring  the 
performance of non-traditional methods. Our claim is that, if 
the methods perform satisfactorily when faced with Gaussian 
data, they will also perform reasonably well when faced with 
other possible distributions. That is, we wish to show that the 
results  obtained  with  non-traditional  methods  are  close  to 
those obtained with a Bayesian classifier for the same data set. 
This would mean that these results correspond to an efficient 
algorithm. The data sets are illustrated in Figure  6.

5 Results
The values of the parameters of VGA are given in Table 4. 
These values were determined experimentally. As mentioned 
above we use the English Alphabet to transform the original 
data set. The VGA was run 20 times (with different seeds of 
the pseudo random number generator) per data set. The same 
data sets was tested with K-Means [22],  Kohonen Maps [23] 
and  Fuzzy  C-Means [4].  Since  it  may  be  proven   that  a 
Bayesian Classifier  is optimal when the data's pdf is Gaussian 
[7],  we  include   a  comparison  with  such  a   Bayesian 
Classifier.   The  results  obtained  with  disjoint  clusters  are 
shown in Table 5. This allows us to see that the results of EEC 
are similar to those given by some alternative algorithms. The 
high effectiveness in all cases is due to the spatial distribution 
of data set. The results obtained with overlapping clusters are 
shown in Table  6  where  we can  see  that  the  effectiveness 
decreases significantly in general.

Table 4: Parameters Test
Parameter Name Values

N (Number of Individuals) 50

G (Generations) 4000

pm (Mutation probability) 0.00

pc (Crossover Probability) 0.99 0.99

 
However EEC showed better results than traditional methods 
and close results to Bayesian Classifier. The results obtained 
in the two last cases (overlapping and concentric clusters) are 
due to the fact that it is not possible to find a simple separable 
boundary. Therefore, the boundary decision is unclear and the 
vast majority of the clustering methods yield poor solutions. 
The  closeness  of  the  results  obtained  so  far   relative  to  a 
Bayesian  Classifier,  tells  us  that  our  approach  is  quite 
efficient.  In  future  works  we  will  report  on  experiments 
encompassing a wider range of data sets. 

Table 5: Results obtained with disjoint clusters data set
Algorithm Average Effectiveness

EEC 0.99

K-Means 0.98

Kohonen Maps 0.99

Fuzzy C-Means 0.98

Bayesian Classifier Effectiveness 0.99

Figure  6. Types of data set
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Table 6: Results obtained with overlapping clusters data set
Algorithm Average Effectiveness

EEC 0.87

K-Means 0.45

Kohonen Maps 0.72

Fuzzy C-Means 0.15

Bayesian Classifier Effectiveness 0.89

Table 7: Results obtained with concentric clusters data set
Algorithm Average Effectiveness

EEC 0.71

K-Means 0.36

Kohonen Maps 0.38

Fuzzy C-Means 0.15

Bayesian Classifier Effectiveness 0.72

6 Conclusion
Following  the  minimum entropy  principle  we  employed  a 
genetic algorithm so that we were able  to explore the solution 
space  of  the  clustering  problem.  This  approach  resulted  a 
better  effectiveness  with different  data  sets  respect  to   K-
Means,  Kohonen Maps and  Fuzzy C-Means.  If we consider 
that Bayesian Classifier represents a theoretical limit then the 
most  interesting  result  is  the  nearness  of  EEC respect  this 
classifier.  Our method promises to be a feasible alternative to 
find non-spherical clusters due to the results obtained with the 
concentric clusters of the  data set C.  However, we require 
testing  several data sets that allow us to statistically ascertain 
that  our  method  is  good.  We  will  report  on  these  issues 
shortly.  Additionally, data preprocessing proved to be a good 
alternative to reduce the computational complexity when the 
dimensionality of the data set is fairly high.
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Abstract - Direct solution methods for optimal control 
problems treat them from the perspective of global 
optimization: perform a global search for the control function 
that optimizes the required objective. Increasingly, Differential 
Evolution is being recognized as a powerful global optimizer 
for optimal control. A parameterization technique is required, 
which can represent control functions using a small number of 
real-valued parameters. Typically, direct methods using 
Differential Evolution parameterize control functions with a 
piecewise constant approximation. In this paper a new 
parameterization is introduced, using Bézier curves, and is 
combined with Differential Evolution into a new evolutionary 
direct method for optimal control. The effectiveness of the new 
method is demonstrated by solving a range of optimal control 
problems. 
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1 Introduction 
In many mathematical models, the dynamics are described 

by a system of ordinary differential equations for a set of 
dependent functions, x(t). When these systems are also 
controlled by a second set of independent functions, u(t), an 
obvious goal is to find u(t) that optimizes, in some sense, the 
dynamical system. This type of problem is known as optimal 
control, or sometimes, dynamic optimization. Mathematically, 
the problem can be stated as follows: 

 0

0 0

min ( ) ( , ( ), ( )) ,

( ) ( , ( ), ( ))
subject to ,

( )

f
t

t

F f t t t dt

t g t t t

t

=

′ =

=




∫
u

u x u

x x u

x x

 (1) 

where 
0

t  and 
f

t  are the initial and final times, and f and g 

depend on the particular model. The dependent functions x(t) 
are known as state functions, and the independent u(t) as 
control functions. 

For example, in a model of an epidemic disease, the state 
functions might be the populations, at time t, of those who are 
susceptible to the disease, those who are immune from the 

disease, and those who are recovered from the disease. Control 
functions might include a vaccination rate and a quarantine 
rate, both functions of time. One possible goal would then be to 
find a public health policy represented by control functions that 
minimize both the number of infectious persons, and the cost of 
implementing the policy.  

There are two general approaches to optimal control. 
These are often labeled as direct and indirect methods. An 
indirect method transforms the problem into a boundary value 
problem (BVP), which can then be solved analytically or 
numerically using well-known techniques for differential 
equations. An excellent introduction to this method can be 
found in a recent text by Suzanne Lenhart and John Workman 
[1].  

In a direct method, optimal control is seen as a standard 
optimization problem: perform a search for the control function 
u(t) that optimizes the objective functional. Evolutionary 
algorithms, such as Differential Evolution (DE) [2], are 
powerful global optimizers, but they do not operate on infinite-
dimensional spaces. So before optimizing, a parameterization 
method is required, whereby the functions of continuous time 
can be approximated by a discrete set of parameters.  

Typically, direct methods using DE simply discretize the 
control function space. That is, control functions are 
approximated using a piecewise constant parameterization. 
When the optimal solution is continuous, then, one must choose 
between accuracy and efficiency. A large number of parameters 
will converge slowly to an accurate approximation of the true 
solution, while a small number will converge quickly to a poor 
approximation.  

In this paper, a new direct method is developed for 
optimal control, using DE in conjunction with Bézier curves to 
parameterize the control functions. The new method is 
designed to be both accurate and efficient simultaneously. Part 
2 of the paper examines evolutionary direct methods in general. 
In Part 3 the Bézier parameterization is developed for use with 
DE. Part 4 applies the method to several optimal control 
problems. The focus here is to confirm that this new direct 
method is effective and efficient for a broad range of problems. 
In each case, the examples used can be solved analytically by 
an indirect method. This permits comparison of the two 
solutions, and validates the method. Finally, Part 5 looks ahead 
to future implementations and applications. 
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2 Direct methods for optimal control 

2.1 Direct vs. indirect methods 

There are certain mathematical advantages to using an 
indirect method, including existence and uniqueness results, 
exact solutions when the BVP can be solved analytically, and 
error estimates when it is solved numerically [1]. There are also 
several limitations which can be overcome by a direct method.  

First among the limitations of an indirect method is that 
each solution is problem-specific. A separate mathematical 
transformation must be derived for each distinct optimal control 
problem, and in some cases the mathematics can be rather 
complicated. A direct method, on the other hand, is a more 
universal solution, which can be easily and quickly applied to a 
new control problem.  

Second, in an indirect method, the transformation requires 
that the optimal control problem be formulated with a single 
objective functional. When there are multiple objectives, they 
must be collected into one. By contrast, direct evolutionary 
methods can use a multiobjective global optimizer. One 
numerical run can produce a range of solutions that can be 
considered mutually optimal in some sense [3].   

Third, applied optimal control problems often have 
multiple, complicated constraints. In the indirect method, these 
are be difficult to impose, and can lead to intractability [4n]. In 
a direct evolutionary method, constraints are easily imposed 
with a penalty function. Examples are given below.   

Fourth, because the indirect method relies on variational 
calculus, it is of necessity a local optimization method. But 
complicated systems sometimes have multimodal landscapes 
with many local optima. In these cases, a global, evolutionary 
optimization scheme can be more effective [5].  

2.2 Evolutionary direct methods 

Evolutionary Algorithms (EAs) are powerful, global 
optimizers, that treat optimization from the perspective of 
natural evolution: an initial population of feasible solutions 
evolves into a population of globally near-optimal solutions. 
There are typically two mechanisms by which new feasible 
solutions are formed: mutation (small perturbations in a binary- 
or real-valued individual) and recombination (combining the 
characteristics of two different individuals). Some form of 
natural selection is used to decide which population members 
“survive” to the next generation, and after many generations the 
population converges, to one or several near-optimal solutions.  

There are two types of EA, distinguished by the way in 
which they represent individual feasible solutions. Genetic 
Algorithms (GAs) [6] use binary representation, and are thus 
suitable for discrete or integer optimization problems. 
Evolutionary Strategies (ESs) [7] use real-valued vectors, and 
are better suited for the kind of continuous parameter 
optimization required for optimal control. 

DE emerged in the 1990s as one of the most impressive 
ESs, converging faster and with more certainty than many other 
acclaimed global optimization methods [3]. In the years since, 
it has successfully been used in many different applied fields 

[2]. DE has been shown to be a robust and efficient global 
optimizer for an evolutionary direct approach – in a variety of 
specific applications [8]-[11], and more generally for optimal 
control problems that have multimodal control function 
landscapes [5].  

2.3 Control Vector Parameterization 

To use an ES for optimal control, a parameterization 
strategy is required by which control functions can be 
represented by the Rn vectors on which DE operates. This is 
known as Control Vector Parameterization (CVP). A wide 
variety of CVPs have been used with non-evolutionary 
optimizers, including piecewise constant [12], Chebyshev 
polynomials [13], Lagrange polynomials [14], and piecewise 
Lagrange polynomials [15]. 

Direct methods using DE have been less creative, relying 
almost exclusively on piecewise constant CVP. Each DE-based 
solution referenced above [5], [8]-[11] approximates the 
control as a piecewise constant function. The reason may be 
that it is the easiest parameterization to encode, or it may be 
that current researchers are simply following the path trod by 
those who first applied EAs to optimal control [16], [17]. In 
any case, there is room for improvement.  

The limitations of a piecewise constant approximation are 
obvious: a very high number of parameters is needed for an 
accurate approximation. However, EAs are computationally 
expensive, and require a small number of parameters to 
converge to a near-optimal solution within a reasonable amount 
of time.  

Thus, a more creative CVP is desirable for evolutionary 
direct methods. To be effective, the CVP should be able closely 
to approximate arbitrary, continuous, control functions. To be 
efficient, it must do so with a relatively small number of 
parameters. Also, CVPs that increase the nonlinearity of the 
objective function can lead to epistasis [18] – the nonlinear and 
interdependent manner in which the objective function relates 
to the design parameters. Small changes in several variables 
can result in large changes in the objective function. Epistatic 
functions can lead to premature convergence, because they 
provide so few clues as to the location of the global minimum. 
In general, a reduction of this nonlinear interaction, by having 
parameters more directly linked to the objective function, will 
enable the optimizer to converge more quickly. 

3 Bézier parameterization for 
Differential Evolution 

3.1 Bézier Control Parameterization 

P. Bézier, of the French firm Regie Renault, pioneered the 
use of computer modeling of surfaces in automobile design. His 
UNISURF system, initiated in 1962 and used by designers 
since 1972, has been applied to define the outer panels of 
several cars marketed by Renault [19], [20]. The foundations of 
Bézier curves, however, go back much further. In 1926, S. 
Bernstein presented a constructive proof of the Weierstrass 
approximation theorem [21], using functions that have become 
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known as Bernstein polynomials. Bézier curves have a very 
similar form, and are sometimes referred to as Bézier-Bernstein 
polynomials.  

Bézier curve parameterization is used regularly in 
engineering applications, such as shape optimization. It has 
been used effectively with DE to optimize turbomachinery 
airfoils [22]. An extensive search of the literature, however, 
suggests that this is the first use of a Bézier CVP for optimal 
control by any direct method, whether evolutionary or non-
evolutionary. 

An nth order Bézier curve, P(z), is defined parametrically 

using n+1 two-dimensional control points ( , )
i i i

t uP , as follows: 
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where z is the parameter. Bézier curves begin at control point 
P0, end at control point Pn, have initial slope equal to that of the 
line segment P0P1, ending slope equal to that of Pn-1Pn, and 
always lie within the convex hull formed by the control points. 
The curve is nth order continuous throughout and never 
oscillates wildly away from its defining control points. Thus 
Bézier curves can parameterize smooth, non-oscillatory 
functions, with minimal epistasis, using only a few parameters. 

The Bézier Control Parameterization (BCP) introduced 
here is designed for a single control function. A fixed, regular 
mesh is used on the t-axis. This forces the curve to be single-
valued, and also reduces the dimension of the optimization 

vectors to n+1. That is, the BCP [ ]
0

n
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u
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encodes a control function u(t) as the nth order parametric 

Bézier curve ( ) ( ), ( )u t t z u z= , as follows: 
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where 
0

( ) /
f

t t t n∆ = − , 
0

t  is the initial time, and 
f

t  is the final 

time.  
The objective function, F(u), is computed as follows. The 

control function u(t), is found using the Bézier curve 
parameterization. It is stored as a set of data points, at 
parameters z=0,h,2h,…,1. A step-size of h=0.01 is used here, 
and can be refined when more accuracy is required. The IVP is 
then solved numerically for x(t), interpolating the data points to 
approximate u(t) as necessary. The differential equation solver 
used is MATLAB’s ode45 function, an explicit Runge-Kutta 
(4,5) formula, with the Dormand-Prince pair. Finally, the 
objective integral is evaluated, again interpolating to 
approximate x(t) and u(t), as necessary. The numerical 
integration routine is MATLAB’s quad function, a recursive 
adaptive Simpson quadrature. The value of the integral is the 
“cost” F of the vector u. 

3.2 Differential Evolution 

Optimization of the function F(u) is performed using DE, 

which minimizes the cost of a population of vectors u. The 
crucial difference between DE and other ESs lies in mutation. 
ESs normally use predetermined probability distribution 
functions to perturb vectors, leaving them unable to adapt the 
perturbation magnitude to the topology of the objective 
function. DE uses the “differential” of two randomly chosen 
population vectors, ua and ub, to perturb a base vector uc, 

( )new c a b
F= + −u u u u , where F is the differential weight. 

The perturbation magnitude is thus automatically appropriate to 
the given landscape, and the search is less random, being 
dictated by the shape of the objective function itself. This 
property of DE is known as self-organization. Ultimately, it 
results in better convergence properties as the algorithm nears 
the global minimum.  

Two DE strategies are used here. In DE/local-to-best/1, 
the base vector is a combination of one randomly chosen vector 
and the vector with the lowest objective function value. F=0.85 
is the recommended differential weight. This strategy tends to 
balance robustness with fast convergence, and has been 
demonstrated as one of the more effective DE strategies [23]. 
Usually a population size of NP=10D is effective, where 
D=n+1 is the dimension of the vector u. Occasionally, when 
misconvergence occurs, NP needs to be increased. 

For small population sizes, a fast convergence strategy is 
DE/best/1 with jitter. Here the base vector is the best one in the 
population, which tends to reduce robustness. When the 
problem dimension and the population size are small, this loss 
can be balanced by jittering, the practice of generating a 
different value of F for each parameter. This results in small, 
random variations in both scale and orientation of the 
differential [2]. 

4 Results 
Below we consider several representative problems from 

[1]. The purpose here is to demonstrate that the DE/BCP direct 
method can find accurate solutions to the standard range of 
optimal control problems. Thus, in addition to one problem in 
standard form, also considered are examples with payoff terms, 
with fixed state endpoints, and with bounded controls. Both 
minimization and maximization problems are considered. Most 
have a single state function, but for completeness the final 
example has multiple state functions. Each test case has a single 
control function, but the method can be extended to solve 
problems with multiple controls.  

All problems considered have continuous optimal 
controls, and can be solved analytically. This allows validation 
of the BCP, by comparing its result with the exact solution. 
Details of the exact solutions can be found in [1]. 

4.1 Standard form 

The standard form for optimal control problems is (1). In 
the following example, there is one control function u(t), and 
one state function x(t): 
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The analytical solution is:  
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The BCP solution has n=3, representing four Bézier 
control points. DE parameters are DE/best/1/jitter, F=0.85, 
CR=1, with population size NP=15. The initial population is 
formed by random selection of control parameters, within the 
bounds [-3,0]. Optimization is terminated after 50 generations. 
The jitter strategy, in this case, was very effective, converging 
to an excellent solution in under two minutes, using a current 
Intel system. The control points for the BCP solution are shown 
in Table 1.  

Table1. BCP solutions to optimal control problems of part 4. 
The Bézier curve control function is defined by (3) for uncon-
strained problems; and (3) and (11) for constrained problems. 
Optimal 
control 
problem 

Degree Bézier Control Parameterization 
n u0 u1 u2 u3 

(4) 3 -2.7774 -0.9353 -0.5457 0.0043 
(7) 3 -2.0017 -1.3363 -0.9849 -0.7331 
(9) 3 -0.7052 -0.5110 0.6082 1.2481 
(12) 2 4.7188 -1.5990 -0.8749  
(13) 2 14.726 -0.1696 0.7300  
(15) 2 3.0036 1.4924 0.0044  

4.2 Payoff term 

In some optimal control problems, there can be one 
objective over the entire time interval, and a second objective 
at a specific time, usually the final time tf. The first is 
represented by an integral, and the second by a function of the 
time tf. The two are typically combined into one objective 
functional through a weighted sum,  
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where a is the weight of the second objective relative to the 

first. The term outside the integral, 
2
( , ( ), ( ))af t t tx u , is known 

as a payoff term. These might be necessary when, for example, 
a second objective is to minimize the final population.  

In this test case, the integral objective depends only on the 

control, and the payoff term, 2(1)x , depends only on the state: 
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∫
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The analytical solution is: ( ) 2 tu t e−= − , ( ) tx t e−= . 

The BCP solution has n=3. The DE strategy used is 
DE/best/1/jitter, F=0.85, CR=1. Population size was increased 
to NP=25, to improve the global convergence. The initial 
population is formed by random selection of control 
parameters, within the bounds [-5,5]. Optimization is 
terminated after 50 generations. The BCP solution (Table 1) 
once again closely approximates the actual solution.  

4.3 Fixed state endpoint 

In standard optimal control problems, the state equations 
are initial value problems. But in some cases, the state is fixed 
not only at its initial point, but also its endpoint. Such is the 
case in the third example:  
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The actual solution is: optimal control ( ) (2 3) / 4u t t= −  and 

optimal state 2( ) ( 3 ) / 4x t t t= − . 

When finding the solution by an indirect method, the fixed 
endpoint can be included in the transformation to a BVP. 
However, the DE/BCP direct method uses a Runge-Kutta initial 
value problem solver, which cannot handle the fixed state 
endpoint. Thus it is necessary to reformulate the problem. One 
way to do this is to formulate the state equations as a 
constrained initial value problem, with the fixed state endpoint 
as the constraint.  

Evolutionary algorithms typically deal with constraints by 
using a penalty function, in which a numerical penalty is added 
to the objective function whenever the solution doesn’t meet 
the constraint. Penalties imposed are proportional to the extent 
to which the constraint is violated. The penalty function 
formulation of (8) is as follows: 
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∫
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where µ  is a scaling constant, representing the weight of the 

penalty relative to the objective functional. 
The BCP solution to (9) has n=3. The DE strategy used is 

DE/best/1/jitter, F=0.85, CR=1, NP=25, terminating after 50 
generations. The penalty scaling constant was µ=10. The BCP 
solution (Table 1) closely approximates the actual, linear 
solution, and has a state endpoint of x(4)=0.99996. Endpoints 
closer to the required value of x(4)=1 could be achieved by 
increasing the scaling constant.  
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4.4 Constrained control 

In first three sample problems, the control function was 
unconstrained. Many models, however, required upper or lower 
bounds on the control. In such cases, the typical evolutionary 
approach to constrained optimization is to introduce a penalty 

function. For example, if ( )
UB

u t  is an upper bound on control 

function ( )
i

u t , one could add an integral penalty to the 

objective function: 
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min ( ) ( , ( ), ( )) ( ) ( )

f

i UB

t

i UB

t u u

F f t t t dt u t u t dtµ
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= + −∫ ∫
u

u x u . (10) 

This approach is inadequate for the BCP method, because 
the solutions to constrained control problems are often non-
differentiable. Bézier curves, on the other hand, are not only 
differentiable, but smooth, having continuous derivatives of all 
orders.  

An alternate approach is simply to redefine the control, 
piecewise, to equal the constraint whenever the Bézier curve 
violates it. That is, the BCP method computes the Bézier curve, 

( )
Bez

u t , as usual from (3), but the control function itself is 

defined as  
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where upper and lower bounds, 
UB

u  and 
LB

u , can be functions 

or constant. 
In the following example, the control is bounded from 

above and below: 
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Note that while DE solves minimization problems, (12) is a 
maximization problem. It is converted to the dual problem by 
minimizing ( )F u− .  

The actual solution is defined piecewise on three intervals, 

[ )1
0, 2 ln(4.5)I = − , [ ]2
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. 

For this problem, it is sufficient to use three Bézier 
control points for an excellent solution. However, both the 
population size and maximum number of generations had to be 
increased to find a global solution. This resulted in the 
DE/best/1/jitter strategy being rather inefficient. A better result 
was obtained with DE/local-to-best/1, NP=40, F=0.85, CR=1, 
and 100 generations. An excellent solution is obtained, shown 
in Fig. 1, with BCP solution given in Table 1. 
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Fig. 1. Solutions of (12), an optimal control problem with 

constraints on the control. The BCP solution found by DE is 
compared to the actual, analytic solution. 

Our experience generally with DE has led us to conclude 
that the strategy DE/local-to-best/1 is effective for a wide 
variety of problems, nicely balancing robustness with fast 
convergence. Normally a population size of NP=10D works 
well, but in this case, where dimension was D=3, NP had to be 
increased slightly to 40. In practice, when the actual solution is 
unknown, the results of several population sizes should be 
compared, to ensure a global solution.  

4.5 Constrained control with payoff 

In this example, we demonstrate a BCP solution for a 
problem with mixed constraints, both an upper bound on the 
control and a payoff term for the state:  
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The actual solution has optimal control and state: 
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. 

The BCP solution uses three Bézier points, with DE 
strategy DE/local-to-best/1, NP=40, F=0.85, CR=1, and 100 
generations. The result is a BCP solution (Table 1) closely 
approximating the actual solution (Fig. 2). 
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Fig. 2. Solutions of (13), an optimal control problem with 

mixed constraints. The BCP solution found by DE is compared 
to the actual, analytic solution. 

4.6 Multivariable optimal control 

All of the above examples have been for optimal control 
of a single differential equation in one state variable. The 
extension of the BCP/DE solution method to a system of 
differential equations is essentially trivial. The Runge-Kutta 
solver, used to solve one equation in the previous test cases, is 
designed for any number of differential equations. Thus no 
additional code is required when there are multiple state 
functions, as long as there remains only one control function. 

For the sake of completeness, however, we demonstrate 
the ability of the BCP/DE technique to solve an optimal control 
problem with multiple state variables. In the following 
problem, there are two state variables, one of which has fixed 
initial and ending point: 
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The actual solution is ( ) 3 3u t t= − , 2 3

1
( ) 3 2 2x t t t= − , 

2

2
( ) 3 3 2x t t t= − . 

As above, the fixed endpoint for the first state variable is 

incorporated into the objective function with a penalty 
formulation, so that the problem is reformulated as follows: 
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Three Bézier control points are used in the solution, with 
DE strategy DE/local-to-best/1, NP=25, F=0.85, CR=1, and 50 
generations. The penalty scaling constant is 10µ = . The BCP 

solution (Table 1) is again in excellent agreement with the 
actual solution (Fig. 3). 
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Fig. 3. Solutions of (15), an optimal control problem with 
multiple state functions. The BCP solution found by DE is 

compared to the actual, analytic solution. 

5 Conclusions 
The BCP method proves successful for each optimal 

control problem, producing an accurate approximation of the 
true solution, using a small number of parameters. For 
evolutionary direct methods, it provides a means to improve 
both accuracy of the final result and efficiency of the algorithm. 
It has been demonstrated that the technique is effective for all 
classes of optimal control problems.  

The direct method developed here has potential to be a 
simple, general solution method for any optimal control 
problem. This can be extremely helpful in the field of 
epidemiological and biomedical modeling, in which researchers 
requiring an optimal public health policy or optimal treatment 
schedule may not have the mathematical skills, or the time, to 
solve the model indirectly. In other work, we intend to 
demonstrate the efficacy of the BCP method for these types of 
models. Many of these have multiple control functions, e.g. 
vaccination rate, quarantine rate, and isolation rate for an 
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epidemic. Thus the method will have to be extended to allow 
for multiple controls. 

The true value of a direct evolutionary method, of course, 
is not to reproduce known solutions to optimal control 
problems, but to provide an alternate solution method for 
problems that are difficult or impossible to solve indirectly. 
Having validated the method generally, it is to these that 
attention can now be turned, particularly problems that are 
multiobjective, that are multimodal, and that have complicated 
constraints. 

Acknowledgment 
The author thanks Dr. Abba Gumel, professor of 

mathematics at University of Manitoba, for suggesting the 
problem of optimal control, motivated by his work in 
epidemiological modeling. 

References 
[1] Suzanne Lenhart and John T. Workman, Optimal Control 
Applied to Biological Models. Boca Raton: Chapman & 
Hall/CRC, Taylor & Francis Group, 2007. 

[2] Ken Price, Rainer Storn, and Jouni Lampinen, Differential 
Evolution: A Practical Approach to Global Optimization. New 
York: Springer, 2005. 

[3] Kalyanmov Deb, Multi-Objective Optimization Using 
Evolutionary Algorithms. New York: John Wiley & Sons, 
2001. 

[4] John McCall, “Genetic algorithms for modelling and 
optimization,” Journal of Computational and Applied 
Mathematics, vol. 184, no. 1, pp. 205-222, Dec. 2005. 

[5] I.L. Lopez-Cruz, L.G. Van Willigenburg, and G. Van 
Straten, “Efficient differential evolution algorithms for 
multimodal optimal control problems,” Applied Soft 
Computing, vol. 3, no. 2, pp. 97–122, Sept. 2003. 

[6] D.E. Goldberg, Genetic Algorithms in Search, 
Optimization, and Machine Learning. Reading: Addison-
Wesley, 1989. 

[7] Hans-Georg Beyer: The Theory of Evolution Strategies. 
New York: Springer, 2001. 

[8] J.P. Chiou and F.S. Wang. "A hybrid method of 
differential evolution with application to optimal control 
problems of a bioprocess system," Proc. IEEE International 
Conference on Evolutionary Computations, IEEE World 
Congress on Computational Intelligence, New York, 1998, pp. 
627–632. 

[9] M.H. Lee, Ch. Han, and K.S. Chang, “Dynamic 
optimization of continuous polymer reactor using a modified 
differential evolution algorithm,” Ind. Eng. Chem. Res., vol. 
38, no. 12, pp. 4825–4831, Dec. 1999. 

[10] I.L. Lopez-Cruz, L.G. van Willigenburg, and G. van 
Straten. “Optimal control of nitrate in lettuce by a hybrid 
approach: differential evolution and adjustable control weight 

gradient algorithms,” Computers and Electronics in 
Agriculture, vol. 40, nos. 1-3, pp. 179-197, Oct. 2003. 

[11] M.D. Kapadi and R.D. Gudi, “Optimal control of fed-
batch fermentation involving multiple feeds using differential 
evolution,” Process Biochemistry, vol. 39, no. 11, pp. 1709–
1721, July, 2004. 

[12] C.J. Goh, K.L. Teo, “Control parametrization: a unified 
approach to optimal control problems with general constraints,” 
Automatica, vol. 24, no. 1, pp. 3–18, Jan. 1988.  

[13] J. Vlassenbroeck, “A chebyshev polynomial method for 
optimal control with state constraints,” Automatica, vol. 24, no. 
4, pp. 499–506, July 1988. 

[14] L. Biegler, “Solution of dynamic optimization problems 
by successive quadratic programming and orthogonal 
collocation,” Comp. Chem. Engng., vol. 8, nos. 3-4, pp. 243–
248, 1984. 

[15] V.S. Vassiliadis, R.W.H. Sargent, and C.C. Pantelides, 
“Solution of a class of multistage dynamic optimization 
problems 1. Problems without path constraints,” I&EC Res., 
vol. 33, no. 9, pp. 2111–2122, Sept. 1994. 

[16] S. Smith, “An Evolutionary Program for a class of 
continuous optimal control problems,” Proc. IEEE Conference 
on Evolutionary Computation, vol. 1, Piscataway, pp. 418–
422, 1995. 

[17] N.V. Dakev, A.J. Chipperfield, and P.J. Flemming, “A 
general approach for solving optimal control problems using 
optimization techniques,” Proc. IEEE Conference on Systems, 
Man and Cybernetics, part 5, Vancouver, pp. 4503–4508, 
1995. 

[18] Bäck, Thomas Evolutionary Algorithms in Theory and 
Practice: Evolution Strategies, Evolutionary Programming, 
Genetic Algorithms. New York: Oxford University Press, 1996. 

[19] P. Bézier, Numerical Control – Mathematics and 
Applications, translated by A.R. Forrest and A.F. Pankhurst, 
London: John Wiley & Sons, 1972. 

[20] P. Bézier, "Mathematical and Practical Possibilities of 
UNISURF," in Computer-Aided Geometric Design, R.E. 
Barnhill and R.F. Riesenfeld, Eds. New York: Academic Press, 
1974, pp. 127-152. 

[21] P.J. Davis, Interpolation and Approximation. New York: 
Blaisdell Publishing Company, 1963. 

[22] T. Rogalsky, R.W. Derksen, and S. Kocabiyik, 
“Differential Evolution in Aerodynamic Optimization,” 
Canadian Aeronautics and Space Journal, vol. 46, no. 4, pp. 
183-190, Dec. 2000.  

[23] A. Auger, N. Hansen, J.M. Perez Zerpa, R. Ros, M. 
Schoenauer. “Experimental Comparisons of Derivative Free 
Optimization Algorithms” in Lecture Notes in Computer 
Science, Vol. 5526: Proceedings of the 8th International 
Symposium on Experimental Algorithms, pp. 3-15. New York: 
Springer-Verlag, 2009. 

34 Int'l Conf. Genetic and Evolutionary Methods |  GEM'11  |



The Use of Evolutionary Algorithms in the Analysis of Economics
Experiments

Esmail Bonakdarian
Department of Computing Sciences and Mathematics

Franklin University
Columbus, Ohio, USA

Abstract— We report on the application of an evolution-
ary algorithm in the analysis of data from experiments in
economics. The algorithm was used in conjunction with
regression analysis to evaluate various variable subsets and
find those sets best capable of explaining the experimental
outcomes. This evolutionary computation approach is offered
as a supplemental method to generate optimal parsimonious
subsets according to user specified criteria, or to validate
subsets generated by more traditional means such as step-
wise regression.

The evolutionary algorithm is based on the Cross-
generational elitist selection, Heterogeneous recombination,
Cataclysmic mutation algorithm (CHC), a type of genetic
algorithm. This stochastic, population-based approach offers
a highly flexible, directed, user specified exploratory search
guided by means of our evaluation function and offers
practitioners one more selection tool for their analysis of
data. We believe that this approach has the potential to
find subsets otherwise missed by the more traditional and
deterministic approaches.

Keywords: Genetic Algorithms, Evolutionary Algorithms, CHC,
Optimization, Regression Analysis

1. Introduction
Every day researchers are confronted by large sets of

survey or experimental data and faced with the challenge
of “making sense” of this collection and turning it into
useful knowledge. This data usually consists of a series
of observations over a number of dimensions, and the
objective is to establish a relationship between the variable of
interest, the response or dependent variable, and other vari-
ables, the explanatory/independent variables, for purposes of
prediction or exploration. In some cases researchers want
to limit themselves to only a subset of the independent
variables. Preferably this subset would consist of as few, but
statistically significant, variables as needed to account for as
much of the observed behavior of the response variable as
possible. Additionally, smaller models are desirable because
they lend themselves to easier interpretation.

The traditional tool for finding and establishing these
relationships has been regression analysis. As long as the
number of independent variables is relatively small, or the

experimenter has a fairly clear idea of the possible underly-
ing relationship, it is feasible to derive the best model using
standard software packages and methodologies. However, if
the number of independent variables is large, and there is no
intuitive sense about the possible relationship between these
variables and the dependent variable, the experimenter may
have to enter an exploratory mode to discover the important
and relevant independent variables. During this “fishing
expedition” a number of models are fitted and compared,
often through some automated processes. Two methods are
commonly used: One is a form of stepwise regression that
selectively adds or removes independent variables from the
regression equation, each time evaluating the contribution of
a given variable to the model. The other is an “all-possible”
or best-subset regression in which an exhaustive search tries
to evaluate all possible combinations of variables.

While stepwise regression is a computationally efficient
process, it is not guaranteed to always find the best solution
because the search may get trapped in a local optimum
rather than finding the global optimum when dealing with
many variables[1] in a high-dimensional, multi-modal search
space. Additional problems may exist with multicollinearity
in the data. In contrast, the best-subset regression method
of executing an exhaustive search of all possible models
should be able to locate the optimal solution. However,
unless the quantity of independent variables is rather small,
such as 30 to 40[2], it will become impractical from a
computational point of view as the number of combinations
quickly explodes with the increase in the number of inde-
pendent variables and other selection techniques have to be
considered.

Principal Components Analysis (PCA) is often used in
cases of models with many coefficients. It is a data reduction
method for multidimensional data that works by placing
related variables into groups called components, and allows
the exploration of a relationship between these components
and the dependent variable. While it deals effectively with a
large model by reducing its dimensionality, its ability, in the
best case, lies mainly in forecasting outcomes rather than
shedding light on the contribution of individual variables
in the model. As the economists doing these studies were
primarily interested in being able to explain behavior based
on the experimental data collected, rather than prediction,
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the PCA method was not a suitable way to proceed.
This paper presents the practitioner with another alterna-

tive: Instead of having to rely on a form of stepwise or
best-subset regression, the use of an evolutionary algorithm
is offered as a way to “evolve” the best minimal subset
with the largest explanatory value. This approach offers
more flexibility as the user can specify the exact search
criteria (e.g., the F-statistic, the Mean Squared Error [MSE],
the Adjusted R2, and others) on which to optimize the
model. The user can then examine a ranking of the top M
(a user-specified parameter) models found by the system.
In addition to these measures, the algorithm can also be
tuned to limit the number of variables in the final model.
In a second experiment we evolved a solution based on
subsets of the complete model, providing an even more
focused search in addition to the specific search criteria, i.e.,
base statistic. While not implemented in this version of the
algorithm, it would be trivial to adjust the evaluation function
to give certain variables extra weight and consideration and
allow them to be treated specially during the search by, for
instance, favoring them if the investigator decided a priori
that she wanted to keep certain variables in the final model.
Furthermore, the algorithm can also be used to validate
results found by more traditional means.

We believe that this ability to direct the search provides
flexibility to the analyst and results in models that provide
additional insights.

The evolutionary computation approach was used in two
economics studies described below.

This paper is structured as follows: Section 2 briefly
outlines the two economics studies where this evolutionary
computation approach was applied. Section 3 describes the
original CHC algorithm and what distinguishes it from the
standard genetic algorithm as postulated by Holland[3]. In
section 4 we will outline the basic experimental setup for
this study. Section 5 offers our observations and conclusions
followed by some suggestions for future work.

2. Economics Studies
Both studies[4], [5] dealt with the well known classical

“public goods problem”1 from economics: When goods are
provided to a larger community without required individual
contributions it often results in “free-riding.”

There has long been an assumption in economics that
people tend to “free ride” when public goods are available.
However, people also tend to show a willingness to cooperate
and sacrifice for the good of the group[6]. This seemingly
contradictory behavior brings up a number of interesting
questions for economists studying the behavior of people
under these circumstances.

1Public goods are goods whose use is non-excludable and non-rivalrous
and that therefore pose the problem of “free-riding.” For more information
see [6].

The goal of the first study was to determine the difference
in contributions between excludable and non-excludable
public goods and whether the ability to vote on decisions
would make a difference in the average contributions. The
data for this study was collected in 2007 at St Lawrence
University, NY. The experiment, in which 220 undergraduate
students participated, yielded data for 21 variables. Limiting
these data to simple interactions and squared terms resulted
in a set of more than 200 variables for analysis[4]. As
there was no preconceived notion regarding the relationship
between the observed behavior and the very large set of in-
dependent variables, the evolutionary computation approach
was used to find a small subset of statistically significant
coefficients, and to eliminate redundant variables.

Using data from the same experiment mentioned above,
a second experiment investigated the effect of voting and
excludability on individual contributions to group projects,
and both excludable and non-excludable public goods were
considered. Since, like the first experiment, no preconceived
notion regarding the relationship between the observed be-
havior and the independent variables existed, the evolution-
ary computation approach was used for this study as well[5].

For both of the studies, once all experimental variables,
their squares and various interactions between them were
taken into account, the maximum model had over 200
coefficients due to the use of the flexible functional form. An
exhaustive search of this space would have been impossible
since there would have been in excess of 2200 or more than
1060 different models to be considered!

Given this very large set of variables, our aim was to
eliminate redundant factors and discover the statistically
significant coefficients. Since enumerating all possible com-
binations was out of the question due to its prohibitive
cost from a computational point of view, the evolutionary
computation approach was chosen to tackle this problem.
Our ultimate goal was to discover the simplest model with
the greatest explanatory power.

3. CHC
The properties of the canonical simple genetic algorithm

as first described by John Holland[3] and later David
Goldberg[7] are well known: the algorithm takes a popu-
lation of N potential solutions and proceeds to evaluate,
select, mate and mutate its members to generate a new child
population of size N , which then is subsequently destined
to be evaluated, selected, mated and mutated again, and so
on. In each generation, the parent population of candidate
solutions is completely replaced by the new child population.
The selection, recombination and mutation operations all
underlie probabilistic rules, and the algorithm continues
to evolve ever more fit2 populations over a number of

2Elitism, always ensuring that the most fit member is passed on to the
next generation, prevents any worsening of the solution, assuming the goal
doesn’t change.
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generations until some termination condition is met, such
as a minimum acceptable fitness level, or a fixed number of
iterations have elapsed.

One of the major problems many evolutionary algorithms
face is premature convergence as the population of candidate
solutions tends to become homogeneous over time and
thereby loses some of its exploratory quality. For genetic
algorithms this is a natural consequence of the pressure
exerted by the selection process. The mutation operation
is intended to help counter this tendency to converge too
quickly by maintaining a certain level of diversity in the
population through randomly perturbing some of the can-
didate solutions during each generation. Attempting to find
an effective balance between exploration and exploitation
remains a challenge for evolutionary algorithms, along with
some questions about the exact nature of the operations and
their relation to exploration vs. exploitation[8].

The particular genetic algorithm chosen for this applica-
tion, the Cross-generational elitist selection, Heterogeneous
recombination, Cataclysmic mutation algorithm (CHC) as
introduced by Eshelman[9] is a non-traditional genetic al-
gorithm that addresses these problems in an effective and
unique manner.

Eshelman characterizes CHC as “a conservative selection
algorithm working in conjunction with a radical (i.e., highly
disruptive) recombination operator.” The following pseudo
code illustrates the basic steps of this algorithm:
CHC Pseudo Code:

Threshold = L/4 # L = length of binary strings
Parent_pop contains N candidate solutions

while not Terminate:
Child_pop = {}

for i = 1 to N/2:
select 2 random members p1, p2 from Parent_pop

(1) if (Hamming_Distance(p1, p2)/2) > Threshold:
mate p1, p2 using HUX and generate c1, c2
Child_pop.append(c1, c2)

(2) if size(Child_pop) == 0:
Threshold = Threshold - 1

else:
(3) Parent_pop = best N of Parent_pop + Child_pop

(4) if Threshold < 0:
cataclysmic mutation # rate 35 percent
Threshold = .35 * (1 - .35) * L

This algorithm differs from the standard canonical genetic
algorithm in a number of ways.

First, survival-selection rather than reproduction-selection
is used. Instead of probabilistically selecting more fit pop-
ulation members for reproduction, in CHC, members are
randomly selected from the available parent pool P and
only mated if they are sufficiently different, see (1) in
pseudo code above. Eshelman refers to this heterogeneous
recombination as incest prevention. Using a binary string

representation, a dynamically changing threshold (2) for the
Hamming distance is used as a diversity measure for the two
parents. It is therefore quite possible for one generation to
pass without any offspring being produced if the randomly
selected parents for mating are too similar, which would be
an indication of the population P becoming less diverse.
In this case the next generation will work with the same
population again. On the other hand, given a very diverse
population, up to N new offspring may be generated in a
single generation at time t. In this case the next generation
is the result of selecting the best N members of the current
parent P (t−1) and new child population C(t), see (3). In the
case of the parent and child having the same fitness value,
Eshelman favors the parent. This joint, cross-generational
selection is reminiscent of the truncation selection used in
(µ + λ) evolution strategies[10], [11]. This is in contrast
with the generational replacement scheme in the simple
genetic algorithm where the child population always takes
the place of the parent population. Therefore this cross-
generational, implicitly elitist selection from a pool ranging
in size from N to 2N guarantees that the overall fitness of
the population can not decrease. Mating, if it occurs between
two sufficiently diverse parents, is accomplished through the
use of the highly disruptive Half-Uniform Crossover (HUX)
operator, which randomly swaps half of the differing bits
between the parents.

Another major difference is the absence of chronic muta-
tion in the CHC algorithm; i.e., mutation isn’t part of each
generational cycle. Rather, it is applied in a radical fashion
to restart the search periodically when the population is
deemed to have become too homogeneous as determined by
the Hamming distance between randomly selected pairs of
members from the current population. As mentioned above,
it is possible that no offspring are created during a generation
when no sufficiently different parents are found for mating
and indicates that the population is converging. A threshold
counter tracks the number of childless generations (2) and
eventually triggers the cataclysmic mutation (4) that reseeds
the population by using the best (i.e., most fit) member found
so far as a template for the other N − 1 new members that
are generated based on mutations from this elite member. By
keeping a sufficiently diverse population, a certain degree
of exploratory search is ensured. Therefore a mutation rate
of 35% was set, along with a population size of 50, both
of which were empirically established and recommended by
Eshelman for the CHC, and also used for these experiments.

4. Experimental Setup
The algorithm was written in the R scripting language,

which is part of the open source R statistics package[12].
As the data was already stored in a format easily accessi-
ble to R and our evaluation functions were based on the
outcome of regressions, a functionality readily provided by
R, we decided to use its programming environment for our
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implementation. We did not view the interpretive nature of
the language to be a problem as we consider the exploratory
quality of this current prototype approach to be its main
feature and benefit.

Each candidate solution was represented by a binary string
of length c, where c was the number of coefficients in the
maximum model. There was a one-to-one mapping between
each coefficient and each position in the bit-string, resulting
in a very close genotype to phenotype linkage, with a “1”
implying inclusion in, and a “0”, exclusion from the current
regression equation for the given coefficient in the candidate
solution. The resulting equation was fed to the native R
regression function and the necessary data to compute our
fitness score was extracted from the output of the regression.

While mostly true to the algorithm described by Eshel-
man, our implementation of the CHC algorithm differed
in three minor aspects: (a) if, during the selection process
of the best N members from the combined parent-child
population, two members, a parent and a child, were found
with the same fitness value, we did not always favor the
parent as was prescribed in the original CHC algorithm,
(b) we slightly varied the trigger point and mechanism
responsible for starting the cataclysmic mutation to help fine-
tune our algorithm in our first study, and finally (c) our re-
initialization of the new threshold counter in the first study
re-used the original initialization L/4 value rather than the
modified formula that incorporated the 35% mutation rate.

4.1 Fitness Functions
The regression function formed the core of our fitness

evaluation, which was embedded within our version of the
CHC algorithm. We used the output of the regression and
made it the basis for assessing the fitness of our candidate
solutions.

In order to find the most useful and effective evaluation
criteria, we implemented a variety of fitness functions, some
of which took the regression output values directly without
modifying them further while others manipulated the outputs
to see if any qualitative improvements could be made. Our
base function consisted of:

fitness_val = base_statistic+ ∗_modifier (1)

where the ∗_modifier, if used, consisted of one
of these: delta_modifier, percent_modifier or
delta_percent_modifier as described below.

The overall goal of our evaluation functions was to find
the model with the fewest terms, yet with the highest ex-
planatory power according to the user specified criteria. Op-
timizations were run over the F-statistic, the Mean Squared
Error (MSE), Adjusted R2, Akaike Information Criterion
(AIC), Bayesian Information Criterion (BIC), and the log
Likelihood (logLik) measures along with the modifiers.
Additionally, the number of variables in the final model
could also be limited.

4.1.1 Pure
The “pure” approach examined the regression output

statistics without manipulating them any further and used
them as the basis for the fitness assessment:

fitness_val = base_statistic (2)

For the first experiment (generalized least squares estima-
tion) we used the F-statistic, the Mean Squared Error (MSE)
and the Adjusted R2. The second experiment (mixed-effects
model maximum likelihood estimation) used the Akaike
Information Criterion (AIC), the Bayesian Information Cri-
terion (BIC), and the log Likelihood (logLik) measures as
the basis of evaluation. These decisions were dictated by
the statistical approach chosen for analysis and demonstrate
the flexibility of the system to work with different fitness
criteria.

The following modifiers took the pure statistic and intro-
duced additional, qualitatively motivated enhancements, to
help explore possibly more effective and meaningful fitness
measures.

4.1.2 Delta
The purpose of the “delta” method was to exert pressure

toward generating simpler models by reducing the number
of variables in the model as a larger number of coefficients
not only represent a challenge in terms of computation, but
are also harder to interpret. This was done through the use
of a constant multiplier that rewarded shorter equations. Our
modifier value (delta) was computed using:

delta_modifier = (MAX − terms) ∗DELTA (3)

and then added to the base statistic as shown in (1). Here,
and subsequently, MAX refers to the maximum number of
variables in the complete model, terms refers to the number
of variables in the current candidate model, and DELTA is
a small penalty constant heuristically determined after a few
trial runs to establish a sufficiently optimal value. Therefore,
given two candidate models with the same base fitness value,
the one with fewer coefficients would be scored higher by
this penalty function.

4.1.3 Percent
The “percent” approach considered the fraction of signif-

icant coefficients in the model as defined by their p-value.

Table 1: Significance levels and weights
p-value weight
0.001 1.0
0.01 0.05
0.05 0.01
0.1 0.001

Table 1 shows the weights associated with each coeffi-
cient’s p-value as reported by the regression output.
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The sum of weights resulting from evaluating the can-
didate model’s regression output was used to compute the
percent_modifier as shown below and then added to (1).

percent_modifier = sum_weight/terms (4)

The underlying motivation was that this would favor mod-
els with a more statistically significant set of explanatory
variables, yielding presumably more meaningful models that
would therefore be of greater interest to the researcher.

4.1.4 Delta-Percent
Finally, our “delta-percent” method combined the above

mentioned delta and percent approaches shown in (3) and (4)
in an attempt to find models with a smaller set of variables
while at the same time yielding models that contained highly
statistically significant predictor variables.

delta_percent_modifier = delta_modifier +

percent_modifier
(5)

As before, this modifier would be added to (1).

4.2 Optimization Runs
Both experiments shared much of the same runtime pa-

rameters and environment. This section summarizes what
was common to them.

Including the base statistics, we had a total of 12 fitness
functions available for each of the economics experiments
after we applied the delta, percent, and delta-percent modi-
fiers to the base statistic.

We ran 15 trials for each of the 12 fitness measurements.
For each trial, our CHC algorithm ran for 2500 generations,
with a population of 50 candidate solutions. The mutation
rate was set at 35% as recommended by Eshelman. While
35% would seem like a very large mutation rate for a
traditional genetic algorithm, we remind the reader that
mutation in the CHC algorithm only occurs periodically to
restart a stalled search, and not on an ongoing basis as with
the standard genetic algorithm.

Most of the solutions converged between 1500 and 2000
generations and very little improvement was observed be-
yond 2200 iterations of the algorithm. Figure 1 shows one of
the optimization runs. As can be seen in the figure, initially
the optimization proceeds at a quick rate, and then slowly
continues to improve over time until it converges. The top
curve shows the optimum value found so far, while the
lower, jagged line shows the current average fitness value
for the population in each generation. As the search is
periodically restarted in response to the population growing
too homogeneous, we can clearly see that this average fitness
value abruptly drops due to the cataclysmic mutation, but
then recovers and leads to improvements of the best results
due to the newly diversified population, until the search
converges.

Next we provide information specific to each experiment.

Fig. 1: Optimizing AIC-Percent

4.2.1 Experiment 1
The first economics experiment used the F-statistic, the

Mean Squared Error (MSE) and the Adjusted R2 as the
base fitness measures as the economists were interested in
optimizing the models according to these statistics. Accord-
ingly our fitness functions were set up to that end. Briefly,
the F-statistic evaluates the overall fit of the current model
by looking at the ratio of two variances (one explained by
parameters in the model, the other due to residuals), and
the MSE is a measure of error between the data and the
regression equation. R2 measures the percent of variation
in the dependent variable that can be accounted for by the
regression, while the Adjusted R2 assesses the fit of the
model by also considering the complexity, i.e., the number
of parameters in the model.

Also, while exploring various ways of fine-tuning the al-
gorithm, we slightly modified the trigger mechanism for the
cataclysmic mutation by using the average of the Hamming
distance as the trigger for the reboot of the search.

At the end of the search we displayed a user specified
number of the top M models found, ranked by the specific
base statistic and modifier selected.

4.2.2 Experiment 2
The base fitness measures for the second experiment as

specified by the economists consisted of the Akaike Infor-
mation Criterion (AIC), the Bayesian Information Criterion
(BIC), and the log Likelihood (logLik) statistic. AIC and
BIC are similar to each other in that they both consider
the complexity of the model in their computation, but BIC
will impose a larger penalty when the number of regressor
variables is large. The log Likelihood measure compares the
current model to a null model: the lower the log likelihood,
the better the model.

In addition to the approach employed in the first exper-
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iment, we optimized our search by subsets for this study.
Our maximum model consisted of 240 coefficients. The
economists decided to optimize along two different sets
of parameters and therefore split these variables into three
mutually exclusive subsets. A common base set (set_1)
contained 190 variables, and sets 2_1 and 2_2 each contained
20 variables3. Our optimization trials combined set_1 with
one of the other sets (i.e., 2_1 or 2_2) but not both, resulting
in two alternative “sub-models” for optimization.

The optimizations would either be run against the common
base set_1 and set 2_1, or set_1 and set 2_2. After the
optimization found the optimum model using the 220 co-
efficients from the combined set and generated a ranking of
the best M models as specified, it also proceeded to evaluate
the alternative model (using the common base set, but the
subset not used during the evolution of these results). That
is, each of these top M candidate solutions from the final
generation were also used to evaluate the alternate model
consisting of the common base set and the unused subset to
see if any new insights could be gained by examining these
additional, alternative models.

The ability to specify different subsets of the model to help
guide the search provided more flexibility to the researchers
exploring their data.

5. Conclusions and Future Work
An evolutionary computation approach was used to help

analyze data from two economics experiments. The main
advantage this approach offers to researchers is the flexi-
bility to direct the search for models that can explain their
experimental data. This method allows the user to request
optimization according to specific statistics, and to enhance
these searches by taking both the size and percentage of
significant variables in the candidate models into account.
The results are presented in a ranking of the top models
found according to the user-specified search criteria. Finally,
it is also possible to optimize the search over subsets of
the maximum model, offering yet more flexibility. All of
this, we believe, offers the economists help with their search
for meaningful regression models that might have otherwise
been missed.

The evolutionary computation approach has several prop-
erties that make it an attractive option. First, the fact that
these evolutionary algorithms can easily be used with dif-
ferent fitness criteria (i.e., evaluation functions) demonstrates
the flexibility of the system as it allows the user a great
deal of leeway in how to guide the (evolving) search and
adjust the system to meet the user’s specific needs for
a given situation. For instance, by adjusting parameters
and the evaluation function, the quantity and quality of
results, in terms of the number of coefficients and their
significance levels, can be easily adjusted to help locate the

3That both of these subsets had the same cardinality is not significant.

right balance between the two factors. Second, evolutionary
algorithms are inherently suitable for parallel or distributed
execution. Given the right platform, this would allow for the
simultaneous evaluation of many candidate solutions, i.e.,
models, in parallel, greatly speeding up the work. Third,
while it is possible for the search to get trapped in a local
optimum, the stochastic nature of the search would make this
unlikely with repeated runs. Finally, this approach offers an
alternative to an exhaustive search that would be infeasible
with a larger number of coefficients in a model as this
algorithm only needs to sample a small subset of the total
search space in order to reach its goal; therefore the use of
a heuristic approach in the face of an exploding exponential
number offers an attractive alternative even if it is unable to
always guarantee an optimal solution.

While more work needs to be done to be able to gener-
alize these findings, we believe the results were sufficiently
encouraging to motivate further investigation. Future inves-
tigations of this approach may include the following:

The exploration of other run-time parameters for the
CHC genetic algorithm, including dynamic self-adapting
parameters during run-time, such as the mutation rate, but
also the delta penalty value, and the weights assigned
for the assessment of the coefficients’ significances merit
investigation. Additionally, the use of alternate evolutionary
algorithms, such as Particle Swarm Optimization[13], [14],
[15], and how they might be applied to this problem domain
should be examined to determine if these can produce similar
or better results, and perhaps more effectively.

The issue of how to deal with large sets of indepen-
dent variables during regression analysis presents a serious
challenge, especially when trying to reduce the number
of variables to the smallest meaningful subset. Stepwise
regression, while computationally efficient, can not always
guarantee the optimum solution. An exhaustive search via
“all-possible” regression is an option, especially if the num-
ber of explanatory variables is small. However, once the
number of variables grows, this method quickly becomes
computationally infeasible, especially considering that each
additional variable doubles the search space, and other
selection tools and techniques will have to be considered.
The goal of analyzing experimental data is to gain an
understanding of the processes that generated this data and
the method outlined in this paper offers one such approach
by using a flexible, directed exploratory search.

6. Acknowledgments
This paper draws from the work done with my colleagues

Hans J. Czap and Natalia V. Czap in [4], [5]. I want to thank
them for providing the dataset and their valuable comments
on the paper. This work was also supported in part by an
allocation of computing time from the Ohio Supercomputer
Center. The author also thanks St. Lawrence University for
the use of its computing cluster for the first study.

40 Int'l Conf. Genetic and Evolutionary Methods |  GEM'11  |



References
[1] B. Zhang and S. Horvath, “Ridge regression based hybrid genetic

algorithms for multi-locus quantitative trait mapping,” International
Journal Bioinformatics Reaserch and Applications, vol. 1, no. 3, 2006.

[2] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning: Data Mining, Inference, and Prediction, Second Edition
(Springer Series in Statistics), 2nd ed. Springer, Feb. 2009. [Online].
Available: http://www.worldcat.org/isbn/0387848576

[3] J. Holland, Adaptation in natural and artificial systems. Ann Arbor,
USA: University of Michigan Press, 1975.

[4] E. Bonakdarian, H. Czap, and N. Czap, “Selection of minimal variable
subsets with the help of genetic algorithms in economic analysis,”
Journal of Interdisciplinary Economics, vol. 21, pp. 407–425, 2009.

[5] H. Czap, N. Czap, and E. Bonakdarian, “Walk the talk? The
effect of voting and excludability in public goods experiments,”
Economic Research International, vol. 2010, December 2010,
doi:10.1155/2010/768546.

[6] J. Andreoni, “Cooperation in public-goods experiments: Kindness or
confusion?” American Economic Review, vol. 85, no. 4, pp. 891–904,
1995.

[7] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and
Machine Learning, 1st ed. Addison-Wesley Professional, 1989.

[8] A. E. Eiben and C. A. Schippers, “On evolutionary exploration and
exploitation,” Fundam. Inf., vol. 35, pp. 35–50, August 1998. [Online].
Available: http://portal.acm.org/citation.cfm?id=297119.297124

[9] L. J. Eshelman, “The CHC adaptive search algorithm: How to have
safe search when engaging in nontraditional genetic recombination,”
in FOGA, 1990, pp. 265–283.

[10] I. Rechenberg, Evolutionsstrategie: optimierung technischer systeme
nach prinzipien der biologischen evolution. Frommann-Holzboog,
1973.

[11] H.-P. Schwefel, “Evolutionsstrategie und numerische optimierung,”
Ph.D. dissertation, Technische Universität Berlin, 1975.

[12] R Development Core Team, R: A Language and Environment for
Statistical Computing, http://www.R-project.org/, R Foundation for
Statistical Computing, Vienna, Austria, 2010, ISBN 3-900051-07-0.
[Online]. Available: http://www.R-project.org/

[13] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Pro-
ceedings of IEEE International Conference on Neural Networks,
August 1995, pp. 1942–1948.

[14] Y. Shi and R. Eberhart, “A modified particle swarm optimizer,” in
Evolutionary Computation Proceedings, 1998. IEEE World Congress
on Computational Intelligence., The 1998 IEEE International Confer-
ence on, 1998, pp. 69–73.

