
SESSION

NOVEL ALGORIHMS AND APPLICATIONS +
METHODOLOGIES

Chair(s)

TBA

Int'l Conf. Foundations of Computer Science | FCS'11 | 1

2 Int'l Conf. Foundations of Computer Science | FCS'11 |

Optimization of out-of-core data preparation methods

identifying runtime determining factors

Tamás Schrádi
1
, Ákos Dudás

2
 and Sándor Juhász

3

Department of Automation and Applied Informatics, Budapest University of Technology and Economics, Budapest,

Hungary
1
Tamas.Schradi@aut.bme.hu
2
Akos.Dudas@aut.bme.hu

3
Sandor.Juhasz@aut.bme.hu

Abstract: In the data preparation phase of a data mining task the

raw, fine granulated data has to be transformed according to

analytical aims into a more compact form in order to represent data

at a higher abstraction level suitable for machine processing and

human understanding as well. Vast datasets require sophisticated,

out-of-core methods, which are prepared to handle these datasets

using external storages during their execution. In this paper we

investigate different pre-processing approaches to overcome the

limitation of the size of the main memory from theoretical and

practical points of view. We propose possible alternatives for

different processing scenarios. Both of the proposed out-of-core

algorithms are capable of processing datasets which are by orders of

magnitude larger than the main memory; all this is done in a fault-

tolerant way and even on an average PC.

Keywords: out-of-core methods; data preparation; Periodic

Partial Result Merging, K-way Merge based Technique; performance

analysis

1 Introduction and motivation

Data mining, an interdisciplinary field of science has the
aim of revealing the knowledge from datasets, which are not
suitable for human understanding due their high cardinality and
high dimensionality. A data mining tasks consists of different
steps, one of which is data preparation. After determining the
objective of the whole data mining process, in the data
preparation phase the raw dataset has to be transformed
according to analytical aims into a higher abstraction level
form. The transformed data can be cleaned, filtered, separated
and then an actual data mining method (e.g. classification,
clustering, time series analysis, etc) can be performed on the
prepared dataset.

The transformation of the dataset usually cannot be avoided
in data mining tasks in transaction based systems. In these
system the primary goal, and the organizing scheme of the
whole dataset, is to fulfill the requests of users. It is also typical
that some meta-information related to the requests are usually
stored in form of log files. Such log files contains in raw form
of raw data different behaviors, frequent patterns, which are the
typical targets of data mining based knowledge revealing. To
serve the large number of user requests as soon as possible the
logging in such systems must happen in a quick way. In
everyday workflow there is no time for a long logging
operation, thus the logs typically store elementary data. Beside

the significant time constraint for logging we do not necessarily
know in advance what kind of analytical task will be executed,
thus what kind of data representation to use. Consequently
there is no guarantee that a transformation between two high
abstraction level datasets can be done. Because of these
arguments the logging typically happens at a low abstraction
level.

The log requires a pre-processing which can consume
significant portion of the whole data mining process; data
preparation is one of the most time-consuming tasks regarding
the different phases of a data mining task [1]. The acceleration
of the whole data mining analysis can be achieved with the
speed-up and optimization of data preparation step. The bigger
the dataset is the more emphasized the efficient data
preparation task should be.

In Web analytics the log analysis is a frequently applied
technique, when datasets based on server side logs are
analyzed. The principle of storage at low abstraction level
presented in the previous paragraph is reasonable in the case of
log file analysis as well. The log files store the elementary data
belonging to the interactions of the users (e.g. the timestamp of
the request or the type of the browser, which initiated the user
request, operating system, etc). With cookie-based techniques
the users can be tracked and a profile can be derived, which
describes the behavior of the user [2][3]. It is not the specific
profiles that are important for content providers, but the typical
groups of users, which is valuable information for them. To
identify the typical user groups we can apply clustering, which
has the aim of detecting the typical groups, but before this, the
raw dataset must be transformed into an analyzable form.

Our research is motivated by a real life project dealing with
Web log mining. This paper focuses on the performance
analysis and on factors which determine the execution time of
out-of-core methods. The profiles about the temporal behavior
of users are derived from a dataset containing more than 6
billion records about the temporal behavior of users. Based on
the user identifier and on the timestamp of the request a
complex structure has to be derived, a temporal profile created
by aggregating the clicks belonging to the same user. Such a
huge cardinality calls for out-of-core methods in order to
process the raw dataset. The fact, that a log belonging only to a
single month contains more than 6 billion records supports the

Int'l Conf. Foundations of Computer Science | FCS'11 | 3

need for out-of-core processing for analysis over a longer
period of time. The proposed algorithms, the Periodic Partial
Result Merging and K-way Merge based Technique are
scalable, out-of-core methods, capable of process datasets
several times bigger than the main system memory.

The organization of this paper is as follows: Section 2
presents the properties of methods dealing with large datasets
and the state-of-the-art scientific approaches in this field.
Section 3 introduces two novel out-of-core approaches, their
execution time analysis compared to execution complexities of
other approaches and the execution time determining factors of
algorithms. Section 4 shows the results of algorithms measured
on real datasets, while the last section summarizes our work
and presents possible further work.

2 Related work

Although the amount of available memory has been

significantly increasing during the past decades, handling

large datasets is a still challenging problem in environments

limited by. In this paper a dataset is regarded large, if it does

not fit in the main memory at the same time. During the

evolution of computers this size is continuously varying. In

computer-related literature several approaches were published

how to handle such vast datasets.

Creating a representative subset of the original dataset

based on statistical sampling is a frequently applied method to

solve the problem of limited memory. With simple random

sampling or a more sophisticated sampling technique (e.g.

stratified sampling) a dataset can be generated which has very

similar statistical properties to the original dataset. Thus,

according to our assumption the processed datasets will share

similar statistical properties as the result of the original

dataset. But from a sample-based dataset only a partial result

can be generated; this fact makes this method inappropriate for

problems requiring results based on the whole dataset (e.g.

aggregation).

Another approach to overcome the limited memory issue is

the compression of the dataset. This technique is based on the

idea, that the redundancy of the dataset makes it

unmanageable large. According to information theory, there is

a lower bound of compression, thus in general there is no

guarantee that the compressed dataset will in fact fit in the

main memory. The compression of a dataset can be done using

specific data structures which can have other favorable

properties as well, like in [4][5][6]. Another issue related to

the compression is whether such external data structures can

be designed that have a similar I/O performance as the

uncompressed structures [7]. A compressed, external data

structure, with competitive I/O performance could further

accelerate the data preparation step.

If we have to process large datasets by orders of magnitude

larger than the size of main memory out-of-core methods can

be a well-scalable solution. Out-of-core methods make the

processing even in a memory limited environment possible by

the usage of secondary storages (e.g. hard disks). These

methods follow a partitioning principle, which means that the

original dataset is processed in smaller blocks, resulting partial

processed sets, from which the global result can be obtained.

Due to the high cardinality of dataset the principle is

applicable so that the partial results are stored on a secondary

storage, freeing the main memory for processing another

block.

In out-of-core literature we can find several techniques for

generation of global result from the partial results: the global

result of some problems can be generated as the union of the

partial result sets, as presented in [8][9][10]. For other

problems a merging can be the applicable technique to

determine the global dataset from partial results [11][12]. In

other cases a more complex algorithm has to be performed to

derive the global result [13].

We have approaches which solve the memory limited

issues using secondary storages. In this paper we discuss the

performance analysis of these methods and an essential factor

of the out-of-core methods can be observed even in conceptual

phase. If we take a look at the up-to-date computer

architecture a crucial runtime determining factor can be

pointed out: accessing a secondary storage lasts more than

accessing the same data being actually held in main memory.

This factor influences the efficiency of processing, resulting

that in an out-of-core method the number of I/O instructions

should be kept at a minimum level.

This requirement of minimal I/O instructions is essential

from another point of view as well: the raw datasets are

generated in an automated way, continuously, thus it is needed

to avoid the extrusion of the raw data. This could be done by

assuring that the procedural steps have linear time complexity,

which in general cannot be satisfied. But if we keep the I/O

instructions at the lowest level the performance of the

processing will be still efficient to avoid data extrusion.

Based on the two previous points the core-efficiency of the

out-of-core methods depends on whether they read only

constant times the input dataset or not.

Before applying an out-of-ore method the block size has to

be chosen: the successively, equal-sized partitioning is a

trivial, but working method [11][12][14]. But according to [9]

a sophisticated partitioning approach can have performance

increasing effect. The carefully chosen size is an important

performance determining factor, because with it the consumed

memory can be controlled. An eager, in-memory algorithm

will be presented in this paper to demonstrate the undesirable

behavior of the processing when the main memory reaches its

physical bounds.

3 Out-of-core processing methods

In this paragraph five different processing approaches are
presented, together with their runtime complexity analysis and
the resulting factors. First we discuss an in-memory algorithm,
which have a major shortcoming assuming that processed data
will fit in the main memory at the same time. Two different
extension ways will be presented to overcome the problem of
limited memory: dataset modification (sampling, compression)

4 Int'l Conf. Foundations of Computer Science | FCS'11 |

and out-of-core methods (Periodic Partial Result Merging and a
K-way based Merging).

3.1 An eager method

In order to illustrate the weaknesses of an in-memory
algorithm an eager processing method is presented in this
paper. This method is not only important because demonstrates
the incapability of the eager approach, but its out-of-core
extensions are the base of the other algorithms. Although the
name of the algorithm suggests that this approach is not a
sophisticated one, still some facts have to be taken into
consideration to build an efficient core approach. During the
aggregation we have to find one specific element among
millions of others, thus a very fast searchable container is
needed. This container will be held in the main memory and
this will be refreshed periodically. A well-scaled hash-based
container makes the search fast (O(1)). The eager method
works as follows: at every procedural step the hash-based
container is updated and when the processing is done, the hash-
based container from the main memory is saved to a persistent
storage (hard disk).

Assuming that our dataset contains n records, partitioned
equally-sized (a block contains m records), the number of

blocks created with partitioning is 𝑠 =
𝑛

𝑚
 . A further

assumption is that from an 𝑥 sized dataset 𝛼 𝑥 will be the size
of the resulting dataset, where 𝛼 ≪ 1. Investigating the disk
complexity of the eager method, we have to read all s pieces of
blocks from hard disk and write the aggregated dataset back to
it, expressed by the following formula:

𝑐𝑑𝑖𝑠𝑘 = 𝑚

𝑠

𝑖=1

+ 𝛼 𝑛 = 1 + 𝛼 𝑛 (1.1)

Similarly, the procedural complexity can be calculated
based on the following expression

𝑐𝑝𝑟𝑜𝑐 = 𝑓(𝑚)

𝑠

𝑖=1

= 𝑔 𝑚 𝑛, (1.2)

where g(m) is a monotonically increasing function, expressing
the time of processing of an m sized block. As the formulas
suggests this is a fast method, but its applicability is limited
due to immense memory need of the algorithm, bounded only
by the size of the processed dataset.

3.2 Sampling

In some cases sampling could be a possible solution for a
large dataset. This algorithm samples the block and picks up an
m’ sized dataset, so that the whole sample will fit in the main
memory and then the eager method can be done on it.
Assuming a 𝛾 sampling ratio 𝛾 < 1 the disk and processing
complexity of the algorithm can be expressed as follows.

𝑐𝑑𝑖𝑠𝑘 = 𝑚′

𝑠

𝑖=1

+ 𝛼 ∙ 𝛾 ∙ 𝑛 = 1 + 𝛼 𝛾 ∙ 𝑛 (2.1)

𝑐𝑝𝑟𝑜𝑐 = 𝑓(𝑚′)

𝑠

𝑖=1

= 𝛾 ∙ 𝑔 𝑚′ 𝑛 (2.2)

The incompleteness of the resulting dataset makes this
algorithm inappropriate for our aggregation problem, although
the complexities are reduced.

3.3 Compression

Compressing the resulting datasets could mean another
approach to handle a vast dataset: here the processing is done
according to eager method, but every partial result is
compressed in the memory. Assuming a compression ratio of
𝜂, 𝜂 < 1 the disk and processing complexity of this approach
is as follows

𝑐𝑑𝑖𝑠𝑘 = 𝑚

𝑠

𝑖=1

+ 𝛼 ∙ 𝑛′ = 1 + 𝛼 ∙ 𝜂 𝑛 (3.1)

𝑐𝑝𝑟𝑜𝑐 = 𝑓(𝑚)

𝑠

𝑖=1

= 𝑔′ (𝑚)𝑛, (3.2)

where g’(m) denotes the time needed to process an m-sized
dataset and to compress it. This approach has the same problem
like the eager method, namely the memory constraint, because
there is no guarantee that the compressed dataset will fit in the
main memory. Furthermore the processing algorithm should be
able to handle compressed data structures, which lead to
additional runtime.

3.4 Periodic Partial Result Merging

The Periodic Partial Result Merging algorithm processes
only smaller sized datasets at the same time in the main
memory, creating a local result on the storage [15][16]. After
processing the first dataset the result is saved to the storage,
while in other steps the actual partial result is merged with the
existing one from the disk. In this approach the local results are
propagated during the phases of processing, and they are
merged after finishing the processing of a block. After the last
merging the resulting dataset will be the global result. The
processing of a data block is done according to the eager
method, but here a block fits in the main memory. An essential
step in whole processing is the merging phase. In order to
elaborate an efficient working version of the algorithm, an
ordering is needed, defined on processed datasets, this ensuring
a minimal additional execution time, caused by merging.

Having the same assumption regarding the cardinalities, the
disk complexity and the processing complexity can be
expressed as follows:

𝑐𝑑𝑖𝑠𝑘 = 𝑚

𝑠

𝑖=1

 1 + 𝛼𝑖 2𝑖 − 1 ≈ 𝑛 +
𝛼

𝑚
𝑛2 (4.1)

Int'l Conf. Foundations of Computer Science | FCS'11 | 5

Figure 1. The runtime of different versions of Periodic Partial Result Merging

𝑐𝑝𝑟𝑜𝑐 = 𝑓 𝑚 + 𝑖 ∙ 𝑚 ∙ 𝛼𝑖 ∙ 𝛽

𝑠

𝑖=1

≈
𝑓(𝑚)

𝑚
+

𝛼 ∙ 𝛽

2
 𝑛 +

𝛼 ∙ 𝛽

2𝑚
𝑛2 ,

(4.2)

where β is a factor making the execution time of processing
and merging operations commeasurable and f(m) denotes the
processing cost of a m-sized block.

Both of the complexities are quadratics in the number of
elements to be processed. As mentioned in a previous
paragraph it is essential to keep the number of I/O instruction
linear in number of elements. This can be approximated
making the coefficient of the quadratic member closer to zero
than to one, thus decreasing the undesirable effect of this

member. The average compression factor of the dataset 𝑂 1

is a fixed property, which usually satisfies our prerequisite
being a small positive number, close to 0. In the denominator
of the coefficient we have the size of a block; increasing the
size of the block the value of the fraction will decrease, making
its value even closer to zero. Based on this observation the
bigger the size of a block is, the more efficient will the
algorithm be, but due to memory constraint we cannot increase
the size of the memory arbitrarily. By choosing a big dataset
size the effect of the quadratic member can be reduced, in the
processing complexity as well.

3.5 K-Way Merge based Technique

The K-way Merge based Technique follows the partitioning
principle too, but besides propagating the results at every
procedural step, separates the processing from merging, being
to different phases of the processing. As first step the algorithm
processes all the partitioned blocks, according to eager method.
It is essential to remark that the blocks are partitioned so, that
the processing can be done in the main memory. After
processing a block the resulting dataset is saved to the
persistent storage. When all the blocks are processed, the
merging phase will be done on partial results saved to disk,
containing processed elements. This means a k-way merge
among the elements, resulting at the root of the merging tree
the global result.

Having the same assumptions with cardinalities, the disk
and runtime complexity of this algorithm can be expressed as
follows:

𝑐𝑑𝑖𝑠𝑘 = 𝑠 ∙ 𝑚 + 2
𝑠

𝑘𝑖

 log 𝑘 𝑠 −1

𝑖=1

∙ 𝛼 ∙ 𝑚 ∙ 𝑘𝑖 + 𝛼 𝑚𝑘 log 𝑘 𝑠

𝑐𝑑𝑖𝑠𝑘 ≈ 2𝛼 ∙ n ∙ log𝑘 𝑛 + 1 + 𝛼 1 − 2 log𝑘 𝑚 𝑛 (5.1)

𝑐𝑝𝑟𝑜𝑐 = 𝑠 ∙ 𝑓 𝑚 +
𝑠

𝑘𝑗
 𝛼 ∙ 𝑚 ∙ 𝑘𝑗 ∙

𝑠

𝑘𝑗
 𝛼 ∙ 𝑚 ∙ 𝑘𝑗

 log 𝑘 𝑠

𝑖=1

𝑐𝑝𝑟𝑜𝑐 ≈ 𝛼 ∙ 𝑛 ∙ log𝑘 𝑛 +
𝑓(𝑚)

𝑚
− 𝛼 ∙ log𝑘 𝑚 𝑛 (5.2)

A basic runtime determining factor is the number of levels in
the merging tree; so many times will the slow I/O instructions
be performed. Reducing these levels, i.e. merging more files at
the same time can increase run-time, but here another factor
should be taken into consideration as well. Namely, reading
from several files during a merge, causes performance
decrease, due to continuous positioning on the hard disk. This
factor is not expressed in formulas, but the experimental results
support it. Both of the complexities can approximated with
𝑂(𝑛 ∙ log𝑘 𝑛) complexity.

3.6 Hybrid approach

The determination of block size is a crucial step in PPRM,
thus we propose that amount of processed data at the same time
to be determined based on memory usage. It is an adaptive
version of PPRM because the number of blocks processed at
one procedural step is determined by the used memory amount.

Beside this optimization we propose an algorithm
consisting of two steps: first according to the adaptive version
of PPRM we aggregate log records until we get a given number
of partial result. This number is the optimal number of ways in
k-way based merging, because the resulting aggregated chunks
are processed with the k-way merge as the next step. The value
of k in the merge phase is equal with the number of remaining
chunks after the processing with PPRM.

With this approach we overcome the high hard disk
demand of the K-Way Merge based Technique, but we gain in
performance with second step, due its lower complexity.

6 Int'l Conf. Foundations of Computer Science | FCS'11 |

Figure 2. Performance analysis of the K-Way Merge Based Technique

Figure 3. The block-specific execution time components of Periodic Partial Result Merging

TABLE I. PROPERTIES OF DIFFERENT APPROACHES, HANDLING LARGE

DATASETS

Eager

method
Sampling

Compre

ssion
PPRM

K-way Merge

based

Technique

I/O

cost
𝑂(𝑛) 𝑂(𝛾 ∙ 𝑛) 𝑂(𝑛) 𝑂(𝑛2) 𝑂(𝑛𝑙𝑜𝑔(𝑛))

Proc.

cost
𝑂(𝑛) 𝑂(𝑛)

𝑂(𝑛)
+C/D

𝑂(𝑛2) 𝑂(𝑛𝑙𝑜𝑔(𝑛))

Result

type
Compl. Partial Compl. Compl. Compl.

Limits
 Memory

limits

 Memory

limits

Merging is
applicable

to generate

the result

Merging is
applicable to

generate the

result

4 Experimental results

The experiments were carried out in two different

environments: the first hardware configuration (CPU: AMD

Athlon at 2800 MHz, memory: 512 MB, operating system:

Windows XP Professional) represented a memory limited

environment in order to show the weaknesses of the in-

memory approach, while the second configuration (CPU: Intel

Pentium 4 at 3200 MHz, memory: 4 GB, operating system:

Microsoft Windows Server 2003) meant a real test

environment. The algorithms, presented in this paper were

implemented in C++.

The graphs based on tests executed on the first

configuration are presented in Figure 1; the other figures are

created from the results of tests carried out in the second

environment.

Figure 1 proves the necessity of out-of-core processing. In

this test we used the memory limited configuration to show

the incapability of the eager method to process effectively in a

memory limited environment. The figure on the left side

shows the runtime of different methods. It is clearly that the

curve corresponding to the runtime of the eager method, when

the physical memory reaches its limit and according to virtual

memory handling paging occurs, becomes unmanageable. The

right side of Figure 1 presents the memory consumption of the

algorithms. The curve of the eager method supports that the

memory need of this method is limited only by the size of

processed dataset, which is bigger than the size of the main

memory.

Int'l Conf. Foundations of Computer Science | FCS'11 | 7

Figure 4. The performance analysis of K-way Merge Based Processing (left side) and a comparative graph of execution times of K-way Merge based

Tehcnique with different datasizes

Figure 2 shows the dependency on I/O instructions of the

Periodic Partial Result Merging: the graph on left side

sketches the runtime of different versions. The more files are

processed at the same time in the main memory, this means

the number of I/O instructions are reduced, the faster the

processing is. The runtime is inversely proportional to the size

of dataset processed at the same time in the main memory. But

there are other factors which influences the runtime of this

out-of-core method. The graph on the right side shows the

used memory of algorithms: in tests the different block sizes

fitted in the main memory. But the memory consumption

graph shows an oscillating characteristic and in general there

is no assurance that at every procedural step the processed

dataset will fit the main memory.

Figure 3 shows the time consumed by every procedural

step on every file. The left side graph shows the case of a

smaller block size, while the right side graph for a larger block

size. The processing step per block at both of the approaches

lasts nearly the same time, due to the well-scaled, hash based

container. In this implementation the ordering was done using

a sort on the identifier of the user. The third component, the

merging step makes the significant difference between the two

processing approaches, supporting our theoretical

consideration of possible optimization.

Figure 4 shows the runtime plots of different sized datasets

together with the number of levels in the merging tree. For

smaller k values the processing follows the changes of level in

merging tree (the broken line). This is in accordance with the

theoretical performance analysis, that the number of levels is a

basic execution time determining factor. For bigger values of

k there is an increase in run time, although the number of

levels is not increasing. A bigger k value means that a merging

is done on more files, meaning a continuous positioning of the

head of hard disk, increasing the execution time. According to

Figure 4 the optimal k values for the merging is somewhere

around 32. Here another fact has to be taken into

consideration, namely that the dataset of the test execution

was an artificial dataset, created from the real dataset

dissolving the overlapping between the records.

The right side of Figure 4 shows the run time performance

of K-way Merge Based Technique, measured on real dataset.

Based on this graph the optimal value for the ways of merging

is around 128, a higher value then on the artificial dataset. The

overlapping factor is the cause of performance increase

although the merging tree has equal levels, but handling more

blocks together avoids the multiple propagation of a record

during the merging. Merging from too much files causes

increase in execution time due to the continuous positioning

on the hard disk. The figure on the right side shows a

summarizing graph with the execution time of total processing

using different out-of-core approaches.

5 Conclusion and further work

In this paper we have investigated the different factors

determining the performance of out-of-core methods and we

have proposed two novel out-of-core approaches. The Periodic

Partial Result Merging with continuous propagation and

merge of partial results on disk overcomes the difficulties of

limited memory. The K-way Merge based Technique

processes smaller blocks of data saving the result on external

storage and then processes the partial results according to a k-

way merge. The PPRM method requires more memory to

process the data efficiently, while K-way Merge based

Technique has a bigger external storage demand.

As state-of-the-art hardware technology experience

suggested it the number of I/O instructions has a major effect

on the runtime of out-of-core methods; also supported by our

empirical results. Thus to optimize an out-of-core algorithm it

is necessary to keep the number of I/O instructions at a

minimal level.

As the performance analysis section of different algorithms

showed it, the complexity of out-of-core approaches is higher

than linear (quadratic in the case of Periodic Partial Result

Merging, 𝑂(𝑛 log𝑘 𝑛) in case of the K-way Merge based

Technique), but these complexities can be reduced by

choosing a large block size. On the other hand, as the

experimental results showed it, the memory consumption of

the process has to be controlled during the whole processing to

avoid unmanageable runtime. Beside the large processing

block the compression factor has its reducing influence on

8 Int'l Conf. Foundations of Computer Science | FCS'11 |

disk- and runtime complexity, but this is a given factor of the

dataset (typically closer to 0 than to 1).

Because of the large sizes to be processed the runtime of

these methods can be better expressed in hours than in

minutes, thus a fault-tolerance is a favorable, demanded

property of the out-of-core approaches. By their nature both of

the algorithms contain a fault-tolerance possibility.

In K-Way Merge based Technique, based only on the

formula, the more way we use in merging the faster the

processing will be. In this method the number of levels in

merging tree should be kept at a minimal level, but other

influencing factor is the number of files processed together at

the same time.

The eager method presented in this paper supports that if

the presumption of fitting the main memory does not hold,

out-of-core methods mean an applicable and scalable approach

for processing. With Periodic Partial Result Merging or with

K-Way Merge based Technique large datasets can be

processed efficiently, in a fault-tolerant way, even on an

average PC.

The analysis of the parallel version of methods can be a

further work, based on [17].

6 Acknowledgment

This work is connected to the scientific program of the
"Development of quality-oriented and cooperative R+D+I
strategy and functional model at BUTE" project. This project is
supported by the New Hungary Development Plan (Project ID:
TÁMOP-4.2.1/B-09/1/KMR-2010-0002).

7 References

[1] Poll: Data preparation part in data mining projects. Data Mining
Community's Top Resource. Oct. 2003. 23 Apr. 2009
<http://www.kdnuggets.com/polls/2003/data_preparation.htm>.

[2] Benczúr, A. A., Csalogány, K., Lukács A., Rácz, B., Sidló, Cs., Uher,
M. and Végh, L., Architecture for mining massive web logs with
experiments, In Proceedings of the HUBUSKA Open Workshop on
Generic Issues of Knowledge Technologies

[3] Iváncsy, R. and Juhász, S. 2007, Analysis of Web User Identification
Methods, Proc. of IV. International Conference on Computer, Electrical,

and System Science, and Engineering, CESSE 2007, Venice, Italy, pp.
70-76.

[4] M. Y. Eltabakh, W.-K. Hon, R. Shah, W. Aref, and J. S. Vitter, “The
SBCtree: An index for run-length compressed sequences,” in
Proceedings of the International Conference on Extending Database
Technology, Nantes, France: Springer-Verlag, March 2008.

[5] P. Ferragina and R. Grossi, “The String B-tree: A new data structure for
string search in external memory and its applications,” Journal of the
ACM, vol. 46, pp. 236–280, March 1999.

[6] P. Ferragina, R. Grossi, A. Gupta, R. Shah, and J. S. Vitter, “On
searching compressed string collections cache-obliviously,” in
Proceedings of the ACM Conference on Principles of Database Systems,
Vancouver: ACM Press, June 2008.

[7] Vitter, J. S. Algorithms and Data Structures for External Memory.
Boston, MA: Now, 2008. Print.

[8] Grahne, G. and Zhu, J. 2004, Mining frequent itemsets from secondary
memory, ICDM '04. Fourth IEEE International Conference on Data
Mining, pp. 91-98.

[9] Nguyen Nhu, S. and Orlowska, M. E. 2005, Improvements in the data
partitioning approach for frequent itemsets mining, 9th European
Conference on Principles and Practice of Knowledge Discovery in
Databases (PKDD-05), pp. 625-633.

[10] Nguyen Nhu, S., Orlowska, M. E. 2006, A further study in the data
partitioning approach for frequent itemsets mining, ADC '06
Proceedings of the 17th Australasian Database Conference, pp. 31-37.

[11] Lin, J. and Dunham, M. H 1998., Mining association rules: Anti-skew
algorithms, In 14th Intl. Conf. on Data Engineering, pp. 486-493.

[12] Savasere, A., Omiecinski, E. and Navathe, S. 1995, An efficient
algorithm for mining association rules in large databases, VLDB '95:
Proceedings of the 21th International Conference on Very Large Data
Bases, pp. 432-444

[13] Tang, P., Ning, L., and Wu, N. 2005. Domain and data partitioning for
parallel mining of frequent closed itemsets. In Proceedings of the 43rd
Annual Southeast Regional Conference - Volume 1 (Kennesaw,
Georgia, March 18 - 20, 2005). ACM-SE 43. ACM, New York, NY,
250-255. DOI= http://doi.acm.org/10.1145/1167350.11674230

[14] Lucchesse, S C. and Perego, O. R. 2006, Mining frequent closed
itemsets out-of-core, 6th SIAM International Conference on Data
Mining, pp. 419-429.

[15] Juhász S., Iváncsy R., Out-of-core Data Handling with Periodic Partial
Result Merging, IADIS International Conference on Data Mining,
Algarve, Portugal, 18-20 June, 2009.

[16] Juhász S., Iváncsy R., Approaches for Efficient Handling of Large
Datasets, IADIS International Conference on Data Mining, Algarve,
Portugal, 18-20 June, 2009

[17] R. Dementiev and P. Sanders, “Asynchronous parallel disk sorting,” in
Proceedings of the ACM Symposium on Parallel Algorithms and
Architectures,pp. 138–148, ACM Press, 2003

Int'l Conf. Foundations of Computer Science | FCS'11 | 9

Effect of cache lines in array-based hashing algorithms

Ákos Dudás1, Sándor Kolumbán2, and Tamás Schrádi3
Department of Automation and Applied Informatics,
Budapest University of Technology and Economics,

1117 Budapest, Magyar Tudósok körútja 2. QB-207 Hungary
{1akos.dudas,2kolumban.sandor,3schradi.tamas}@aut.bme.hu

Abstract— Hashing algorithms and their efficiency is mod-
eled with their expected probe lengths. This value measures
the number of algorithmic steps required to find the position
of an item inside the table. This metric, however, has an
implicit assumption that all of these steps have a uniform
cost. In this paper we show that this is not true on modern
computers, and that caches and especially cache lines have
a great impact on the performance and effectiveness of
hashing algorithms that use array-based structures. Spatial
locality of memory accesses plays a major role in the
effectiveness of an algorithm. We show a novel model of
evaluating hashing schemes; this model is based on the
number of cache misses the algorithms suffer. This new
approach is shown to model the real performance of hash
tables more precisely than previous methods. For developing
this model the sketch of proof of the expected probe length
of linear probing is included.

Keywords: hash table; hashing; linear probing; cache-aware;
performance

1. Introduction
Hashing algorithms are a popular choice in a great variety

of applications for fast storage and retrieval of items. Over
the years there have been many hashing algorithms presented
in the literature. These algorithms are usually compared
based on the expected probe lengths [1], [2], [3], [4], that
is, the number of steps the algorithm has to take before an
item can be inserted into the table. (This is equivalent to
the number of steps it takes to find an item. Both will be
referred to as probe length throughout this paper.)

It has been our observation [5], and also the suggestion
of others [4], [6], that the expected probe length does
not model the true performance correctly. Measuring the
wall-clock execution times of the algorithms and using the
expected probe length-based raking of hashing schemes we
can arrive at two contradicting conclusions; in this paper we
propose a solution that unify the expected probe length-based
comparison and the physical capabilities of the hardware,
resulting in a more precise efficiency estimation.

The fact is, that the true performance of array-based
hashing schemes is effected by the physical hardware it
is executed on. The expected probe length-based efficiency

analysis has the implicit assumption that every probe in the
probe sequence has the same cost; this is not necessarily
true though. Modern CPUs have fast (but small) integrated
caches that mask the latency of the main system memory.
Accessing data in these caches is by one or two orders of
magnitude faster than reading from the main memory. These
caches speed up temporally, and which is more relevant for
us, spatially local memory reads.

Algorithms that exploit these caches are called cache
friendly [7]. What we propose in this paper is basically a
new efficiency model that rewards cache friendly algorithms.
We focus our attention to hashing schemes that use arrays;
the basic idea however it generally applicable, and not just
to hash tables but to other data intensive algorithms as well.

The rest of the paper is organized as follows. Section 2
presents the related literature of hash tables and their per-
formance and complexity. The expected probe lengths of
two hashing schemes are presented in Section 3 followed
by the comparison of the hash tables based in the expected
probe lengths and wall-clock execution times. To resolve
the contradictory results new efficiency model is presented
in Section 4. We conclude in Section 5 with the summary
of our results.

2. Related works
Hash tables [8] store and retrieve items identified with a

unique key. A hash table is basically a fixed-size table, where
the position of an item is determined by a hash function.
If the position calculated by the hash function is already
occupied, a collision occurs. This collision can be resolved
by storing the items externally (e.g. using a linked list), the
approach of bucket hash tables; or a secondary hash function
can be applied which calculates a new address for the item.
Repeating this process until a free slot is found the algorithm
traverses a probe path. The shorter this probe path is, the
faster the hash table is.

In linear probing [8] the secondary hash function calcu-
lates the next address by adding a constant (usually one)
to the previous address. This, of course, is not a true hash
function. However, this “laziness” is what makes linear
probing cache friendly [7].

There is a theoretical hashing scheme, which produces
perfectly random address generation. The idea is that there

10 Int'l Conf. Foundations of Computer Science | FCS'11 |

is a uniformly chosen permutation from the space of per-
mutations over the possible addresses for each element.
The initial hash function returns the first element of the
permutation, the secondary hash function iterates through
the permutation. This is called uniform hashing [9]. It has
been shown, that uniform hashing is optimal over all open-
address hashing schemes in its expected probe length. It was
proven that double hashing, a practical realization of a hash
scheme [4], is asymptotically equivalent to uniform hashing
when the number of available addresses is large [10], [11].
It is generally thought that these sophisticated methods are
superior to linear probing.

Black et al. [6], however, has shown that linear probing
can have better performance than double hashing. Moreover,
by tuning the parameters of double hashing to make it
approximate linear probing, its performance increased as
well.

Heileman and Luo [4] also conducted similar examina-
tions and they ended up with another conclusion. According
to their results, the cache friendliness of linear probing
cannot compensate the disadvantage of the longer probe
sequences in case of realistic data sets. They also suggested
that the relation between the size of the data and the cache
size is what lies behind the seemingly contradictory results.
In Section 4 we will confirm their hypothesis.

3. Expected probe length based compar-
ison

The expected probe length is used to measure the effi-
ciency of hash tables. The formula is known for uniform
hashing; in this section we show the sketch of calculating it
for linear probing.

3.1 The expected probe length of uniform hash-
ing

The expected probe length for uniform hashing [8] in an
α-filled table is

E(Lαuni) = −
ln(1− α)

α
(1)

where E denotes the expected value, Luni is the expected
number of steps needed to find a uniformly chosen element
in a hash table built with uniform hashing and α is the load
factor of the hash table (i.e. the ratio between the number
of elements in the table and the number of all the slots).

3.2 The expected probe length of linear prob-
ing

In order to calculate the expected probe length (i.e.
number of steps in takes to insert an item), first we need
to understand how a single item is inserted into an α-
filled hash table using linear probing. The expected probe
length in a given state of the hash table is the average of
probe lengths needed to insert the elements of the tables.

We describe a table configuration using the following two
notions in this paper. A cluster is a group of adjoint occupied
slots. A closed cluster is formed from an empty slot and the
cluster that precedes it. If, for a certain empty slot there
is no preceding cluster (i.e. the empty slot is preceded by
another empty slot), then this empty slot forms a closed
cluster by itself. Figure 1 gives a graphical representation of
these notions. Closed clusters cover the whole table, while
clusters obviously do not.

Fig. 1: A cluster (L) and two closed clusters (τ1 and τ2).

During insertion the probe length depends on the length of
the closed cluster in which its initial address hits, since the
insertion has to iterate over the items in this closed cluster.
Suppose that the initial address for the new element is part
of a closed cluster with length τ . The expected number of
steps needed to insert the element is τ+1

2 , since the initial
address is considered to be uniformly distributed over the
whole table, and consequently, it is uniform restricted to the
given closed cluster as well. If we knew the probability of the
event that the initial address falls into a closed cluster with
length τ then we would be able to calculate the expected
probe length required to insert a new element.

The followings are just the sketch of how we can calculate
the expected probe length for linear probing. It is out of the
scope of this paper to show every step; this is merely the
general idea.

Suppose there are Xi elements initially hashed to the i-th
slot, i = 1, . . . , N . Suppose that a closed cluster starts at
the j-th position. In this case the number of elements in this
closed cluster is at least Xj , and the j-th slot can hold only
one. So Xj−1 elements will be held in the rest of the closed
cluster. The j+1-th slot adds Xj+1 elements to the cluster,
but it will hold one as well, so the number of elements in
the cluster after the j+1-th slot is Xj − 1+Xj+1− 1, and
so on. When this sum reaches 0, then the cluster is closed.

We can define the stochastic process S the following way:
S0 = 1, Si+1 = Si +Xj+i − 1. The stopping time τ (k) (2)
is a good approximation of the distribution of the length of
the closed clusters:

τ
(k)
0 = inf(i : Si = 0|S0 = k) (2)

The explicit formula for the distribution of the length of
closed clusters can be found as

p(k) = P(τ = k) =
(αk)k−1

k!
e−αk (3)

We also need the expected value of this distribution, which
is

E(τ) =
1

1− α
(4)

Int'l Conf. Foundations of Computer Science | FCS'11 | 11

The expected number of steps to find a uniformly chosen
element in the table is the average of the steps needed
to insert them. There are M elements in the table. When
inserting the i-th element, there were i− 1 already inserted.
In other words, the i-the element was inserted into an
α′ = i−1

N -filled hash-table. The average of these step counts
gives us

E(Lαlin) = 1 +
1

2

α

1− α
(5)

where E(Lαlin) denotes the expected probe length for linear
probing in an α-filled table.

3.3 Evaluation using probe lengths and wall-
clock execution times

Figure 2 shows the expected probe length for linear
probing and uniform hashing for various load factors. It is
obvious that uniform hashing has a smaller expected probe
length. Based on this fact, one could say that linear probing
is to be neglected while choosing hashing algorithms for
practical purposes.

Fig. 2: The expected probe length of linear probing and
uniform hashing for different load factors.

Our experimental results, on the other hand, show different
results. Figure 3 plots the measured wall-clock execution
times of building a table using linear probing and double
hashing. Linear probing has shorter lookup execution than
double hashing. This is the exact opposite of the previous
result.

To resolve this contradiction a new complexity function is
required, one that approximates the true performance of hash
tables. The problem with the probe length based ranking is
that it assumes that every probe has the same cost; instead,
the characteristics of the execution environment have to be
considered and integrated into the cost function.

4. Cache-line aware algorithm complex-
ity

This section presents a simple model of memory hierarchy
which is then incorporated into the cost function of the steps
of the probe sequence.

Fig. 3: The measured wall-clock execution times of linear
probing and uniform hashing for different load factors.

4.1 Caches
Open hash tables span over a large block of allocated

memory. This block is split into slots, which are identified
by a number (memory address; i.e. indexes of the array).
The address of neighboring slots are sequential, therefore in
linear probing, after slot i is visited, whose address is j, the
next slot, i+1, will have the address j+1. This is not true
for uniform hashing; the addresses of the probe sequence
will be scattered across the table. Let us explain why this is
important.

In current computer systems CPUs have caches, which
are fast access, but limit space storages integrated into the
CPU or onto the same die. The cache stores a small fraction
of the data that is stored in the system memory, therefore
a small portion of the hash table also resides in the cache.
Whenever the CPU requests data, it is first checked in the
cache. If found, the main system memory is not queried as
the cache returns the data. However, if the data is not in the
cache (this event is called a cache miss), the data is loaded
from the main system memory; this operation is by one or
two orders of magnitude slower than reading from the cache.

An other important factor is cache lines. The memory is
partitioned into small blocks, called cache lines. Whenever
data is loaded into the cache, an entire cache line is loaded;
the one the requested data is inside. This means, that with
a single memory access it is not just the requested data that
is loaded, but some neighboring addresses are read as well
- at no additional cost. If the next read is in this very same
cache line, it will be served by the low latency cache.

If accesses to the memory is temporarily or spatially
local, the cache speeds up the algorithm by not requiring
the system to read data from the system memory. When an
algorithm exploits these effects, it is called cache friendly. It
allows the algorithm to have lots of data requests at fraction
of the cost.

4.2 Cache-line based memory model
The cost difference between accessing data from the

main memory and from the cache is often neglected in

12 Int'l Conf. Foundations of Computer Science | FCS'11 |

performance models. Let physical memory requests have a
cost of one. Altering the usual memory model, where every
access has a uniform cost, we propose a new model. In our
model the blocks of the memory are grouped into lines of
equal lengths. These lines correspond to the cache lines of
the real system. The characteristics of these lines is that they
are read as one.

In this memory model, the true performance of an ap-
plication is determined not by the total number of memory
accesses, but by expected number of read lines. In case of
hashing algorithms this is equal to the number of probed
lines, which the probe sequence accesses. In other words,
the number of produced cache misses is the determining
factor.

Suppose that the parameters of the memory architecture
and the hash table are such that an integer number of hash
table slots fit in a cache line. This parameter will be denoted
with B. Figure 4 shows a scenario where three hash table
slots fit into a single cache line (B = 3). Items with the
same color are hashed to the same position by the primary
hash function.

Fig. 4: The segmentation of the memory into cache lines
of length B = 3. Items with the same color have the same
initial address.

As an example, the second item from the left can be found
with cost of one if linear probing is used, since the first
checked slot and the final position are both in the same cache
line, and the probe sequence examines no slots outside of
this line.

4.3 Cache-aware cost function for uniform
hashing and linear probing

Given a relatively large hash tables that does not fit into
the cache (usual size of caches is 2-4-8 MB) but instead
is stored in the main system memory, the CPU cache has
considerable impact. A typical hash table entry consists of
a unique integer id and a data pointer. This means that the
number of hash slots that fit in a cache line (B) is about 2-8
entries (assuming a cache line is 64 bytes) and the number
of lines that can be stored in the cache memory is negligible
compared to the number of lines that are covered by the hash
table.

For uniform hashing the probe sequence is a random
permutation of the positions in the table. Thus, it is a
fair approximation that all probes fall into one of the not
cached lines. This means that every probe has a cost of one
when uniform hashing is used. In other words every probe
produces a cache miss. This can be formalized as

E(Cαuni) = E(Lαuni) = −
ln(1− α)

α
(6)

where Cαuni is the cost of a probe sequence that finds
a random element in an α-filled table built with uniform
hashing. The value is independent of B.

To verify this formula, Figure 5 shows the calculated
values against our measured values.

Fig. 5: The theoretical and experimental number of cache
misses for double hashing (uniform hashing).

In case of linear probing the first address of a probe
sequence will not be among the list of cached addresses.
This means that the first probe will request a new line to
be read from the memory. But the following probes have a
high probability of being served from the cache, since the
neighboring slots of the first probed one were cached when
the first probe was performed. If the initial address is given
then each step will produce a cache miss with probability of
zero or one, depending on whether it is in the same cache
line, or in the next one, respectively. Since the initial address
of a probe sequence is uniform over the slots of the line it
falls into, each of the remaining Lαlin − 1 steps produce a
cache miss with probability 1

B . Thus, we can say that

E(Cαlin) = 1 +
1

B
(E(Lαlin)− 1) = 1 +

1

B

1

2

α

1− α
(7)

where Cαlin is the cost of the probe sequence that finds a
uniformly chosen element in an α-filled table built with
linear probing.

To verify this formula as well, Figure 6 plots the measured
and the calculated values for various Bs.

4.4 Cache-aware cost model and true perfor-
mance

Finally, let us compare the true performance of the hash
tables, measured in terms of wall-clock execution time, with
the proposed cost model.

Figure 7 shows how the expected number of produced
cache misses look like (left), and the what are the corre-
sponding measured execution times (right). The number of
slots that fit in a cache line is B = 2, B = 4 and B = 8.

It is clear that for any given value of B there is a load
factor αB under which linear probing has lower cost and
over which uniform hashing algorithms are better. From

Int'l Conf. Foundations of Computer Science | FCS'11 | 13

Fig. 6: The theoretical and experimental number of cache misses for linear probing.

Fig. 7: The expected number of cache misses for linear probing and uniform hashing for different load factors for B = 2, 4, 8.

equations (6) and (7) this load factor can be obtained. In
the typical operation region of α ∈ [0.3 0.8], linear probing
has lower expected cache miss count even when B = 2.
This is confirmed by the execution times as well.

In general, when choosing a hashing algorithm, one
should consider the parameters of the hash table and memory
architecture, namely parameter B should be determined and
the operational load factor should be decided.

Generally, our conclusion is that the simple algorith-
mic step count based raking of algorithms, especially for
algorithms that intensively use memory, is not sufficient.
The physical capabilities of the machine that executed the
algorithms should be taken into consideration, and with
integrating the memory model into the cost function, a better
efficiency comparison can be derived.

5. Conclusion
Hashing algorithms are usually ranked by their expected

probe lengths. It has been our observation, and also pub-
lished in the literature, that this is not always true. Based
on previous works we know that in case of open-address
hashing the performance of the algorithm is greatly effected
by its memory characteristics.

We have shown that the expected probe path based ef-
ficiency comparison is not fair for linear probing, which
is generally though of as an inferior choice of hashing

scheme. Under real-life circumstances, however, it is able to
outperform more sophisticated hash tables, such as double
hashing.

Incorporating the effect of cache lines into the cost func-
tion of hashing algorithms we have presented a novel model
of evaluation. This approach models the true performance of
these hash tables more precisely.

Acknowledgment
This project is supported by the New Hungary Devel-

opment Plan (Project ID: TÁMOP-4.2.1/B-09/1/KMR-2010-
0002) and by the fund of the Hungarian Academy of Sci-
ences for control research, the Hungarian National Research
Fund (grant number T68370).

The authors express their thanks to Sándor Juhász for his
help as scientific advisor.

References
[1] G. H. Gonnet, “Expected Length of the Longest Probe Sequence in

Hash Code Searching,” Journal of the ACM, vol. 28, no. 2, pp. 289–
304, Apr. 1981.

[2] M. V. Ramakrishna, “Hashing practice: analysis of hashing and
universal hashing,” ACM SIGMOD Record, vol. 17, no. 3, pp. 191–
199, Jun. 1988.

[3] A. Pagh, R. Pagh, and M. Ruzic, “Linear probing with constant in-
dependence,” Proceedings of the thirty-ninth annual ACM symposium
on Theory of computing - STOC ’07, p. 318, 2007.

14 Int'l Conf. Foundations of Computer Science | FCS'11 |

[4] G. L. Heileman and W. Luo, “How Caching Affects Hashing,” in
Proc. 7th ALENEX, 2005, pp. 141–154.

[5] S. Juhász and A. Dudás, “Adapting Hash Table Design to Real-life
Datasets,” in Proc. of the IADIS European Conference on Informatics
2009, part of the IADIS Multiconference of Computer Science and
Information systems 2009, Algarve, Portugal, 2009, pp. 3–10.

[6] J. R. Black, C. U. Martel, and H. Qi, “Graph and Hashing Algorithms
for Modern Architectures: Design and Performance,” pp. 37–48, 1998.

[7] A. Binstock, “Hashing Rehashed,” Dr. Dobb’s Journal, vol. 4, no. 2,
1996.

[8] D. E. Knuth, The art of computer programming, Vol 3. Addison-
Wesley, Nov. 1973.

[9] J. L. Carter and M. N. Wegman, “Universal classes of hash functions,”
J. Comput. System Sci., vol. 18, no. 2, pp. 143–154, May 1979.

[10] L. J. Guibas, “The Analysis of Hashing Techniques That Exhibit k-ary
Clustering,” Journal of the ACM, vol. 25, no. 4, pp. 544–555, Oct.
1978.

[11] M. L. Fredman, J. Komlós, and E. Szemerédi, “Storing a Sparse Table
with 0(1) Worst Case Access Time,” Journal of the ACM, vol. 31,
no. 3, pp. 538–544, Jun. 1984.

Int'l Conf. Foundations of Computer Science | FCS'11 | 15

Performance and Quality of Random Number Generators

V. du Preez, M.G.B. Johnson, A. Leist and K.A. Hawick
1Computer Science, Massey University

2Albany, North Shore 102-904, Auckland, New Zealand

Abstract— Random number generation continues to be
a critical component in much of computational science
and the tradeoff between quality and computational per-
formance is a key issue for many numerical simula-
tions. We review the performance and statistical quality
of some well known algorithms for generating pseudo
random numbers. Graphical Processing Units (GPUs)
are a powerful platform for accelerating computational
performance of simulations and random numbers can
be generated directly within GPU code or from hosting
CPU code. We consider an alternative approach using
high quality and genuinely “random” deviates generated
using a Quantum device and we report on how such a
PCI bus device can be linked to a CPU program. We
discuss computational performance and statistical quality
tradeoffs of this architectural model for Monte Carlo
simulations such as the Ising system.

Keywords: quantum random number generation; GPU;
CUDA.

1. Introduction
The fast generation of good quality random numbers

[1]–[6] is a long-standing challenge [7], [8]. Random
numbers are needed for many applications, but are used
in very large quantities in computer simulations that
employ the Monte-Carlo algorithm [9], [10]. It is neither
trivial nor computationally cheap to generate large sets
of pseudo-random numbers that have the right statistical
”randomness” needed to perform an unbiased calculation.
Until recently it has not been practical to use random
number generation hardware that was economically priced
and suitably unbiased. Instead, pseudo random numbers
that were generated from a suitable deterministic algo-
rithm were employed. A great deal has been written in
the literature about such algorithms, but for the most part
there are many very good ones that are “random enough”
and are at least uncorrelated with the application so that
they suffice. One important area of use has been the
numerical investigation of phase transitions and critical
phenomena. In such work the Monte Carlo algorithm is
used to sample appropriate points in a physical model
space to simulate the actual dynamical behaviour of a
model and identify the location of critical points – abrupt
changes - that result when a model parameter such as
temperature changes by a small amount.

This work is very demanding and a certain degree
of caution is perceived in the reported literature as re-
searchers go to great lengths to be sure their simulations

Fig. 1: Quantis RNG Card for PCI Bus, showing four
independent quantum generator devices.

are not overly biased by random numbers with unfortunate
statistical properties.

Pseudo-random number generators are often formu-
lated in terms of mathematical recurrence relations [11]
whereby repeated application of a transformation will
project a number to another in an apparently random
or decorrelated sequence - at least to the extend that
any patterns discernible in the resulting sequence are on
a scale that is irrelevant to the application using them.
Any random or pseudo random number generator delivers
a sequence of random deviates - either floating point
uniform deviates or integers or sometimes just plain bits.
An application will use or consume deviates from such a
sequence as it runs.

There are still some philosophically deep questions
concerning what it really means for a sequence of deviates
to be truly random. It is widely believed however that
some quantum physical processes yield deviates that are
as random as we can ever make them. Such devices are
presently available as special purpose cards or external
drivers that connect via a bus-based hardware interface
such as PCIe or USB. We investigate the use of the ID
Quantique “Quantis” device below in section 4. Intel and
other CPU manufacturers [12] are now actively consid-
ering provision of random number generation hardware
directly on the chip. This closeness to the arithmetic and
logic hardware means that these devices will produce
very fast deviates, and the expectation is that the thermal
noise and quantum processes involved are sufficiently
well understood at a statistical level to ensure that these
sources are also unbiased.

Our paper is structured as follows: In Section 2 we
review some key issues for random number generation. In
Section 3 we briefly review the Ising model and associated
Monte Carlo analysis algorithms as demanding consumers

16 Int'l Conf. Foundations of Computer Science | FCS'11 |

of random deviates. In Section 4 we describe some of
the pseudo random number generator algorithms and
implementation strategies we have explored. We present
some performance and statistical test results for both
algorithmically generated and quantum device generated
sequences in Section 5. We discuss some of the implica-
tions for future generation simulation work and offer some
conclusions and ideas for further study in Section 6.

2. Generation Algorithm Issues
Generally speaking there are two main criteria that are

considered when choosing a pseudo-random number gen-
erator. The first is the period of the generated sequence.
Ideally this should be so long as to never repeat during
the life-cycle of the application. Modern generators – as
we discuss here – usually have periods that are very long
and that when run on current computer clock speeds have
repeat times comparable with the lifetime of the known
universe. In this sense the period is not often a direct
concern.

A few deviates generated to make a game program
behaviour “interesting” to a player does not require a
generator with a challengingly long repeat length. How-
ever, Monte Carlo calculations that may take weeks or
months of supercomputer resources must have generators
with very long period lengths. In the last 20-30 years of
steadily increasing supercomputer performance, there has
been continued interest in ever longer period generator
algorithms. This often ties in with the need for more bits
used in the generator. The 16-bit integer based generators
of the late 1970s, were superceded by 24-bit (floating-
point) algorithms such as the Marsaglia lagged-Fibonacci
algorithm [6], by the 64-bit integer based Mersenne-
Twistor and in very recent times by 128-bit algorithms
[13] and even longer for cryptographically strong random
number generation [14].

The second criteria is more subtle however and has
definitely been a known concern with some algorithms.
This issue concerns just how actually random or uncor-
related the deviates in the sequence are – in the context
of the needs of the driving application. There are some
widely used statistical tests [15] that are now in wide
circulation and which represent the research communities
best wisdom on what is “random enough.” We discuss
these in section 4.

Applications usually need either random integers with
a flat uniform probability of obtaining all values within
a set range, or uniform floating point deviates in the
range [0, 1), again with a uniform probability distribution
across the range. Generally if one has a generator that
produces either of these, one can construct deviates of
more sophisticated distributions with suitable transforma-
tion algorithms [16], [17].

The apparatus for implementing pseudo-random num-
ber generators usually give rise to raw deviates in one of
those two forms - uniform integers or uniform floating
point number and one can find ways of transforming
one to the other. In the case of floating point deviates

one can simply multiply by N to obtain integers on the
[0, N) range, and in the case of integers known to be
in that range, one can divide by N . Different processing
hardware will carry these operations out with different
speeds depending on clock speeds and floating point
standards. If one has a random source of uncorrelated b-
bits [18], [19] one can readily obtain (unsigned) integers
[20]. in a suitable range of [0, 2b) or [0, 2b − 1]. One can
then divide accordingly to obtain floating point uniform
deviates. The reverse operation is not so simple however
[18]. Most processors use the IEEE floating point standard
bit representation for 32-bit or 64 bit precision. These
specify sign bit, exponent and mantissa from which it is
not trivial to obtain evenly unbiased random bits without
some arithmetic that must necessarily waste some of the
original 32 or 64.

This gives rise to another important criteria for ran-
dom number generators - ideally they should be well
engineered in terms of having plug-compatible software
programming interfaces. This means that a code can be
tested and implemented using any number of different
generator algorithms with little code change required. A
pragmatic implementer therefore finds it is often better
to have a generator that produces unbiased integers or
raw bits from which an unbiased unsigned integer can
be constructed. It is often then easier to make a family
of suitable software interfaces to supply all the sorts of
deviates that are needed by applications from the one root
algorithm.

In this present paper, we discuss Monte Carlo algorith-
mic uses of random numbers where we need a fast supply
of good deviates. Another application is for cryptographic
use, where usually the need for extreme speed is less,
but the need for very high randomness - to the point of
uncrackability is extreme [21].

For some applications it is actually desirable to have
pseudo-random number generator that is repeatable –
from the same starting conditions. Seeding generators is
of course an interesting issue in itself and this problem is
often exacerbated when using a parallel computer. While
a generator algorithm may have a known very long period,
often one has to run the generator many times or on par-
allel processors and the choice of seeds matters to avoid
accidentally correlating the sub-sequences generated by
each instance [22], [23]. Parallel computing applications
such as parallel and supercomputer implementations of
Monte Carlo simulations have been a target for many
special purpose implementations of pseudo random num-
ber generators. Work has been done on: array processors
[24]; vector computer architectures [25]; transputers using
parallel Occam [26]; and more recently on specialist
processors such as the Cell [27] or on Graphics Processing
Units(GPUs) [28]–[30].

Techniques for generating seeds vary. When debugging
an application it can be very helpful to be able to specify
the same seed and ensure identical results. Once in pro-
duction mode seeds might be generated by an algorithm
based on precise time and dates or from special purpose

Int'l Conf. Foundations of Computer Science | FCS'11 | 17

Fig. 2: A 1024 × 1024 Ising model simulation with
temperature T = 2.0 after 1000 simulation steps.

hardware. Many operating systems will now support a
hardware source via for example /dev/random on Unix
based systems. This may supply bits from thermal noise
or other sources. Such deviates are unfortunately not nec-
essarily statistically unbiased nor necessarily particularly
fast - but they certainly suffice for seeding a proven
pseudo random algorithm that does have the required
qualities.

Another approach which has only recently become
economically feasible and which may become more
widespread soon [31], is to have a hardware source of
genuinely random numbers - that are drawn from some
quantum physical phenomena [32] that is as random as
we can imagine given our current understanding of the
universe, and which therefore do not require a starting
seed. Figure 1 shows a special purpose device, produced
by Quantis, that generates around 16MBits/s that are –
as we have determined and discussed below – of superb
quality.