[15] R. C. Eberhart and Y. Shi, “Comparison between genetic algorithms
and particle swarm optimization,” in Proceedings of the 7th
International Conference on Evolutionary Programming VII, ser. EP
’98. London, UK: Springer-Verlag, 1998, pp. 611–616. [Online].
Available: http://portal.acm.org/citation.cfm?id=647902.739129

Int'l Conf. Genetic and Evolutionary Methods |  GEM'11  | 41



Algorithmic Bounded Rationality In The Iterated
Prisoner’s Dilemma Game

Christos A Ioannou1 and Ioannis Nompelis2

1Economics Division, University of Southampton, Southampton, United Kingdom
2Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, Minnesota, USA

Abstract— A genetic algorithm is used to simulate the evo-
lution of Moore machines in the iterated Prisoner’s Dilemma
stage-game. The machines are prone to two types of errors:
(a) implementation errors and (b) perception errors. We
conduct computational experiments that incorporate differ-
ent levels of errors in an effort to assess whether and
how the distribution of machines in the population changes.
In sharp contrast to previous studies, the incorporation of
implementation and perception errors is sufficient to reduce
cooperative outcomes. In addition, the study identifies a
threshold error-level. At and above the threshold error-level,
the prevailing machines converge to the open-loop machine
Always-Defect. On the other hand, below the threshold,
the prevailing machines are closed-loop and diverse. The
diversity thus impedes our inferential projections on the
superiority of a particular machine.

Keywords: Genetic Algorithm, Automata, Prisoner’s Dilemma

1. Introduction
Our objective is to use the genetic algorithm to simulate

an evolving, error-prone population of agent-based strategies
that plays the iterated Prisoner’s Dilemma (PD) paradigm.
According to the thought experiment, a group of agents is
to play the PD game. The Prisoner’s Dilemma payoff-matrix
is provided in Table 1. Each agent is required to submit a
strategy that is implemented by a type of finite automaton
called a Moore machine [1]. The machine specifies actions
contingent upon the opponent’s reported actions. The agents
play the PD game against each other and against their twin
in a round-robin structure. With the completion of all round-
matches, the actual scores and machines of every agent
become common knowledge. Based on this information,
agents update their machines for the next generation via the
genetic algorithm. Bounded rationality is introduced in the
form of implementation errors and perception errors.
Implementation errors are errors in the implementation of
actions. On the other hand, perception errors are errors in the
transmission of information. The computational experiments
conducted, incorporate different levels of errors in an effort
to assess whether and how the distribution of outcomes and
strategies in the population changes. In addition, behavioral

patterns that fare well in the simulated environments are
identified and discussed.

Table 1: Prisoner’s Dilemma Matrix
Cooperate Defect

Cooperate 3,3 0,5
Defect 5,0 1,1

The genetic algorithm [2] is one of many search tech-
niques developed for solving hard combinatorial optimiza-
tion problems in large search spaces. Other optimization
techniques include: Simulated Annealing [3], Tabu Search
[4], Stochastic Hill Climbing and Compset Algorithm [5].
Axelrod [6] was the first to model the evolutionary process
of the iterated PD game with a genetic algorithm. The
winning strategy in his tournament was Tit-For-Tat (TFT); a
strategy that starts off by cooperating and then imitates the
most recent action of the opponent. Nevertheless, Axelrod’s
study was restricted by his use of error-free strategies whose
actions were contingent to the action profiles of (only) the
last three periods, and by his use of a fixed environment
composed of (only) eight strategies. On the other hand,
here, we circumvent these restrictions by the use of a vari-
able environment where strategies co-evolve as the strategic
population changes. In addition, we incorporate bounded
rationality in the form of implementation and perception
errors.

Bendor, Kramer and Stout [7] have been, to our knowl-
edge, the first to conduct a computer tournament with
random shocks. In their study, the authors re-evaluate the
performance of reciprocating strategies such as TFT and
identify alternative strategies that sustain cooperation in an
environment with random shocks. The winning strategy in
their tournament is Nice-And-Forgiving (NAF) which differs
in many ways from TFT. First, NAF is nice in the sense that
it cooperates as long as the frequency of cooperation of the
opponent is above some threshold. Second, NAF is forgiving
in the sense that although NAF retaliates if the opponent’s
cooperation falls below the threshold level of cooperation,
it reverts to full cooperation before its opponent does, as
long as certain minimal levels of cooperation are met by the
opponent.
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On the other hand, the results of the present study point
to a very different direction from that in Axelrod [6] and
Bendor, Kramer and Stout [7]. Here, we show that the evo-
lution of cooperative machines is considerably weaker while
the change in the model is ecologically plausible: errors
are common in our strategic interactions. In addition, by
varying the error-level, the study identifies a threshold error-
level. At and above the threshold error-level, the prevailing
structures converge to the one-state, open-loop machine
Always-Defect: a relentless punisher. Yet, below the thresh-
old, the prevailing machines are cooperative, closed-loop and
diverse. These findings enable us to deduce that strategic
simplification is a necessary condition only in the error-
prone environments. In the presence of errors, behavior is
governed by mechanisms that restrict the flexibility to choose
potential actions. These mechanisms simplify behavior to
less complex patterns (rules of thumb), which are easier
for an observer to recognize and predict. In the absence
of errors, the behavior of well-informed agents responding
with flexibility to every perturbation in the environment may
not produce easily recognizable patterns. The diversity thus
impedes our inferential projections on the superiority of a
particular machine.

The contribution of this paper is two-fold. First, the study
aims to elicit an understanding of the patterns of reasoning
of agent-based behaviors that emerge in adaptive systems in
the presence of errors. To this extend, we discern behavioral
patterns that fare well in the error-prone environments.
Second, the study also contributes to a better understanding
of how small error-perturbations in the agents’ strategies
change the set of prevailing structures.

2. Moore Machines
A finite automaton is a mathematical model of a system

with discrete inputs and outputs. The system can be in any
one of a finite number of internal configurations or “states".
The state of the system summarizes the information con-
cerning past inputs that is needed to determine the behavior
of the system on subsequent inputs. The specific type of
finite automaton used here is a Moore machine [1]. Let I
denote the set of agents, Ai denote the set of i’s actions, A
denote the cartesian product of the action spaces Ai written

as A ≡
I
×

i=1
Ai, and gi : A → < denote the real-valued

utility function of i. Thus, a Moore machine for an adaptive
agent i in a repeated game of G = (I ,{Ai}i∈I , {gi}i∈I)
is a four-tuple (Qi, qi

0, f i, τ i) where Qi is a finite set of
internal states of which qi

0 is specified to be the initial state,
f i : Qi → Ai is an output function that assigns an action
to every state, and τ i : Qi × A−i → Qi is the transition
function that assigns a state to every two-tuple of state and
other agent’s action.

C C,D

D
start C D

Fig. 1: Grim-Trigger Machine

Qi = {qC , qD}
qi
0 = qC
f i(qC) = C and f i(qD) = D

τ i(q, a−i) = {qC (q,a−i)=(qC ,C)
qD otherwise

For example the machine (Qi, qi
0, f i, τ i) in Figure 1,

carries out the Grim-Trigger strategy in the context of the
PD game. Thus, the strategy chooses “cooperate" so long as
both agents have chosen “cooperate" in every period in the
past, and chooses “defect" otherwise.

Bounded rationality is introduced in the form of random
errors committed by the machines. More specifically, the
study considers errors in the implementation of actions
and errors in the perception of actions. Implementation
and perception errors when considered in isolation lead to
quite different results. For instance, the machine Contrite-
Tit-For-Tat in the iterated PD game is proof against errors
in implementation but not against errors in perception.
The machine acts in principle as Tit-For-Tat, but enters
a “contrite" state if it erroneously implements a defection
rather than a cooperation. Consequently, the machine accepts
the opponent’s retaliation and cooperates for the next two
periods but leaves the contrite state soon after. On the
other hand, if the machine Contrite-Tit-For-Tat mistakenly
perceives that the opponent defected, will respond with a
defection without switching to the contrite state and will
not meekly accept any subsequent retaliation. It is therefore
crucial to formally define implementation and perception
errors in the context of Moore machines.

Definition 1 The machine of agent i in the
PD game commits an implementation error with
probability ε, when for any given state q, the
machine′s output function returns the action f i(q)
with probability 1−ε and draws another action “f i(q)"
where f i(q)6=“f i(q)" otherwise.1

That is, an implementation error level of ε indicates
that with probability ε the course of action dictated by
the particular state of the machine will be altered. For
example, a cooperation dictated by the particular state will be

1A general definition would postulate that the machine of agent i
commits an implementation error with probability ε, when for
any given state q, the machine′s output function returns the
action f i(q) with probability 1− ε and draws another action ai ∈
Ai \ f i(q) randomly and uniformly otherwise. Yet, since the action
space in the PD game consists of only two actions, the former definition
suffices.
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implemented erroneously as a defection with probability ε.
On the other hand, perception errors are defined as follows.

Definition 2 The machine of agent i in the PD
game commits a perception error with probability δ,
when for any given opponent′s action a−i, the machine
inputs the opponent′s action a−i into the transition
function with probability 1 − δ and inputs the
opponent′s action “a−i" into the transition function
where a−i 6=“a−i" otherwise.

Thus, a perception error level of δ indicates that with
probability δ an opponent’s action is reported incorrectly,
while with probability 1− δ the opponent’s action is per-
fectly transmitted.

Furthermore, we consider machines that hold no more
than eight internal states. The choice to keep the upper
bound on the number of internal states at eight is reasonable
given complexity considerations. As Rubinstein [8] indi-
cates, agents seek to device behavioral patterns which do
not need to be constantly reassessed and which economize
on the number of states needed to operate effectively in a
given strategic environment. A more complex plan of action
is more likely to break down, is more difficult to learn, and
may require more time to be executed. In fact, a number
of studies (some with subjects in the laboratory) have been
suggestive of the effectiveness of simple strategies over more
complex ones in a wide range of environments ([9]; [10];
[11]; [12]).

3. Genetic Algorithm
The genetic algorithm is an evolutionary search algorithm

that manipulates important schemata based on the mechanics
of natural selection and natural genetics. Other descriptive
constructs, such as replicator dynamics or evolutionary stable
strategies, lack the ability to incorporate forms of innova-
tion. The present search algorithm however, removes this
restriction by allowing for innovative processess to enter
the model in a tractable manner. The genetic algorithm
was developed by Holland [2] for optimization problems
in difficult domains. Difficult domains are those with both
enormous search spaces and objective functions with many
local optima, discontinuities and high dimensionality.

The search for an appropriate way to model strategic
choices of agents has been a central topic in the study
of game theory. The genetic algorithm is an attractive
choice because it combines survival of the fittest with a
structured information exchange that emulates some of the
innovative flair of human search. The mechanics of the
genetic algorithm involve copying strings and altering states
through the operators of selection and mutation. Initially,
reproduction is a process where successful strings proliferate
while unsuccessful strings die off. Copying strings according
to their payoff or fitness values is an artificial version of
Darwinian selection of the fittest among string structures.

After reproduction, selection results to higher proportions
of similar successful strings. The mechanics of reproduction
and selection are simple, involving random number gener-
ation, string-copying and string-selection. Nonetheless, the
combined emphasis of reproduction and the structured se-
lection give the genetic algorithm much of its power. On the
other hand, mutation is an insurance policy against prema-
ture loss of important notions. Even though reproduction and
selection effectively search and recombine extant notions,
occasionally they may become overzealous and lose some
potentially useful material. In artificial systems, mutation
protects against such an irrecoverable loss. Consequently,
these operators bias the system towards certain building
blocks that are consistently associated with above-average
performance.

4. Methodology
The genetic algorithm requires the natural parameter set

of the optimization problem to be coded as a finite-length
string over some finite alphabet. Each Moore machine here,
is thus represented by a string of 25 elements. The first
element provides the starting state of the machine. Eight
three-element packets are then arrayed on the string. Each
packet represents an internal state of the machine. The first
bit, within an internal state, describes the action dictated
by the particular state (1 := cooperate, 0 := defect). The
next element, within an internal state, gives the transition
state if the opponent is observed to cooperate, and the final
element, within an internal state, gives the transition state if
the opponent is observed to defect. Given that each string
can utilize up to eight states, the scheme allows the definition
of any Moore machine of eight states or less.

For example, take the machine that implements TFT
in Figure 2. The machine only needs to remember the
opponent’s last action hence utilizes only two states; the last
six states are redundant as illustrated in the coding.

The genetic algorithm consists of a number of generations.
Each generation starts with a given population called the
parent population. A new population of the same size is
then constructed called the offspring population. In this
formulation, the genetic algorithm operates with a population
of machines. Each machine represents an agent’s strategy.
Initially, a population of thirty machines is chosen at random.
Then, each machine is tested against the environment (which
is composed of the other machines and its twin) in a round-
robin structure. The game-play occurs for 200 periods per
match. Each machine, thus aggregates a raw score based on
the payoffs illustrated in Table 1. The offspring population
is constructed from the parent population, by selecting the
machines that aggregated the top twenty scores. In addition,
ten new structures are created via a process of selection
and mutation. The process requires the draw of ten pairs of
machines from the parent population (with the probabilities
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Fig. 2: Tit-For-Tat Machine

0︸︷︷︸
initial state

1 0 1︸ ︷︷ ︸
state 0

0 0 1︸ ︷︷ ︸
state 1

0 0 0︸ ︷︷ ︸
state 2

0 0 0︸ ︷︷ ︸
state 3

0 0 0︸ ︷︷ ︸
state 4

0 0 0︸ ︷︷ ︸
state 5

0 0 0︸ ︷︷ ︸
state 6

0 0 0︸ ︷︷ ︸
state 7

biased by their scores) and the selection of the better
performer from each pair. Then, these ten machines undergo
a process of mutation. Mutation occurs when an element
at a random location on the selected string changes value.
Each element on the string is subjected to a 4% independent
chance of mutation, which implies an expectation of 1
element-mutation per string. The population is iterated for
500 generations. The adaptive plan is summarized below in
the pseudocode of Figure 3 and Figure 4.2

Specify error-level 
Fix max-periods = 200 
 
Create initial population: 30 agents (seed randomly) 
Initiate round-robin tournament 
 
For t = 1 to 500 do 
 
 For all agent-pairs do 
  For p = 1 to max-periods do 
   Award utils to each agent based on the PD matrix 
  End loop 
 
  Output performance score 
 End loop 
 
 Apply subroutine for the offspring-population-creation 
 Store agent results 
 
End loop 

Fig. 3: Pseudocode of the Main Program

5. Results
In order to assess whether and how the distribution of

outcomes and structures in the population changes, we
conducted four computational experiments. The computa-
tional experiments incorporate different levels of errors. In
particular, in the four computational experiments conducted,

2A variety of sensitivity analyses have been performed, and confirm that
the results reported here, are robust to reasonable changes in these choices.

Sort agents based on performance score 
 
Copy top 20 agents to offspring-population 
 
Select 10 agent-pairs via probabilities biased by performance scores 
 
For each of 10 pairs do 
 Create new agent as a copy of the winner of the pair’s match 
 Mutate new agent by switching one element at random 
 
End loop 
 
 
 Fig. 4: Subroutine of the Offspring-Population-Creation

the machines are subjected to a constant independent chance
of implementation and perception errors of 4%, 2%, 1%
and 0%, respectively. The results that follow, present the
averages over all thirty members of each generation and
thirty simulations conducted for each experiment.

5.1 Evolution Of Payoffs
Figure 5 shows the average payoff per game-generation

over all thirty members under the 4%, 2%, 1% and 0%
computational experiments. In the early generations, the
agents tend to use machines that defect continuously. The
reason is that at the start of the evolution, the machines
are generated at random. In such an environment, the best
strategy is to always defect. With the lapse of a few gen-
erations though, machines in the less error-prone conditions
achieve consistent cooperation which allows the payoffs to
move higher. The average payoff in the last generation of
the 0% treatment is 2.86 utils, whereas the average payoff
in the last generation of the 1% treatment is 2.54 utils. The
average payoff in the last generation of the 2% and 4%
treatments is 1.95 and 1.44 utils, respectively. The paired-
differences test establishes that at a 95% level of significance
the means of the conditions are statistically different. The
results indicate that the incorporation of errors is sufficient
to alter the evolution of cooperative outcomes.
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5.2 Prevailing Machines
The effect of errors on the structure of the machines is

an important question that has not been addressed in the
degree we see fit by evolutionary game theorists. Thus,
here we investigate behavioral patterns that fare well in the
simulated environments. This way a lot can be said about the
type of machines that survive, or even the type of machines
that do not survive in these environments. The clear winner
in the 4% and 2% treatments was the machine Always-
Defect. Always-Defect was the winner in 22 out of the 30
simulations run in the 4% treatment, and in 19 out of the 30
simulations run in the 2% treatment. The machine Always-
Defect is presented in Figure 6. Always-Defect is an open-
loop machine; in other words, the actions taken at any time-
period do not depend on the actions of the opponent.

C,D

start D

Fig. 6: Always-Defect

On the other hand, the structures that prevailed in the
1% and 0% treatments were diverse. This result halts any
possible attempt to discern a particular behavioral pattern
that fares well in these specific treatments. Yet, it is notewor-
thy that unlike the open-loop machine Always-Defect, the
diverse array of machines that prevailed in the 1% and 0%
treatments were all closed-loop (history-dependent). Thus,

the effect of different error-levels on the structure of the
machines points towards the existence of a threshold error-
level at 2%.

6. Discussion
TFT was the winner in the tournaments with error-free

strategies of Axelrod [9]. The performance of TFT lead
Axelrod to identify some basic attributes that were necessary
for the emergence and survival of cooperation. These were:
(i) an avoidance of unnecessary conflict by cooperating as
long as the other agent does, (ii) provocation in the face
of an uncalled for defection by the other, (iii) forgiveness
after responding to a provocation, and (iv) clarity of behavior
so that the other agent can adapt to your pattern of action
[9]. On the other hand, Bendor, Kramer and Stout [7]
incorporated in their computer tournament random shocks.
The winning strategy in that tournament was NAF. Yet, the
success of NAF is not a robust result but is limited to the
particular ecology. As Bendor, Kramer and Stout note, the
generosity of NAF creates a risk: other strategies may exploit
NAF’s willingness to give more than it receives. In other
words, NAF can be suckered by a nasty strategy that is
disinterested in joint gains.

On the other hand, the results of the present study point
to a very different direction from that in Axelrod [9] and
Bendor, Kramer and Stout [7]. By varying the error-level,
the study identifies a threshold error-level. At and above the
threshold error-level, the prevailing structures converge to
the open-loop machine Always-Defect. On the other hand,
below the threshold, the prevailing machines are closed-loop
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and diverse, which impedes our deductive power on the
superiority of a particular structure. With sufficient effort
though, one might be able to design the optimal strategy for
these specific environments. Designing an optimal strategy
is a hard problem because its effectiveness depends mostly
on the strategies of the other agents involved. One possible
approach for dealing with this problem is to endow the agent
with the capability of adapting to other agents in the system
[13]. The usage of learning techniques for adapting to other
agents has received wide attention in the multi-agent system
research community (for a survey, see [14]). The research
in this field focuses on two central approaches: model-based
learning (also known as Opponent Modelling), where an
explicit model of the opponent’s strategy is generated and
exploited ([15]; [16]; [17]; [18]), and model-free learning,
where the agent’s strategy is directly adapted based on the
observed behavior of the opponents [19]. This distinction is
also applicable to the more general reinforcement learning
problem [20] where both model-based [21] and model-free
approaches [22] exist.

Recently, Markovitch and Reger [23] suggested a model-
based approach where agents can greatly benefit from adapt-
ing to a particular adversary. If however, the learned model
is not accurate, then using it to predict the opponent’s ac-
tions may potentially harm the agent’s strategy. In addition,
acquiring an accurate model of a complex opponent strategy
may be computationally infeasible. To contend with the com-
plexity of learning a full opponent model, the agent learns
instead only a certain aspect of the opponent’s strategy: the
opponent’s weakness. More specifically, the agent attempts
to characterize the set of states in which the opponent’s
performance is relatively inferior given that the opponent is
a boundedly rational agent, whose quality of decision is not
uniform over all domain states. In order to reduce the risk of
using a faulty model, the agent uses the model only to bias
his actions in a minimally-risky way. Thus, even if the model
is not accurate with respect to the opponent’s behavior, its
use cannot harm the agent’s performance significantly. In
addition, the agent considers states in which the opponent
suffers, but the agent’s own strategy is expected to fare well.
In other words, the model takes advantage of points at which
the agent exhibits a relative advantage over the opponent.

7. Acknowledgements
We are grateful to Aldo Rustichini and Ket Richter for

their continuous support and invaluable discussions. We are
also indebted to John H. Miller for his comments.

References
[1] Moore, E. Gedanken Experiments on Sequential Machines, in Au-

tomata Studies, Princeton University Press: Princeton, New Jersey,
1956.

[2] Holland, J. Adaptation in Natural and Artificial Systems, MIT Press,
1975.

[3] Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. “Optimization by
Simulated Annealing," Science 220, 671Ð680, 1983.

[4] Glover F., and Laguna M. “Tabu Search," In Modern Heuristic Tech-
niques for Combinatorial Problems, C.R. Reeves, 1993.

[5] Hamo, Y., and Markovitch, S. “The Compset Algorithm for Subset
Selection," In Proceedings of The Nineteenth International Joint Con-
ference for Artificial Intelligence, 728-733, 2005.

[6] Axelrod, R. “The Evolution of Strategies in the Iterated Prisoner’s
Dilemma," In Lawrence Davis, Los Altos, California, Morgan Kauf-
mann, 1987.

[7] Bendor, J., Kramer, R. and Stout, S. “When in Doubt... Cooperation
in a Noisy Prisoner’s Dilemma," Journal Of Conflict Resolution 35,
691-719, 1991.

[8] Rubinstein, A. “Finite Automata Play the Repeated Prisoner’s
Dilemma," Journal Of Economic Theory 39, 83-96, 1986.

[9] Axelrod, R. The Evolution of Cooperation, Basic Books: New York,
1984.

[10] Rust, J., Miller, J. H., and Palmer, R. “Characterizing Effective
Trading Strategies," Journal of Economic Dynamics and Control 18,
61-96, 1994.

[11] Selten, R., Mitzkewitz, G., and Uhlich, R.“Duopoly Strategies Pro-
grammed By Experienced Traders," Econometrica 65, 517-555, 1997.

[12] Ioannou, C. “Bounded Rationality in Finite Automata." Discussion
Papers in Economics and Econometrics, 1019. Southampton: University
of Southampton, 2010.

[13] Sen, S., and Weiss, G. Adaptation and Learning in Multi-agent
Systems: Lectures Notes in Articial Intelligence, Vol. 1042. Springer-
Verlag, 1996.

[14] Sen, S., and Weiss, G. “Learning in Multi-agent Systems," In G.
Weiss (ed.): Multi-agent Systems: A Modern Approach to Distributed
Artificial Intelligence, The MIT Press: Cambridge, Massachusetts, 259-
298, 1999.

[15] Carmel, D., and Markovitch, S. “Model-based Learning of Interac-
tion Strategies in Multi-agent Systems," Journal of Experimental and
Theoretical Artificial Intelligence 10(3), 309-332, 1998.

[16] Carmel, D., and Markovitch, S. “Learning Models of Intelligent
Agents," In Proceedings of the Thirteenth National Conference on
Artificial Intelligence, Portland, Oregon, 62-67, 1996c.

[17] Freund, Y., Kearns, M., Mansour, D., and Rubinfeld, R. “Efficient
Algorithms for Learning to Play Repeated Games Against Compu-
tationally Bounded Adversaries," In Proceedings of the 36th Annual
Symposium on Foundations of Computer Science, IEEE Computer
Society Press, Los Alamitos, California, 332-341, 1995.

[18] Stone, P., Riley, P., and Veloso, M. “Defining and Using Ideal
Teammate and Opponent Agent Models," In Proceedings of the 7th
Conference on Artificial Intelligence (AAAI-00) and of the 12th
Conference on Innovative Applications of Artificial Intelligence (IAAI-
00), Menlo Park, CA, 1040-1045, 2000.

[19] Uther, W. T. B., and Veloso, M. “Generalizing Adversarial Rein-
forcement Learning," In Proceedings of the AAAI Fall Symposium
on Model Directed Autonomous Systems, 1997.

[20] Kaelbling, L. P., Littman, M. L., and Moore, A.P. “Reinforcement
Learning: A Survey," Journal of Artificial Intelligence Research 4, 237-
285, 1986.

[21] Moore, A. W., and Atkeson, C. G. “Prioritized Sweeping: Reinforce-
ment Learning With Less Data and Less Time," Machine Learning 13,
103-130, 1993.

[22] Watkins, C. J., and Dayan, P. “Q-Learning," Machine Learning 8,
279-292, 1992.

[23] Markovitch, S., and Reger, R. “Learning and Exploiting Relative
Weaknesses of Opponent Agents," Autonomous Agents and Multi-agent
Systems 10, 103-130, 2005.

Int'l Conf. Genetic and Evolutionary Methods |  GEM'11  | 47



An hybrid genetic algorithm for two-dimensional

cutting problems using guillotine cuts

Hamza Gharsellaoui1, Hamadi Hasni2
1National Institute of Applied Sciences and Technologies, INSAT, Tunisia

Gharsellaoui.hamza@gmail.com
2National School of Computer Science, ENSI, University of Manouba, Tunisia

hamadi.hasni@ensi.rnu.tn

ABSTRACT
The paper deals with the purpose of one
hybrid approach for solving the constrai-
ned two-dimensional cutting (2DC) pro-
blem. We study this hybrid approach that
combines the genetic algorithm and the
Tabu search method. For this problem, we
assume a packing of a whole number of
rectangular pieces to cut, and that all cuts
are of guillotine type in one sheet of a
fixed width and an infinite height. Finally,
we undertake an extensive experimental
study with a large number of problem ins-
tances extracted from the literature by the
Hopper’s Benchmarks in order to support
and to proove our approach and to eva-
luate the performance.

Key words: guillotine cutting and packing pro-
blem, Tabu search, genetic algorithm, guillotine
constraint, Hybrid approach.

1 INTRODUCTION

The packing problems have been widely stu-
died during the last three decades, as they are
often faced in industry. The rectangular pieces
packing problem, cutting also from rectangular
board, is one particular case of this set of pro-
blems. The aim is often to achieve the minimum
trim loss [13]. We had done some studies on pa-
cking problems in [14]. In this paper we propose a
combination tabu search / genetic algorithms ap-
proach to construction of optimization algorithms
for problems such as packing problems whose in-

volve constructing an arrangement of items that
minimizes the total space required by the arran-
gement. This is mainly due to the constraints im-
posed by the industrial applications, e.g. textile,
wood, steel and metal industry. A recent survey
on packing problems is given in [15]. In this pa-
per, we specifically consider the two-dimensional
(2D) rectangular strip packing problem based on
a new hybrid approach, named hybrid genetic al-
gorithm. The input is a list of n rectangles with
their dimensions (length and width). The goal
is to pack the rectangles without overlap into a
single rectangle of width W and minimum height
H. We further restrict ourselves to the oriented,
orthogonal variation, where rectangles must be
placed parallel to the horizontal and vertical axes,
and the rectangles can be rotated. Further, for
our test cases, all dimensions are integers. Like
most packing problems, 2D rectangular strip pa-
cking (even with these restrictions) is NP-hard.
Finally, our algorithm naturally solves a more ge-
neral problem: given a set of rectangles and a
target rectangle, find a packing of a subset of
those rectangles which gives an optimal packing of
the target. Numerical examples also showed the
superiority of the proposed algorithm compared
with two classical methods in the literature (pure
genetic algorithm and hopper’s results). This pa-
per is organized as follows. In Section 2, we pro-
vide the problem description and the literature
review. In Section 3, we present the resolution me-
thods which uses the bottom left algorithm and
the guillotine constraint. In Section 4, we show
how our hybrid algorithm can be adapted for sol-
ving the general 2DC problem. In Section 5, we
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undertake a comparative study of our proposed
algorithm and evaluate its performance for the
2DC problem using benchmark problems from the
literature. Finally, in Section 6, we summarize the
contributions of this paper and explain its pos-
sible extensions.

2 PROBLEM DESCRIPTION
AND LITERATURE RE-
VIEW

2.1 Definitions

The goal of our research problem is to mini-
mize the waste and the total used space in a set
of rectangles and a target rectangle, e.g find a pa-
cking of a subset of those rectangles which gives
an optimal packing of the target. We have found
in our related work on packing problems that cut-
ting and packing (CP) problems have numerous
industrial applications, spanning from the direct
use of CP models (production, loading cargo into
ships, vehicles, containers, wood) to their abstract
adaptation to more complex problems (scheduling
problems, budgeting, etc). A significant improve-
ment of the proposed algorithm results, over those
obtained by either the Hopper results and pure
genetic algorithm (GA), has been achieved.

2.1.1 Genetic Algorithm (GA)

A genetic algorithm (GA) is a procedure used
to find approximate solutions to search problems
through application of the principles of evolutio-
nary biology. Genetic algorithms use biologically
inspired techniques such as genetic inheritance,
natural selection, mutation, and sexual repro-
duction (recombination, or crossover). For this
problem, members of a space of candidate so-
lutions, called individuals, are represented using
abstract representations called chromosomes. The
GA consists of an iterative process that evolves
a working set of individuals called a population
toward an objective function, or fitness function.
The evolutionary process of a GA is a highly sim-
plified and stylized simulation of the biological
version. It starts from a population of individuals
randomly generated according to some proba-
bility distribution, usually uniform and updates

this population in steps called generations. Each
generation, multiple individuals are randomly se-
lected from the current population based upon
some application of fitness, bred using crossover,
and modified through mutation to form a new
population [1].

2.1.2 Tabu Search (TS) Algorithm

Tabu search is a metaheuristic that guides lo-
cal heuristic search procedures to explore the so-
lution space beyond local optimality. It was in-
troduced by Glover [2, 3] specifically for combi-
natorial problems. Since then, tabu search has
successfully been applied to a wide range of pro-
blems. For example, tabu search has been applied
to flow shop scheduling [4, 5], architectural design
[6], time tabling problem [7], among others. The
tabu search starts at some initial point and then
moves successively among neighboring points. At
each iteration, a move is made to the best point in
the neighborhood of the current point which may
not be an improving solution. The method forbids
(makes tabu) points with certain attributes with
the goals of preventing cycling and guiding the
search towards unexplored regions of the solution
space. This is done using an important feature of
the tabu search method called tabu list. A tabu
list consists of the latest moves made so that re-
cently visited points are not generated again. The
size of the tabu list can be either fixed or variable.

2.2 Literature Review

Further background Packing problems in ge-
neral are important in manufacturing settings; for
example, one might need n specific rectangular
pieces of glass to put together a certain piece
of furniture, and the goal is to cut those pieces
from the minimum height fixed-width piece of
glass. The more general version of the problem
allows for irregular shapes, which is required for
certain manufacturing problems such as clothing
production. However, the rectangular case has
many industrial applications [8]. The 2D rectan-
gular strip packing problem has been the subject
of a great deal of research, both by the theory
community and the operations-research commu-
nity [9,10]. One focus has been on heuristics that
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lead to good solutions in practice. One line in this
area considers simple heuristics for greedily pla-
cing an ordered list of rectangles, the most widely
used and well-studied of which is the Bottom-Left
heuristic.

3 RESOLUTION METHODS

In this section, we explain the techniques used
to resolve cutting and packing (CP) problems. Be-
cause the Bottom-Left heuristic is a foundation
for our work, we describe it in some details.

3.1 Bottom Left (BL) Algorithm

The Bottom-Left (BL) heuristic was introdu-
ced in [11]. The placement Bottom Left (BL) algo-
rithm using the permutation is executed to place
rectangular pieces into the main sheet (object).
We can describe the BL algorithm process using
the following defenition: This Bottom-Left place-
ment algorithm takes a sheet size and an input
sequence of pieces and their allowable rotations
(rotation criteria). The algorithm progresses pa-
cking by placing the first piece in the lower left
corner of the sheet in its most efficient orientation
(the orientation that yields the smallest bounding
rectangle height within the set of rotation crite-
ria). With subsequent pieces, a valid location for
placement is found by testing for intersections and
containment. If the piece is not intersecting by (or
containing) other already placed pieces, then the
location of the piece is valid and therefore can be
assigned to the sheet. When a piece is in a position
that intersects with already assigned pieces, we
use the rotation technique. The process continues
as before with overlap/intersection tests and re-
solution until the piece does not intersect and can
be placed. Packing is completed when all pieces
have been assigned to the sheet.

3.2 Guillotine Cutting Problems

The two-dimensional guillotine-cutting pro-
blem has been widely studied in the operational
research literature. The unrestricted problem is
known to be NP-hard. When cutting specific ma-
terials like glass it may be required that the rec-
tangles can be cut out of the bin by a number of

guillotine cuts which can be thought of as edge-to-
edge cuts. The most common constraint requires
guillotine cutting patterns; i.e., patterns where
pieces can be obtained using a series of horizon-
tal and vertical cuts. This constraint demands
that all placed pieces are reproducible through a
series of guillotine cuts. As is known, a guillotine
cut through a rectangle runs from one edge to
the opposite edge and parallel to the other two
edges of the rectangle in a straight line. That is,
there should exist a series of face parallel straight
cuts that can cut the bin into pieces so that each
piece contains a box and no box has been inter-
sected by a cut. In our example, the first packing
is guillotine cuttable and the solution to obtain a
guillotine cut is feasible (Figure 1),

Figure 1: Guillotine Configuration

while the second packing is not and the solution
to obtain a guillotine cut is unfeasible (Figure 2).

Figure 2: Non-Guillotine Configuration
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Notation and example:
Alternatively, a packing pattern (sequence) can
be represented by a permutation π [12].
i is the index of the rectangle (ri).
π = (i1,...,in) is a permutation.
The permutation represents the sequence in
which the pieces (rectangles) are packed. The ad-
vantage of this data structure is the facile creation
of new permutations by changing the sequence. A
consequence of the variable data structure is the
fact that every permutation has to be assigned to
a unique packing pattern.
Allocation of some of pieces with BL is illustrated
in Figure 3. As can be seen in Figure 3,

In π1 = (−1, 3, − 2, 4)

piece 1 is placed first to the bottom and then
to the left as far as possible with a rotation of
90o, (the signe - represents a rotation of the piece
by 90o). Pieces 3 and 2 are placed in the same
manner with a rotation of the piece 2. Then, piece
4 is placed in its optimal location.

In π2 = (−1, 2, 3, 4)

piece 1 is placed first to the bottom and then
to the left as far as possible with a rotation.
Piece 2 is then placed in its optimal location and
pieces 3 and 4 are placed after that.

Figure 3: 2 possible permutations of pieces
(1, 2, 3, 4).

In addition, the cost of the BL-algorithm is Θ(n2).
This based on the fact, that each rectangle (piece)
ri can be shifted a maximum of i times, because
each shift is limited by one of the i - 1 placed rec-

tangles (pieces) or by the corners of the board.
Hence, the cost of placing rectangle ri is Θ(i) and
the whole cost amounts to Θ(n2).

4 HYBRID APPROACH DES-
CRIPTION

A genetic search algorithm is a heuristic
search process that resembles natural selection.
There are many variations and refinements, but
any genetic algorithm has the features of repro-
duction, crossover and mutation. Initially a po-
pulation is selected, and by means of crossovers
among members of the population or mutation
of members, the better of the population will re-
main. In the case of our hybrid approach the mu-
tation is replaced by the Tabu Search (TS) Algo-
rithm. For this reason we call this genetic method
as an hybrid genetic approach.

4.1 Fitness-Function

For the genetic algorithm, the evaluation of a
model set is obligatory, this is represented by a
Fitness-Function f: π → R+ with the propriety
f(πi) 〉 f(πj) if πi is better than πj .
The Fitness-Function value is inversely propor-
tional to the height of a model set: f(π) = 1/h(π);
Where h(π) is the model set height follow to the
permutation π created by the BL algorithm.
π represents one permutation (arrangement) of
rectangular pieces. The following picture (figure
3) is an example of placement(arrangement) of 4
pieces (1, 2, 3, 4).
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To reducing the internal waste we have developed
two variants of the placement (arrangement) as
schown in the figure 3 with the same height of
the rectangle (sheet) but different in quality, so
by logic they have not the same Fitness Function.
With the last definition of the Fitness Function
(f(π) = 1/h(π)) if two set placement have the
same height, their Fitness Function are equal even
if one is better than the other. For this reason,
it’s necessary to define another Fitness Function
more better. Following the last picture (figure
3), it’s clear that π2 is better than π1 because
the remaining space in the result configuration is
better with π2. With this comparaison, and if we
consider only one objective which is the wastage
minimization. Our Fitness Function is given by
the following formula:

F(π) = H(π) + Area (worst remaining
space)/h(π)* width

Where:

• H(π) = H - h(π), where H is a maximum
given height that guarantee H(π) be a positive
value.
• h(π) is the model set height follow to the per-
mutation π.
• Area (worst remaining space) is the area of the
remaining space in the placement (arrangement)
model following to the permutation π.
• width is a target (rectangle) width dimension.
• h(π)* width is the rectangle area occupied by
the placed rectangles (items).

4.2 Initialisation

it’s evident that genetic algorithms uses m ob-
jects. Here the m objects are m permutations: π1,
π2,.., πm. We assign for each arrangement it’s Fit-
ness Function value: fi = f(πi); i = 1, 2, ...,m.
We consider the permutation πi and it’s Fitness
Function fi together like one individu Ai: Ai =
(πi, fi).

4.3 Recombination

The crossover operator is special in this case
in order to respect the constraint that every piece

which is copied didn’t repeated another time in
order to respect the pieces unicity and creates
two solutions or childs (permutations) πinew and
πjnew by combining two parents πi and πj . For
each pair of parents (permutations), two crossover
integers P1 and P2 are randomly chosen (genera-
ted) with the condition 1 ≤ P1, P2 ≤ n. In the
random position P1, the crossover operator copy
P2 elements from πi for the begining of πinew
and copy P2 elements from πj for the begining
of πjnew. Then, πinew is completed by the re-
maining elements of πj with respect to the same
order of appearance and πjnew is completed also
by the remaining elements of πi with respect also
to the same order of appearance.
Example
πi = (1, − 2, 3, 4, − 5, 6) and πj = (−6, 4, 2, 5, −
3, 1)

if (P1 = 2 and P2 = 3) then
πinew(1) = πi(P1) = πi(2) = -2;
πinew(2) = πi(P1+1) = πi(3) = 3;
πinew(3) = πi(P1+2) = 4;
πinew(4) = πj(1) = -6;
πinew(5) = πj(4) = 5;
πinew(6) = πj(6) = 1;
Then, πi new = (-2, 3, 4, -6, 5, 1). With the
same method, πj new = (4, 2, 5, 1, 3, 6). So, with
the crossover processus we get m new permuta-
tions.

4.4 Tabu Search

This algorithm was proposed to the cutting
problem including the guillotine constraint and
replaced the mutation operator and was evalua-
ted in a series of numerical experiments that are
run on problem instances taken from the litera-
ture, as well as on randomly generated instances
which prooved our approach. For this case, we
consider the model set X composed by n permu-
tations (arrangements) which are represented by
a rectangular items (pieces). We adopt the change
of one piece by another of their neighbors as an
elementary transformation and we evaluate the
Fitness-Function f for each arrangement set.

– The neighborhood function
Let Ti,j ,(when(i,j) ∈ [1..n] ∗ [1..n]; i 6= j); the
transformation that consists of the changement
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of the piece i by the piece j. The neighborhood
of the current solution πc, that corresponds to all
possible transformations is N(πc). for each taboo
iteration, the current solution πc must be updated
by changing it by the best solution of it’s neigh-
borhood that minimizes the Fitness-Function f.
This piece of the best solution was added to the
taboo List.

4.5 The Tournament Selection

The principle of selection by tournament in-
creases the chances for poor individuals (arrange-
ments) to participate in the improvement of the
population. The principle is very quick to imple-
ment. A tournament consists of a meeting bet-
ween two arrangements (parents) at random in
the population. The tournament winner is the ar-
rangement better P1 (parent P1). We repeat this
method to select the second best arrangement P2

(parent P2). The principe of the arrangement (pa-
rent) P selection is the following:
1. (P1,P2) = random(|n|).
2. P = random(P1, P2).

5 EXPERIMENTATION AND
ANALYSIS OF RESULTS

The algorithm was tested against the Hopper
results and pure genetic algorithm (classic) GA.
The results indicate that performance of the com-
bined (hybrid) algorithm is better than that of
either Hopper results or pure (classic) GA. We
now present experimental results demonstrating
the effectiveness of our method for finding per-
fect packing set. We use the benchmarks develo-
ped by Hopper. Those benchmarks contain col-
lections with size ranging from 17 to 199 rec-
tangles (items), all the instances are tested into
a single rectangle of width (W = 300) and mi-
nimum height (H = 250). We evaluate our hy-
brid algorithm on the guillotinable instances from
this set by an interesting comparison between the
running results which are summarized in Table
1. This table reports, for each collection of ins-
tances (files) the number of items or placed rec-
tangles (n), and the average of occupied space of
both the three methods (pure genetic algorithms
(Classic (%)), Hopper results (Hopper (%)) and

our hybrid genetic approach (Hybrid (%)).

Algorithm Classic
(%)

Hybrid (%) Hopper
(%)

Data[16] N X Low Average Better X
t1c.xls 17 88.22 88.60 91.62 92.67 83.47
t2a.xls 25 91.98 93.07 93.73 93.95 95.73
t2b.xls 25 91.78 92.16 92.61 93.10 88.16
t2c.xls 25 88.33 92.17 92.17 92.17 83.68
t3a.xls 29 88.11 91.32 93.46 93.90 90.91
t3b.xls 29 86.58 91.74 92.94 93.46 89.68
t3c.xls 29 90.50 93.02 93.15 93.46 88.46
t4a.xls 49 93.46 93.89 94.38 95.24 89.68
t4b.xls 49 91.74 94.78 95.10 95.24 89.68
t4c.xls 49 91.11 96.15 96.15 96.15 88.49
t5a.xls 73 93.46 95.78 95.14 95.24 93.89
t5b.xls 73 93.88 95.69 95.92 96.15 89.28
t5c.xls 73 92.17 94.33 95.14 95.24 88.10
t6a.xls 97 94.48 96.75 96.75 96.75 94.48
t6b.xls 97 94.79 95.23 95.64 96.15 93.89
t6c.xls 97 94.34 95.24 95.92 96.15 95.69
t7a.xls 199 95.56 97.09 97.09 97.09 95.23
t7b.xls 199 95.69 95.69 96.36 96.93 96.15
t7c.xls 199 95.71 96.16 96.69 97.14 93.90

Table 1: Comparison results applied to the
Hopper Benchmarks

By Examining Table 1 and considering only those
instances, we proove the performance of our hy-
brid algorithm and we observe that:
1. The Hybrid Genetic Algorithm (Hybrid (%))
performs better than pure genetic algorithms
(Classic (%));
2. The Hybrid Genetic Algorithm (Hybrid (%))
performs better than Hopper results (Hopper
(%)), and offer more gains in terms of occupied
space, and minimum waste of sheet.

6 CONCLUSION AND FU-
TURE TRENDS

In this paper we have proposed an hy-
brid approach for solving the constrained two-
dimensional cutting (2DC) problem. Starting
from a packing with height H, this approach
tries to solve the (2DC) problem with decrea-
sing values of H while avoiding solutions with
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tall and thin wasted spaces. A specific fitness
function f is designed to guide the search. Com-
putational results show that our approach is very
promising. The approach was tested and the re-
sults indicate that performance of the combined
algorithm is better than others. Since we were
unable to find a counterexample for which the
approach fails, we conjecture that it always finds
an optimal constrained guillotine cutting. Nume-
rical examples also showed the superiority of the
proposed approach compared with the classical
methods in the literature.
There are some practical issues that need to be
addressed. However, this hybrid approach opti-
mises the solution to minimize the chutes and the
waste. This should be extended to include other
parameters such as considering three-dimensional
cutting (3DC) problem. Further research in this
area will include studying the impact of both rec-
tangular and irregular forms of pieces on guillo-
tine cutting problems.
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Abstract - The development an efficient and robust method to 

the parameter estimation of hydrological models is a critical 

issue to basin. The genetic algorithms have been demonstrated 

to be highly effective optimization methods. Accordingly, in 

the present study a Genetic Algorithm (GA) has been used to 

optimize the parameter values where calibration the rainfall-

runoff model GR4J (Ge´nie Rural a` 4 parame`tres 

Journalier) on two subbasin of Chili River Basin. The data 

input of daily rainfall and potential evapotranspiration are 

used, and the result will calibrated with the observed data of 

daily discharge. The fitness function used, is to minimize the 

error deviation between the results generated and observed 

data. There are two stages in this modeling. Firstly is model 

calibration and secondly is model validation. Model 

calibration uses the first of five years of data input and model 

validation uses the following one year. The Nash-Sucliffe 

Coefficient (NS) and The Relative Volume Error (RVE) 

methods are used to obtain the error deviation. This study is 

intended to optimize four free parameters of the model, there 

is the maximum capacity of production store (X1), the 

groundwater exchange coefficient (X2), the maximum capacity 

of routing store (X3), and the time base of unit hydrograph 

(X4). The constraints considered for this optimization are the 

bounds for decision variables. The result of this study shows 

that the first five years data has parameters quite similar with 

the second one year data. Hence based on the present case 

study it can be concluded that GA model has the capability to 

perform efficiently, if applied in calibration the rainfall-runoff 

model. 

Keywords: Rainfall-runoff, GR4J method, flood study, unit 

hydrograph, genetic algorithm, optimization  

 

1 Introduction 

  The rainfall-runoff modeling, usually involves a 

statistical analysis, to extend and predict future data. There 

are problems to build and calibrate a rainfall-runoff model, 

because it depends on the characteristics of the river basin. 

One of daily rainfall-runoff model (used for this study) is 

GR4J (Genie Rural a 4 parametres Journalier) which was 

developed by Perrin [9] and was proven having strong basic 

and efficient in a modeling. GR4J is developed from earlier 

model that is GR3J which is originally proposed by Edijatno 

and Mitchel [3] and then successfully improved by 

Nascimento [8] and Edijatno [4]. 

The need for an efficient optimization method to find the best 

values of the parameters of the model is very necessary. Many 

traditional methods such as Linear Programming (LP) and 

dynamic programming (DP) have been used to solve 

problems. 

Gas, are based on Darwinian natural selection, which 

combines the concept of survival of the strongest natural 

genetic operators [5]. The way they work and their 

implementation are well documented by Goldberg [6] and 

Michaelwiez [7]. One of the advantages of GAs is identifying 

alternative near-optimal solution. In the field of hydrology, 

Gas, are optimization methods shown as powerful. Franchini 

and Galeati [2], make a comparative study of various schemes 

of genetic algorithms for the calibration of conceptual rainfall-

runoff models, and concluded that GAs are a very robust 

method, proving to be a valid instrument for optimization of 

complex functions objective. In a study Esat and Hall (1994), 

apply a GA for a problem with four reservoirs. They 

concluded that Gas, have potential in optimization of water 

resources and significant savings could be achieved in 

memory space and execution time. Sharif and Wardlaw [8] 

uses GA in the development of water resources and compared 

with dynamic programming, which concluded that both results 

were comparable. 

GAs can be configured in many ways, but so far there is little 

literature on the type most suitable for the calibration of a 

rainfall-runoff model. This paper intends to address this gap 

by applying GA to calibrate the rainfall-runoff model GR4J. 

The aim has been to present that GAs can easily cope with 

these problems and present as robust optimization tools. 

Several experiments were designed to choose the right 

components for the GA, including selection by roulette, 

tournament, Stochastic and Scattered, Single point, Two 

point, Intermediate. The evolution cycle is repeated until a 

termination criterion. This approach may be a number of 

evolution cycles (computational runs), the variation of 

individuals between different generations or a predefined 

value of fitness. 
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2 Study area 

 Chili River Basin is located in Southern Peru, mainly 

located in the department of Arequipa, with small areas of the 

departments of Cusco, Puno and Moquegua, as shown in 

Figure 1. [11]. 

 

Figure. 1. Scope of the Chili River Basin [11] 

The following describes the sub-basins chosen for the study: 

2.1 Pañe Subbasin 

 Located at the north end of the study area is about 4 585 

m characterized as having a humid (tropical). It has an area of 

198 km
2
, average daily rainfall of 2.21 mm/d, average 

evapotranspiration is 4 mm / d and the average daily flow is 

2.66 m
3
/s [11]. Weather Station has a staff gauge and a 

station, both called The Pane (located in the same reservoir). 

2.2 Fraile Subbasin 

 Fraile Subbasin comprises the birth of the rivers 

Yamanayo, Collpamayo, Paltimayo, Cancusane, Pasto Grande 

(among other minor rivers) to the Rio Blanco (born of the 

confluence of the rivers already mentioned) by submitting a 

drainage area 1041 Km
2
 and ends at El Fraile reservoir 

located on the White River at an average altitude of 4000 

meters, regulating water resources. Weather Station has a staff 

gauge and a station, both called The Frayle (located in the 

same reservoir). Taking an average annual rainfall of 386 mm, 

a mean annual flow of 3.32 m
3
/s. 

3 Description of model 

 GR4J model is rainfall runoff modeling which was based 

on four free parameters from daily rainfall data. The GR4J 

model is the last modified version of the GR3J model 

originally proposed by Edijatno and Michel [3] and then 

successively improved by Nascimento [8] and Edijatno [4]. 

GR4J optimize four free parameters, they are:  

 

 X1: Maximum capacity of production store (mm). 

 X2: Groundwater exchange coefficient (mm). 

 X3: Maximum capacity of routing store (mm). 

 X4: Time peak ordinate of hydrograph unit UH1 (day). 

From earlier study which developed by Perrin et al [9], GR4J 

give better result than other rainfall runoff modeling. From 

that study, Perrin et al [9] used 429 river basins in which have 

different climates.  

The description of physical GR4J modeling from rainfall 

process to runoff at river is gives as following below. 

Production Store (X1) is storage in the surface of soil which 

can store rainfall. There are evapotranspiration and 

percolation in this storage. The capacity of this storage 

depends on the types of soil in that river basin. Few porosity 

of soil can make production store bigger. Groundwater 

exchange coefficient (X2) is a function of groundwater 

exchange which influence routing store. When it has a 

negative value, then water enter to depth aquifer, when it has a 

positive value, then water exit from aquifer to storage (routing 

storage). Routing storage (X3) is amount of water which that 

can be storaged in soil porous. The value of this routing store 

depends to the type and the humidity of soil. Time Peak (X4) 

is the time when the ordinate peak of flood hydrograph is 

created on GR4J modeling. The ordinate of this hydrograph is 

created from runoff, where 90 % of flow is slow flow that 

infiltrates into the ground and 10 % of flow is fast flow that 

flows on the soil surface (View Figure 2). 

 

Figure 2. Model Diagram of Rainfall-Runoff GR4J [9] 
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4 Model development 

4.1 Input data 

 To calibrate the model, we used historical daily 

bellonging: precipitation, evaporation and flow observed in 5 

years. In Figure 3 shows the rainfall used in the study. 

 

Figure 3. Rainfall Data. a) Rainfall Data, Pañe subbasin  b) Rainfall 

Data, Fraile subbasin. 

4.2 Objective Function 

 The main consideration of the objective function 

optimization model is to maximize the method of Nash-

Sutcliffe Coefficient (NS), which is used for computing the 

change between square summation of observation data to 

modeling result data. General Equation of Nash-Sutcliffe 

Coefficient is given as: 
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Where: 

iQ : is the flow observed on day i. 

iQ


: is the simulated flow for the day i. 

iQ : is the average flow of the observed. 

The above fitness function of GA model is subjected to the 

following constraints and bounds: 

 20001 1x , Rx1   

 5050 2x , Rx2   

 4001 3x , Rx3   

 990 4x , Rx4   

Additionally, the method Relative Volume Error (RVE) is 

used for computing the volume of observation data with 

modeling result data [12]. The general equation of Relative 

Volume Error as:  
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5 Model Application and discussion 

 To apply the model developed GA has been used daily 

bellonging: precipitation, evaporation and observed flow rates 

of 5 years, from 2003 to 2007. Then, after obtaining the 

values of the parameters, the model is validated with 2008 

data. In this model, calibration value from Nash-Sutcliffe 

coefficient (NS) should be one hundred and calibration value 

from Relative Volume Error (RVE) should be zero. 

In a GA, one of the important parameters is the size of the 

population; to obtain an optimum population is very 

important. In applications in water resources, this value is 

between 64 and 300, and even 1000 [13]. A large population 

helps to maintain greater diversity, but involves a 

considerable computational cost. To find the optimal size of 

the population in this study were considered different 

population sizes. 

The initial search was conducted with a crossover probability 

of 0.80 and a population size of 50 individuals, bringing the 

population to 15 in each event, reaching a population of 305. 

The result of the system initially was 79,269 %, being 

increased to 83,436 % for the Pañe subbasin and 42.436 % to 

55.9 % for the Fraile subbasin. Figure 4 shows how the fitness 

function is reduced, resulting in improved system 

performance. System performance improves significantly 

when the size of the population increases to a certain number. 

With increasing population, the system produces better results 

but there is no significant improvement. The significant point 

this work is produced with 200 individuals, then the 

performance does not improve significantly. 

 

Figure 4. Fitness value for different Population size. a) Pañe 

subbasin  b) Fraile subbasin. 
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The second important parameter influencing the performance 

of GA is the crossover probability, the method of crossing and 

crossing selection form. Its effect on system performance is 

studied by varying the crossover probability of 0.6 to 0.9, with 

an increase of 0.02, crossing a selection as roulette, 

tournament, stochastic uniform and crossover methods as: 

Scattered, Single point, Two point, having an optimum 

population of 200 individuals. The results are shown in Figure 

5, comparing crossover probability vs system performance, 

you can see that system performance improves with increased 

probability of crossing up to 0.75. After this value, the system 

performance decreases with increasing the probability of 

crossing. 

 

Figure 5. Fitness value for different crossover. a) Pañe subbasin  b) 

Fraile subbasin. 

In the Figure 6 shows the results obtained by different 

methods of crossing. 

 

Figure 6. Fitness value for different crossover methods. a) Pañe 

subbasin  b) Fraile subbasin. 

In Figure 7 and Figure 8 show the comparation of observed 

discharge data to discharge of modeling result computed using 

parameters values that give the smallest deviation. 

 

Fig. 7. Series of simulated and observed flows for Pañe subbasin. 

 

Fig. 8. Series of simulated and observed flows for Fraile subbasin. 

The Table 1 shows the deviation using the Nash-Sutcliffe 

coefficient for Pañe subbasin, gives a value of 83.43%. This 

shows that the calibration and validation data have the same 

patterns. Nash-Sutcliffe described the similar value of 

modeling results compared with observed discharge. If the 

value is close to one, then download the results of modeling 

has a similar pattern with the performance observed. 

Parameters Pañe Subbasin Fraile Subbasin 

Nash(Q) 83,436 55.900 

RVE(Q) 0.6760 10.20 

Table 1. The fitness function through GA 

The Table 2 shows the deviation using the Nash-Sutcliffe 

coefficient for the Frayle subbasin, gives a value of 55.90%. 

Nash-Sutcliffe does not describe the similar value of modeling 

results compared with observed discharge. If the value 

exceeds 50, then download the results of modeling has a 

higher than average pattern of flow observed. 

Parameters Pañe Subbasin Fraile Subbasin 

X1 (mm) 2.77 40.27 

X2 (mm) 0.00 0.00 

X3 (mm) 4.67 5.15 

X4 (día) 0.00 0.00 

Table 2. The optimal parameters through GA 
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6 Conclusions 

 The application of genetic algorithms is satisfactory for 

the adjustment of parameters in the model GR4J overall, a 

significant representation of the series of daily flows, 

especially the tendency of these and minimum flows. The 

criteria of efficiency are between 50 and 100%, this shows the 

potential of the model for use in the generation of operating 

rules. 

In this study, very close to the optimal solution is achieved 

within 100 generations, with a population of 200 individuals. 

A string representation of real-value, the incorporation of 

Stochastic uniform selection method and the crossing 

Scattered along with a crossover probability of 0.75, the best 

results. 

GR4J model is easy to implement, in comparison with robust 

models because it is difficult to have total control over all 

variables and parameters. The use of 4 parameters facilitates 

optimization of parameters using genetic algorithms. It is 

expected that a hybrid combination of different methods of 

calibration and optimization based on metaheuristics and 

numerical methods can give better results. 
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Abstract - In [1], Alford et al. compared the performances of 

two Genetic and Evolutionary Methods (GEMs) for multi-

biometric feature selection and weighting. In this paper, we 

present two hybrid feature weighting/selection GEMs.  Our 

results show that the hybrid GEMs outperform the GEMs 

presented in [1], using significantly fewer features while 

achieving practically the same recognition accuracy. 

Keywords: Eigenface, Feature Selection, Feature Weighting, 

Genetic and Evolutionary Computation, Local Binary 

Pattern, Multi-biometrics  

 

1 Introduction 

Genetic and Evolutionary Methods (GEMs) are population-

based problem solvers based on simulated evolution [22].  

GEMs seek optimal or near optimal solutions to problems, 

and have been successfully applied to solve problems in a 

variety of areas including robotics [25], machine learning [23] 

and biometrics [1, 6, 7, 19, 20].   GEMs work as follows.  

Typically, an initial population of candidate solutions is 

randomly generated.  Each candidate solution of the initial 

population is assigned a fitness based on a user-defined 

evaluation function.  Parents are then selected from the 

population and reproduce creating offspring.  The offspring 

are assigned a fitness and usually replace the members of the 

population with the worst fitness.  This evolutionary process 

continues until the population converges, a user-specified 

threshold is reached, or after a user-specified number of 

function evaluations. 