3. Ising Model Applications
Monte Carlo simulations use random sampling to ap-

proximate results when it is infeasible or impossible to
compute the exact result for a physical or mathematical
system [33]. The Ising model [34]–[36] uses such a
method to calculate the critical point of metal alloy phase
transitions. The numbers in these systems need to be as
close to truly random as possible to avoid bias in the
results which may result in incorrect conclusions

Simulations of the Ising model typically start with a
random “hot” system. The system is then quenched to a
specific temperature. If this temperature is below a critical

“cold” temperature, then the system undergoes a phase
transition where like spin values begin to clump together,
creating order in the initially random system. The Ising
model has just two possible spin values, “up” and “down”,
but can be extended to the Q-state Potts model [37] that
uses Q spin values. A system quenched to a temperature
very close to the critical temperature shows clusters of
like-like spins on all possible length scales. Figure 2
illustrates a 2-dimensional Ising model simulation.

A number of different Monte-Carlo update algorithms
for the Ising model have been proposed over time [38]–
[41]. The Metropolis algorithm [38], which was later
generalised by Hastings [42], has formed the basis for
Monte-Carlo statistical mechanics [43], [44] and has been
used widely for Ising model simulations [45]–[48]. It is a
Marcov chain Monte-Carlo (MCMC) method, where the
transitions from one state to the next only depend on the
current state and not on the past. Using the Metropolis
update algorithm for the Ising model simulation, at each
discrete time step, a new system configuration is chosen at
random by picking a spin to “hit” and flipping its value.
If the energy E of the proposed configuration is lower
than or equal to the current energy, ∆E ≤ 0, then the
move to the new configuration is always accepted. Other-
wise, the new configuration is accepted with probability
exp(−∆E/kBT), where T is the temperature and kB
is the Boltzmann constant. The current configuration is
retained if the move is rejected.

The spins in the Ising model interact with their nearest
neighbours according to an energy function or Hamilto-
nian of the form: H = −

∑
〈i,j〉 JijSiSj , where Si = ±1,

i = 1, 2, ...N sites, and Jij is |J | = 1/kBT is the
ferromagnetic coupling over neighbouring sites i and j
on the network.

The Ising model and other Monte Carlo algorithms
can be used themselves as demanding tests of the quality
of random numbers, based on comparisons with known
results [7].

4. Implementation & Timing
Common methodologies utilise computer CPUs to pro-

duce pseudo-random numbers using bitwise operations
and mathematical operations to suitably randomise a num-
ber. The Mersenne-Twistor [49] is a common generator
algorithm to produce high quality numbers, whereas the
linear congruential algorithm, which is used in Unix
rand, is a common and well known low quality example.
Producing truly random numbers is impossible when
using a algorithm running on a computer, this is the realm
of the hardware random number generators (RNGs).

The algorithmic tradeoff space covers very high-quality
generator algorithms such as the Mersenne-Twistor that
are significantly slower than those very-fast but lower-
quality algorithms such as linear congruential generators.
In between these extreme cases it is often possible to im-
prove low-quality generator algorithms by adding lag ta-
bles and shuffle tables to further randomise or decorrelate

18 Int'l Conf. Foundations of Computer Science | FCS'11 |

Fig. 3: Description of the method for producing a random
bit in the Quantis device.

the sequences of random deviates and indeed to combine
several independent algorithmic sources together.

4.1 Quantis Random Number Generator
The quantum random number generator we assess in

this paper is the Quantis PCI quantum random num-
ber generator produced by ID QUANTIQUE SA [32].
This generator uses a photon emitter directed at a semi
transparent mirror, which lets the photons through with
a theoretical probability of 50% as shown in Figure 3.
Each generator allows for a constant stream of random
bits of up to 4 MBits/s. The PCI device contains 4 separate
generators, bringing the theoretical maximum random
stream to 16MBits/s or ≈ 500 deviates per millisecond.

The Quantis card supports both Windows and various
flavours of Linux. For our testing we used Ubuntu Linux
with the standard Quantis driver installation. The drivers
API facility provides various methods for retrieving dif-
ferent data types. The most low level of these is the
QuantisRead method:
i n t Quan t i sRead (Quan t i sDev iceType deviceType ,

unsigned i n t deviceNumber ,
void∗ b u f f e r , s i z e t s i z e) ;

This generates size bytes of random numbers into
the variable buffer, where size is constrained to
QUANTIS_MAX_READ_SIZE. To get more than this
we must loop until the desired size has been reached.
Alternately we can use:
i n t Q u a n t i s R e a d I n t (Quan t i sDev iceType deviceType ,

unsigned i n t deviceNumber ,
i n t ∗ v a l u e) ;

To get a signed integer value from the device. This
method is much slower at reading multiple numbers than
reading raw bytes as we show in section 5. To overcome
this problem, we use QuantisRead in a multi-threaded
environment where one thread is caching blocks of ran-
dom bytes while the consumer thread uses them. This
method may still not be sufficient for algorithms such as
the Monte Carlo, but will significantly reduce the time
over using QuantisReadInt.

5. Performance & Quality
For most scientific purposes it is sufficient to say that

they need to be sufficiently uncorrelated that when used

for a Monte Carlo simulation or other application the devi-
ate quality does not lead to an observable bias [50]. Or put
more simply – that the random number generator does not
lead the applications programmer to the wrong answer.
Various statistical tests [8], both at a straightforward level
[51], checking for visual planar correlations [52] planes
and other approaches such as the spacing test, scatter-
plots, that detect obvious patterns or simple statistics are
possible, as well as very specific application related tests
that are highly sensitive to correlations.

To evaluate the raw performance of generators we test
four different popular pseudo-random number generators:
Mersenne Twister (MT), Ran described in the book Nu-
merical Recipes (Ran) [53], the standard Unix rand and
Marsaglia’s lagged-Fibonacci Generator (LFG). These
generators were tested for randomness using the birthday
spacings test found in the diehard testing suite for random
numbers, with the values N = 232,M = 212 and λ = 4.
This configuration is advised in [54]. Supplementary tests
were also performed with the standard diehard test suite
[55] and these confirm the below findings.

Algorithm Birthday Spacings
Pass/Fail

Ran X
LFG X
MT X

Quantis (to CPU) X
Unix Rand X

Table 1: Results of Birthday Spacings test of different
RNG algorithms. Tick and Cross indicate pass and fail
respectively

Table 1 shows that all except the Unix rand random
numbers pass the birthday spacings test. This is in line
with common knowledge about the periods of these
generators [1].

Applications of specific random number generators are
dependent on the speed in which the numbers can be
attained by the client, where client refers to a central
processing unit, graphics processing unit, etc. In random
number intensive applications, such as the Monte Carlo
algorithms in Ising/ Potts models, computation time is
negligible compared to the fetch time for random num-
bers. Whereas, in cryptography the computation time
significantly outweighs the fetch time for the random
numbers, which allows slow generators to hide their speed
by caching numbers for fast use by other threads.

To test the speed of the algorithms we generate ten
million uniform floating point numbers and find the num-
ber of deviates per millisecond on an Intel Core 2 Duo at
2.1 GHz using the four algorithms that passed the birthday
spacing test. The CPU algorithms only utilise one of the
cores available on the CPU. We have also implemented
a CUDA GPU version of the lagged-Fibonacci generator
[30] and report the performance measured on an NVidia
GeForce GTX 580.

Table 2 shows that the results for all of the CPU
pseudo-random number generators are comparable in

Int'l Conf. Foundations of Computer Science | FCS'11 | 19

Algorithm Performance
Deviates Per Millisecond

Ran 24085
LFG 13367
MT 22795

Quantis (Single Thread) 61
Quantis (Multi Thread) 111

CUDA(LFG) 1.28e107

Table 2: Performance of different RNG algorithms.

speed, with the Ran algorithm producing the most at
24085 deviates per millisecond. This is more than two or-
ders of magnitude faster than the single threaded Quantis
generator at about 61 32-bit deviates per millisecond. The
lagged-Fibonacci generator on the CUDA GPU is another
2-3 orders of magnitude faster than the CPU algorithms.

6. Discussion & Conclusions
Section 5 shows that all but the Unix rand pseudo-

random algorithms pass the Extended Birthday spacing
and Die Hard tests that we have implemented. These
are well known algorithms and the results are common
knowledge [3], hence it is unsurprising that the widely
used Unix rand failed. This is further proof that this
function should not be used. It has been suggested [3]
that lagged-Fibonacci generators may erroneously fail the
Birthday spacings test, but this does not appear to be the
case for our implementation, which passes the test.

Although these pseudo-random number generators pass
most common and also more stringent tests implemented
in this paper, this does not guarantee their true random-
ness in the face of tests yet to be adviced. Using physical
phenomena, such as photon emitters like the one used
in this paper or Intel’s on chip temperature variation
random source, allows us to guarantee that the number
is completely random and free from any bias. Although,
the question remains how to test these hardware random
sources and can we engineer a test that identifies only a
truly random number?

Performance of the generators was as expected [30],
with the CUDA GPU LFG algorithm producing 1.28e107

random deviates per millisecond. The single threaded
Quantis card algorithm produces only 61 32-bit deviates
per millisecond and 111 deviates for the multi-threaded
implementation. This is much slower than the theoretical
maximum of 500 32-bit deviates from the 16MBits/s
stream of random bits [32]. We attribute this latency to
the fetch time from the card over the PCI bus and the
conversion time to the specified data type. The speed-
up attained by introducing multiple threads is significant
as this allows us to hide the time lost in the conversion
process and by fetching the maximum number of bytes at
each API call we minimise any latency that is associated
in calling the Quantis card via the PCI bus. For Monte
Carlo algorithms even the CPU pseudo random algorithms
are the bottleneck in the simulation, hence the Quantis
card is much too slow for these. A good compromise is
to use the numbers produced by the Quantis card to seed

a good pseudo-random number generator, thus ensuring
that the seeds are statistically independent.

If Intel succeeds in creating a truly random number
generator producing 2.4 billion random bits per second
[31], then this will significantly increase the reasons
for using a hardware random source for random heavy
algorithms. Until that point, long period pseudo-random
number generators will continue to be the best choice
for Monte Carlo algorithms. However, for low random
frequency algorithms that depend on high quality random
numbers, such as generation of cryptographic keys, cur-
rent hardware generators are an excellent choice.

We have found that when used in the correct sit-
uation the Quantis card is an invaluable resource to
computer simulations. However, random number gener-
ation is very much an application specific field and we
have shown that, when compared to conventional pseudo-
random generators, the time it takes to produce a single
random deviate with the Quantis card is several orders
of magnitude slower. Furthermore, the generation with
the Quantis card is inherently serial and does not benefit
from parallelisation on either the CPU or GPU. However,
we have discussed how this latency may be hidden when
the program does not require random numbers often by
using a separate thread that fetches the numbers from the
Quantis device and prepares them for the main process
to use as needed. Another method we have discussed is
using the Quantis device to produce truly random seeds
for a high-quality pseudo-random number generator.

Graphics processing units offer a performance increase
of about 2-3 orders of magnitude over the tested sequen-
tial CPU implementations. They have been shown [56]
to be a powerful accelerator for Monte Carlo simulations
that heavily depend on random numbers. However, de-
veloping high-performance code for GPUs is significantly
more complex and time consuming than it is to write a
sequential or even multi-threaded CPU implementation.

In summary, the field of computer generated random
number algorithms is one of ”horses for courses” - there is
no single best algorithm that will satisfy all requirements.
Before starting any project using Monte Carlo algorithms
and for which the quality of the random numbers matters,
it is therefore of great worth to carefully consider which
algorithm to use.

References
[1] P. L’Ecuyer, “Software for uniform random number generation:

distinguishing the good and the bad,” in Proc. 2001 Winter
Simulation Conference, vol. 2, 2001, pp. 95–105.

[2] R. P. Brent, “A fast vectorized implementation of wallace’s normal
random number generator,” Australian National University, Tech.
Rep., 1997.

[3] G. Marsaglia, “Random Number generation,” florida Preprint,
1983.

[4] ——, “A Current view of random number generators,” in Com-
puter science and statistics: 16th symposium on the interface,
Atlanta, Mar 1984, keynote address.

[5] G. Marsaglia and L.-H. Tsay, “Matrices and the Structure of
Random Number Sequences,” Linear algebra and its applications,
vol. 67, pp. 147–156, 1985.

[6] G. Marsaglia, A. Zaman, and W. W. Tsang, “Toward a universal
random number generator,” Statistics and Probability Letters,
vol. 9, no. 1, pp. 35–39, January 1987, florida State preprint.

20 Int'l Conf. Foundations of Computer Science | FCS'11 |

[7] P. D. Coddington, “Analysis of random number generators using
monte carlo simulation,” J. Mod. Physics C, vol. 5, no. 3, pp.
547–560, 1994.

[8] S. Cuccaro, M. Mascagni, and D. Pryor, “Techniques for testing
the quality of parallel pseudo-random number generators,” in
Proc. of the 7th SIAM Conf. on Parallel Processing for Scientific
Computing,. Philadelphia, USA: SIAM, 1995, pp. 279–284.

[9] K. Binder, Ed., Monte Carlo Methods in Statistical Physics,
2nd ed., ser. Topics in Current Physics. Springer-Verlag, 1986,
number 7.

[10] ——, Applications of the Monte Carlo Method in Statistical
Physics, ser. Topics in Current Physics. Springer-Verlag, 1987.

[11] R. Johnsonbaugh, Discrete Mathematics, 5th ed. Prentice Hall,
2001, no. ISBN 0-13-089008-1.

[12] S. Srinivasan, S. Mathew, R. Ramanarayanan, F. Sheikh, M. An-
ders, H. Kaul, V. Erraguntla, R. Krishnamurthy, and G. Taylor,
“2.4ghz 7mw all-digital pvt-variation tolerant true random number
generator in 45nm cmos,” in VLSI Circuits (VLSIC), 2010 IEEE
Symposium on, june 2010, pp. 203 –204.

[13] L.-Y. Deng and H. Xu, “A system of high-dimensional, efficient,
long-cycle and portable uniform random number generators,” ACM
TOMACS, vol. 14, no. 4, pp. 299–309, 2003.

[14] B. Schneier, Applied Cryptography, 2nd ed. Wiley, 1996, iSBN
0-471-11709-9.

[15] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh,
M. Levenson, M. Vangel, D. Banks, A. Heckert, J. Dray, and
S. Vo, “A statistical test suite for random and pseudorandom
number generators for cryptographic applications,” U.S. National
Institute of Standards and Technology,, Tech. Rep. NIST Special
Publication 800-22,, April 2010.

[16] W. Hormann, “The transformed rejection method for generating
poisson random variables,” Insurance: Mathematics and Eco-
nomics, vol. 12, no. 1, pp. 39–45, February 1993.

[17] W. Press, B. Flannery, S. Teukolsky, and W. Vetterling, Numerical
Recipes in C. Cambridge University Press, 1988, ch. 7, pp. 204–
241, random Numbers.

[18] A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of
Applied Cryptography. CRC Press, Boca Raton, FL, 1996, ch. 5
- Pseudorandom bits and sequences, pp. 169–190.

[19] E. Barker and J. Kelsey, “Recommendation for random number
generation using deterministic random bit generators (revised),”
U.S. National Institute of Standards and Technology, Tech. Rep.
NIST Special Publication 800-90, March 2007.

[20] P. Coddington, J. Mathew, and K. Hawick, “Interfaces and im-
plementations of random number generators for java grande ap-
plications,” in Proc. High Performance Computing and Networks
(HPCN), Europe 99, Amsterdam, April 1999.

[21] M. Blum and S. Micali, “How to generate cryptographically
strong sequences of pseudo-random bits,” SIAM J. Comput.,
vol. 13, pp. 850–864, November 1984. [Online]. Available:
http://portal.acm.org/citation.cfm?id=2054.2068

[22] P. Coddington and A. Newall, “Japara - a java parallel random
number generator library for high-performance computing,” The
University of Adelaide, Tech. Rep. DHPC-144, 2004.

[23] A. Newell, “Parallel random number generators in java,” Master’s
thesis, Computer Science, Adelaide University, 2003.

[24] K. A. Smith, S. F. Reddaway, and D. M. Scott, “Very high
performance pseudo-random number generation on DAP,” Comp.
Phys. Comms., vol. 37, pp. 239–244, 1985.

[25] R. P. Brent, “Uniform random number generators for super-
computers,” in Proc. 5th Australian Supercomputer Conference,
Melbourne, Australia, 1992.

[26] W. Paul, D. W. Heermann, and R. C. Desai, “Implementation of a
random number generator in OCCAM,” Dec 1989, mainz preprint
87/47, 749.

[27] D. A. Bader, A. Chandramowlishwaran, and V. Agarwal, “On
the design of fast pseudo-random number generators for the cell
broadband engine and an application to risk analysis,” in Proc.
37th IEEE Int. Conf on Parallel Processing, 2008, pp. 520–527.

[28] M. Giles, “Notes on CUDA implementation of random number
genertors,” January 2009, oxford University.

[29] W. Langdon, “A Fast High Quality Pseudo Random Number
Generator for nVidia CUDA,” in Proc. ACM GECCO’09, 2009.

[30] K. Hawick, A. Leist, D. Playne, and M. Johnson, “Speed and
Portability issues for Random Number Generation on Graphical
Processing Units with CUDA and other Processing Accelerators,”
in Proc. Australasian Computer Science Conference (ACSC 2011),
2011.

[31] G. Anthes, “The quest for randomness,” Comm. ACM, vol. 54,
no. 4, pp. 13–15, April 2011.

[32] ID Quantique White Paper, “Random Number Generation Using
Quantum Physics,” ID Quantique SA, Switzerland, Tech. Rep.
Version 3.0, April 2010, QUANTIS.

[33] D. P. Landau and K. Binder, A Guide to Monte-Carlo Simulations
in Statistical Physics. Cambridge University Press, 2009, vol. 3rd
edition.

[34] M. Niss, “History of the Lenz-Ising Model 1920-1950: From
Ferromagnetic to Cooperative Phenomena,” Arch. Hist. Exact Sci.,
vol. 59, pp. 267–318, 2005.

[35] E. Ising, “Beitrag zur Theorie des Ferromagnetismus,” Zeitschrift
fuer Physik, vol. 31, p. 253258, 1925.

[36] L. Onsager, “Crystal Statistics I. Two-Dimensional Model with an
Order-Disorder Transition,” Phys.Rev., vol. 65, no. 3, pp. 117–149,
Feb 1944.

[37] R. B. Potts, “Some generalised order-disorder transformations,”
Proc. Roy. Soc, pp. 106–109, 1951, received July.

[38] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller,
and E. Teller, “Equation of state calculations by fast computing
machines,” J. Chem. Phys., vol. 21, no. 6, pp. 1087–1092, Jun
1953.

[39] R. H. Swendsen and J.-S. Wang, “Nonuniversal critical dynamics
in Monte-Carlo simulations,” Phys. Rev. Lett., vol. 58, no. 2, pp.
86–88, Jan 1987.

[40] U. Wolff, “Comparison Between Cluster Monte Carlo Algorithms
in the Ising Model,” Physics Letters B, vol. 228, no. 3, pp. 379–
382, September 1989.

[41] E. Marinari and G. Parisi, “Simulated Tempering - a New Monte-
Carlo Scheme,” Europhysics Letters, vol. 19, no. 6, pp. 451–458,
July 1992.

[42] W. Hastings, “Monte-Carlo Sampling Methods Using Markov
Chains And Their Applications,” Biometrika, vol. 57, no. 1, pp.
97–107, 1970.

[43] W. Jorgensen, “Perspective on ”Equation of state calculations by
fast computing machines”,” Theoretical Chemistry Accounts, vol.
103, no. 3-4, pp. 225–227, February 2000.

[44] S. Chib and E. Greenberg, “Understanding the Metropolis-
Hastings Algorithm,” American Statistician, vol. 49, no. 4, pp.
327–335, November 1995.

[45] A. Linke, D. W. Heermann, P. Altevogt, and M. Siegert, “Large-
scale simulation of the two-dimensional kinetic Ising model,”
Physica A: Statistical Mechanics and its Applications, vol. 222,
no. 1-4, pp. 205–209, December 1995.

[46] K. Okano, L. Schülke, K. Yamagishi, and B. Zheng, “Universality
and scaling in short-time critical dynamics,” Nuclear Physics B,
vol. 485, no. 3, pp. 727–746, February 1997.

[47] U. Fulco, L. Lucena, and G. Viswanathan, “Efficient search
of critical points in Ising-like systems,” Physica A: Statistical
Mechanics and its Applications, vol. 264, no. 1-2, pp. 171–179,
February 1999.

[48] F. Lima and D. Stauffer, “Ising model simulation in directed
lattices and networks,” Physica A: Statistical Mechanics and its
Applications, vol. 359, no. 1, pp. 423–429, January 2006.

[49] M. Matsumoto and T. Nishimura, “Mersenne twistor: A 623-
diminsionally equidistributed uniform pseudorandom number gen-
erator,” ACM Transactions on Modeling and Computer Simulation,
vol. 8 No 1., pp. 3–30, 1998.

[50] D. Knuth, The Art of Computer Programming: Seminumerical
Algorithms, 3rd ed. Addison-Wesley, 1997, vol. 2.

[51] P. D. Coddington and S. H. Ko, “Techniques for empirical testing
of parallel random number generators,” in Proc. International
Conference on Supercomputing (ICS’98, 1998, dHPC-025.

[52] G. Marsaglia, “Random numbers fall mainly in the planes,” Proc.
Natl. Acad. Sci., vol. 61, no. 1, pp. 25–28, 1968.

[53] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical Recipes - The Art of Scientific Computing, 3rd ed.
Cambridge, 2007, iSBN 978-0-521-88407-5.

[54] G. Marsaglia and W. W. Tsang, “Some Difficult-to-pass Tests of
Randomness,” Journal of Statistical Software, vol. 7, no. 3, pp.
1–9, January 2002.

[55] G. Marsaglia, “Diehard Battery Of Tests Of Randomness,” http:
//www.stat.fsu.edu/pub/diehard/, 1995.

[56] K. Hawick, A. Leist, and D. Playne, “Regular Lattice and Small-
World Spin Model Simulations using CUDA and GPUs,” Int. J.
Parallel Prog., vol. 39, no. CSTN-093, pp. 183–201, 2011.

Int'l Conf. Foundations of Computer Science | FCS'11 | 21

Crafting a Lightweight Search Engine

Department of Mathematics and Information Sciences
Feng-Jen Yang

University of North Texas at Dallas
Dallas, TX 75241

Abstract – Web-based search is commonly perceived
as a desirable functionality of web sites. Although there
are several open source search engines that can be
tailored and embedded in a web site for free, those
engines tend to be general and may not be easy to
adapt them into an efficient search engine within a
particular application domain. In this paper, I
presented an easy but practical alternative that can be
followed by readers as a template to build their own
lightweight search engines with only a few
programming.

Keywords: Lightweight Search Engine,

1 Introduction

 Web-Based
Query.

 As more and more information is digitized and
made available on the web, nowadays, online search is
popularly used and commonly perceived as an essential
functionality of a web site. Although there are several
open source search engines, such as ASPSeek [1],
Lucene [2], Namazu [3], mnoGoSearch [4], and
WebGlimpse [5], available for web programmers to
customize and fit into their own business operations,
most of those free search engines are originated from
general purposes and may not be easy to be reformed
into special purpose search engines [6, 7]. Besides,
embedding a big volume component into a small scope
of operational web site may compromise the search
performance due to the big consumption of CUP time.

 Another downside of being an open source search
engine follower is the limitation on free technical
support. Although some voluntary participants are
willing to share their know-how through mailing list or
online conferencing, most of the advanced consultants
are still by payment. To this end, embedding an open
source engine into a special purposed web site may not
be the best choice despite the openness of its source
code. With these concerns in mind, this hands-on
project is crafted to provide an easy alternative for
those in need of a web-based search engine but
embedding an open source engine is not a practical
practice. Instead of spending a great deal of time

striving to understand a huge open source search engine
and then tailor it to fit into a specific domain. We can
actually perform a very similar functionality by crafting
a lightweight search engine from the scratch that
requires only a few programming.

 As an illustrative implementation of this lightweight
search engine, I hypothetically confined the search
domain into online books lookup and have the search
engine perform partial-matched searches instead of
exact-matched search to allow some fuzziness during
the compare operations. For the purpose of quick
prototyping, I am using only three technologies that
most of the programmers are familiar with, namely the
Microsoft Access, the Active Server Page (ASP) and
the HyperText Markup Language (HTML). To ensure
that most of the readers can follow and try out this
implementation, the rest of this paper is written in an
instructional and stepwise manner.

1.1 The Coherence of Search Operations
 An effective search engine is not only efficient in
the lookup for items but, more importantly, also able to
cope with human’s partial, fuzzy, or incomplete
memory about the keywords and other search criteria.
Personally, I perceived this as the coherence

1.2 The Replacement for Web Crawler

 between
general users and the search operations. This
expectation can be met by allowing users to perform
searches based on their partial or fuzzy memory about
the data they are looking for. Technically, this can be
achieved by allowing partial and incomplete keywords
to be used as search criteria [8]. Indeed, expecting users
to spell out complete and correct keywords for the
items they are looking for is neither necessary nor
practical in real life, since most of the human memory
can only be retained for a short term. Fuzziness and
uncertainty caused by human’s short term memory
should be considered and incorporated into the design
and implementation of search operations.

 Unlike a typical search engine that is counting on a
web crawler to glean and index information

22 Int'l Conf. Foundations of Computer Science | FCS'11 |

automatically from the entire World Wide Web. For
smaller domains of search, it is not necessary to be
overwhelmed by world-wide information. Instead, it
could be more efficient, if the crawler is replaced by a
supportive database which can be maintained in a
regular manner of database design and administration.
In this project, I adopted Microsoft Access as the
platform for creating and maintaining the database that
is running at the backend to support the web-based
searches.

2. The Supportive Database
 In this demonstrative implementation, a relational
database is created and executed at the backend to
support the web-based query operations. For
simplification, the data contents are minimized on
purpose to have only one table that can be created by
using the integrated development environment of
Microsoft Access in the following steps:

1. Start from a blank database and use the table design
wizard to create a table named Book with the
following schema, in which the No

 field is chosen to
be the primary key:

2. Within the same wizard, set the No

 field with the
following properties:

3. Within the same wizard, set the Title

 field with the
following properties:

 4. Within the same wizard, set the

Author

 field with
the following properties:

 5. Open the Book

 table and enter the following
hypothetical data:

6. Name the database as BookDB.accdb

and save it to
the folder at:
C:\inetpub\wwwroot\search

 Although the above database is very simplified, it
does reflect the stereotype of data collections for the
purpose of online search. The number of columns as
well as the number of tables can be expended as needed.
The whole database can also be further refined by
performing a certain level of normalizations on the
schema.

1

3. The User Interface
 Since the supportive database is hidden from
general users but running at the backend, the search
engine must provide a friendly frontend operational
interface that allows users to specify their search
criteria for their target data. The engine can then go on
to look for those items that are partially matched to
these criteria. In the context of text-based search, the
search criteria are usually represented by a combination
of keywords entered from users. To work with human’s
fuzzy and uncertain memory about their intended data,
this search engine relaxes the restriction on search

1 To use a Windows PC as the web server, the Internet
Information Server (IIS) component of Windows must
be installed. After installing IIS, the inetpub folder and
its subfolder wwwroot are created automatically. The
programs have to create the search folder as a subfolder
of wwwroot and save the database at this location.

Int'l Conf. Foundations of Computer Science | FCS'11 | 23

criteria from a combination of exact keywords to a
combination of patterns, i.e., a combination of partial
keywords.

 The user interface of this query engine is shown in
Figure 1. Below the user prompt, there is an input form
in which two textboxes are arranged to take search
criteria from users and two command buttons are used
to either submit the search or reset the form. The source
code of this interface is listed in Figure 2. This HTML
file is named as index.htm and saved at the same
location where the backend database is located,
i.e., C:\inetpub\wwwroot\search

4 The Pattern Matched Search

.

 Since human memory tends to be fuzzy, uncertain,
or even partial. A real coherent search engine should be
friendly enough to take these memory-caused factors
into consideration [9, 10, 11]. To ensure a good
alignment between the user’s fuzzy memory and the
engine’s actual search operations, the following SQL

syntax is applied to perform queries based on pattern-
matched comparison in which the LIKE operator is used
in the WHERE clause to search for a specified pattern
in the given column. The “%” character is used to
define wildcards

 SELECT *

 both before and after the pattern:

 FROM table
 WHERE column LIKE “%pattern%”

 In this manner, a search criterion can be formed by
incorporating both certain and uncertain memories from
a user. As a result, only those rows of data containing
the designated pattern in the given column are extracted.
On the other hand, what are before and after the
designated pattern in the given column are not
concerned.

 The source code of these search operations is listed
in Figure 3. This ASP program is name as search.asp
and saved at the same location where the backend
database and frontend user interface are located,
i.e., C:\inetpubb\wwwroot\search

.