The two types of GEMs used in this research are a Steady-

State Genetic Algorithm (SSGA) [5, 22] and an Estimation of 

Distribution Algorithm (EDA) [4, 16].  SSGAs apply 

crossover and mutation to parents chosen from the population 

in an effort to create offspring.    EDAs do not use crossover 

or mutation operators to create offspring; instead, after 

creating and evaluating the population, a percentage of the top 

performing candidate solutions are used to form a probability 

density/distribution function (PDF). Offspring are created by 

sampling the PDF. A new population is then created using a 

percentage of the best performing members of the population, 

known as the elites, and a percentage of the offspring. 

A number of studies have been published comparing the 

performances of these two GEMs on different problems [4, 

10, 16]. The results of these studies have shown that neither 

GEM outperforms the other for every problem tested.  Alford 

et al. [1] compared the performances of SSGA and EDA 

based feature selection (GEFeS) and weighting (GEFeW) for 

multi-biometric recognition.  The modalities tested were face 

and periocular biometrics.  Their results showed that SSGA-

based feature weighting (GEFeWSSGA) produced the highest 

average recognition accuracy for the multi-biometric 

experiment, while EDA-based feature selection (GEFeSEDA) 

used the fewest average percentage of features.  In this paper, 

we extend the research of [1], comparing the performances of 

two additional GEMs that are hybrid feature 

weighting/selection methods.  These new methods are 

instances of what we will refer to as Genetic and 

Evolutionary Feature Weighting and Selection (GEFeWS) 

[19]. 

The goal of our research is to develop short length 

biometric templates that can be used in a two-stage 

hierarchical system as proposed by Gentile et al. [9] for iris 

recognition.  Conventional biometric identification systems 

compare a probe to every individual within the biometric 

database.  As described by Alford et al. [19], the number of 

feature checks performed by a conventional biometric system, 

fc, is equivalent to the number of individuals in the database, 

n, multiplied by the number of features extracted to represent 

the individuals, m, as shown in Equation 1: 
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A two-stage hierarchical system, as proposed by Gentile et al. 

[9], reduces the number of feature checks performed. In the 

first stage, the short length biometric templates consisting of k 

features are used to select a subset of the r closest matches to 

a probe, p. In the second stage, the subset is compared to p 

using the full length biometric templates which consist of m 

features.  The number of feature checks performed by a 

hierarchical system, fh, is [19]:     

 rmnk
h
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which is the sum of the feature checks performed in the two 

stages.   By reducing the number of features compared in the 

first stage and the number of individuals compared in the 

second stage, the hierarchical system results in a savings of 
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The remainder of this paper is as follows. In Section 2, a 

brief overview of the feature extraction techniques used in the 

research presented in this paper, Eigenface and the Local 

Binary Patterns (LBP) method, are discussed.  In Section 3, 

GEFeS, GEFeW, and GEFeWS are presented.  Section 4 

presents our experiments, and Section 5 presents our results. 

Finally, in Section 6, the conclusion and future work are 

presented. 

2 Feature Extraction Overview 

Eigenface is a feature extraction method that uses Principal 

Component Analysis (PCA) [21] to reduce the dimensionality 

of an image space into a smaller dimensionality face space. 

Only the most discriminating eigenvectors (i.e. those with the 

largest eigenvalues) produced by PCA are used to form the 

face space. The feature templates are then created by 

projecting the face images onto the face space.  For a more 

detailed description see [13, 18, 20].   

The Local Binary Patterns (LBP) method extracts features 

from an image by first segmenting the image into a grid of 

evenly sized patches and then analyzing the pixel-to-pixel 

intensity changes within each patch. The intensity change 

pattern of each pixel (when compared to its neighbors) is 

encoded into a numerical value that is used to build a 

histogram for that patch based on the frequency of each 

numerical value (intensity pattern).  The histograms from 

each patch are concatenated together to form a single feature 

template.  For a more detailed description see [1, 7, 14, 19, 

24]. 

3 GEFeS, GEFeW, and GEFeWS 

The GEMs used in this paper are instances of the 

eXploratory Toolset for the Optimization of Launch and 

Space Systems (X-TOOLSS) SSGA and EDA [12].  As 

described in [1], GEFeS and GEFeW evolve a population of 

real-coded feature masks composed of values within the 

interval [0..1].  For GEFeS, a masking threshold of 0.5 is used 

to determine if a feature should be used. If the feature mask 

value is less than the masking threshold, the feature is not 

used during matching. Otherwise, the feature will be used 

during matching.  For GEFeW, the real-coded feature mask is 

multiplied by the feature template, resulting in a weighted 

feature template.   

GEFeWS [19] is a hybrid of GEFeW and GEFeS.  Like 

GEFeS and GEFeW, GEFeWS evolves a population of real-

coded feature masks composed of values within the interval 

[0..1].  However, if the value is less than the masking 

threshold, 0.5, then the feature is not used during matching as 

in GEFeS. Otherwise, the feature is weighted as done by 

GEFeW. 

The evaluation function used to assign a fitness to each 

candidate solution is: 

        
 

 
 

where ε is the number of recognition errors associated with 

the evolved feature mask, k is the number of features within 

the reduced length feature template, and m is the original 

number of features.  

4 Experiment 

As in [1], our experiments were performed on a subset of 

the first 105 subjects taken from the Face Recognition Grand 

Challenge (FRGC) dataset [15].  The probe set consisted of 

105 images, one image per subject.  The gallery set consisted 

of 210 images, two additional images per subject. The images 

used were frontal views of the subjects with neutral facial 

expressions. 

The tested biometric modalities for the experiments were 

face, periocular, and face plus periocular. The Eigenface 

method was used to extract 210 facial features from each 

image.   The LBP method was used to extract 2832 periocular 

features (1416 features from each of the left and right 

periocular regions). GEFeS, GEFeW, and GEFeWS were 

performed on each of the biometric modalities. In addition, 

the modalities were tested using all of the originally extracted 

features, which served as the baseline for our experiments.  

For the multi-biometric experiment, the face and periocular 

features were evenly fused. 

Recognition was performed by computing the Manhattan 

distance between the probe template and the templates in the 

gallery.  The subject of the template within the gallery with 

the smallest Manhattan distance was considered the match to 

the probe.  
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5 Results 

For our experiments, the SSGA instances of GEFeS, 

GEFeW, and GEFeWS, had a population size of 20, a 

crossover and mutation rate of 1.0, and a mutation range of 

0.2.  The EDA instances had a population size of 20 and 

always retained the 5 best individuals, known as the elites.  

Each of the SSGA and EDA instances were run 30 times, 

with a maximum of 1000 function evaluations per run. 

In Table I, the average performance of the methods for each 

of the tested modalities is shown.  The first column represents 

the tested biometric modalities, the second column represents 

the methods used, the third column represents the average 

percentage of features used, and the last column represents 

the average accuracy of the 30 runs. The best results are 

highlighted in bold.  The ANOVA and t-test were used to 

separate the methods into equivalence classes. 

5.1 Face-Only 

For the Face-Only experiment, all of the GEMs had 

significantly better recognition accuracies when compared to 

the baseline Eigenface method.  When comparing the GEMs, 

in terms of accuracy, GEFeWEDA performed the best, having 

an average accuracy of 87.81%.  GEFeWSSGA, GEFeWEDA, 

and GEFeWSEDA were all in the first equivalence class. The 

remaining GEMs were in the second equivalence class.   

In terms of the percentage of features used, GEFeSEDA and 

GEFeWSEDA were in the first equivalence class.  GEFeSSSGA 

was in the second equivalence class and GEFeWSSSGA  was in 

the third equivalence class.  GEFeWSSGA was in the fourth 

equivalence class, and GEFeWEDA was in the fifth 

equivalence class.  The GEFeW instances used the highest 

percentage of features. 

5.2 Periocular-Only 

For the Periocular-Only experiment, in terms of average 

recognition accuracy, GEFeWSSSGA performed the best.  

GEFeSEDA and GEFeWSEDA were in the second equivalence 

class, GEFeSSSGA and GEFeWSSGA were in the third 

equivalence class, and GEFeWEDA was in the fourth 

equivalence class.   

In terms of the percentage of features used, GEFeSEDA and 

GEFeWSEDA were in the first equivalence class, using only 

41% of the features. GEFeWSSSGA was in the second 

equivalence class and GEFeSSSGA was in the third equivalence 

class.  GEFeWSSGA and GEFeWEDA were in the fourth and 

fifth equivalence classes respectively. As with the Face-Only 

experiment, the GEFeW instances used the highest 

percentage of features.   

 

TABLE I  
COMPARISON BETWEEN SSGA AND EDA BASED GEFES, GEFEW, AND GEFEWS 

Modalities 

Tested 
Methods 

Average Percentage  

of  

Features Used 

Average  

Recognition 

Accuracy 

Face  

Only 

Eigenface 

Eigenface + GEFeSSSGA  

Eigenface + GEFeSEDA  

Eigenface + GEFeWSSGA  

Eigenface + GEFeWEDA  

Eigenface + GEFeWSSSGA 

Eigenface + GEFeWSEDA  

100.00% 

50.30% 

42.86% 

87.16% 

96.53% 

51.71% 

43.35% 

64.76% 

86.13% 

85.59% 

87.59% 

87.81% 

86.38% 

87.02% 

Periocular  

Only 

LBP 

LBP + GEFeSSSGA 

LBP + GEFeSEDA  

LBP + GEFeWSSGA 

LBP + GEFeWEDA  

LBP + GEFeWSSSGA 

LBP + GEFeWSEDA 

100.00% 

48.03% 

41.03% 

86.22% 

95.78% 

45.39% 

41.01% 

94.29% 

95.14% 

95.87% 

95.46% 

94.67% 

96.16% 

95.75% 

Face +  

Periocular 

Eigenface + LBP [evenly fused] 

Eigenface + LBP + GEFeSSSGA  

Eigenface + LBP + GEFeSEDA 

Eigenface + LBP + GEFeWSSGA 

Eigenface + LBP + GEFeWEDA 

Eigenface + LBP + GEFeWSSSGA 

Eigenface + LBP + GEFeWSEDA 

100.00% 

48.18% 

45.24% 

87.59% 

97.40% 

46.24% 

41.72% 

90.77% 

97.40% 

96.70% 

98.98% 

96.64% 

98.48% 

98.10% 
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5.3 Face + Periocular 

For the Face + Periocular experiment, GEFeWSSGA 

performed the best in terms of accuracy, while GEFeWSSSGA 

and GEFeWSEDA were in the second and third equivalence 

classes respectively. Although the GEFeWS instances were 

statistically different from GEFeWSSGA, the average 

recognition accuracy achieved by these methods are of no 

practical significance. 

In terms of the percentage of features used, GEFeWSEDA 

was in the first equivalence class, using only 41.72% of the 

features to achieve an average accuracy of 98.10%.  

GEFeSEDA and GEFeWSSSGA were in the second equivalence 

class.  GEFeSSSGA was in the third equivalence class.   As 

before, GEFeWSSGA and GEFeWEDA were in the fourth and 

fifth equivalence classes respectively, using the highest 

percentage of features. 

6 Conclusions 

Our results show that GEFeWSSGA produces the best 

recognition accuracy for multi-biometric recognition.  

Conversely, GEFeWSEDA performed the best at reducing the 

number of necessary features.  Although there was a 

statistical significant difference in the average accuracy 

achieved by GEFeWSEDA when compared to GEFeWSSGA, 

there is no practical significance.  GEFeWSEDA was able to 

achieve an average recognition accuracy only 0.88% lower 

than GEFeW while using almost 50% fewer features. 

Therefore, we consider GEFeWSEDA to be the best method. 

Our future work will focus on the development of more 

efficient methods for solving the multi-biometric recognition 

problem.  In addition, we plan to investigate how well the 

evolved feature masks generalize on a larger dataset of 

unseen subjects. 
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Abstract—Group decision making is investigated using 
ordinal interval number ranking. The closed interval preference 
is given independently by each decision maker and for every 
course of action. Genetic algorithms are employed for 
establishing the mutually preferred course(s) of action. The 
combination of crossover and adjusted mutation is found 
efficient in terms of problem representation and genetic-
algorithm operation/convergence to (one of) the preferred 
course(s) of action.  

I. INTRODUCTION 

roup decision making is performed by an ensemble of 
decision makers who collectively decide upon the 

preferred course of action (solution) to a problem, as 
selected out of a number of alternative courses of action 
which are available at the time of decision making. Although 
more time consuming than individual decision making, a 
group decision allows the combination of the strengths and 
the expertise of each decision maker in the group in order to 
maximize the joint agreement upon the selected course of 
action. 

A variety of group decision making methods exist [1-2] 
for reaching the final decision, with each method having 
advantages and disadvantages in terms of speed and decision 
maker satisfaction/agreement with the mutually preferred 
course of action. Group decision making methods include – 
among others - decision by authority, decision by majority, 
decision by negative minority, decision by unanimity, 
decision by consensus and decision via preference ranking.  

In this piece of research, group decision making is 
investigated using ordinal interval number preference 
ranking. The closed intervals of preference are given 
independently by each decision maker, who provides an 
interval for every available course of action.  Genetic 
algorithms [3] are employed for establishing the preferred 
course(s) of action. The combination of crossover and 
adjusted mutation is proved efficient in terms of problem 
representation and genetic-algorithm operation/convergence 
to a preferred course of action. 

This paper is organized as follows: Section II introduces 
the group decision making and ranking methods while also 
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detailing its operation under the ordinal interval number 
representation of the decision makers’ preferences; Section 
III describes the inspiration, structure and mode of operation 
of genetic algorithms; Section IV demonstrates the 
application of genetic algorithms to ordinal interval number 
preference ranking and group decision making while also 
evaluating their performance on a number of problems from 
the existing literature; finally, Section V concludes the paper. 

II.  GROUP DECISION MAKING AND RANKING  

Ranking aggregates the preferred courses of action of the 
different decision makers in order to select the mutually 
preferred course of action. Ranking has a number of 
advantages: it is robust to the composition and size of the 
group of decision makers as well as to the familiarity of each 
decision maker with the problem at hand; different 
evaluation criteria that are related to each decision maker’s 
background and outlook towards the problem can be 
simultaneously accommodated; finally, the assignment of 
relative importance values to the preferences of the various 
decision makers is allowed.  

A number of formats are available for ranking. These 
formats include nominal [4], ordinal [5-18] and ordinal 
interval [19-20] numbers; the choice of format depends (a) 
on the way in which the constraints between alternative 
courses of action are expressed and (b) on the means of 
aggregating and, subsequently, evaluating the alternative 
courses of action.  

In the following it is assumed that n possible courses of 
action exist and that m decision makers are involved in the 
group decision making process.  

When performing ranking using ordinal interval numbers, 
the cth course of action (1≤c≤n) is attributed an interval     
[xcd  ycd] by the dth decision maker (1≤xcd,ycd≤n, xcd≤ycd and 
1≤d≤m)  which expresses the preference that the dth decision 
maker assigns to the cth course of action when compared to 
the entire set of courses of action. Since interval creation is 
performed independently by each decision maker and for 
every course of action, nm intervals are needed in order to 
cover all courses of action as well as all decision makers. 
These intervals state the constraints/preferences between 
courses of action in a purely implicit manner, thus providing 
(i) a straightforward and uncomplicated means of expressing 
the preference(s) for each course of action, and (ii) an 
efficient way of performing course of action comparison, 
aggregation and ranking. To date, group decision making via 
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ordinal interval number ranking as well as the identification 
of the preferred course(s) of action has been implemented 
using interval goal programming [19] and ranking degrees of 
possibility [20] on uniformly distributed intervals. An 
example of ordinal interval number representation (quoted 
from [20], p. 1413), involving a single decision maker, helps 
to illustrate these points:  

 
“A consumer wants to buy a car among 
the four color cars (black, white, blue 
and yellow). His/her preferences are the 
following: The black one is ranked top 2, 
the white one is top 3, the blue one is 
second or third, and the yellow one is 
bottom.”  
 

Clearly, the available courses of action are the four car 
colours and the decision maker’s constraints/preferences are 
expressed by the ranking intervals [1 2], [1 3], [2 3] and [4] 
for the black, white, blue and yellow car colours, 
respectively. As will be shown in Section III, integration of 
the four intervals for the single decision maker results into 
three optimal preference rankings, one of them being {black, 
white, blue, yellow}, i.e. selecting the black coloured car. 
Although the aforementioned example is useful for 
understanding the principles of the ordinal interval number 
decision making method as well as of the genetic algorithm 
representation and mode of operation (Section IV.A.), it 
should be stressed that - as demonstrated in Section IV.B. - 
the power of the proposed representation and course-of-
action selection, especially during the aggregation stage,  can 
only be fully understood for groups involving more than one 
decision maker.  

III.  GENETIC ALGORITHMS 

Dovetailing the principles of natural evolution within 
stationary or changing environments, genetic algorithms 
operate by creating and manipulating populations of 
candidate solutions to a problem. These solutions are 
encoded as chromosomes that evolve via the operators of 
crossover, mutation and selection. Each gene of a 
chromosome represents an elementary component of the 
problem that is salient in determining the make-up as well as 
the quality of the encoded solution. Additionally, a fitness 
function is used for explicitly grading each chromosome in 
terms of its goodness in constituting a solution to the 
problem.  

Genetic algorithms begin their operation with a randomly 
created initial population of candidate solutions to a given 
problem. Offspring are created by combining homologous 
parts of the corresponding chromosomes of the population 
(crossover) while also randomly changing genes of the 
offspring chromosomes with a small probability (mutation). 
Crossover and mutation are complemented by selection, 
according to which the offspring with higher fitness values 

have higher probabilities of being inserted into the new 
population, while members of the population with lower 
fitness values have higher probabilities of being excluded 
from it. The inclusion of both old and new chromosomes in 
the evolving population is possible, with their proportion in 
the population being problem- as well as solution-specific. 
The repeated application of the aforementioned three genetic 
operators drives the population towards an increasing value 
of average fitness such that, after an adequate number of 
generations, a (near-) optimal solution to the problem at hand 
appears in the population. 

IV.  GENETIC ALGORITHMS FOR ORDINAL INTERVAL 

NUMBER PREFERENCE RANKING GROUP DECISION MAKING 

A. Genetic Algorithm Set-up  

An alternative to the aforementioned group decision making 
and ranking approaches using ordinal interval numbers [19-
20] is put forward. The proposed methodology is 
significantly simpler in expressing/aggregating1 the various 
ordinal interval numbers; with the course of action ranking 
being implemented via genetic algorithms. In the next 
paragraphs, chromosome and fitness function construction 
are detailed, followed by the application of the crossover, 
adjusted mutation and selection operators. 

Each chromosome i (1≤i≤H, where H is the total number 
of chromosomes in the population) comprises n genes, i.e. as 
many as there are alternative courses of action; the jth gene 
(j=1, 2, …, n) of chromosome i takes on a distinct integer 
value gij between 1 and n representing the rank 
corresponding to the jth course of action. Clearly, for the 
chromosome (1≤i≤H) to be valid, the set of the values                        
{ gi1, gi2, …, gin} of its genes must constitute a permutation of 
the numbers 1, 2,…, n.  

The fitness function expresses the collective compatibility 
of the ranking represented by all the genes of chromosome i 
(1≤i≤H) in terms of the intervals proposed by all the decision 
makers. As shown in Equation (1), the fitness fit i of the ith 
chromosome is calculated by incrementing its value every 
time the ranking proposed by a gene of the chromosome lies 
within the interval proposed by a decision maker for the 
particular course of action and decremented every time it lies 
outside that interval. The evaluation of the fitness value of 
chromosome i is performed for all combinations of the n 
courses of action and the m decision makers via  
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where scd is the increment/decrement to fit i for each 
combination of course of action (index c) and decision 
maker (index d), depending on whether the rank gic of the cth 

 
1 For one or more decision makers, respectively. 
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course of action lies within the interval [xcd  ycd] proposed by 
the dth decision maker. The increment/decrement in 
Equation (2) is given by the relative importance impd 
assigned to the dth decision maker (1≤d≤m), where it is 
necessary that  

1
1

=∑
=

m

d
dimp                                                   (3) 

Finally, the factor 1/n in Equation (1) acts as a normalization 
term, ensuring that fit i (1≤i≤H) lies within the interval [-1 1], 
with fit i=-1 if the ith chromosome does not satisfy any 
interval proposed by any decision maker and  fit i=1 if the ith 
chromosome satisfies all the intervals proposed by all the 
decision makers. 

The shape of the fitness function landscape pertaining to 
the example introduced in Section II is portrayed in Table I. 
The exhaustive presentation of the 24 possible chromosomes 
is tabulated, together with the contribution of each gene to 
the total fitness of the chromosome; the symbols R and P 
represent rewards and penalties, respectively. The 
chromosomes of maximum fitness, which in this example 
satisfy all of the decision maker’s preferences, are 
highlighted. Since, in this case m=1, the importance imp1 
assigned to the sole decision maker equals 1.  

The genetic algorithm is implemented by submitting pairs 
of chromosomes of the current population to crossover; these 
chromosomes are selected via roulette-wheel according to 
their fitness values. Subsequently, random-point crossover is 

implemented on every selected pair. The aforementioned 
combination of selection and crossover implies that here may 
be duplicated genes in the resulting new chromosomes. Each 
new chromosome is checked for consistency, i.e. whether its 
genes constitute a permutation of values 1,2,…, n and, if the 
chromosome is not consistent, adjustment mutation is put 
into action by randomly choosing one gene of each pair of 
duplicated genes and changing its value so as to restore 
validity; mutation is not performed if the chromosome is 
consistent following crossover. All the (consistent) 
chromosomes are added to the current population.  

Subsequently, roulette-wheel selection is employed for 
determining the chromosomes to be included in the new 
population. With the dual aim of promoting diversity as well 
as of preventing the premature convergence of the genetic 
algorithm to a sub-optimal solution, the inclusion of 
duplicate chromosomes from the current population is 
prohibited. If the distinct chromosomes that are candidates 
for inclusion in the next population are not adequate, new - 
and different from the existing - chromosomes are created in 
a random fashion.   

The size of the population H as well as the number of 
iterations until the termination of the genetic algorithm are 
determined by gene length, i.e. by the total number n of 
courses of action, but are independent of the number m of 
decision makers.  

Premature termination of operation is effectuated as soon 
as the fitness of a chromosome i (1≤i≤C) of the population 
reaches a perfect value of  

1=ifit                    (4) 

i.e. the chromosome satisfies all the intervals proposed by all 
the decision makers for all the courses of action. Clearly, this 
becomes increasingly rare as the total number of courses of 
action and/or of decision makers rises.   

B. Demonstration  

The set-up and mode of operation of the genetic algorithm 
are demonstrated on a problem discussed in [20] (p. 1420). 
This problem involves four alternative courses of action 
(n=4) and five decision makers (m=5). It describes the group 
decision making process of EASTFONE, one of the top 
software companies in China, as to which of four 
transatlantic companies (HP, PHILIPS, EMC and SAP) it 

TABLE  I 
GENETIC ALGORITHM FITNESS FUNCTION LANDSCAPE  ([20], p. 1413) 

 
Chromo 

some 
1st 

course 
of 

action 
[1  2] 

2nd 

course 
of 

action 
[1  3] 

3rd 
course 

of 
action 
[2  3] 

4th 
course 

of 
action 

[4] 

Fitness 
function 

1 2 3 4 R R R R 1 
1 2 4 3 R R P P 0 
1 3 2 4 R R R R 1 
1 3 4 2 R R P P 0 
1 4 2 3 R P R P 0 
1 4 3 2 R P R P 0 
2 1 3 4 R R R R 1 
2 1 4 3 R R P P 0 
2 3 1 4 R R P R 0.5 
2 3 4 1 R R P P 0 
2 4 1 3 R P P P -0.5 
2 4 3 1 R P R P 0 
3 1 2 4 P R R R 0.5 
3 1 4 2 P R P P -0.5 
3 2 1 4 P R P R 0 
3 2 4 1 P R P P -0.5 
3 4 1 2  P P P P -1 
3 4 2 1  P P R P -0.5 
4 1 2 3 P R R P 0 
4 1 3 2 P R R P 0 
4 2 1 3 P R P P -0.5 
4 2 3 1 P R R P 0 
4 3 1 2 P R P P -0.5 
4 3 2 1 P R R P 0 
 

TABLE  II 
EASTFONE GDECISION MAKER ([20], p. 1420) 

 
 

Decision 
maker 

1st 
course 

of 
action 

2nd 

course 
of 

action 

3rd 
course 

of 
action 

4th 
course 

of 
action 

1 [2  3] [1  1] [2  4] [3  4] 
2 [3  4] [1  2] [1  2] [3  4] 
3 [4  4] [2  3] [2  3] [1  2] 
4 [1  1] [2  3] [4  4] [2  3] 
5 [2  3] [1  3] [1  2] [4  4] 
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should establish a strategic alliance with. The five decision 
makers that are consulted come from a different background 
each (management, engineering, finance, human resources 
and business process outsourcing). The preferences of the 
five decision makers are deemed as equally important 
(impd=0.2, 1≤d≤5), whereby the relative importance vector 
of their decisions equals [0.2, 0.2, 0.2, 0.2, 0.2]. The 
preference intervals of this problem are depicted in Table II, 
organised horizontally per decision maker and vertically per 
alternative course of action.  

As for the problem described in Table I, the fitness 
function landscape comprises 24 points. Table III 
enumerates the 24 chromosomes that comprise the problem 
space, accompanied by their fitness values; additionally, the 
blue bars of Fig. 1 depict the distribution of the fitness values 
over the 24 chromosomes. A single global maximum fitness 
exists for chromosome {3 1 2 4} which takes on the fitness 
value of 0.3; there are also two local maxima for 
chromosomes {3 2 1 4} and {4 1 2 3}, which take on the 
next best fitness value of 0.2. These chromosomes are direct 
neighbours to chromosome {3 1 2 4} as they each have two 
genes swapped compared the chromosome of maximum 
fitness.   

During the operation of the genetic algorithm, the 
population is composed of four chromosomes and is 
initialized to four randomly created, valid and distinct-from- 
each-other chromosomes. Roulette-wheel selection is applied 

to two pairs of chromosomes of the original population, 
whereby it is possible for one or even two chromosome to be 
selected in both pairs. Each pair of chromosomes is 
submitted to random-point crossover. If necessary, one or 
more of the four new chromosomes are submitted to adjusted 
mutation in the manner described in Section IV.A. in order to 
be transformed into consistent candidate solutions. 
Subsequently, roulette-wheel selection is applied to the set 
comprising both the chromosomes of the current population 
and the four newly created chromosomes and four 
chromosomes are selected. If duplication occurs in the new 
population, adjusted mutation attempts to change the 
duplicate chromosomes; if that fails, a completely new 
chromosome that is different from the chromosomes already 
inserted in the new population is created.  

It has been found that, out of a total of 250 trials, the 
appearance of optimal solution (chromosome {3 1 2 4}) in 
the original population occurs in 19% of the trials. Overall, 
an average of 2.3 iterations are needed until successful 
convergence upon the optimal solution is accomplished. This 
means that only about 9.2 out of the 24 chromosomes must 
be created until the preferred course of action is converged 
upon. 

C. Sensitivity Evaluation 

Finally, the sensitivity of the proposed approach is 
investigated when the relevant importance values assigned to 
the five decision makers are perturbed. The rightmost five  
columns of Table III show the fitness function landscape for 
the five cases where one decision maker is assigned a 
relative importance value of 0.4 and the remaining four 
decision makers are assigned relative importance values of 
0.15.  

In three out of five cases, chromosome {3 1 2 4} 
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Fig. 1. Occurrence of fitness values over the entire population of 
solutions (24 chromosomes) for the different relative importance 
vectors.  

TABLE  III 
GENETIC ALGORITHM FITNESS FUNCTION LANDSCAPE ([20], p. 1420) 

 
Relative Importance Vector 

 
Chromo 

some 
[0.2    
0.2     
0.2    
0.2,   
0.2] 

[0.4   
0.15   
0.15   
0.15 
0.15] 

[0.15  
0.4   
0.15  
0.15 
0.15] 

[0.15 
0.15     
0.4    
0.15 
0.15] 

[0.15  
0.15 
0.15  
0.4  

0.15] 

[0.15 
0.15 
0.15 
0.15  
0.4] 

1 2 3 4 0 0 0 0 0 0 
1 2 4 3 0 0 0 -.125 .25 -.125 
1 3 2 4 .1 .075 .075 .075 .075 .2 
1 3 4 2 -.2 -.275 -.4 -.15 .1 -.275 
1 4 2 3 -.2 -.15 -.15 -.275 -.15 -.275 
1 4 3 2 -.5 -.5 -.625 -.375 -.375 -.625 
2 1 3 4 0 .25 0 -.125 -.25 .125 
2 1 4 3 0 .25 0 -.25 0 0 
2 3 1 4 0 0 0 -.125 -.125 .25 
2 3 4 1 -.2 -.15 -.4 -.15 -.15 -.15 
2 4 1 3 -.3 -.225 -.225 -.475 -.35 -.25 
2 4 3 1 -.5 -.375 -.625 -.375 -.625 -.5 
3 1 2 4 .3 .475 .475 .1 -.025 .475 
3 1 4 2 0 .125 0 -.125 0 0 
3 2 1 4 .2 .15 .4 .025 .025 .4 
3 2 4 1 0 0 0 0 0 0 
3 4 1 2  -.3 -.35 -.225 -.35 -.35 -.225 
3 4 2 1  -.2 -.15 -.15 -.15 -.4 -.15 
4 1 2 3 .2 .275 .4 .15 .025 .15 
4 1 3 2 -.1 -.075 -.075 .05 -.2 -.2 
4 2 1 3 .1 -.05 .325 .075 .075 .075 
4 2 3 1 -.1 -.2 -.075 .175 -.2 -.2 
4 3 1 2 -.1 -.325 -.075 .05 -.075 -.075 
4 3 2 1 0 -.125 0 .25 -.125 0 
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constitutes the global maximum, exactly as it does in the case 
of equal relative importance values being assigned to all 
decision makers. It is interesting that, for the remaining two 
cases, chromosome {3 1 2 4} is ranked fourth and eleventh, 
respectively. For both of these cases, this is due to the 
significantly greater importance assigned to a decision maker 
whose preferred interval for at least one candidate course of 
action differs considerably from that of the other decision 
makers, namely  

(a) the third decision maker’s interval of [1  2] for the 
fourth course of action diverges from the intervals 
proposed by the remaining four decision makers for 
the same course of action;  

(b) the fourth decision maker’s interval of [1  1] for the 
first course of action diverges from the intervals 
proposed by the remaining four decision makers for 
the same course of action. 

These findings are further confirmed in Table IV, where 
the difference in fitness values of homologous chromosomes 
between the relative importance vector of [0.2 0.2 0.2 .02 
0.2] and each of the five perturbed relative importance 
vectors is tabulated in terms of two similarity criteria, 
namely the mean of the absolute differences in fitness values 
and the standard deviation of the differences in fitness 
values. The fifth, second and first of the perturbed relative 
importance vectors appear closest to the original relative 
importance vector in terms of both similarity criteria, while 
the remaining two vectors show significantly higher 
differences in terms of the two criteria.  The medium and 
light blue as well as the yellow, orange and brown bars of 
Fig. 1 further illustrate the differences in the distribution of 
the fitness values over the 24 chromosomes when compared 
with the blue bars created for the [0.2 0.2 0.2 0.2 0.2] 
relative importance vector. 

D. Comparison with Existing Techniques 

It is worth comparing the results obtained by the proposed 
approach with those reported in [20]. The preferred ranking 
in [20] is represented by chromosome {2 3 1 4} (rendered 

bold and highlighted in Table III), which only ranks sixth 
best by the proposed approach. It is necessary to try and 
understand the differences between the two approaches that 
lead to this discrepancy (in terms of goal, methodology and 
operation), a task that constitutes the aim of future research.  

V. CONCLUSIONS - FUTURE DIRECTIONS 

Group decision making has been investigated using ordinal 
interval number preference ranking. Genetic algorithms have 
been employed for encoding the different rankings of the 
alternative courses of action, as put forward by each decision 
maker, and for establishing the mutually preferred course(s) 
of action. In terms of representation, genes and 
chromosomes are simple to create, transparent as well as 
easy to manipulate; additionally, the relative importance 
values assigned to the decision makers can be directly 
incorporated in the fitness function. Finally, in terms of 
operation, the combination of crossover and adjusted 
mutation has been found efficient for convergence upon a 
preferred course of action. 
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Abstract - In [14], Shelton et al. presented two Genetic and 
Evolutionary Methods (GEMs) that evolved feature extractors
(FE) for facial recognition. One of the methods presented 
evolved FEs that consisted of non-uniform, overlapping 
“patches” that did not cover the entire image. The other was 
similar with the exception that it evolved FEs that consisted of 
patches that were of uniform size. The two GEMs, referred to 
as Genetic & Evolutionary Feature Extractors (GEFE), were 
instances of a Steady-State Genetic Algorithm (SSGA). In 
[14], the instance of GEFE that evolved FEs consisting of 
uniform sized patches outperformed its counterpart that 
evolved FEs consisting of non-uniformed sized patches. This 
paper compares SSGA instances of GEFE, as reported in 
[14], with two additional Estimation of Distribution Algorithm
(EDA) instances of GEFE. Our results show that the EDA
instance of GEFE that evolved FEs consisting of uniform sized 
patches had the best overall performance.

Keywords: Local Binary Patterns Method (LBPM), 
Estimation of Distribution Algorithm (EDA), Steady-State 
Genetic Algorithm (SSGA), Feature Extraction, Feature 
Reduction.

1 Introduction
Biometric recognition is the science of identifying an 
individual or group of individuals based on physical or 
behavioral characteristics or traits [2,18]. One of the most 
popular biometric modalities is the face [3,10,15].  One of the 
more widely used techniques for extracting features from 
facial images for the purpose of biometric recognition is the 
Local Binary Patterns method (LBPM) [1].
  In [14], Shelton et al. introduces two genetic and 

evolutionary methods (GEMs) [11] 10for evolving feature 
extractors (FEs) for facial biometric recognition. These GEMs 
were referred to as Genetic & Evolutionary Feature Extractors 
(GEFE) and were instances of a Steady-State Genetic 

Algorithm (SSGA) [23]. The two GEFEs differed in that one 
evolved FEs that consisted of uniformed sized patches 
(referred to as GEFEu) while the other evolved FEs consisting 
of non-uniform sized patches (referred to as GEFEn). It was 
shown in [14] that GEFEu outperformed GEFEn. This paper 
presents and compares the performance of two additional 
GEFE that are instances of an Estimation of Distribution 
Algorithm (EDA) [16]. 
The motivation behind this research presented in this paper is

a two-tier hierarchical system proposed in [19] to reduce 
feature checks by using Short-Length Iris Codes [5]. In a 
conventional biometric system, a total of nm feature checks
are used to identify an individual where n represents the 
number of subjects and m represents the number of features. 
In the proposed two-tier hierarchical system, the first stage 

uses a reduced set of k features is used to identify a subset of r
individuals that are closest to a probe, p. In the second stage, 
the system uses the full feature set consisting of m features to 
compare p to each of the r subjects. 
Equation 1 shows the relative savings (in terms of feature 

checks) of the proposed two stage system where fs represents 
to savings as a ratio of number of feature check made by the 
proposed system divided by the number of feature checks 
made by conventional system. 

               
n

r

m

k

s
f                                                   (1)

The remainder of this paper is as follows.  In Section 2, we 
will introduce the LBP method (LBPM) and the concept of 
GEFE. In Section 3, we present our experiment, and in 
Section 4, we present our results. In Section 5, we present 
our conclusions and future work. 
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2 LBPM and GEFE

2.1 The LBPM for Feature Extraction

   The LBPM [1] is a texture descriptor that can be used to 
extract features from any textured image. Within this research, 
LBP is applied to facial recognition, specifically images of the 
face. As presented in [10], the traditional LBPM uses patches 
that cover an entire image, are uniform, and non-overlapping.  
     A LBPM feature extractor (FE) can be described as 
follows. Initially, an entire image is partitioned in a user-
specified number of uniform patches as shown in Figure 1.

                                        
  Figure 1: Standard LBP             

For each patch on an image, the center pixels must be sought 
out. The LBPM compares the center pixel to its surrounding 
neighboring pixels to create a LBP value. Equation 2 shows 
the function that computes the LBP value. N represents a set 
of neighboring pixel values, C is the center pixel value, and k 
is the neighborhood size, where k = 8 in this research.
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The function LBP(N,C) uses P(Nk - C), which shown in 
Equation 3 returns a 1 or a 0 depending on the difference 
between the center pixel and the neighbor. 

   
           









0,0

0,1
)(

y

y
yP                                                    (3)

        Figure 2 provides an example of a neighborhood of 
pixels shown with intensity values displayed in the Pixel 
Values matrix.  The center intensity value of 150 is the center 
pixel, because it meets the requirements of being surrounded 
by 8 neighboring pixels. The differences are calculated and 
shown in the Differences matrix. 
The transition from the Differences matrix and the Bit String 

Values matrix is possible by Equation 2. The Bit String 
Values matrix shows a series of zeros and ones. This matrix 
represents Equation 3, in which the summation of 2k

represents the value of a bit string. A starting position must be 
arbitrarily chosen to calculate the LBP value, by unwrapping 

the bit string and decoding it. If the starting position was 
assumed to be the top, left corner of the final matrix, the 
sequence would be 11011000, which decodes to 216 as the 
LBP value.   
   

            Figure 2: LBP Example

In an effort to create a feature vector of an image to be used 
in a distance measure, the number of all bit string patterns 
within a patch must be counted. There are a total of 256 
possible bit string patterns for an 8 bit string. In an effort to 
reduce this number, a binary pattern is classified as either 
uniform or non-uniform. A uniform pattern is a bit string 
whose bits, when compared in sequential order, considering 
circular comparisons, shifts value 2 or less times. A non-
uniform pattern is a bit string that has more than two bit shifts 
when comparing circularly, and sequentially. 
If one considers the string 00011100 as an example, we see 

only 2 shifts occur. One is between the third and fourth 
position, and one between the sixth and seventh position. This 
string meets the requirements to be declared uniform. The 
string 01101111, has shifts that occur between the first and 
second position, the third and fourth position, the fourth and 
fifth position, and the eighth and first position; because the 
amount of shifts exceeds 2, this pattern is non-uniform. Out of 
the total 256 possible patterns, 58 of those patterns are 
uniform. 
A histogram is created for every patch of an image, and is 

composed of 59 bins. The 58 uniform patterns are assigned to 
58 bins in the histogram, with each bin storing the frequencies 
of the patterns. The 59th is a bin that holds the count of all 
non-uniform patterns found in the patch. The work of Ojala 
and Pietikainen, in [1], suggests that the most discriminating 
features of a facial image contain predominantly uniform 
patterns. The histogram vectors associated with each patch are 
then concatenated to form a histogram representing the 
features extracted by the LBP method [14].

2.2 GEFE

The GEFEs developed in [14], evolved candidate FEs 
consisting of uniform and non-uniform sized patches. A 
candidate FE, fei, is a 6-tuple (<Xi,Yi,Wi,Hi,Mi,fi>) consisting 
of either uniform/non-uniform patches [14] and can be defined 
as follows: Xi = {xi,0, xi,1,…, xi,n-1} and Yi = {yi,0, yi,1, … , yi,n-

1} describes the x and y coordinates of the center pixel of the n
possible patches. Wi = {wi,0, wi,1, … , wi,n-1} and Hi = {hi,0, 
hi,1,…, hi,n-1} describes the dimensions of the n possible 
patches, the widths and heights respectively. Mi = {mi,0, 
mi,1,…, mi,n-1} describes the mask for each patch (1 means to 
extract features from the corresponding patch, 0 means do not 
extract features from the corresponding patch), and fi

72 Int'l Conf. Genetic and Evolutionary Methods |  GEM'11  |



represents the fitness of fei . The purpose of the mask value is 
to reduce the total amount of features that need to be 
compared in the feature vector. The fitness is the number of 
errors made when comparing probe sets and gallery sets 
multiplied by 10 plus the fraction of the n patches from which 
features were extracted (see Equation 4).
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Candidate FEs consisting of patches with uniform patch size 
[14] are similar with the exception that for any FE, fek , Wk = 
{wk,0, wk,1, … , wk,n-1} where, wk,0 = wk,1,…,  wk,n-2 = wk,n-1, 
meaning that the widths of every patch is the same. Similarly,
Hk = {hk,0, hk,1, … , hk,n-1} where, hk,0 = hk,1,…,  hk,n-2 = hk,n-1, 
meaning that the height of every patch is the same.  
The SSGA instances of GEFE worked as follows. Initially, 

population of candidate FEs was created. The candidate FEs 
are evaluated and assigned a fitness. Two parents are selected 
via tournament selection [7,8,9,12,21]. The parent FEs are 
used to create an offspring FE via uniform crossover and 
Gaussian mutation [22]. The offspring is then evaluated, 
assigned a fitness, and replaces the worst fit candidate FE in 
the population. This process of selecting parents, allowing 
them to create an offspring, evaluating the offspring, and 
replacing the worst fit individual of the population with the 
offspring, is repeated for a user-specified number of function 
evaluations. Figure 3 provides pseudo code version for an 
SSGA [14].
   The EDA instances of GEFE are similar to the SSGA 

instances. However, in the EDA instances, a initial population 
of candidate FEs is created and evaluated. Next, a user 
specified number of FEs are then selected to build a 
probability density function (PDF) (for our experiment we 
used the top 50% of the population). Offspring are then 
created by sampling the PDF. The offspring then replace the 
previous population except for a user specified number of best 
individuals of the previous population (referred to as ‘elites’). 
Figure 3 provides pseudo code for an EDA [14].

3 Experiment
The Experiment was based on a subset of 105 subjects 

taken from the Facial Recognition Grand Challenge (FRGC) 
dataset [13]. Each subject in the FRGC dataset has three 
slightly different images associated with it (an example subject 
is shown in Figure 4). Our dataset of 105 subjects consisted of 
a probe set (one image per subject), and a gallery set (two 
images per subject). As shown in Figure 4, the images were 
pre-processed so that there was no great variance in alignment. 
Since our dataset contained 105 subjects, a total of 105 images 
were in the probe set and 210 images were in the gallery set. 
The dimensions of the images were 100 by 127 pixels. 

           
          Probe Image     Gallery Image    Gallery Image
             Figure 4: Subject 27’s Snapshots

Figure 3: Pseudo-code for the SSGA and EDA

  For this experiment, we compared the Standard LBP 
method (SLBPM), GEFE with non-uniform sized patches 
using SSGA (SSGA-GEFEn), GEFE with uniform sized 
patches using SSGA (SSGA-GEFEu), GEFE with non-uniform 
sized patches using EDA (EDA-GEFEn), and GEFE with 
uniform sized patches using EDA (EDA-GEFEu). 

4 Results
  For our results, the SSGA and EDA instances of GEFE 

evolved a population of 20 candidate FEs. The SSGA used
Gaussian mutation range of 0.1. The EDA constructed 
Gaussian based probability density functions and always kept 
the best FE of the previous generation (Elites = 1). The GEFE 
were run a total of 30 times with a maximum of 1000 function 
evaluations allowed for each run.  The GEFE instances 
(SSGAs and EDAs) were taken from the eXploratory Toolset 
for the Optimization of Launch and Space Systems (X-
TOOLSS) application [17].

compute EDA{
t = 0;
initialize pop(t)
evaluate pop(t)
While (Not done) {
   S(t) = selected subpopulation the 
          best individuals;  

Build a probabilistic model, PDF(t),     
   of S(t);

   Sample PDF(t) to generate O(t);
   Replace P(t)- Elites with O(t);
   t = t+1;
  }
}

compute SSGA{
t = 0;
initialize pop(t)
evaluate pop(t)
While(Not done){
   Parent1 = Select_From_Pop(t)
   Parent2 = Select_From_Pop(t)
   Child = Procreate(Parent1, Parent2)
   Evaluate(Child)
   Replace(Worst(Pop(t+1), Child)
   t = t+1;
   }
}
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In Table I, the average performance of the three methods is 
shown. The standard LBP method (SLBPM) needed to be run 
only once since the patch characteristics were deterministic.  
SSGA-GEFEn used an average of 38.65% of patches, with an 
average accuracy of 99.77% while SSGA-GEFEu used an 
average of 35.82% of patches, with an average accuracy of 
100%. EDA-GEFEn used an average of 34.74% of patches, 
with an average accuracy of 99.81% while EDA-GEFEu used 
an average of 29.90% of patches, with an average accuracy of 
100%.   All of the GEFEs outperformed SLBPM and the 
EDAs outperformed their SSGA counterparts. The precent of 
patches activated was counted as a degree of goodness for a 
method because fewer patches activated means fewer features 
to be considered in subject matching. 

Statistical analysis was performed on the different method, 
and the results confirmed that EDA-GEFEu had a statistically 
significant better performance (in terms of accuracy and 
features) than SSGA-GEFEn, SSGA-GEFEu, and EDA-
GEFEn. 

In [15], it is noted that there are certain areas of a face that 
are discriminating enough to effectively distinguish between 
different persons. Figure 5 shows an approximate positioning 
of patches for the best feature extractors created using the 
GEFEn and the GEFEu

i. 
As also seen in [14], it is interesting to see that the majority 

of patches are around the ocular region. Because the GEFEn

and the GEFEu chose this region to focus on, this suggests that 
this area holds textures that are unique enough to differentiate 
individuals from one another. This result is consistent with 
conclusions presented in [4,6]. 

TABLE I                                                                                    
EXPERIMENTAL RESULTS FOR LBP (EVEN DISTRIBUTION), SSGA 

AND EDA METHODS (UNIFORM AND NON-UNIFORM)

5 Conclusion and Future Work
In this paper, four forms of GEFE were compared (along with 
SLBPM). Both methods GEFEu and GEFEn had better 
performance than the SLBPM. EDA-GEFEu had a better 
performance than EDA-GEFEn, SSGA-GEFEu and SSGA-
GEFEn in terms of features and accuracy. Future work will be 
devoted toward the investigation and comparison of GEFE 
using a variety of other forms of genetic and evolutionary 
computations found in X-TOOLSS.
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      Figure 5a: SSGA Non Uniform         Figure 5b: SSGA Uniform

                    
   Figure 5c: EDA Non Uniform                Figure 5d: EDA Uniform

Figure 5: Best Individuals        

Methods Patches 
Used

Avg. 
Accuracy

Best 
Accuracy

SLBPM 100.0% 99.04% 99.04%

SSGA-GEFEn 38.65% 99.77% 100%

SSGA-GEFEu 35.82% 100% 100%

EDA-GEFEn
34.74% 99.81% 100%

EDA-GEFEu
29.90% 100% 100%
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Abstract— With the growth of the Internet, Internet Service
Providers (ISPs) try to meet the increasing traffic demand
with new technology and improved utilization of existing
resources. Routing of data packets can affect network uti-
lization. Packets are sent along network paths from source
to destination following a protocol. Open Shortest Path First
(OSPF) is the most commonly used intra-domain Internet
routing protocol (IRP). Traffic flow is routed along shortest
paths, splitting flow at nodes with several outgoing links on
a shortest path to the destination IP address. Link weights
are assigned by the network operator. A path length is the
sum of the weights of the links in the path. In this paper,
I study the problem of optimizing OSPF weights, given a
set of projected demands, with the objective of minimizing
network congestion. The weight assignment problem is NP-
hard. I developed a genetic algorithm (GA) to solve this
problem.

Keywords: genetic algorithm, shortest path, computer networks

1. Introduction
Routing is a fundamental engineering task on the Internet.

It consists in finding a path from a source to a destination
host. Routing is complex in large networks because of the
many potential intermediate destinations a packet might
traverse before reaching its destination [2]. The link weights
are assigned by the network operator. The lower the weight,
the greater the chance that traffic will get routed on that link
[3]. When one sends or receives data over the Internet, the
information is divided into small chunks called packets or
datagrams. A header, containing the necessary transmission
information, such as the destination Internet Protocol (IP)
address, is attached to each packet. The data packets are
sent along links between routers on Internet. When a data
packet reaches a router, the incoming datagrams are stored in
a queue to await processing. The router reads the datagram
header, takes the IP destination address and determines the
best way to forward this packet for it to reach its final
destination [3].

The configuration of network protocols is widely con-
sidered a black art and is normally performed based on
network administrators’ experience, trial and error, etc...
These manual methods are often error-prone and not scalable
to large complex networks. The emphasis of the search
algorithm should be on finding a better operating point
within the limited time frame instead of seeking the strictly
global optimum. Network conditions vary with time and

the search algorithm should quickly find better network
parameters before significant changes in the network occur.
Another feature of these problems; for example, AT&T’s
network has 1000s of routers and links. If all OSPF link
weights of this network are to be configured, there will be
thousands of parameters present in the optimization [4].

2. The Shortest Path Problem
The shortest path problem is defined as that of finding a

minimum-length (cost) path between a given pair of nodes
[5]. Shortest path problem is a classical research topic. It
was proposed by Dijkstra in 1959 and has been widely
researched. The Dijkstra algorithm is considered as the most
efficient method. It is based on the Bellman optimization
theory. But when the network is very big, then it becomes
inefficient since a lot of computations need to be repeated.
Also it can not be implemented in the permitted time [9].

3. Genetic Algorithm
As a special kind of stochastic search algorithms, genetic

algorithm is a problem solving method which is based on
the concept of natural selection and genetics [6].

In the 1970s, Holland first introduced genetic algorithms
to explain the adaptive processes of natural systems and
to design an artificial system, which retains the robust
mechanism of natural systems [5].

The steps of a GA are shown in Algorithm 1.

Algorithm 1 GA Steps[7]

1: Choose initial population
2: Evaluate the fitness of each individual in the population
3: while <terminating condition> do
4: Select best-ranking individuals to reproduce
5: Breed new generation through crossover and mutation

(genetic operations) and give birth to offspring
6: Evaluate the individual fitnesses of the offspring
7: Replace worst ranked part of population with off-

spring
8: end while

4. The GA algorithm that I implemented
The steps of my GA algorithm are explained in this

section.
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4.1 Choose Initial Population
When initializing the population, my algorithm starts from

the SOURCE. SOURCE is a constant in the program, so the
user may want to pick another node as the starting point. The
algorithm selects one of the neighbors provided that it has
not been picked before. It keeps doing this operation until it
reaches to DESTINATION. Like SOURCE, DESTINATION
is also a constant that user may change as they wish.

4.2 Evaluate the fitness of each individual in
the population

The evaluation function takes a path in the population.
It gets the distance between each node pair in the path, by
calling a function to read from the distance array. Adds them
together and returns the sum as the cost of the path.

4.3 Select best-ranking individuals to repro-
duce

My algorithm selects two individuals from the population
with the lowest costs.

4.4 Crossover and Mutation
With some probability, the program mates the two indi-

viduals. The crossover function takes two parents to mate.
It looks for the common points in the parents. The common
nodes are where these two paths intersect. Among the com-
mon points, the program selects one of them randomly. It
makes the crossover from that point. The crossover operation
is illustrated in Figure 1.

4.5 Evaluate the individual fitnesses of the
offspring

I send these offspring to the evaluation function to get
their fitnesses. If the offsprings’ fitnesses are less than the
nodes with maximum fitnesses in the population, I replace
them with the nodes with the maximum fitnesses.

4.6 Terminating Condition
My terminating condition is a predefined number of

iterations. Because, in the network topology, the goal is
not to find the global optimum, but to find a path with a
reasonable cost in a limited time.

5. Experiment Results
I generated a network topology with 20 nodes and 62 links

to test my Genetic Algorithm. Each link has a cost associated
with them. I set two nodes as source and destination. The
goal of my GA application is to find a path between source
and destination with the lowest cost.

In Figure 3, the cells with 10,000 in them represent that
there is no direct link between those nodes. Because, 10,000
is too big compared to other small costs, therefore my
implementation ignore those big numbers, and pick the links

Fig. 1: Crossover Operator [7]
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Fig. 2: Network topology used

with small costs, instead. Figure 4 shows a sample of initial
population, and their fitnesses.

I set several parameters for the experiment. They are as
follows; Population size=50, Number of runs=30, Number
of generations=50, Crossover probability = 0.99, Mutation
probability=0.1 I run the steps selection, crossover, and
replace part 50 times (number of generations). Figure 5 and
Figure 6 shows the average of maximum numbers of 30
runs, the average of minimum numbers of 30 runs, and the
average of average numbers of 30 runs.

6. Analysis of Results
The results show that GA gets close to optimum very

quickly. This is a promising result for my research. When
using this GA algorithm besides other search algorithms in
the USF [8], such as, multi-start hill-climbing, simulated
annealing, Controlled Random Search and RRS (Recursive
Random Search), I can start searching the space with GA
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Fig. 3: The costs on the links

Fig. 4: A sample of initial population, and their fitnesses
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Fig. 5: Average values of runs

Fig. 6: Average of 30 runs for 50 generations

first, and then after GA gets close to optimum, then I can
switch to other search techniques.

7. Conclusions and Future Research
In this project, I developed a genetic algorithm that finds

a shortest path in a limited time. This algorithm is meant to
be used in OSPF routing, which is the most commonly used
intra-domain Internet routing protocol (IRP). As the future
research, I would like to test my GA algorithm on some real
network topologies containing much more nodes and links.
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Abstract - The purpose of this paper is to discuss the 
addition of a new operator, called an ACO operator, to a 
genetic algorithm. The operator is based on an analogy with 
Ant Colony Optimization. We use the ACO operator in an 
application of genetic algorithms to engineering design of 
conduit systems. The conduit optimization problem involves 
optimizing both the location of components of conduit systems 
and the routing of conduits between those components. Our 
Conduit Routing Optimization Tool, COT, uses a genetic 
algorithm with an ACO operator to solve this problem. The 
genetic algorithm provides the basic means to search for an 
optimal solution to the problem.  Pheromone trails, a method 
from Ant Colony Optimization, are used to influence the 
genetic algorithm. We discuss our methods and the Conduit 
Optimization Tool. We also discuss when an ACO operator 
might be useful for other types of problems. 

 
Keywords: Genetic Algorithms, Design, Ant Colony 
Optimization 

 

 

1 Introduction 
  This paper discusses the use of an augmented genetic 

algorithm for engineering design. The augmentation is based 
on ideas from Ant Colony Optimization.  Our previous work 
has dealt mostly with optimization of engineering design 
decompositions [1, 2]. In the present paper we describe a tool 
for aiding a different part of the design process. The use of 
pheromones is the major innovation. We have demonstrated 
the usefulness of this tool for optimization of the location of 
equipment and the routing of conduits for ships. We expect, 
however, that this tool will be an aid in other types of 
engineering design. It also illustrates the use of ideas from 
Ant Colony Optimization to guide a genetic algorithm. 

 
1.1 The problem 

 The first stage of design of a complex system such as a 
process plant or a ship often consists of a basic functional 
design. This design shows each element of the system and its 
intended function, but does not show much additional 
information. In our case, the functional design is the output of 
a CAD tool. Additional stages of design can be thought of as 
adding missing information to the functional design. 

 

 One such stage involves conduit systems. On a ship, 
conduits are used to convey a service over some distance. 
Examples of conduits include wire, pipes, and ducting. These 
conduits are parts of systems such as the fresh water cooling 
system, the seawater cooling system, the electrical system, 
and the fuel oil system. These systems involve other 
components than just conduits. Some of these components are 
static. Static components have a location that is fixed by other 
factors in the design. Many components, however, are non-
static. An important phase of the design is the optimization of 
the location of these components and the routing of conduits 
between them.   

 
1.2 Solution 

We originally attempted to solve the conduit 
optimization problem using a pure genetic algorithm.  

 
Genetic algorithms are a well-known technique which 

can be applied to solve optimization problems. They have 
been applied to engineering design [3,4,5] They are robust, 
can be applied to situations where the quality of a solution 
changes discontinuously as parameters change, are good for 
finding global as opposed to local optimizations, and can 
provide multiple, qualitatively different results that are close 
to optimal.  

 
Genetic algorithms map solutions to a problem to 

representations called chromosomes. Often these 
chromosomes are bit strings. First, a population of 
chromosomes is randomly initialized. Then members of the 
population are selected for reproduction based on a fitness 
function. Operations of mutation and crossover are applied 
during reproduction to produce members of a new generation.  
Thus, the population evolves by a process similar to natural 
evolution. 

 
We discovered that a pure genetic algorithm functions 

very poorly for our conduit optimization problem. The 
fundamental reason seems to be that the search space is just 
too large and most solutions in this search space are 
undesirable. For example, conduits can twist and turn 
repeatedly in three dimensions. Most such twists and turns are 
undesirable.  
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In order to deal with this large search space problem, we 
introduce an idea from Ant Colony Optimization for 
improving the process.  

 
1.3 Contents of this paper 

In the second section we describe The ACO operator. As 
a simple example, we discuss a map coloring problem. The 
third section of this paper briefly describes the basic graph 
representation for conduit problems. More details are given 
elsewhere [1].  In the fourth section we describe results on 
conduit system problems using the ACO operator. Finally we 
evaluate the system and the usefulness of the ACO operator as 
an aid to genetic algorithms in general.  

 
 

2 The ACO operator  

2.1 ACO steps 

Ant colony optimization is a well known metaheuristic 
[6, 7] for solving problems which can be represented by 
finding good paths through graphs. It is based on an analogy 
with the behavior of ants and the use of chemical markers 
called pheromones to determine best or at least good paths.  

 
For details on this method the reader is referred to [8]. 

There are many possible variations. A simple model of this 
method has the following steps: 

 
1. Initialize pheromone values to small random values. 
2. For each ant, construct a path from start to destination 

by choosing the next node based on pheromone 
strength. 

3. Evaporate pheromone. 
4. Update pheromone by depositing an amount of 

pheromone on each ant’s path that is proportional to 
the quality of the path. 

5. Return the path with the largest amount of pheromone. 
 

2.2 An example problem 

As a simple example of our procedure, we consider a 
problem not involving design.  The problem is to color a map 
of the United States so that no two states have adjacent colors. 
This can be solved using four colors.  We formulate this for a 
genetic algorithm by using bit strings to represent possible 
colorings. We allocate two bits per state to indicate color. The 
result is a genome with 100 bits. The fitness is a constant 
minus the number of states that are miscolored. 

 
2.3 Pheromone graph  

Unlike a genetic algorithm, the solution to an Ant 
Colony Optimization problem is a path through a graph. We 
can call this a pheromone graph since pheromones values will 
be deposited on vertices of this graph.  This set of vertices 
specifies the solution to the problem. Therefore, our first step 

in developing the ACO operator is to design a pheromone 
graph. We will refer to it as a P graph for short. 

 
A genetic algorithm represents possible solutions to a 

problem, not by a graph, but by a genome which we will 
consider to be specified by bit strings of some fixed length. If 
the vector has length n, the genome space, G, has n 
dimensions and there will be 2n different points in this space.  
Each point represents a possible chromosome and therefore 
each corresponds to a solution to the problem.  

 
In order to construct the P graph, we partition the bit 

vectors into specific sets of bits. Each set of bits specifies a 
subspace of G that we will refer to as a section. The bits of 
any given chromosome specify a point in each section. To 
construct the P graph we arrange these sections in a specific 
order and add two ideal points. These represent the start and 
finish points. The P graph has directed edges from the start 
point to each of the points in the first section. There are edges 
from each section to each point in the next section until the 
final section. Each point in the final section has an edge from 
that point to the finish point.  This is the P graph. 

 
By construction, each chromosome is equivalent to a 

path through the P graph from the start point to the finish 
point. This means that the chromosome is analogous to an ant 
trail, not an ant. The trail consists of one point for each 
section plus the start and finish points. Another difference 
between the ACO operator and most Ant Colony 
Optimization methods is that we will mark nodes with 
pheromone, not edges. 

 
In the map coloring example, a set of colorings can be 

represented by a bit string with 100 bits.  Possible sections 
could be specified by states in the far west, southwest, west 
central, southeast, and northeast in that order.  Each of the 5 
sections would correspond to 10 states and therefore 20 bits. 
This means each section would consist of  220 points. The P 
graph would have a start node which would have edges to 
each of the points in the far west section; each of these points 
would have edges to all the points in the southwest section 
and so forth. All points in the northeast section have edges to 
the final point. 

 
The P graph would be too large in most cases to specify 

explicitly; fortunately, this is not necessary. Since the only 
purpose of the two ideal points in the P graph is to provide 
specific start and finish points, we consider them as implicit 
and do not represent them. Furthermore, since the existence of 
an edge is specified by a rule, the edges can be kept implicit 
also. Finally, most points are implicit. The only points that 
need to be explicitly represented are those that are occupied 
by a chromosome (ant path). These points are already 
represented by the section bits of the respective 
chromosomes. 
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Since most of the P graph is implicit, the representation 
of the explicit part is easy. All that is needed is an ordered list 
of sections. Each section can be represented by a mask and a 
pheromone array. The mask determines which bits on a 
chromosome specify the point in the section that is on the 
chromosome’s “path” through the section. The array holds 
pheromone for each chromosome’s point in the section. Since 
we mark nodes with pheromone instead of edges the array’s 
size is just the number of chromosomes.  

 

2.4 Section fitness and pheromone values  

The pheromone value is partially based on the section 
fitness. The section fitness is calculated by the fitness function 
and represents a guess at the fitness contribution from this 
section of the chromosome. The expectation is that each 
section represents partial solutions that are useful building 
blocks for the total solution. In the map coloring example 
section fitness is evaluated by counting the number of 
miscolorings in the states in the section. This is why a 
contiguous collection of states was chosen for each section, 
rather than (for example) states that are close alphabetically. 

 
Evaluating section fitness in the general case is usually 

not difficult for design problems. The evaluation function 
which evaluates the global fitness can usually evaluate the 
section fitness easily. If not, then a heuristic evaluation 
function can be used. In the worst case the section fitness 
could be made a constant. 

 
It should be pointed out that having good section fitness 

may be useful for finding a solution, but there is no guarantee. 
In the map problem, states on either side of adjoining sections 
must have appropriate colors. There is no guarantee that this 
can be done, even if the sections themselves are colored 
appropriately. Similar difficulties can easily occur in other 
problems. This means that we do not want to use just section 
fitness for our pheromone value.  

 
For the pheromone value we choose to balance the 

advantages of local and global improvement. Therefore, the 
pheromone value for each point of a section that is occupied 
by a chromosome is taken to be a sum of the weighted total 
fitness and the section fitness. The total fitness is weighted by 
a fraction which is roughly the contribution of the section to 
the total fitness. This fraction is the ratio of the number of 
section bits divided by the total number of bits. In the map 
coloring problem the weighting would be 20/100 = 1/5. 

 
Unlike ACO, pheromone values will not slowly 

evaporate, but will totally vanish from one generation to 
another. This avoids the difficulty of keeping track of points 
from previous generations that are not currently occupied by 
chromosomes. 

 

2.5 The ACO operator 

In Ant Colony Optimization step 2 was: “For each ant, 
construct a path from start to destination by choosing the next 
node based on pheromone strength”. 

In a GA problem we don’t construct the chromosome 
through sequential choices. This means that we must 
represent step 2 as a deformation of the existing path toward a 
nearby path based on pheromone strength. The ACO operator 
performs these deformations. 

 
There are two parameters associated with the ACO 

operator. One parameter governs the frequency of 
deformations. The other gives the strength of deformations.  
The frequency parameter specifies the average number of 
deformations to apply per chromosome of the population in a 
single generation. The strength parameter specifies the 
fraction of the genes to be modified per deformation.  

 
To prepare for a deformation we find two chromosomes 

with points that are close in some section, but not the same. In 
order to do this, a section and a chromosome are chosen 
randomly. A second chromosome is found by locating the 
chromosome which occupies the closest point in the same 
section. (Distance ties are broken arbitrarily). The distance 
measure we use is the Hamming distance for the bits defining 
the section. The closest chromosome is therefore the one that 
has the most section bits the same, but is not identical.  

 
The deformation changes bits in the chromosome with 

the lower pheromone value to match those in the chromosome 
with higher value. The bits to change are chosen randomly. 
The number of bits to change is determined by the 
deformation strength parameter. 

 
If the chromosomes have equal pheromone values then 

the deformation is aborted and tried with a different pair of 
chromosomes. If there are fewer bits to change than would be 
indicated by the strength parameter then all are changed. 

 
In our genetic algorithm all candidates for the next 

generation are selected (perhaps redundantly) using 
tournament selection. The ACO operator, mutation, and 
crossover are performed on these chromosomes based on 
probability/strength parameters. The operators are performed 
in the order given. 

 
Earlier we gave five general ACO steps. Step one, 

initialize pheromone values, is taken care of by the 
initialization of the chromosome population and the first 
fitness evaluation. Step two, constructing a path is replaced by 
using the ACO operator to deform existing paths. Step three, 
evaporating the pheromone, is done by not using any 
pheromone from previous generations. Step four, updating the 
pheromone is done by the fitness function each generation. 
Step five, returning the path with the best pheromone value is 
replaced by choosing the fittest chromosome. 
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3 Conduit problem representation 

3.1 Representing design graphs 

Based on experience using genetic algorithms for design 
decomposition problems, we choose to represent an 
engineering design as a graph. (From now on we consider the 
term graph to mean undirected graph.)  The basic functional 
design of the system is the source of this graph. Each vertex 
of the graph represents a component of the design. Each edge 
represents a connection. Further information is not known at 
this stage.  

 
Additional stages of design add more detailed 

information. This can usually be thought of as attaching labels 
to vertices or to edges or to both. To optimize some aspect of 
design, we merely optimize the labels. An important 
assumption in our method is that the graph does not change. 
All chromosomes in a population apply to the same graph. 

 
Chromosomes, in this method, are simply collections of 

labels and can be bit strings as in ordinary genetic algorithms. 
The difference is that the bit strings must be interpreted with 
the aid of the underlying graph.  

 
3.2 Conduit System Representation 

We need to apply our representation to a conduit system. 
We said that a conduit system is a system that supplies a 
service to a collection of other objects. An example is a fresh 
water cooling system on a ship.  This is a collection of pipes, 
valves, filters, pumps, and other items that deliver fresh water 
to equipment in different locations, which need the water for 
cooling.  

 
We distinguish between static and dynamic components 

of such a system. Static components have their location 
determined by outside factors. These locations cannot be 
optimized, at least not by the current tool. Dynamic 
components can have their position changed for optimization 
purposes.  

 
The simplest way to represent this type of system is to 

consider each component other than the conduits as a vertex 
in our graph. In order to simplify the structure, we add virtual 
joint components at regular distances along each conduit. 
These virtual joints represent locations at which the conduit 
can change direction. There may or may not be an actual joint 
at this location. We have a set number of these joints so that 
the design graph is fixed and does not change its structure 
during optimization. 

 
Using this representation, our optimization problem is 

purely a vertex labeling problem. The labels represent the 
locations of components. Edges represent conduits that travel 
in a straight line between the components they connect. There 

are actually some additional constraints. Some components 
have fixed ports. The ports represent attachment points for 
conduits. Conduits can only leave the port in a straight line in 
the direction specified by the port. This means that in our 
graph, the first virtual joint must lie along the straight line 
specified by the port. More details on this representation are 
given elsewhere. [1] 

  

4 Results 

4.1 Test Problems 

The map coloring example was implemented in order to 
test ideas. Map coloring took less than half as many 
generations as a simple genetic algorithm with states in 
alphabetical order.  

 
Based on the success with the simple example, the ACO 

operator was added to a genetic algorithm for conduit 
optimization. Some simple routing problems were 
constructed. Regions through which conduits were to pass 
were divided into three dimensional cells. These cells 
correspond to the sections of the P graph. This was much like 
the sets of states employed for the map problem. The size of 
the cells varied depending on the size of ship compartments, 
but usually corresponded to a single ship compartment. The 
number of bits per section varied based on the design, but in 
this simple example usually consisted of 100 - 180.  The 
number of sections was varied from 10 to 15 

 
4.2 Test parameters 

The genetic algorithm was run in four different modes. 
In the first mode, called the S (simple) mode, the strength of 
the ACO operator was zero. This was just a simple genetic 
algorithm. The second mode was the L (local) mode. In this 
mode the pheromone value was just based on local (section) 
fitness. The third mode was the G (global) mode. The 
pheromone in this case was based on the global fitness with 
no section fitness. The fourth and final mode was the F (full) 
mode using both section and overall fitness in equal amounts.  

 
The genetic algorithm used tournament selection. 

Various parameters were tried until reasonable values were 
found to be: mutation probability = .001, crossover 
probability = .7, ACO frequency =.20, ACO strength = 0.15. 
 

If there was no trend of improving costs for 100 
generations the algorithm was terminated. Success in finding 
a solution was defined as finding a solution before 
termination with a cost within a factor of 10 of what a human 
might produce. Since hard constraints were enforced by high 
costs, there was always technically a solution.  

 
The data on success and failure was highly dependent 

the sample problems so we only indicate rough values.  
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In tests, the S mode solved the sample problems 17% of 
the time.  The L mode succeeded 63% of the time. The G 
mode succeeded 47% of the time and the F mode succeeded 
71% of the time.  
 

In order to compare quality, we first chose only 
problems where all 4 methods solved the problem. We rated 
the quality of the solutions with the S method (basic genetic 
algorithm) having quality one. 

 
4.3 Test results 

The table below shows results from some typical runs. 
 
 

Table 1    
 

Run     L Quality   G Quality      F Quality
1 1.25 1.33 1.55 
2 1.99 1.15 1.72 
3 1.56 0.55 1.72 
4 2.04 0.95 1.74 
5 1.51 1.28 1.82 

 
 
The average quality of L/S was 1.67.  The average 

quality of G/S was 1.052. The average quality of F/S was 
1.71. 

 
Since the L mode and the F mode solved the most 

problems. We present 5 typical runs where both solved the 
problems but the other two did not. We show F mode quality 
relative to L mode (L mode quality normalized to 1). 

 
Table 2       

 
Run F Quality 

1 0.82 
2 1.28 
3 1.40 
4 1.04 
5 1.67 

 
The average value of F/L was 1.24. 
 

5 Conclusions 
The crucial aspect of this study was to improve the 

ability to find any solution. The simple (S) genetic algorithm 
failed very frequently. We attribute this failure to the fact that 
the space of reasonable solutions was very sparse. Mutation 
was needed to explore this space; however, mutation would 
also immediately break down partial solutions. It should be 
noted in this connection that although the ACO operator 
changed bits, it changed them in a conservative fashion. That 
is to say, it makes an inferior partial solution more similar to 
an existing one that was better.  

A simplification to the ACO operator is obtained by 
using it in the G mode. This means the pheromone values are 
simply the fitness. In some ways this is more in accord with 
usual Ant Colony Optimization. Our experience is that the 
local (section) fitness helps the algorithm. The full method 
was also better than just using the local fitness for pheromone 
values. It should be noted that when the local fitnesses of the 
chromosomes in a section become roughly similar, 
differences in the actual (total) fitness can become the 
determining factor. This can push the sections of a 
chromosome to change to accommodate global optimization. 

 
Obviously the use of the ACO operator makes the 

algorithm much slower and is also more complicated. Of 
course, it need not be used in a given situation. In which case, 
there is no penalty. It can be thought of as an additional 
weapon to be used on difficult problems. 

 
The next question is: When would the ACO operator be 

useful? It would be expected to work well on problems which 
were similar to those tested. There are two key features that 
are likely to be important for similar problems. The first is 
that the problem difficulty be high due a very large problem 
space in which good solutions are sparse.  The second is that 
the problem should be decomposable into subproblems that 
aid in finding a global solution even if the global solution 
cannot be obtained by simply solving the subproblems.  
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Abstract—This paper presents a hybrid mechanism of handling 

constraints for particle swarm optimization (PSO) algorithms. A 
Newton-like method is embedded into the algorithm to help 
handle equality constraints while penalty/fitness functions are 
used to deal with inequality constraints. The proposed technique 
has been tested for benchmark optimization problems reported in 
the literature. The experimental results show that the proposed 
hybrid method successfully and efficiently handles the equality 
and inequality constraints for PSO algorithms. An economic 
power dispatch problem is given as an example of the applications 
of the proposed method in power systems. 
 

Key Words— Constraints handling, economic power dispatch, 
hybrid method, Newton-like method, optimization, PSO. 
 

I. INTRODUCTION 
 NSPIRED by the social swarming behavior such as bird 
flocking or fish schooling, Kennedy and Eberhart first 
introduced the particle swarm optimization (PSO) algorithm 

to solve nonlinear optimization problems [1]. PSO is one of 
many heuristic algorithms; it shares many similarities with 
evolutionary computation techniques such as genetic 
algorithms (GA). However, in some cases it is easier and faster 
to implement PSO than GA due to inherent difficulties in data 
representation that evolutionary operators such as crossover 
and mutation utility. Since its introduction in 1995, PSO has 
been used in many areas including nonlinear optimization, 
control, and artificial intelligence [2].  

PSO was originally developed for solving unconstrained 
nonlinear optimization problems [1]. Since real optimization 
problems are normally constrained, several variants of PSO 
capable of handling constraints have been proposed [2]-[12]. 
Nevertheless, how to handle different types of constraints that 
could exist in real world problems is still one of the most 
difficult challenges for using PSO.  Contrary to its fast spread 
of applications in different areas, research on finding a general 
method of handling constraints for PSO has moved relatively 
slowly. 

 
This work was supported by National Science Foundation Grant 

ECS-0823865. 
 

The most common way of handling constraints for PSO is to 
convert the constrained problem into a unconstrained problem 
by assigning certain penalty factors into the original objective 
function [10]. It is very important to choose appropriate penalty 
functions to maintain the diversity of the population in the 
evolutionary algorithms like PSO [3], [10].  This method has 
been proven efficient in handling inequality constraints [3], [5], 
[10], [13]. However, for the situations where the search spaces 
are highly constrained, the optimums might be achieved with 
active constraints, or the equality constraints must be satisfied 
at high accuracy, the method of penalty functions may fail to 
find the optimal solutions even with dynamic penalty factors 
[3], [13].  

Ranking schemes were proposed in [3] and [11] to handle 
constraints so that leaders with better performance were chosen 
to set the directions for the rest in the swarm. A Pareto ranking 
method was used in [11] while a compete-and-win scheme 
based on closeness to the feasible region was proposed in [3]. 
However, ranking schemes may reduce the exploratory 
capabilities of PSO. To help prevent this, a turbulence factor 
was also introduced in [3]. Nevertheless, as noted in [3], the 
ranking schemes may not work properly for some ill-defined 
constraints. 

Xu and Eberhart presented a feasibility-checking method to 
handle constraints for PSO [4], [5]. The proposed scheme 
randomly initializes particle positions until all particles are in 
the feasible region. During the updating process, only feasible 
solutions are saved and used for updating. Though this 
approach is simple and straightforward, it has difficulties with a 
prohibitive computational burden when solving some real 
problems. For problems with wide search spaces and stringent 
constraints, the algorithm can stall in its initialization stage or at 
an intermediate stage of computation when attempting to 
randomly place all particles in the feasible region [3].  

Recently, Luo et al. employed a method of reduced space 
transformation to transform the problem into one without 
equality constraints [12]. Liang et al. proposed a dynamic 
multi-swarm approach to handle constraints in each 
subpopulation [9]. These methods have shown to be effective 
for certain application areas/problems. However, they still have 
difficulties for some large scale nonlinear optimization 
problems [9], [12] 
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In this paper, a hybrid mechanism combining penalty/fitness 
functions and a Newton-like method is proposed to handle 
constraints for PSO. The proposed mechanism offers the 
freedom for particles to search spaces and also gives them 
directions to update their positions. This new method is verified 
by solving benchmark problems reported in previous work [3], 
[13]. 

The paper is organized as follows. The background of PSO 
algorithm and Newton’s method are briefly discussed in section 
II. The constraint-handling mechanism using a Newton-like 
method and penalty functions is addressed in section III. 
Section IV shows and discusses the results of applying the 
proposed method for solving benchmark problems reported in 
literature. Section V concludes the paper. 

 

II. PSO ALGORITHM AND NEWTON’S METHOD 

A. Optimization Problems and the Original PSO Algorithm 
There are numerous types of optimization problems such as 

minimizing cost or maximizing benefit with various types of 
constraints in the real world. In general, a constrained 
optimization problem can be defined as:  

Min )(Xf , [ ]T
nxxxX ,, 21= , and nRX ∈    (1) 

Subject to: 
0)( ≤XG , [ ]TpgggG ,, 21= ,         (2) 

0)( =XH , [ ]TqhhhH ,, 21= , and       (3) 
)()( u

ii
l

i xxx ≤≤ , ni ,,2,1=             (4) 
where f is the objective function, X is the optimization variable 
vector, n is the variable vector dimension, p is the number of 
inequality constraints, q is the number of equality constraint 
equations, and )(l

ix and )(u
ix  are the lower and upper bounds of 

the variable xi. 
PSO is a population based stochastic optimization technique, 

which has been widely explored to find the solution to (1). Each 
particle in the population represents a candidate solution to the 
problem. All the particles start with randomly initialized 
positions and then “fly” throughout the search space to find the 
best possible solution to the problem. During the process, the 
particles communicate with each other and promulgate the best 
local solutions/positions that each of them has achieved. Then, 
based on the global and local information obtained, each 
particle updates its position towards a desired global optimum. 

The basic elements of a global version of PSO algorithm are 
summarized below. 
• Particle, Xj(t): Each particle is a candidate solution vector 

containing n optimization variables. Xj(t) is the jth particle at 
time t, and it can be described as: 

[ ]Tnjjjj txtxtxtX )(),(),()( ,2,1,=        (5) 

This particle vector is said to describe the particle’s 
“position” within the solution space. 

• Population, Popu(t): It is a set consisting of m particles at 
time t, i.e., Popu(t) = [ ]Tm tXtXtX )(),(),( 21 . 

• Particle Velocity, Vj(t): The velocity of the jth particle at the 
time t in the n-dimensional search space can be represented 
as:  

[ ]Tnjjjj tvtvtvtV )(),(),()( ,2,1,=         (6) 

The velocity of the particle indicates its relative change 
within the solution space with respect to its current position 
vector.  For each time increment, a particle’s velocity 
demonstrates the time rate of change to the particle’s solution 
vector. 
• Individual best, Xj, pbest(t): It is the best position that the jth 

particle has achieved so far at time t. Each particle saves its 
best position throughout the whole searching procedure.  

• Global best, Xgbest(t): It is the best position (or solution) that 
has been achieved so far among all the particles. Based on the 
definition, it is clear that  

mjtXtX pbestjgbest ,,2,1),()( , =≤          (7) 

The information of global best is known to each and every 
particle in the population through communication among 
particles. 
The original PSO algorithm is implemented as follows: 

• Initialization: At the starting point t = 0, all particles are 
initialized with a randomly assigned position and velocity 
value. For example, the ith dimensional position (xj,i) of the 
jth particle Xj is initialized with a uniform random value 
between )(l

ix and )(u
ix , i = 1, 2, …, n. The ith dimensional 

velocity of the particle is initialized with a uniform random 
value between max

iv− and max
iv . max

iv  can be defined as: 

( ) m
i

l
i

u
ii Nxxv /)()(max −=               (8) 

where m
iN is the minimum number of steps that change a 

particle position from its lower bound to its upper bound of 
the ith dimension. The value of m

iN  is chosen by users. 
• Velocity updating: During each iteration cycle, the particle 

velocity is updated based on the following formula: 

)]1()1([

)]1()1([)1()()(

22

,11

−−−+

−−−+−=

tXtXrc

tXtXrctVtwtV

jgbest

jpbestjjj    (9) 

where w(t) is the inertia weighting factor, c1 and c2 are two 
positive constants, and r1 and r2 are uniform random 
numbers in [0, 1]. The first term in the equation stands for 
the particle inertia property, which tends to keep the velocity 
of a particle constant. The second term shows how a particle 
changes its speed based on its own knowledge (individual 
best position). The third term represents the social 
information exchange behavior of particles that each particle 
also adjusts its speed based on the global best position.  

• Position updates:  After updating its velocity, each particle 
changes its position (or solution) according to the following 
simple formula: 

)()1()( tVtXtX jjj +−=              (10) 

• Process termination 
A PSO program will stop only when a certain stopping 

criterion is met. For real applications, a PSO program can have 
a set of stopping criteria set by users. Some typical criteria used 
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are: (1) the number of iterations since the last update of the best 
solution exceeds a pre-set value, NL; and (2) the total number of 
iterations reaches a pre-specified maximum value, Ntot.  

B. Newton’s Method for Solving Nonlinear Equations 
Newton’s method, also called Newton-Raphson’s method, is 

one of the most commonly used techniques for solving 
nonlinear equations [14]. By linearizing the nonlinear function 
to its first order Taylor series, Newton’s algorithm 
approximates the solution by solving a linear equation at each 
step. The method starts with an initial estimate of the solution 
and then calculates inductively as 

))(('
))(()()1(
txf
txftxtx −=+              (11) 

where f is the nonlinear function to solve, x(t) is the estimate to 
the solution at the current (tth) step, and x(t+1) is the next 
[(t+1)th] step estimate. 

Newton’s method for solving a single nonlinear function can 
be easily extended to solve a set of nonlinear equations as 
follows: 

))(()()()1( 1 tXFtJtXtX −−=+           (12) 
where X(t) is the N-dimensional variable vector at the tth step, F 
is the N-dimensional function vector, and J is the Jacobin 
matrix. Variable and function vectors are defined as: 

tNx

x
x

tX

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

= 2

1

)( and 

)(

2

1

)(

)(
)(

))((

tXXN Xf

Xf
Xf

tXF

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=
     (13) 

Jacobin matrix is obtained as: 
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For a set of underdetermined nonlinear equations (i.e., the 
number of variables is larger than the number of consistent 
equations), a Newton-like method can be used to find a solution 
with minimum norm by using pseudoinverse [14]. A similar 
iterative formula to (12) can be used as follows: 

))(())(()()1( tXFtJpinvtXtX −=+         (15) 
where pinv represents pseudoinverse operation. In this case, 
J(t) is an M×N matrix, i.e. not a square matrix, i.e. M≠N.  M is 
the number of equations, N is the number of variables, and 
M<N. 

Newton’s method is fast and it can achieve quadratic 
convergence. It is a common application to combine Newton’s 
method with other methods in a hybrid format to achieve 
numerical global convergence [14]. 

III. HYBRID MECHANISM FOR HANDLING CONSTRAINTS FOR 
PSO ALGORITHM 

When attempting to solve a general optimization problem, 
such as that described in (1) – (4), a challenge for using PSO 

becomes how to effectively handle the constraints listed in (2) – 
(4). It is especially true for equality constraints and active 
equality constraints. Inspired by Newton’s method discussed in 
section II.B, a hybrid mechanism of handling constraints is 
introduced in this section. Newton-like method is used to 
handle equality constraints while penalty factors incorporated 
into a fitness function is applied to handle inequality 
constraints. The upper and lower limits in (4) are normally easy 
to handle by forcing possible violations within the limits as 
follows: 
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The focus of the remainder of this section is devoted to 
handling equality constraints with Newton-like method and 
inequality constraints using penalty fitness functions. 

A. Handling Equality Constraints Using Newton-Like 
Method 
In general, the group of equality constraints in (3) is a set of 

underdetermined nonlinear equations, which should have a set 
of solutions. Otherwise, there is either no solution to the 
optimization problem or there is no need to carry out the 
optimization study if only the equality constraint set itself can 
determine the solution of the problem.   

PSO algorithm starts with a randomly initialized point, which 
may or may not satisfy all the constraints. Each particle in the 
population will then “fly” in the search space, update its speed 
and position based on the experience of its own and the whole 
community. In the original PSO algorithm summarized in (9) 
and (10), there is no direct mechanism to tell particles how to 
adjust themselves to meet the equality constraints. This could 
cause the procedure fail to find a feasible solution, take a longer 
time to find a solution, or come with a larger error to the 
equality constraints if the value of the error is still acceptable. 

The idea of using Newton-like method to solve a set of 
underdetermined nonlinear equations can be applied to guide 
particles in a population to change their velocities and positions 
to meet the equality constraints. The new PSO incorporated 
with Newton-like method is implemented as follows: 

………… 
Conventional PSO Velocity Update using (9) 
Conventional PSO Position Update using (10) 

( ) ( ))()()( tXHtJpinvtdX jjj −=          (17) 

)()()1( tdXtXtX jjj +=+            (18) 

………… 
In (17), dXj(t) is the incremental change of particle Xj at time 

t, H is the equality constraint vector given in (3), and Jj is the 
Jacobin matrix of particle Xj, defined as: 
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B. Handling Constraints with Penalty Functions 
For PSO algorithms, it is normally easier to handle inequality 

constraints than equality ones [3]. Incorporation with penalty 
functions has been proven to be an effective way to deal with 
inequality constraints in (2). In general, a specific problem may 
need a specialized penalty function; nevertheless, the set of 
equations given below can be used as candidate penalty 
functions for generic purposes.  
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where α1, α2 and α3 are all positive parameters. 
For the inequality constraints given in (2), the overall penalty 

function can be: 

∑
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=
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kineqineq gJJ

1
)(                (21) 

The larger the error (away from the constraints), the greater 
will be the penalty function values. By changing the values of 
α1, α2 and α3, a smoother or steeper penalty function curve can 
be obtained. 

In addition to the Newton-like method discussed in the 
previous sub-section, the penalty function method can also be 
incorporated for handling equality constraints, though it is not 
always effective.  As a secondary method, the penalty function 
can help meet the equality constraints. The following set of 
equations can be used as penalty functions for handling 
equality constraints. 

[ ]1)cosh()( 21 −= xxJeq ββ              (22) 

where β1 and β2 are positive valued parameters. 
The overall penalty function all the equality constraints will 

be: 
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The penalty function is zero when the equality constraint is 
satisfied.  Similarly, it shows that the larger the error away 
(both positively and negatively) from the constraints, the 
greater will be the penalty function values. By changing the 
values of β1 and β2, a smoother or steeper penalty function 
curve can be obtained as desired. 

C. Hybrid Mechanism of Handling Constraints 
A hybrid mechanism combining the two methods discussed 

above (Newton-like method and penalty function method) is 
proposed in this section to handle constraints for PSO 
algorithms. The Newton-like method gives directions to 
particles toward equality constraint surface in each iteration 
loop. Penalty function method has shown its effectiveness in 
handling inequality constraints. The penalty function method is 
also a commonly used alternative for handling equality 
constraints, especially when the derivatives of the equality 
constraints can not be calculated or estimated where the 
proposed Newton-like method will have difficulties.  

Fig. 1 shows the overall flow chart of the PSO algorithm with 
the proposed hybrid mechanism for handling constraints. Some 
prior knowledge can be utilized to give a better initial particle 
positions and velocities [2], [15]. This also gives a better 
position for the Newton-like method to converge to the equality 
constraint surfaces. Following this, a global objective/fitness 

function is formulated/augmented by combing the penalty 
functions for the inequality constraints and/or equality 
constraints. In addition to the same position and velocity update 
procedure as a typical PSO algorithm, given in (9) and (10), the 
position is also updated using the Newton-like method defined 
by (17) and (18). The stop criteria are checked in each iteration 
cycle; and if satisfied, the program will stop. 

 

IV. EXPERIMENTAL RESULTS 
The proposed hybrid mechanism for handling constraints has 

been tested on the benchmark problems reported in the 
literature [3], [13]. Three benchmark problems with equality 
constraints and/or inequality constraints are chosen for 
performance verification purposes. Table I shows the original 
sources and numbers of the testing problems used in the paper, 
the details of which are given in Appendix A. A simple 
application example of the algorithm in economic power 
dispatch is also given to show its potential in power system 
optimization. 

 
 

Fig. 1.  Flow chart of a PSO algorithm with the proposed hybrid mechanism for 
handling constraints. 
 
 

Table I. Testing Problems [3], [13] 

Problem # g01 g02 g03 

Problem # in the original 
sources  g05 g11 g13 

A. Experimental Setup 
The experiments were carried on a PC with 2.8 GHz CPU 

and 1.0 GB memory, running on Microsoft Windows XP 
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Service Pack (SP) 2. All the testing programs were coded using 
MATLAB 7.0.4.365 (R14) SP 2. 

The parameter settings of the PSO programs are listed in 
Table II. The fixed value parameters are the ones whose values 
are fixed in the tests in this paper. These can, of course, be 
changed as needed for other applications. The inertia weighting 
factor, w(t) in (9), is chosen as: 

w(t) = αww(t-1)                 (24) 
where αw is the annealing factor. 

B. Experimental Results 
For each of the ten benchmark problems, the corresponding 

PSO program was run for thirty times. The experimental results 
are summarized in Tables III and IV, which include the best, 
mean, median and worst results of the thirty runs. The standard 
deviation (STD), feasible rate (FR) and success rate (SR) are 
also given in the tables. Feasible rate is defined as the number 
of feasible runs (where a feasible solution is found) over the 
total number of runs. Similarly, success rate is defined as the 
ratio of the number of successful runs over the total number of 
runs [13]. A successful run is a feasible run that also satisfies 
the following condition:  

%1.0
)(

)()(
*

*

<
−
Xf

XfXf              (25) 

where f(X) is the objective function value obtained and f(X*) is 
the best known value reported in [13]. 
 

Table II Parameter Settings for the PSO Algorithms 

Fixed-Value 
Parameters 

Parameter Memo 
αw = 0.98 See (24) 
c1 = 2 See (9) 
c2 = 2 See (9) 
m = 100 Total number of particles 
Ntot = 40 Maximum number of total 

iterations  

NL = 1000 
Maximum number of 
iterations since the last 
update of the best solution 

Varying-Valu
e 
Parameters 

α1 
See (20) α2 

α3 
β1 See (22) β2 

The experimental results given in Table III and IV show that 
the PSO algorithm with the proposed technique for handling 
constraints found the global optimal solutions with 100% 
feasible rate and very high success rate for all the test problems.  

 
Table III.  Experimental results of problems g01 to g03 

Problem g01 g02 g03 
Best 5126.49811 0.75000000000 0.053949847770 

Worst 5126.49823 0.75000000000 0.053960390302 
Mean 5126.49812 0.75000000000 0.053953099787 

Median 5126.49811 0.75000000000 0.053952004747 
STD 2.50917E-5 1.21391464E-015 3.0779265536E-6 
FR 100% 100% 100% 
SR 100% 100% 100% 

 

Table IV. Optimal solutions found for the benchmark problems 
in the thirty runs. 

Problem Optimal solution, X* 
g01 [679.9453276, 1026.067124, 0.118876359, -0.396233556] 
g02 [0.707106785603411, 0.500000006246389] 

g03 [-1.71714357, 1.59570969, 1.827245754, -0.763643082, 
0.763643075] 

 

C. Application Example in Economic Power Dispatch 
A simple example of using the proposed PSO algorithm in 

economic power dispatch is given to show its effectiveness and 
potentials in power system optimization. This optimal power 
dispatch problem is taken from Example 7.7 in [16]. The 
problem is stated as: 

Problem  g04 
The fuel cost (in $/h) of three thermal power plants in a 

power system are known as: 

2
333

2
222

2
111

007.08.6140

009.03.6180

008.00.7200

PPC

PPC

PPC

++=

++=

++=
            (26) 

where Ci (i = 1, 2, 3) are the fuel costs, and Pi (i = 1, 2, 3) are the 
plant power outputs in MW. The generation limits for the three 
plants are: 

7010
8010
8510

3

2

1

≤≤
≤≤
≤≤

P
P
P

 (MW)               (27) 

The total system power loss can be estimated by the following 
equation: 

2
3

2
2

2
1 000179.0000228.0000218.0 PPPPLOSS ++=    (28) 

The problem is to determine the economic power dispatch 
when the total load demand is 150 MW. This problem can be 
re-stated mathematically as: 

Min ∑
=

=
3

1
)(

i
iCXf                (29) 

s.t. ∑
=

=+−=
3

1
0)150(

i
Lossi PPdP , and        (30) 

3,2,1,max,min, =≤≤ iPPP iii
 

where X = [P1, P2, P3], and the generation limits of Pi,min and 
Pi,max are given in (27). 

Parameters β1 and β2 are set to 10000 and 4, respectively, for 
this problem. Other fixed-value parameters are the same as 
listed in Table II. The program has also been run for thirty 
times, and the optimal solution has been achieved for each run. 
The optimal solution obtained is X* = [35.09067643433635, 
64.13175182066293, 52.47667471130085] with f(X*) = 
1592.649548173904, which is exactly the same as the 
analytical result given in [16].  

If only the penalty function method is used for the PSO, the 
results are not as close as they should be. Table V shows the 
comparison between the proposed hybrid method and the 
penalty-function-only method.  

Another type of penalty function (like the quadratic function 
used in [17] and [18]) was also tested and compared in table V. 
The exact expressions used for penalty functions are also given 
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in the table. A feasible solution is considered when the 
generation limits in (27) are satisfied and |dP| < 1×10-4, see 
(30). A comparison of results shows the superior performance 
of the proposed hybrid mechanism, handling the constraints 
successfully and efficiently. 

 
Table V. Comparison results of different PSO algorithms 

Method FR SR 
Proposed hybrid mechanism 100% 100% 

Penalty function only 
[ ]1)4cosh(10000 −× dP  30% 26.67% 

Quadratic penalty function only 
( 100000×dP2 ) 30% 13.33% 

V. CONCLUSION 
In this paper, a hybrid mechanism consisting of a 

Newton-like method and fitness/penalty function method was 
presented for handling constraints for PSO algorithms. The 
proposed technique has been verified by solving ten benchmark 
optimization problems reported in the literature. The 
experimental results show the effectiveness of the proposed 
method in handling constraints, especially the equality 
constraints that have been considered tougher to deal with than 
the inequality ones. An economic power dispatch problem was 
also given and solved by the proposed hybrid method to show 
its great application potential in power system optimization.  

APPENDIX A TESTING PROBLEMS 
Problem g01 [3], [13] 

Min 3
2

6
2

3
1

6
1 )3/100.2(2100.13)( xxxxXf −− ×++×+=   (31) 

s.t. 

08.1294)25.0sin(1000)25.0sin(1000)(
08.894)25.0sin(1000)25.0sin(1000)(
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055.0)(
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3443
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xxxXh
xxxxXh

xxxXh
xxXg
xxXg

                       (32) 
where 1200,0 21 ≤≤ xx , and 55.0,55.0 43 ≤≤− xx . The best 
known solution is X* = (679.945148297028709; 
1026.06697600004691; 0.118876369094410433; 
-0.39623348521517826) with f(X*) = 5126:4967140071. 
 
Problem g02 [13] 

Min 2
2

2
1 )1()( −+= xxXf             (33) 

s.t. 0)( 2
121 =−= xxXh              (34) 

where 1,1 21 ≤≤− xx . The optimum solution is X* = (± 2 /2, 
0.5) with f(X*) = 0.75. 
 
Problem g03 [3], [13] 

Min 54321)( xxxxxeXf =               (35) 
s.t. 

01)(

05)(
010)(

3
2

3
13

54322

2
5

2
4

2
3

2
2

2
11

=++=

=−=
=−++++=

xxXh

xxxxXh
xxxxxXh

        (36) 

where 3.2,3.2 21 ≤≤− xx  and 2.3,,2.3 543 ≤≤− xxx . The 
optimum solution is X* = (-1.71714224003; 
1.59572124049468; 1.8272502406271; -0.763659881912867; 
-0.76365986736498) with f(X*) = 0.053941514041898. 
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Abstract
Nowadays, various imitations of natural processes are 

used to solve challenging optimization problems faster and 
more accurately. Spin glass based optimization, 
specifically, has shown strong local search capability and 
parallel processing. However, generally, spin glasses have 
a low rate of convergence, since they use Monte Carlo 
simulation techniques such as simulated annealing (SA). 
Here, we investigate a new hybrid local search method 
based on spin glass for using adaptive distributed system
capability, extremal optimization (EO) for using 
evolutionary locally search algorithm and SA for escaping 
from local optimum states. As shown in this paper, this 
strategy can lead to faster rate of convergence and 
improved performance than conventional SA and EO 
algorithm. The resulting are then used to solve the portfolio 
selection problem that is a non-deterministic polynomial 
complete (NPC) problem. This is confirmed by test results 
of five of the world's major stock markets, reliability test 
and phase transition diagram.
Keywords: Spin glass model, portfolio selection, simulated 
annealing, extremal optimization, phase transition.

1. Introduction
Similar to artificial neural networks, genetic algorithms, 

and ant colony systems, spin glass is a paradigm that is 
inspired from the governing laws of nature. However, as 
compared to many of its older counterparts, the main 
distinguishing feature of spin glasses is their unique 
distributed parameter optimization by emphasizing strong 
parameter interaction. More specifically, spin glass model
is a system of spins interacting with each other due to the 
existence of magnetic property among them. These spins 
change their quantity frequently to reach a lower energy
level. When the system is at its minimum energy (or 
minimum temperature) state, there is no longer a visible 
change in spins' states and the system is said to have 
reached its ground state [1]. In contrast to most other 
optimization algorithms such as GA (Genetic Algorithm)
where each chromosome represents a complete solution, 
every spin is only a part of an entire solution. The complete 
solution is found by the interaction of the many spins in the 
glass. The spin glass paradigm is therefore, a promising 
paradigm of adaptive distributed systems. In addition, the 
spin glass model enjoys lots of properties, including limited
interaction of each spin with neighboring spins [2], non-
exponential growth of optimized (ground) states with the 
increase in spin glasses' number of bonds [3], the 
effectiveness of environmental factors such as temperature 

on system behavior, and a continuing movement towards 
optimized states at different temperatures [4]. 

Considering these capabilities, many optimization 
problems can be solved using such distributed facility [2]. 
However, like many other heuristic methods, the rate of 
convergence of finding ground states is low when the 
problem dimension grows [5]. More specifically, this is 
reported to be a challenging aspect of the more 
conventional approaches such as the simulated annealing 
(SA) as reported earlier in [5, 6].

To speed up the spin glass’s rate of convergence, it 
would be desirable to choose the “right” spin that promises 
the most improvements in terms of convergence rate and 
accuracy. This would be in contrast to the standard 
approach where spins are chosen arbitrarily. In this paper, 
we address this problem by combining SA with local 
search strategies, specifically, Extremal Optimization (EO)
[8]. In EO, on the other hand, the spin with lowest energy 
is chosen to change its state with a higher probability. This 
scheme works since changing each spin influences its other 
neighboring spins, and so they also change. If the total 
changes lead to a reduction in glass energy, the overall 
state of the glass improves and the correlation between 
spins increases.  Hence, any change in each spin's state 
would lead to rearrange major parts of the glass. In 2001, 
Boettcher and Percus likened this property to an avalanche 
that can lead to a faster survey of different spin glasses' 
states and an increased rate of convergence [8]. There is no 
need to tune control parameters with precise values; this is 
the great advantage of EO [9]; but this advantage is equal 
to deficiency: that is a trap in local optimum. Therefore,
EO is fast but non-accurate. Instead, SA is slow but 
accurate. 

Here, we investigate a new hybrid local search method
based on spin glass for using adaptive distributed system
capability, EO for using evolutionary locally search 
algorithm and SA for escaping from local optimum states. 
This algorithm that is named (EO-SA) needs a tune 
parameter such as temperature (from SA), spin selection 
method such as aside from ranking (from EO) and locally 
interaction such as neighborhood spin interaction (from 
spin glass).

Section 2 reviews the various applications of spin 
glasses in solving optimization problems. Section 3
provides a mathematical description of spin glasses. The 
portfolio selection problem is discussed in Section 4. This 
section also explains how this problem can be mapped onto 
a spin glass. The algorithm, EO-SA, is then presented in 
Section 5. In Section 6, the experimental results from 
applying the above algorithms to five of the world’s 
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reputable stock markets are provided. The reliability test of 
algorithms and their performance validity is studied in 
Section 7. In Section 8, the resultant Pareto frontier is 
compared against the benchmark Pareto frontier; and 
finally in Section 9, phase transition analysis of the 
algorithms EO-SA and SA are presented.

2. Literature Review 
There is a wealth of existing literature on spin glasses in 

various domains in general, and physics, in particular. For 
the sake of brevity as well as the better focus, we are
concerned here with that research related to engineering, 
and especially optimization, in which literature is relatively 
scarce. Minimum cost flow and matching problem are two 
examples of this kind [10]. In minimum cost flow problem, 
the ground state configuration of an Ising Spin glass in a 
random environment, in which all energies are non-
negative, can be obtained with Dijkstra's algorithm to find 
the shortest path in the directed network with non-negative 
cost on the edges. In the Matching Problem, the ground 
state of a two dimensional spin glass model on a square 
lattice with nearest neighbor interaction with free 
boundaries can be mapped onto a matching problem of a 
general graph [2, 10, 11].

In 1999, Gabor and Kondor [12] used spin glasses for 
the first time in solving the portfolio selection problem 
with regard to its constraints. In their paper, they used a 
similar energy function to that of a Hopfield neural 
network [13]. In 2001, Nishimori [14, 15] considered the 
application of spin glasses in transferring information in 
noisy channels. In 2004, Horiguchi et al [16] proposed a 
spin glass-based routing algorithm for adaptive computer 
networks. Later in 2009, Vafaei and Akbarzadeh in [6] 
introduced migration and elitism operators to find ground 
state of spin glasses with only a limited number of bonds, 
i.e. short range spin glasses. There [6], authors exploited 
local interaction among spins. In contrast, we consider here 
the short range effect of spin interaction by investigating 
the use of extremal optimization (EO).

The EO heuristic was first motivated by the Bak-
Sneppen model of biological evolution [9] in 1993 intended 
for a lattice (glass) of cooperating species (spins). Some 
applications of this method were analyzed in solving 
optimization problems, including, solving the problem of 
the travel salesman problem [11], graph partitioning [17, 
18], graph coloring [19, 20], social modeling [21], complex 
network analysis [22], and molecular dynamics' simulation 
[23].

More specifically, EO is inspired by self-organized 
criticality (SOC), which is a statistic physics concept to 
describe a class of systems that have a critical point as an 
attractor [24]. In SOC, there is no need to tune control 
parameters with precise values. Just inspired by this 
principle, EO drives the system far from equilibrium: aside 
from ranking, there exists no adjustable parameter, and new 
solutions are accepted indiscriminately [24].

3. Spin Glass Model
Spin glass is a model which can be used to investigate 

the collective properties of physical systems made from a 

large number of simple elements. The important feature in 
this paradigm is that the interactions among these 
elementary components yield a collective phenomenon, 
such as stable magnetization orientation and the crystalline 
state of metal or alloy. In the Ising spin glass model [1, 25], 
an Ising spin on a lattice point takes on one of two possible 
values (directions) (i.e., 1 or up and down). By 
generalizing the Ising spin glass model to a XY spin glass 
model (hereafter referred to as Spin Glass model for short) 
[2, 11], each spin can point to any direction in a plane 
instead of just two possible directions.

A suitable theoretical model describing spin glasses 
consists of N spins placed on the regular sites of a d-
dimensional lattice with linear extension L, e.g., quadratic 

( 2LN  ) or cubic ( 3LN  ). The spins interact 
ferromagnetically or antiferromagnetically with their 
neighbors. The energy of such a network comes from two 
contributions [4, 25] and can be written as below:
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Where })({ ixE is the energy of all spins; the sum i , j

runs over all pairs of nearest neighbors; m is the number 
of nearest neighbors of each spin i (that can be 4m in 
Van Neumann cellular automata (CA), or 8m in Moore 
CA [26], or Nm  for full connection); and ijJ denotes 

the strength of the bond connecting spins i and j . 0ijJ

describes a ferromagnetic interaction, while 0ijJ

describes an antiferromagnetic interaction. The quantity ih

is the external field acting on spin i and describes the 
energy due to the spin's orientation. Furthermore, the factor 

2

1 corrects for double counting of the interaction between 

every two neighboring spins. Here the task is to find a spin 
configuration ix that minimizes the energy of the spin 

glass, given { ijJ } and { ih }.

4. Portfolio Selection Problem
Let us consider the Markowitz mean-variance model 

[27] for the portfolio selection problem as stated below, 
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Where N is the number of different assets, i is the 

mean return of asset i , and ij is the covariance between 

returns of assets i and j . The decision variable ix

represents the fraction of capital to be invested in asset i . 
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Eqs. (1)-(2) are two cost functions that should be solved 
with constraints (3) and (4). i is the mean return of asset 

i in n intervals of time, i.e. 





n
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tWtW

1
)(

)()(
 , 

where biW is the i th asset value at the beginning, and eiW

is  the i th asset value at the end of each interval.
A feasible solution of the portfolio selection problem is 

an optimal solution if there is no other feasible solution 
improving one objective without deteriorating the other. 
Usually, multiobjective optimization problems such as 
those in [28] have multiple non-dominant optimal 
solutions. This set of solutions form an efficient frontier. 
For the problem defined in Eqs. (1)–(4), the efficient 
frontier is an increasing curve that gives the best tradeoff 
between mean return and variance (risk).

In this paper, we change the multi-objective problem 
into a multimodal problem with a single objective function 
as follows,

Minimize 
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Here, 5.0 , for the equal effect of risk and return.

5. Solving Portfolio Selection Problem Using Short
Range Spin Glass

To solve the portfolio selection problem, as studied in 
[6], each asset is supposed to be a spin having a value 
between 0 and 1. A glass (network) of such spins has an 
energy function as indicated in Eq. (1). To solve the 
portfolio selection problem in Eq. (6), the following 
relationship is observed (for short range spin glass, i.e.

Nm  )

ijijJ 2 (9)

iih )1(  (10)
Eqs. (9) and (10) refer to the interaction among spins 

and the external field energy of each spin, respectively. 
Search for optimal solutions begins with an initial 

assignment of each spin to 
N

1
(or randomly assigned).

Then, any of the various search strategies can be used, in 
order to put the system in its minimum energy. At any 
moment (spin flip or spin change), a spin is randomly 
selected, and  is added to the spin's value (  = 0.05, is a 
small fixed value). Then the values of neighboring spins 
change in such a way that they always meet constraints (7) 
and (8). 

5.1. A Hybrid Local Search Algorithm (EO-SA)
In contrast to the above SA method that selects spins 

randomly in each flip, EO-SA gives the highest selection 

probability to a spin that has lowest local energy (from Eq.
(14)) hence avoiding locally optimal solutions. Here, spins 
are ordered based on their local energy. At each step, a 
'superior' spin is selected based on its given probability in 
Eq. (16), with higher probability given to lower energy 
spins. After several iterations, because the glass moves 
toward lower energy and each spin affects its neighboring 
spins, many spins have lower energy than their initial 
values, i.e. the given value in Eq. (15) reduces. Hence, the 
system's correlation increases, and the change in each spin 
leads to a change in many other spins, which leads to SOC 
[7, 9]. In this state, any small change leads to major
changes in the system, so it is expected that most possible 
states are accessible. Therefore, one can easily escape local 
optimal solutions and survey most possible states for the 
system.

Algorithm (3) describes how the EO-SA method can be 
applied to spin glasses. Temperature and cooling schedule 
plays a central role in SA strategy [29]. The system's 
temperature is usually initialized to a high value to allow 
all possible states to be the initially producible, i.e. more 
global exploration. The system is then gradually cooled to 
allow better local search. To do so, the temperature of the 
glass is considered to be initially set to 10 T (at high 

temperatures all states can occur). Each time the changes 
are applied, the temperature is decreased until it reaches 
near zero.  Temperature variation is calculated as follows,

1,2
0)(  n

n

T
nT (11)

In this algorithm, i is local energy of each spin in Eq.

(14). Spin glasses' total energy can then be obtained from a 
sum of i 's in Eq. (15).
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All i 's are computed and ordered in rising order at

each step and selected based on the power law distribution 
in (Eq. (16)). The selected spin's value is then changed. If 
this change leads to lower (better) glass energy, it is 
accepted; otherwise, it is accepted with a probability 

of T
E

e


.

Algorithm 3: EO-SA Spin Glass
Begin

1 Initialize spin glass and set amount of all spins to 
N

1
.

2 Calculate i for each spin and sort them with a 

decreasing order.
3 Selected spins with power law distribution in Eq. (16) 

based on calculated i .

4 Change the state of the selected spin i by  (very 
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small change) and change all the neighboring spins to 
satisfy Eqs. (7) and (8).

5` Calculate the energy of the changed  spin and its

neighboring spins  ( 



m

i
iEnewE

1

)

6
oldEnewEE 

7 If 0E then accept this change, else
8 If 0E then accept this change with probability 

T
E

e



9 Continue this process with decreasing temperature till 
either E remains near 0 for several iterations (i.e., 
the system has reached steady state, or T has reached
near 0 (system has cooled)

End
In the above algorithm, oldE and newE are glass's 

energy before and after applying a change, and T is the 
system's temperature at the time of applying the change. 
This SA-based algorithm ensures convergence to global 
solutions if T is reduced sufficiently slowly. However, this 
also means a slow rate of convergence. In the below two 
algorithms, we investigate two alternative heuristics that 
choose the next spin based on a given criterion, hence 
aiming for faster convergence.

Selecting every spin at each step depends on the 
following Equation [2]:

    1

1
1 )).1(1( nk (16)

Where k refers to the selected spin's number, whose set 
is ordered from low energy to high energy spins, and 

10  is a random number. When 0 , the algorithm 
acts like SA and when  , the algorithm always selects 
the spin with minimum energy. Therefore, it can be 
expected that the above algorithm has the power law

distribution equaling  kPk in which nk 1 [8].

5.2 Problem Constraints
The two constraints in Eqs. (7) and (8) in portfolio 

selection problem must be considered in the algorithm. To 
maintain the first constraint, whenever  is added to each 

spin's value, (  ii xx : ), the value 
m


is reduced from 

each of the spin's m neighbors, (
m

xx jj


: ). This 

ensures that the sum of all spin values remain at 1. If 1ix , 

then 1:ix and its extra value is reduced from . 

Furthermore, if for each neighbor 0
m

x j


, then 

0:jx and the difference is added to ix . Considering the 

last two cases, the second constraint (Eq. (8)) is also 
maintained.

6. Mathematical and Experimental Results
In order to verify the effectiveness of the above 

algorithms, the benchmarked "standard efficient frontier"

(Pareto Front) is compared with the efficient frontier 
resulting from the proposed methods. 

Experiments on the benchmark data were originally 
performed in [30]. These data are obtained from five major 
stock exchange markets, during the time period extending 
from March 1992 to September 1997. These five stock 
exchange markets include Hang Seng in Hong Kong (31
assets), Deutscher Aktien Index (DAX100) in Germany (85
assets), Financial Times London Stock Exchange 
(FTSE100) in Britain (89 assets), Standard & Poor's 
(S&P100) in USA (98 assets), and Nikkei in Japan (225
assets). The efficient frontier for each of these five stock 
markets in the available time period is characterized by 
mean return as in Eq. (2) and variance of return as in Eq. 
(1). Fig. (4) illustrates this efficient frontier for the 
benchmark data.

Figure. 4: Efficient frontier for benchmark data from 
five major stock markets as reported in [30]

Three sets of tests are performed to analyze the spin 
glass behavior as follows. Firstly, spin glass's accuracy and 
rate of convergence are compared for the proposed two 
approaches, i.e. EO-SA, as well as the more conventional 
SA approach. Secondly, the resulting efficient frontier is 
compared with the benchmark's efficient frontier. Thirdly, 
the reliability of presented algorithms and phase transition 
analysis are tested and compared with those of SA. All the 
experiments were performed using Borland Delphi 6.0
running on a Pentium 2.0 GHz PC, under Windows XP 
operating system. It should be mentioned that each epoch 
equals 50 spin flips.

6.1 Comparing SA, EO, EO-SA
As seen in Fig. (5), all three spin glasses begin under 

similar random initial states and reach same final states 
using the two SA, EO-SA algorithms for the S&P stock 
market. However, they have significantly different rates of 
convergence. Based on the results seen in all studied stock 
markets, EO-SA method quickly approaches the final 
ground states, but fluctuates around the final states for 
much iteration before reaching it. Because, in each iteration 
the number of qualified spins increases, this cause 
increasing the correlation between spins; therefore,
changing in each spin leads to change in many other spins 
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and cause fluctuates around the response range. In contrast, 
the SA method has a simple random behavior and slowly 
moves to the ground state. As illustrate in Fig. (5), Both SA 
and EO-SA algorithm reach near to the ground state. But,
EO algorithm drops in the local optimum and fluctuates far 
from the response range.

Figure 5: Comparing SA, EO and EO-SA algorithms' rate 
of convergence for S&P stock market.

Fig. (6) plots the final spin selection probability vs. 
spins that are ordered in descending selection probability 
levels. This conclusion is illustrated in an experiment
carried out for S&P stock market, with 9.0τ for EO-SA

and 10 T for SA. This state occurs when the glass has 

passed its transient state.

Figure 6: Comparing the distribution of spins' selection 
resulting from EO-SA (external chart) and SA (internal 
chart), after reaching final state for S&P stock market. n is 
the size of the portfolio.

Table (1) shows a comparison between the computation 
time and the accuracy of reaching ground states in the three 
mentioned methods. While both SA and EO-SA method
reach the ground state and have a generally comparable 
accuracy, EO-SA method has been more reliable than the 
other two methods in our experiments; however, the 
convergence time is more than EO.

Table 1: Comparing the three algorithms (SA, EO and EO-SA) for accuracy and rate of convergence over 100 independent 
runs for each of the five World’s stock markets. Each approach is evaluated in terms of convergence time (shown in 
milliseconds), average minimum energy during the runs, and accuracy defined by the ratio of obtained minimum energy over 
actual minimal energy. 

Stock 
market

SA EO EO-SA

Convergence 
time (ms)

Average 
Minimum 

Energy
Accuracy

Convergence 
time (ms)

Average 
Minimum 

Energy
Accuracy

Convergence 
time (ms)

Average 
Minimum 

Energy
Accuracy

HangSeng 
(31 Assets) 2140 -0.00336 99.20%  833 -0.0031 92.26%  1253 -0.00337 99.40%  

DAX
(85 Assets) 19111 -0.00412 99.10%  6064 -0.0038 92.23%  4091 -0.00412 99.18%  

FSTE
(89 Assets) 25040 -0.00335 99.20%  7741 -0.0032 95.52%  6169 -0.00335 99.24%  

S&P
(98 Assets) 22828 -0.00363 99.36%  2597 -0.0029 79.94%  9048 -0.00363 99.3%  

Nikkei
(225Assets) 214045 -0.00142 98.91%  89761 -0.00135 95.07% 98103 -0.00142 98.89%  

7. Reliability Test
Test of reliability is performed by running the 

algorithm n times independently with the same data
[10]. To pass the test, the test runs are expected to yield 
similar results with small variance. To do so, the 
reliability test of the three algorithms is carried out for 
the five benchmarks. For brevity, the analysis of S&P 
stock market is shown here. Results are shown in the 
form of the frequency chart in Fig. (7, 8). It is done in 
such a way that spin glass's minimum energy ( gsE ) in 

the ground state is counted and the probability to reach 
that state is also shown. The variance between the final 
energy states is given in Table (1). Experimental results 
from 100 trials indicate that the algorithm's final value 
has a small variance. In other words, final spin glass's 
energy at each trial is in the range of best responses.
Even though the movement towards this final response 
is random in the above algorithms, they consistently 

reach the ground state. 

Figure 7. The SA Reliability Test of S&P 100 stock market 
(where Egs is glass energy at ground state).