Figure 1. The User Interface

Figure 2. The HTML Code of User Interface

<html>
 <h3>Please enter your search criteria:</h3>
 <form action="search.asp" method="post" name="fromCriteria">
 <table width="200">
 <tr>
 <td>Title:</td>
 <td><input name="txtTitle" type="text" size="60" maxlength="60"></td>
 </tr>
 <tr>
 <td>Author:</td>
 <td><input name="txtAuthor" type="text" size="60" maxlength="60"></td>
 </tr>
 <tr>
 <td><input type="submit" value="Submit"></td>
 <td><input type="reset" value="Reset"></td>
 </tr>
 </table>
 </form>
</html>

24 Int'l Conf. Foundations of Computer Science | FCS'11 |

Figure 3. The ASP Code of Search Operations

<html>

 <%

 dim stream 'the input stream
 dim conn 'the connection object
 dim results 'the query result
 dim no, title, author 'the table data in a row

 'create the input stream
 stream = "Provider=Microsoft.ACE.OLEDB.12.0;Data Source=" & Server.MapPath("BookDB.accdb")

 'attach the input stream to the database
 set conn = server.createobject("adodb.connection")
 conn.open stream

 'get search criteria (keywords) from user
 keyTitle = request.form("txtTitle")
 keyAuthor = request.form("txtAuthor")

 'run the query and keep the result
 sql = "select * from Book where Title like '%" & keyTitle & "%' And Author like '%" & keyAuthor &
"%'"
 set results = conn.execute(sql)

 %>

 <h3>The Search Result:</h3>

 <table border="1">

 <tr><th>No</th><th>Title</th><th>Author</th></tr>

 <%

 'display the results in a table
 while (not results.eof)

 'get table data
 no = results("No")
 title = results("Title")
 author = results("Author")

 'write a row
 response.write("<tr><td>" & no & "</td><td>" & title & "</td><td>" & author & "</td></tr>")

 'go on to the next row
 results.movenext

 wend

 'close the database
 conn.close
 Set conn = nothing
 set results = nothing

 %>

 </table>

</html>

Int'l Conf. Foundations of Computer Science | FCS'11 | 25

5. Sample Executions
 After complete afore mentioned implementations,
this search engine is ready to operate at the follow web
address:

 It can be operated in a manner similar to the
operations of most web-based search operations. Some
sample executions are illustrated as follows:

http://localhost/search

1. To look for all books having “intro” in the Title
filed and having “an” in the Author

 field:

After clicking the submit

 button, the search results
are shown as follows:

2. To look for all books having “rose” in the Author

filed:

After clicking the submit

 button, the search results
are shown as follows:

3. To look for all books having “adv” in the Title

 filed:

After clicking the submit

 button, the search results
are shown as follows:

4. The entire database can be browsed by leaving both
criteria blank:

After clicking the submit

 button, the search results
are shown as follows:

6 Conclusion
 The modernization of communication technologies
has turned the web into a global platform where people
can work across time and space. This digital revolution
is making web-based search operations more vitally
demanded than ever. As a result, an effective search
engine is no longer just a facilitating feature, but, more
realistically, it has become a core function.

26 Int'l Conf. Foundations of Computer Science | FCS'11 |

 In some way, the effectiveness of web search
operations is empowered by the swiftness of response
time as well as the easiness of operations. Although
web programmers can tailor and embed open source
search engines into their search domains, the
customization from general purposes into special
purposes may be time consuming and not a practical
choice.

 This project demonstrated an easier alternative that
most of the readers can follow to craft their own
lightweight search engines to suit their own search
domains. With this self-defined search engine, users
can flexibly turn their fuzzy memories about the
intended data into combinational fuzzy search criteria.
By relaxing or tensing the fuzziness of search, users can
easily extend up or narrow down the search results until
the target data is located. This approach is practical,
flexible and, more importantly, it requires only a few
programming.

7 References
[1] The ASPSeek open source search engine is

available at http://www.aspseek.org

[2] The Lucene open source search engine is available
at

.

http://lucene.apache.org

[3] The Namazu open source search engine is
available

.

at http://www.namazu.org

[4] The mnoGoSearch open source search engine is
available at

.

http://www.mnogosearch.org

[5] The WebGlimpse open source search engine is
available at

.

http://webglimpse.net

[6] Micarelli, A., Gasparetti, F., Sciarrone, F. and
Gauch S. 2007. Personalized Search on The World
Wide Web. Brusilovsky, P., Kobsa, A. and Nejdl,
W. (Eds.),

.

The Adaptive Web: Methods and
Strategies of Web Personalization

[7] Burke, R. 2007. Hybrid Web Recommender
Systems. Brusilovsky, P., Kobsa, A. and Nejdl, W.
(Eds.),

, Heidelberg,
Germany: Springer, pp. 195-230.

The Adaptive Web: Methods and Strategies
of Web Personalization

[8] Zou, L., Chen, L. and Özsu, M. 2009. Distance-
Join: Pattern Match Query in a Large Graph
Database,

, Heidelberg, Germany:
Springer, pp. 377-408.

Proceedings of the 35th International
Conference on Very Large Data Bases (VLDB09)

,
Lyon, France, pp. 886-897.

[9] Jonas S Karlsson, J. and Kersten, M. 2000. O-
Storage: A Self Organizing Multi-Attribute
Storage Technique for Very Large Main
Memories, Proceedings of the Australasian
Database Conference (ADC '00)

[10] Ford, N., Miller, D. and Moss, N. 2005. Web
Search Strategies and Human Individual
Differences: Cognitive and Demographic Factors,
Internet attitudes, and approaches.

, City, State, pp.
57-64.

Journal of the
American Society for Information Science and
Technology

[11] Ford, N., Miller, D. and Moss, N. 2005. Web
Search Strategies and Human Individual
Differences: A Combined Analysis.

, Volume 56, Issue 7, pp. 741 - 756.

Journal of the
American Society for Information Science and
Technology, Volume 56, Issue 7, pp. 757 - 764.

Int'l Conf. Foundations of Computer Science | FCS'11 | 27

A 4 out of n Secret Sharing Scheme in Visual Cryptography without Expansion

Ying-Yu Chen
Department of Computer Science and Information

Engineering, National Chi Nan University
Puli, Nantou 54561, Taiwan, R.O.C.

e-mail: s99321514@ncnu.edu.tw

Justie Su-Tzu Juan*

Department of Computer Science and Information
Engineering, National Chi Nan University

Puli, Nantou 54561, Taiwan, R.O.C.
e-mail: jsjuan@ncnu.edu.tw

Abstract Visual cryptography (VC, for short) encrypts the
secret image into n shares (transparency). We cannot see any
information from any one share, and decrypt the original image
by stacking all of the shares. Now, we extend it to the k out of n
secret sharing scheme. (k, n) threshold secret sharing scheme
encrypts as the same way and decrypts the original image by
stacking at least k shares. If one stacks less than k shares, he (or
she) cannot recognize the secret image. In this paper, we
construct a new scheme for (4, n) threshold secret sharing
encrypt in VC by using a method of combination and the size of
the share is as small as the original image. That is, there is no
expanded need while some of the previous scheme need.

Keywords-visual cryptography; secret sharing scheme; security;
share.

I. INTRODUCTION

Visual cryptography (VC, for short) and the (k,
n)-threshold secret sharing scheme were proposed by
Naor and Shamir in 1995 [9]. Visual cryptography
means the secret image is turned into n shares that
combined with black and white pixel, and the
decrypting by stacking the shares together to reveal
the secret image. So we can decrypt the secret image
by human’s eye without using computer. The (k,
n)-threshold secret sharing scheme means a dealer
sends a share to each of the n users. In the condition
of k is small or equal than n, the fewer than k users
stack their shares together, they cannot see any
information from the image. But at least k users stack
their shares together, they will find out the secret from
the image.

In most of the VC scheme [2, 4, 7, 8, 9, 10, 12],
the pixel of each share will expand. The more value of
n is, the more value of the expansion will be.
However, the size of the share is larger than the
original image. In 1995, Naor and Shamir [9]
proposed some (k, n)-threshold secret sharing in VC
for three kinds of condition. First, some of their
schemes are the efficient solutions for (2, n) and (3, n).
Second, they propose a general k out of k scheme.

* Corresponding author.

Third, they propose a general k out of n scheme when
k is small or equal than n. But the pixel of each share
will expand in their later two methods. For
convenience, the third method is called NS scheme in
this paper.

In 2008, Fang et al. propose a new algorithm
(called FLL scheme in this paper) [6]. They solve the
problem in expansion. In FLL scheme, the authors use
Hilbert-curve [1] and two queues to present a VC
scheme. The shares they generate are as small as the
input image S, so the pixel of each share won’t
expand. But since Fang et al. use Naor and Shamir’s
scheme to design their scheme, the more number of
the expansion in Naor and Shamir’s scheme is, the
image we decrypted will be more unclear in FLL
scheme.

Another subject has been considered these years,
progressive visual secret sharing (PVSS, for shout)
scheme [3, 5]. In 2011, Hou et al. propose a new
algorithm for (2, n) threshold PVSS scheme [3].

In above researches, no matter the shares will be
expansion or not, it cannot reveal the secret image by
stacking less than k shares and it can reveal the secret
image by stacking at least k shares for k ≥ 4. Because
the expansion in the most of (4, n)-threshold secret
sharing scheme in VC is quite large and the image we
decrypted will be not clear in FLL scheme for (4,
n)-threshold secret sharing scheme in VC. Hence, we
propose a new scheme to improve it. We use the
theory of combination to construct the scheme.
Actually, our scheme is also a (4, n) threshold PVSS
scheme. The detail of our scheme is presented on next
section. Some experiment results are given in section

, and the conclusion is stated in section .

II. THE PROPOSED SCHEME

We will show our (4, n)-threshold secret sharing
scheme in VC as follows. For convenience, let

28 Int'l Conf. Foundations of Computer Science | FCS'11 |

 ≤≤

= −

 otherwise. ,0

; 0 if ,!)!(
! nj

C jjn
n

n
j

Definition 1. An n × m 0-1 matrix M(n, j) is called
totally symmetric if each column has the same weight,
say j, and m equal to the number of n

jC and every

column vectors are difference to each others, where
the weight of a column vector means the sum of each
entry in this column vector.

Definition 2. Given an n × m1 matrix A and an n × m2
matrix B, we define:

1. [A||B]be an n × (m1 + m2) matrix that obtained by
concatenating A and B;

2. [a × A||b × B], for any two positive integer a and b,
be an n × (a × m1 + b × m2) matrix that obtained
by concatenating A for a times and B for b times.

Lemma 1. Give an n × m totally symmetric matrix A
= M(n, j), For i = 1, 2, …, n, let fi(A) represent the
Hamming weight of the row vector that is the result of
applying “or” operation for any i rows in A. Then fi(A)
= fi(M(n, j)) = in

j
n
j CC −− .

Proof. The number of column in M(n, j) is equal to ���. When we choose any i rows, because if any one
column vector has all zeros in these i rows, the result
entry for applying “or” operation for these row vectors
still will be zero. In the other way, if any one column
vector has all zeros in these i rows, there must has j
ones show on the other n − i rows. Hence, the number
of those kind column vectors is in

jC − . So fi(M(n, j))

equals to the number of all columns subtract the
number of columns that has all zeros in these i rows
(and has j ones in the other n − i rows). Hence, fi(M(n,
j)) = in

j
n
j CC −− .

We use an example to demonstrate Lemma 1:

Example 1. Let A = M(4, 2) =

�1 11 0 1 0 0 00 1 1 00 10 0 0 1 0 11 0 1 1�.

Then we have f1(A) = 3, f2(A) = 5, f3(A) = 6, and f4(A)
= 6.

Lemma 2. fi([A||B]) = fi(A) + fi(B) for any two totally

symmetric matrices A and B.

Proof. A matrix [A||B] is obtained by concatenating
matrices A and B. Let A denote an n × m1 matrix, B
denote an n × m2 matrix, and A = M(n, jA), B = M(n, jB).
Then fi([A||B]) = fi([M(n, jA)||M(n, jB)]). Because do
Hamming weight for the resulting row vector of
applying “or” operation for some i row of [A||B] is
equal to that [A||B] be divided into two parts A, B and
do the same thing to these two parts, then add those
two results together. According to the above reason,
fi([M(n, jA)||M(n, jB)]) = fi(M(n, jA)) + fi (M(n, jB)). That
is, fi([A||B]) = fi(A) + fi(B).

Let [A1||A2||…||Ak] = […[[A1||A2]||A3]||…||Ak] for
any matrices A1, A2, …, Ak, with the size of Ai is n × mi
for i = 1, 2, …, k. We have the following corollary.

Corollary 1. For any k totally symmetric matrices A1,
A2, …, Ak, where Ai = M(n, j i) for some 0 ≤ j i ≤ n for
any 1 ≤ i ≤ k. Let [A1||A2||…||Ak] = B. Then fi(B) = fi(A1)
+ fi(A2) + … + fi(Ak).

Definition 3. The light transmission rate ℑ(S) = w / p
= 1 − (b / p), where w means the number of the white
pixel in the image S, p means the number of the all
pixel in the image S, b means the number of the black
pixel in the image S.

Definition 4. Given totally symmetric matrices A1,
A2, …, Ak. For any 1 ≤ i ≤ k, Ai = M(n, j i) for some 0 ≤
j i ≤ n. Let [A1||A2||…||Ak] = B and B is an n × m matrix.
Define ℑ(B, k) = 1 – (fk(B) / m), where k ≤ n.

To construct the (4, n) secret sharing scheme, we
will construct two matrices, C0 and C1, which will be
used for constructing n shares later. Since we will
choose any one column vector of C0 (or C1,
respectively) randomly when construct the pixels of n
shares according to a white pixel of secret image S (or
a black pixel of secret image S, respectively), we have
to follow two conditions:

− ℑ(C0, k) = ℑ(C1, k) for 1 ≤ k ≤ 3.
− ℑ(C0, k) > ℑ(C1, k) for k ≥ 4.

The first rule ensures C0 and C1 have the same
light transmission rate when k is between one and
three, so it won’t see any information when we stack
less than 4 shares. The second ensure C0 and C1 have
the different light transmission rate when k is larger
than three, and the light transmission rate for the white
pixel of secret image S is greater than that for the
black pixel of secret image S, so it can reveal the

Int'l Conf. Foundations of Computer Science | FCS'11 | 29

secret image. Hence we can finger out the secret when
stacking at least 4 shares. For the following algorithm,
let m = n2 – 2n = n

n
n CCn 11)3(−+− =

nnnn
n

n CCnC 02
65

2

2

)2(+−+−+ .

(4, n) scheme algorithm:

Input: A binary secret image S with size w × h and the
value of n.

Output: n shares R1, R2, …, Rn, each with size w × h.

1. Let C0 = [M(n, 2)||(n – 3) × M(n, n)||((n2 – 5n + 6)
/ 2) × M(n, 0)] and C1 = [(n – 3) × M(n, 1)||M(n,
n – 1)], the size of C0 and C1 are both n × m.

2. for (1 ≤ i ≤ h ; 1 ≤ j ≤ w)
t = random(1..m);
for (1 ≤ k ≤ n)

 if (S(i, j) == 0)
Rk(i, j) = C0(k, t);

 else
Rk(i, j) = C1(k, t);

Theorem 1. In the proposed scheme, we stack at least
four shares can reveal the secret, and stack one, two or
three shares cannot.

Proof. We use the light transmission rate to prove that
we cannot recognize the secret if we stack less than
four shares, but we can see the image if at least four
shares stack together. We divided into five cases. The
first three cases are to prove that if we stack less than
four shares, the light transmission rate for the white
and black pixel of the stacked image are in the same.
The last two cases prove the light transmission rate
for the white pixel of the stacked image is larger than
the light transmission rate for the black pixel of the
stacked image when at least four shares stack together.
Therefore we can obey the (4, n)-threshold secret
sharing scheme. For A = C0 or C1, consider the
proposed algorithm, the definition of fi(A) and ℑ = 1 −
(b / p), we have ℑ = 1 − (fi(A) / m) = ℑ(A, k). Note
that Lemma 1 will be used in the following proof.

Case 1. For any one share

ℑ(C0, 1)

� 1 −
�����,���|��−�� � ���,��|���������� � � ���,����

=1 −
�!���,��" + ��−���
�!���,��" + ��������� ��
�!���,��"�� −��

=
�� − #� + #�� − �� ,

ℑ(C1, 1)

= 1 −
��$��−�� � ���,%�||���,� − %�&�
= 1 − ��−�� �
�!���,%�" +
�!���,� − %�"�� −�� = �� − #� + #�� − �� .

So ℑ(C0, 1) = ℑ(C1, 1) when one get one share,
and one cannot see any information.

Case 2. Stack any two shares

ℑ(C0, 2)

= 1 −
�����,���|��−�� � ���,��|���������� � � ���,����

= 1 −
�!���,��" + ��−�� �
�!���,��"+��������� ��
�!���,��"�� −��

=
�� − '� + (�� −�� ,

ℑ(C1, 2)

= 1 −
��$�� − �� � ���,%�||���,� − %�&�
= 1 − �� − �� �
�!���,%�" +
�!���,�−%�"�� − �� �)�� +)�−�� =

�� − '� + (�� − �� .

So ℑ(C0, 2) = ℑ(C1, 2). That means when
stacking any two shares, we cannot see any
information.

Case 3. Stack any three shares

ℑ(C0, 3)

= 1 −
*����,��||��−�� � ���,��||��������� � � ���,����

=1−
*!���,��" + ��−�� �
*!���,��" + ��������� � �
*!���,��"�� − ��

=
�� − (� + +�� − �� ,

ℑ(C1, 3)

= 1 −
*!,!� �" � ���,%�||���,� - %�."

= 1 − ��−�� �
*!���,%�" +
*!���,�−%�"�� − ��
�� − (� + +�� − �� .

Again, ℑ(C0, 3) = ℑ(C1, 3) when stacking any
three shares, so we cannot see any information.

Case 4. Stack any four shares

ℑ(C0, 4)

= 1 −
/����,��0�!�–�" � ���,���0��������� � � ���,����

=1 −
/!���,��" + ��−�� �
/!���,��" + ��������� � �
/!���,��"�� − ��

=
�� − 2� + %��� − �� ,

ℑ(C1, 4)

30 Int'l Conf. Foundations of Computer Science | FCS'11 |

= 1 −
/�$�� − �� � ���,%�||���,� − %�&�

= 1 − �� − �� �
/!���,%�" +
/!���,� − %�"�� − �� =
�� − 2� + %��� − �� .

Hence, ℑ(C0, 4) > ℑ(C1, 4), so we could
recognize the secret from the image.

Case 5. Stack any t shares, t > 4.

ℑ(C0, t)

= 1 −
3����,��||!�–�" � ���,��||��������� �����,����

=1 −
3!���,��" + ��−�� �
3!���,��" +��������� � �
3!���,��"�� − �� ,

ℑ(C1, t)

= 1 −
3�$�� − �� � ���,%�||���,� − %�&�

= 1 − �� − �� �
3!���,%�" +
3!���,� − %�"�� − �� .

 Because ℑ(A, t) = 1 − (ft(A) / m) and the value
of m in C0 and C1 are the same, we could only use ft(A)
to compare ℑ(C0, t) and ℑ(C1, t). If ft(C0) < ft(C1) then
ℑ(C0, t) > ℑ(C1, t). Since

ft(C0)

= 45!6�7, 2�"+�7−3� � 45!6�7, 7�"+ :��-'�;(� < � 45!6�7, 0�"

= −nC2
n
n

tn CnC)3(2 −+−

= {(n2 – n) – (n – t)2 + (n – t)} / 2 + n – 3

= nt + n – t(t + 1) / 2 – 3

< nt + n – 3t

= (n – 3)(n – (n – t)) + (n – 0)

=)())(3(1111
tn

n
n
n

tnn CCCCn −
−−

− −+−−

= �7 − 3� � 45!6�7, 1�" + 45!6�7, 7 − 1�"

= ft(C1).

Where – t(t + 1) / 2 – 3 < – 3t is hold because
t(t – 5) / 2 + 3 > 0 for any t ≥ 5. Hence, ℑ(C0, t) >
ℑ(C1, t) when t > 4, and we can recognize the secret
from the stacked image.

III. EXPERIMENTAL RESULT

We use (4, 5)-threshold secret sharing scheme as
an example. The input n is 4, the C0 and C1 that the
algorithm generated are:
C0 = [M(n, 2)||(n – 3) × M(n, n)||((n2 – 5n + 6) / 2) ×

M(n, 0)] = [M(5, 2)||2 × M(5, 5)||3 × M(5, 0)] =

=>>
>?0 0 00 0 1 1 0 00 0 1 1 0 1 0 1 0 1 1 1 0 0 0 1 1 1 0 0 00 1 0 0 1 0 0 1 1 0 1 1 0 0 01 0 01 1 1 0 1 11 0 0 1 0 0 0 1 1 0 0 00 0 0 0 1 1 0 0 0@AA

AB ,
C1 = [(n – 3) × M(n, 1)||M(n, n – 1)] = [2 × M(5, 1) ||
M(5, 4)] =

=>>
>?0 0 00 0 0 0 1 01 0 0 0 0 00 0 1 1 1 1 1 1 0 0 1 1 1 0 10 0 1 0 0 0 0 1 0 0 1 1 0 1 10 1 01 0 0 0 0 00 0 1 1 0 0 0 1 0 1 1 10 0 0 0 0 1 1 1 1@AA

AB.

The experiment results show in Figure 1. We use
an image (NCNU) to be the secret image as Figure
1.(a) and we encrypt the secret image into 5 shares as
Figure 1.(b), (c), (d), (e), and (f). We show the result
of stacking share 1 and share 2 in Figure 1.(g) and the
result of stacking any other two shares are almost the
same, so we just show one of combined image that
stacks any two shares. Therefore, we cannot see any
information when stacking any two shares. We show
the result of stacking share 1, share 2 and share 3 in
Figure 1.(h) and the result of stacking any other three
shares are almost the same, so we just show one of
combined image that stacks any three shares. Again,
we cannot see any information when stacking any
three shares. So it can not reveal any information
when stack less than any four shares. We show the
result of stacking share 1, share 2, share 3 and share 4
in Figure 1.(i) and the result of stacking any other four
shares are almost the same, so we just show one of
combined image that stacks any four shares. By
watching the Figure 1.(i), we can see the secret image
slightly. Then we show the result of stacking all the
shares together in Figure 1.(j) and we can see the
secret image clearly. So it reveals the secret when
stack at least any four shares and if more and more
share stacks together, the secret image will reveal
more and more clearly.

IV. CONCLUSIONS

For general n ≥ 4, we had shown a (4,
n)-threshold secret sharing scheme in VC. We
construct the scheme by using a method of
combination. In [9], the authors defined α which
means the relative different in weight between C0 and
C1 of stacking k shares. It would like α to be as large
as possible, so the image will be clearer. The value of

Int'l Conf. Foundations of Computer Science | FCS'11 | 31

α in (4, 5)-threshold secret sharing scheme
scheme is approach to 1 / 4000. Because
use NS scheme to design their scheme,
scheme is in the same as α in NS scheme
scheme, α is equal to 3 / 15 − 2 / 15

(a)

(c)

(e)

(g)

(i)

(a) Secret image
5, (g) The result of stacking share

share 1, share2 and share 3

threshold secret sharing scheme of NS
Because Fang et al.

to design their scheme, α in FFL
in NS scheme. In our
2 / 15 = 1 / 15 in the (4,

5)-threshold secret sharing scheme.
n)-threshold secret sharing scheme
our proposed scheme has better perform
scheme [9] and FLL scheme [

Figure 1. Experimental result of (4, 5)

Secret image S, (b) Share 1, (c) Share 2, (d) Share 3, (e) Share 4, (f) Share
) The result of stacking share 1 and share 2, (h)The result of stacking
1, share2 and share 3, (i) The result of stacking share 1, share2, share

3 and share 4, (j) The result of stacking all the shares.

threshold secret sharing scheme. Also, for any (4,
threshold secret sharing scheme in VC for n ≥ 6,
r proposed scheme has better performance than NS

] and FLL scheme [6] in the value of α.

 (b)

 (d)

 (f)

 (h)

 (j)

) Share
)The result of stacking

1, share2, share

32 Int'l Conf. Foundations of Computer Science | FCS'11 |

Besides, there is no expansion in our scheme
which is smaller than the NS scheme [9] and we also
generate shares by randomly without using
Hilbert-curve while [6] need.

Overall, our proposed scheme reveals the secret
image when stacking at least four shares and the
secret image will be clearer if stacking more and more
shares together. That is, our scheme is a (4, n)
threshold PVSS scheme. The advantages of our
proposed scheme are that it has no pixel expanded,
and has the larger α that the stacked image will be
clearer. The future work is to generate the proposed
scheme to be a general k out of n secret sharing
scheme in VC.

ACKNOWLEDGMENT

This work was partially supported by National
Science Council of Taiwan, ROC under Grant No.
NSC99-2628-E-2-60-011-.

REFERENCES

[1] D. Hilbert, “Ü eber die stetige Abbildung einer Linie aufein
Flächenstück,” Mathematische Annalen, vol. 38, pp.
459—460, 1891.

[2] C. Blundo, A. De Santis and D. R Stinson. “On The Contrast
in Visual cryptography schemes,” Journal Of Cryptology, vol.
12, pp. 261—289, 1999.

[3] Young-Chang Hou, Zen-Yu Quan, “Progressive Visual
Cryptography with Unexpanded Shares,” IEEE Transactions
on Circuits and Systems for Video Technology, accepted
2011.

[4] P. A. Eisen, D.R. Stinson, “Threshold visual cryptography
schemes with specified whiteness levels of reconstructed
pixels,” Des. Codes Cryptogr. 25, pp. 15—61, 2002.

[5] W. P. Fang, J. C. Lin, “Progressive viewing and sharing of
sensitive images,” Pattern Recognition and Image Analysis,
Vol.16, no. 4, pp. 638—642, 2006

[6] Wen-Pinn Fang, Sen-Jen Lin, Ja-Chen Lin, “Visual
cryptography (VC) with non-expanded shadow images: a
hilbert-curve approach,” Proceeding on IEEE International
Conference on Intelligence and Security Informatics
(ISI2008). Grand Formosa Regent Hotel, Taipei, Taiwan, pp.
271—272, 2008.

[7] N. Linial and N. Nisan, “Aprroximate inclusion-exlusion,”
Combinatorica 10, pp. 349—365, 1990.

[8] C. C. Lin and W. H. Tsai, “Secret multimedia information
sharing with data hiding capability by simple logic
operations,” Pattern Recognition and Image Analysis, vol.
14(4), pp. 594—600, 2004.

[9] M. Naor and A. Shamir, “Visual cryptography,” Eurocrypt’94,
Lecture Notes in Computer Science, Springer-Verlag, Berlin,
vol. 950, pp. 1—12, 1995.

[10] T. Hofmeister, M. Krause and H. U. Simon,
“Contrast-Optimal k out of n Secret Sharing Schemes in
Visual Cryptography,” Theory of Computer Science, vol. 240,

pp. 471—485, 2000.
[11] S.-J. Shyu, “Image encryption by multiple random grids,”

Pattern Recognition, vol. 42, no. 7, pp. 1582—1596, 2009.
[12] C. N. Yang, “New Visual secret sharing schemes using

probabilistic method,” Pattern Recognition Letters, vol.
25(4), pp.481—495, 2004.

Int'l Conf. Foundations of Computer Science | FCS'11 | 33

Presenting the Test Cell Algorithm for Solving Sudoku

Puzzles

Tom Kigezi

Department of Electrical and Computer Engineering, Makerere University, Kampala, Uganda

Abstract— Sudoku, the logic based combinatorial number-

placement puzzle has gained worldwide fame among

mathematicians and scientists alike in the field of

Computational Game Theory. Notably, a vast majority of

computer-based algorithms available for solving these

puzzles try to mimic human logic in their implementation,

making them liable to errors from puzzle inconsistencies.

This paper presents a straightforward computer-based

algorithm for solving Sudoku puzzles, hereafter called the
Test Cell algorithm. It utilizes a highly efficient

backtracking technique that is easy to implement in most

available computer programming languages. Test runs of

the algorithm, implemented using the C++ computer

programming language, have been successful for

essentially all valid puzzle difficulty categories.