8. Optimization Frontier
The final Pareto front from EO-SA algorithm can be 
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seen in Fig. (9) (the results are similar to SA). It shows 
the validity of energy reduction and avoiding local 
optimums for the five mentioned stock markets. The 
standard frontier for different  's is also drawn. For 
having a Pareto frontier,  is considered in the range of 
0.05 to 0.95 with 0.05 differences. For any , timization 
state was found and its risk found,apital return values 
were defined with points. The validity of the presented
algorithm in finding optimization response with different 
 was seen through comparing the resulting and 
standard (benchmark) Pareto fronts. Since the surface of 
whole optimization frontier is covered, one can draw 
that the presented method gives response for anyError! 

Bookmark not defined..

9- Phase Transition Analysis
The temperature at phase transition is defined as the 

temperature at which the likelihood of reaching the 
glass's actual minimum state suddenly decreases [11].  
Fig. (10) illustrates the spin glass temperature at phase 
transition. As it can be observed, before phase transition 

the probability of reaching the minimum state (
minE

Egs ) 

nears 1 ( gsE is the ground state energy of glass, and 

minE is the actual minimum of cost function).

Figure 8. The EO-SA Reliability Test with 9.0τ of S&P 
100 stock market (where Egs is glass energy at ground state).

As the temperature increases, this probability is 
expected to gradually decrease, but this decrease does not 
occur until reaching near the temperature at phase 
transition, at which time, there is a sudden change in glass 
behavior. Here, phase transition is defined to occur where 

the likelihood ratio 
minE

Egs is decreased by 1%. As illustrated 

in Fig. (10), most of the benchmarks reach phase transition 

at 61012.1  temperature (as indicated by a vertical line) 
for the SA algorithm. As Fig (11) suggests, most of the 
benchmarks with EO-SA find their minimum states even at 

higher temperatures ( 610*9.7  ) as compared with SA, 
prompting EO-SA as the algorithm that converges soonest. 
The above phase transition analysis also confirms the 
conclusions of Table (1). Specifically, this experiment 
shows that, in EO-SA, the temperature of phase transition 

is higher than the SA, and accordingly better rate of 
convergence.

Figure 9: Efficient frontier obtained from EO-SA 
algorithm compared to standard efficient frontier from 
benchmark data [22].

10- Conclusion
In this paper, a hybrid approach are proposed for 

finding short range spin glass's ground state based on 
extremal optimization (EO-SA). The EO-SA method 
selects spins with minimum energy with a higher 
probability. A flip (change) in any spin leads to changes in 
its neighboring spins. If all of these changes reduce spin 
glass's energy, more and more spins will be better qualified 
and the correlation between spins increases. A process of 
self organizing criticality then occurs where the change in 
each spin leads to changes in many spins, allowing the 
glass to escape local optimums more easily. As the 
experiments on phase transitions illustrate, the temperature 
at phase transition is elevated, hence the rate of 
convergence is improved. 

A comparison of experiments shows the superiority of 
EO-SA to conventional EO and SA. EO only has a faster 
rate of convergence with not reliable accuracy. This is also 
confirmed by phase transition analysis and reliability test.

Figure 10: Portfolio selection phase transition phenomena 
based on SA for the five benchmark stock market data; 
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transition temperature is approximately 61012.1 

Figure 11: Portfolio selection phase transition phenomena 
based on EO-SA for the five benchmark stock market data; 
transition temperature is approximately 610*9.7 
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Comparative results of DE variants and a SQP algorithm to
maximize the dexterity of an omnidirectional wheeled mobile robot
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Abstract— In this paper the formulation of the optimal
design for wheel location of an omnidirectional mobile robot
is proposed as an optimization problem. The empirical com-
parison of the SQP algorithm and eight different DE variants
for this particular optimization problems is presented. The
importance of using heuristic approaches in real world
optimization problem is analyzed via empirical results.

Keywords: Differential evolution, heuristic algorithms, omnidi-
rectional mobile robot.

1. Introduction
An omnidirectional wheeled mobile robot (OWMR) is

a wheeled vehicle with full mobility in the plane which
means that they can move at each time instant in any
direction without any reorientation [1]. Several researches in
the control of this kind of robot have been developed in the
last decades [2], [3]. Nevertheless the control performance
of the mobile robot for trajectory tracking can be affected
by the placement of the robot wheels. So, the dexterity of
the robot is one important factor to have an adequate control
performance.

The dexterity can be defined as the ability of the robot
to move and apply forces and torques in arbitrary directions
with equal ease [4]. The location of the OWMR wheels is an
important factor in the robot dexterity. A poor dexterity of
the OWMR means that small changes in the linear velocity
of the wheels results in large changes in the linear and
angular velocity of the OWMR. A good dexterity of the
OWMR means that small changes in the linear velocity of
the wheels results in small changes in the linear and angular
velocity of the OWMR. In this paper the optimum wheel
location for the omnidirectional wheeled mobile robot with
three omnidirectional wheels [5] is stated as an optimization
problem.

On the other hand, a real world decision problem can
be stated as an optimization problem [6]. Nevertheless, the
algorithm used to solve the optimization problem depends on
the problem at hand [7]. There are two main approaches to be
considered in the selection of the algorithm and they depend
on how the search direction is computed: 1) The gradient
based algorithms [8] and 2) the heuristic based algorithms
[9].

The gradient based algorithms such as sequential quadratic
programming (SQP) algorithm, depend on the initial param-
eters and the kind of optimization problem (linear, nonlinear,
etc.) [10]. The convergence to local solutions near the initial
condition is the first drawback in the solution of nonlinear
optimization problems. The second drawback is that it can
not be used when the optimization problem is discontinuous.
Hence, gradient based algorithms do not ensure global
optimum and they have limited application [10].

Heuristic based algorithms (HBA) have been widely used
to solve real world optimization problems [10], [11], [12],
[13]. Differential evolution (DE) [14] is an HBA which
can be used to solve continuous, discontinuous, linear,
nonlinear, dynamic and static optimization problems. DE
performs mutation based on the distribution of the solutions
in the current population such that, the search direction
depends on the location and selection of individuals. There
are several DE variants but the most popular is called
"DE/rand/1/bin" where just one difference (of two randomly
chosen individuals added to another solution) is calculated.
Besides the selection of the population size and maximum
generation number, an important factor when using DE is the
selection of the variant. In those DE variants the mutation
and recombination operator is changed and the performance
of the DE variants depends on the problem as it is establish
in [7].

In this paper the performance of a set of eight DE
variants and the performance of the SQP algorithm are
studied to identify which algorithm is more suitable to
solve a particular real world optimization problem. The
main motivations of this work are 1) the proposal of a new
optimization problem based on a real word problem which
can be considered as a multimodal-nonseparable problem,
2) the performance evaluation of the chosen algorithms
when solving this particular real world optimization problem
and 3) the optimal solution for the particular optimization
problem, i. e. the optimum location of the robot wheels.

2. Optimization problem statement
Let p = [δ1, δ2, δ3, L1, L2, L3]

T ∈ R6 be the design
parameters of the wheel locations of a mobile robot where
δi andLi ∀ i = 1, 2, 3, are thei − th angle and thei − th
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distance of the robot wheel as it is shown in Fig. 1. The mass
center of the omnidirectional mobile robot is considered to
be on the origin of the coordinate system "m" (robot center).

The transformation between the linear velocity of the
wheelv = [v1, v2, v3]

T and the linear and angular velocity
of the mobileVL = [Vx, Vy, w]T is stated in (1).

VL = A v (1)

whereA ∈ R3×3 is the Jacobian matrix.

A =





− sin(δ1) cos (δ1) L1

− sin(δ2) − cos(δ2) L2

cos(δ3) sin(δ3) L3



 (2)

The optimization problem consists in finding the optimal
design parameter vectorp∗ ∈ R6 such that a small change
in the linear velocity of the wheelv or in the Jacobian
matrix A, results in a small change in the linear and the
angular velocity of the mobileVL. The condition number
of A measures how much the solution of (1) can change in
proportion to small changes in the matrixA or the vectorv.
A low condition number means that the matrixA is well-
conditioned, while high condition number means that the
matrix A is ill-conditioned. Hence the optimization problem
formulation (3-4) is, to find the optimal design parameter
vector p∗ ∈ R6 which minimizes the condition number of
the Jacobian (3), subject to the limits in the design parameter
vector (4), i.e.,

min
p∗

J = min
p∗

‖A‖F

∥

∥A−1
∥

∥

F
(3)

subject to:
pmin ≤ p ≤ pmax (4)

The term‖∗‖F is the Frobenius norm of∗. The perfor-
mance indexJ = ‖A‖F

∥

∥A−1
∥

∥

F
can be stated as in (5).

Fig. 1: Omnidirectional mobile robot.

It is observed that the problem in (3-4) is a nonseparable
optimization problem.

J =

√

B

C

√

(L2
1 + L2

2 + L2
3 + 3) (5)

where B = (4L2
1 + 4cos(δ1 + δ2)L1L2 + 4sin(δ1 −

δ3)L1L3 + 4L2
2 + 4sin(δ2 + δ3)L2L3 + 4L2

3 − cos(2δ1 +
2δ2) + cos(2δ1 − 2δ3) + cos(2δ2 + 2δ3) + 3) and C =
L2

1cos(2δ2 +2δ3)+L2
2cos(2δ1−2δ3)−L2

3cos(2δ1 +2δ2)+
L2

1 +L2
2 +L2

3 +2L1L3sin(δ1 +2δ2 + δ3)+2L1L2cos(δ1 +
δ2) + 2L2L3sin(δ2 + δ3) + 2L1L2cos(δ1 − δ2 − 2δ3) +
2L2L3sin(2δ1 + δ2 − δ3) + 2L1L3sin(δ1 − δ3).

3. Optimization algorithms
The optimization problem (3-4) is solved by using a

Sequential Quadratic Programming (SQP) algorithm [8] and
by using eight variants of the differential evolution (DE)
algorithm [14], [15].

SQP algorithm represents the state of the art in nonlinear
programming techniques. The SQP algorithm allows to
closely mimic Newton’s method for constrained optimization
just as it is done for unconstrained optimization. At each
major iteration, an approximation is made of the Hessian
of the Lagrangian function using a quasi-Newton updating
method. This is then used to generate a QP subproblem
whose solution is used to form a search direction for a line
search procedure.

The main idea is the formulation of a quadratic program-
ming (QP) subproblem based on a quadratic approximation
of the Lagrangian function (6) whereJ(p) is the perfor-
mance function,gi(p) and hi(p) are thei − th inequality
and equality constraints.

L(p, λ) = J(p) +

ng
∑

j=1

λj · gj(p) +

nh
∑

k=1

λk · hk(p) (6)

Therefore, the QP subproblem (7-8) is obtained by lin-
earizing the nonlinear constraints, where the matrixHi =
∇2L is a positive definite approximation of the Hessian
matrix of the Lagrangian function (6).Hi is updated by the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) method. Hence,
if the search directiondi solves the subproblem given in (7-
8) anddi = 0, then the parameter vectorp is an optimal
solution of the original problem. Otherwise, we setpi+1 =
pi + αidi and with this new vector the process is repeated
again. The step length parameterαi is determined by an
appropriate line search procedure so that a sufficient decrease
in the performance index is obtained.

Min
p∈np

1

2
dT Hid + ∇J(pi)T d (7)

subject to:

∇gj(p
i)T d + gj(p

i) ≤ 0, j = 1, . . . , ng

∇hk(pi)T d + hk(pi) ≤ 0, k = 1, . . . , nh
(8)
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1 BEGIN
2 G = 0
3 Create a random population~xi

G ∀i = 1, ..., NP

6 EvaluateJ(~xi
G), g(~xi

G), h(~xi
G) ∀i = 1, ..., NP

7 Do
8 For i = 1 to NP Do
9 =⇒ Select randomly{r1 6= r2 6= r3} ∈ ~xG.
10 =⇒ jrand =randint(1, D)
11 =⇒ For j = 1 to D Do
12 =⇒ If (randj [0, 1) < CR or j = jrand) Then
13 =⇒ ui

j,G+1 = x
r1

j,G + F (xr2

j,G − x
r3

j,G)
14 =⇒ Else
15 =⇒ ui

j,G+1 = xi
j,G

16 =⇒ End If
17 =⇒ End For
18 Evaluatef(~ui

G+1), g(~ui
G+1), h(~ui

G+1)
19 If (~ui

G+1 < ~xi
G) Then

20 ~xi
G+1 = ~ui

G+1

22 Else
23 ~xi

G+1 = ~xi
G

24 End If
25 End For
29 G = G + 1
36 While (G ≤ GMax)

Fig. 2: DE/rand/1/bin algorithm.

The DE/rand/1/bin, DE/rand/1/exp, DE/best/1/bin,
DE/best/1/exp, DE/current-to-rand/1, DE/current-to-best/1,
DE/current-to-rand/1/bin and DE/rand/2/dir are the proposed
DE variants. The DE/rand/1/bin algorithm is shown in Fig.
2. The general convention used is DE/x/y/z. DE means
Differential Evolution, x represents the vector to be
perturbed, y is the number of difference vectors considered
for perturbation of x, and z stands for the type of crossover
being used (exponential or binomial).

The main differences among the DE variants are in the
recombination operator (rows 10-17 in Fig. 2) and in the
way of selecting the individuals in the mutation vector (row
9 in Fig. 2). The DE variants implementation details are
summarized in Fig. 3.

4. Results and discussion
In this work, the SQP algorithm and DE variants are

programmed in Matlab Release 7.9 on a Windows platform.
Computational experiments were performed on a PC with
a 1.83 GHz Core 2 Duo processor and2 GB of RAM.
One hundred independent runs were carried out for the
algorithms.

The initial condition for the SQP algorithm is randomly
chosen and the stop criterion is when the change in the
performance index value in two consecutive iterations is
smaller than1 × 10−10.

Four parameters must be proposed in order to tune the
DE algorithm. In this case, the population sizeNP consists
of 100 individuals. The scaling factorF and the crossover
constantCR are randomly generated in the interval0.3 ≤

F ≤ 0.9 at each generation, and in the interval0.8 ≤
CR < 1 at each optimization process. TheK value is
randomly generated in the interval0.3 ≤ F ≤ 0.9 for the
current-to-rand/1, current-to-best/1 and current-to-rand/1/bin
DE variants. The stop criterion is when the number of
generations is fulfilledGMax = 300 or when the error
between the mean objective function and the global optimum
is smaller than1 × 10−10 .

4.1 Performance of the Algorithms
In Table 1 the performance for100 independent runs of

the SQP algorithms are shown. We realized that the opti-
mization problem in (3-4) presents several local solutions.
So, this optimization problem is a multimodal-nonseparable
problem.

The best objective function value found isJ∗ =
7.0380710741. Hence we considered it as the global optimal
solution of the problem. It is important to comment that
the best objective function value is found once (see column
3 in Table 1). Hence, the mean performance of the SQP
algorithm is not adequate because this algorithm presents
high sensitivity to the initial condition since the optimization
problem is a nonlinear one. In Table 2 the performance of
the all DE variants for100 independent runs are presented.
It is observed in Table 1 and Table 2 that the SQP algorithm
requieres less computational time than the DE variants.

The results in Table 2 show that the best results were
provided by "rand/2/dir", "best/1/bin" and "best/1/exp".
Those variants find the optimal objective function value
in all runs (see column4 in Table 2). Nevertheless,
"rand/2/dir" is the best of them (better mean objective
function value). "best/1/bin" presents smaller generation
number than "rand/2/dir" and "best/1/exp", such that the
computational time is reduced.

On the other hand, "rand/2/dir", "best/1/bin" and
"best/1/exp" present smaller standard deviation of the objec-
tive function value of the population than the others variants
(see column3 in Table 2). This deviation indicates that all
individuals of the population converge to a solution and
hence a rapid convergence towards a solution is done.

The "current-to-best/1" variant can find the optimal so-
lution in 99% of the runs (see column4 in Table 2).
Nevertheless the high standard deviation indicates that the
individuals of the population are far apart, such that1% of
the runs can not find the optimal solution.

A high standard deviation means that the algorithm re-
quires more generations for converging to the objective func-
tion values of the individuals of the population to a solution
(local or global solution). Hence, slow convergence towards
a solution is observed and it means that the algorithm can
not rapidly find good solutions.

The worst DE variants are "current-to-rand/1", "current-to-
rand/1/bin", "rand/1/exp" and "rand/1/bin". In those variants
the optimal solution is not found in all runs (see column
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Nomenclature Variant

rand/1/bin ui
j =

{

x
r3

j + F (xr1

j − x
r2

j ) if randj(0, 1) < CR or j = jrand

xi, j otherwise

rand/1/exp ui
j =

{

x
r3

j + F (xr1

j − x
r2

j ) from randj(0, 1) < CR or j = jrand

xi
j otherwise

best/1/bin ui
j =

{

xbest
j + F (xr1

j − x
r2

j ) if randj(0, 1) < CR or j = jrand

xi
j otherwise

best/1/exp ui
j =

{

xbest
j + F (xr1

j − x
r2

j ) from randj(0, 1) < CR or j = jrand

xi
j otherwise

current-to-rand/1 ~ui = ~xi + K(~xr3 − ~xi) + F (~xr1 − ~xr2)

current-to-best/1 ~ui = ~xi + K(~xbest − ~xi) + F (~xr1 − ~xr2)

current-to-rand/1/bin ui
j =

{

xi
j + K(xr3

j − xi
j) + F (xr1

j − x
r2

j ) if randj(0, 1) < CR or j = jrand

xi
j otherwise

rand/2/dir ~vi = ~v1 + F
2
(~v1 − ~v2 + ~v3 − ~v4) wheref(~v1) < f(~v2) andf(~v3) < f(~v4)

Fig. 3: DE variants.

4 of Table 2). Nevertheless, "current-to-rand/1" is the worst
DE variant among them because it presents the worst mean
objective function value and a high standard deviation.

The variant "rand/1/bin" is the most useful variant in sev-
eral real word optimization problem [10], [11]. Nevertheless
in this particular optimization problem, this algorithm can
not find the global solution in300 generations. The result of
the standard deviation shows that the "rand/1/bin" presents
a slow convergence to a solution. So, the converge of the
"rand/1/bin" to a solution depends on the selected population
number and if the generation number is not appropriately
selected, the "rand/1/bin" does not reach the best solution.

The main highlight of the results is summarized below:

• The optimization problem (3-4) presents several lo-
cal solutions and it is considered as multimodal-
nonseparable problem.

• The results of the comparison of the DE variants show
that the "rand/2/dir", "best/1/bin" and "best/1/exp" are
the most competitive DE variants for solving the opti-
mization problem (3-4) and they present a rapid con-
vergence towards a solution. Nevertheless, "rand/2/dir"
is the best of them (better mean objective function
value). The "DE/best/1/bin" presents rapid convergence
towards a solution.

• The rand/1/bin could converge to suboptimal solutions
if the generation number is not appropriately selected.

• The SQP algorithm requieres less computational time
than the DE variants. Nevertheless, the main drawbacks
of using SQP algorithm are the high sensitivity to the
initial condition when a nonlinear optimization problem
is solved. Besides the optimization problem must be
twice continuously differentiable in order to compute
both the gradient vector and the Hessian matrix. In
addition a constraint handling mechanism must be
included when constrained optimization problems are
solved.

• The DE variants are easier to implement than the SQP

algorithm. In addition, a special constraint handling
mechanism for the upper and lower constraint in the
design variables is not required because it is included
in the original DE algorithm [14].

• In real world complex optimization problem the use of
a hybrid optimization algorithm based on heuristic and
gradient approach must be considered [16].

4.2 Optimal design
In Table 3 the performance index and the global and two

local solutions (location of the robot wheel) using the SQP
algorithm are shown. The optimal designs of the location of
the robot wheel for those solutions are presented in Fig. 4. As
it is stated before, several local objective functions exist in
the optimization problem (3-4). Nevertheless in some local
solutions the anglesδ1, δ2, δ3, were different in spite of hav-
ing the same performance index. Analyzing the results, we
realize that there are several angle combinations that result
in the local and global performance function. Two particular
local solutions (J = 8.4990685764 andJ = 7.1713738830)
and the global solution (J∗ = 7.0380710741) are analyzed.
The main relation among the designs with the particular
performance function of8.4990685764 is that the angleαi,
∀i = 1, ..3 (see Fig. 4c) must have whatever combination
of the following angles:π, π

2
, and π

2
radians. The designs

with the performance function of7.1713738830 requires that
the anglesαi ∀i = 1, ...3 (see Fig. 4b) must have whatever
combination of the following angles:3π

4
, π

2
, and 3π

4
radians.

Finally, the designs with the global performance function of
7.0380710741 requires that the anglesαi ∀i = 1, ...3 (see
Fig. 4a) must have2π

3
radians.

5. Conclusion
In this paper the formulation of the optimal design for

wheel location of an omnidirectional mobile robot is pro-
posed as an optimization problem. The empirical compar-
ison of the SQP algorithm and eight different DE vari-
ants for this particular optimization problems is presented.
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a) J = 7.0380710741 b) J = 7.1713738830 c) J = 8.4990685764
Global solution Local solution Local solution

Fig. 4: Global and local solutions for the optimal location of the omnidirectional robot wheel.

The obtained results shown that the most competitive al-
gorithm is the "rand/2/dir", "best/1/bin" and "best/1/exp".
The "DE/best/1/bin" found optimal solutions with smaller
number of generations, i.e., rapid convergence towards a
solution. Nevertheless "rand/2/dir" finds a better mean ob-
jective function value.

The "DE/rand/1/bin" requires more generations to find the
optimal solution. So, when using the "DE/rand/1/bin" in real
world optimization problem, the generation number must be
carefully chosen.

The SQP algorithm presents a high sensitivity to the initial
condition. So the performance of the DE variants was more
consistent in the searching of the optimal solution and they
are not sensitive to the initial set of solutions. However the
computational time is higher than those required by the SQP
algorithm.

From an engineering design point of view, a heuristic
approach must be considered first and then a gradient
approach in order to finely search in the complete space
and hence finding the best design.
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Table 1: Performance of the SQP algorithm for100 independent runs with random initial condition.Jmean: Mean objective
function value of individuals of 100 independent runs. PercentageJ∗: Percentage of runs where the optimal solution is
found (at least in one individual of the population).MaxItermean: the mean maximum number of iterations.

Jmean PercentageJ∗ Convergence Time [s] MaxItermean

SQP algorithm 7.6750633252 1% 2.83 × 10−5 10.3

Table 2: Performance of the DE variants.Jmean: Mean objective function value of individuals of 100 independent runs.
σ(J)mean: Mean standard deviation (J∗ − J) of individuals of 100 independent runs. PercentageJ∗: Percentage of runs
where the optimal solution is found.MaxGenmean: mean maximum generation number of the 100 independent runs.

Algorithm Jmean σ(J)mean PercentageJ∗ % Convergence time [s] MaxGenmean

Rand/1/bin 7.0383599933 9.57 × 10−5 0% 0.003321 300
Rand/1/exp 7.0382518471 6.66 × 10−5 0% 0.003998 300
Best/1/bin 7.0380710746 6.54 × 10−10 100% 0.001664 153.48
Best/1/exp 7.0380710746 6.71 × 10−10 100% 0.002368 177.93

Current-to-rand/1 7.0403045990 0.011766 0% 0.002999 300
Current-to-best/1 7.0397307031 0.010710 99% 0.001364 135.69

Current-to-rand/1/Bin 7.0398328304 0.007471 0% 0.003274 300
Rand/2/dir 7.0380710745 3.65 × 10−10 100% 0.002323 232.72

Table 3: Global solution and two particular local solutions found by the SQP algorithm. Units in degree and meters.
Solution p1 p2 p3 p4 p5 p6 J

Global 0 60 330 0.15 0.15 0.15 7.0380710741
Local 45 360 360 0.15 0.15 0.15 7.1713738830
Local 360 360 0 0.15 0.15 0.15 8.4990685764
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Abstract—Unsupervised kernel regression (UKR), the unsuper-
vised counterpart of the Nadaraya-Watson estimator, is a dimen-
sion reduction technique for learning of low-dimensional man-
ifolds. It is based on optimizing representative low-dimensional
latent variables with regard to the data space reconstruction
error. The problem of scaling initial local linear embedding
solutions, and optimization in latent space is a continuous
multi-modal optimization problem. In this paper we employ
evolutionary approaches for the optimization of the UKR model.
Based on local linear embedding solutions, the stochastic search
techniques are used to optimize the UKR model. An experimental
study compares covariance matrix adaptation evolution strategies
to an iterated local search evolution strategy.

I. INTRODUCTION

Unsupervised kernel regression (UKR) is the unsupervised
counterpart of the Nadaraya-Watson estimator. It is based on
optimizing latent variables w.r.t. to the data space reconstruc-
tion error. The evolved latent variables define a UKR solution.
Projection back into data space yields the UKR manifold.
But the optimization problem has multiple local optima. In
the following, we employ evolutionary optimization strategies,
i.e., the CMA-ES and Powell evolution strategies (Powell-ES)
[11], to optimize UKR manifolds. Furthermore, we analyze the
influence of local linear embedding (LLE) [18] as initialization
procedure.

This paper is organized as follows. In Section II we give
a brief overview of manifold learning techniques. In Section
III we introduce the UKR problem by Meinicke et al. [13],
[12]. In this section we also shortly present the standard UKR
optimization approach that we are going to replace by an evo-
lutionary framework. Section IV introduces the components
of the evolutionary UKR approach. An experimental study in
Section V will give insights into the evolutionary optimization
process. Important results are summarized in Section VI.

II. RELATED WORK

High-dimensional data is usually difficult to interpret and
visualize. But many datasets show correlations between their
variables. For high-dimensional data, a low-dimensional sim-
plified manifold can often be found that represents char-
acteristics of the original data. The assumption is that the
structurally relevant data lies on an embedded manifold of
lower dimension. In the following, we will overview famous

manifold learning techniques pointing out that the overview
can only be subjective depiction of a wide field of methods.

One of the most famous and widely used dimension re-
duction methods is principal component analysis (PCA) that
assumes linearity of the manifold. Pearson [16] provided early
work in this field. He fitted lines and planes to a given set of
points. The standard PCA as most frequently known today can
be found in the depiction of Jolliffe [8]. The PCA computes
the eigenvectors, i.e., the largest eigenvalues of the covariance
matrix of the data samples. An approach for learning of non-
linear manifolds is kernel PCA [19] that projects the data
into a Hilbert space similarly to the SVM and SVR principle.
Hastie and Stuetzle [6] introduced principal curves that are
self-consistent smooth curves that pass through the middle of
data clouds. Self-consistency means that the principal curve is
the average of the data projected on it. Bad initializations can
lead to bad local optima in the previous approaches. A solution
to this problem is k-segments by Verbeek, Vlassis, and Kröse
[21] that alternates fitting of unconnected local principal axes
and connecting the segments to form a polygonal line.

Self-organizing feature maps [10] proposed by Kohonen
learn a topological mapping from data space to a map of
neurons, i.e., they perform a mapping to discrete values based
on neural (codebook) vectors in data space. During the training
phase the neural vectors are pulled into the direction of
the training data. Generative topographic mapping (GTM) by
Bishop, Svensén, and Williams [3], [2] is similar to self-
organizing feature maps, but assumes that the observed data
has been generated by a parametric model, e.g., a Gaussian
mixture model. It can be seen as constrained mixture of
Gaussian, while the SOM can be viewed as constrained vector
quantizer.

Multi-dimensional scaling is a further class of dimension
reduction methods, and is based on the pointwise embedding
of the dataset, i.e., for each high-dimensional point yi, a
low dimensional point xi is found, and for which similarity
or dissimilarity conditions hold. For example, the pairwise
(Euclidean) distances of two low-dimensional points shall be
consistent with the high-dimensional counterparts. Another fa-
mous dimension reduction method based on multi-dimensional
scaling is Isomap introduced by Tenenbaum, Silva, and Lang-
ford [20]. It is based on three steps: first, a neighborhood graph
of Y is computed, second, the shortest distances between its
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nodes yi and yj are computed (e.g. with Dijkstra), third,
multi-dimensional scaling is applied based on the distances
along the neighborhood graph that more represent curvilinear
distances than Euclidean distances. The optimal embedding
can be computed by the solution of an eigendecomposition.

III. UNSUPERVISED KERNEL REGRESSION

In this section we introduce the UKR approach, regulariza-
tion techniques and the Klanke-Ritter optimization approach
[9].

A. Kernel Functions
UKR is based on kernel density functions K : Rd → R. A

typical kernel function is the Gaussian (multivariate) kernel:

KG(z) =
1

(2π)q/2det(H)
exp

(
−1

2

∣∣H−1z∣∣2) , (1)

with bandwidth matrix H = diag(h1, h2, . . . , hd). Figure 1
illustrates that the UKR result significantly depends on the
choice of an appropriate bandwidth. For a random data cloud
the kernel density estimate is visualized. A too small band-
width results in an overfitted model (left).
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Fig. 1. Comparison of kernel density estimates with two bandwidths of a
data cloud.

B. UKR Formulation
UKR has been introduced by Meinicke et al. [13], [12]

within a general regression framework for the reversed prob-
lem of learning manifolds. The task of UKR is to find the
input parameters of the regression function that are the latent
variables of the low-dimensional manifold. UKR reverses the
Nadaraya-Watson estimator [14], [22], i.e., the latent variables
X = (x1, . . . xN ) ∈ Rq×N become parameters of the system,
in particular X becomes the lower dimensional representation
of the observed data Y = (y1, . . . yN ) ∈ Rd×N . The UKR
regression function can be written as follows:

f(x;X) =
N∑
i=1

yi
K(x− xi)∑N
j=1K(x− xj)

, (2)

which is the revised Nadaraya-Watson estimator. The free
parameters X define the manifold, i.e., the low-dimensional
representation of the data Y. Parameter x is the location where
the function is evaluated, and is based on the entries of X.

For convenience, Klanke et al. [9] introduced a vector b(·) ∈
RN of basis functions that define the ratios of the kernels:

bi(x,X) =
K(x− xi)∑N
j=1K(x− xj)

. (3)

Each component i of the vector b(·) contains the relative
kernel density of point x w.r.t. the i-th point of matrix X.
Equation (2) can also be written in terms of these basis
functions:

N∑
i=1

yibi(x;X) = Yb(x;X). (4)

The matrix Y of observed data is fixed, and the basis functions
are tuned during the learning process. The basis functions bi
sum to one as they are normalized by the denominator. The
quality of the principal manifold learning is evaluated with
the data space reconstruction error, i.e., the Euclidean distance
between training data and its reconstruction.

R(X) =
1

N
‖Y− YB(X)‖2F , (5)

using the Frobenius norm, and with the matrix of basis
functions. The Frobenius norm of a matrix A is defined as
follows:

‖A‖2F =

√√√√ m∑
i=1

n∑
j=1

|aij |2. (6)

To summarize, bi ∈ R is a relative kernel density, b ∈ RN is a
vector of basis functions, and B ∈ RN×N is a matrix, whose
columns consists of the vector of basis functions. Hence,
the product of Y ∈ Rd×N and B ∈ RN×N (which is the
Nadaraya-Watson estimator) results in a d×N -matrix.

B(X) = (b(x1;X), . . . ,b(xN ;X)). (7)

Leave-one-out cross-validation (LOO-CV) can easily be em-
ployed by setting the diagonal entries of B to zero, normaliz-
ing the columns, and then applying Equation 5.

Instead of applying LOO-CV an UKR model can be regu-
larized via penalizing extension in latent space (corresponding
to penalizing small bandwidths in kernel regression) [9]:

R(X) =
1

N
‖Y− YB(X)‖2F + λ‖X‖2F . (8)

The regularized approach will be used in the comparison
between the CMA-ES and the Powell-ES in Section V-C.

C. Klanke-Ritter Optimization Scheme

Klanke and Ritter [9] have introduced an optimization
scheme consisting of various steps. It uses PCA [8] and
multiple LLE [18] solutions for initialization, see Section
III-D. In particular, the optimization scheme consists of the
following steps:

1) Initialization of n+1 candidate solutions are, n solution
from LLE, one solution from PCA,

2) selection of the best initial solution w.r.t. CV-error,
3) search for optimal scale factors that scale the best LLE

solution to an UKR solution w.r.t. CV-error,
4) selection of the most promising solution w.r.t. CV-error,
5) CV-error minimization:

• if the best solution stems from PCA: search for opti-
mal regularization parameters η with the homotopy
method,
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• if the best solution steps form LLE: CV-error min-
imization with the homotopy method / resiliant
backpropagation (RPROP) [17],

6) final density threshold selection.
For a detailed and formal description of the steps, we refer
to the depiction of Klanke and Ritter [9]. They discuss that
spectral methods do not always yield an initial set of latent
variables that is close to a sufficient deep local minimum. We
will employ evolution strategies to solve the global optimiza-
tion problem, but also use LLE for initial solutions.

D. Local Linear Embedding

For non-linear manifolds LLE by Roweis and Saul [18] is
often employed. LLE assumes local linearity of manifolds. It
works as follows for mapping high-dimensional data points
y ∈ Y to low-dimensional embedding vectors x ∈ X. LLE
computes a neighborhood graph like for the other nonlinear
spectral embedding methods, see Section II. Then it computes
the weights wij that best reconstruct each data point yi from
its neighbors, minimizing the cost function:

R(w) =
N∑
i=1

‖yi −
∑
j

wijyj‖2. (9)

The resulting weights capture the geometric structure of the
data as they are invariant under rotation, scaling and translation
of the data vectors. Then, LLE computes the vectors yi best
reconstructed by the weights wij minimizing

R(w) =
N∑
i=1

‖xi −
N∑
j=1

wijxj‖2 (10)

For a detailed introduction to LLE we refer to [18], and
Chang and Yeung [4] for a variant robust against outliers. A
free parameter of LLE is the number of local models, which
can reach from 1 to N . LLE is employed as initialization
routine. The best LLE solution (w.r.t. the CV-error of the UKR
manifold) is used as basis for the subsequent stochastic CV-
error minimization.

IV. EVOLUTIONARY UNSUPERVISED KERNEL
REGRESSION

A. Evolutionary Optimization Scheme

We employ the CMA-ES, and the Powell-ES to solve two
steps of the UKR optimization framework. Our aim is to
replace the rather complicated optimization scheme we briefly
summarized in Section III-C. It consists of the following steps:

1) Initialization of n candidate LLE solutions,
2) selection of the best initial solution X̂∗init w.r.t. CV-error,
3) search for optimal scale factors

s∗ = argmin
s
RCV (diag(s)X̂∗init) (11)

with CMA-ES/Powell-ES, and
4) CV-error minimization with CMA-ES/Powell-ES.

We employ Huber’s loss function [7], see Section IV-B, for
the following experiments. The subsequent sections describe

an experimental analysis of the evolutionary UKR approach.
A side effect of the use of an evolutionary scheme is that
arbitrary, also non-differentiable kernel functions can be em-
ployed. LOO-CV can easily be implemented by setting the
diagonal entries of X to zero, and normalizing the columns,
and then applying Equation (5). In the following, we compare
two optimization approaches for optimizing the UKR model:
(1) Powell’s conjugate gradient ES [11], and (2) the CMA-
ES [15].

B. Huber’s Loss

In regression typically different loss function are used that
weight the residuals. In the best case the loss function is
chosen according to the needs of the underlying data mining
model. With the design of a loss function, the emphasis of
outliers can be controlled. Let L : Rq × Rd → R be the loss
function. In the univariate case d = 1 a loss function is defined
as L =

∑N
i=1 L(yi, f(xi)). The L1 loss is defined as

L1 =
N∑
i=1

‖yi − f(xi)‖, (12)

and L2 is defined as

L2 =
N∑
i=1

(yi − f(xi))2. (13)

Huber’s loss [7] is a differential alternative to the L1 loss, and
makes use of a trade-off point δ between the L1 and the L2

characteristic, i.e.:

LH =
N∑
i=1

Lh(yi − f(xi)), (14)

and:

Lh(r) =

{
1
2·δ r

2 |r| < δ
|r| − 1

2δ |r| ≥ δ (15)

Parameter δ allows a problem specific adjustment to certain
problem characteristics. In the experimental part we use the
setting δ = 0.01.

V. EXPERIMENTAL STUDY

A. Datasets and Fitness Measure

The experimental analysis is based on the following
datasets:
• 2-D-S: Noisy “S”: 100 data points, d = 2, noise magni-

tude σ = 0.1, and 1,000 test points without noise,
• 3-D-S: Noisy “S”: 100 data points, d = 3, noise magni-

tude σ = 0.1 and 1,000 test points without noise,
• digits 7: 100 samples with d = 256 (16 · 16 greyscale

values) of figure 7 from the digits dataset [5], and 250
test samples.

The test error is computed by the projection of 1000 test points
uniformly generated in latent space, and mapped to data space.
The test error is the sum of distances between each test point

Int'l Conf. Genetic and Evolutionary Methods |  GEM'11  | 113



xt ∈ T , and closest projection and the sum distances between
each projected point xp ∈ P and the closest test point:

Rt =
∑
xt∈T

min
xp∈P

‖xp − xt‖+
∑
xp∈P

min
xt∈T

‖xp − xt‖ (16)

For training (validation) and test measurement of residuals
Huber’s loss function is employed, see Section IV-B.

B. LLE Initialization and Scaling Balance

Initialization with LLE is part of the optimization scheme
introduced by Klanke and Ritter [9]. The question arises, how
much optimization effort should be invested into the scaling
in comparison to the CV-error minimization process. In the
following, we analyze the balance of optimization effort for
both optimization steps with a budget of 4,000 optimization
steps. Table I shows the UKR CV-errors (1) of the best
LLE model, (2) after scaling optimization with the CMA-ES,
(3) after the final CV-error minimization, and (4) the error
on the test set. We test five optimization balances, the first
number indicates the number of steps for the LLE scaling
optimization, the second number states the number of steps for
the latent variable-based optimization. We test the following
combinations: (0/4) meaning no scaling, 4,000 generations of
final CV minimization, and the balances (1/3) meaning 1,000
scaling and 3,000 CV, (2/2) meaning 2,000 scaling and 2,000
CV, (3/2) meaning 3,000 scaling and 1,000 CV, and finally
(4/0) meaning 4000 scaling and no final CV optimization. The
values shown in Table I present the best test error of 100 runs.
The results show that the (2/2) variant achieves the lowest rest
error, while the (0/4) variant achieves the lowest training error.
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Fig. 2. Evolutionary UKR on noisy S dataset. The figures show the results of
various optimization efforts spent on scaling and final CV-error minimization,
i.e., 0/4, 2/2, 3/1, and a regularized approach with λ = 0.25, see Equation (8).

The projection is used for visualization. Figure 2 gives a
visual impression of the evolved UKR manifolds. The original
data is shown by (blue) spots, the manifold is drawn as a (red)
line. With the help of the test set, we compute a test error, see
Equation (16).

TABLE I
EXPERIMENTAL ANALYSIS OF OPTIMIZATION STEPS INVESTED INTO
SCALING OF THE LLE SOLUTIONS, AND CV-ERROR MINIMIZATION

(MINIMAL VALUES).

balance 0/4 1/3 2/2 3/1 4/0

LLE 7.23733 7.23733 7.23733 7.23733 7.23733
scaling 7.23733 3.02818 2.19235 2.10442 1.89369
CV 1.80625 1.95179 2.04789 2.07737 1.89369
test 0.00276 0.00225 0.00195 0.00313 0.00329

C. CMA-ES and Powell-ES

In the following, we compare two optimization algorithms,
i.e., the CMA-ES and the Powell-ES (also known as Powell-
ILS, see [11]) as optimization approaches for the UKR learn-
ing problem. It is based on Powell’s fast local search. To
overcome local optima the Powell-ES makes use of a (µ+λ)-
ES [11]. Each objective variable x ∈ R is mutated using
Gaussian mutation [1] with a step-size (variance σ), and a
Powell-search is conducted until a local optimum is found. The
step-sizes of the ES are mutated as follows: if in successive
iterations the same local optimum is found, the step-sizes are
increased to overcome local optima. In turn, if different local
optima are found, the step-sizes are decreased.

Table II compares the two optimizers on three artificial
datasets, using the penalized UKR variant, see Equation (8)
with λ = 0.1. The values show the test error, i.e., the distance
between the original data to the projections of 1000d samples
after 4000 fitness function evaluations, i.e., 2000 steps of scale
optimization, and 2000 steps of CV error minimization. The
experiments show that the Powell-ES achieves a lower training
error in each of the experiments. But only on the problems
2D-S this is reflected in a lower test error. This means that on
3D-S and digits overfitting effect occurred that could not been
prevented with the penalty regularization approach. A deeper
analysis of the balancing parameter λ will be necessary.

TABLE II
EXPERIMENTAL COMPARISON OF CMA-ES AND POWELL-ES ON THREE

DATASETS 2D-S, 3D-2 AND digits.

data CMA-ES Powell-ES
train test max train test max

2D-S 9.4408 0.0303 0.3845 8.7854 0.0205 0.2241
3D-S 17.7041 0.1351 1.0351 15.8019 0.2296 1.4088
digits 51.9710 0.0147 0.3991 48.3865 0.0168 0.5242

VI. CONCLUSIONS

The multi-modal optimization problem of UKR can be
solved with the CMA-ES or the Powell-ES leading to an easier
optimization framework that is also capable of handling non-
differentiable loss and kernel functions. However, initial LLE
solutions still improve the optimization process. Overfitting
effects might occur that have to be avoided by improved
regularization approaches. For this sake further search has
to be invested into parameter λ, e.g., employing grid-search.
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In the future we plan to balance regularization with multi-
objective optimization techniques.
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Abstract - The aim of this paper is to propose a 

systematic overview of membrane computing model in 

land cover feature extraction. Membrane computing is a 

new branch of natural computation which has a great 

deal of distribution and handles maximal parallelism. The 

bio-inspired technique is used for image classification and 

these images are  remote sensing satellite image. The 

terrain features like water, barren, rocky, vegetation and 

urban are needed to be classified as their information 

provides immense support during natural disaster, 

climatic behavioral changes and in other areas of 

environmental changes. Though membrane computing has 

been applied to wide field of biology, computer science 

but Land cover Classification is never taken into 

consideration.  We have defined parameters of membrane 

computing in land cover feature extraction terms thus 

showing that the idiom of membrane computing is useful 

for image classification and then we have proposed our 

algorithm of P system. The proposed algorithm is applied 

to Alwar region of Rajasthan of 472X576 dimension 

which contains 7 Band Indian Resourcesat Satellite 

Digital Numbers. The algorithm has captured almost all 

the terrain features of these region. It shows almost 99% 

efficiency on water and vegetation region. The KHAT 

statistics shows that the proposed algorithm has an 

overall efficiency of 0.68812. 

Keywords: Membrane Computing, Natural 

Computation, Remote Sensing, Feature Extraction, 

Image Classification, Maximal Parallelism.  

 

1 Introduction 

   Image classification plays an important role in 

remotely sensed data. Often image classification is 

applied to remotely sensed landuse data to generate a map 

for image analysis. Thus, it is used as an examination tool 

for the digital data. Image classification is one of the 

important approaches for recognizing different terrain 

features. The analysts determines which classification 

method meets his specific task. At present, numerous 

techniques like Evolutionary algorithms, Artificial Neural 

Network, Ant Colony Optimization, Particle Swarm 

Optimization and Biogeography Based Optimization are 

being applied to image classification. These natural 

computing technique can even be termed as nature 

inspired algorithm. Therefore each analysts decides which 

classifier is appropriate for the task in hand. 

Remote sensing [2] refers to the technology of 

acquiring information about the earth’s surface  

features (land and water) and atmosphere using space-

borne platforms. Satellite remote sensing has been 

recognized as a valuable tool for viewing, analyzing, 

characterizing, and making decisions about our 

environment [3]. Multi-spectral images capture different 

terrain features like water, urban, rocky, vegetation, 

barren which are being classified for further requirement 

for image analysis. Thus image classification and remote 

sensing are inter-twined to each other. Though many 

natural Computation techniques have already been 

introduced as a classifier, membrane Computing which 

also comes under natural Computation very recently 

introduced in this category. 

Membrane Computing [4] deals with computing models 

abstracted from the structure and the functioning  of 

living cells, as well as it is the study of organization of 

cells in tissues or higher order structure. Each living cells 

is being compartmentalized by membranes. Each cell is 

encapsulating the features within itself. A membrane 

consists of hierarchical structure of cell-like 

compartments or regions. These bio-inspired mechanism 

proceeds in a maximally parallel manner by the non-

deterministic choice of application of the transformation 

rules, as well as of the objects to which they are to be 

applied. Membrane Computing often generically termed 

as P system. It has been applied to wide range of 

biological field, computer science areas like software 

requirement [5] and even to linguistics. 

  With the help of satellite image various features of our 

nature can be identified. The general features on which 

scientists generally work are water, barren, urban and 

vegetation areas. We have worked on Alwar region of 

Rajasthan as shown in figure 1. Indeed other features are 

being recognized but these are commonly available in any 

kind of land areas. Thus land covers all these common 

type of features. During feature extraction we attempt to 

identify all those features that land is consisting of. As our 

dataset is Alwar region of Rajasthan thus we have 

depicted its image to understand land cover feature. 

 

 
 
     Figure 1. Different features of Alwar region. 

116 Int'l Conf. Genetic and Evolutionary Methods |  GEM'11  |



The paper tried to focus on extracting the natural terrain 

features like urban, vegetation, rocky, barren and water 

from   satellite image using membrane computing. 

Though water has been already extracted through 

membrane computing [6] but these paper classified the 

image into other different terrain features also and shows 

how membrane computing classifies the homogeneous, 

heterogeneous and sparse regions of the specified areas.  

The organization of the paper is as follows: The paper 

is divided into VII sections. Section II presents a brief 

introduction to membrane computing. Section III presents 

land cover feature extraction interpreted in membrane 

computing terms. Section IV presents the proposed 

scaffold for the membrane computing technique for land 

cover feature extraction – the dataset, characteristics, the 

proposed architecture, the algorithm. Section V presents 

the accuracy assessment of the proposed technique by 

analyzing the KHAT statistics. Section VI presents the 

classification results of the Alwar region in Rajasthan 

using Membrane computation. Section VII presents 

conclusion and future scope of the proposed work. 

 

2 A Glimpse on Membrane 

Computing 

Membrane was first introduced by Gheoghe Păun [7][8] 

in the year 1998. Membrane computing came into 

existence when structure of living cells are considered as 

“protected reactors”. The compartments have multisets of 

chemicals (called objects) which follow some evolution 

rules. Each cell has multisets of objects which follow 

some evolution rule to decide the next state. These rules 

either follow some rewriting rules or inspired from 

biological processes, such as objects can pass through 

membrane depending on symport or antiport condition or 

based on communication rules. 

Membrane is considered as a three- dimensional vesicle 

which is covering a Eucledian space. Membrane separates 

the “inside” space from the “outside” space. It can be 

represented graphically as two- dimensional plane using 

Euler-Venn Diagram [7]. Figure 2 is a structure of 

membrane computing. Region 5 is elementary membrane 

and region 3 is the lower neighbor consists both region 4 

and 5 which are therefore siblings. The space outside the 

skin membrane is known as environment. 

 
                  Figure 2. Membrane structure 
 

Parenthesis expression for membrane computing is 

another standard form in these literature. Thus for 

example the membrane structure S from figure 2 can be 

represented as parenthesis form. Thus figure 3 depicts it. 

                 [ [ ]2 [ [ ] 4 [ ]5 ]3 ]1 

 
        Figure 3. Parenthesis representation of membrane computing 
 

   When it is represented in tree form then figure 4 

illustrates it, 

 
        Figure 4. Tree representation 

 

In the cell certain biochemical reactions often take 

place and those reactions take the form as uv where u 

and v are strings( representing multiset of objects from a 

given set O). The rule uv, has [u] as the weight of the 

rule, a rule of weight atleast two is cooperative whereas a 

rule of weight 1 is called non-cooperative. Catalytic rules 

are cooperative rules of the form cacv.  The rule of the 

form uv, where u is a string over O, and v is a string 

over Ox{here,in,out}. Each element of v is of the form 

(a,tar) where tar is target indication.  

i) If  tar = here, then a does not move to any 

neighbouring region and it resides along 

with the region where the rule reside. 

ii) If  tar = out, then a is sent to the upper 

neighbour of the region where the rule 

resides. 

iii) If  tar = in, then a is sent non-

deterministically to one of the lower 

neighbours. 

Thus a P system [7] ( with multisets rewriting rules) of 

degree m>=1 is a construct 

     Π = (O, H, µ, w1,…….,wm,R1,…….,Rm,i0). 

where : 

1. O  is the alphabet of objects; 

2. H is the alphabet of membrane labels; 

3. µ is a membrane structure of degree m; 

4. w1,…..,wm   O
* 

are the multisets of objects 

associated with the m regions of µ; 

5. Ri, 1 ≤ i ≤ m, are there finite sets of multiset 

rewriting rules associated with the m regions of 

µ; 

6. i0   H U {e} specifies the input/output region of 

Π, where e is a reserved symbol not in H. 

3 Land Cover Feature Extraction 

Interpreted in Membrane 

Computing terms 

The aim of this section is to provide an idea how 

components of membrane computing has been easily 

interpreted in terms of land cover features. Though it tries 

to give some light in these areas but a more systematic 

and detailed study remains to be elaborated. The 
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membrane computing parameters [9] for land cover 

feature extraction algorithm are defined as follows :- 

 Object : The multi-spectral band [10] of image  

consists huge number of pixels. Once a rule is applied to 

object it moves between adjacent/neighbouring cells. 

Thus pixel focuses on objects of membrane 

computing.Thus objects   C is an integer and C   

[0,255136]. 

   Membrane : Each pixel can move from one cell 

to another which are being compartmentalized through 

membrane. Stated otherwise, membrane delimited inside 

from outside and this separation means that each 

membrane represents 5 specific features i.e. rocky, barren, 

water, urban, vegetation that are to be extracted from the 

image. Each membrane has its own object processing 

rule. 

 Membrane structure : The framework of 

hierarchical structure where Region 1 is has 5 sub-

membranes. It contains region 2,3,4,5 and 6 which 

represents each identified features of the Alwar region, 

i.e. region 2 is for urban, 3 for water, 4 for vegetation, 5 

for barren and 6 represents rocky features. Each of the 

sub-membranes are elementary membrane. Figure 5 

shows depicted the hierarchical structure. 

 
 

 Figure 5. Membranous structure of Alwar Region [6] 
 

 Environment : The outside of the skin  

membrane is considered as empty. Thus only objects 

which are unclassified in nature are thrown outside. The 

pixels which cannot be classified are thrown in the 

environment. 

        Multiset Rewriting Rules : Depending on the 

evolution rule which are cooperative in nature, pixels can 

be absorbed by different membrane. The Region 1 of 

figure 5 consists of multisets of objects as 

a
112496

b
83239

c
49049

d
10395

e
2540 

where a represents barren 

pixels, b represents rocky, c represents vegetation, d 

represents urban and e represents water pixels. Thus 

a
112496 

means the image has 112496 pixels which are 

barren in nature and so forth. All these values are 

computed after classification. Since each feature 

membrane i.e region 2, 3, 4, 5, 6  consists homogeneous 

pixels thus multiset of each feature membrane can be 

represented as : 

i) Water
548  

(Region 3) 

ii) Barren
3157

 (Region 5) 

iii) Vegetation
3049

 (Region 4) 

iv) Urban
2609

 (Region 2) 

v) Rocky
5164

 (Region 6) 

 

    Symport rule: They can represent input into a 

membrane or ejection out of the membrane of pixels. If 

the rule condition is satisfied it takes the form (pixel, ink) 

where k is the region (water, rocky, barren, vegetation, 

urban) otherwise it is of the form (pixel, out). 

   Promoter/inhibitor : The rules can only be applied 

under certain conditions. Depicting the barren condition 

for promoter case which can be applied to other feature 

membrane also can be written as:- 

(barren)
p 
 (barren)

p+1 
 

                  Max(corr (barren, pixel_value)) 

While the inhibitor case is as follows: 

(barren)
p 
 (barren)

p+1 
 

                   Min(corr (barren, pixel_value)) 

In either case we take the maximum or minimum value 

of correlation between barren value and each pixel value. 

Here p represents the number of pixels which are 

classified as barren till now and if the promoter condition 

is met then the pixel is absorbed in barren region. 

 Maximal Parallelism : It means the rule should 

be applied in parallel to the maximum degree. The 

multiset of objects present in Region 1 as in figure 5 is 

w=  a
112496

b
83239

c
49049

d
10395

e
2540 

and the set of rules R 

residing in the same region is R = {r1 , r2, r3, r4, r5}. The 

definition of these rules are given at Proposed 

Architecture. 

       Thus land cover feature extraction P system transition 

system can be defined as follows: 

     Π = (O, H, µ, w1,r1 ,r2 ,r3 ,r4 ,r5,i0), 

where: 

1. O ={a,b,c,d,e}. 

2. H ={1,2,3,4,5,6} 

3. µ is membrane structure represented in 

parenthesis form as: 

                     [ [ ]2 [ ]3 [ ]4 [ ]5 [ ]6 ]1  

4. w1 = a
112496

b
83239

c
49049

d
10395

e
2540

 

5. ri, i=1 to 5, already defined while discussing 

maximal parallelism. 

6. i0 = {2, 3, 4, 5, 6}. 

4 Proposed Scaffold For Membrane 

Computing Technique for Land 

Cover Feature Extraction 

   In this section 4 components have been described. The 

data on which we had our experiment, description of 

Alwar area, the architecture and algorithm which we have 

proposed. 
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4.1 Dataset 

 To fulfil our objective of image classification using 

membrane computing we have used multi-spectral, multi-

resolution and multi-sensor image which has dimension 

of 472 X 576. The image is of Alwar Region of 

Rajasthan. With the use of remote sensing the expert have 

captured satellite image of 7 different bands. The Bands 

are as : Red, Green, Radarsat -1(RS1), Radarsat -2 (RS2), 

Near Infra-Red(NIR), Middle Infra-Red(MIR) and Digital 

Elevation Model(DEM). LISS( Linear Imaging Self 

Scanning Sensor) –III and sensor of resourcesat an Indian 

remote sensing satellite give us Red, Green, NIR and MIR 

band images. RS1 and RS2 are from Canadian satellite 

Radarsat whereas Digital elevation model is derived by 

using images of RS1 and RS2. All the seven bands of 

Alwar region is shown in figure 6. 

 
 

       Figure 6. Images of 7 band of Alwar Region 

4.2      Characteristics 

 Alwar region is geographically situated at Latitude 27
˚ 

34
 
’ North and Longitude 76˚ 35’ East at an elevation of 

270 meters above sea level. Most part of Alwar region is 

covered with Rocky and Vegetation areas whereas a low 

proportion of  water and urban area respectively 

 

4.3    Proposed Architecture 

Before applying Membrane Computing in image 

classification the following computations along with 

some  definitions  are to be performed: 

 

1.Create a excel sheet which contains the x-coordinate ,y-

coordinate and digital numbers of all the bands. 

 

2.For each pixels/objects i.e. [0,255136] we have 

pixel_value=[P1 P2 P3 P4 P5 P6 P7] where P1 is the value of 

digital numbers of red band, P2 is the value of digital 

numbers of green band, P3 is the value of digital numbers 

of NIR band, P4 is the value of digital numbers of MIR 

band, P5 is the value of digital numbers of RS1 band, P6 is 

the value of digital numbers of RS2 band, P7 is the value 

of digital numbers of DEM band. 

 

3.The expert has given us the training set (i.e. water, 

barren, urban, rocky vegetation). These features are being 

observed by our expert during their experiments in the 

Alwar region. From the training set we compute the mean 

of each attribute of each land cover feature. For example 

we get the mean of water(i.e. a land cover feature) as 

water_mean =[ M1,M2 ,M3 ,M4 ,M5 ,M6 ,M7] where M1 is 

the mean of red band values, M2 mean of NIR band value, 

M3 mean of MIR band value, M4 mean of RS1 band value, 

M5 mean of RS2 band value, M6 mean of green band 

value, M7 mean of DEM band value 

4.Depending on the application of image classification the 

following evolution rules are defined : 

 

r1 : a
5 
b

3
 d

 
 v1 

        where v1: 

             {(d, ink) , (a
5 b3,here)}            5    

 k={   max{C(i,PV)}} &         

      i=1            k=urban 

 

r2 : a
4 
e

 
c

4 
 v2 

        where v2: 

          {(e, ink) , (a
4 c4, here)}               5    

k={   max{C(i,PV)}} &         

      i=1            k=water 

 

 

r3 : c
 
d

5 
 v3 

        where v3: 

          {( c , ink) , (d
5, here)}                5    

k={    max{C(i,PV)}} &         

      i=1            k=vegetation 

 

r4 : a
 
d

9 
e

2 
 v4 

        where v4: 

         {( a, ink) , (d
9 e2, here)}               5    

k={    max{C(i,PV)}} &         

      i=1            k=barren 

 

 

r5 : b c
7 
 v5 

        where v5: 

             {( b, ink) , (c
7,here)}                5    

k={    max{C(i,PV)}} &         

      i=1            k=rocky 

 

where : 

             { PV =pixel_value of a, b, c, d, e, C=correlation function, i= all 

the features values i.e. water_mean, barren_mean ,vegetatuin_mean, 

rocky_mean, urban_mean of Alwar region} 

5.Then use all the evolution rules i.e r1 ,r2, r3, r4, r5  to the 

pixels residing in Region 1 of figure 5 to decide which 

land cover poperty each pixel belongs to. This is done in 

Matlab [11].  

 Any number of  evolution rules are to be applied 

synchronously. 

Max{correlation(feature_value,pixel_value)} 

Therefore the evolution rule returns the feature 

which correlates with the pixel the most and 
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correspondingly the pixel is absorbed in that 

feature/region. 

Here Pearson’s correlation coefficient[12] has 

been used. The formula has been given in 

equation 1. 

 

               
     

        
      (1) 

where x and y are two zero-mean real-valued 

random variable, E[xy] is the cross-correlation 

between x and y, and σx
2
=E[x

2
] and  σy

2
=E[y

2
] 

are the variance of the two variables x, y 

respectively. 