Keywords— Sudoku puzzle, Sudoku algorithms, Easy Cell

method, Test Cell

1. Introduction
Introduced in Japan in 1984 and made world popular by

British newspaper London Times in 2005[1]-[2], the

Sudoku puzzle has become the passion of many people the

world over in the past few years. Sudoku is a logic-based,
combinatorial number-placement puzzle whose objective is

to fill a 9×9 grid with digits so that each column, each row,

and each of the nine 3×3 sub-grids that compose the grid

(also called "boxes", "blocks", "regions", or "sub-squares")

contains all of the digits from 1 to 9. The puzzle is a

partially completed grid and does not necessarily have a

single legitimate solution.

Ironically, despite being a game of numbers, Sudoku

doesn‟t demand an iota of mathematics of its solvers. In

fact, no operation—including addition or multiplication

helps in completing a grid, which in theory could be filled
with any set of nine different symbols. Nevertheless,

Sudoku presents mathematicians and computer scientists a

host of challenging issues viz. the choice of the number of

Sudoku grids that can be constructed, the minimal number

of starting clues that yield a unique solution, and, whether

Sudoku belongs to the N-P complete class of problems[2]-

[3].

Unlike manually solving the puzzle with hand-developed

algorithms or natural methods[4], computer-based

algorithms offer quick solutions to Sudoku puzzles, even

with rigorous backtracking - a systematic form of trial and
error in which partial solutions are proposed and slightly

modified if proved wrong. Challenging puzzles however

tend to require multiple hand-developed solving strategies

that may not be easily integrated into a single logically

sound and efficient computer-based algorithm. This is a

fundamental challenge in writing Sudoku puzzle solving

programs that the Test Cell algorithm overcomes.

2. The Test Cell Algorithm
The Test Cell algorithm developed for solving Sudoku

puzzles does not mimic human logic or hand-developed

algorithms. It is a straightforward, easy to implement,

consistent and efficient computer-based algorithm that
employs Test Cells - special testing cells determined by a

specific criterion, that guide to the ultimate puzzle

solution. While absent in typical easy puzzles (as a solution

is reached without a need to identify them), Test Cells

begin to appear as the difficulty of the puzzle is raised.

Though only tested on 9X9 Sudoku grids, the Test Cell

algorithm can ideally be scaled to other puzzle dimensions.

2.1 Algorithm Terminology
The Test Cell algorithm is better explained by a

preliminary description of all terms pertaining to it in an

intended logical order. These are:

Lists- An empty cell has a set of numbers that cannot

occupy it (Impossibility List) and consequently, a

corresponding set of those that can occupy it (Possibility

List). These lists are developed for every empty cell

according to the Sudoku game rules.

Invalid Puzzle Configuration- A puzzle configuration in
which there is at least one empty cell whose Possibility List

is empty. This shall be the only test for puzzle validity

during the course of solving.

Dead End- If an invalid puzzle configuration is reached

during the course of solving a Sudoku puzzle, then we have

hit a “Dead End”.

Easy Cell- An empty cell whose Possibility List contains

only one number and as such the cell can only be filled

with that one available number.

Solution- A fully filled Sudoku puzzle according to the

Sudoku game rules. For a 9X9 grid, the sum of all numbers

in each row, column and region is 45, making the sum of
all numbers occupying the grid 405.

Easy Cell method- A method of achieving a solution to

the puzzle by only filling any Easy Cells if available until

either a solution is reached or there are no more Easy Cells

in the puzzle, in which case the puzzle is not yet fully

solved. This method is normally sufficient to completely

34 Int'l Conf. Foundations of Computer Science | FCS'11 |

Figure 1: Puzzle that may be solved by the Easy Cell method alone

solve easy puzzles. Figure 1 shows a typical puzzle that

only requires the Easy Cell method for its solution.

Test Cell- A special empty cell (as determined by the

later described procedure) whose Possibility List contains

just two numbers, only one of which is the correct one for

insertion. It's important to note that not every cell with only

two numbers in its Possibility List is a Test Cell. Test Cells

are indeed special because of the procedure used to identify

them as will be described later. Puzzles typically have a

number of Test Cells. The sequence in which they are

discovered and correctly filled may or may not lead to

solution variations. Therefore, the Test Cell algorithm
ideally has the capability to produce all the possible

solutions for a given puzzle.

2.2 Determination and Manipulation of

Test Cells
In determination of a Test Cell, the following procedure

applies to and is only performed for all empty cells with

two numbers in their Possibility Lists, in a puzzle whose

configuration is such that all Easy Cells have been filled

with the Easy Cell method:

i. Let the puzzle be in configuration X

ii. Fill/insert the empty cell with one of the numbers

in its Possibility List and proceed with solving the

puzzle using the Easy Cell method, while

registering the number of newly generated and

filled Easy Cells.

iii. Reset the Puzzle to configuration X

iv. Fill/insert the empty cell with the other number in

its Possibility list and proceed with solving the

puzzle using the Easy Cell method, while

registering the number of newly generated and

filled Easy Cells.

v. Reset the Puzzle to configuration X

Following the above procedure, a Test Cell is identified

as the one with a number in the Possibility List which

registered the most number of newly generated Easy Cells.

For this particular cell, this number is called the alpha

number while the other number is called the beta number.

Figure 2: Test Cell algorithm flow chart

Upon realisation of a Test Cell, the alpha number is

inserted first, as logic would dictate. If the alpha insertion

leads to a Dead End, only then is the beta insertion made

and considered the correct insertion. This is illustrated by

the Test Cell algorithm flow chart shown in Figure 2.

The “new beta insertion” check in the flow chart aims to

determine if the beta insertion to be made is following an

alpha insertion, as is required. If not, then both the alpha

and beta insertions led to a Dead End, a situation that

contradicts the Test Cell theory, causing the algorithm to

terminate without a solution to the puzzle. A solution to this
impasse is the extended Test Cell algorithm which adds an

easy extension to the algorithm within the confines of the

Test Cell theory.

Simply put, to implement the algorithm, the Easy Cell

method is first performed. If it doesn‟t yield a solution, and

this is not a Dead End, identify a Test Cell and make its

alpha insertion. If this leads to a Dead End in the next

single run, then the puzzle is reset appropriately and the

Test Cell‟s beta insertion is made instead. This must lead to

a normal progress in the next run, these steps repeating

themselves until a solution is reached. Figure 3 shows a

puzzle that can be solved with the Test Cell algorithm.

Int'l Conf. Foundations of Computer Science | FCS'11 | 35

Figure 3: A moderately challenging puzzle that can be solved with the

Test Cell algorithm.

2.3 Extension to the Test Cell Algorithm
For a guaranteed solution to more difficult Sudoku

puzzles, the Test Cell algorithm adopts an easy extension

with the use of “BackPuzzle” puzzle configurations. In this

arrangement, Test Cells are further classified as immediate

or non-immediate (NI) Test Cells. Immediate Test Cells are

the commonest in puzzles falling in the typical Easy,

Medium, and Hard categories while non-immediate Test

Cells begin to occur in the more difficult puzzle categories.
An immediate Test Cell is one for which insertion of the

alpha or beta number leads to a Dead End upon performing

the Easy Cell method for the first chosen insertion, and a

normal progress (i.e. NOT Dead End) for the other. This is

illustrated in Figure 4 and Figure 5 where A and B

represent alpha and beta numbers respectively. It is

instructive to note that the Test Cell algorithm without the

extension assumes only immediate Test Cells for a puzzle.

Figure 4: An immediate Test Cell with the alpha number correct and the

beta number wrong, after performing the Easy Cell method

Figure 5: An immediate Test Cell with the alpha number wrong and the
beta number correct, after performing the Easy Cell method

A non-immediate (NI) Test Cell on the other hand is one

for which either insertion of the alpha or beta number leads

to a normal progress upon performing the Easy Cell

method, such that either insertion appears to be correct.

According to the Test Cell theory however, one of these

insertions will eventually produce a Dead End at a later
stage if you proceed solving the puzzle with it while the

other will not, thereby remaining consistent with the Test

Cell definition. This is illustrated in Figure 6 and Figure 7.

The BackPuzzle configuration mentioned earlier is the

puzzle configuration at the point when a non-immediate

Test Cell is found to exist in the puzzle being solved.

BackPuzzle configurations are useful because if both alpha

and beta insertions of a Test Cell lead to a Dead End (as is

the case when the Test Cell algorithm terminates with no

solution to a puzzle), then the current puzzle configuration

is reset to the most recent BackPuzzle configuration, and a

beta insertion is made in the corresponding non-immediate
Test Cell. This is illustrated in the flow chart for the

extended Test Cell algorithm shown in Figure 8.

Figure 6: A non-immediate (NI) Test Cell where the alpha number is
correct while the beta number is ultimately wrong.

Figure 7: A non-immediate Test Cell where the alpha number is ultimately
wrong while the beta number is correct.

36 Int'l Conf. Foundations of Computer Science | FCS'11 |

Figure 8: extended Test Cell algorithm flow chart

In a well-written program, the algorithm exhaustively

explores all possible hypotheses and finally determnines the

solution, if one indeed exists. Figure 9 shows a challenging

puzzle that can be solved with the extended Test Cell
algorithm.

Figure 9: A challenging puzzle that can be solved with extended Test Cell
algorithm

3. Sudoku Puzzle Difficulty Ranking

by the Test Cell Algorithm
Sudoku puzzles are often ranked by difficulty. Perhaps

surprisingly, the number of givens or "clues" has little or no

bearing on a puzzle's difficulty. A puzzle with a minimum

number of givens may be very easy to solve, and a Sudoku

with more than the average number of givens can still be

extremely difficult to solve by hand. Computer solvers can

estimate the difficulty for a human to find the solution,

based on the complexity of the solving techniques required.

A ranking system by the Test Cell algorithm would
suggest that a puzzle's difficulty level for a human player

is „Very-difficult‟ if it requires the extended Test Cell

algorithm to be solved. This relative difficulty further

increases with the number of BackPuzzle configurations

that are created during the course of solving the puzzle.

4. Conclusion
 This paper has presented an alternative computer-based

algorithm for solving Sudoku puzzles that utilizes a rather

basic technique. Its relative simplicity coupled with its

effectiveness merit it as a prime candidate of choice for any

device. Tests with the algorithm have been successful with

all puzzle categories at http://www.krazydad.com, a popular

online resource for Sudoku puzzles.

5. References
[1] Delahaye, Jean-Paul, “The Science Behind

Sudoku”, Scientific American magazine, June 2006.

[2] J.F. Crook, “A Pencil-and-Paper Algorithm for

Solving Sudoku Puzzles” Retrieved December 20, 2010,

from the World Wide Web:

http://www.ams.org/notices/200904/rtx090400460p.pdf

[3] Kim, Scott, “The Science of Sudoku", 2006

[4] Mike, Adams, “Sudoku Puzzle Secrets:

Learn How to Solve Sudoku Puzzles

With Little Effort”, 2007

Author
Tom Kigezi is a third-year student of BSc. Electrical

Engineering at Makerere University. He is a student

researcher with an online laboratories project iLabs@MAK

and has a keen interest in robotics, artificial intelligence

and automated systems.

Int'l Conf. Foundations of Computer Science | FCS'11 | 37

http://www.krazydad.com/sudoku/sfiles/
http://www.cs.virginia.edu/~robins/The_Science_Behind_SudoKu.pdf
http://www.cs.virginia.edu/~robins/The_Science_Behind_SudoKu.pdf
http://en.wikipedia.org/wiki/Scientific_American
http://www.ams.org/notices/200904/rtx090400460p.pdf
http://www.ams.org/notices/200904/rtx090400460p.pdf
http://www.ams.org/notices/200904/rtx090400460p.pdf
http://en.wikipedia.org/wiki/Scott_Kim
http://www.scottkim.com/thinkinggames/exploratorium06/the-science-of-sudoku.html

Abstract

and computational geometry is the generation of random

polygons.

practical evaluation of algorithms that operate on polygons,

where it is necessary to check

determine the actual CPU

experimentally. To this time, no polynomial

known for the random generation of polygons with a uniform

distribution

presented for generating random polygons using a set of

random vertices using

Keywords:

polygon, star

1

images which

important branches of computer graphics is the computational

geometry. The computational geometry executes some

computing on the geometrical shapes such as polygons. The

polyg

of real world and every object in the nature would be

representable as a set of polygons. For the reason of this issue

importance, one of the important discussed issues

computer graphics and comput

problem of generating random polygons.

The problem of random polygon generati

follows: Given

polygon generated with probability

polygon on

Consider two diffrenet pairs of points the two edges defined

by these pairs. It is easy to observe that the number of simple

polygons containing one of these edges by a dashed line: For

the first edge there exactly two simple polygons

1-

simple polygons

Unfortunately

problem of generating random simple polyg

time complexity.

heuristics for generating random simple polygons.

 Three Heuristic Algorithms for Generation of Random

& Faculty of Electrical & Computer Engineering of Shahid Rajaee Teacher Training University, Tehran, Iran
2 Department of

Abstract - One of the discussed issues in computer graphics

and computational geometry is the generation of random

polygons. This problem is of considerable importance in the

practical evaluation of algorithms that operate on polygons,

where it is necessary to check

determine the actual CPU

experimentally. To this time, no polynomial

known for the random generation of polygons with a uniform

distribution. In This paper, three new inventive algorithms are

resented for generating random polygons using a set of

random vertices using

Keywords: angular scanning,

polygon, star-shaped polygon, computer graphics.

1 Introduction

 The computer graphics is the

images which

important branches of computer graphics is the computational

geometry. The computational geometry executes some

computing on the geometrical shapes such as polygons. The

polygons are appropriate shapes for representing the shapes

of real world and every object in the nature would be

representable as a set of polygons. For the reason of this issue

importance, one of the important discussed issues

computer graphics and comput

problem of generating random polygons.

The problem of random polygon generati

follows: Given

polygon generated with probability

polygon on � in total.

Consider two diffrenet pairs of points the two edges defined

by these pairs. It is easy to observe that the number of simple

polygons containing one of these edges by a dashed line: For

the first edge there exactly two simple polygons

-b) which contain it,whereas for the second edge three

simple polygons

Unfortunately

problem of generating random simple polyg

time complexity.

heuristics for generating random simple polygons.

Three Heuristic Algorithms for Generation of Random

Polygons by a Given Set of Vertices

1 Faculty of Electrical & Computer Engineering of Islamic Azad

Faculty of Electrical & Computer Engineering of Shahid Rajaee Teacher Training University, Tehran, Iran

Department of

One of the discussed issues in computer graphics

and computational geometry is the generation of random

This problem is of considerable importance in the

practical evaluation of algorithms that operate on polygons,

where it is necessary to check

determine the actual CPU

experimentally. To this time, no polynomial

known for the random generation of polygons with a uniform

. In This paper, three new inventive algorithms are

resented for generating random polygons using a set of

random vertices using ��������

angular scanning,

shaped polygon, computer graphics.

Introduction

The computer graphics is the

 would be led to generate them.

important branches of computer graphics is the computational

geometry. The computational geometry executes some

computing on the geometrical shapes such as polygons. The

ons are appropriate shapes for representing the shapes

of real world and every object in the nature would be

representable as a set of polygons. For the reason of this issue

importance, one of the important discussed issues

computer graphics and comput

problem of generating random polygons.

The problem of random polygon generati

follows: Given �, a uniformly random polygon on

polygon generated with probability

in total.

Consider two diffrenet pairs of points the two edges defined

by these pairs. It is easy to observe that the number of simple

polygons containing one of these edges by a dashed line: For

the first edge there exactly two simple polygons

b) which contain it,whereas for the second edge three

simple polygons (Fig 1-c, Fig

Unfortunately no algorithm has been presented yet

problem of generating random simple polyg

time complexity. This motivated researchers to pursue

heuristics for generating random simple polygons.

Three Heuristic Algorithms for Generation of Random

Polygons by a Given Set of Vertices

Faculty of Electrical & Computer Engineering of Islamic Azad

Faculty of Electrical & Computer Engineering of Shahid Rajaee Teacher Training University, Tehran, Iran

Department of Electrical & Computer Engineering of Islamic Azad University, Qazvin, Iran

One of the discussed issues in computer graphics

and computational geometry is the generation of random

This problem is of considerable importance in the

practical evaluation of algorithms that operate on polygons,

where it is necessary to check the correctness and to

determine the actual CPU-usage of an algorithm

experimentally. To this time, no polynomial

known for the random generation of polygons with a uniform

. In This paper, three new inventive algorithms are

resented for generating random polygons using a set of

�����	 time.

angular scanning, convex hull, random Simple

shaped polygon, computer graphics.

The computer graphics is the science of computing the

would be led to generate them.

important branches of computer graphics is the computational

geometry. The computational geometry executes some

computing on the geometrical shapes such as polygons. The

ons are appropriate shapes for representing the shapes

of real world and every object in the nature would be

representable as a set of polygons. For the reason of this issue

importance, one of the important discussed issues

computer graphics and computational geometry is the

problem of generating random polygons.

The problem of random polygon generati

a uniformly random polygon on

polygon generated with probability

�
 if there exist

Consider two diffrenet pairs of points the two edges defined

by these pairs. It is easy to observe that the number of simple

polygons containing one of these edges by a dashed line: For

the first edge there exactly two simple polygons

b) which contain it,whereas for the second edge three

Fig 1-d, Fig 1-e) containing it exist.

no algorithm has been presented yet

problem of generating random simple polyg

This motivated researchers to pursue

heuristics for generating random simple polygons.

Three Heuristic Algorithms for Generation of Random

Polygons by a Given Set of Vertices
A. Nourollah

Faculty of Electrical & Computer Engineering of Islamic Azad

Faculty of Electrical & Computer Engineering of Shahid Rajaee Teacher Training University, Tehran, Iran

Electrical & Computer Engineering of Islamic Azad University, Qazvin, Iran

One of the discussed issues in computer graphics

and computational geometry is the generation of random

This problem is of considerable importance in the

practical evaluation of algorithms that operate on polygons,

the correctness and to

usage of an algorithm

experimentally. To this time, no polynomial-time algorithm is

known for the random generation of polygons with a uniform

. In This paper, three new inventive algorithms are

resented for generating random polygons using a set of

convex hull, random Simple

shaped polygon, computer graphics.

science of computing the

would be led to generate them. One of the

important branches of computer graphics is the computational

geometry. The computational geometry executes some

computing on the geometrical shapes such as polygons. The

ons are appropriate shapes for representing the shapes

of real world and every object in the nature would be

representable as a set of polygons. For the reason of this issue

importance, one of the important discussed issues

ational geometry is the

The problem of random polygon generation is defined as

a uniformly random polygon on

if there exist �

Consider two diffrenet pairs of points the two edges defined

by these pairs. It is easy to observe that the number of simple

polygons containing one of these edges by a dashed line: For

the first edge there exactly two simple polygons (Fig 1

b) which contain it,whereas for the second edge three

e) containing it exist.

no algorithm has been presented yet
problem of generating random simple polygons with linear

This motivated researchers to pursue

heuristics for generating random simple polygons.

Three Heuristic Algorithms for Generation of Random

Polygons by a Given Set of Vertices
A. Nourollah

1
, L.Mohammadi

Faculty of Electrical & Computer Engineering of Islamic Azad

Faculty of Electrical & Computer Engineering of Shahid Rajaee Teacher Training University, Tehran, Iran

Electrical & Computer Engineering of Islamic Azad University, Qazvin, Iran

One of the discussed issues in computer graphics

and computational geometry is the generation of random

This problem is of considerable importance in the

practical evaluation of algorithms that operate on polygons,

the correctness and to

usage of an algorithm

time algorithm is

known for the random generation of polygons with a uniform

. In This paper, three new inventive algorithms are

resented for generating random polygons using a set of

convex hull, random Simple

science of computing the

ne of the

important branches of computer graphics is the computational

geometry. The computational geometry executes some

computing on the geometrical shapes such as polygons. The

ons are appropriate shapes for representing the shapes

of real world and every object in the nature would be

representable as a set of polygons. For the reason of this issue

importance, one of the important discussed issues in

ational geometry is the

on is defined as

a uniformly random polygon on � is a

 simple

Consider two diffrenet pairs of points the two edges defined

by these pairs. It is easy to observe that the number of simple

polygons containing one of these edges by a dashed line: For

1-a, Fig

b) which contain it,whereas for the second edge three

e) containing it exist.

 for the

ons with linear

This motivated researchers to pursue

The generation of random simple polygons has two main

areas of applicati

algorithm oprating on polygons. The practical testing of its

CPU

solving the problem of random polygons and some of them

are briefly explained here in this paper

The

this way

generating of random polygons

algorithms would be offered and section

performance of the

5 conclusion

2

generation of geometric objects has received some attention

by researchers: Epstein and Sack presented an

algorithm for generating of simple polygons at random

Devroy, Epstein and Sack studied the random generation of

intervals and hyperrectangles. They consider the problem of

generating a random hyperrectangle in a unit hypercube

Atkinson and

of restricted height. A

of a root node and an ordered sequence of

Three Heuristic Algorithms for Generation of Random

Polygons by a Given Set of Vertices
L.Mohammadi

2

Faculty of Electrical & Computer Engineering of Islamic Azad

Faculty of Electrical & Computer Engineering of Shahid Rajaee Teacher Training University, Tehran, Iran

Electrical & Computer Engineering of Islamic Azad University, Qazvin, Iran

Fig. 1. Two edges belonging to a different number of simple

The generation of random simple polygons has two main

areas of applicati

algorithm oprating on polygons. The practical testing of its

CPU-usage.� Too many algorithms have been presented for

solving the problem of random polygons and some of them

are briefly explained here in this paper

The following sections

this way: section

generating of random polygons

algorithms would be offered and section

performance of the

conclusions would be

 The related work

 For the reason mentioned in section ago, the random

generation of geometric objects has received some attention

by researchers: Epstein and Sack presented an

algorithm for generating of simple polygons at random

Devroy, Epstein and Sack studied the random generation of

intervals and hyperrectangles. They consider the problem of

generating a random hyperrectangle in a unit hypercube

Atkinson and Sack studied the uniform generation of forests

of restricted height. A

of a root node and an ordered sequence of

Three Heuristic Algorithms for Generation of Random

Polygons by a Given Set of Vertices
2

Faculty of Electrical & Computer Engineering of Islamic Azad University, Qazvin, Iran

Faculty of Electrical & Computer Engineering of Shahid Rajaee Teacher Training University, Tehran, Iran

Electrical & Computer Engineering of Islamic Azad University, Qazvin, Iran

Two edges belonging to a different number of simple

polygons

The generation of random simple polygons has two main

areas of application: The empirical verification of an

algorithm oprating on polygons. The practical testing of its

Too many algorithms have been presented for

solving the problem of random polygons and some of them

are briefly explained here in this paper

following sections of this paper has been organized in

section 2 has been allocated

generating of random polygons

algorithms would be offered and section

performance of the discussed algorithms and

would be discussed

The related work

For the reason mentioned in section ago, the random

generation of geometric objects has received some attention

by researchers: Epstein and Sack presented an

algorithm for generating of simple polygons at random

Devroy, Epstein and Sack studied the random generation of

intervals and hyperrectangles. They consider the problem of

generating a random hyperrectangle in a unit hypercube

Sack studied the uniform generation of forests

of restricted height. A �-way tree is either empty or consists

of a root node and an ordered sequence of

Three Heuristic Algorithms for Generation of Random

Polygons by a Given Set of Vertices

University, Qazvin, Iran

Faculty of Electrical & Computer Engineering of Shahid Rajaee Teacher Training University, Tehran, Iran

Electrical & Computer Engineering of Islamic Azad University, Qazvin, Iran

Two edges belonging to a different number of simple

polygons

The generation of random simple polygons has two main

on: The empirical verification of an

algorithm oprating on polygons. The practical testing of its

Too many algorithms have been presented for

solving the problem of random polygons and some of them

are briefly explained here in this paper [1].

of this paper has been organized in

 has been allocated to related works

generating of random polygons. In section

algorithms would be offered and section

discussed algorithms and

discussed.

The related work

For the reason mentioned in section ago, the random

generation of geometric objects has received some attention

by researchers: Epstein and Sack presented an

algorithm for generating of simple polygons at random

Devroy, Epstein and Sack studied the random generation of

intervals and hyperrectangles. They consider the problem of

generating a random hyperrectangle in a unit hypercube

Sack studied the uniform generation of forests

way tree is either empty or consists

of a root node and an ordered sequence of

Three Heuristic Algorithms for Generation of Random

University, Qazvin, Iran

Faculty of Electrical & Computer Engineering of Shahid Rajaee Teacher Training University, Tehran, Iran

Electrical & Computer Engineering of Islamic Azad University, Qazvin, Iran

Two edges belonging to a different number of simple

The generation of random simple polygons has two main

on: The empirical verification of an

algorithm oprating on polygons. The practical testing of its

Too many algorithms have been presented for

solving the problem of random polygons and some of them

.

of this paper has been organized in

to related works

In section 3, three proposed

algorithms would be offered and section 4 investigates the

discussed algorithms and finally in section

For the reason mentioned in section ago, the random

generation of geometric objects has received some attention

by researchers: Epstein and Sack presented an �
algorithm for generating of simple polygons at random [

Devroy, Epstein and Sack studied the random generation of

intervals and hyperrectangles. They consider the problem of

generating a random hyperrectangle in a unit hypercube

Sack studied the uniform generation of forests

way tree is either empty or consists

of a root node and an ordered sequence of � subtrees. their

Three Heuristic Algorithms for Generation of Random

Faculty of Electrical & Computer Engineering of Shahid Rajaee Teacher Training University, Tehran, Iran

Two edges belonging to a different number of simple

The generation of random simple polygons has two main

on: The empirical verification of an

algorithm oprating on polygons. The practical testing of its

Too many algorithms have been presented for

solving the problem of random polygons and some of them

of this paper has been organized in

to related works for

, three proposed

 investigates the

in section

For the reason mentioned in section ago, the random

generation of geometric objects has received some attention

���	
[2].

Devroy, Epstein and Sack studied the random generation of

intervals and hyperrectangles. They consider the problem of

generating a random hyperrectangle in a unit hypercube [3].

Sack studied the uniform generation of forests

way tree is either empty or consists

subtrees. their

38 Int'l Conf. Foundations of Computer Science | FCS'11 |

algorithms runs in ����� �	, where ��denotes the height of the

tree[4].

An algorithm running in at most ����	 time for the random

generation of �-monotone polygons was described by Zhu et

al [5]. An interesting approach for the generation of random

polygons in the plane (but not on a given set of points) was

researched by O'Rourke and Virmany[6]. In the next section

three proposed heuristic algorithms are designed for this

problem.

3 Proposed algorithms

 In this section, three proposed algorithms are discussed

for generating of random polygons. each algorithm has time

complexity ����������	.

3.1 Algorithm 1

 Let � be a set of random vertices and no three points are

on the same line. The convex hull, the set of ��vertices in the

plane (����), of a point set � in the plane is the enclosing

convex polygon with smallest area. With this description, this

algorithm performs in a way that first ����	 would be

obtained. Let �� be a set of interior vertices of this convex hull.

Then, for the set of those vertices which are inside it will

perform in this way, i.e., : first the vertex with the least �-

coordinate is found. It is supposed that this vertex is �. The

vertices of �� is sorted according to the polar angle in the

counter-clockwise around �. By angular scanning of these

vertices around vertex �, visited vertices would be joined

together. The last visited vertex is joined to vertex � and in

this way a star-shaped polygon would be obtained (that from

a point inside it all vertices are visited). Now, from the set of

vertices over �����	, the closest vertex to ��is selected and it

is supposed to be this vertex �. If the vertex close to ��over

interior star-shaped polygon in the counter-clockwise is � and

the vertex close to vertex � over ����	�in the counter-

clockwise is � (Fig 2-a), so the edges ��� ��	�� ���� ��	 with the

edges ��� ��	�� ���� ��	�are replaced. Thus, a random polygon

would be created (Fig 2-b). The procedure of this algorithm is

as the following:

• First, �����	 would be computed over the set of

random vertices �.

• The set of interior vertices ����	 is considered as ��

and the vertex with the least �-coordinate is selected

from the set of vertices (vertex �).

• The vertices �� are visited according to the polar

angle in the counter-clockwise and a star-shaped

polygon is obtained with angular scanning of vertices

around vertex � and joining the sorted vertices.

• The closest vertex to vertex � is selected From the

set of vertices over �����	 (vertex �).

• The vertex close to � and the vertex close to � in the

counter-clockwise is called � and �, respectively.

• The edges ��� ��	�� ���� ��	��re replaced by the edges

��� ��	�� ���� ��	.

(a)

(b)

Fig. 2. (a) Creating a star-shaped polygon with the points

inside the convex hull, (b) creating the random polygon with

the replacement of edges ��� ��	�� ���� ��	�with the edges

��� ��	�� ���� ��	.

3.2 Algorithm 2

 In this algorithm like the previous algorithm, first

�����	 is computed. Let �� be the vertex set inside of the

convex hull. For this set of vertices, the existing convex

bottom algorithm would be applied which has

����������	�time and performs in this way that first two

vertices which has the least and the most �-coordinate is

considered. These vertices is joined together using a

presumptive line so that the set of vertices would be divided

into two upper and lower half (if the set of vertices in the

lower half is empty, the presumptive line is considered as the

convex hull of two points and the algorithm executes again).

Int'l Conf. Foundations of Computer Science | FCS'11 | 39

Now, the convex hull of the presumptive line's lower half is

computed and the presumptive line is deleted. All remaining

vertices would be sorted from left to right in the order of �

and the most left and the most right points would be joined to

the left and right end vertices of convex hull, respectively.

Then, like the above algorithm, vertices �� �� � and ��have

been considered as it's explain before in the previous

algorithm (Fig 3-a) and the edges ��� ��	� ����� ��	 is replaced

with the edges (�� ��	� ���� �	 (Fig 3-b). the created polygon is

a simple random polygon.

(a)

(b)

Fig. 3. (a) Creating a polygon with the Convex Buttom

algorithm, (b) creating the random polygon by replacing the

of edges ���� ��	�� ���� ��	�with the edges ��� ��	�� ��� ��	.

The procedure of this algorithm with assumption the existing

convex bottom algorithm is as the following:

• First, ����	 would be computed over the set of

random vertices �.

• The set of interior vertices ����	 is considered as ��

and the vertex with the least �-coordinate is selected

from the set of vertices (vertex ��).

• The Convex Bottom algorithm is called for those

vertexes which are inside of the convex hull (the set

��).

• The closest vertex to vertex � is selected From the

set of vertices over �����	 (vertex ��).

• The vertex close to � and the vertex close to � in the

counter-clockwise is called � and �, respectively.

• The edges ��� ��	�� ����� ��	 is replaced with the edges

��� ��	�� ���� �	.

3.3 Algorithm 3

 In this algorithm like the two previous algorithms, first

�����	 is computed. Let �� be the vertex set inside of the

convex hull �� . for this set of vertices, the existing

TwoPeasants algorithm (for the presumptive line according to

�-coordinate) would be applied which it has time complexity

�����������	 and performs in this way that first two vertices

which has the least and the most �-coordinate is considered.

These vertices would be joined together using a presumptive

line so that the set of vertices would be divided into two

upper and lower half (if the set of vertices is empty, the

algorithm executes again) [7]. The next steps are as the

following: The upper half vertices would be sorted while they

started from the left end point and the lower vertices would be

sorted like this way and the end vertices would be joined from

both sides and like two previous algorithms the vertices

�� �� ��and � as it's explained before in section 3-2 have been

considered (Fig 4-a) and the edges ��� ��	� ����� ��	 is replaced

with the edges ��� ��	� ���� �	. The shape which is obtained is a

simple random polygon (Fig 4-b). Thus the created polygon

in this way is a simple random polygon. The procedure of this

algorithm with assumption the existing TwoPeasants

algorithm is as the following:

• First, ����	 would be computed over the set of

random vertices �.

• The set of interior vertices ����	 is considered as ��

and the vertex with the least �-coordinate is selected

from the set of vertices (vertex �).

• The TwoPeasants algorithm is called for those

vertexes which are inside of the convex hull (the set

��).

• The closest vertex to vertex � is selected From the

set of vertices over �����	 (vertex �).

• From the set of vertices over ������	, the closest

vertex to vertex � is selected (vertex �).

• The vertex close to ��and the vertex close to � in the

counter clockwise is called ��and � respectively.

• The edges ��� ��	�� ����� ��	 is replaced with the edges

��� ��	�� ���� �	.

40 Int'l Conf. Foundations of Computer Science | FCS'11 |

(a)

(b)

Fig. 4. (a) Creating a polygon with the TwoPeasants

algorithm, (b) creating the random polygon by replacing the

edges (��� ��	�� ���� ��	 with the edges ��� ��	�� ��� ��	.

 In the next section, the performance of proposed discussed

algorithms would be evaluated.

4 Performance evaluation

 In this section, performance and time complexity of the

proposed algorithms would be investigated. in the proposed

algorithm 1, since the time complexity the computation of

�����	, is �����������	, finding a vertex with the least �-

coordinate (vertex �), is �����	, and finding the closest vertex

to vertex � from the vertices set �����	 is �����	, Likewise,

since the time complexity of sorting of the set of vertices �

according to the polar angle around vertex � is ���������	

and the replacement the edges ���� ��	�� ���� ��	�with the edges

��� ��	�� ��� ��	, would be performed in linear time, therefore

the time complexity for this algorithm is ���������	.

For the proposed algorithm 2, since time order for

computation ����	, is ����������	, and finding a vertex with

the least �-coordinate (vertex �), is �����	, and the time

complexity of convex bottom algorithm is ����������	, so

time complexity for this algorithm is ����������	, as well.

In the proposed algorithm 3, time order for computation

����	, is ����������	, finding a vertex with the least �-

coordinate (vertex �) is ����	 and time complexity of

Towpeasants algorithm is ���������	. Thus, similar to

previous algorithms, time complexity of this algorithm is

����������	. In the next section, the conclusions would be

investigated.

5 Conclusions

 In this paper, a review of existing algorithms was done

for generating random polygons. Many algorithms have been

executed for generating random polygons but no algorithm

has been presented yet for the problem of generating simple

random polygons in linear time. This problem causes to apply

heuristic approaches. In this paper, three inventive algorithms

have been proposed for generating simple random polygons

which has time complexity of ����������	. Since the

generation of simple polygon is not possible in less than

����������	 time, so these algorithms have optimal order.

6 References

[1] Auer, T. “Heuristic for generation of polygons”; In:

Proc. Canada. Conf. Compute. Geom , 34--44, 1994.

[2] Epstein, P., Sack, J.-R. “Generating objects at Random”;

Master's thesis CS Dept., Carleton university, Ottawa K1S

5B6, Canada, 1992.

[3] Derroy, L., Epstein, P., Sack J.-R. “on generating

random intervals and hyperrectangles”; J.Compute.

Graph.Stat , 291--307, 1993.

[4] Atkinson, M.D., Sack, J.-R. “Uniform generation of

forests of restricted height”; Inform. Process. Lett, 323—327,

1994.

[5] Zhu, C., Sundaram, G., Snoeyink, J., Mitchell, J.S.B.

“Generating random polygon with given vertices”; Compute.

Geom.: Theory Applic, 1996.

[6] O'Rourke, J., Virmani, M. “generating random

polygons”; Technical report 11. CS Dept. Smith College,

MA, USA , 1991.

[7] http://www.geometrylab.de/polygon/Random

Polygon.html.en

Int'l Conf. Foundations of Computer Science | FCS'11 | 41

Minimum Pseudo-Triangulation Using Convex Hull
Layers

F. Taherkhani1, A. Nourollah1,2

1Department of Computer Engineering & IT, Islamic Azad University, Qazvin, Iran
2Department of Electrical & Computer Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran

Abstract - Pseudo-triangulation is regarded as one of the
most commonly used problems in computational geometry. In
this paper we consider the problem of minimum pseudo-
triangulation of a given set of points S in the plane using
convex hull layers and we propose two new methods that will
lead to the production of minimum pseudo-triangulation. This
means that the number of pseudo-triangles created in
minimum pseudo-triangulation is exactly n-2 pseudo-triangles
and the minimum number of edges needed is 2n-3.

Keywords: pseudo-triangulation, reflex chain, convex hull
layers, visibility

1 Introduction
 The names pseudo-triangle and pseudo-triangulation
were coined by Pocchiola and Vegter in 1993. For polygons,
pseudo-triangulations has been already expressed in the
computational geometry’s literature in the early 1990’s, under
the name of geodesic triangulations [1]. The geodesic path
between two points of a polygon is the shortest path from one
to the other in polygon. Pseudo-triangulations of a simple
polygon are also called geodesic triangulations, because they
arise by inserting non-crossing geodesic paths in polygon.

A pseudo-triangle is a planar polygon with exactly three
convex vertices, called corners and three reflex chains of
edges join the corners. Let S be a set of n points in general
position in the plane. A pseudo-triangulation for S is a
partition of the convex hull of S into pseudo-triangles whose
vertex set is S [2].

In 2000, Streinu [3] has shown that there are strong links
between minimally rigid graphs and minimum pseudo-
triangulations. In addition, she proved that the minimum
number of edges needed to obtain a pseudo-triangulation is
2n-3 and thus, by Euler's polyhedron theorem, the number of
pseudo-triangles in a minimum pseudo-triangulation is n-2,
which does not depend on the structure of the point set but
only on its size [4]. Every vertex of a minimum pseudo-
triangulation is pointed. A vertex is pointed if it has an
incident angle greater than �.

Pseudo-triangulations are received considerable attention in
computational geometry. This is mainly due to their
applications in rigidity theory, robot arm motion planning,
visibility, ray-shooting, kinetic collision detection and
guarding polygons [5-8].

With respect to the fact that some of the interesting geometric
and combinatorial properties of pseudo-triangulations have
been recently discovered, but many main open questions still
remain [2]. In this paper we consider the problem of minimum
pseudo-triangulation of a set S of n points in the plane and we
show that the generation of convex hull layers for set points
and their pseudo-triangulation, using two new methods,
minimizes pseudo-triangulation.

The rest of this paper has been organized as follows: In
section 2 some basic definitions are presented. Section 3
describes how to create convex hull layers. In section 4
determine for all vertices in convex hull layers visible
vertices and finally in section 5 we propose two new methods
of pseudo-triangulation on created convex hull layers to attain
minimum pseudo-triangulation.

2 Initial definitions
 A simple polygon is called a convex polygon when all the

internal angles are less than �. According to this definition,
the set of points S on a plane is called convex if and only if in
exchange for both the points p,q∈ S, the line segment pq
completely lies inside S (pq ⊆ S).

The most applicable structure in robatic geometry is convex
hull. Convex hull of the given points p0,…, pn-1 is the smallest
convex set on the plane which contains the points.

Let three points p1(x1, y1), p2(x2, y2) and p3(x3, y3) are given in
the plane. Hence matrix A is defined as follows:

 (1)

42 Int'l Conf. Foundations of Computer Science | FCS'11 |

Let det (A) refers to determinant of matrix A. Three cases can
be occurred.

• Case a: det (A) > 0, Sequence p1, p2, p3 are counter-
clockwise (left turn).

• Case b: det (A) < 0, Sequence p1, p2, p3 are clockwise
(right turn).

• Case c: A = 0 implies that the three points p1, p2, p3 are
collinear.

Two points p and q on the Euclidean plane are visible
towards each other if the line segment pq doesn’t intersect
any other line segments.
Let p0,…, pn-1 be the vertices of a simple polygon P which lie
in counter-clockwise direction (Fig. 1). We call �(pi,pj), the
shortest path between the two vertices pi, pj from the vertices
of P. �(pi, pj) path is called convex chain If we move from
vertex pi towards vertex pj on the path, the relevant path will
be counter-clockwise, otherwise the �(pi, pj) path is called
reflex chain.

Fig. 1 Convex and reflex chain

3 The generation of convex hull layers
 In this section we will consider algorithm of the
generation of convex hull. In order to generate convex hull,
the coordinates of vertices and the order of their connections
are required. There are different algorithms in order to
generate convex hull. In this paper the Graham algorithm
version B has been used. In order to compute convex hull,
first one should find boundary points. In this algorithm, the
lowest point is the first starting extreme point.

The set S with n points on a plane is given. According to
Graham scan algorithm version B, the following steps are
taken:

• Step 1- Find the lowest point and call it point p0.

• Step 2- The remaining points are put in order based on
the angle around point p0. If two points have the
same angle with p0, (i.e. they are collinear) then the
point which has a larger distance from p0 is taken

into consideration. We call these points p1,…, pn-1
and connecting these points to one another
generating a star shaped polygon (Fig. 2-a).

• Step 3- Line segment p0p1 definitely lies on the convex
hull. Thus these two vertices are pushed into a stack
so that p1 lies on the top of the stack. Two top of
stack vertices together with the following vertex (p2)
are considered and the clockwise or the counter-
clockwise directions of these consecutive three
vertices are determined. If the angle is counter-
clockwise, the vertex will be pushed into the stack
and the next vertex is considered, otherwise the top
of stack is popped and similarly the algorithm is
continued. Eventually, all the vertices which lie on
the stack are the same vertices sorted on the most
external convex hull layer. The time complexity of
the presented algorithm is O(nlogn) (Fig. 2-b).

Pseudo code of the Graham algorithm version B:

Procedure Graham� �

p0 � find the point whose y coordinate is minimum
Sort the other points around p0 and call them p1,…,pn-1 ��

Push (p0)��

Push (p1) ��

for i � 2 to n-1 do
 while Right (stack [top-1], stack [top], pi) do
 Pop��

 Repeat��

 Push (pi)��

Repeat

 (a)

Int'l Conf. Foundations of Computer Science | FCS'11 | 43

(b)

Fig. 2 (a) Star shape polygon (b) the most external convex hull layer

By extracting the convex hull points, the algorithm is
repeated on the remaining points, a new convex hull is
generated and this action goes on until it comes to less than
three points. This means that just one or two points remains,
so that in this case for using the two new methods of
minimum pseudo-triangulation there exist certain conditions
which should be taken into consideration. Hence, the convex
hull layers are generated in this manner (Fig. 3).

Fig. 3 The convex hull layers

4 Suggested algorithms
 In this section first the visible vertices in the convex
hulls should be determined each vertex of the convex hull. If
the two adjacent convex hulls are considered as a pitted
polygon, the vertices which have the following term are
visible for the vertex: the linking line between the vertex and
the vertices sorted on the internal convex hull don’t lie

outside this pitted polygon (i.e. it shouldn’t intersect any sides
of the polygon).

Among all the vertices visible for each vertex, the two
vertices which have the smallest and the largest angle towards
this vertex are regarded as the two farthest visible vertices.
Hence, for all the vertices of the external layer, compared to
the following layer, there will be two visible vertices. For
instance, as it is shown in Fig. 4-a, the vertex p1 from the
most external convex hull meets four vertices p3,p2,p1 and p4
from the following convex hull so that p1 and p4 are chosen as
the two farthest visible vertices (Fig. 4-b).

(a)

(b)

Fig. 4 (a) The visible vertices of p1 from external convex hull. (b)
The two farthest visible vertices of p1 from external convex hull.

44 Int'l Conf. Foundations of Computer Science | FCS'11 |

As it was expressed all the vertices in the convex hull layer
compared to the following layer have two farthest visible
vertices. In this paper one of these two vertices should be
chosen to generate pseudo-triangulation here two new
methods of choosing one of these two visible vertices in order
to generate pseudo-triangulation is put forward.

4.1 Method of choosing clockwise visible
vertices

 In the method of choosing clockwise visible vertices,
from the two farthest visible vertices determined, the one is
selected which holds a clockwise relation between the
relevant vertex from the external convex hull and its two
visible vertices. If the number of layers is M, Pi,j the vertex of
the ith in jth layer, that j shifts from 1,…,M. Thus, the
relevant vertex in jth is considered as Pi,j and we call the two
visible vertices Ps,j+1 (index of the nearest visible vertex) and
Pk,j+1 (index of the farthest vertex). We consider the rotation
from the relevant vertex toward the two visible vertices. If
(Pi,jPs,j+1Pk,j+1) is clockwise the line segment is linked
between Pi,j and Ps,j+1 in the case that (Pi,jPk,j+1Ps,j+1) is
clockwise the line segment is linked between Pi,j and Pk,j+1.
Linking these lines every layer, the clockwise visible vertices
are produced (Fig. 5).

Fig. 5 Select of the clockwise visible vertex for Pi,j

4.2 Method of choosing counter-clockwise
visible vertices

 In the method of choosing counter-clockwise visible
vertices from the two farthest visible vertices, the one is
selected which holds a counter-clockwise relation between
the relevant vertex from the external convex hull and its two
visible vertices such that we consider the relevant vertex in
the ith layer as Pi,j and call the two visible vertices Ps,j+1 and
Pk,j+1.

We consider the rotation from the vertex toward the two
visible vertices. If (Pi,jPs,j+1Pk,j+1) is counter-clockwise, the
line segment is linked between Pi,j and Ps,j+1 and in the case
that (Pi,jPk,j+1Ps,j+1) is counter-clockwise the line segment is
linked between Pi,j and Pk,j+1. Linking these lines in every
layer, the counter-clockwise visible vertices are produced
(Fig. 6).

Fig. 6 Select of the counter-clockwise visible vertex for Pi,j

If we perform one of the two proposed methods or a
combination of the two methods (in a way that just one
method is used for each layer), the convex layers are pseudo-
triangulated according to Fig. 7. In the next section the
outcome will be considered.

Fig. 7 Minimum pseudo-triangulation using two new methods
pseudo-triangulation

Int'l Conf. Foundations of Computer Science | FCS'11 | 45

5 Conclusions
 In this paper two new methods for pseudo-triangulation
of the set of points S were put forward. The trend was in a
way that first a layer was generated for the set of points S on
the plane of the convex hull and then performing one of the
two methods or a combination of them on the layers the act of
pseudo-triangulation was done. The surveys showed that the
pseudo-triangulation performed were minimum i.e. the
number of the produced pseudo-triangles is n-2 pseudo-
triangle and the number of edges in it is the least possible
amount i.e. 2n-3.

6 References
[1] G. Rote, F. Santos, and I. Streinu, “Pseudo-
Triangulation – a Survey,” Discrete Comput. Geom. 2007.

[2] O. Aichholzer, F. Aurenhammer, H. Krasser, and B.
Speckmann, “Convexity minimizes pseudo-triangulations,”
Computational Geometry 28, pp.3-10, 2004.

[3] I. Streinu, “A combinatorial approach to planar non-
colliding robot arm motion planning,” In: Proc. 41st
Annu.IEEE Sympos. Foundat. Comput.Sci. (FOCS'00),
pp.443-453, 2000.

[4] S. Gerdjikov, and A. Wolff, “Decomposing a simple
polygon into pseudo-triangles and convex polygons,”
Computational Geometry 41, pp.21-30, 2008.

[5] M. Pocchiola, and G. Vegter, “Topologically sweeping
visibility complexes via pseudo-triangulations,” Discrete
Compute.Geom. 16, pp.419-453, 1996.

[6] M.T. Goodrich, and R. Tamassia, “Dynamic ray
shooting and shortest paths in planar subdivisions via
balanced geodesic triangulations,” J. Algorithms 23 (1),
pp.51-73, 1997.

[7] D.G. Kirkpatrick, J. Snoeyink, and B. Speckmann,
“kinetic collision detection for simple polygons,” Internat. J.
Comput. Geom. Appl. 12(1-2), pp. 3-27, 2002.

[8] B. Speckmann, and C.D. T�th, “Allocating vertex �-
guard in simple polygons via pseudo-triangulations,” Discrete
Comput. Geom. 33 (2), pp.345-364, 2005.

46 Int'l Conf. Foundations of Computer Science | FCS'11 |

Generating Sunflower Random Polygons on a Set of

Vertices
L.Mohammadi

2
, A. Nourollah

1

1Department of Electrical & Computer Engineering of Islamic Azad University, Qazvin, Iran
2 Faculty of Electrical & Computer Engineering of Islamic Azad University, Qazvin, Iran

& Faculty of Electrical & Computer Engineering of Shahid Rajaee Teacher Training University, Tehran, Iran

Abstract - Generating random polygons problem is important

for verification of geometric algorithms. Moreover, this

problem has applications in computing and verification of

time complexity for computational geometry algorithms such

as Art Gallery. Since it is often not possible to get real data, a

set of random data is a good alternative. In this paper, a

heuristic algorithm is proposed for generating sunflower

random polygons using ��� ��� �� time.

Keywords: convex hull, sunflower random polygon,

visibility

1 Introduction

 Computational geometry is a very important research

field in computer science in which most computations are

performed on known geometrical objects as polygons.

Polygons are a convenient representation for many real-world

objects; convenient both in that an abstract polygon is often

an accurate model of real objects and in that it is easily

manipulated computationally. Examples of their applications

include representing shapes of individual letters for automatic

character recognition, of an obstacle to be avoided in a robot's

environment, or a piece of a solid object to be displayed on a

graphic screen [7].

The generation of random geometrical objects has received

some attention by researchers [2][3][6]. A challenge of these

problems is the generation of random simple polygons. Since

no polynomial time algorithm is known to solve the problem,

researchers either try to use heuristic algorithms which don't

have uniformed distribution or restrict the problem to certain

classes of polygon such as monotone and star-shaped

polygons [1][3][4].

The importance of geometric objects application is the

simplicity of testing geometric algorithms. Since a set of data

may become both too large and too hard to define for

practical purposes, what one might do is to use randomly

generated data that has a high probability to cover all the

different classes of inputs. Thus, since practical data may not

be available for testing, it is natural to test the algorithm on

randomly input data.

Polygons are one of the fundamental building blocks in

geometric modeling and they are used to present a wide

variety of shapes and figures in computer graphics, vision,

pattern recognition, robotics and other computational fields.

Some recent applications address uniformed random

generation of simple polygons with given vertices, in the

sense that a polygon will be generated with probability
�

	
 if

there exist a total of
 simple polygons with such vertices.

One of the important geometry problems in which polygons

play an important rule, is art gallery whose purpose is

guarding a polygonal art gallery with the least number of

guards (cameras). A well-known kind of art gallery problem

is sunflower art gallery. The proposed question is this: What

is the smallest number of guards required to protect the

Sunflower Art Gallery?

Figur 1 shows a sunflower art gallery which is protected by 4

stationary guards. Some of the guards can not see through

walls around corners of art gallery. Every point is visible at

least one guard and it would be more economical to protect

the gallery with fewer guards, if possible [5].

In this paper a heuristic algorithm is proposed for the

generation of random sunflower polygons to estimate such

problems.

Fig. 1. The sunflower art gallery [5]

The following sections of this paper have been organized in

this way: section 2 has been allocated to related works. In

section 3 the needed preliminary concepts are stated. In

section 4 the proposed algorithm is posed for generating

random sunflower polygon and its performance and accuracy

are investigated and finally in section 6 the conclusion will be

discussed.

Int'l Conf. Foundations of Computer Science | FCS'11 | 47

2

and specially simple polygons has received some attention by

researchers.

random generation of triangulations

on an algorithm for generating x

given set of vertices uniformly at random

the generation of simple polygo

O

following heuristic algorithms:

3

polygons on

with probability

linear. A simple polygon, is a limited plane by a limited set of

line segments that form a simple closed curve. In other words,

a simple polygon

intersect one

A convex polygon, is a simple polygon which for both of

vertices

�

set of points on the plane (

polygon

there is no polygon

Let

points

By the supposition of numbering layers from the most

internal to the most external convex hull layers,

supposed to be the number of the most internal convex hull

layer, i.e.,

Vertex

In this case

visibility toward

vertices around a given vertex acco

star

2 The related woks

 Recently, the generation of random geometric objects

and specially simple polygons has received some attention by

researchers. For example, Epstein studied the uniformly

random generation of triangulations

on an algorithm for generating x

given set of vertices uniformly at random

the generation of simple polygo

O'Rourke and Virmani

following heuristic algorithms:

• Steady Growth

point after the other whose time complexity in the

worst case and in the best case is

��� ��

• Space Partitionin

algorithm and it has time complexity of

• Permute & Reject

permutations (polygons) and surveys whether it is

corresponding with a simple polygon or not, until a

simple polygon is encountered. Its complexity is

��� ��

• 2-opt Moves

random polygon and

encounters a simple polygon and its complexity is

�����

3 Preliminaries

 Let � be a set of random vertices, there exists

polygons on �

with probability

linear. A simple polygon, is a limited plane by a limited set of

line segments that form a simple closed curve. In other words,

a simple polygon

intersect one another except on ve

A convex polygon, is a simple polygon which for both of

vertices � and �
� or on its border, i.e.,

set of points on the plane (

polygon � that encloses

there is no polygon

Let � be the number of all convex hull layers on the set of

points �. Every layer is defined by

By the supposition of numbering layers from the most

internal to the most external convex hull layers,

supposed to be the number of the most internal convex hull

layer, i.e., �� .

Vertex � sees vertex

In this case �

visibility toward

vertices around a given vertex acco

star-shaped polygon, is a polygon which is visible at least

The related woks

Recently, the generation of random geometric objects

and specially simple polygons has received some attention by

For example, Epstein studied the uniformly

random generation of triangulations

on an algorithm for generating x

given set of vertices uniformly at random

the generation of simple polygo

Rourke and Virmani [6].

following heuristic algorithms:

Steady Growth: an incremental algorithm adding one

point after the other whose time complexity in the

worst case and in the best case is

�� ��, respectively.

Space Partitioning: which is a divide and conquer

algorithm and it has time complexity of

Permute & Reject

permutations (polygons) and surveys whether it is

corresponding with a simple polygon or not, until a

simple polygon is encountered. Its complexity is

�� ���.

opt Moves: which by starting from a completely

random polygon and

encounters a simple polygon and its complexity is

� [2].

Preliminaries

be a set of random vertices, there exists

 in total, such that every polygon is generated

with probability�
�

	
. it is supposed that no three points are

linear. A simple polygon, is a limited plane by a limited set of

line segments that form a simple closed curve. In other words,

a simple polygon � on �, is a polygon whose edges don't

another except on ve

A convex polygon, is a simple polygon which for both of

� from polygon, the line segment

or on its border, i.e., ������

set of points on the plane (

that encloses �. The smallest polygon means that

there is no polygon �� such that

be the number of all convex hull layers on the set of

. Every layer is defined by

By the supposition of numbering layers from the most

internal to the most external convex hull layers,

supposed to be the number of the most internal convex hull

sees vertex � if �����

� is visible from

visibility toward �. The polar sorting, is the sorting of a set of

vertices around a given vertex acco

shaped polygon, is a polygon which is visible at least

The related woks

Recently, the generation of random geometric objects

and specially simple polygons has received some attention by

For example, Epstein studied the uniformly

random generation of triangulations [8].

on an algorithm for generating x-monotone polygons on a

given set of vertices uniformly at random

the generation of simple polygons was investigated by

]. Auer and Held presented the

following heuristic algorithms:

: an incremental algorithm adding one

point after the other whose time complexity in the

worst case and in the best case is

, respectively.

g: which is a divide and conquer

algorithm and it has time complexity of

Permute & Reject: which creates random

permutations (polygons) and surveys whether it is

corresponding with a simple polygon or not, until a

simple polygon is encountered. Its complexity is

: which by starting from a completely

random polygon and replacing its intersected edges

encounters a simple polygon and its complexity is

be a set of random vertices, there exists

in total, such that every polygon is generated

s supposed that no three points are

linear. A simple polygon, is a limited plane by a limited set of

line segments that form a simple closed curve. In other words,

, is a polygon whose edges don't

another except on vertices �

A convex polygon, is a simple polygon which for both of

from polygon, the line segment

� � �. The convex hull of a finite

set of points on the plane (�����) is the smallest co

. The smallest polygon means that

such that � � �� � �

be the number of all convex hull layers on the set of

. Every layer is defined by ���(� �
By the supposition of numbering layers from the most

internal to the most external convex hull layers,

supposed to be the number of the most internal convex hull

��� � � and ������

is visible from � or in other words

. The polar sorting, is the sorting of a set of

vertices around a given vertex according to polar angle. The

shaped polygon, is a polygon which is visible at least

Recently, the generation of random geometric objects

and specially simple polygons has received some attention by

For example, Epstein studied the uniformly

]. Zhu et al. presented

monotone polygons on a

given set of vertices uniformly at random [3]. A heuristic for

ns was investigated by

Auer and Held presented the

: an incremental algorithm adding one

point after the other whose time complexity in the

worst case and in the best case is ���

g: which is a divide and conquer

algorithm and it has time complexity of �����

: which creates random

permutations (polygons) and surveys whether it is

corresponding with a simple polygon or not, until a

simple polygon is encountered. Its complexity is

: which by starting from a completely

replacing its intersected edges

encounters a simple polygon and its complexity is

be a set of random vertices, there exists

in total, such that every polygon is generated

s supposed that no three points are

linear. A simple polygon, is a limited plane by a limited set of

line segments that form a simple closed curve. In other words,

, is a polygon whose edges don't

 .