In our approach x represents the value of the 

attributes of the pixel and y represents the mean 

value of the attribute of the training set. 

 

4.4   Algorithm  

 
1.Place all the unclassified pixels/objects in one class 

(Reg 1). 

 

2. Create sub-membranes for each land cover features (for 

water, barren, vegetation, rocky,urban). 

 

3. Find out the mean of each sub-membrane/training set 

i.e. Barren_Mean, Urban_Mean, Water_Mean, 

Vegetation_Mean, Rocky_Mean. 

 

4. while(no_of_unclassified_objects   NULL) 

    { 

i) Take any combinations of evolution rules 

(e.g. r1r4, r3r5, r2r5r1)  [ To achieve maximal 

parallelism no. of evolution rules taken 

must be  greater than or equal to 2] 

ii) Find out object( pixel_value) depending on 

considered evolution rules.       [ If r1 and r3 

are to be applied parallel then find out the 

value of any randomly taken 15 pixels. r1 

has a
5
b

3
d and r3 has cd

5
  multisets of objects. 

Thus r1 contributes 9 pixels and r3 6 pixels. 

Total of 15 (9+6) pixels ]  

iii) Apply all the considered evolution rules 

parallel on randomly taken objects/pixels. 

iv) If ( evolution rule is satisified) 

Then   absorb the pixel in the specified  

feature 

Else 

Leave the pixels in the same region i.e.    

Region 1. 

v) No_of_unclassified_objects - - 

     } 

 

5. End of program. 

 

 

 

The flowchart of the working of membrane computing is 

depicted in figure 7. All the steps clearly describe the 

model of membrane computing which we have adopted in 

our image classification mechanism. 

 

 

 
  
     Figure 7 Flowchart of our proposed algorithm 
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5 Accuracy Assessment of the 

Proposed Technique 

 The aim of this step is to determine quantitatively that 

how pixels are correctly absorbed in their required 

features. 

To determine our accuracy assessment we need to find 

the error matrix. Error matrices compare, on category-by 

category basis, the relationship between known reference 

data(ground truth) and the corresponding results of an 

automated classification [10]. From our experiments we 

have came with following number of pixels in each region 

i.e. 

i) 150 vegetation pixels. 

ii) 190 urban pixels. 

iii) 200 rocky pixels 

iv) 70 water pixels, 

v) 170 barren pixels  

The bar graph in figure 8 shows that the region is 

highly concentrated with rocky region, whereas density 

decreases incase of vegetation, urban and for barren 

region.Water is sparsely populated in Alwar region.  

From the training set and the error matrix which is 

obtained after implementing membrane computing is 

shown in Table I.The error matrix’s interpretation along 

column suggests how many pixels are classified correctly 

by our algorithm. The diagonal elements means no. of 

properly classified pixels in that  category. The error 

matrix which we have obtained shows high values for 

vegetation and rocky but urban values need to be 

explored. Water is almost perfectly classified which can 

be inferred from our experiment. 

 

   Table I. Error Matrix when membrane computing is applied. 

 

          
     The table shows it has classified the Water pixels with 

almost 99% efficiency(with minimal omission errors), in 

case of vegetation we have achieved with minimal 

omission error(non-ideal classification) thus we can say 

membrane computing is a good classifier for water and 

vegetation pixels. For water a zero commission error is 

achieved whereas vegetation has got commission error of 

31 in 181. 

    The Kappa coefficient [2] is usually considered for 

evaluating the classifier’s accuracy in remote sensing 

domain. The Kappa(K) coefficient of the Alwar image is 

0.68812. 

    The bar graph in figure 8 shows that our classified 

pixels has high concentration of vegetation and rocky area 

as it has been portrayed in our original image. The urban 

features need to be explored. 

 
  

  Figure 8. Density of each feature in Alwar region 

6 Result & Discussion 

We have observed that almost 99% efficiency is 

achieved for extracting water and vegetation using 

membrane computing technique. After applying our 

natural computation technique i.e. membrane computing 

we have got the classified image shown in figure 9. From 

the figure it is clearly shown that almost all regions are 

correctly classified. The yellow, black, blue, green, red 

colour represents rocky, barren, water, vegetation and 

urban region respectively.  

 
                 Figure 9. Classified Alwar Image 

 

Membrane computing has almost perfectly classified all 

the 5 land cover features of Alwar region. The graph in 

figure 10 is plotted which represents the percentage on the 

number of pixels of the image which are classified as 

water, barren, vegetation, rocky and urban respectively. 

 

       
                  Figure 10. Plot of terrain features of Alwar region 
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7 Conclusion & Future Work 
 

A large number of soft computing techniques have been 

already applied to remote sensing satellite image. All 

these techniques have efficiently classified the geospatial 

features of the terrain despite its discrepant uncertainties. 

Membrane computing is an emerging area which had 

hardly have any impact on image classification. Thus 

terrain features classification is taken as a case study. It is 

perceived that the Kappa coefficient can be considered as 

a well founded metric for assessing accuracy of 

classification in remote sensing. 

A novel approach for feature extraction from high 

resolution  multi- spectral satellite image is presented in 

this paper. From the Kappa coefficient it has been 

observed that vegetation region has been classified with 

almost  zero omission error (columnwise) which lacks by 

only 4 pixels.  Membrane computing has achieved almost 

99% omission error in water region and it has been 

proved that it is equally at par with other soft computing 

technique. As membrane computing follows maximal 

parallelism, even the time complexity is reduced than 

other soft computing algorithm.  

Though the algorithm has proved efficiently for water 

and vegetation region but it lacks in urban areas. It has 

got huge omission errors. This can be taken as a future 

work so that the algorithm can classify all regions 

perfectly and even the efficiency may be improved. It has 

perfectly classified homogeneous region but 

heterogeneous and sparse region is hardly classified. As it 

work on pixel by pixel rather than as a cluster it can be 

proved as a better classifier than other when a region has 

lot of mixed pixels. In future it may be explored for 

heterogeneous areas as it work on a single unit of object. 
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Abstract

Spatial animat agents can be used to construct sophisti-
cated spatially-rich macroscopic models to study complex
and emergent phenomena based only on localised micro-
scopic control parameters. We have developed a predator-
prey based animat model that we have successfully used
to explore various collective behaviours. In studying col-
lective phenomena using computer models it is important
to develop quantifiable metrics and measurement appara-
tus in tandem with the model itself. We discuss some of
the macroscopic metrics and statistical measurement ap-
proaches we have used to relate localised animat parame-
ters to the emergent patterns of behaviour identified in our
system.

Keywords: spatial animat; complexity; emergence; quan-
tifiable metric.

1 Introduction

Complexity and emergence [1] are two deep concepts rele-
vant to understanding the behaviour of multi-agent systems.
One approach to exploring these concepts quantitatively is
to model a particular system and establish specific metrics
based upon the macroscopic system properties and to try to
relate these back to the model control parameters.

Spatial agents provide a means of exploring many com-
plex and emergent behaviours of multi-agent systems that
would otherwise be inaccessible to quantitative experi-
ments. A number of multi-agent models have been de-
veloped for studying artificial life phenomena [2] includ-
ing [3–6]. These projects place an emphasis on the evolu-
tion of “digital organisms” and the corresponding emergent
macro behaviours.

One of the main problems in modelling and exploring evo-
lutionary behaviour through simulations [5] is the sheer size
of the parameter space or fitness landscape that is usu-
ally encountered. It is extraordinarily difficult to apply
brute-force search methods to the phase spaces of many
biologically-inspired computing models. The notion of ge-
netic algorithms makes use of biologically-inspired mecha-
nisms to combine and adapt existing “solutions” to find even
better ones. This approach can still take very large compu-
tational resources to run simulated evolutionary models for
long enough to see statistically significant changes or dra-
matically new solutions. It also presupposes that the starting
conditions are sensible solutions and that in effect the exper-
imenters are looking in roughly the right place - or at least
a plausible position in solution space. While real biolog-
ical systems proceed using thermodynamically scaled sys-
tem sizes and very long time scales, even for simple compu-
tational models, it is not sufficient to start somewhere com-
pletely random and “hope” to evolve a solution somewhere
in phase space.

The very nature of emergent behaviour implies a result that
is unexpected. Published results (e.g. [7]) naturally focus on
interesting emergent behaviour. However such results are
often obtained after many CPU-hours of simulation time.
In addition, there must be many long running experiments
that fail and are abandoned simply because no interesting
behaviours “emerge”. In these cases many hours worth of
simulation are often abandoned without any clear reason of
where the problem lies – due to the large number of control
variables required and the complexity of the system.

Popular science accounts of genetics [8] often fail to draw
attention to the large number of components and time-scales
involved in the evolution of real genetic systems [9]. A use-
ful starting point for us was to identify a fundamental be-
haviour such as predation and build up a microscopic model
around it. Our predator prey model [10] has been refined
over a period of several years. Instead of noting evolution-
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ary behaviour (which is often difficult to measure) we have
concentrated on building up a suite of quantitative metrics
to produce a range of statistical data as an experiment pro-
gresses. In this way we can rapidly analyse the current state
of the model and use this knowledge to explore other av-
enues which may otherwise have remained unnoticed.

The details of the model system are described in section 2.
The main focus of the paper appears in section 3 in which
we describe various metrics and present examples using our
model. It is also useful to compare agent-based models with
theoretical models and this is presented in section 4. Finally,
we offer some concluding remarks in section 5.

2 The Animat Model

State = (Health, Age, Gender)

Move?

Environment

Rule−Priorities (Genotype)

Do Nothing?

Flee?

Move−Randomly?Eat?

Seek−Mate?

Breed?

Animat

   
Figure 1: The internal workings of the spatial animat agents
and the model world in which predator and prey species
interact.

Our multi-agent system is based on the notion of multiple
spatial agents or “animats” that coexist on a discrete square
mesh. Each agent thus has: (x, y) coordinates; a health
state; an age; a gender; and a set of microscopic rules that
govern its behaviour. The particular set of rules that an ani-
mat follows determines its species and we have constructed
the model using the primary species split in terms of preda-
tors and prey. This notion allows us to set up systems with
appropriate competing forces that establish a dynamic equi-
librium and which display a very rich set of emergent spa-
tial patterns and macroscopic behaviours. A unique feature
of this system is the relatively large number of microscopic
animats that we are able to simulate. We routinely model
quite large-scale experiments on systems of up to around
one million animats, evolving for time-scales of a few thou-
sand timesteps. Each experiment is repeated 10 times with
different random number streams to make ensemble aver-
ages for a particular set of control parameters.

Figure 1 shows the outline of the model with individual ani-
mats containing an internal state and a genotypical rule em-
bodying their microscopic behaviour preferences located on
a spatial world map at particular (x, y) coordinates and in-
teracting with their environment as embodied by their an-

imat peers. The model contains two types of “animats”
– predators that need to eat prey to survive and prey that
need to eat “grass”. Grass is placed only in certain areas
of the map, thus effectively containing the animat popula-
tions. Previous work [11] has shown that animat behaviour
is not affected by the edges of the grassed region. At every
timestep, each animat executes a rule. Rules for predators
are:

1. breed (females only) if health > 50% and mate adjacent

2. eat prey if health < 50% and prey adjacent

3. seek mate if health > 50%

4. seek prey if health < 50%

5. move randomly (50% chance of succeeding)

and the rules for prey are:

1. breed (females only) if health > 50% and mate adjacent

2. eat grass if health < 50%

3. move randomly (50% chance of succeeding)

4. seek mate if health > 50%

5. move away from adjacent predator

Each animat always executes the first rule in its list for
which the conditions are satisfied. We have experimented
with changing the order of priority of the rules [12] and
thus produced different sub-groups of animats where each
sub-group has the same set of rules but with a different pri-
ority order. The interaction of the animats as they follow
their rules has produced fascinating emergent features in the
form of macro-clusters often containing many hundreds of
animats. We have analysed and documented these emergent
clusters in [13]. The most interesting cluster is a spiral and
several spirals and other patterns are visible in the figures in
this article.

The simulation model was designed from scratch and is im-
plemented as a highly optimised C++ program. A number
of look-up tables are employed for computationally expen-
sive operations such as computing square roots for distance
sorting and for determining which animats are within a par-
ticular animat’s field of vision and interaction. The spatial
area of the model is organised into a coarse-grained grid and
this allows us to optimise animat neighbour lookups. We
employ a multi-phase update cycle that avoids bias amongst
animat updates.
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3 Metrics

This section is the main focus of the paper. We have devel-
oped several quantitative metrics that can be used to explore
model behaviour in experiments involving the frequencies
with which animats execute their possible rules; the role
of global tuning parameters such as breeding and animat re-
production success rates; and the age distribution of animats
when they “die.” All of these support understanding of the
life-cycle of individual animats and how their microscopic
behaviours can be related to the observed macroscopic pat-
terns observed in the whole multi-agent model system.

Each animat has a priority list of rules and depending upon
its circumstances it will succeed or fail to execute particular
rules. A statistical analysis of the rule execution frequencies
gives some insights into the life cycle details of the animats.
Table 1 shows a number of interesting effects over the typi-
cal lifetime of the multi-agent system. The values shown are
the normalised frequencies of occurrence amongst preda-
tors at time epochs around: 40, 90, 140, 250, 1000, 2000
and 3000 timesteps. “Do nothing” indicates that the animat
failed to execute any of the rules – recall that a rule will
only be executed if conditions are met. Averages are over
ten independent model configuration runs and appear to be
reasonable estimates to within two significant figures.

There is a temporary crash in the animat populations as
the model equilibrates after initialisation – see figure 2.
Note how this affects the rule execution frequencies for
timesteps 90 and 140 when less time is spent on breeding
(females only) and more time is spent on seeking (temporar-
ily scarce) prey. Timestep 250 reflects the shift in rule use
as the population starts to recover. We also note that all
animats spend a surprising amount of time doing nothing
or moving randomly on average. Seeking prey and eating
form the next most likely activities for predators.

The statistical results can be compared with the visual re-
sults of typical animat system configurations shown in fig-
ure 2. Individual animats are illustrated as white (prey)
and black (predators). The initial population is started ran-
domly, then rapidly grows too large for the land capacity of
the system and therefore crashes. The system is then seen
to make a gradual recovery to a relatively stable dynamic
equilibrium. The long-term dynamic equilibrium state of
the model is one of cluster formation, cluster erosion, break-
away groups, and the formation and dissipation of a variety
of battlefront formations including spiral patterns.

The length scales present in the long term model appear to
be largely independent of the detailed starting configura-
tion. Complex patterns including spiral clusters and other
formations occur regularly. We believe specific lengths such

Figure 2: Timesteps 90, 250, 1000, 3000 showing the ini-
tial population crash followed by a recovery and long term
dynamic equilibrium involving the formation and dissipa-
tion of battlefront patterns. Animats are shown as white
(prey) and black (predators). The spatial grid is a guide to
the length scales of the model system.

as the size of the spirals typically formed are implicitly con-
trolled by model parameters such as the vision range of in-
dividual animats (nearest neighbour distances for prey and
50 spatial units or pixels for predators). All animats in the
model can only move at most one spatial unit per timestep.

Another key observable for the model system is the total
population of animat species as it varies with time starting
at model initialisation. Figure 3 shows a logarithmic plot of
the populations of the two interacting species in the multi-
agent spatial environment. The plot shows the periodic os-
cillations superposed on a more slowly changing time enve-
lope function. We are most interested in global parameter
regimes that can be tuned so that the initial population con-
figuration will eventually find a long-term sustainable dy-
namic equilibrium around stable average population values.

The model contains a global probabilistic success rate of
breeding for each species. Thus success is not guaranteed
when a female animat executes the breed rule. Without this
constraint the model system can completely crash with the
whole population dying out and therefore unable to ever re-
cover. A single value (per species) provides a useful pa-
rameter to encapsulate and abstract likely effects such as
birth difficulties, providing shelter for young and other sub-
microscopic details which would otherwise greatly increase
the list of adjustable model parameters.

The global probabilities for breeding success can be ad-
justed and we have experimented with a range of val-
ues. Figure 4 shows a set of typical model configuration
snapshots alongside population graphs that have been aver-
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40 90 140 250 1000 2000 3000
Do nothing 0.369 0.262 0.257 0.319 0.311 0.299 0.308

Breed 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Predator Eat 0.125 0.063 0.059 0.142 0.100 0.096 0.101

Male Seek mate 0.068 0.031 0.036 0.087 0.049 0.049 0.050
Seek prey 0.057 0.386 0.417 0.124 0.239 0.240 0.228
Random 0.380 0.258 0.232 0.328 0.301 0.316 0.313

Do nothing 0.339 0.246 0.223 0.344 0.283 0.289 0.292
Breed 0.072 0.027 0.043 0.064 0.044 0.044 0.047

Predator Eat 0.127 0.064 0.069 0.130 0.098 0.094 0.100
Female Seek mate 0.056 0.025 0.036 0.053 0.043 0.039 0.043

Seek prey 0.061 0.392 0.443 0.134 0.245 0.243 0.222
Random 0.344 0.245 0.186 0.274 0.287 0.291 0.296

Table 1: Normalised rule frequencies of execution (for predators only) as measured over ten independent runs of the model.
Note the effects of the population crash between timesteps 90 and 140, followed by relatively stable values thereafter. Note
also the surprising amount of time individual animats spend doing nothing or moving randomly.

Figure 3: Populations of prey (top) and predators (bottom)
shown on a logarithmic scale for a typical model run. The
model is initialised randomly and displays a shock-recovery
regime followed by a gradual convergence to a stable dy-
namic equilibrium with boom-bust periodic fluctuations su-
perposed on a stable envelope function.

aged over ten model runs at the same time epoch of 3000
timesteps after initialisation. The probabilistic successes
of breeding for predators/prey is shown for three different
cases. In the top case predators have a 10% probability of
successful reproduction and prey have a 40% success rate.
This leads to a surfeit of prey and the model is seen to be
spatially cluttered with dense clusters of prey. The popula-
tion graph shows classic boom-bust periodic oscillations su-
perposed on relatively stable average populations of around
120,000 prey and 20,000 predators.
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Figure 4: Snapshots after 3000 timesteps with 10%/40%;
15%/55% and 20%/80% breeding rates for predators/prey
respectively. The success rate of predator breeding is seen
to be critically linked to animat density and overall popula-
tion.
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A similar set of runs with the same spatial size of model
but with 15%/55% reproduction success rate probabilities
allows a predator population of around 25,000 which is
enough to nearly halve the stable prey population to around
62,000. Further increases to the success rates for predator
reproduction to 20% can be compensated for by increas-
ing the prey reproduction rate to 80% and a stable predator
population of around 12,000 feed off a prey population of
around 25,000.

We can therefore tune the bulk average behaviour of the
model in terms of numbers of animats in the average vi-
able population. It should be noted that the spatial mixing
and separation that are key components of this system give
rise to spatial fluctuations across the whole system. At any
given timestep one region may be “booming” while another
is “busting” and it is an interesting emergent property of the
model how these spatial fluctuations can combine either in
phase (constructively) or out of phase (destructively).

The 10%/40% regime shown at the top of figure 4 shows
a remarkable synchronisation of the boom-bust fluctuations
over ten independent runs of the model. We hypothesise
that this is characteristic of a dense model configuration,
where information can be propagated right across the whole
model system through normal animat interactions. The re-
maining two cases where there is a lower average spatial
density also show periodic fluctuations but as can be seen
they are much more smeared out by the averaging effect
across the ten separate runs than for the dense case.

One approach to understanding the periodic boom-bust fluc-
tuations is to transform the population samples shown into
a frequency representation using a Fast Fourier Transform.
Each of the l = 1, 2, ...,M independent population curves
PR,i(t),PF,i(t) can be transformed to a frequency ω repre-
sentation using:

Pl,j(ω) =
∫ +∞

−∞
Pl,j(r)e2πiωtdt, l = 1, ...,M ; j ∈ R,F

(1)

The frequency histograms can be averaged for the M sam-
ple runs and the dominant frequency ω∗ identified without
combining and therefore destroying the associated phase in-
formation. It appears that the model always gives rise to a
similar oscillatory train of boom-bust oscillations, largely
independent of the starting configuration, but the exact time
at which the model settles down to this behaviour does vary
between runs. This offset time is what we mean by “phase”
in this context. Hence the need to average, independent of
phase to obtain representative period measurements. We
find that the period calculated in this way is 380 ± 20 and
this appears to be almost independent of the breeding rate.

Animats can “die” either of starvation or of old age. We

have generally used the extreme ages for prey and preda-
tors as 20 and 50 timesteps respectively. Prey can of course
also be “eaten.” Figure 5 shows the histogrammed ages of
animats when they died in a typical model run. There is an
interesting difference between prey and predators in that the
distribution is uniformly flat for predators indicating that all
ages are roughly equally likely and we hypothesise that this
is due to the uniformity of the prey landscape – on average.
Predators can starve or die of old age and there is no par-
ticular bias in the spatial landscape to favour one age group
over another. There is no particular difference between the
age profile of male and female predators. However there is
a significant difference in the profiles for female and male
prey animats. We find that on average there is significant
tendency for female prey to live less long than males. The
distribution tails off with a similar shape but showing fewer
long lived females.

Figure 5: Ages on death around timestep 3000 with 10/40
breeding rates

We hypothesise that the shorter lifespan for female prey is
due to the cost of breeding. A female animat cannot execute
any other rule when the breed rule succeeds. While a male
must be present for a female to successfully breed, at the
same timestep the male can successfully execute some other
rule. Thus on average a female has a slightly decreased
likelihood of doing something useful that contributes to per-
sonal survival such as fleeing from predators.

4 Theoretical Comparisons

The model shows a number of emergent macroscopic spa-
tial effects and we have tried to relate these to detailed ob-
servations of the microscopic behaviours. Population and
ecological models are often compared to the bulk behaviour
predicted by models based upon differential equations. A
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noted example in the literature concerns the populations of
the Canadian Lynx and its prey species [14].

Our microscopic model can usefully be compared with the
Lotka-Volterra predator-prey model [15, 16]. This model is
based on a system of two coupled differential equations. Let
R(t) be the number of prey at time t and F (t) the number of
predators. The uncoupled equations for predators and prey
in a non-interacting world are then:

dR

dt
= |a|R (2)

dF

dt
= −|g|F (3)

so that unmolested by predators, the prey grow exponen-
tially in number, and the predators starve through lack of
prey and die off exponentially. The two controlling rate
constants are positive numbers shown by the absolute value
symbols in equations 2 and 3. We drop this hereafter, and
assume a >= 0, g >= 0. It is of course interesting to
consider what happens when the two populations do inter-
act, and ignoring spatial distribution effects, we model this
through a coupling term assumed to be proportional to the
product RF which is related to the probability of a predator-
prey encounter. We then obtain:

dR

dt
= aR− bRF (4)

dF

dt
= hRF −mR (5)

We now have some parameters to adjust. These will de-
pend upon the frequency or probability of encounter be-
tween the species in the spatial model. It is a matter of
future work to incorporate the spatial diffusion properly, but
we can investigate some simple bulk behaviour for the sys-
tem once it is roughly equilibrated. Solving this equation
numerically, one can obtain equilibrium periodic solutions
(a = 2; b = c = g = h = 1) where the prey population
reaches a high mean value with boom-bust periodic oscil-
lations superposed on it. The predator population attains
a lower mean oscillating value that lags behind the prey
booms.

Our spatial animat multi-agent model does indeed show this
average effect after some long term spatial fluctuations. It
remains to link the equation parameters to the microscopic
properties of the animat model, using diffusion constants.
Some work on this has been reported using partial differen-
tial equations [17] although it remains to see how the spa-
tial part of the equations can be factored out analytically.
A numerical study of the spatial Lotka-Volterra and a care-
ful search of its parameter space would be a valuable future
area of work for making comparisons with discrete agent
models such as our own.

5 Conclusion

We have described a spatial multi-agent model consisting
of predator and prey animats coexisting in a spatial environ-
ment. We have given details of the model including a novel
mechanism for encoding animat behaviours as rule prior-
ity lists. We have presented some visual snapshots of the
model configurations and shown how these can be related
to quantitative metrics such as populations; individual rule
execution frequencies; animat densities; and animat age dis-
tributions.

We found that the bulk behaviour of the model is con-
sistent with population models based on differential equa-
tions (such as the Lotka-Volterra system) but that the spatial
richness and emergent structures can not be as easily ex-
plained [18]. It has been observed that the flow of energy
through a non-closed system associated with corresponding
decreases in entropy [19] is critically linked with the pres-
ence of life forms [20]. Energy is not conserved in our
model system – it is not intended to be as it is not a closed
system. This interplay of energy flow, the creation of in-
formation and the associated emergence of complex spatial
structures present deeply interesting and fundamental ques-
tions about artificial life forms that it may be possible to
explore further with simulated multi-agent systems.

Other models focus on emergent macro-behaviours but we
have explored the life-cycle of a typical individual animat in
the model. It is a surprising observation that a large fraction
of animat time is spent doing nothing or moving about ran-
domly and that the behaviours that appear more influential
such as eating and breeding occupy minority fractions of
animat time. This is of course an average effect. The envi-
ronment for animats is defined solely in terms of the spatial
substrate or background formed by other animats. Other-
wise, animats perceive no spatial features on the landscape.

We might hypothesise that not all animats play important
individual roles in the model as a whole. Nevertheless the
silent majority are necessary to define the spatial structure
of the model as a whole against which the “shakers and
movers” can have a measurable effect. Future work will in-
clude an exploration of the analogies with sociological and
military spatial patterns and structures and those found in
our model. Although we have concentrated on statistical
and general concepts, we believe the techniques we report
upon may be applicable to specific and practical simulation
models of physical and social phenomena.
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Abstract 

 

Neuraminidases are glycoproteins that  facilitate 

the transmission of the influenza virus from cell 

to cell.  The neuraminidase inhibitors 

osteltamivir and zanamivir are currently the 

most widely used anti-flu therapeutics.  

Oseltamivir was ineffective against the dominant 

H1N1 strains in the 2008 flu season and 

decreasingly effective against the dominant 

influenza H1N1 mutants in the US in the 2009 

"Spring/Fall" pandemic.   Here I provide a 

computational docking analysis of  oseltamivir 

with the active site of the neuraminidase of the 

1918 strain (A/Brevig Mission/1/18 H1N1), 

conformed as if it were bound to zanamivir.  The 

docking uses a Lamarckian genetic algorithm.  

The computed inhibitor/receptor binding energy 

suggests that oseltamivir would not be effective 

against that  strain.  

 
Keywords: Influenza, H1N1, neuraminidase, 

oseltamivir 

 

 

1.0  Introduction 
 

     Neuraminidases are glycoproteins that  

facilitate the transmission of the influenza 

virus from cell to cell.  The most widely 

used anti-influenza therapeutic, oseltamivir 

(Tamiflu, [4]), was ineffective against the 

dominant H1N1 mutants in the 2008 flu 

season and was decreasingly effective 

against the dominant influenza mutant 

(Influenza A/H1N1) in the US in the 2009 

"Spring/Fall" pandemic ([7]).    

     In the World Health Organization 

serotype-based influenza taxonomy, 

influenza type A has nine neuraminidase-

related sero-subtypes, and these subtypes 

correspond at least roughly to differences in 

the active-site structures of the flu  

neuraminidases. The subtypes fall into two 

groups ([3]): group-1 contains the subtypes 

N1, N4, N5 and N8;  group-2 contains the 

subtypes N2, N3, N6, N7 and N9.  

Oseltamivir was designed to target the 

group-2 neuraminidases. 

     The available crystal structures of the 

group-1 N1, N4 and N8 neuraminidases 

([1]) reveal that the active sites of these 

enzymes have a very different three-

dimensional structure from that of group-2 

enzymes. The differences lie in a loop of 

amino acids known as the "150-loop", which 

in the group-1 neuraminidases has a 

conformation that opens a cavity not present 

in the group-2 neuraminidases. The 150-

loop contains an amino acid designated Asp 

151; the side chain of this amino acid has a 

carboxylic acid that, in group-1 enzymes, 

points away from the active site as a result 

of the 'open' conformation of the 150-loop. 

The side chain of another active-site amino 

acid, Glu 119, also has a different 

conformation in group-1 enzymes compared 

with the group-2 neuraminidases (8]). 

     The Asp 151 and Glu 119 amino-acid 

side chains form critical interactions 

with neuraminidase inhibitors. For 

neuraminidase subtypes with the “open 

conformation” 150-loop, the side chains 

of these amino acids might not have the 

precise alignment required to bind 

inhibitors tightly ([8]).    The active site 
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of the 1918 strain has the 150-loop 

configuration. 

     The difference in the active-site 

conformations of  the two groups of 

neuraminidases may also be caused by 

differences in amino acids that lie 

outside the active site. This means that 

an enzyme inhibitor for one target will 

not necessarily have the same activity 

against another with the same active-site 

amino acids and the same overall three-

dimensional structure ([17]).    

 

2.0  Method 
 

     The general objective of this study is 

straightforward:  to computationally assess 

oseltamivir binding energy to the active site 

of crystallized 1918 pandemic strain 

neuraminidase active site, conformed as if it 

were bound to zanamivir.    Unless 

otherwise noted, all processing described in 

this section was performed on a Dell 

Inspiron 545 with an  Intel Core2 Quad CPU 

Q8200 (clocked @ 2.33 GHz) and 8.00 GB 

RAM, running under the Windows Vista 

Home Premium (SP2) operating 

environment.   

     Protein Data Bank (PDB) 3B7E is a 

structural description of most of the 

crystallized neuraminidase of  Influenza 

A/Brevig Mission/1/18 H1N1 (the principal 

1918 pandemic mutant)  "folded" in a 

binding to zanamivir ([10]).  This 

"zanamivir-folded" receptor, without the 

zanamivir, was chosen for analysis to 

determine whether it would bind more 

strongly with oseltamivir than the 

unliganded conformation (PDB 3BEQ) of 

the receptor.    

     3B7E consists of two identical chains, 

designated Chain A and Chain B.  

     3B7E was downloaded from PDB ([6]) 

on 31 January 2011.  A PDB description of 

oseltamivir was extracted from PDB 2HU4 

using Microsoft Word.  The automated 

docking suite AutoDock Tools v 4.2 (ADT, 

[9]) was used to perform the docking of 

oseltamivir to the receptor.  More 

specifically, in ADT, approximately 

following the rubric documented in [12] 
     -- Chain B, and the water in Chain A, of 

3B7E were deleted  

     -- Chain A's active-site was extracted.  

(3B7E identifies the active site of Chain A 

as 14  amides:  ARG118,  GLU119,  

ASP151,  ARG152,  ARG156,  TRP178,  

ARG224,  GLU227,   SER246,  GLU276,   

GLU277,  ARG292,   ARG371,  and 

TYR406.) 

     -- the hydrogens, charges, and torsions in 

the ligand and active site were adjusted 

using the ADT default recommendations 

and finally,  the ligand, assumed to be 

flexible wherever that assumption is 

physically possible, was auto-docked to the 

active site, assumed to be rigid, using the 

Lamarckian genetic algorithm  implemented 

in ADT. 

     The ADT parameters for the docking are 

shown in Figure 1.  Most values are, or are a 

consequence of,  ADT defaults. 

 
 

_________________________________________________________________________________________ 

 

autodock_parameter_version 4.2       # used by autodock to validate parameter set 

outlev 1                             # diagnostic output level 

intelec                              # calculate internal electrostatics 

seed pid time                        # seeds for random generator 

ligand_types NA C OA N               # atoms types in ligand 

fld myreceptor.maps.fld              # grid_data_file 

map myreceptor.NA.map                # atom-specific affinity map 

map myreceptor.C.map                 # atom-specific affinity map 

map myreceptor.OA.map                # atom-specific affinity map 

map myreceptor.N.map                 # atom-specific affinity map 

elecmap myreceptor.e.map             # electrostatics map 

desolvmap myreceptor.d.map           # desolvation map 

move myLigand.pdbqt                  # small molecule 

about -29.8441 12.4988 -20.8904      # small molecule center 
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tran0 random                         # initial coordinates/A or random 

axisangle0 random                    # initial orientation 

dihe0 random                         # initial dihedrals (relative) or random 

tstep 2.0                            # translation step/A 

qstep 50.0                           # quaternion step/deg 

dstep 50.0                           # torsion step/deg 

torsdof 6                            # torsional degrees of freedom 

rmstol 2.0                           # cluster_tolerance/A 

extnrg 1000.0                        # external grid energy 

e0max 0.0 10000                      # max initial energy; max number of retries 

ga_pop_size 150                      # number of individuals in population 

ga_num_evals 2500000                 # maximum number of energy evaluations 

ga_num_generations 27000             # maximum number of generations 

ga_elitism 1                         # number of top individuals to survive to next 

generation 

ga_mutation_rate 0.02                # rate of gene mutation 

ga_crossover_rate 0.8                # rate of crossover 

ga_window_size 10                    #  

ga_cauchy_alpha 0.0                  # Alpha parameter of Cauchy distribution 

ga_cauchy_beta 1.0                   # Beta parameter Cauchy distribution 

set_ga                               # set the above parameters for GA or LGA 

sw_max_its 300                       # iterations of Solis & Wets local search 

sw_max_succ 4                        # consecutive successes before changing rho 

sw_max_fail 4                        # consecutive failures before changing rho 

sw_rho 1.0                           # size of local search space to sample 

sw_lb_rho 0.01                       # lower bound on rho 

ls_search_freq 0.06                  # probability of performing local search on 

individual 

set_psw1                             # set the above pseudo-Solis & Wets parameters 

unbound_model bound                  # state of unbound ligand 

ga_run 10                            # do this many hybrid GA-LS runs 

analysis                             # perform a ranked cluster analysis 

 

Figure 1.  ADT parameters for the docking in this study 

 

______________________________________________________________________________ 

 

3.0  Results 

 
The interactive problem setup, which 

assumes familiarity with the general 

neuraminidase "landscape", took about 20 

minutes in ADT;  the docking proper, about 

25 minutes on the platform described in 

Section 2.0  The platform's performance 

monitor suggested that the calculation was 

more or less uniformly distributed across the  

 

 

 

 

four processors at ~25% of peak per 

processor (with occasional bursts to 40% of 

peak), and required  a constant 2.9 GB of 

memory. 
     Figure 2 shows the oseltamivir/receptor 

energy and position summary produced by 

ADT.  The estimated free energy of binding 

is ~ -8.4 kcal/mol; the estimated inhibition 

constant, ~646 nanoMolar at 298 K.

.   

______________________________________________________________________________ 

 
 LOWEST ENERGY DOCKED CONFORMATION from EACH CLUSTER 

 ___________________________________________________ 

 

 

 

Keeping original residue number (specified in the input PDBQ file) for outputting. 

 

MODEL        1 

USER    Run = 1 

USER    Cluster Rank = 1 
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USER    Number of conformations in this cluster = 10 

USER   

USER    RMSD from reference structure       = 0.918 A 

USER   

USER    Estimated Free Energy of Binding    =   -8.44 kcal/mol  [=(1)+(2)+(3)-(4)] 

USER    Estimated Inhibition Constant, Ki   =  646.30 nM (nanomolar)  [Temperature = 

298.15 K] 

USER     

USER    (1) Final Intermolecular Energy     =  -10.23 kcal/mol 

USER        vdW + Hbond + desolv Energy     =   -7.34 kcal/mol 

USER        Electrostatic Energy            =   -2.89 kcal/mol 

USER    (2) Final Total Internal Energy     =   -1.29 kcal/mol 

USER    (3) Torsional Free Energy           =   +1.79 kcal/mol 

USER    (4) Unbound System's Energy  [=(2)] =   -1.29 kcal/mol 

USER     

USER     

USER   

USER    DPF = myLigand.dpf 

USER    NEWDPF move myLigand.pdbqt 

USER    NEWDPF about -29.844101 12.498800 -20.890400 

USER    NEWDPF tran0 -29.752382 12.621669 -20.989646 

USER    NEWDPF axisangle0 -0.545753 -0.106522 -0.831148 -6.158671 

USER    NEWDPF quaternion0 -0.029317 -0.005722 -0.044648 -0.998556 

USER    NEWDPF dihe0 163.29 179.37 128.27 2.12 -8.37 -36.66  

USER   

USER                              x       y       z    vdW   Elec        q     RMS  

ATOM      1  C2  ZMR A1001     -29.802  11.354 -23.039 -0.06 +0.09    +0.156  0.918 

ATOM      2  C3  ZMR A1001     -28.506  11.639 -22.803 -0.35 +0.00    +0.031  0.918 

ATOM      3  C4  ZMR A1001     -28.126  12.635 -21.728 -0.25 -0.02    +0.171  0.918 

ATOM      4  C5  ZMR A1001     -29.212  12.665 -20.635 -0.16 +0.03    +0.164  0.918 

ATOM      5  C6  ZMR A1001     -30.596  12.845 -21.262 -0.16 +0.05    +0.179  0.918 

ATOM      6  O6  ZMR A1001     -30.879  11.858 -22.246 -0.17 -0.20    -0.323  0.918 

ATOM      7  C7  ZMR A1001     -31.759  12.798 -20.264 -0.10 +0.12    +0.214  0.918 

ATOM      8  O7  ZMR A1001     -32.344  11.506 -20.304 -0.06 -0.16    -0.218  0.918 

ATOM      9  C8  ZMR A1001     -32.842  13.843 -20.586 -0.24 +0.06    +0.218  0.918 

ATOM     10  O8  ZMR A1001     -33.494  13.440 -21.802 -0.23 -0.10    -0.218  0.918 

ATOM     11  C9  ZMR A1001     -32.218  15.255 -20.696 -0.29 +0.05    +0.218  0.918 

ATOM     12  O9  ZMR A1001     -32.998  16.172 -19.933 -0.60 -0.16    -0.218  0.918 

ATOM     13  N5  ZMR A1001     -28.990  13.757 -19.684 -0.08 -0.10    -0.235  0.918 

ATOM     14  C10 ZMR A1001     -28.440  13.590 -18.467 -0.19 +0.21    +0.252  0.918 

ATOM     15  O10 ZMR A1001     -28.147  12.477 -18.014 -0.71 -0.35    -0.271  0.918 

ATOM     16  C11 ZMR A1001     -28.164  14.876 -17.751 -0.34 +0.09    +0.100  0.918 

ATOM     17  NE  ZMR A1001     -26.860  12.328 -21.039 -0.26 +0.02    -0.078  0.918 

ATOM     18  CZ  ZMR A1001     -25.937  13.198 -20.774 +0.13 -0.05    +0.783  0.918 

ATOM     19  NH1 ZMR A1001     -25.957  14.473 -21.151 -0.36 -0.02    +0.063  0.918 

ATOM     20  NH2 ZMR A1001     -24.890  12.794 -20.047 -0.44 +0.03    +0.063  0.918 

ATOM     21  C1  ZMR A1001     -30.277  10.564 -24.182 -0.19 +0.35    +0.234  0.918 

ATOM     22  O1A ZMR A1001     -29.395   9.968 -24.859 -1.06 -1.40    -0.642  0.918 

ATOM     23  O1B ZMR A1001     -31.495  10.500 -24.434 -1.15 -1.45    -0.642  0.918 

 

 

Figure 2.  ADT's oseltamivir energy and position predictions. 

_________________________________________________________________________ 

 

 

Figure 3 is a rendering of the active-site/inhibitor configuration computed in this study. 
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Figure 3.  Rendering of oseltamivir computationally docked with the active site of PDB 

3B7E.  The inhibitor is shown in stick form.  Only the interior, inhibitor-containing region 

of the molecular surface of the active site can be compared to in situ data: the surface distal 

to the interior is a computational artifact,  generated by the assumption that active site is 

detached from the rest of the receptor. 

 

______________________________________________________________________________ 

 

 

4.0  Discussion 

 
The method described in Section 2.0 and the 

results of Section 3.0 motivate several 

observations: 

     1.  The inhibition constant computed in 

this study (~646  nanoMolar at ~298 K) is 

comparable to the inhibition constant of 

oseltamivir/neuraminidase interactions that 

are not clinically effective ([11], [13]).  This 

suggests that oseltamivir would not be 

effective against the principal 1918 

pandemic mutant, A/Brevig Mission/1/18 

H1N1. 

     2.  The docking study reported here 

assumes that the receptor is rigid, and as a 

result, calculation does not reflect any 

energy contributions of receptor "flexing" to  

the interaction of the ligand with native 

unliganded receptor.  Future work will 

analyze the docking with a flexible receptor.  

However, based on a comparison with the 

binding of oseltaimivir with the unliganded 

("native) conformation,  it is clear that 

oseltamivir binds more tightly with the 

zanamivir-folded-receptor, than it does with 

the native unliganded-receptor, 

conformation ([15]). 

     3.  The analysis described in Sections 2.0 

and 3.0 assumes the neuraminidase is in a 

crystallized form (isolated at ~278 K).  In 

situ, at physiologically normal temperatures 

(~310 K), the receptor is not in crystallized 

form. The ligand/receptor conformation in 

situ, therefore,  may not be identical to their 

conformation in the crystallized form. 

     4.  Minimum-energy search algorithms 

other than the Lamarckian genetic algorithm 

used in this work could be applied to this 

docking problem.  Future work will use 

Monte Carlo/simulated annealing 

algorithms.  In addition, a variety of torsion 

and charge models could be applied to this 

problem, and future work will do so. 
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Abstract 

 

Neuraminidases are glycoproteins that  facilitate 

the transmission of the influenza virus from cell 

to cell.  The neuraminidase inhibitors 

osteltamivir and zanamivir are currently the 

most widely used anti-flu therapeutics.  

Oseltamivir was ineffective against the dominant 

H1N1 strains in the 2008 flu season and 

decreasingly effective against the dominant 

influenza H1N1 mutants in the US in the 2009 

"Spring/Fall" pandemic.   Zanamivir has proven 

useful against some H1N1 strains that are 

resistant to oseltamivir.  Here I provide a 

computational docking analysis of zanamivir 

with the active site of the neuraminidase of the 

1918 strain (A/Brevig Mission/1/18 H1N1).  The 

docking uses a Lamarckian genetic algorithm.  

The computed inhibitor/receptor binding energy 

suggests that zanamivir would not be effective 

against that  strain.  

 
Keywords: Influenza, H1N1, neuraminidase, 

zanamivir 

 

 

1.0  Introduction 
 
     The mortality rate in humans infected 

with Influenza A/H1N1 in the 1918 

pandemic was ~50% ([2]).  The 1918 

mutant(s), unlike any genotype of H1N1 

observed since, was easily transmitted 

among humans and killed ~10% of the 

world population within a single six-month 

period ([2]).   

     At present, no plausible public health 

regime could control an outbreak of a high-

mortality-rate, highly infectious (HMR/HI) 

H1N1 mutant.  The scale of human 

interaction required to sustain food and fuel 

distribution to large urban areas would 

render quarantine ineffective ([5]).  

Currently, the lead time for vaccine 

development and production is at least as 

long as the duration of the 1918 pandemic.  

A widespread administration of effective 

anti-influenza therapeutics is therefore the 

only practical defense against a 1918-scale 

event after the pandemic begins.   

     Neuraminidases are glycoproteins that  

facilitate the transmission of the influenza 

virus from cell to cell.  The most widely 

used anti-influenza therapeutic, oseltamivir 

(Tamiflu, [4]), was ineffective against the 

dominant H1N1 mutants in the 2008 flu 

season and was decreasingly effective 

against the dominant influenza mutant 

(Influenza A/H1N1) in the US in the 2009 

"Spring/Fall" pandemic ([7]).    

     In the World Health Organization 

serotype-based influenza taxonomy, 

influenza type A has nine neuraminidase-

related sero-subtypes, and these subtypes 

correspond at least roughly to differences in 

the active-site structures of the flu  

neuraminidases. The subtypes fall into two 

groups ([3]): group-1 contains the subtypes 

N1, N4, N5 and N8;  group-2 contains the 

subtypes N2, N3, N6, N7 and N9.  

Oseltamivir was designed to target the 

group-2 neuraminidases. 

     The available crystal structures of the 

group-1 N1, N4 and N8 neuraminidases 

([1]) reveal that the active sites of these 

enzymes have a very different three-
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dimensional structure from that of group-2 

enzymes. The differences lie in a loop of 

amino acids known as the "150-loop", which 

in the group-1 neuraminidases has a 

conformation that opens a cavity not present 

in the group-2 neuraminidases. The 150-

loop contains an amino acid designated Asp 

151; the side chain of this amino acid has a 

carboxylic acid that, in group-1 enzymes, 

points away from the active site as a result 

of the 'open' conformation of the 150-loop. 

The side chain of another active-site amino 

acid, Glu 119, also has a different 

conformation in group-1 enzymes compared 

with the group-2 neuraminidases (8]). 

     The Asp 151 and Glu 119 amino-acid 

side chains form critical interactions 

with neuraminidase inhibitors. For 

neuraminidase subtypes with the “open 

conformation” 150-loop, the side chains 

of these amino acids might not have the 

precise alignment required to bind 

inhibitors tightly ([8]).    The active site 

of the 1918 strain has the 150-loop 

configuration. 

     The difference in the active-site 

conformations of  the two groups of 

neuraminidases may also be caused by 

differences in amino acids that lie 

outside the active site. This means that 

an enzyme inhibitor for one target will 

not necessarily have the same activity 

against another with the same active-site 

amino acids and the same overall three-

dimensional structure ([17]).    
     Zanamivir ([10]) has proven effective 

against some H1N1 strains that are resistant 

to oseltamivir.   

 

 

2.0  Method 
 

     The general objective of this study is 

straightforward:  to computationally assess 

the binding energy of the active site of 

crystallized 1918 pandemic strain 

neuraminidase with zanamivir.    Unless 

otherwise noted, all processing described in 

this section was performed on a Dell 

Inspiron 545 with an  Intel Core2 Quad CPU 

Q8200 (clocked @ 2.33 GHz) and 8.00 GB 

RAM, running under the Windows Vista 

Home Premium (SP2) operating 

environment.   

     Protein Data Bank (PDB) 3B7E  is a 

structural description of most of the 

crystallized neuraminidase of  Influenza 

A/Brevig Mission/1/18 H1N1 (the principal 

1918 pandemic mutant), bound to 

zanamivir.  3B7E consists of two identical 

chains, designated Chain A and Chain B.  

     3B7E was downloaded from PDB ([6]) 

on 31 January 2011.  The ligand description 

was extracted from the PDB file using 

Microsoft Word.  The automated docking 

suite AutoDock Tools v 4.2 (ADT, [9]) was 

used to perform the docking of zanamivir to 

the receptor.  More specifically, in ADT, 

approximately following the rubric 

documented in [12] 
      -- Chain B, and the water in Chain A, of 

3B7E were deleted  

     -- Chain A's active-site was extracted.  

(3B7E identifies the active site of Chain A 

as 14  amides:  ARG118,  GLU119,  

ASP151,  ARG152,  ARG156,  TRP178,  

ARG224,  GLU227,   SER246,  GLU276,   

GLU277,  ARG292,   ARG371,  and 

TYR406.) 

     -- the ligand was rotated and translated 

(to force ADT to seek a non-trivial docking 

solution) 

     -- the hydrogens, charges, and torsions in 

the ligand and active site were adjusted 

using the ADT recommended defaults 

and finally,  the ligand, assumed to be 

flexible wherever that assumption is 

physically possible, was auto-docked to the 

active site, assumed to be rigid, using the 

Lamarckian genetic algorithm  implemented 

in ADT. 
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The ADT parameters for the docking are shown in Figure 1.  Most values are, or are a 

consequence of,  ADT defaults. 

 

____________________________________________________________________

 
autodock_parameter_version 4.2       # used by autodock to validate parameter set 

outlev 1                             # diagnostic output level 

intelec                              # calculate internal electrostatics 

seed pid time                        # seeds for random generator 

ligand_types C HD OA N               # atoms types in ligand 

fld 3B7E_Receptor.maps.fld           # grid_data_file 

map 3B7E_Receptor.C.map              # atom-specific affinity map 

map 3B7E_Receptor.HD.map             # atom-specific affinity map 

map 3B7E_Receptor.OA.map             # atom-specific affinity map 

map 3B7E_Receptor.N.map              # atom-specific affinity map 

elecmap 3B7E_Receptor.e.map          # electrostatics map 

desolvmap 3B7E_Receptor.d.map        # desolvation map 

move 3B7E_Ligand_out.pdbqt           # small molecule 

about -29.5772 12.7517 -20.6465      # small molecule center 

tran0 random                         # initial coordinates/A or random 

axisangle0 random                    # initial orientation 

dihe0 random                         # initial dihedrals (relative) or random 

tstep 2.0                            # translation step/A 

qstep 50.0                           # quaternion step/deg 

dstep 50.0                           # torsion step/deg 

torsdof 9                            # torsional degrees of freedom 

rmstol 2.0                           # cluster_tolerance/A 

extnrg 1000.0                        # external grid energy 

e0max 0.0 10000                      # max initial energy; max number of retries 

ga_pop_size 150                      # number of individuals in population 

ga_num_evals 2500000                 # maximum number of energy evaluations 

ga_num_generations 27000             # maximum number of generations 

ga_elitism 1                         # number of top individuals to survive to next 

generation 

ga_mutation_rate 0.02                # rate of gene mutation 

ga_crossover_rate 0.8                # rate of crossover 

ga_window_size 10                    #  

ga_cauchy_alpha 0.0                  # Alpha parameter of Cauchy distribution 

ga_cauchy_beta 1.0                   # Beta parameter Cauchy distribution 

set_ga                               # set the above parameters for GA or LGA 

sw_max_its 300                       # iterations of Solis & Wets local search 

sw_max_succ 4                        # consecutive successes before changing rho 

sw_max_fail 4                        # consecutive failures before changing rho 

sw_rho 1.0                           # size of local search space to sample 

sw_lb_rho 0.01                       # lower bound on rho 

ls_search_freq 0.06                  # probability of performing local search on 

individual 

set_psw1                             # set the above pseudo-Solis & Wets parameters 

unbound_model bound                  # state of unbound ligand 

ga_run 10                            # do this many hybrid GA-LS runs 

analysis                             # perform a ranked cluster analysis 

 

Figure 1.  ADT parameters for the docking in this study 

 

______________________________________________________________________________ 

 

Interatomic distances between ligand and receptor in the computed form were compared to those 

in 3B7E. 
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3.0  Results 

 
     The interactive problem setup, which 

assumes familiarity with the general 

neuraminidase "landscape", took about 30 

minutes in ADT; the docking proper, about 

28 minutes on the platform described in 

Section 2.0  The platform's performance 

monitor suggested that the calculation was 

more or less uniformly distributed across the 

four processors at ~25% of peak per 

processor (with occasional bursts to 40% of 

peak), and required  a constant 2.9 GB of 

memory. 
     Figure 2 shows the zanamivir/receptor 

energy and position summary produced by 

ADT.  The estimated free energy of binding 

is ~ -8.9 kcal/mol; the estimated inhibition 

constant, ~279 nM at 298 K.  All distances 

between receptor and ligand atoms in the 

computed ligand position lie within 5% of 

the distances of the corresponding atoms in 

3B7E.

   

 
____________________________________________________________________ 

 

 
    LOWEST ENERGY DOCKED CONFORMATION from EACH CLUSTER 

    ___________________________________________________ 

 

 

 

Keeping original residue number (specified in the input PDBQ file) for outputting. 

 

MODEL        4 

USER    Run = 4 

USER    Cluster Rank = 1 

USER    Number of conformations in this cluster = 10 

USER   

USER    RMSD from reference structure       = 0.782 A 

USER   

USER    Estimated Free Energy of Binding    =   -8.94 kcal/mol  [=(1)+(2)+(3)-(4)] 

USER    Estimated Inhibition Constant, Ki   =  278.50 nM (nanomolar)  [Temperature = 

298.15 K] 

USER     

USER    (1) Final Intermolecular Energy     =  -11.63 kcal/mol 

USER        vdW + Hbond + desolv Energy     =   -8.32 kcal/mol 

USER        Electrostatic Energy            =   -3.31 kcal/mol 

USER    (2) Final Total Internal Energy     =   -2.40 kcal/mol 

USER    (3) Torsional Free Energy           =   +2.68 kcal/mol 

USER    (4) Unbound System's Energy  [=(2)] =   -2.40 kcal/mol 

USER     

USER     

USER   

USER    DPF = C:\Users\Owner\3B7E.dpf 

USER    NEWDPF move 3B7E_Ligand_out.pdbqt 

USER    NEWDPF about -29.577200 12.751700 -20.646500 

USER    NEWDPF tran0 -29.396053 12.777381 -20.687186 

USER    NEWDPF axisangle0 0.168535 -0.286819 0.943043 2.497566 

USER    NEWDPF quaternion0 0.003673 -0.006251 0.020552 0.999762 

USER    NEWDPF dihe0 38.67 -125.98 155.79 178.63 66.03 -1.38 -65.94 2.63 -20.03  

USER   

USER                              x       y       z    vdW   Elec        q     RMS  

ATOM      1  C2  ZMR A1001     -29.716  11.373 -23.038 -0.06 +0.08    +0.144  0.782 

ATOM      2  C3  ZMR A1001     -28.429  11.708 -22.816 -0.34 +0.00    +0.045  0.782 

ATOM      3  C4  ZMR A1001     -28.071  12.663 -21.698 -0.27 -0.02    +0.150  0.782 

ATOM      4  C5  ZMR A1001     -29.130  12.585 -20.582 -0.17 +0.03    +0.143  0.782 

ATOM      5  C6  ZMR A1001     -30.536  12.730 -21.168 -0.15 +0.06    +0.185  0.782 

ATOM      6  O6  ZMR A1001     -30.796  11.783 -22.196 -0.15 -0.20    -0.335  0.782 

ATOM      7  NE  ZMR A1001     -26.775  12.384 -21.053 -0.22 +0.06    -0.217  0.782 

ATOM      8  HE  ZMR A1001     -26.486  11.409 -20.974 -0.27 -0.19    +0.178  0.782 

ATOM      9  CZ  ZMR A1001     -25.978  13.288 -20.580 +0.01 +0.01    +0.665  0.782 

ATOM     10  NH1 ZMR A1001     -26.169  14.602 -20.674 -0.24 +0.06    -0.235  0.782 
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ATOM     11  NH2 ZMR A1001     -24.886  12.878 -19.926 -0.30 -0.12    -0.235  0.782 

ATOM     12 2HH1 ZMR A1001     -27.002  14.915 -21.172 +0.08 -0.08    +0.174  0.782 

ATOM     13 1HH1 ZMR A1001     -25.542  15.314 -20.302 -0.32 -0.09    +0.174  0.782 

ATOM     14 2HH2 ZMR A1001     -24.739  11.871 -19.854 -0.44 +0.15    +0.174  0.782 

ATOM     15 1HH2 ZMR A1001     -24.258  13.590 -19.554 -0.44 +0.09    +0.174  0.782 

ATOM     16  N5  ZMR A1001     -28.936  13.636 -19.579 -0.02 -0.16    -0.352  0.782 

ATOM     17  H5  ZMR A1001     -29.215  14.587 -19.820 +0.10 +0.05    +0.163  0.782 

ATOM     18  C10 ZMR A1001     -28.412  13.419 -18.359 -0.23 +0.20    +0.214  0.782 

ATOM     19  C11 ZMR A1001     -28.161  14.676 -17.582 -0.34 +0.12    +0.117  0.782 

ATOM     20  O10 ZMR A1001     -28.120  12.291 -17.948 -0.70 -0.39    -0.274  0.782 

ATOM     21  C1  ZMR A1001     -30.181  10.620 -24.210 -0.17 +0.34    +0.233  0.782 

ATOM     22  O1A ZMR A1001     -29.288  10.116 -24.945 -1.07 -1.47    -0.642  0.782 

ATOM     23  O1B ZMR A1001     -31.400  10.499 -24.430 -1.10 -1.42    -0.642  0.782 

ATOM     24  C7  ZMR A1001     -31.671  12.575 -20.148 -0.09 +0.11    +0.180  0.782 

ATOM     25  C8  ZMR A1001     -32.964  13.269 -20.611 -0.23 +0.07    +0.173  0.782 

ATOM     26  O8  ZMR A1001     -33.366  14.183 -19.577 -0.20 -0.11    -0.391  0.782 

ATOM     27  H8  ZMR A1001     -34.313  14.150 -19.512 -0.30 -0.14    +0.210  0.782 

ATOM     28  C9  ZMR A1001     -34.060  12.223 -20.927 -0.15 +0.13    +0.198  0.782 

ATOM     29  O9  ZMR A1001     -35.267  12.594 -20.267 -0.14 -0.09    -0.398  0.782 

ATOM     30  H9  ZMR A1001     -35.492  13.486 -20.505 -0.45 -0.26    +0.209  0.782 

ATOM     31  O7  ZMR A1001     -31.935  11.194 -19.964 +0.01 -0.27    -0.390  0.782 

ATOM     32  H7  ZMR A1001     -31.650  10.722 -20.737 +0.07 +0.13    +0.210  0.782 

 

                  Figure 2.  ADT's zanamivir energy and position predictions. 

______________________________________________________________________________ 

 

 

Figure 3 is a rendering of the active-site/inhibitor configuration computed in this study. 
 

 

 
 

Figure 3.  Rendering of zanamivir computationally docked with the active site of PDB 

3B7E.  The inhibitor is shown in stick form.  Only the interior, inhibitor-containing region 

of the molecular surface of the active site can be compared to in situ data: the surface distal 

to the interior is a computational artifact,  generated by the assumption that active site is 

detached from the rest of the receptor. 
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4.0  Discussion 

 
The method described in Section 2.0 and the 

results of Section 3.0 motivate several 

observations: 

     1.  The inhibition constant computed in 

this study (~279 nanoMolar at ~298 K) is 

comparable to the inhibition constant of 

zanamivir/neuraminidase interactions that 

are not clinically effective ([11], [13]).  This 

suggests that zanamivir would not be 

effective against the principal 1918 

pandemic mutant, A/Brevig Mission/1/18 

H1N1. 