A convex polygon, is a simple polygon which for both of

from polygon, the line segment ����� lies inside

. The convex hull of a finite

) is the smallest co

. The smallest polygon means that
� � (Figure2).

be the number of all convex hull layers on the set of

� � and � � ��
By the supposition of numbering layers from the most

internal to the most external convex hull layers,

supposed to be the number of the most internal convex hull

��doesn't lie out of

or in other words

. The polar sorting, is the sorting of a set of

rding to polar angle. The

shaped polygon, is a polygon which is visible at least

Recently, the generation of random geometric objects

and specially simple polygons has received some attention by

For example, Epstein studied the uniformly

presented

monotone polygons on a

A heuristic for

ns was investigated by

Auer and Held presented the

: an incremental algorithm adding one

point after the other whose time complexity in the

��� and

g: which is a divide and conquer

�� .

: which creates random

permutations (polygons) and surveys whether it is

corresponding with a simple polygon or not, until a

simple polygon is encountered. Its complexity is

: which by starting from a completely

replacing its intersected edges

encounters a simple polygon and its complexity is

 simple

in total, such that every polygon is generated

s supposed that no three points are

linear. A simple polygon, is a limited plane by a limited set of

line segments that form a simple closed curve. In other words,

, is a polygon whose edges don't

A convex polygon, is a simple polygon which for both of

� lies inside

. The convex hull of a finite

) is the smallest convex

. The smallest polygon means that

be the number of all convex hull layers on the set of

� � �).

By the supposition of numbering layers from the most

internal to the most external convex hull layers, � is

supposed to be the number of the most internal convex hull

doesn't lie out of �.

or in other words � has

. The polar sorting, is the sorting of a set of

rding to polar angle. The

shaped polygon, is a polygon which is visible at least

fro

heuristic algorithm is posed to generate random sunflower

polygon.

4

random sunflower polygon with time complexity

in

To generate a random sunflower polygon on a vertex set it is

performed in this way that first, According

algorithm, the assumption

algorithm for the generation of

 Time complexity

determining

algori

from an interior vertex. In the next section, the proposed

heuristic algorithm is posed to generate random sunflower

polygon.

Fig

 The proposed algorithm

 In this section, an algorithm is posed to generate the

random sunflower polygon with time complexity

in which � is the

To generate a random sunflower polygon on a vertex set it is

performed in this way that first, According

algorithm, the assumption

algorithm for the generation of

• First, the vertex with lowest

the rightmost point, has selected from the point set

and is called

• All the remaining points are sorted around

according to polar angle

• A stack is constructed and

• By starting from point

the following case is investigated:

• ! �is pushed in the stack if it is left of two tops of the

stack and is incremented counter

top of stack is removed if

the stack

Fig

Time complexity

determining ��
algorithm is recalled for any remaining point set

" # $

Algorithm

Find rightmost lowest point; lable it

Sort all other points angulary about

Stack � #

While " %

 If ! strictly left of

 Push

 Else

Pop

 End If
End While

m an interior vertex. In the next section, the proposed

heuristic algorithm is posed to generate random sunflower

. 2. The convex hull of set of points

The proposed algorithm

In this section, an algorithm is posed to generate the

random sunflower polygon with time complexity

the number of vertices.

To generate a random sunflower polygon on a vertex set it is

performed in this way that first, According

algorithm, the assumption ��

algorithm for the generation of

First, the vertex with lowest

the rightmost point, has selected from the point set

called !&.

All the remaining points are sorted around

according to polar angle

A stack is constructed and

By starting from point

the following case is investigated:

is pushed in the stack if it is left of two tops of the

stack and is incremented counter

top of stack is removed if

the stack (Figure 3).

Fig. 3. The Graham scan algorithm

Time complexity of Graham algorithm is

�����, while �
thm is recalled for any remaining point set

Algorithm: Graham Scan

Find rightmost lowest point; lable it

Sort all other points angulary about

�!�' !&� # �!('

% � do

strictly left of

Push�!) ' �� and set

Pop���
End If

hile

m an interior vertex. In the next section, the proposed

heuristic algorithm is posed to generate random sunflower

The convex hull of set of points

The proposed algorithm

In this section, an algorithm is posed to generate the

random sunflower polygon with time complexity

number of vertices.

To generate a random sunflower polygon on a vertex set it is

performed in this way that first, According

����� is obtained. The Graham

algorithm for the generation of ����� performs in this way:

First, the vertex with lowest��-coordinate which is

the rightmost point, has selected from the point set

All the remaining points are sorted around

according to polar angle �!�' * ' !

A stack is constructed and !& and

By starting from point !� to�!+,

the following case is investigated:

is pushed in the stack if it is left of two tops of the

stack and is incremented counter

top of stack is removed if ! is right of two tops of

The Graham scan algorithm

of Graham algorithm is

� is opposite of zero, Graham

thm is recalled for any remaining point set

: Graham Scan

Find rightmost lowest point; lable it

Sort all other points angulary about

� ' !(,��- . indexes top.

strictly left of !(,�!(Then

and set " / " 0

m an interior vertex. In the next section, the proposed

heuristic algorithm is posed to generate random sunflower

The convex hull of set of points �

In this section, an algorithm is posed to generate the

random sunflower polygon with time complexity ���

To generate a random sunflower polygon on a vertex set it is

performed in this way that first, According to Graham greedy

is obtained. The Graham

performs in this way:

coordinate which is

the rightmost point, has selected from the point set

All the remaining points are sorted around

!1,��.

and !�are pushed to it.

,� for every vertices

the following case is investigated:

is pushed in the stack if it is left of two tops of the

stack and is incremented counter "; otherwise, the

is right of two tops of

The Graham scan algorithm

of Graham algorithm is ��� �� ��.

is opposite of zero, Graham

thm is recalled for any remaining point set �. Let

Find rightmost lowest point; lable it !&.

Sort all other points angulary about !&.

indexes top.

Then

�

m an interior vertex. In the next section, the proposed

heuristic algorithm is posed to generate random sunflower

In this section, an algorithm is posed to generate the

�� ��

To generate a random sunflower polygon on a vertex set it is

to Graham greedy

is obtained. The Graham

performs in this way:

coordinate which is

the rightmost point, has selected from the point set �

All the remaining points are sorted around !&

are pushed to it.

for every vertices

is pushed in the stack if it is left of two tops of the

; otherwise, the

is right of two tops of

 After

is opposite of zero, Graham

. Let the

48 Int'l Conf. Foundations of Computer Science | FCS'11 |

number of points on the most internal

hull, i.e.,

sections. This

the leftmost

every

of points are obtained (F

A

leftmost

the first part of partitioned vertices, the points of the part until

to starting point of

thi

according to polar angle in counter

these points sorted in order

23

Thus, by scanning of all parts and connecting points of every

partitioned part based on

are connected together and a

which is not

Procedure of the algorithm is following way:

number of points on the most internal

hull, i.e., �� be

sections. This partitioning is in this way tha

the leftmost point on

every edge �� is co

of points are obtained (F

Fig. 4. Partitioning of the set if points

After partitioning of

leftmost point or

the first part of partitioned vertices, the points of the part until

to starting point of

this way: points are sorted around

according to polar angle in counter

these points sorted in order

34�.

Thus, by scanning of all parts and connecting points of every

partitioned part based on

are connected together and a

which is not necessarily a star

Procedure of the algorithm is following way:

• while,

convex hull layers are computed on the set of points

� based on Graham

• The number of points of assumption convex hull

are counted and are supposed as

• Every assumption edge

from vertex

to � �sets.

• For every resulted point set, it is performed in this

way: all point of that part have been sorted around

based on polar angle and then points of between

and 23

23 to 2

number of points on the most internal

be � , the point set

partitioning is in this way tha

point on �� and in counter

is continued from the second point. T

of points are obtained (Figure

Partitioning of the set if points

vertex of every edge

fter partitioning of the point set

point or the vertex with least

the first part of partitioned vertices, the points of the part until

to starting point of the next part, are connected together in

s way: points are sorted around

according to polar angle in counter

these points sorted in order

Thus, by scanning of all parts and connecting points of every

partitioned part based on expla

are connected together and a

necessarily a star

Procedure of the algorithm is following way:

while, � is the opposite of zero, all assumption

convex hull layers are computed on the set of points

based on Graham

The number of points of assumption convex hull

are counted and are supposed as

Every assumption edge

from vertex 234� and the set of points are partitioned

sets.

For every resulted point set, it is performed in this

way: all point of that part have been sorted around

based on polar angle and then points of between

34� sorted in order are connected together from

234�.

number of points on the most internal

point set � can be partitioned to

partitioning is in this way tha

and in counter-

ntinued from the second point. T

igure 4).

Partitioning of the set if points � by continuing the second

vertex of every edge ��

the point set �, by starting from the

the vertex with least �-coordinate

the first part of partitioned vertices, the points of the part until

next part, are connected together in

s way: points are sorted around point 2

according to polar angle in counter- clockwise direction. Then

these points sorted in order are connected together from

Thus, by scanning of all parts and connecting points of every

explained process, all points

are connected together and a simple polygon

necessarily a star-shaped polygon (F

Procedure of the algorithm is following way:

is the opposite of zero, all assumption

convex hull layers are computed on the set of points

based on Graham algorithm.

The number of points of assumption convex hull

are counted and are supposed as

Every assumption edge 23234��

and the set of points are partitioned

For every resulted point set, it is performed in this

way: all point of that part have been sorted around

based on polar angle and then points of between

sorted in order are connected together from

number of points on the most internal assumption convex

can be partitioned to

partitioning is in this way that by starting from

-clockwise direction,

ntinued from the second point. Thus,

by continuing the second

, by starting from the

coordinates on

the first part of partitioned vertices, the points of the part until

next part, are connected together in

23�on ���(� � 5

clockwise direction. Then

are connected together from

Thus, by scanning of all parts and connecting points of every

ined process, all points of set

simple polygon � is resulted

shaped polygon (Figure

Procedure of the algorithm is following way:

is the opposite of zero, all assumption

convex hull layers are computed on the set of points

The number of points of assumption convex hull

� .

� on �� is continued

and the set of points are partitioned

For every resulted point set, it is performed in this

way: all point of that part have been sorted around

based on polar angle and then points of between

sorted in order are connected together from

convex

can be partitioned to �

t by starting from

clockwise direction,

hus, � set

by continuing the second

, by starting from the

on �� on

the first part of partitioned vertices, the points of the part until

next part, are connected together in

5 � �))

clockwise direction. Then

are connected together from 23 to

Thus, by scanning of all parts and connecting points of every

of set �

is resulted

igure 5).

is the opposite of zero, all assumption

convex hull layers are computed on the set of points

The number of points of assumption convex hull ��

is continued

and the set of points are partitioned

For every resulted point set, it is performed in this

way: all point of that part have been sorted around 23

based on polar angle and then points of between 23

sorted in order are connected together from

Fig

4.1

investigated by computing its time complexity. In this

algorithm, time of obtaining the most external convex hull

layer is

would be

hull since, it is computed on

to

i.e., in the case of existing only a resulted part of points

partitioning. Finding the leftmost point with least

coordinates on

Sorting points of the any part set, in the case the sprawl of

points is go

��

partitioned part, this sorting takes

time complexity is

4.2

investigated. This algorithm performs

given points

layers

To

of partitioned points

part from one point on

polygon,

and they haven't subscription together and also as in every

• The resulted random simpl

polygon. In the special case which

star-shaped polygon.

Fig. 5. Generation of a sunflower polygon with connecting the sorted

4.1 Verification of algorithm performance

 In this section, the performance of proposed algorithm is

investigated by computing its time complexity. In this

algorithm, time of obtaining the most external convex hull

layer is ��� ��
would be the maximum

hull since, it is computed on

to � sets, requires

i.e., in the case of existing only a resulted part of points

partitioning. Finding the leftmost point with least

coordinates on

Sorting points of the any part set, in the case the sprawl of

points is good, i.e.,

�
1

16
��

1

16
�. In the worst case, which exists only one

partitioned part, this sorting takes

time complexity is

4.2 Determining of visible polygon

 In this section, the posed heuristic

investigated. This algorithm performs

given points with

layers � � � in general case.

To proof the accuracy of this algorithm, it is

of partitioned points

part from one point on

polygon, all partitioned parts are independent of one another

and they haven't subscription together and also as in every

The resulted random simpl

polygon. In the special case which

shaped polygon.

Generation of a sunflower polygon with connecting the sorted

points of any partition together

Verification of algorithm performance

In this section, the performance of proposed algorithm is

investigated by computing its time complexity. In this

algorithm, time of obtaining the most external convex hull

�� �� based on Graham algorithm which it

maximum time ne

hull since, it is computed on

sets, requires ���)� time that is in the best case

i.e., in the case of existing only a resulted part of points

partitioning. Finding the leftmost point with least

coordinates on �� with the number of

Sorting points of the any part set, in the case the sprawl of

od, i.e.,�
1

16
� points exist in any part averagely, is

. In the worst case, which exists only one

partitioned part, this sorting takes

time complexity is ��� �� ��

Determining of visible polygon

this section, the posed heuristic

investigated. This algorithm performs

with the number of

in general case.

accuracy of this algorithm, it is

of partitioned points and the visibility of all points

part from one point on ��. S

all partitioned parts are independent of one another

and they haven't subscription together and also as in every

The resulted random simple polygon, is a sunflower

polygon. In the special case which

shaped polygon.

Generation of a sunflower polygon with connecting the sorted

points of any partition together

Verification of algorithm performance

In this section, the performance of proposed algorithm is

investigated by computing its time complexity. In this

algorithm, time of obtaining the most external convex hull

based on Graham algorithm which it

time needed to generate of convex

hull since, it is computed on � points. Partitioning of points

time that is in the best case

i.e., in the case of existing only a resulted part of points

partitioning. Finding the leftmost point with least

with the number of �
Sorting points of the any part set, in the case the sprawl of

points exist in any part averagely, is

. In the worst case, which exists only one

partitioned part, this sorting takes ��� ��
� in total.

Determining of visible polygon

this section, the posed heuristic

investigated. This algorithm performs properly for any set of

number of assumption

accuracy of this algorithm, it is

and the visibility of all points

. Since, for generating this random

all partitioned parts are independent of one another

and they haven't subscription together and also as in every

e polygon, is a sunflower

polygon. In the special case which � # �, it is called

Generation of a sunflower polygon with connecting the sorted

points of any partition together

Verification of algorithm performance

In this section, the performance of proposed algorithm is

investigated by computing its time complexity. In this

algorithm, time of obtaining the most external convex hull

based on Graham algorithm which it

eded to generate of convex

points. Partitioning of points

time that is in the best case

i.e., in the case of existing only a resulted part of points

partitioning. Finding the leftmost point with least

� points, is �
Sorting points of the any part set, in the case the sprawl of

points exist in any part averagely, is

. In the worst case, which exists only one

���time. Therefore,

Determining of visible polygon

this section, the posed heuristic algorithm is

properly for any set of

assumption convex hull

accuracy of this algorithm, it is discuss every

and the visibility of all points in

ince, for generating this random

all partitioned parts are independent of one another

and they haven't subscription together and also as in every

e polygon, is a sunflower

, it is called

Generation of a sunflower polygon with connecting the sorted

Verification of algorithm performance

In this section, the performance of proposed algorithm is

investigated by computing its time complexity. In this

algorithm, time of obtaining the most external convex hull

based on Graham algorithm which it

eded to generate of convex

points. Partitioning of points �

time that is in the best case ����,

i.e., in the case of existing only a resulted part of points

partitioning. Finding the leftmost point with least �-

���)�.

Sorting points of the any part set, in the case the sprawl of

points exist in any part averagely, is

. In the worst case, which exists only one

time. Therefore,

algorithm is

properly for any set of

convex hull

discuss every set

in every

ince, for generating this random

all partitioned parts are independent of one another

and they haven't subscription together and also as in every

Int'l Conf. Foundations of Computer Science | FCS'11 | 49

part, all its point set are visible from 23 on ��, because of polar

sorting of points around 23, it is verified simply that a random

sunflower polygon is inevitably generative by this proposed

algorithm on any set of given points with number of

assumption convex hull layers � � �.

5 Conclusions

 In this paper, a heuristic algorithm with time complexity

of ��� �� �� was proposed for the generation of random

sunflower polygon. This algorithm can be used to estimate

many algorithms and geometric problems such as art gallery.

Also it was proved that this algorithm has properly on any set

of given points with intricate assumption convex hulls (with

the number of layers � � �) and it generates a random

sunflower polygon.

6 References

[1] McDonald, B., Smith, I. “Partial symmetry breaking”;

In: P. Van Hentenryck(Ed.), Proc. Of CP'02 LNCS2470,

Springer-verlag, 431—445, 2002.

[2] Auer, T., Held, M. “Heuristics for the Generation of

Random Polygons”; Proc. 8th Canadian on Computational

Geometry(CCCG'96), 38—41, 1996.

[3] Zhu, C., Sundaram, G., Soneyink, J., Mitchell, J.S.B.

“Generating Random Polygon with Given Vertices”;

Comput. Geom. Theory and Appl., Vol 6, Issues 5, 277—

290, 1996.

[4] Sohler, C. “Generating random star-shaped polygons”;

In: Proc. 11th Canadian Conference on Computational

Geometry(CCCG'99), 174—177, 1999.

[5] Epstein, P. “Generating Geometric Objects at Random”;

Master's thesis, CS Dept., Carleton University Ottawa

K1S5B6, Canada, 1992.

[6] O'rourke, J., Virmani, M. “Generating Random

Polygons”; Technical Report 011, CS Dept. Smith Colege,

Northhampton, MA 01063 1991.

[7] Berg, M.D. “Computational Geometry Algorithms and

Applications”; 3rd , Published by springer-verlag, 2008.

[8] Michael, T.S. “How to Guard an Art Gallery and other

Discerete Mathematical Adventures”; the Book of the Johns

Hobkins University Press, printed in the United Stetes of

American, 2009.

50 Int'l Conf. Foundations of Computer Science | FCS'11 |

The Generation of Pseudo-Triangulated Spiral Polygon
Using Convex Hull Layers

F. Taherkhani1, A. Nourollah1,2

1Department of Computer Engineering & IT, Islamic Azad University, Qazvin, Iran
2Department of Electrical & Computer Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran

Abstract - The generation of random simple polygon and the
pseudo-triangulation of a polygon are regarded as the
proposed problems in computational geometry. The
production of a random polygon is used in the context of the
consideration of the accuracy of algorithms. In this paper, a
new algorithm is presented to generate a simple spiral
polygon on a set of random points S in the plane using convex
hull layers in a way that pseudo-triangulation is also
performed on it simultaneously. The new algorithm can be
done in O(nlogn) time, so it is considered as one of the
optimal algorithms.

Keywords: simple spiral polygon, pseudo-triangulation,
convex hull layers, convex and concave chain

1 Introduction
 Polygons are suitable shapes to demonstrate the objects
of real world and every object in nature is demonstrable as a
set of polygons. The generation of random simple polygons
has two main areas of application: a) testing the correctness
and b) evaluating the CPU-time consumption of algorithms
that operate on polygons.

The generation of random geometric objects has received
some attention by researchers. Epstein studied the uniformly
random generation of polygon triangulation [2]. Polygon
pseudo-triangulation is a generalized form of polygon
triangulation. The names pseudo-triangle and pseudo-
triangulation were coined by Pocchiola and Vegter in
1993[3]. A pseudo-triangle is a simple polygon with exactly
three convex vertices, called corners and three concave
chains of edges joining the corners [4].

Let S be a set of random n points p0,…, pn-1 in the plane. The
goal is generation of a random simple polygon with a uniform
distribution. A uniformly random polygon on S is a polygon
generated with probability of 1/k if there exist k simple
polygons on S in total [2, 5]. Since the generation of a
polygon from a set of random points is frequently used to
consider the performance of proposed algorithms in the
context of polygons such as the Art gallery problem;
therefore, the generation of similar polygons cannot show
well the quality of the performance of the algorithms. Thus,

we are looking for algorithms having the production ability of
kinds of polygons with different structures, and up to now no
solutions with the polynomial time to generate uniform
random polygons have been known.

The following subjects of this paper have been organized in
this way: In section 2 the initial definitions are presented. In
section 3 the generation manner of convex hull layers are
expressed. In section 4 the suggested algorithm to generate
pseudo-triangulated spiral simple polygon and the analysis of
its time complexity is proposed. Finally in section 5,
conclusion will be presented.

2 Preliminaries
 A sequence of line segments, such that the end of each

one is the beginning of the following one, is referred as
polygon and a polygon whose edges don’t intersect one
another is called simple polygon.

A simple polygon is called a convex polygon when all the
internal angles are less than �. According to this definition,
the set of points S on a plane is called convex if and only if in
exchange for both the points p,q∈ S, the line segment pq
completely lies inside S (pq ⊆ S).

The most applicable structure in robatic geometry is convex
hull. Convex hull of the given points p0,…, pn-1 is the smallest
convex set on the plane which contains the points.

Let three points p1(x1, y1), p2(x2, y2) and p3(x3, y3) are given in
the plane. Hence matrix A is defined as follows:

 (1)

Let det (A) refers to determinant of matrix A. Three cases can
be occurred.

• Case a: det (A) > 0, Sequence p1, p2, p3 are counter-
clockwise (left turn).

Int'l Conf. Foundations of Computer Science | FCS'11 | 51

• Case b: det (A) < 0, Sequence p1, p2, p3 are clockwise
(right turn).

• Case c: A = 0 implies that the three points p1, p2, p3 are
collinear.

Two points p and q on the Euclidean plane are visible
towards each other if the line segment pq doesn’t intersect
any other line segments.
Let p0,…, pn-1 be the vertices of a simple polygon P which lie
in counter-clockwise direction (Fig. 1). We call �(pi,pj), the
shortest path between the two vertices pi, pj from the vertices
of P. �(pi, pj) path is called convex chain If we move from
vertex pi towards vertex pj on the path, the relevant path will
be counter-clockwise, otherwise the �(pi, pj) path is called
concave chain.

Fig. 1 Convex and concave chain

3 The generation of convex hull layers
 In this section we will consider algorithm of the
generation of convex hull. In order to generate convex hull,
the coordinates of vertices and the order of their connections
are required. There are different algorithms in order to
generate convex hull. In this paper the Graham algorithm
version B has been used. In order to compute convex hull,
first one should find boundary points. In this algorithm, the
lowest point is the first starting extreme point.

The set S with n points on a plane is given. According to
Graham scan algorithm version B, the following steps are
taken:

• Step 1- Find the lowest point and call it point p0.

• Step 2- The remaining points are put in order based on
the angle around point p0. If two points have the
same angle with p0, (i.e. they are collinear) then the
point which has a larger distance from p0 is taken
into consideration. We call these points p1,…, pn-1
and connecting these points to one another
generating a star shaped polygon (Fig. 2-a).

• Step 3- Line segment p0p1 definitely lies on the convex
hull. Thus these two vertices are pushed into a stack
so that p1 lies on the top of the stack. Two top of
stack vertices together with the following vertex (p2)
are considered and the clockwise or the counter-
clockwise directions of these consecutive three
vertices are determined. If the angle is counter-
clockwise, the vertex will be pushed into the stack
and the next vertex is considered, otherwise the top
of stack is popped and similarly the algorithm is
continued. Eventually, all the vertices which lie on
the stack are the same vertices sorted on the most
external convex hull layer. The time complexity of
the presented algorithm is O(nlogn) (Fig. 2-b).

Pseudo code of the Graham algorithm version B:

Procedure Graham� �

p0 � find the point whose y coordinate is minimum
Sort the other points around p0 and call them p1,…,pn-1 ��

Push (p0)��

Push (p1) ��

for i � 2 to n-1 do
 while Right (stack [top-1], stack [top], pi) do
 Pop��

 Repeat��

 Push (pi)��

Repeat

 (a)

52 Int'l Conf. Foundations of Computer Science | FCS'11 |

(b)

Fig. 2 (a) Star shape polygon (b) the most external convex hull layer

By extracting the convex hull points, the algorithm is
repeated on the remaining points, a new convex hull is
generated and this action goes on until it comes to less than
three points. This means that just one or two points remains.
Hence, the convex hull layers are generated. In the following
section these generated convex layers will be typically used.
It means that these layers are not depicted for the set of points
S on the plane and they are computed as preprocessing (Fig.
3).

Fig. 3 The convex hull layers

4 The generation of pseudo-triangulated
spiral simple polygon

 In this section a new algorithm is presented for the
generation of spiral simple polygon which is also pseudo-
triangulated simultaneously.

4.1 The suggested algorithm
 The suggested algorithm consists of two stages.
Applying these two stages to the generated convex layers in
the preceding stage, and by generating consecutive pseudo-
triangles, pseudo-triangled spiral polygon is eventually
obtained.

Let M be the number of convex layers. Lj is the jth layer that
j = 1,…,M and Pi,j is the ith vertex in the jth layer.

4.1.1 The first stage of the algorithm:
• Step 1- Take j � 1 into account and choose a point

on L1 (The most external convex layers) as the
starting point and call it p1, j.

• Step 2- Choose two other points in counter-
clockwise direction respectively and call them
p2,j and p3,j. Take these three points as the
pseudo-triangle vertices into account and
generate the line segments p1,jp2,j and p2,jp3,j.

• Step 3- In this step, in order to generate the
connecting line segment between two vertices of
p1,j and p3,j, in case of non existing intersection
with layer Lj+1 , the foregoing line segment is
depicted. Otherwise, we should choose and
depict points of layer Lj+1 from vertex p1,j to
vertex p3,j which form a concave chain with
these two vertices. In this stage of algorithm, a
pseudo-triangle has been generated (Fig. 4).

(a)

Int'l Conf. Foundations of Computer Science | FCS'11 | 53

(b)

Fig. 4 (a) Non existing intersection with layer Lj+1. (b) Intersection
with layer Lj+1.

• Step 4- In order to generate the following pseudo-
triangle the local position of vertices p1,j, p2,j and
p3,j should be changed by considering the
following conditions:
a) The local position of point p1,j changes in case
of intersection of line segment p1,jp3,j with layer
Lj+1 and is exchanged to the neighboring point
p3,j on the concave chain (Fig. 5).

b) The vertex p2,j is transferred to the local
position of the present vertex p3,j and call its
neighboring point in counter-clockwise direction
on the layer Lj vertex p3,j and generate line
segment p2,jp3,j (Fig. 5 and Fig. 6).

Fig. 5 Change the local position of triangle vertices (Intersection
with layer Lj+1).

Fig. 6 Change the local position of triangle vertices (Non-existing
intersection with layer Lj+1).

Repeat steps 3 and 4 as far as the last remaining point on the
layer Lj.

4.1.2 The second stage of the algorithm:
 Meeting the last point on layer Lj, in this stage among
the remaining points on layer Lj+1 which haven’t been used to
generate concave chain in the first stage of algorithm, find the
farthest visible point from the last point on the layer Lj that is
vertex p3,j and call it v, then depict the connecting line
segment between the two points. Also, move from vertex p1,j

54 Int'l Conf. Foundations of Computer Science | FCS'11 |

to the visible point on layer Lj+1 and depict the line segments
among the existing points one by one in this path.

After finishing this stage, taking j � j+1 into account, enter
the following layer and consider the point neighboring the
farthest visible point (in the second stage of algorithm) in
clockwise direct as the starting point of this layer, and from
the second step of the first stage we continue the algorithm
with the remaining points (except for the farthest visible
point) in this layer and repeat the stages till j < M (Fig. 7).

Fig. 7 Entering the next layer (Lj+1).

Hence by repeating the stages of the suggested algorithm
until j < M, a pseudo-triangulated spiral simple polygon is
generated (Fig. 8) that in subsection of the following section
deal with analyzing the suggested algorithm.

Fig. 8 Pseudo-triangulated spiral simple polygon.

Theorem1. The presented algorithm produces random simple
polygons twice as much as the number of the existing points
on the most external convex layer.

Proof: Since every point of the convex polygon of the most
external layer can be the starting point of algorithm and it can
be selected clockwise or counter-clockwise in order to be run,
so simple random polygons will be produced twice as much
as the number of the existing points on the most external
convex layer.

Pseudo code of the counter-clockwise algorithm:

Algorithm Random Polygon Generation

j�1
i�1
P1,j � pi, j
while j < M do
 while i < nj do
 i � i + 1
 P2,j � pi, j
 Draw Line (P1,j , P2,j)
 i � i + 1
 P3,j � pi, j
 Draw Line (P2,j , P3,j)
 if (P1,j , P3,j) � lj+1 � Ø then
 find the reflex chain on lj+1 between P1,j , P3,j and draw it
 P1,j � last element on the reflex chain
 else
 Draw Line (P1,j , P3,j)
 i � i + 1
 P2,j � p3, j
 P3,j � pi, j
 end if
 end while
 v � find last point which is visible from P3,j among all remain
 points in lj+1
 Draw Line (P3,j , v)
 Draw a chain from P1,j to v
 i � index of the nearest point to v in clockwise direction
 j � j + 1
end while
end of algorithm�

4.2 Analysing the suggested algorithm
 The suggested algorithm requires a preprocessing stage
called visibility graph, then the generation of convex hulls
and eventually the implementation of the suggested algorithm
in section 4. The generation of visibility graph can be done in
O(nlogn)[1]. The generation of convex hull layers can be
done in O(nlogn)[6]. In section 4, implementing the
suggested algorithm to generate the line segment between the
two points, the issue of the visibility of the two points should
be considered that by performing the preprocessing stage, its
time complexity is O(nlogn). With regard to the planarity of
the pseudo-triangulation graph to generating all of the
pseudo-triangles O(n) is required. Thus, the algorithm can be
done in O(nlogn).