     2.  All distances between receptor and 

ligand atoms in the computed ligand 

position lie within 5% of the distances of the 

corresponding atoms in 3B7E.  (For 

electrostatic forces, a 5% distance difference 

would correspond to a (1.05
2
 = ) 10% 

difference in electrostatic force and potential 

energy.  One could of course apply other 

statistics to the coordinate sets and provide a 

more comprehensive comparison of other 

forces/energies.   Future work will address 

those issues.) 

     3.  The docking study reported here 

assumes that the receptor is rigid.  This 

assumption is appropriate for the binding 

energy computation for PDB 3B7E per se.  

However, the calculation does not reflect 

what  receptor "flexing" could contribute to  

the interaction of the ligand with native 

unliganded receptor (e.g., PDB 3BEQ 

([14])).  Future work will analyze the 

docking of the ligand with the native form. 

     4.  The analysis described in Sections 2.0 

and 3.0 assumes the neuraminidase is in a 

crystallized form (isolated at ~278 K).  In 

situ, at physiologically normal temperatures 

(~310 K), the receptor is not in crystallized 

form. The ligand and receptor conformations 

in situ, therefore,  may not be identical to 

their conformations in the crystallized form. 

     5.  Minimum-energy search algorithms 

other than the Lamarckian genetic algorithm 

used in this work could be applied to this 

docking problem.  Future work will use 

Monte Carlo/simulated annealing 

algorithms. 

     6.  A variety of torsion and charge 

models could be applied to this problem, and 

future work will do so. 
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Abstract—In a heterogeneous multi-robot team, a task solu-
tion is highly dependent on the available collection of robots and
their sensing and computational capabilities. We are interested
in the problem of automatic synthesis of task solutions. Previous
solutions to this problem include a heuristic search on the
whole solution space or using an offline genetic algorithm for
generating schema chunks and then search for solutions based
on the chunks. In this paper, we explore the practicability of
an alternative search algorithm, an evolutionary based search
algorithm, to configure complete team solutions offline. Through
experiments, we show that our genetic algorithm can generate
complete solutions with similar qualities for a relatively small
team size.

I. INTRODUCTION AND RELATED WORK

When dealing with heterogenous multi-robot teams, one

issue is particularly challenging: determining the appropriate

teaming behaviors to accomplish a task when the task

solution is dependent on the available collection of robots

and their sensory, perceptual, and motor resources. Typical

approaches to multi-robot teaming include the decomposition

of task into subtasks or roles that can be accomplished

by a single robot. Each robot is preprogrammed with the

capability to accomplish a subtask or role. A pre-defined

task decomposition tree defines the available multi-robot task

solutions in advance of the mission. If the task changes or

the team composition changes, then the task solutions need

to be generated again to reflect the changes. Unlike the above

approaches, we are particularly interested in approaches that

automate the solution generation process based on the given

task and the robot team composition.

Parker and Tang [4] developed an approach called

ASyMTRe that automates the synthesis of multi-robot task

solutions through software reconfiguration. Their approach

provides the ability for heterogeneous robots to collaborate

to find new solutions to tasks through various combinations

of sensing, effectors, and behaviors that may be distributed

across multiple robots. The ASyMTRe approach changes

the abstraction that is used to represent robot competences

from the typical “task” abstraction to a biologically-inspired

“schema” abstraction. Each robot is preprogrammed with

a set of schemas that define its capabilities. Schemas are

still sensor and effector dependent, but are task independent.

Thus they can be connected in different ways to accomplish

different tasks. The ASyMTRe approach connects schemas

at run time within or across robots to generate a solution

to task. Finding a low-cost configuration of schemas for a

multi-robot team is an NP-hard search problem [6]. The

ASyMTRe search problem is formulated as a constraint

satisfaction problem, and various heuristics are applied to

direct the search toward solutions with smaller coalition sizes

and higher task completion rate.

Y. Tang and Parker [7] extended the ASyMTRe archi-

tecture to SB-CoRLA that enables constructivist learning

for multi-robot team tasks. They developed an Evolutionary

Learning (EL) approach for the offline learning of schema

chunks that could be saved and used later in an online search

such as the ASyMTRe search algorithm. They found that the

chunks of schemas that solve intermediate subproblems can

be useful for future team tasks. In their later work, they feed

the schema chunks generated through the EL approach to a

centralized ASyMTRe search algorithm to find the solutions

more efficiently.

In this paper, we explore the practicability of an alternative

search algorithm, an evolutionary based search algorithm,

to configure complete team solutions offline. A genetic

algorithm is implemented to form coalitions for a team of

heterogeneous robots to solve a single multi-robot task. Our

approach borrows the concept of schemas from ASyMTRe

as the basic building blocks to connect robots. Instead of

a heuristic-based search on all different combinations of

schemas on a large solution search space, we randomly

connect schemas within and across robots at a certain rate

and then apply the genetic algorithm. While this work is

similar to the EL algorithm from SB-CoRLA, we focus more

on the generation of a complete solution instead of schema

chunks. Our implementation details are also different. The

SB-CoRLA approach uses a graph based method to encode

chromosomes, while we use value encoding, which uses a

list of real numbers as representation of the chromosome

which makes crossover and mutation more flexible.

The remainder of the paper is organized as follows. We

define the problem in Section II and describe our genetic

algorithm approach in Section III. In Section IV, experiments

are performed to validate our approach and we also compare

the results with the ASyMTRe approach. We finally conclude

our work in Section V.

II. THE PROBLEM

The problem we address in this paper is the development

of robot coalitions that solve a single multi-robot task. A

multi-robot task is a task that may require multiple robots
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to work closely with each to accomplish a goal. In a highly

heterogeneous robot team, robots have quite different sensing

and computational capabilities. Some robots with limited

sensing and computational capabilities may not be able

to accomplish a task even if they are duplicated multiple

times. These simple robots need help from more capable

robots to achieve the task. By working together, robots can

share sensing and computational capabilities with each other.

Coalitions are temporary organizations of robots that bring

their diverse capabilities to solve the task that cannot be

handled by a single robot. Our goal is to automate the

coalition formation process.

Inspired by the schema theory [1], [3], we view robot

capabilities as a set of environmental sensors (ES), as well as

a set of perceptual schemas (PS), motor schemas (MS), and

communication schemas (CS) that are preprogrammed into

the robot at the design time. Unlike the above schema-based

approaches, our approach autonomously connects schemas

at run time instead of relying on pre-defined connections.

According to the information invariants theory [2], the infor-

mation needed to activate a certain schema or to accomplish

a task remains the same regardless of the way that the robot

may obtain or generate it. We can therefore label inputs

and outputs of all schemas with a set of information types,

such as self global positioning data. Two schemas can be

connected if their input and output information labels match.

Thus, schemas can be autonomously connected within or

across robots based upon the flow of information required

to accomplish a task. When schema connections are made

across robots, we say that a coalition is formed between the

robots, within which robots need to share information and

tightly collaborate with each other to accomplish a task. With

the run time connection capability, task solutions (schema

connections) can be configured in many ways to solve the

same task or can be reconfigured to solve a new task.

Given a set of n robots and a task T, the solution con-

figuration problem can be represented as (R, T, U), where
R = {R1, R2, · · · , Rn} is the set of n robots, T =
{MS1,MS2, · · · } is the set of motor schemas that define

the group-level task to be achieved, along with application-

specific parameters as needed, and U provides utility in-

formation to be defined later. A robot, Ri, is represented

by Ri = (ESi, Si). ESi is a set of environmental sensors

that are installed on Ri. Si is the set of schemas that are

pre-programmed into Ri at design time. A schema can be

activated if and only if its input can be obtained from the

output of another schema or sensor. A set of Connection

Constraints are used to regulate the connections between

schemas. As shown in Table I, the constraints specify the

restrictions on correct connections between various schemas.

Given the above information, the problem (R, T, U) has a
solution if and only if for each Ri ∈ R and for all MSj ∈ T ,

the inputs of MSj are satisfied, along with all the inputs

from the schemas that feed into MSj . A complete solution

provides a way of connecting schemas for the whole team

such that each robot is able to accomplish the task T.

TABLE I

CONNECTION CONSTRAINTS FOR SCHEMAS

Sensor/Schema Input Sources: Output Feeds into:

ES Sensor Signals PS

PS ES, PS, or CS PS, CS or MS

CS PS, or CS PS, CS, or MS

MS PS, CS, or ES Actuators

III. THE APPROACH

A. The Initial Population

In the initial stage, the genetic algorithm creates a popula-

tion with p individuals. Each individual represents a potential

solution, which may not be complete, to the team-level

task. An intra-connection is first performed to select random

robots for j times, and have their local schemas connected,

while satisfying the connection constraints, which specify

that two schemas can be connected if and only if one

schema’s input information type is equivalent to the output

information type of another schema. A robot r is randomly

selected from the team, and then a schema a is randomly

selected from r. The intra-connection rate j is re-used as a

loop that iterates j times, connecting schema a with another

random schema b on r. By having schema a make j different

tries to connect with a different schema b, we increase the

chance of having more successful connections between the

local schemas. Afterwards, an inter-connection takes place

where different robots will try to have their communication

schemas connected using the same strategy as mentioned

above with a different connection rate k. Similarly, schema

connections are governed by connection constraints, so after

an individual is generated, it has to be validated before it is

accepted into the population.

B. Encoding of An Individual

Each individual in the population is implemented as

an adjacency matrix. The matrix table holds all different

possible connections for all the schemas within the robot

team. The row in the matrix represents the schemas that

pass information, while the column represents schemas that

receive information. Each cell in the matrix has a value

encoding: 0, 1 and 2. The value ”1” is used for a successful

intra-connection which is two connected schemas on the

same robot, ”2” for a successful inter-connection which is

two communication schemas between two robots, and ”0”

for no connection.

C. The Fitness Function

Once the initial population is generated, the genetic al-

gorithm gives each individual a quality value computed by

a fitness function. We apply the same fitness function as

described in SB-CoRLA.

F = wc ·(c/cmax)+wx ·x+wq ·(q/qmax)+wu ·(u/n). (1)

Here, c stands for cost, x for complexity, q/qmax is the

percentage of information types required by the goal that

are fulfilled, and u/n is the percentage of robots that can
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achieve their goals. Each schema is assigned a cost. The

lower the cost of the aggregated schemas, the better the

solution. Additionally, an inter-connection is considered to be

more complex than an intra-connection as it requires remote

communication and the tight physical collaboration between

robots. The complexity of the solution is determined by how

many schemas are activated.

A goal is achieved when the set of motor schema(s)

required to perform the task is activated on every robot.

In order for a schema to be activated, it must have the

necessary information inputs satisfied. There are two types

of inputs to a schema: “AND” and “OR” connections. An

“AND” connection is where a schema accepts multiple inputs

and all of them must be satisfied. An “OR” connection

is where an input must have at least one connection in

order for the schema to be activated. We used a backward

chaining algorithm to detect whether a goal is achieved. In

this backward chaining process, the chain must reach all the

way to environmental sensor(s) which do not require other

types of inputs except for the environment. In the fitness

function, the value q/qmax is to determine how close a goal

schema is from activation.

A better solution usually indicates that there is higher per-

centage of information types required by the goal fulfilled, a

higher percentage of robots that can accomplish the task, and

the solution is of lower cost and higher success probability.

We say that a complete solution exists when every robot in

the team is able to accomplish its goal.

D. The Genetic Algorithm

In our genetic algorithm, we maintain a population and

generate only X offsprings which replace the X weakest

individuals in the parent population. Once each individual

is assigned a fitness value, a roulette-wheel selection pro-

cess will choose two chromosomes from the population for

cross over and mutation. In a roulette-wheel selection, an

individual’s chance of being selected is proportional to the

quality of its fitness. Each chromosome has a probability of

current fitness / sum of all fitnesses. Just like spinning the

roulette-wheel, a random number if generated between 0 and

1, and whichever chromosome’s probability has that random

value is selected for cross over and mutation.

When two individuals are selected, the algorithm performs

cross over with a very high probability (ninety percent of

the time). The current implementation performs a single

point cross over where an exchange point is randomly

generated between 0 and the length of an individual. The first

chromosome will contribute the first segment starting from

index 0 to the exchange point, and the second chromosome

will provide the other half starting from the exchange point

plus one to the end. The two segments are concatenated

to become the first offspring. The second one concatenates

the second segment of the first chromosome with the first

segment of the second chromosome.

Another individual is selected from the roulette-wheel for

mutation. The chance for mutation is much lower than cross

over because we want to avoid having excessive jumping

away from a potential hill, while still having a chance to jump

out of a local peak when the algorithm gets stuck. When

mutation is performed, the algorithm will randomly select a

mutation point between 0 and the length of an individual. It

will then flip into the adjacency matrix and try to connect

the two schema cells. The mutated chromosome has to be

validated before being accepted into the new population

pool. When a mutated individual fails the validation, the

algorithm will go back to the selection process to find another

chromosome for mutation.

The algorithm will repeat the selection and reproduction

process until the X weakest individuals from the population

are replaced. Each offspring will have their fitness value

calculated immediately. Once the new population includes

X offspring, a new generation starts and the algorithm will

rank each chromosome based on its fitness value and check

if the chromosome with the best fitness is a solution. If a

solution is not found, then the process will continue for the

new population until one of the following conditions is met:

• The complete solution is found.

• The maximum generation has been reached.

• The fitness value has not improved within a minimum

number of generations.

• The algorithm execution time exceeds a predefined

deadline (in our experiment, one hour).

If a complete solution is not found, then the best individual

will be displayed, which might contain some robots with

solutions and others with partial solutions.

IV. EXPERIMENTS

To validate the correctness and efficiency of our genetic

algorithm, we performed experiments to compare the results

of our genetic algorithm with the ASyMTRe approach.

A. Experiment Description

Consider the following multi-robot navigation example,

where a team of heterogeneous robots need to navigate from

their current positions to some goal positions. Each robot has

a set of sensors and pre-programmed schemas. The environ-

mental sensors are: GPS, omnidirectional camera (camera)

and sensors for communication (comm), providing up to 23

different combinations of robot capabilities. We assume: a

robot with a GPS can estimate its current global position

in the environment; a robot with a camera can estimate the

relative position of another robot in the environment, as long

as the other robot is within its sensing range; and a robot has

the computational ability to convert a relative position to a

global position.

We also assume that the following schemas are pre-

programmed on the robots: PS1, which estimates its self

global position using GPS; PS2, which estimates the relative

position of another robot using camera, and fiducial marker;

PS3, which estimates self global position according to an-

other robot’s global position and relative position; PS4, which

estimates the global position of another robot according to its

own global position and the estimated relative position of the

other robot; CSi, which transfers information between robots;
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TABLE II

INPUT AND OUTPUT INFORMATION TYPES FOR VARIOUS SCHEMAS AND

THEIR CORRESPONDING SENSING COSTS AND SUCCESS PROBABILITIES

Type Description

F1 Self Global Position

F2 Other Global Position

F3 Other Relative Position

F4 Motor Commands

Schema Input Output Cost Probability

PS1 GPS F1 1 95%

PS2 Camera F3 2 95%

PS3 F2 and F3 F1 1 100%

PS4 F1 and F3 F2 1 100%

CS1 F1 F2 4 100%

CS2 F2 F1 4 100%

CS3 F1 F1 4 100%

CS4 F2 F2 4 100%

MS1 F1 F4 1 100%

TABLE III

GENETIC ALGORITHM PARAMETERS AND DEFAULT VALUES

Description Default

Population Size 300

Number of individuals selected for
reproduction 15

Maximum number of generations 130

Maximum number of generations without
improvement 20

Probability for Cross Over 90%

Probability for Mutation 90%

Intra-Robot Connection Rate 80

Inter-Robot Connection Rate 30

Weight for aggregated cost of active
schemas 0.2

Weight for complexity 0

Weight for percentage of information
types fulfilled 0.2

Weight for percentage of robots that
achieve goals 0.6

and MS1, which calculates motor commands that lead the

robot toward the goal. We define the task, T = {MS1},
meaning that MS1 should be active on all robots.

In Table II, we define the set of information types F

and label the input and output information for each schema

used in this application, as well as their corresponding

sensing costs and success probabilities. In our experiment,

we consider four types of robots as shown in Table IV.

They are highly heterogeneous based on their sensing and

computational capabilities. Finally, in Table III, we list the

set of parameters used in our genetic algorithm and their

default values.

B. Experimental Results

We first validate our genetic algorithm by comparing it

with ASyMTRe on the following three test cases.

1) Test Case 1: The robot team is composed six type

II robots (with GPS and comm). Both ASyMTRe and the

genetic algorithm generate the solutions as illustrated by the

first schema connections shown in Figure 1. All robots can

TABLE IV

FOUR DIFFERENT ROBOT TYPES USED IN OUR EXPERIMENTS

Robot Sensors Schemas

Type I GPS, Camera, comm PS1, PS3, PS4,
CSi, MS1

Type II GPS, comm PS1, CSi, MS1

Type III Camera, comm PS3, PS4, CSi, MS1

Type IV Comm CSi, MS1

successfully complete the task by themselves since they all

have GPS sensors to localize. The genetic algorithm took

562 seconds while the ASyMTRe took 1.206 seconds.

2) Test Case 2: The robot team is composed of two type I

robots (with GPS, camera and comm) and four type IV robots

(with comm). In this setup, a more capable type I robot can

help a simple type IV robot to localize and thus navigate

in the environment. With ASyMTRe, two coalitions of size

three are formed such that each type I robot collaborate with

the other two type IV robots to navigate using the second

schema connections shown in Figure 1. With the genetic

algorithm, two coalitions are also formed, with one type I

robot helping four type IV robots and the other type I robot

accomplishes the task just by itself. We can see here that

the coalitions formed with the genetic algorithm are not as

balanced as ones generated with ASyMTRe. This is because

ASyMTRe has many other parameter settings that ensure

that robots work in a non-super-additive environment [5]

by limiting the number of robots that one can help and the

maximum coalition size. In this case, ASyMTRe took .207

seconds while the genetic algorithm took 443 seconds to

finish.

3) Test Case 3: The robot team is composed of two robots

of type II, two robots of type III and two robots of type IV.

In this setup, a type II robot can help a type III robot to

localize, and then a type III robot can help a type IV robot

to localize. The robots form a chain of help and information

exchange in order to accomplish the task. The ASyMTRe

approach generates a solution such that two coalitions of

size three are formed, with the solution described above as

the last solution in Figure 1. With the genetic algorithm,

two coalitions are formed. In one coalition, a type II robot

navigates by itself. In the other coalition, a type II robot helps

two type III robots, while one of the type III robots helps

the other type IV robots to navigate. For similar reasons as

described in our test case 2, the coalitions generated by the

genetic algorithm are not as balanced as ones generated in

ASyMTRe. In this case, ASyMTRe took .296 seconds while

the genetic algorithm took 540 seconds to finish.

We have also experimented with other robot team sizes,

such as 8, 9, 10 and 12 with similar team compositions as

in the above three test cases. Most of the teams are able to

accomplish the tasks. Fitness values show signs of increase

as the algorithm progresses through each generation. Beyond

the above team size, the genetic algorithm either cannot

generate a complete solution or takes too long to complete.

The genetic algorithm is sensitive to different parameter
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Fig. 1. Three possible ways to connect schemas within or across robots to accomplish the navigation task.

Fig. 2. Test Case 1 with various population sizes.

Fig. 3. Test Case 2 with various population sizes.

settings. The following experiments are performed to test its

sensitivity given different population sizes. The population

size is altered from 50, to 150 and 300 to see how it

affects the evolutionary process (see Figures 2, 3, and 4).

The results indicate that a lower population has a greater

evolution compared with a larger population. The reason for

this is because the small initial population does not cover

as wide of the search spectrum compared with large initial

population. So the individuals have more opportunities to

cross over and mutate to a higher quality. On the other hand,

a large initial population covers a wide range of the search

spectrum and so it might not need much evolution to find the

best individual. However, if a large population is specified,

it is very similar to brute forcing all the possibilities in

the search space. For larger populations, the fitness remains

stable and it rapidly jumps and evolves sharply between

two generations. Additionally, the figures show that a lower

population can evolve and achieve a better fitness value

compared to a larger population.

V. CONCLUSION AND FUTURE WORK

Our experiments have shown that our genetic algorithm is

able to generate complete solutions for solving multi-robot

Fig. 4. Test Case 3 with various population sizes.

teaming problem with similar qualities as the ASyMTRe

approach. However, the algorithm took significantly longer

time than the ASyMTRe approach to complete and it is

only appropriate for robot teams with relatively small size

(around 10). Overall, the genetic algorithm cannot be a

replacement to the ASyMTRe approach as its speed and

solution quality are not superior over ASyMTRe. Our future

work includes the improvement of the fitness function that

includes other aspects, for example, a constraint on the

coalition size. We will also look into other applications

where a genetic algorithm might be more favorable than the

ASyMTRe approach.
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Abstract—In electrical power systems preventing and regulat-
ing the loop flow phenomena is very important issue especially
after the de-regulation. The problem should be solved very
efficiently. We have formulated the loop flow problem in fuzzy
environment, as a multi-objective optimization problem using
fuzzy set theory and fuzzy decision making rules. Then the
resulted single objected optimization problem is solved using
differential evolution (DE). Then a sets of simulations are done
to figure out the most efficient parameter values of DE to fit
our problem. DE is one of the evolutionary search methods.
The parameter settings play an important role on reducing the
required time and getting better solution to the problem. We
applied our loop flow method to IEEE 30 bus test system and
presented the results.

Index Terms—Differential evolution, fuzzy set, fuzzy decision-
making, interconnected power systems, loop flows, unscheduled
flows.

I. INTRODUCTION

The high power losses, low efficiencies, or the long path
power travelling through (occupying transmission lines) before
arriving to the loads have not been problem in government
controlled power systems. Since rising costs of electrical
energy were directly adjusted to the customers’ bill or were
partly subsidized by the governments the loop flows inherited
in interconnected power systems (or the heat loses due to loop
flows) was not seen as a serious problem [1]. After the priva-
tization (de-regulation) the issues such as; how much power
flows on which transmission lines, which company uses the
other’s transmission lines and/or the amount and the time of
the transmission line usage have become important. If a system
runs into a problem due to a heavy transmission line usage it is
important to identify the responsible parties (systems causing
unscheduled power flows). The path electrical power takes
depends on the physical laws. That is, Kirchhoff’s current and
resistance laws determine the path for the electrical power to
flow. It takes the shortest path (in terms of resistivity) instead
of a contracted path.In this case a third party between a buyer
and a seller of electrical energy may come into the picture.
In such a case the question becomes who is to pay for the
transmission line usage between a seller and a buyer [2], [3].

Unscheduled flows that refer to the deviation of actual elec-
tric power flows in transmission circuits from the scheduled
(expected) power flows, may result in blackouts and affect
cross border trading in the electricity markets. Therefore, un-

scheduled flows which are also termed inadvertent interchange
or loop flows, should be managed/controlled to improve both
the operation conditions of the electric network and the market.
The effects of parallel paths in system network topology and
a survey to explore the present state of practices used to
determine transfer capability issues are well studied in [4],
[5]. Suryanarayanan et al, proposes an approach based on Lp-
norms to estimate the unscheduled flows occurring in a wide
area interconnected system [6], [7].

In recent years, there have been a lot of applications of fuzzy
set theory to various power system problems [8], [9], [10],
[11]. In the past power system optimization problems were
dealt with using non-linear and linear programming methods.
The optimization problems under an uncertain environment
can be reformulated using fuzzy sets. Many interesting appli-
cations of fuzzy sets in the optimization of the power system
operating and planning stages have been reported.

Differential evolution method was introduced by Price and
Storn [16] in 1995. It has gained popularity by years, and has
been applied to various scientific problems. Some examples of
power systems applications are reactive power optimization
[19], power systems planning [20], power system transfer
capability assessment [21], and power plant control [22], etc.

In this study, a multi-objective optimization approach based
on fuzzy decision making and differential evolution is pro-
posed to manage unscheduled flows. We handle the problem
in a fuzzy environment since in practice, the small variations
of power systems variables (bus voltages, line currents etc.,)
from their limit values can be tolerated, and this can help to
obtain one of the best solutions to the problem.

In the next section, a summary regarding unscheduled flows
is given. In Section III and IV, the basic principles of fuzzy de-
cision making and differential evolution are introduced briefly.
In Section V, the implementation of the proposed approach is
described in detail. The simulation results are provided and
discussed in the subsequent section. Finally conclusions are
provided.

II. LOOP FLOWS(UNSCHEDULED FLOWS)

In an interconnected transmission network, when some
amount of the scheduled power flows through an adjacently
connected system, a loop flow phenomenon occurs. That is,
the loop flow is the difference in between the actual flow and
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the scheduled flow in a particular path. It is also referred to
as the parallel path flow, unscheduled flow or circulating flow.
The main reason of this phenomenon is that the Kirchhoff’s
laws that determine the path for the electrical power to flow.
Loop flow could exist in an interconnected power transmission
network depending on the system topology and operating
conditions.

It has been known that, without exceeding power trans-
fer limits of lines (not overloaded) and disturbing system
reliability, for the sake of efficient operation, neighbouring
systems can buy and sell power to and from each other
through the transmission system that exists between them. But
unscheduled flows affect the operation of the electric power
system and the market.

Unscheduled flows can play an important role in causing
blackouts and creating the cross-border bottlenecks, they need
to be managed.

III. FUZZY DECISION MAKING

This section summarizes the basic concepts of fuzzy sets
used for the fuzzy model, and offers brief information about
the multi-objective fuzzy model and the essentials of the
techniques for solving the multi-objective fuzzy model.

Fuzzy set theory is a generalization of traditional crisp set
theory. The idea is to replace the concept that each variable
has a precise value by the fuzzy concept that each variable is
assigned a degree of membership for each possible value of the
variable. A fuzzy set in the universal set U , is a generalization
of a classical set, and it can be characterized by a membership
function, µ(x) , that takes real values in the continuous interval
[0,1]. A fuzzy set A, in U can be represented by an ordered
pair composed by a generic element x and its membership
value, that is,

A = {(x, µA(x)) , x ∈ U} (1)

A fuzzy set can be characterized by a membership function
to map a parameter to membership grade between the scaled
intervals. For modelling the objectives and the constraints in
fuzzy environment, initial step is the fuzzification process,
are assigned membership values using fuzzy membership
functions. The closer the membership is to one the better the
solution is for that objective or constraint. Fuzzy sets repre-
senting the objectives and constrains may vary considerably.
The membership functions may be similar in the sense that
numbers outside the interval are excluded from the associated
fuzzy sets. Generally a triangular membership function is
selected for representing fuzzy sets. The other most common
shapes are trapezoidal, exponential, and Gaussian.

In fuzzy decision making fuzzy objective functions and
constraints can be characterized by the membership function
of the fuzzy objectives, µg(x) and the membership function
of the fuzzy constraints, µc(x) , respectively. The optimal
solution, which is the fuzzy decision µD, is given as an
intersection of the fuzzy sets describing the constraints and
the objectives. Using the membership functions, the overall

membership function value is obtained as

µD = min⌊µg(x), µc(x)⌋ (2)

The optimal solution is defined to be the one with the highest
degree of membership, and thus the optimization problem
becomes that of maximizing the satisfaction with the solution,
subject to the crisp and fuzzy constraints [12].

IV. DIFFERENTIAL EVOLUTION

Differential evolution (DE) is a population based, inherently
parallel, heuristic search method. It is powerful to handle non
linear and non differentiable functions.

DE procedure is similar to other evolutionary algorithms,
such as genetic algorithms, particle swarm optimization, tabu
search, simulated annealing, etc. Main parts of the algorithm
is shown below.

Algorithm 1 Main Parts of DE Algorithm
Initialization
Evaluation
repeat

Mutation
Crossover (Recombination)
Evaluation
Selection

until Stopping criterion is satisfied

Since, DE is a population based method, at every iteration,
it operates on a population of Np candidate solution vectors.
The first step of the algorithm generates a random solution
vector. A population can be represented as shown below.

P i = [Xi
1, · · · , Xi

Np
] (3)

where i represents the iteration number, and X is a candidate
solution vector. Each solution candidate vector consists of
n objective function parameters, where n is the number
of unknowns in the function to be optimized. The solution
candidates must be initialized within the lower and upper
bounds of the unknowns.

The second step of the algorithm creates mutant vectors,
by adding a weighted difference vector of two randomly
indexed vectors to the third one. There are several versions
for this process [18]. Famous scheme DE/rand/1 process can
be mathematically represented as shown below.

x
′i
j = xi

r3 + F (xi
r1 − xi

r2) (4)

where r1, r2, and r3 are randomly selected integers from 1 to
Np and j ̸= r1 ̸= r2 ̸= r3. The mutant vector is represented by
x

′i
j . F is the scaling factor, which has effect on the difference

vector, within the range of [0,2].
The third step creates trial vectors by mixing the parent

vectors, and the mutant vectors. Mathematical representation
for this process is given below.

x
trial(G)
j =

{
x

′(i)
kj if rand(0, 1) ≤ (CR) or k = q,

x
(i)
kj otherwise.

(5)
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where, q is a random parameter chosen for each j, CR
represents crossover constant, within the range of [0,1], and
rand is a randomly generated number between 0 to 1.

Decision of inclusion of the trial vector in the next gener-
ation is made in the selection step, by comparing the fitness
values of the trial vectors with the associated target vectors.
This process can be represented as shown below.

x
(i+1)
j =

{
x

trial(i)
j iff(xtrial(i)

j ) ≤ f(x
(i)
j ),

x
(i)
j otherwise.

(6)

Finally if the stopping criterion is met the algorithm stops
otherwise it goes to the second step.

V. PROBLEM FORMULATION

A classical general optimization problem formulation is
given below.
Minimize

f(x, u)

Such that

g(x, u) = 0
h(x, u) ≤ 0

where x represents system variables, u represents control
variables for the objective function f(x, u) with the equal-
ity constraints g(x, u) = 0 and the inequality constraints
h(x, u) ≤ 0.

In our formulation, the objective function is the minimiza-
tion of fitness function

fitness =
1

1 + µD
(7)

which is the maximization of the minimum satisfaction value
of fuzzy memberships . In the fuzzy environment both the
objective functions (minimization of both total active losses
and total reactive losses and the scheduled line flow on a
contracted path) and the constraints (voltages remaining within
the limits, line flows remaining within the limits etc.,) are
modelled as fuzzy sets. The intersection of both membership
sets, µc and µg , is the overall satisfaction, µD needs to be
maximized.

We use control variables such as tap changing transformers
tap ratios, generation bus voltages, active power generations,
and if available reactance of series compensation with their
upper and lower limits to create candidate solutions to estab-
lished the initial population for DE. Each candidate solution in
the population is evaluated by load flow program. The results
of load flow (voltages, line flows, loses, etc.) are passed to
fuzzy decision making process, where a membership value is
assigned for all constraints and objectives. The minimum of
those membership values is then tried to be maximized by DE.
The process continues until all population is exhausted or a
pre-set number of iterations is reached.

The exponential membership function, see 2, has been
selected for the fuzzification of the unscheduled flows since
our earlier study showed that more satisfying results can be

Fig. 1. Flow chart of the problem.

obtained using this kind of membership function [13], [14],
[15]. A trapezoidal membership function could have also been
used.

The function in 2 can be described by four parameters
(a, b, c, d) with four breakpoints of the shape. The member-
ship function µg,ij(Pij) belongs to the MW flow (line flow)
through the line between bus i and bus j. The system operators
taking into account the amount of the scheduled power flowing
through the contracted paths can determine the four parameters
of the function. The membership function µg,ij(Pij) is defined
as
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Fig. 2. The fuzzy memberships function for the loop MW flows (the
exponential form).

µg,ij(Pij) =


Pij−aij

bij−aij
aij < Pij < bij

1 bij < Pij < cij
1 +

dij−Pij

dij−cij
cij < Pij < dij

0 otherwise

(8)

where, aij < bij < cij < dij must hold.

VI. SIMULATION RESULTS

The chosen values of the parameters of DE is as follows.
F will be vary in between [0.0,1.0]
CR will be vary in between [0.0,1.0]
n = 14
Np = 100
ub = [1.1, 1.1, 1.1, 1.1, 1.06, 1.06, 1.06,

1.06, 1.06, 140, 100, 100, 100, 100];
lb = [0.9, 0.9, 0.9, 0.9, 0.94, 0.94, 0.94,

0.94, 0.94, 0.0, 0.0, 0.0, 0.0, 0.0];
ub is the upper bound of the unknowns (power system
parameters).
lb is the lower bound of the unknowns (power system
parameters).

The paths chosen to control power flows are given below:
• Path 1, branch between buses 2 and 6,
• Path 2, branch between buses 2 and 5,
• Path 3, branch between buses 6 and 7.

The fuzzy membership function parameters (a,b,c,d) are
chosen as 50,59,61,70 respectively for the path 1.
The fuzzy membership function parameters (a,b,c,d) are
chosen as 55,59,61,65 respectively for the path 2.
The fuzzy membership function parameters (a,b,c,d) are
chosen as 15,21,23,29 respectively for the path 3.

The averaged values are the results of twenty runs.
According to the table I and II we see that the solutions
reached from the 0.4 value of F is better. But the deviations
from the targeted values are high.
According to the table III and IV we see that the solutions
reached from the 0.4 value of F is the best one.

According to the table V and VI we see that the solutions
reached from the 0.2, 0.4 and 0.6 values of F are not really
different than each other. The iteration number for the case
0.4 of F is the lowest.
According to the table VII and VIII we see that the solutions
reached from the 0.2, 0.4 and 0.6 values of F are not really
different than each other. The iteration number for the case
0.6 of F is the lowest.
According to the table IX and X we see that the solutions
reached from the 0.4 and 0.6 values of F are fairly good.
Iteration number is lower for the 0.4 of F then the 0.6 of F .
The 0.4 value of F provides better fuzzy membership values
for the paths as well.
Overall conclusion is that we have obtained a value as 0.4
for the parameter F and two values as 0.6 and 1.0 for the
parameter CR. When the value of CR is high DE might
converge fast and arrive at a local minimum. That is why we
concluded the parameter settings for DE as 0.4 for the F and
0.6 for the CR.

After parameter analysis of DE our problem is solved using
the best case parameter to compare to base case solution of
the system. The results are given from the tables XI and XII.

TABLE I
AVERAGED OBJECTIVE VALUES.

CR=0.2 fitness generation path 1 path 2 path 3
(MW) (MW) (MW)

F=0.2 0.7099 344.2857 47.2075 51.2710 22.3625
F=0.4 0.7026 288.4286 53.6023 57.0964 22.0552
F=0.6 0.7437 224 44.5404 54.6725 27.1232
F=0.8 0.7679 203.7143 35.9105 43.1106 21.5093
F=1.0 0.7918 213.5714 12.7435 25.7443 25.3571

TABLE II
AVERAGED FUZZY MEMBERSHIP VALUES FOR OBJECTIVES AND

CONSTRAINTS.

CR=0.2 min path 1 path 2 path 3 Ploss Qloss

fitness
F=0.2 0.3122 0.3357 0.6508 0.6055 0.5152 0.4315
F=0.4 0.3528 0.4928 0.6643 0.6934 0.4450 0.3978
F=0.6 0.1040 0.3655 0.2415 0.1946 0.2663 0.2550
F=0.8 0.0022 0.0109 0.0252 0.0459 0.3156 0.2761
F=1.0 0 0 0 0.0664 0.3447 0.2429

TABLE III
AVERAGED OBJECTIVE VALUES.

CR=0.4 fitness generation path 1 path 2 path 3
(MW) (MW) (MW)

F=0.2 0.7372 299.2857 52.7136 54.1790 19.4998
F=0.4 0.6919 335.2857 58.2337 59.7074 20.3662
F=0.6 0.7315 230.4286 52.3205 53.2260 21.1080
F=0.8 0.8504 209 38.4646 44.9840 23.0930
F=1.0 0.8213 201.7143 20.1798 51.5315 48.4237

VII. CONCLUSION

Regulating or controlling loop flow is formulated as a
multi-objective problem subject to operational and electrical
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TABLE IV
AVERAGED FUZZY MEMBERSHIP VALUES FOR OBJECTIVES AND

CONSTRAINTS.

CR=0.4 min path 1 path 2 path 3 Ploss Qloss

fitness
F=0.2 0.3779 0.3837 0.6998 0.4184 0.3780 0.3791
F=0.4 0.4420 0.4649 1.0000 0.5307 0.4426 0.4426
F=0.6 0.1540 0.2419 0.5065 0.4138 0.2603 0.2643
F=0.8 0.0133 0.0237 0.0970 0.1774 0.2110 0.1834
F=1.0 0 0 0 0.0870 0.1569 0.1306

TABLE V
AVERAGED OBJECTIVE VALUES.

CR=0.6 fitness generation path 1 path 2 path 3
(MW) (MW) (MW)

F=0.2 0.6963 367.4286 58.1737 58.9501 20.1867
F=0.4 0.6915 252 58.2259 59.3840 20.3931
F=0.6 0.6994 296.8571 58.3525 60.3773 21.3662
F=0.8 0.8072 231 47.6865 57.5251 28.1167
F=1.0 0.8375 201 36.3017 45.1145 28.8744

TABLE VI
AVERAGED FUZZY MEMBERSHIP VALUES FOR OBJECTIVES AND

CONSTRAINTS.

CR=0.6 min path 1 path 2 path 3 Ploss Qloss

fitness
F=0.2 0.4361 0.4377 0.9052 0.4411 0.4362 0.4363
F=0.4 0.4437 0.4611 1.0000 0.5553 0.4437 0.4451
F=0.6 0.4144 0.5245 0.9782 0.8188 0.4204 0.4150
F=0.8 0.1309 0.2873 0.3836 0.5651 0.2354 0.2366
F=1.0 0.0110 0.1313 0.3214 0.2840 0.2910 0.1686

TABLE VII
AVERAGES OBJECTIVE VALUES.

CR=0.8 fitness generation path 1 path 2 path 3
(MW) (MW) (MW)

F=0.2 0.6954 341.1429 58.1755 58.8678 20.2524
F=0.4 0.6904 314.2857 58.2037 59.116 20.2139
F=0.6 0.6996 260.2857 58.4694 60.2493 20.9606
F=0.8 0.7453 219.1429 55.7606 65.9365 27.9187
F=1.0 0.9104 203.8571 50.5513 51.8493 18.6307

TABLE VIII
AVERAGED FUZZY MEMBERSHIP VALUES FOR OBJECTIVES AND

CONSTRAINTS.

CR=0.8 min path 1 path 2 path 3 Ploss Qloss

fitness
F=0.2 0.4381 0.4384 0.7539 0.4776 0.4383 0.4382
F=0.4 0.4481 0.4509 0.9925 0.4532 0.4482 0.4483
F=0.6 0.4174 0.5795 0.9548 0.7241 0.4223 0.4179
F=0.8 0.1810 0.2343 0.5679 0.8239 0.2868 0.2607
F=1.0 0 0.1325 0.0692 0.1429 0.1927 0.0938

constraints in fuzzy environment. After fuzzy decision resulted
single objective optimization problem is solved by using
differential evolution. The primary goal of our problem is
to obtain the highest satisfaction level(maximizing the fuzzy
membership value) to reach the targeted flow levels. The
problem is tested for the many different cases of the parameters
of DE to obtained the best solution to our problem.

TABLE IX
AVERAGED OBJECTIVE VALUES.

CR=1.0 fitness generation path 1 path 2 path 3
(MW) (MW) (MW)

F=0.2 0.8440 211.1429 52.5332 57.8209 23.1920
F=0.4 0.7062 213.8571 58.2072 59.9108 20.6898
F=0.6 0.6904 362.2857 58.2042 59.1771 20.2409
F=0.8 0.7117 238.7143 58.4986 60.0911 21.5948
F=1.0 0.8257 218.4285 53.6428 63.4230 30.1184

TABLE X
AVERAGED FUZZY MEMBERSHIP VALUES FOR OBJECTIVES AND

CONSTRAINTS.

CR=1.0 min path 1 path 2 path 3 Ploss Qloss

fitness
F=0.2 0.1967 0.2104 0.4583 0.3823 0.3296 0.3036
F=0.4 0.4163 0.4537 1.000 0.7096 0.4208 0.4163
F=0.6 0.4479 0.4511 0.9860 0.4665 0.4480 0.4482
F=0.8 0.3568 0.6278 0.8173 0.9171 0.3899 0.3684
F=1.0 0.0773 0.2650 0.3486 0.4782 0.1585 0.1294

TABLE XI
AVERAGED OBJECTIVES AND CONSTRAINTS, (BEST FITNESS = 0.6915).

path 1 path 2 path 3 Ploss Qloss

(MW) (MW) (MW) (MW) (MVAr)
test 58.2259 59.3840 20.3931 8.0104 35.0194
target 60.00 60.00 20.00 1.8x7.999 1.8x35.06
base case 52.68 37.80 5.05 7.999 35.06

TABLE XII
AVERAGED FUZZY MEMBERSHIP VALUES FOR OBJECTIVES AND

CONSTRAINTS, 3 PATHS.

min path 1 path 2 path 3 Ploss Qloss

fitness
test 0.4437 0.4611 1.0000 0.5553 0.4437 0.4451
base case 0.00 0.0016 0.00 0.00 0.4444 0.4444
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Abstract 

 

Neuraminidases are glycoproteins that  facilitate 

the transmission of the influenza virus from cell 

to cell.  The neuraminidase inhibitors 

osteltamivir and zanamivir are currently the 

most widely used anti-flu therapeutics.  

Oseltamivir was ineffective against the dominant 

H1N1 strains in the 2008 flu season and 

decreasingly effective against the dominant 

influenza H1N1 mutants in the US in the 2009 

"Spring/Fall" pandemic.   Here I provide a 

computational docking analysis of  oseltamivir 

with the active site of the neuraminidase of the 

1918 strain (A/Brevig Mission/1/18 H1N1). The 

docking uses a Lamarckian genetic algorithm.  

The computed inhibitor/receptor binding energy 

suggests that oseltamivir would not be effective 

against that  strain.  

 
Keywords: Influenza, H1N1, neuraminidase, 

oseltamivir 

 

 

1.0  Introduction 
 

     Neuraminidases are glycoproteins that  

facilitate the transmission of the influenza 

virus from cell to cell.  The most widely 

used anti-influenza therapeutic, oseltamivir 

(Tamiflu, [4]), was ineffective against the 

dominant H1N1 mutants in the 2008 flu 

season and was decreasingly effective 

against the dominant influenza mutant 

(Influenza A/H1N1) in the US in the 2009 

"Spring/Fall" pandemic ([7]).    

     In the World Health Organization 

serotype-based influenza taxonomy, 

influenza type A has nine neuraminidase-

related sero-subtypes, and these subtypes 

correspond at least roughly to differences in 

the active-site structures of the flu  

neuraminidases. The subtypes fall into two 

groups ([3]): group-1 contains the subtypes 

N1, N4, N5 and N8;  group-2 contains the 

subtypes N2, N3, N6, N7 and N9.  

Oseltamivir was designed to target the 

group-2 neuraminidases. 

     The available crystal structures of the 

group-1 N1, N4 and N8 neuraminidases 

([1]) reveal that the active sites of these 

enzymes have a very different three-

dimensional structure from that of group-2 

enzymes. The differences lie in a loop of 

amino acids known as the "150-loop", which 

in the group-1 neuraminidases has a 

conformation that opens a cavity not present 

in the group-2 neuraminidases. The 150-

loop contains an amino acid designated Asp 

151; the side chain of this amino acid has a 

carboxylic acid that, in group-1 enzymes, 

points away from the active site as a result 

of the 'open' conformation of the 150-loop. 

The side chain of another active-site amino 

acid, Glu 119, also has a different 

conformation in group-1 enzymes compared 

with the group-2 neuraminidases (8]). 

     The Asp 151 and Glu 119 amino-acid 

side chains form critical interactions 

with neuraminidase inhibitors. For 

neuraminidase subtypes with the “open 

conformation” 150-loop, the side chains 

of these amino acids might not have the 

precise alignment required to bind 

inhibitors tightly ([8]).    The active site 
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of the 1918 strain has the 150-loop 

configuration.  

     The difference in the active-site 

conformations of  the two groups of 

neuraminidases may also be caused by 

differences in amino acids that lie 

outside the active site. This means that 

an enzyme inhibitor for one target will 

not necessarily have the same activity 

against another with the same active-site 

amino acids and the same overall three-

dimensional structure ([17]).    

 

2.0  Method 
 

     he general objective of this study is 

straightforward:  to computationally assess 

the binding energy of the active site of 

crystallized 1918 pandemic strain 

neuraminidase with oseltamivir.    Unless 

otherwise noted, all processing described in 

this section was performed on a Dell 

Inspiron 545 with an  Intel Core2 Quad CPU 

Q8200 (clocked @ 2.33 GHz) and 8.00 GB 

RAM, running under the Windows Vista 

Home Premium (SP2) operating 

environment.   

     Protein Data Bank (PDB) 3BEQ is a 

structural description of most of the 

crystallized neuraminidase of  Influenza 

A/Brevig Mission/1/18 H1N1 (the principal 

1918 pandemic mutant).  3BEQ consists of 

two identical chains, designated Chain A 

and Chain B.  

     3BEQ was downloaded from PDB ([6]) 

on 31 January 2011.  A PDB description of 

oseltamivir was extracted from PDB 2HU4 

using Microsoft Word.  The automated 

docking suite AutoDock Tools v 4.2 (ADT, 

[9]) was used to perform the docking of 

oseltamivir to the receptor.  More 

specifically, in ADT, approximately 

following the rubric documented in [12] 
     -- Chain B, and the water in Chain A, of 

3BEQ were deleted  

     -- Chain A's active-site was extracted.  

(3BEQ identifies the active site of Chain A 

as 14  amides:  ARG118,  GLU119,  

ASP151,  ARG152,  ARG156,  TRP178,  

ARG224,  GLU227,   SER246,  GLU276,   

GLU277,  ARG292,   ARG371,  and 

TYR406.) 

     -- the hydrogens, charges, and torsions in 

the ligand and active site were adjusted 

using the ADT-recommended defaults 

and finally,  the ligand, assumed to be 

flexible wherever that assumption is 

physically possible, was auto-docked to the 

active site, assumed to be rigid, using the 

Lamarckian genetic algorithm  implemented 

in ADT. 

     The ADT parameters for the docking are 

shown in Figure 1.  Most values are, or are a 

consequence of,  ADT defaults. 

 
 

_________________________________________________________________________________________ 

 

 

autodock_parameter_version 4.2       # used by autodock to validate parameter set 

outlev 1                             # diagnostic output level 

intelec                              # calculate internal electrostatics 

seed pid time                        # seeds for random generator 

ligand_types C HD OA N               # atoms types in ligand 

fld 3BEQ_receptor.maps.fld           # grid_data_file 

map 3BEQ_receptor.C.map              # atom-specific affinity map 

map 3BEQ_receptor.HD.map             # atom-specific affinity map 

map 3BEQ_receptor.OA.map             # atom-specific affinity map 

map 3BEQ_receptor.N.map              # atom-specific affinity map 

elecmap 3BEQ_receptor.e.map          # electrostatics map 

desolvmap 3BEQ_receptor.d.map        # desolvation map 

move 3BEQ_Ligand.pdbqt               # small molecule 

about 0.5292 81.1637 109.1143        # small molecule center 

tran0 random                         # initial coordinates/A or random 

axisangle0 random                    # initial orientation 

dihe0 random                         # initial dihedrals (relative) or random 

tstep 2.0                            # translation step/A 

qstep 50.0                           # quaternion step/deg 
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dstep 50.0                           # torsion step/deg 

torsdof 7                            # torsional degrees of freedom 

rmstol 2.0                           # cluster_tolerance/A 

extnrg 1000.0                        # external grid energy 

e0max 0.0 10000                      # max initial energy; max number of retries 

ga_pop_size 150                      # number of individuals in population 

ga_num_evals 2500000                 # maximum number of energy evaluations 

ga_num_generations 27000             # maximum number of generations 

ga_elitism 1                         # number of top individuals to survive to next 

generation 

ga_mutation_rate 0.02                # rate of gene mutation 

ga_crossover_rate 0.8                # rate of crossover 

ga_window_size 10                    #  

ga_cauchy_alpha 0.0                  # Alpha parameter of Cauchy distribution 

ga_cauchy_beta 1.0                   # Beta parameter Cauchy distribution 

set_ga                               # set the above parameters for GA or LGA 

sw_max_its 300                       # iterations of Solis & Wets local search 

sw_max_succ 4                        # consecutive successes before changing rho 

sw_max_fail 4                        # consecutive failures before changing rho 

sw_rho 1.0                           # size of local search space to sample 

sw_lb_rho 0.01                       # lower bound on rho 

ls_search_freq 0.06                  # probability of performing local search on 

individual 

set_psw1                             # set the above pseudo-Solis & Wets parameters 

unbound_model bound                  # state of unbound ligand 

ga_run 10                            # do this many hybrid GA-LS runs 

analysis                             # perform a ranked cluster analysis 

 

Figure 1.  ADT parameters for the docking in this study 

 

______________________________________________________________________________ 

 

 

3.0  Results 

 
     The interactive problem setup, which 

assumes familiarity with the general 

neuraminidase "landscape", took about 20 

minutes in ADT;  the docking proper, about 

25 minutes on the platform described in 

Section 2.0  The platform's performance 

monitor suggested that the calculation was 

more or less uniformly distributed across the 

four processors at ~25% of peak per 

processor (with occasional bursts to 40% of 

peak), and required  a constant 2.9 GB of 

memory. 
     Figure 2 shows the oseltamivir/receptor 

energy and position summary produced by 

ADT.  The estimated free energy of binding 

is ~ -6.8 kcal/mol; the estimated inhibition 

constant, ~11 microMolar at 298 K. 

  

 

_____________________________________________________________ 

 
MODEL        3 

USER    Run = 3 

USER    Cluster Rank = 1 

USER    Number of conformations in this cluster = 4 

USER   

USER    RMSD from reference structure       = 127.033 A 

USER   

USER    Estimated Free Energy of Binding    =   -6.77 kcal/mol  [=(1)+(2)+(3)-(4)] 

USER    Estimated Inhibition Constant, Ki   =   10.92 uM (micromolar)  [Temperature = 

298.15 K] 

USER     

USER    (1) Final Intermolecular Energy     =   -8.86 kcal/mol 

USER        vdW + Hbond + desolv Energy     =   -5.53 kcal/mol 

USER        Electrostatic Energy            =   -3.32 kcal/mol 

USER    (2) Final Total Internal Energy     =   -0.83 kcal/mol 
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USER    (3) Torsional Free Energy           =   +2.09 kcal/mol 

USER    (4) Unbound System's Energy  [=(2)] =   -0.83 kcal/mol 

USER     

USER     

USER   

USER    DPF = 3BEQ.dpf 

USER    NEWDPF move 3BEQ_Ligand.pdbqt 

USER    NEWDPF about 0.529200 81.163696 109.114304 

USER    NEWDPF tran0 8.551498 16.101909 -1.664349 

USER    NEWDPF axisangle0 -0.077969 -0.447424 -0.890917 157.187877 

USER    NEWDPF quaternion0 -0.076430 -0.438587 -0.873322 0.197761 

USER    NEWDPF dihe0 -123.77 137.09 57.32 -80.84 72.77 -173.98 76.38  

USER   

USER                              x       y       z    vdW   Elec        q     RMS  

ATOM      1  C2  G39 A 800      11.180  16.277  -1.152 -0.26 +0.07    +0.091 127.033 

ATOM      2  C3  G39 A 800      10.774  17.200  -2.439 -0.19 +0.01    +0.050 127.033 

ATOM      3  C4  G39 A 800       9.409  16.835  -3.177 -0.19 -0.03    +0.209 127.033 

ATOM      4  C5  G39 A 800       8.339  16.597  -2.111 -0.26 -0.03    +0.143 127.033 

ATOM      5  C6  G39 A 800       8.792  15.389  -1.175 -0.14 +0.05    +0.147 127.033 

ATOM      6  C7  G39 A 800      10.177  15.431  -0.587 -0.16 +0.03    +0.049 127.033 

ATOM      7  O7  G39 A 800       7.734  15.216  -0.127 -0.28 -0.06    -0.379 127.033 

ATOM      8  C8  G39 A 800       7.830  14.301   1.041 -0.14 +0.06    +0.121 127.033 

ATOM      9  C9  G39 A 800       7.539  14.896   2.446 -0.27 +0.01    +0.027 127.033 

ATOM     10  C91 G39 A 800       8.557  15.914   2.989 -0.34 +0.00    +0.007 127.033 

ATOM     11  C81 G39 A 800       6.902  13.148   0.710 -0.14 +0.02    +0.027 127.033 

ATOM     12  C82 G39 A 800       6.273  12.570   1.937 -0.22 +0.01    +0.007 127.033 

ATOM     13  N5  G39 A 800       7.073  16.258  -2.868 -0.10 +0.07    -0.352 127.033 

ATOM     14  H5  G39 A 800       6.243  16.838  -2.746 -0.31 -0.10    +0.163 127.033 

ATOM     15  C10 G39 A 800       7.029  15.199  -3.701 -0.27 +0.15    +0.214 127.033 

ATOM     16  C11 G39 A 800       5.741  14.944  -4.393 -0.41 +0.15    +0.117 127.033 

ATOM     17  O10 G39 A 800       8.001  14.420  -3.927 -0.75 -0.34    -0.274 127.033 

ATOM     18  N4  G39 A 800       9.048  17.944  -4.058 -0.03 +0.09    -0.073 127.033 

ATOM     19  H42 G39 A 800       9.432  18.836  -3.744 -0.06 -0.66    +0.274 127.033 

ATOM     20  H41 G39 A 800       9.334  17.707  -5.009 -0.15 -0.14    +0.274 127.033 

ATOM     21  H43 G39 A 800       8.059  18.187  -3.996 -0.35 -0.76    +0.274 127.033 

ATOM     22  C1  G39 A 800      12.507  16.289  -0.582 -0.27 +0.22    +0.177 127.033 

ATOM     23  O1B G39 A 800      13.039  17.366  -0.157 -0.02 -0.91    -0.648 127.033 

ATOM     24  O1A G39 A 800      13.140  15.196  -0.518 -0.24 -1.23    -0.648 127.033 

 

                   

Figure 2.  ADT's oseltamivir energy and position predictions. 

 

_________________________________________________________________________ 

 

 

Figure 3 is a rendering of the active-site/inhibitor configuration computed in this study. 
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Figure 3.  Rendering of oseltamivir computationally docked with the active site of PDB 

3BEQ.  The inhibitor is shown in stick form.  Only the interior, inhibitor-containing region 

of the molecular surface of the active site can be compared to in situ data: the surface distal 

to the interior is a computational artifact,  generated by the assumption that active site is 

detached from the rest of the receptor. 

 

______________________________________________________________________________ 

 

 

4.0  Discussion 

 
     The method described in Section 2.0 and 

the results of Section 3.0 motivate several 

observations: 

     1.  The inhibition constant computed in 

this study (~11 microMolar at ~298 K) is 

comparable to the inhibition constant of 

oseltamivir/neuraminidase interactions that 

are not clinically effective ([11], [13]).  This 

suggests that oseltamivir would not be 

effective against the principal 1918 

pandemic mutant, A/Brevig Mission/1/18 

H1N1. 

     2.  The docking study reported here 

assumes that the receptor is rigid, and as a 

result, calculation does not reflect any 

energy contributions of receptor "flexing" to  

the interaction of the ligand with native 

unliganded receptor.  Future work will 

analyze the docking with a flexible receptor 

 

     3.  The analysis described in Sections 2.0 

and 3.0 assumes the neuraminidase is in a 

crystallized form (isolated at ~278 K).  In 

situ, at physiologically normal temperatures 

(~310 K), the receptor is not in crystallized 

form. The ligand/receptor conformation in 

situ, therefore,  may not be identical to their 

conformation in the crystallized form. 

     4.  Minimum-energy search algorithms 

other than the Lamarckian genetic algorithm 

used in this work could be applied to this 

docking problem.  Future work will use 

Monte Carlo/simulated annealing 

algorithms. 

     5.  A variety of torsion and charge 

models could be applied to this problem, and 

future work will do so. 
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MICE 
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KEY WORD;CYCLOHEXIMIDE,ABERRATIONS , 
CHROMOSOMES,EXCHANGES 
 
  ABSTRACT-Mice were injected i.p.with single dose 
of 0.5,2.5,5 mg/kg  bodyweight of cycloheximide.cells were 
sampled  for mitotic chromosome analysis 4,16 and 24 h 
after treatment.More than 60% of the cells carried at least 
one chromatid exchanges.The doses showed a time and dose 
related increase in aberration frequencies in linear 
manner.The majority of these exchanges derived from 
breaks in the centromeric heterochromatin. 
 
 
Cycloheximide  is regarded as effective protein synthesis 
inhibior it can effect and can have an opposite effect and can 
accurately induce the production of several proteins at both 
transcriptional level(ringold et al.,1984;Israel et al.,1985).A 
large numbers of reports have been published on mammalian 
cells regarding their protein synthesis inhibition properties 
by affecting 80s ribosomal units(cooper et al.,1987.Although 
some biochemical effect of this drug have been studied,the 
cytological and cytoplasmic effects have not yet been  
 
 
 

 
 
 
 
elucidated.The present investigation deals with the effects of 
cycloheximide in mouse bone marrow cells. 
 
 
    MATERIALS AND METHODS 
 
 
As many as three sets each containing three mice were 
injected intraperitoneally with cycloheximide(dissolved in 
distilled water)at 00.5,2.5and 5mg/kg body weight.The first 
set of mice was sacrificed after 4 hr.,the second set after 16 
hrand third set set after 24 hr.The mice received an injection 
of colchicines 4mg/kg three hours before sacrificing .Control 
mice received distilled water .The bone marrow suspension 
was collected and hypotonic treatment and cell swelling 
were done in usual way(Ghosh and Ghosh,1969).Slides were 
prepared by  air technique and stained with 
giemsa.Microscopic analysis was carried for each 
concentration and time duration and 150 metaphases were 
observed for treated  groups and 300 for control 
animals..The mitosis were analysed for chromatid type 
aberrations such as gaps,breaks and exchange.The selection 
was  based on uniform staining quality ,lack of overlapping 
chromosome and chromosome number(40+2).
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            RESULTS 
 
 Different type of aberrations induced by 
cycloheximide.Cells with  only gaps were notsignificantly 
more frequent in the experimental groups than in control 
groups.Cells with only breaks were frequent.The majority of 

the effected cells contained chromatid exchanges.Presence 
of translocations and ring chromosomes  are also notable 
feature.The lowest  dose yield a maximum number of 16 hr 
after treatment.Whereas the maximum number for highest 
dose occurred at  

 
 
 
 
TABLE;   Frequencies of different types of chromatid aberrations induced by cycloheximide in 
mouse bone marrow cells 
 
Dose 
Mg/kg 

Time 
(h) 

Number 
Of  
animals 

Total no 
Of cells 
observed 

Number 
of 
cellswith 
breaks 

Number 
of cells 
with 
gaps 

 cells with 
exchanges 

Percentage 
of 
exchanges 

0.5   4    3   150     1     8       1     0.67 
 16    3   150     1     5       20    11.00 
 24    3   150     1     2       13      9.00 
control     300     1     1       2      0.01 
2.5    4    3   150     0     6       2      0.36 
 16    3   150     2     4       50     31.00 
 24    3   150     2     5       55     35.00 
control     300     0     1       2      0.01 
5.0    4    3   150     2     0       3      1.33 
 16    3   150     1     6       62     44.00 
 24    3   150     2     3       75     55.00 
control     300     0     1       0       0.00 
        
 
 
 
           DISCUSSION
 
 
A perusal of the results shows that  cycloheximide induced 
chromosome and chromatid  type aberrations were seen in 
all treatments  indicate that the fungicide acted effectively 
during G1,SandG2 phase of cell cycle.Nevertheless ,the 
frequency  of aberrations being maximum  at the longest 
period of exposure indicates that fungicide remained active 
throughout the culture period and acted additively with 
increasing hours of exposure.The exposure  of cultured 
human lymphocytes pre-irradiated with ICGR of X-rays and 
their subsequent exposure to cycloheximide prevented their 
adaptation to higher doses of X-rays for the induction of 
chromosomal aberrations which may be due to the induction 
of repair enzymes(youngbloom et al.,1989).The positive 
correlation with respect to dose and durations confirm the 
clastogenicity of the drug.From the appearance of the 
exchanges it can be concluded that the breaking leading to 

these exchanges occur in the centrometric 
heterochromatin.(vadhuri et al.,1984) 
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Abstract— In [1], Abegaz et. al compared hybrid genetic 

and evolutionary feature selection (GEFeS) and weighting 

(GEFeW) on feature sets obtained by Eigenface, LBP, and 

oLBP feature extraction methods. GEFeS and GEFeW 

were implemented using a Steady-State Genetic Algorithm 

(SSGA). In this paper, we extend the work performed in 

[1] and compared GEFeS and GEFeW implementations 

using SSGAs and Estimation of Distribution Algorithms 

(EDAs). Our results show that GEFeS and GEFeW 

enhance the overall performance of both the Eigenface-

based and LBP-based methods. Comparing the hybrids, 

our results show that both LBP and oLBP-based hybrids 

performed better in terms of accuracy than the Eigenface-

based hybrids. In addition, the results also show that the 

EDA implementation of GEFeS (for the LBP and oLBP 

hybrids) has the best overall performance.  

 
 

Keywords— Local Binary Pattern (LBP), overlapped  Local 
Binary Pattern (oLBP),Eigenface, Steady State Genetic 

Algorithm (SSGA), Estimation and Distribution Algorithm 

(EDA), Feature Selection. 

I. INTRODUCTION 

Biometric Systems, recognition of individuals based on 

distinctive traits, has become an integral part of many 

applications [2]. Biometric systems generally consist of five 

commonly accepted steps: Sample Acquisition, Normalization, 

Feature Extraction, Feature Selection, and Classification [17]. 

Sample acquisition is used to obtain biometric traits such as 

fingerprints, iris, periocular, or facial images. Normalization is 

used to isolate the area of biometric region from any 

obscuring elements such as noise and homogenize variations 

such as size and color.  From the normalized images, feature 

extraction is performed to create a discriminatory feature 

vector used for recognition. The Eigenface and LBP methods 

are commonly used feature extractors. Feature Selection step 

is used to select a smaller subset of features. Classification is 

used to provide the similarity measure among different 

subjects to determine individual identity by measuring the 

distance of the features vectors 

Genetic & Evolutionary Computation (GEC) is a search 

strategy aimed to find an optimal (or near optimal) solution 

for a specific problem domain [4, 5, 6, 7,8] based on natural 

selection.  First, a number of individuals or candidates Feature 

Subsets are generated to form an initial population. Each 

candidate Feature Subsets (CFSs) is then evaluated and 

assigned a fitness value received from an evaluation function 

specific to the problem at hand. New CFSs are produced from 

the selected parents by the processes of reproduction. 

Survivors are selected from the previous generation and 

combined with the offspring to form the next generation. This 

evolutionary process continues for user specified number of 

cycles. 
This work is an extension of the research performed by 

Abegaz et. al [1]. In their work, Abegaz et al. used Genetic 

and Evolutionary Feature Selection (GEFeS) and Weighting 

(GEFeW) along with the Eigenface, Local Binary Pattern 

(LBP), and overlapped LBP (oLBP) methods. They created 

Eigen-GEFeS and Eigen-GEFeW hybrids that were instances 

of a Steady State Genetic Algorithm (SSGA). Their results 

showed that both LBP and oLBP-based GEFeS and GEFeW 

hybrids performed better in terms of accuracy than the 

Eigenface hybrids. Their results also showed that that both 

LBP-GEFeS and oLBP-GEFeS hybrids fell in the best 

equivalence class with respect to accuracy.  

In this paper, we extend the work of Abegaz et. al by 

comparing the performances of GEFeS and GEFeW that are 

instances of EDAs. In this paper, we will compare two 

instances of GEFeS (implemented using an SSGA and an 

EDA), and two instances of GEFeW (again, implemented 

using an SSGA and an EDA). The SSGA and EDA are based 

on the eXploratory Toolset for the Optimization Of Launch 

and Space Systems (X-TOOLSS) [9] which is suite of 12 

GECs which interface with evaluation functions expressed as 

executables of any programming language or script. 

 This work is motivated by the research of Gentile et. al [10, 

11]. Gentile et. al proposed a two-stage hierarchical process to 

reduce the number of feature checks required for an iris-based 

biometric recognition system.  Our target is a similar system 

for Face Recognition (FR) based on short length biometric 

templates that are able to achieve higher recognition 

accuracies. 

The remainder of this paper is as follows. In Section II, we 

explain the feature extraction techniques used as input for 

GEFeS and GEFeW. In Section III, we provide an overview 

of GEFeS and GEFeW. In Section IV, we present our 
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experiment. In Section V, we present our results. Finally, our 

conclusions and future work are presented in Section VI. 

II. FEATURE EXTRACTION USING EIGENFACE, LBP, AND OLBP 

The Eigenface method [13] is a feature extraction method 

that uses Principal Component Analysis (PCA). In this 

method, the gallery images are used to construct the face 

space using the eigenvectors as axes. Each image (both the 

gallery and the probe) is then projected into the face space 

spanned by eigenvectors (also known as Eigenfaces). This 

method usually ignores those Eigenfaces with less eigenvalues     

In the standard LBP method [14], an image is first divided 

into several patches (blocks) from which local binary patterns 

are extracted to produce a set of histograms from every non-

border pixel. Each histogram obtained from a patch is 

concatenated to construct the global histogram that represents 

the feature set. 

oLBP based feature extraction [17] is a variant of LBP that 

attempts to include the internal border pixels that are left out 

during the process of logical partitioning on the standard LBP 

method. This is done by logically overlapping the patches 

horizontally, vertically, and both horizontally and vertically 

with arbitrary number of pixels.   

III. GEFES AND GEFEW 

GEFeS and GEFeW [18, 19, 20, 21, 22, 23] were designed 

to select and weight high discriminating features used for 

biometric identification. In identification [24], the principal 

objective is to rank the gallery (set of known individual 

images and their associated feature vectors) by similarity to 

the probe (the newly acquired images and their feature 

vectors) by comparing the probe features with each of the 

gallery features. Such ranking is computationally expensive 

particularly for real world applications that involve large 

number of images in a dataset. GEFeS and GEFeW were 

developed to reduce the number of features by keeping those 

feature set combinations that have a higher discriminatory 

power. 

 Consider the vector shown in Figure 1.a as feature set. 

Furthermore, consider the vector shown in Figure 1.b as a 

candidate real-coded feature mask.  For GEFeS case, a 

masking threshold value is used to create a binary-coded 

candidate feature mask. A threshold value of 0.5 is applied to 

real coded-value to produce the binary-coded value. If a  

real-coded mask is greater than the threshold, then the value 

in the corresponding binary-coded vector is set to 1. 

Otherwise, the binary-coded value is set to 0. Figure 1.c 

shows the candidate binary-coded feature mask vector based 

on the real-coded feature mask shown in Figure 1.b.  Figure 

1.d shows the result of the features in Figure 1.a when 

feature masking (Figure 1.c) is applied to a feature vector. 

For GEFeW, the real-coded candidate feature mask is used 

to weight features within a subset of the feature set. The real-

coded candidate feature mask value is multiplied by each 

feature value to provide a weighted feature. If the number 

generated is 0 (or approximately equal to 0) the feature value 

is 0, which basically means that the feature is masked. Figure 

1.e shows the weighted feature vector 

 

 
a. Sample feature set vector 

 
b. Real-Coded Feature Mask 

 

c. Binary-coded candidate feature mask 

 

d. The Resulting feature vector after feature masking 

 
e. The Resulting feature vector after feature weighting 

 

Figure 1 Sample steps of feature selection and weighting 

 

The computation of the fitness for a candidate feature mask 

for GEFeS and GEFeW is shown in Equation 1. The fitness 

returned by the evaluation function for a feature mask is 

simply the number of errors associated with the feature mask 

(FM) multiplied by 10 plus the percentage of the original 

feature set that is used. The objective of the evaluation 

function is to minimize the number of recognition errors (i.e 

to increase accuracy) as well as to reduce the number of 

features needed for recognition. 

 

Fitness= (number of errors)*10 + %Features Used      (1) 

 

IV. EXPERIMENT 

 The dataset used in this research is a subset of the Face 

Recognition Grand Challenge (FRGC) dataset [25]. In our 

dataset, 280 subjects were used, with each subject having a 

total of 3 associated images with it. This subset was selected 

because it contains a variety of imaging conditions such as 

different ethnic origins, frontal images that were neutral and 

frontal images that had facial expressions. Out of 840 images, 

280 were used as the probe set and 560 images were selected 

for gallery. The images passed the pre-processing stages such 

as eye rotation alignment, histogram equalization, masking 

resizing (each with 225 by 195), and conversion of the images 

into greyscale. GEFeS and GEFeW were used on feature sets 

extracted using the Eigenface, LBP, and oLBP feature 

methods. oLBP based feature extraction methods provides 

information to determine whether including the border pixels 

has an impact on the recognition rate of the LBP based face 

recognition algorithm. 
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V.  RESULTS 

For our experiment, a total of 12 GEFeS and GEFeW 

instances were compared. Six of the GEFeS and GEFeW were 

instances of a SSGA and the other six were instances of an 

EDA. The SSGA instances evolved population of 20 FMs, 

had a Gaussian mutation rate of 1 and a mutation range of 0.2.  

The Mutation rate value of 1 implies that all children must 

undergo mutation. The mutation range provides a window 

from the current value (obtained value after recombination) 

that the new value will be mutated.  EDAs uses the probability 

density/distribution function (PDF), instead of crossover and 

mutation, to create new population. The PDF is formed using 

a percentage (25% in our case) of the top performing 

candidate solutions within the current population. Then, X 

offspring are created by sampling the PDF. Based on their 

fitness values, offspring are evaluated and a new population is 

created using the Y best performing individuals within the 

current population and the X - Y best offspring. 

The hybrids were each run a total of 30 times with a 

maximum of 1000 function evaluations. Our results are shown 

in Table I. In Table I, the columns represent the method used, 

average number features, the average percent accuracy, and 

the best accuracy obtained.  

ANOVA and t-Tests were used to divide the GEFeS and 

GEFeW instances as well as the baseline algorithms into 

equivalence classes. Comparing the baseline algorithms, the 

Eigenface method (EigenfaceBaseline) performs best.  

As can be seen in Table 1, applying GEFeS on the feature 

set extracted by the standard LBP method significantly 

improves accuracy from 70.36% to  96.75 % ( in the case 

LBP_GEFeSEDA) and 96.62% (in the case of  

LBP_GEFeSSSGA). This shows that GEFeS dramatically 

improves recognition accuracy. This improvement in accuracy 

also comes with a reduction in the number of features used for 

recognition.  

Compared to the GEFeS hybrids, the results show that the 

GEFeW hybrids used a larger number of features. Using a 

larger number of features brings a better result in the case of 

Eigen-GEFeW as compared to Eigen-GEFeS. Surprisingly, in 

the case of LBP-GEFeW and oLBP-GEFeW the result is the 

opposite. Utilizing a significantly larger number of features 

actually decreases the accuracy for both LBP-GEFeW and 

oLBP-GEFeW as compared to their corresponding methods. 

In terms of accuracy, LBP-GEFeSEDA and oLBP-GEFeSEDA 

outperformed all the other hybrids and are in the best 

equivalence class. All methods performed well in terms of 

reducing the number of features needed and in producing a 

significant improvement in accuracy from their corresponding 

baseline methods. 

 

 

 

 

 

 

 

TABLE I 

EXPERIME4TAL RESULTS   OF THE LBP, OLBP A4D 

EIGE4FACE METHODS 

Methods 4umber of  

Features Used 

Average %  

of Accuracy 

Best 

Accuracy 

LBPBaseline 2124 70.36 70.36 

oLBPBaseline 2124 70.71 70.71 

EigenfaceBaseline 560 87.14 87.14 

Eigen-GEFeSSSGA 291.2 86.67 87.85 

LBP-GEFeSSSGA 

 

1022.1 96.62 97.14 

oLBP-GEFeSSSGA 

 

1018.46 96.43 96.79 

Eigen-GEFeSEDA 

 

277.45 87.05 88.21 

LBP-GEFeSEDA 

 

938.763 96.75 97.14 

oLBP-GEFeSEDA 936.23 96.73 97.14 

Eigen-GEFeWSSGA 492.8 91.42 92.5 

LBP-GEFeWSSGA 1865.29 95.33 95.71 

oLBP-GEFeWSSGA 1865.08 95.33 96.07 

Eigen-GEFeWEDA 548.8 93.19 94.64 

LBP-GEFeWEDA 2108.23 94.64 95.36 

oLBP-GEFeWEDA 2106.9 94.56 95.36 

 

Figure 2 shows the Cumulative Match Characteristic (CMC) 

curve for the LBPBaseline , oLBPBaseline, EigenfaceBaseline, 

and for the methods that fall in the first equivalent class.  

LBP-GEFeSEDA, oLBP-GEFeSEDA obtain approximately 

97.50% accuracy at rank 10. However, EigenfaceBaseline 

performed well (approximately 96%) at rank 10. LBPBaseline 

performed relatively poor in terms of accuracy.  
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Figure 2: Comparisons of CMC results for baseline and 

the best performing algorithms   
 

VI. CONCLUSION AND FUTURE WORK 

The experimental results of applying feature selection and 

weighting using the concept of GEC on LBP, and oLBP 

shows that GEFeS and GEFeW enhances the overall 

performance of the LBP and Eigenface based feature 

extractions. Feature selection and weighting result indicate 

that both LBP and oLBP hybrids performed much better than 

the Eigenface hybrids. Our results suggest that hybrid GECs 

for feature selection/weighting enhance the overall 

performance of the Eigenface, LBP, and oLBP-based methods 

while reducing the number of features needed. Our future 

work will be devoted towards the investigation of GEFeS and 

GEFeW based on other forms of Genetic and Evolutionary 

Computation. 
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Abstract - Particle Swarm Optimization (PSO) is one of the 
most widely used heuristic algorithms. The simplicity and 
inexpensive computational cost make this algorithm very 
popular and powerful in solving wide ranges of problems. 
However, PSO suffers two problems of trapping in local 
minima and slow convergence speed. Binary version of this 
algorithm has been introduced for solving binary problems. 
Because BPSO uses the same concepts of PSO, it also 
undergoes the same problems. The main part of the binary 
version is the transfer function. There is not enough study in 
the literature focusing on the transfer function. In this study, 
eight new transfer functions dividing into two families (s-
shape and v-shape) for binary particle swarm optimization are 
introduced and evaluated. Four benchmark optimization 
problems are employed in order to evaluate these transfer 
functions in terms of avoiding local minima, convergence 
speed, and accuracy of results. The results prove that the new 
introduced v-shape family of transfer functions could improve 
the performance of original binary PSO based on the above-
mentioned drawbacks. 

Keywords: Optimization Algorithm (MOA), Magnetic field 
theory; Function optimization; Transfer function 

 

1 Introduction 
  Particle Swarm Optimization (PSO) is one of the most 

widely used evolutionary algorithms inspired from social 
behavior of animals [1,2]. The simplicity and inexpensive 
computational cost make this algorithm very popular. Due to 
above-mentioned advantages, PSO has been applied to many 
domains such as medical detecting [3], grid scheduling [4], 
robot path planning [5], and video abstraction [6]. In spite of 
these advantages, like all other population-based algorithm, 
trapping in local minima and slow convergence rate are two 
unavoidable problems for PSO. With the increase of 
problems’ dimension, these two problems become more 
complex.  PSO is capable of solving problems which have 
continuous search space. However, some problems have 
different search spaces. 

There are many optimization problems, which have 
discrete binary search spaces. They need binary algorithms to 
be solved. Binary version of PSO was proposed by Kennedy 
and Eberhart in 1997 [7]. Like PSO, binary version of PSO 

has the problems of trapping in local minima and slow 
convergence speed because of using the same concepts for 
solving problems [8]. The only different element between 
these two algorithms is transfer function that is used to map 
continuous search space to the binary one. Transfer function 
is the most important part of binary PSO [9]. In the literature, 
there is not enough study about the transfer function. In This 
study, eight different transfer functions for binary version of 
PSO are introduced and evaluated. The effectiveness of 
employing these new transfer functions are investigated in 
terms of avoiding local minima, convergence speed, and 
accuracy of results. 

The rest of the paper is organized as follow. Section II 
presents a brief introduction to PSO. Section III discusses the 
basic principles of binary version of PSO. The experimental 
results are demonstrated in section IV. Finally, section V 
concludes the work and suggests some researches for future 
works. 

2 The Particle Swarm Optimization 
PSO is an evolutionary computation technique which is 

proposed by Kennedy and Eberhart [10,11]. The PSO was 
inspired from social behavior of bird flocking. It uses a 
number of particles (candidate solutions) which fly around in 
the search space to find best solution. Meanwhile, they all 
look at the best particle (best solution) in their paths. In other 
words, particles consider their own best solutions as well as 
the best solution has found so far.  

Each particle in PSO should consider the current position, 
the current velocity, the distance to pbest, and the distance to 
gbest to modify its position. PSO was mathematically 
modeled as follow: 

𝑣𝑖𝑡+1 = 𝑤𝑣𝑖𝑡 + 𝑐1 ×  𝑟𝑎𝑛𝑑 × (𝑝𝑏𝑒𝑠𝑡𝑖 − 𝑥𝑖𝑡)               
        + 𝑐2 ×  𝑟𝑎𝑛𝑑 × (𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖𝑡)               (1) 

       𝑥𝑖𝑡+1 = 𝑥𝑖𝑡 + 𝑣𝑖𝑡+1                  (2) 

where 𝑣𝑖𝑡  is the velocity of particle i at iteration t, w is a 
weighting function, 𝑐𝑗 is a weighting factor, rand is a random 
number between 0 and 1, 𝑥𝑖𝑡is the current position of particle i 
at iteration t, 𝑝𝑏𝑒𝑠𝑡𝑖 is the pbest of agent i at iteration t, and 
gbest is the best solution so far. 
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The first part of (1), 𝑤𝑣𝑖𝑡 , provides exploration ability for 
PSO. The second and third parts, 𝑐1 × 𝑟𝑎𝑛𝑑 × (𝑝𝑏𝑒𝑠𝑡𝑖 − 𝑥𝑖𝑡) 
and 𝑐2 × 𝑟𝑎𝑛𝑑 × (𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖𝑡), represent private thinking 
and collaboration of particles respectively. The PSO starts 
with randomly placing the particles in a problem space. In 
each iteration, the velocities of particles are calculated using 
(1). After defining the velocities, the position of masses can 
be calculated as (2). The process of changing particles’ 
position will continue until meeting an end criterion. 

3 Binary Version of Particle Swarm 
Optimization 

Generally, there are many problems which have intrinsic 
discrete binary search space like feature selection and 
dimensionality reduction [12,13]. In addition, the problems 
with continuous real search space can be converted into 
binary problems. However, a binary search space has its own 
structure with some limitations. 

A binary search space can be considered as a hypercube. 
The agents of a binary optimization algorithm can only shift 
to nearer and farther corners of the hypercube by flipping 
various numbers of bits [7]. Hence, for designing binary 
version of PSO, some basic concepts such as velocity and 
position updating process had been modified. 

In the original PSO, particles can move around the search 
space because of having position vectors with continuous real 
domain. Consequently, the concept of position updating can 
be easily implemented for particles adding velocities to 
positions using (2). However, the meaning of position 
updating is different in a discrete binary space. In binary 
space, due to dealing with only two numbers (“0” and “1”), 
the position updating process cannot be done using (2). 
Therefore, we have to find a way to use velocities to change 
agents’ positions from “0” to “1” or vice versa. In other 
words, we have to find a link between velocity and position, 
as well as revise (2). 

Basically, in discrete binary space, the position updating 
means a swithcing between “0” and “1” values. This 
switching should be done based on velocities of agents. The 
question here is that how the concept of velocity in real space 
should be employed in order to update positions in binary 
space. According to [7,14,15], the idea is to change position 
of an agent with the probability of its velocity. In order to do 
this, a transfer function is needed to map the velocities values 
to probability values for updating the positions. 

As mentioned above, transfer functions define the 
probability of changing position vector’s elements from “0” 
to “1” and vice versa. Transfer functions force agents to move 
in a binary space. According to [14], some concepts should be 
taken into account for selecting a transfer function in order to 
map velocity values to probability values. 

The transfer function should be able to provide a high 
probability of changing the position for a large absolute value 
of the velocity. It should also present a small probability of 
changing the position for a small absolute value of the 
velocity. Moreover, the range of a transfer function should be 
bounded in the interval [0,1] and increased with the 

increasing of velocity. The function that have been used in [7] 
are presented as (3). This function is also depicted in Fig.1. 

          𝑆 �𝑣𝑖,𝑗𝑘 (𝑡)� = 1

1+𝑒
−𝑣𝑖,𝑗

𝑘 (𝑡)
         (3) 

The above-mentioned transfer function and the new 
introduced transfer functions in this work are listed in Table I.  
These transfer functions are also visualized in Fig.1 and 
Fig.2. We call the first and second groups s-shape and v-
shape family transfer functions respectively. According to [7], 
for the transfer function in Fig.1, we use (4) in order to update 
position vectors. According to [14], for the transfer function 
in Fig.2, we use (5) to update position vectors based on 
velocities. It should be noticed that these transfer functions 
satisfy all aforementioned concepts. 

     𝑥𝑖,𝑗𝑘 (𝑡 + 1) = �
0           If 𝑟𝑎𝑛𝑑 < 𝑆 �𝑣𝑖,𝑗𝑘 (𝑡 + 1)�

1           If 𝑟𝑎𝑛𝑑 ≥ 𝑆 �𝑣𝑖,𝑗𝑘 (𝑡 + 1)�
�           (4) 

 

  𝑥𝑖,𝑗𝑘 (𝑡 + 1) = �
𝑐𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡 �𝑥𝑖,𝑗𝑘 (𝑡)�  If 𝑟𝑎𝑛𝑑 < 𝑆 �𝑣𝑖,𝑗𝑘 (𝑡 + 1)�

𝑥𝑖,𝑗𝑘 (𝑡)                                If 𝑟𝑎𝑛𝑑 ≥ 𝑆 �𝑣𝑖,𝑗𝑘 (𝑡 + 1)�
�    (5) 

   

TABLE I.  TRANSFER FUNCTIONS 

No Transfer Functions 
1 𝑆(𝑥) =

1
1 + 𝑒−2𝑥

  
2 [7] 𝑆(𝑥) =

1
1 + 𝑒−𝑥

 
3 

𝑆(𝑥) =
1

1 + 𝑒
−𝑥
2

 

4 𝑆(𝑥) =
1

1 + 𝑒
−𝑥
3

 

 
5 𝑆(𝑥) = �erf�

√𝜋
2
𝑥�� = �

√2
𝜋
� 𝑒−𝑡2
√𝜋
2 𝑥

0
𝑑𝑡� 

6 [14] 𝑆(𝑥) =  | tanh(x) | 
7 𝑆(𝑥) = � 

𝑥
√1 + 𝑥2

� 

8 𝑆(𝑥) =  �
2
𝜋

arctan (
𝜋
2
𝑥)� 

 
Figure 1.  S-shape family transfer functions 
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Figure 2.  V-shape family transfer functions 

The general steps of Binary PSO are as follows.  
a) All particles are initialized with random values 
b) Repeat steps c-e until the meeting of the end 

 condition 
c) For all particles, velocities are defined using (1) 
d) Calculate probabilities  for  changing elements of 

position vectors based on  transfer  function’s 
formula. 

e) Update the elements of position vectors based on the 
rules in (4) or (5) based on the type of transfer 
function 
 

4 Experimental results and discussion 
In order to evaluate the performance of new binary 

versions of PSO called BPSO with different transfer 
functions, 4 standard benchmark functions are employed [16]. 
Table II lists down these benchmark functions and the range 
of their search spaces. Fig.3, Fig.4, Fig.5, and Fig.6 illustrate 
them, Spherical, Rastrigin, Rosenbrock, and Griewank 
functions, respectively. Furthermore, function’s dimension is 
set to 5 (m=5). To represent each continuous variable, 15 bits 
are used. It should be noticed that one bit is reserved for the 
sign of each functions’ dimension. Therefore, the dimension 
of agents are 75 (Dim=m×15).  

TABLE II.  BENCHMARK FUNCTIONS 

 Function Range 

𝐹1(𝑥) = � 𝑥𝑖2
𝑛

𝑖=1
 [-100,100]m 

𝐹2(𝑥) = � [100(𝑥𝑖+1 − 𝑥𝑖2)2 + (𝑥𝑖 − 1)2]
𝑛−1

𝑖=1
 [-30,30]m 

𝐹3(𝑥) = � [𝑥𝑖2 − 10𝑐𝑜𝑠(2𝜋𝑥𝑖) + 10]
𝑛

𝑖=1
 [-5.12,5.12]m 

𝐹4(𝑥) =
1

4000
� 𝑥𝑖2 −� 𝑐𝑜𝑠 �

𝑥𝑖
√𝑖
� + 1

𝑛

𝑖=1

𝑛

𝑖=1
 [-600,600]m 

 

Figure 3.  Spherical function (F1) 

 

Figure 4.  Rastrigin function (F2) 

 

Figure 5.  Rosenbrock function (F3) 

 

Figure 6.  Griewank function (F4) 
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In this paper, our objective is minimization. The global 
minimum values for all appeared functions in table I are 0. 
The number of particles is 30, C1 and C2 are set to 2, W is 
linearly decreased from 0.9 to 0.4, maximum velocity is set to 
6, maximum iteration is set to 500, and the stopping criteria is 
the meeting of maximum number of iteration. According to 
[14], to achieve a good convergence rate, the velocity should 
be limited. So, the maximum velocities for all versions of 
BPSO in this work are set to 6. 

The experimental results are presented in Table III. The 
results are averaged over 30 independent runs, and the best 
results are indicated in bold type.  

TABLE III.  MINIMIZATION RESULTS OF 4 BENCHMARK FUNCTIONS OVER 
30 INDEPENDENT RUNS 

F Algorithm ABSF a STDV b MBSF c Best d 
 
 
 
F1 

BPSO1 
BPSO2 
BPSO3 
BPSO4 
BPSO5 
BPSO6 
BPSO7 
BPSO8 

0.4921 
5.2965 

33.3306 
71.0918 
0.7844 
0.3514 
0.2663 
0.0977 

0.4165 
2.7657 

17.0770 
37.9921 
2.9905 
0.8997 
0.7691 
0.2725 

0.3822 
4.6684 
30.58 
59.313 
0.0044 
0.0179 
0.0063 
0.0064 

0.0492 
1.7044 
2.5258 

18.2828 
0 
0 
0 
0 

 
 
 
F2 

BPSO1 
BPSO2 
BPSO3 
BPSO4 
BPSO5 
BPSO6 
BPSO7 
BPSO8 

20.2467 
65.3304 

437.3886 
744.8748 
26.7199 
21.1831 
14.8538 
7.3941 

26.1441 
79.3444 
347.783 

623.8992 
45.3441 
34.2671 
33.188 

19.4263 

8.366 
39.838 

310.043 
612.7769 

8.5981 
6.7977 
3.2592 
2.9353 

2.0515 
5.8852 

68.5187 
57.498 
1.5156 
07392 
0.8658 
0.1093 

 
 
 
F3 

BPSO1 
BPSO2 
BPSO3 
BPSO4 
BPSO5 
BPSO6 
BPSO7 
BPSO8 

2.2054 
4.1528 
8.2714 

12.4642 
1.9923 
2.0495 
1.8899 
1.6945 

1.0149 
1.6081 
3.3343 
3.2046 
0.8618 
0.8105 
1.2806 
0.7212 

2.2792 
3.6184 
8.6903 

12.6385 
1.9932 
1.995 
1.7407 
1.9903 

0.2207 
2.23 

1.7784 
6.1475 
0.995 
0.995 
0.0242 
0.9952 

 
 
 
F4 

BPSO1 
BPSO2 
BPSO3 
BPSO4 
BPSO5 
BPSO6 
BPSO7 
BPSO8 

0.2598 
0.3985 
0.6403 
0.7989 
0.1684 
0.1762 
0.1351 
0.1032 

0.0868 
0.1088 
0.1612 
0.1465 
0.1068 
0.1016 
0.0904 
0.0655 

0.2776 
0.3753 
0.6409 
0.8471 

0.161432 
0.1623 
0.1154 
0.0958 

0.0558 
0.1961 
0.2682 
0.4665 
0.0272 
0.0144 
0.0330 
0.0154 

a. Indicates average best so far solution over 30 runs in the last iteration 
b. Indicates standard deviation of the best so far solution over 30 runs in the last iteration 

c. Indicates median best so far solution over 30 runs in the last iteration 
c. Indicates the best solution over 30 runs in all iteration 

 
For functions F1 and F2, BPSO8 reaches better results 

than other algorithms for ABSF and STDV variables in Table 
II. The functions F1 and F2 belong to family of unimodal 
functions which are monotonous functions without any local 
solution. As shown in the Fig.3 and Fig.4, there is only one 
global solution for these kinds of functions. Hence, the results 
of the aforementioned statistical variables show BPSO8 
improve the ability of exploiting the global minima in original 
BPSO with its new transfer function.  

The results for Best variable in Table III prove that 
BPSO8 also owns best result accuracy among the other 

algorithm. Moreover, Fig.7 and Fig.8 prove that BPSO8 
possesses good convergence rate in the last iterations. 

According to Table III, for functions F3 and F4, BPSO8 
outperform other algorithms in all statistical variables. 
Functions F3 and F4 are multimodal functions that have many 
local solutions in comparison with unimodal functions. 
Hence, it can be said that BPSO8 with its new transfer 
function could enhance the ability of original BPSO to avoid 
local minima.  

The results of Best variable in Table III for BPSO8 also 
insist on having more accurate results than the other 
algorithms. Fig.9 and Fig.10 prove that BPSO8 has better 
convergence speed in multimodal functions for the last 
iterations as well. 

To summarize, results prove that family of s-shape 
transfer functions with their method of updating position are 
not suitable for binary version of PSO. In contrary, the new 
introduced v-shape family of transfer functions with their 
special method of updating positions is useful for binary 
version of PSO in terms of avoiding local minima, 
convergence speed, and accuracy of results. It can be 
concluded that the new introduced family of transfer function 
has merit to use in binary algorithms. 

 

Figure 7.  Comparison between BPSOs with diffetent transfer functions on 
fuction F1 

 

Figure 8.  Comparison between BPSOs with diffetent transfer functions on 
fuction F2 
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Figure 9.  Comparison between BPSOs with diffetent transfer functions on 
fuction F3 

 

Figure 10.  Comparison between BPSOs with diffetent transfer functions on 
fuction F4 

5 Conclution 
In this paper, some new versions of binary PSO are 

introduced utilizing different new transfer functions. Eight 
new transfer functions dividing into two families (s-shape and 
v-shape) are introduced and evaluated. In order to justify the 
performance of all versions, four benchmark functions are 
employed, and the results are compared together. The results 
prove that the new introduced v-shape family of transfer 
functions with their own method of updating positions vector 
can improve the performance of original binary version of 
PSO in terms of avoiding local minima, convergence rate, and 
results’ accuracy. The results also show that new introduced 
v-shape family of transfer function has merit for binary 
algorithms. 

For future studies, it is recommended to use the new 
introduced family transfer function for the other binary 
algorithms like Binary Gravitational Search Algorithm. 
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Modeling Time series with missing and incorrect values using Self
Adaptive Genetic Algorithms
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Abstract— In this work it is presented a methodological
proposal to build models for Time Series with missing and
erroneous values. This methodology consist of two stages:
first, it is realized an estimating of the missing and erroneous
values of the series; and second, it is built a model for
the series. The proposal is based on Self Adaptive Genetic
Algorithms that were especially utilized to calculate ARMA
models for the NN5-REDUCED problems which results are
presented in this work. This methodology here presented can
be generalized for the treatment of this type of Time Series
by other non linear models that use, for example, neuronal
networks, fuzzy logic, etc.

Keywords: Time Series, Genetic Algorithm, Missing Values.

1. Introduction
Time Series (TS) are modeled to forecast the behavior of

real data, but in several occasions, by different causes, values
of some series are lost or erroneous values are registered.
This is the case of the competence examples NN5 in which
all the problems set out to model its behavior come from
cash dispensers where in some days, for any reason, it was
not recorded the total money withdrawn. Also, some days
present the value of zero, that from the process point of
view it is an erroneous data since it does not reflect the total
money withdraw from the cash dispenser. In real life these
problems appear when modeling different phenomena for
which are important to have an alternative process to treat
them.

In this work we approach the problem of constructing
models for this type of TS who present missing and er-
roneous values. It is necessary to add that in our case it
is important to know which the erroneous values are and
to have and idea of the interval in which they change. The
main idea of this work is to rebuild the missing or erroneous
information of the series supposing that the type of model
who fits to the series is known.

Our proposition consists of two main stages. In the first
stage an estimate of the missing and erroneous values is
done, to this one we named it: TS correction stage. In the
second stage it is work with the original series to which it
had been added the estimated values to build an appropriated
model. In our own case it will be utilized linear models for

both stages, but in this methodological proposal it can be
used other non lineal models such as neuronal networks,
fuzzy logic, etc.

The problem of finding a good linear model for a series of
data requires to determine, first, how many and which are the
terms most appropriate to solve this problem. Afterwards,
it is necessary to know in which interval are the linear
expression coefficients, and finally it is important to know
the values of this coefficients that minimize the square
error over all the history. This leads us to set out a non
linear optimization problem with variables in real intervals
which limits it is necessary to specify. This problem has
multiple local minimums by which appropriate optimization
techniques are needed.

In order to solve this problem, first, the principal results
of the TS statistical analysis [3],[6] are applied to calculate
the biggest number of terms that will appear in the series,
as well as the intervals in which these change.

Later on, to estimate the best coefficients of the lin-
ear expression we used Genetic Algorithms (GA) that are
optimization techniques that implement global multi-point
search, quickly locating areas of high quality. For a success-
ful implementation of the GA it is required to estimate the
value of certain parameters which is achieved by means of
numerous tests. In this work it were implemented versions
of the Self Adaptive Genetic Algorithms (SAGA) since with
these there is eliminated the stage of repeated test that are
needed for the adjustment of parameters, achieving with
this that the same version of the code solves any TS linear
modeling problem without the intervention of the user.

The plan of the work is as follow. In the second section the
results for the linear models that we will use in our proposal
are summarized. In the third section the SAGA characteris-
tics that will be used are described. In the fourth section the
algorithm that we use to calculate the autoregressive models
of a series are presented. Afterwards, in the fifth section, the
procedure to correct the values of the series and to calculate
the ARMA models of the same are presented. Finally, in the
sixth section are shown the result of modeling the examples
of the NN5-REDUCED 2008.
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2. Principal Results of Linear Models
The univariated TS were analyzed by Box-Jenkins [3],

from the construction of equations in differences with a
random additive component named white noise. From the
above mentioned models they determined the conditions un-
der which it is presented the stationarity of the series and the
scheme that should be followed to estimate the parameters
of the particular model. The most general model is named
ARMA (p, q) and indicates the presence of autoregressive
components in both the observable variables xt and in εt
with

εt = xt −

(
δ +

p∑
i=1

φixt−i

)
and

x̂t = δ +

p∑
i=1

φixt−1 +

q∑
j=1

γjεt−j ,

where φi and γj are the AR and MA coefficients, and δ is a
constant. This model can be generalized to an autoregressive
integrated moving average (ARIMA) by differentiating the
time series TS to a certain level.

In our case with regards to the first correction stage of the
series only autoregressive models are considered, whereas
for the second stage only the models ARMA are calculated.

The autoregressive models of order p are represented by
the expression:

xt = δ + φ1xt−1 + φ2xt−2 + · · ·+ φpxt−p + at, (1)

where traditionally at is a white noise. In this work at it will
not be a white noise, and in the case the model corresponds
to a stationary series δ and φj are constants that satisfy the
following relations:

|φ1| < 1, µ =
δ

1−
∑
φj
, (2)

and ∑
φj < 1.

µ represents the series average. The relation (1) and (4) are
a consequence of the stationarity property.

As soon as we have an autoregresive model for a series,
it can be considered another new series formed by the
differences between the original values of the series and
the values of the model. When an autoregressive model was
calculated for this new series, this is equivalent to estimate
the MA part of the original series with which we would have
a complete ARMA model.

The most common way to analyze an ARIMA model is
calculating the root of the sum of the square (RSS) or to
use the mean absolute percentage error (MAPE). With the
methodology that we propose it can be constructed models
with different values of the parameters p and q in such a
way that RSS always diminishes when the values of these
parameters increase, which can leads to an over fitting that

provokes that the model fits very well to the data series but
do not forecast well the future values. To avoid this problem
it will be used as a measure of the quality of the model the
statistical estimator Bayesian Information Criterion (BIC)
as it is used in [4], [9].

BIC = N ∗ ln(RSS2/N) + p ∗ ln(N), (3)

where N denotes the number of training examples and p the
number of parameters.

3. Self Adaptive Genetic Algorithms
The GA were developed by John Holland [7] and are

inspired in basic principals that rules the evolution of the
species. It have been successfully used to solve several
problems [5]. To apply them it is necessary: a genetic
representation of the organism, a way of create an initial
population, a performance function that evaluates the adap-
tation of an individual to his environment and separates the
better one, according to its performance by a process called
selection, and the genetic operators who alter the structure
of the children and the values of several parameters that are
required by the algorithm.

In our proposal the individuals will be vectors of real
components. The initial population it will be randomly
created. The performance functions always will be RSS.

The selection process will be carried out by means of the
tournament selection [8]. In order to avoid the premature
convergence problem in each selection moment there only
can be ten copies of the best individual. The genetic op-
erators will be the multiple crossings and mutations. The
parameters that will be used are population size, individual
crossing probability, crossing repetition, individual mutation
probability and mutation repetition. This is necessary be-
cause in our model the probability of crossing and mutation
are the characteristics of each individual and not of the
population as it is traditional in the GA. Besides it is
considered that crossing and mutation can be multiple, that
is to say, it can act several times with the same individuals.
The individuals crossing it will be realized exchanging
the components of the individual and the mutation of the
individual is the change in value of a component of the
individual among his limits.

The SAGA were developed by Thomas Back [1], [2] and
have the characteristic that automatically search the best
parameter to its functioning. In our case the population
size for the problems in the stage correction it will be
of 20, and when the SAGA will be utilized to calculate
some autoregressive model the population size will be fix
an equals 100. Also, in both stages we will use the same
values for the four self adaptable parameters that will be:
individual crossing probability that varies in the interval
[0.5, 0.95], crossing repetition [1.0, 4.0], individual mutation
probability that varies in the interval [0.5, 0.85] and mutation
repetition in [1.0, 5.0]. The individual for each stage it will
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be solution proposals for the same and additionally will
have four components more where it will be represented the
values of the self adaptable parameters. The way of operating
with these parameters is similar to the one presented in [1],
[2] taking the respective average of the corresponding case.
Next are described the way of calculating the autoregressive
models using SAGA.

4. Calculus of the Autoregresive Models
The algorithm proposed it is developed considering as

the function to minimize: the RSS. First, it is necessary
to select the series that will be used among the following
ones: the original series, the series of the first differences,
the series of the second differences, and in our case it is
included the possibility of working with the series of the
third differences. In order to decide this is selected the
series that presents the minimum variance, what assures that
the selected series is stationary. Once decided the series
that will be used it is calculated the number of necessary
numbers for the linear approximation of the selected series
taking into account the autocorrelation function considering
all the terms between two consecutive maximums of this
function. With the previous information the limits for the
coefficient intervals of the chosen series are constructed, and
to do this are all the coefficients are taken in [−1, 1] except
the independent term whose limits are estimated between
zero and the average value of the series. The reason why
these limits are established was obtained from the equation
. Afterwards, 10 repetitions of 500 iteration were realized for
each SAGA and with each results it is constructed a solution
by means of the average sum of the absolute values of the
10 results. This gives information about the most important
components since these will have the major value.

Later on the components of the previous solution are
ordered from major to minor and it is selected the number
of values of the model parameters. With the components
already chosen and the same limits established beforehand
5 executions of SAGA are realized taking as stop criterion
that in 250 previous iterations the optimum has not changed,
and from these 5 executions it is selected the best result
obtained.

Finally, with the above result, it is constructed a solution
for the original series and with this result new limits are built
taking in each variable of the solution a vicinity of radium
1. At this moment 5 more executions of SAGA similar to
the above paragraph are realized and finally it is taken the
best result of these 5. The smallest terms are neglected.

5. Series Correction
To find the missing values of the series it is calculated

the minimum of the values different from zero of the series
and the maximum of these. The first supposition that will
be made with regards to the missing values is that these

values are between these limits. For the zero values it is
established the supposition that the values are in the interval
[−5, 5]. With all these limits it can be generated the genetic
algorithm that it is applied in the first stage.

Later on it is chosen a number K that is the number of
terms of the autoregressive model that will be found for
the series. To do this it is generated an initial population of
20 individuals (this really means the assignment of values
between the limits to the missing and erroneous values of the
series). In order to evaluate each individual it is considered
the series that results of the correction of the original series
applying the values that correspond to the individual and
calculating an autoregressive model with K terms. The RSS
it is taken as the fitness value of the individual for the model
above mention.

Subsequently 30 iteration of SAGA are realized and the
end it was found at a RSS value that indicates if the
correction with K terms was good. This is realized by
several K values, and ultimately by means of the BIC are
chosen the number of terms utilized to modeling and which
are the values that will be used to correct the series. It is
important to notice that this stage is very short because is
extremely costly in computational effort.

Several autoregressive models are calculated for different
values of K close to the value before for the corrected series.
This is done in this way because the iterations realized
in the first stage were very few. With these results and
applying again the BIC (5) it is decided what is the best
autoregressive model of the series.

Finally, it is constructed the residuals series and for
this it is calculated another autoregressive model with the
procedure mention above obtaining this way the complete
ARMA model.

5.1 Results of NN5-Reduced
In the Table 1 are shown for each example of NN5-reduce

the time lags that appear in the component of AR and MA
of each value, as well as the correspondent RSS value. The
value of zero in some time slag corresponds to δ in the
autoregressive part.

Table 1: Results.
Problem AR MA RSS

101 <0,1,3,7,8> <2,7,14,21> 146.775
102 <0,1,7,8> <7,21,28> 241.653
103 <0,1,7,14,21> <2,3> 59.172
104 <0,1,2,5,6,7> <7,21> 247.434
105 <0,1,2,3,5,7> <21> 140.760
106 <0,1,7> <7,14,21> 201.833
107 <0,1,7,8> <7,14,21> 165.027
108 <0,1,6,7> <7,21,28> 157.073
109 <0,1,2,4,6,7> <7,28> 245.326
110 <0,1,2,6,7,8,10, 14,16> <21> 186.946
111 <0,1,6,7,11,12,14,16,21> <14,21> 156.629
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6. Appendix
Finally in figures 1-11 are presented the series graphs for

the last 80 values, as well the corresponding forecast.
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Fig. 4: Example 104.
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Fig. 10: Example 110.

Fig. 11: Example 111.
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Abstract - An important vehicle routing problem in the 
military context is the routing of unmanned aerial vehicles 
(UAVs). In this paper, a multi-chromosome representation 
genetic algorithm (MCGA) is proposed to solve the UAV 
routing problem that is essentially of the form of multiple 
travelling salesman problem with time windows. We apply the 
MCGA to the data based on the Solomon’s benchmark 
instances. The MCGA obtained solutions within 20% of the 
best known solution in an average time of less than 50 seconds 
for 100-customer instances.  These findings suggest that the 
MCGA proposed is viable for solving UAV routing problems 
as it is able to produce good quality results within acceptable 
computation time for problems with realistic size. 

Keywords: UAV Route Planning, Vehicle Routing Problem 
with Time Windows, Genetic Algorithm, Multi-Chromosome 
Representation 

1 Introduction 
  Unmanned aerial vehicles (UAVs) are typically used in 
the military to provide intelligence sources to commanders so 
that well-informed decisions can be made in the battlefield. 
Initial route planning of the UAVs is usually done by human 
operators manually [2]. Given that there may be many targets 
and operational constraints to consider, it is desirable to 
improve the quality and speed of deriving the solution with a 
heuristic that outperforms manual routing. 

A main objective of UAV route planning for reconnaissance 
missions is to solve the problem of task allocation and routing 
of multiple UAVs, using the minimum number of UAVs. 
Thus, the quality of a solution is evaluated based on the 
number of UAVs used. This is to take into account of the 
nature of military operations where UAV resources might not 
always be available because of operational constraints. 
However, due to the time critical nature of military missions, 
the quality of the solutions could sometimes be secondary to 
the time taken to obtain the solutions. 

In this paper, the problem of interest is the routing of multiple 
homogeneous UAVs to complete their missions by visiting all 
targets at given time windows. It is in the form of the multiple 
travelling salesman problem with time window constraints 
(MTSPTW) that minimizes the required number of UAVs. 

Given the computational difficulty of solving even the basic 
travelling salesman and vehicle routing problems of large 
size, the use of heuristics or metaheuristics is common, 
especially when the problem size exceeds 50 customers [1].  

2 The UAV Routing Problem 
 In this section, we present a model of the UAV routing 
problem. This model is modified from the model in            
Tan et al. [6]. In particular, the service time at any target is 
assumed to be equal to the time window of the target in the 
UAV routing problem as this is the planned surveillance time 
for the target. This is different from what is known generally 
for usual routing problems, such as vehicle routing problem 
with time windows (VRPTW) and MTSPTW, where service 
time is independent of time windows. 

2.1 Notations Used 

  We first define the sets, parameters and decision 
variables that are to be used in the formulation of the UAV 
routing problem. 
 
The sets include the following: 
U = {1, 2, …, K} is the set of all UAVs. 
T = {1, 2, …, N} is the set of all targets. 
T′ = T U{0} where 0 denotes the base. 
 
The parameters include the following: 
Dk = maximum endurance of UAV k (k∈U). 
si = time to perform mission at target i (i∈T). 
ai = start of the time window for the assigned UAV to perform 
mission at target i (i∈T). 
bi = end of the time window for the assigned UAV to perform 
mission at target i (i∈T). 
tij = time taken to travel from target i to target j (i, j∈T, i ≠ j). 
 
The decision variables include the following: 
ti = time that the assigned UAV arrives at target i (i∈T). 
li = loiter time for the assigned UAV at target i before the start 
of the time window for target i (i∈T). 
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2.2 Mathematical Programming Model 

 The model modified from [6] is then formulated as 
follows: 
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ti + li = ai           (i∈T)   (10) 
ti, li ≥  0           (i∈T)   (11) 

    xijk ∈ {0,1}   (i, j∈T′, i ≠ j, k∈U)   (12) 

Equation (1) shows the objective function of minimizing the 
number of UAVs used. Constraint (2) ensures that there are 
no more than K routes out of the base. Constraint (3) 
guarantees that every UAV that leaves the base also returns to 
the base at the end of the tour. Constraints (4) and (5) make 
sure that each target is visited exactly once only. Constraint 
(6) ensures that the endurance of any UAV is not exceeded in 
each tour. Constraint (7) initializes the time parameters at the 
base to zero. Constraint (8) takes into account of the mission 
time at each target as the time window duration. Constraints 
(9) and (10) ensure that precedence constraints are met. 
Constraints (11) and (12) restrict the range of the variables. In 
the next section, we describe a multi-chromosome genetic 
algorithm (MCGA) that can be used to solve the UAV routing 
problem, taking into account most of the above constraints. 

3 The Proposed MCGA 
 Király and Abonyi [3] proposed a novel chromosome 
representation based genetic algorithm to solve the multiple 
travelling salesman problem. It was reported that this multi-
chromosome representation can reduce the search space and 
is easily interpretable. This is in contrast to the single 
chromosome representation by Tan et al. [6], which requires 
an additional step to retrieve the information on customers 
that are allocated to each vehicle. However, the objective 
considered in [3] involves the transportation cost and there is 
no detailed discussion about how the time window constraints 
are handled, while only a small scale problem of 25 
customers is used to show the effectiveness of the algorithm 
in solving the problem. Here, the MCGA described in this 
paper is used to solve the MTSPTW with a larger scale of 100 
targets that focuses on minimizing the number of UAVs 
required. 

3.1 Multi-Chromosome Representation 

 In the multi-chromosome representation, each individual 
chromosome of a population is subdivided into multiple sub-
chromosomes, which represent one UAV each. Thus, each 
sub-chromosome contains the targets assigned to the 
corresponding UAV and the order in which the targets are 
visited. For example, a sub-chromosome k would represent 
UAV k being deployed to visit targets )()(

2
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1  , , , k
n

kk
k

iii L  in this 

order, where nk is the total number of targets visited by UAV 
k. Here, )()( l

q
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p ii ≠  whenever k ≠ l or p ≠ q. Also, the sub-
chromosomes are only created when a new UAV is required 
to visit the remaining targets, with the number of sub-
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Note that the output of such a representation is easily 
interpretable and does not require additional decoding or 
processing to retrieve the solution. 

3.2 Initial Population 

 When forming an initial population for the MCGA, 
some chromosomes are created using simple heuristics, such 
as the Earliest Due Time, Earliest Opening Time and Tightest 
Time Window. The rest of the chromosomes are created and 
initialized with a random starting feasible route using the 
Push Forward Insertion Heuristic (PFIH) introduced by 
Solomon [5]. Here, only feasible solutions with no violation 
of any constraints would be created and added to the initial 
population. The PFIH would determine the best insertion 
position for each unrouted target and choose the target that 
results in the largest amount of savings, while taking into 
consideration of both distance and time window feasibility. 
Therefore, only feasible insertions are being made. If no more 
feasible insertions can be performed on a UAV, a new UAV 
would be assigned for insertion. This will repeat until all 
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targets have been assigned to a UAV or the maximum 
number of UAVs available has been utilized. 

3.3 Crossover 

 After an initial population has been obtained or after 
each generation of evolution, selection of chromosomes as 
parents to the next generation would be done based on the 
following fitness fc for each chromosome c = 1, 2, …, NC: 

c
c K

f 1
=           (13) 

 
where NC is the number of chromosomes in a population. In 
the selection process, elitist strategy is used, while the roulette 
wheel selection method is used for the selection of parents for 
crossover in which the probability pc of chromosome c being 
selected is given by: 
 

∑
=

=
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i
i
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c
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.        (14) 

 
In our approach, a single parent operator (see e.g., [4]) that 
takes into account of the time window constraints is used. 
Firstly, two sub-chromosomes are randomly chosen from the 
selected parent chromosome. Then instead of simply 
appending the genes of one sub-chromosome, say A, to the 
end of the other sub-chromosome, say B, each gene of A 
would be inserted to the first available and feasible position in 
B. This would be done until all the targets in A are 
completely inserted into B, or if there are no more feasible 
insertion places for the remaining targets of A. In the event 
that all targets in A are inserted in B, it would resemble the 
crossover operator of simply combining two sub-
chromosomes, leading to a reduction in the number of UAVs 
required. In situations where not all targets in A were inserted 
into B, all insertions made previously would be undone and 
returned to the original state before crossover with a 
probability equal to the mutation probability.  

3.4 Mutation 

 With the multi-chromosome representation, four 
different methods of mutation have been adopted in this 
MCGA. They are classified into in-route and cross-route 
mutations based on the classification in [3]. In particular, two 
methods of in-route mutation and two methods of cross-route 
mutation as described next are implemented. For the first in-
route mutation, two genes would be randomly chosen from 
the same sub-chromosome that was randomly selected 
initially, and a swap would be performed. For the second in-
route mutation, a gene would be randomly chosen from a 
randomly selected sub-chromosome. Then, a new position in 

that sub-chromosome would be randomly chosen, and the 
selected gene would be removed from its original position 
and inserted into the new position. For the first cross-route 
mutation, two genes would be randomly chosen from two 
randomly selected sub-chromosomes, and a swap would be 
performed. For the second cross-route mutation, a gene would 
be randomly chosen from a randomly selected sub-
chromosome. Then, a new position in another randomly 
selected sub-chromosome would be randomly chosen, and the 
selected gene would be removed from its original position 
and inserted into the new position.  

When a chromosome is selected to mutate, one of these four 
mutation methods would be invoked randomly. If the 
mutation is feasible, the mutated chromosome would be 
copied to the new generation. Otherwise, the mutation would 
not take place. 

4 Computational Results 
 The performance of the MCGA has been tested with the 
56 100-customer Solomon instances [5], which are well-
known benchmark tests for the VRPTW. Although the UAV 
routing problem is of the form of the MTSPTW, the best 
known solutions to the Solomon instances would serve as an 
indicative bound to the solutions of the equivalent MTSPTW 
instances, which do not have the VRPTW capacity 
constraints. 

The MCGA was designed and implemented using the GAlib 
[7]. The code used to implement the MCGA and the 
associated operators were written in the Visual Studio C++ 
Express 2008 environment, and the tests were conducted on a 
32-bit 2GHz Intel Core 2 Duo Processor with 2GB of 
memory, running on the Microsoft Windows Vista operating 
system. The population size for the MCGA computational 
runs is 30 and the number of generations is 200. The 
probabilities of crossover and mutation are 0.7 and 0.05 
respectively. This set of parameters was selected based on 
sample trial runs done on selected problems with different 
sets of parameters. 

Table 1 shows a comparison of the number of vehicles 
required using the proposed MCGA to that of the best known 
solutions for the Solomon’s instances (Best NV). The average 
number of vehicles required over all the 56 instances is within 
12% of the average Best NV value. For each of the problem 
types, the MCGA results are found to be within 20% of the 
Best NV value, and MCGA performed the best for problem 
type C1 with only a percentage difference of less than 2%. 
Note that the percentages are generally smaller if the best 
MCGA values have been used in the comparison instead of 
the average MCGA values used in the table. 
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Table 1: Comparison of average MCGA objective values and computation time 
  

Problem Type Best NV MCGA Average Percentage Difference Computation Time (secs) 
C1 10.00 10.18 1.78 13.58 
C2 3.00 3.48 15.83 63.15 
R1 12.25 13.87 13.20 10.82 
R2 2.82 3.18 12.90 92.02 

RC1 11.63 13.73 18.06 11.50 
RC2 3.38 3.80 12.59 69.10 

Average 7.36 8.23 11.89 43.11 

 

 
 
 Table 1 also summarizes the computation time needed 
by the MCGA. The average computation times required to 
solve the 56 Solomon’s problems is found to be 43.11 
seconds. However, the computation times for problem type 2, 
namely C2, R2, RC2, where time windows are larger and 
more targets assigned per vehicle, are correspondingly longer 
than that for problem type 1. 

5 Conclusions 
 In this paper, a multi-chromosome representation 
genetic algorithm has been applied to solve the UAV routing 
problem in the form of the MTSPTW with the objective of 
minimizing the number of UAVs used. The output of the 
representation is easily interpretable and does not require 
additional processing to retrieve the solution. From the 
computational results, it is found that the MCGA is able to 
provide good quality solutions that are within 20% from the 
best known solutions. The average computation time of 43 
seconds for the 100-customers instances is also encouraging 
as realistic UAV routing problems are expected to be of 
comparable problem size.  

Future work includes applying the MCGA to solve larger 
instances to test the scalability of the algorithm. It is also 
possible to reduce the computation effort required by the 
MCGA through improving the choice of parameters used in 
the MCGA. 
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