Int'l Conf. Foundations of Computer Science | FCS'11 | 55

5 Conclusions
 In this paper a new algorithm was presented to generate
pseudo-triangulated spiral simple polygons from the set of
random points S on the plane. The work trend was such that
first the convex hull layers were generated for the set of
random points S. By using this suggested algorithm from the
most external convex layer to the most internal layer
respectively, by creating consecutive pseudo-triangles,
pseudo-triangulated spiral polygon whose time complexity is
O(nlogn). The generation of simple polygons out of the set of
random points, have such applications as the consideration of
heuristic algorithms in issues like Art gallery, and thus
algorithms to produce polygon are very efficient in this affair.

6 References
[1] Berg M. D., Computational Geometry: Algorithms and
Applications, 3rd edition, published by Springer-Verlag, 2008.

[2] Aure T., and Held M., “Heuristic for generation of
random polygons” 8th Canadian Conference On
Computational Geometry (CCCG), Ottawa, Canada, pp.38-
44, 1996.

[3] Rote G., Santos F., and Streinu I., “Pseudo-
Triangulation – a Survey” Discrete Comput. Geom. 2007.

[4] Aichholzer O., Aurenhammer F., Krasser H., and
Speckmann B., “Convexity minimizes pseudo-triangulations”
Computational Geometry 28.2004.3-10.

[5] Dailey D., and Whitfield D., “Constructing Random
Polygons” SIGITE'08, USA, pp.119-124, 2008.

[6] Chazelle B., “On the Convex Layers of a Planar Set”
IEEE Tran. Information Theory, Vol. IT-31, No. 4, pp. 509-
517, 1985.

56 Int'l Conf. Foundations of Computer Science | FCS'11 |

Dynamic LZW for Compressing Large Files

Chung-E Wang
Department of Computer Science

California State University, Sacramento

Sacramento, CA 95819-6021

 Abstract. The amount of data stored digitally

continues to grow dramatically across many fields, along

with the need for algorithms to efficiently compress this

data for storage and transmission. In this paper, we

describe an improvement of LZW data compression. We

employ a dynamic dictionary, in which least recently

used and aging algorithms are used to replace

infrequently used entries. We demonstrate that these

pruning techniques result in significant gains in

compression ratios for large data files.

 Keywords. LZW data compression, dynamic

dictionary, table pruning, least recently used, aging

replacement.

1. Introduction

 Data compression algorithms are widely used for data

storage and data transmission. A popular lossless method

known as Lempel-Ziv (LZ) compression [1] replaces a

string of characters with an index into a dictionary that is

built during the compression process. There are many

modifications of the original LZ compression algorithm,
many of which are feature different implementations of

the dictionary [1]-[6].

 Lempel-Ziv-Welch (LZW) compression [4] is Terry

Welch’s modification of LZ compression. This algorithm

uses a string table to implement the dictionary. Initially,

the string table contains all strings of length 1. During the

process of compression, the algorithm adds every new

string it sees to the string table. To compress, the

algorithm scans the input data for the longest matching

string in the string table and outputs the index of that

string as the result of the compression. Compression

occurs when a long string of characters is replaced by a
shorter index.

 One difficulty in using LZW compression on large

data files is in managing the dictionary, as the size of the

string table often surpasses that of available memory.

Here we propose a new method called table pruning for

managing the dictionary. We have demonstrated our

method with least recently used and aging replacement

algorithms and improved the compression ratio obtained

from using LZW alone. Finally, we discuss some factors

we observed to be crucial to compression ratios.

2. Handling the Ever Growing String

Table

 One drawback to be considered in implementing the

LZW algorithm is the ever-growing string table; as more

data is analyzed the dictionary becomes increasingly

large. The table must be managed, as computer memory

is limited. Two existing methods for handling the

ever-growing string table [1], [9] are discussed below.

2.1 Table Freezing

 This is the method used by the original LZW

algorithm. This method picks a size of the string table

and does not allow the table to grow beyond that size.

Instead, it continues the compression according to the

frozen table. It is simple and easy but it doesn’t work well

with large files.

2.2 Table Flushing

 This is the method used in [9]. This method computes

the current compression ratio periodically. When the

table is full and the current compression ratio drops

below some predetermined threshold value, it flushes the

string table. That is, the algorithm abandons the current

string table and builds a new one when compressing the

remaining input data.

 Flushing can get rid of infrequently used entries.

However, this drastic operation also flushes out

frequently used entries. Thus, it doesn’t improve
compression ratios for a lot of input files.

2.3 Table Pruning

 We propose to prune the string table. Once the string

table becomes full and an additional entry is needed, we

replace an infrequently used entry with the new entry and

the compression continues. However, the problem of
selecting an infrequently used entry for pruning is

non-trivial.

Int'l Conf. Foundations of Computer Science | FCS'11 | 57

3. Selecting an Infrequently Used

Entry for Replacement

 Many strategies exist for selecting infrequently used

entries, a problem similar to selecting replacement pages
for virtual memory management systems. Here we utilize

principals from two of these so-called “page replacement

algorithms”: Least Recently Used and Aging

Replacement.

3.1 Least Recently Used (LRU)

 In LRU, the entry which has not been accessed for the

longest is selected as the replacement entry. In our
implementation, we use a self-organizing list to select the

least recently used entry. This list contains an index to

every entry of the string table. During the compression,

every time an entry is accessed, the corresponding index

is moved to the front of the list. When a replacement

entry is needed, it’s selected from the end of the list.

3.2 Aging Replacement

 In addition to LRU, we use the aging replacement

algorithm to manage the string table. In this algorithm,

we keep a value called time to live (TTL) for every table

entry. When an entry is created the corresponding TTL is

initialized to some predetermined value. Periodically, the

TTL is decreased. When the TTL becomes zero, the

entry is deleted from the string table. In order to let table

accesses closer to the present time have more impact than

table accesses long ago, when an entry is accessed, its

TTL is reset to (current value/2+initially value). When a

replacement entry is needed, an unused entry or the one
with the smallest TTL will be selected.

4. Implementation Complicatedness

 The implementation of our idea is somewhat

complicated mainly due to the representation and

management of the string table.

 In order to speed up the process of searching the

string table, the double hashing technique is used to

implement the string table. In order to achieve a good

performance of the hash table, the size of the hash table is

25% bigger than the needed size of the string table.

 Because of hashing, deleting or replacing entry of the

string table cannot be done directly. To replace an entry,

we need to mark an entry as deleted and use an unused
entry for the new entry. Because of this, we need to clean

up marked entries before the hash table gets full. To do

so, we need to recreate the hash table periodically.

 Moreover, if LRU algorithm is used to select

infrequently used entries, a linked list is added to

implement the self-organizing list. If the aging

replacement algorithm is used, a heap is added to

accelerate the process of finding the entry with the

smallest TTL.

5. Factors That Affect the

Compression Ratio

 We found the following factors to be crucial to the

resulting compression ratio, the ratio of the compressed

file size to the original file size.

5.1 The maximum size of the string table

 The maximum size of the string table determines the

number of bits needed to represent a code word, i.e. an

index to the string table. The larger the size the greater

number of bits will be required to represent an index. To

compress a small file, a smaller table results in a smaller
compressed file. To compress a large file, a smaller table

holds less strings and thus less chance of using an index

to encode a long string of characters and thus reduce the

compression efficacy. Algorithms in [7]-[9] reduce the

size of the compressed file by using variable length

tables. According to [9], the maximum number of bits

can be saved is 3840. For large files with millions of

bytes, this is insignificant.

 To fully utilize all possible combinations of bits of

compressed codeword, the size of the string table is a

power of 2. After experimenting with different table sizes

ranging from 212 through 222, we found that a table of size
216, i.e. 65536 works well with large text files.

5.2 The period of recreating the hash table

 The hash table must be recreated before the hash table

becomes full. However, if the table is recreated too often,

the program speed is greatly decreased. Moreover,

according to our observations, different lengths of period
result in different compression ratios.

 According to our study, for a table of size 65536, the

optimal period to recreate the string table is after

compressing 4096 strings.

5.3 The interval of decreasing TTLs

 Recreating the hash table is a time consuming process

in which every entries of the table must be accessed. In
order to reduce the speed impact of managing the hash

table, we paired the task of recreating the hash table with

the task of decreasing TTLs. That is, recreating the hash

table and decreasing the TTLs are done at the same time.

58 Int'l Conf. Foundations of Computer Science | FCS'11 |

5.4 The initial value of TTLs

 If the initial value of TTLs is too small, many entries

of the string table will be deleted too soon and thus the

table pruning method has the same draw back as the table

flushing method.

 After some experiments, we found the optimal initial
TTL value to be the size of the table divided by 1024.

That is, for a table of 65536, the best initial TTL value is

64.

6. Emperical Results

 To evaluate the effectiveness of our methods, we test

our methods with test files from the web site Canterbury

Corpus. (http://corpus.canterbury.ac.nz). The Canterbury

Corpus is a benchmark to enable researchers to evaluate

lossless compression methods.

 We present our results in the following tables. The

three test files E.coli, bible.txt and world192.txt are in the

large corpus collection of the Canterbury Corpus. In

these experiments, we have used string tables of size
65536, hash table recreating period of 4096, and TTL

initial value of 64.

Table 1: Compressed file sizes

 E.coli bible.txt world192.txt

Original

file size

(bytes)

4,638,690

4,047,392

2,473,400

LZW 1,213,588 1,417,762 925,826

LZW/

Aging

1,199,245

1,242,153

804,493

LZW

/LRU

1,234,866

1,291,120

850,560

Table 2: Compression ratios

 E.coli bible.txt world192.txt

LZW 3.82 2.85 2.67

LZW/aging 3.87

(+1%)

3.26

(+12%)

3.07

(+13%)

LZW /LRU 3.76
(-1%)

3.13
(+9%)

2.91
(+8%)

 Besides the test files from The Canterbury Corpus, we

have also tested our methods with other text files.

Compression tests on these files yielded the following

findings:

• LZW/aging does better than LZW/LRU 90% of the

time.

• LZW/aging can improve the compression ratio over

LZW by 10-15% for 90% of the files tested.

 Preliminary tests of our methods with video and

image files also gave promising results. The original

LZW consistently inflate video and image files by about

25%. Our LZW/aging can deflate video and image files

by 1% consistently. In other words, LZW/aging can

improve the compression gain by 26% for large video or

image files over the original LZW.

7. Decompression

 Decompression is a simple task relative to

compression. Since there is no need to search the string

table, the hashing technique is not required and thus there

is no need to recreate the hash table periodically.

However, a heap or a self-organizing list is still needed

for LZW/aging and LZW/LRU respectively. The

purpose of including a heap or a self-organizing list is to

synchronize the decompression string table with the
compression string table so the two tables use the same

sequence of replacement entries.

8. Conclusions

 We have described an improvement of LZW data
compression which use table pruning techniques. With

more efficient management of the dynamic dictionary, a

better compression ratio may be achieved. Specifically,

we show that LZW/aging can significantly improve the

compression ratio for most large files.

 According to our experiments, we identified four

factors that are crucial to the compression ratios of

LZW/aging and LZW/LRU. These factors are the size of

the string table, the period of recreating the hash table,

the interval of decreasing TTLs and the initial value of

TTLs. Further work needs be done to characterize the
combinatorial effects of these factors and determine their

optimal combinations.

 While the aging algorithm provided considerable

improvement over LZW compression alone, additional

replacement algorithms should be explored. Finally, we

will explore more on how the compression methods

perform on different types of data files such as video and

image files.

9. References

[1] Ziv, J. and Lempel A. 1977. “A universal algorithm for

sequential data compression”. IEEE Trans. Inf. Theory 23, 3

Int'l Conf. Foundations of Computer Science | FCS'11 | 59

(May), 337-343.

[2] Ziv, J., & Lempel, A. 1978. “Compression of

individual sequences via variable-rate coding”,

IEEE Trans. Inform. Theory, 24(5), 530-536.

[3] Storer, J.A., & Szymanski, T.G. (1982) “Data

Compression via Textual Substitution,” Journal of
ACM, 29(4), 928-951.

[4] Welch, T. A. 1984. “A technique for high-performance data

compression”. Computer 17, 6 (June), 8-19.

[5] Willard, L., Lempel, A., Ziv, J. & Cohn, M. (1984)

“Apparatus and method for compressing data signals

and restoring the compressed data signals”, US

patent - US4464650.

[6] Horspool, R.N. (1991) "Improving LZW," Proc.

Data Compression Conference (DCC 91),

Snowbird, Utah, IEEE Computer Society Press, Los

Alamitos, CA, pp. 332-341.

[7] Ouaissa, K., Abdat, M. and Plume, P. 1995.
“Adaptive limitation of the dictionary size in LZW

data compression”. Proceedings 1995 IEEE

International Symposium on Information Theory.

[8] Chai, Z. and Chen W. 2004. “An adaptive

LZWCompression algorithm using changeable

maximum-code-length”. Fourth International

Conference on Computer and Information

Technology (CIT'04) pp. 1175-1180.

[9] Raghuwanshi, B.S., Jain, S. Chawda, D. and Varma,

B. 2009. “New dynamic approach for LZW data

compression”. IJCNS Vol. 1, No. 1 (October),
22-26.

60 Int'l Conf. Foundations of Computer Science | FCS'11 |

SESSION

THEORY + PROOF + VERIFICATION METHODS +
INTERESTING RESULTS

Chair(s)

TBA

Int'l Conf. Foundations of Computer Science | FCS'11 | 61

62 Int'l Conf. Foundations of Computer Science | FCS'11 |

Formal Verification of DES Using the Mizar Proof Checker

Hiroyuki Okazaki1, Kenichi Arai2, and Yasunari Shidama1

1Shinshu University, 4-17-1 Wakasato Nagano-city, Nagano 380-8553, Japan
2Department of Information Technology, Nagano Technical High School,

3-9-1 sasideminami Nagano-city, Nagano 380-0948, Japan

Abstract— In this paper, we introduce our formalization of
Data Encryption Standard (DES) algorithm. DES, which was
formerly the most widely used symmetric cryptosystem in the
world, is a block cipher that was selected by the National
Bureau of Standards as an official Federal Information
Processing Standard for the United States in 1976. We prove
the correctness of our formalization by using the Mizar proof
checking system as a formal verification tool. Mizar is a
project that formalizes mathematics with a computer-aided
proving technique. The main objective of this work is to
prove the security of cryptographic systems by using the
Mizar proof checker.

Keywords: Formal Verification, Mizar, Cryptology, Data Encryp-
tion Standard (DES)

1. Introduction
Mizar[1], [2] is a project that formalizes mathematics with

a computer-aided proving technique. The objective of this
study is to prove the security of cryptographic systems by
using the Mizar proof checker. To achieve this, we are intend
to formalize some topics concerning cryptology.

In this paper, we introduce our formalization of the Data
Encryption Standard (DES). DES, which was formerly the
most widely used symmetric cryptosystem in the world, is
a block cipher that was selected by the National Bureau
of Standards as an official Federal Information Processing
Standard for the United States in 1976[3]. DES is now
considered to be insecure and has already been superseded
by the Advanced Encryption Standard (AES)[4]. Please see
[5] and [6] about recent information on DES. However, DES
is a typical block cipher, and it has a strong influence on
the design of its successors. Thus, we will verify another
block cipher system that we will develop in the future by
using a method similar to our formalization of DES with the
Mizar system. We formalized the DES algorithm as shown
in FIPS46–3[3] in the Mizar language. We then verified the
correctness of the formalized algorithm that the ciphertext
encoded by the algorithm can be decoded uniquely by the
same algorithm by using the Mizar proof checker.

The remainder of this study is organized as follows. In
Section 2, we briefly introduce the Mizar project. In Section
3, we briefly introduce the Data Encryption Standard (DES).
In Section 4, we discuss our strategy for formalizing DES
in Mizar. In Sections 5 and 6, we propose a formalization

of DES. We conclude our discussion in Section 7. The
definitions and theorems in this study have been verified
for correctness by using the Mizar proof checker.

2. Mizar
Mizar[1], [2] is an advanced project of the Mizar Society

led by Andrzej Trybulec that formalizes mathematics with
a computer-aided proving technique. The Mizar project
describes mathematical proofs in the Mizar language, which
is created to formally describe mathematics. The Mizar proof
checker operates in both Windows and UNIX environments,
and registers the proven definitions and theorems in the
Mizar Mathematical Library (MML).

Furthermore, the objective of the Mizar project is to create
a check system for mathematical theses. What formalizes
the proof of mathematics by Mizar and describes it is called
“article”. When an article is newly described, it is possible to
advance it by referring to articles registered in the MML that
have already been inspected as proof. Likewise, other articles
can refer to an article after it has been registered in the MML.
Although the Mizar language is based on the description
method for general mathematical proofs, the reader should
consult the references for its grammatical details, because
Mizar uses a specific, unique notation[1], [2], [7], [8], [9].

3. Data Encryption Standard
In this section, we review the outline of the DES algo-

rithm. The DES algorithm takes a 64bits length plaintext
block and a 64 bits length secret key, and transforms into
a 64 bits length ciphertext block. Decryption must be per-
formed using the same key as used for encryption, however it
should be performed with the key scheduling process altered
so that the decryption is the reverse of the encryption. Figure
1 shows a sketch of the structure of DES.

DES is a type of iterated block cipher with the Feistel
structure. The Feistel structure ensures that the encryption
and decryption are similar processes, except that the round
keys are used in the reverse order when decrypting. The
algorithm is composed of the Feistel structure and a key
scheduling function. In the Feistel structure of DES, there
are 16 rounds of processing iterations. Before the main
iterations, a given block of plaintext is permutated by IP
and is then divided into two 32 bits length blocks, L0 and

Int'l Conf. Foundations of Computer Science | FCS'11 | 63

Figure 1: Structure of DES

R0. The i-th round is performed as follows:

Li = Ri−1,

Ri = Li−1

⊕
f(Ri−1,Ki),

where 1 ≤ i ≤ 16, f is the Feistel function of DES, and
Ki is the i-th round key that is yielded by the key schedule
function KS from the given secret key. Figure 2 shows a
sketch of the i-th round of Feistel structure. Finally, the final
permutation IP−1 transforms the concatenation of L16 and
R16 into the ciphertext.

4. Strategy of Formalizing DES in Mizar
In Mizar, there are two ways to define computational

routines in an algorithmic sense. One way is by defining
a routine as a functor. A functor is a relation between the
input and output of a routine in Mizar. It is easy to write
and understand the formalization of a routine as a functor,
because the format of a functor in Mizar is similar to that
of a function in certain programming languages.

The other way is by defining a routine as a Function. A
Function is a map from the space of the input onto that of
the output. We can handle a Function as an element of the
set of Functions. Note that both functor and Function can
take a Function as their substitutable subroutines.

Figure 2: i-th round of Feistel structure

In Section 5, we will formalize the algorithm of general-
ized DES as a functor that takes substitutional subroutines.
This generalized definition of DES is easily reusable for
the formalization of other ciphers. In Section 6, we first
formalize the subroutines, that is, the primitives of DES,
according to FIPS46–3[3]. We will then formalize the DES
algorithm by using the formalization of the generalized
definition in Section 5 and the primitives in Section 6.1.

5. Formalization of Generalized DES

First, we formalize the generalized algorithm of DES as
a functor in the Mizar language as follows:

Definition 5.1: (Codec of generalized DES)
let n,m,k be non empty Element of NAT,
RK be Element of (k-tuples_on
(m-tuples_on BOOLEAN)),

F be Function of [:n-tuples_on BOOLEAN,
m-tuples_on BOOLEAN:],
n-tuples_on BOOLEAN,

IP be Permutation of (2*n)-tuples_on
BOOLEAN,

M be Element of (2*n)-tuples_on BOOLEAN;
func DES-like-CoDec(M,F,IP,RK) ->
Element of (2*n)-tuples_on BOOLEAN

means
ex
L,R be sequence of (n-tuples_on BOOLEAN)
st
L.0=SP-Left(IP.M) & R.0=SP-Right(IP.M) &
(for i be Element of NAT st 0<=i &
i<=k-1 holds L.(i+1)=R.i &
R.(i+1)=Op-XOR(L.i,F.(R.i,RK/.(i+1))))

& it=IP".((R.k)^(L.k));

2

64 Int'l Conf. Foundations of Computer Science | FCS'11 |

Note that we can express the algorithm of general Feistel
ciphers1 by using the functor DES-like-CoDec if we give
the identical permutation of (2∗n) tuples_on BOOLEAN IP.
Moreover, SP-Left and SP-Right are functions that divide a
finite sequence into two 32 bits length blocks(Figure 3).

Figure 3: SP-Left and SP-Right

We then prove the following theorem:

Theorem 5.1: (Correctness of generalized DES)
for n,m,k be non empty Element of NAT,
RK be Element of k-tuples_on
(m-tuples_on BOOLEAN),

F be Function of [:n-tuples_on BOOLEAN,
m-tuples_on BOOLEAN:],
n-tuples_on BOOLEAN,

IP be Permutation of (2*n)-tuples_on
BOOLEAN,

M be Element of (2*n)-tuples_on BOOLEAN
holds
DES-like-CoDec(DES-like-CoDec(M,F,IP,
RK),F,IP,Rev(RK))=M

2

Thus, we proved in the Mizar system that the ciphertext
encoded by any Feistel cipher algorithm can be decoded
uniquely with the same algorithm and secret key that were
used in encryption.

6. Formalization of DES

In this section, we formalize the DES algorithm according
to FIPS46–3[3] in the Mizar language. First, we will for-
malize the DES primitives according to FIPS46–3[3]. Next,
we will formalize and prove the correctness of the DES
algorithm.

1General Feistel ciphers are composed only of iterated rounds. In other
words, General Feistel ciphers do not have initial and final permutations.

6.1 DES Primitives
6.1.1 S-Boxes

We formalize the S-BOX S1 as the following functor in
the Mizar language:

Definition 6.1: (S-Box S1)
func DES-SBOX1 -> Function of 64,16
means
it.0=14 & it.1=4 & it.2=13 &

:
(omitted)

:
it.61=0 & it.62=6 & it.63=13;

2

We similarly defined the other S-Boxes, DES-
SBOX2,.....,and DES-SBOX8.

6.1.2 Initial Permutation
We formalize the initial permutation IP as the following

functor in the Mizar language:

Definition 6.2: (IP as functor)
let r be Element of 64-tuples_on
BOOLEAN;

func DES-IP(r) ->
Element of 64-tuples_on BOOLEAN

means
it.1=r.58 & it.2=r.50 & it.3=r.42 &

:
(omitted)

:
it.62=r.23 & it.63=r.15 & it.64=r.7;

2

We then formalize the initial permutation as the following
function:

Definition 6.3: (IP as function)
func DES-PIP ->
Function of 64-tuples_on BOOLEAN,
64-tuples_on BOOLEAN

means
for i be Element of 64-tuples_on
BOOLEAN

holds
it.i=DES-IP(i);

2

We similarly defined the functor of the final permutation
DES-IPINV and the function of the DES-PIPINV. Note that
the final permutation is the inverse of IP.

6.1.3 Feistel Function
Figure 4 shows a sketch of the Feistel function.

Int'l Conf. Foundations of Computer Science | FCS'11 | 65

Figure 4: Feistel function

We formalize the bit selection function E as the following
functor in the Mizar language:

Definition 6.4: (E as functor)
let r be Element of 32-tuples_on
BOOLEAN;

func DES-E(r) ->
Element of 48-tuples_on BOOLEAN

means
it.1=r.32 & it.2=r.1 & it.3=r.2 &

:
(omitted)

:
it.46=r.31 & it.47=r.32 & it.48=r.1;

2

We then formalize the permutation P as follows:

Definition 6.5: (P as functor)
let r be Element of 32-tuples_on
BOOLEAN;

func DES-P(r) ->
Element of 32-tuples_on BOOLEAN

means
it.1=r.16 & it.2=r.7 & it.3=r.20 &

:
(omitted)

:
it.30=r.11 & it.31=r.4 & it.32=r.25;

2

Next, we formalize the Feistel function F as the following
functor in the Mizar language:

Definition 6.6: (Feistel function F as functor)
let R be Element of 32-tuples_on

BOOLEAN,
RKey be Element of 48-tuples_on
BOOLEAN;

func DES-F(R,RKey) ->
Element of 32-tuples_on BOOLEAN

means
ex
D1,D2,D3,D4,D5,D6,D7,D8 be Element of
6-tuples_on BOOLEAN,

x1,x2,x3,x4,x5,x6,x7,x8 be Element of
4-tuples_on BOOLEAN,

C32 be Element of 32-tuples_on BOOLEAN
st
D1=(DES-DIV8(Op-XOR(DES-E(R),RKey))).1 &
D2=(DES-DIV8(Op-XOR(DES-E(R),RKey))).2 &
D3=(DES-DIV8(Op-XOR(DES-E(R),RKey))).3 &
D4=(DES-DIV8(Op-XOR(DES-E(R),RKey))).4 &
D5=(DES-DIV8(Op-XOR(DES-E(R),RKey))).5 &
D6=(DES-DIV8(Op-XOR(DES-E(R),RKey))).6 &
D7=(DES-DIV8(Op-XOR(DES-E(R),RKey))).7 &
D8=(DES-DIV8(Op-XOR(DES-E(R),RKey))).8 &
Op-XOR(DES-E(R),RKey)=
D1^D2^D3^D4^D5^D6^D7^D8 &

x1=N16toB4.(DES-SBOX1.(B6toN64(D1))) &
x2=N16toB4.(DES-SBOX2.(B6toN64(D2))) &
x3=N16toB4.(DES-SBOX3.(B6toN64(D3))) &
x4=N16toB4.(DES-SBOX4.(B6toN64(D4))) &
x5=N16toB4.(DES-SBOX5.(B6toN64(D5))) &
x6=N16toB4.(DES-SBOX6.(B6toN64(D6))) &
x7=N16toB4.(DES-SBOX7.(B6toN64(D7))) &
x8=N16toB4.(DES-SBOX8.(B6toN64(D8))) &
C32=x1^x2^x3^x4^x5^x6^x7^x8 &
it=DES-P(C32);

2

Here, the function DES-DIV8 divides the 48-bits length
input into eight 6-bits length blocks. The function N16toB4
yields a 4-bits length block from a natural number less than
16. The function B6toN64 yields a natural number less than
64 from a 6-bits length input.

Finally, we formalize the Feistel function F as the follow-
ing function:

Definition 6.7: (Feistel function F as function)
func DES-FFUNC ->
Function of [:32-tuples_on BOOLEAN,
48-tuples_on BOOLEAN:],
32-tuples_on BOOLEAN

means
for z be Element of [:32-tuples_on
BOOLEAN, 48-tuples_on BOOLEAN:]

holds
it.z=DES-F(z‘1 ,z‘2);

2

66 Int'l Conf. Foundations of Computer Science | FCS'11 |

6.1.4 Key Scheduling Function
Figure 5 shows a sketch of the key scheduling function.

Figure 5: Key Scheduling Function

We formalize the permutation PC1 as the following func-
tor in the Mizar language:

Definition 6.8: (PC1 as functor)
let r be Element of 64-tuples_on
BOOLEAN;

func DES-PC1(r) ->
Element of 56-tuples_on BOOLEAN

means
it.1=r.57 & it.2=r.49 & it.3=r.41 &

:
(omitted)

:
it.54=r.20 & it.55=r.12 & it.56=r.4;

2

We similarly defined the functor of PC2 as DES-PC2.
Next, we formalize the table of the numbers of Left-Shift

as the following functor:

Definition 6.9: (Table of Left-Shift)
func bitshift_DES -> FinSequence of NAT
means
it is 16-long & it.1=1 & it.2=1 &
it.3=2 & it.4=2 & it.5=2 & it.6=2 &
it.7=2 & it.8=2 & it.9=1 & it.10=2 &

it.11=2 & it.12=2 & it.13=2 & it.14=2 &
it.15=2 & it.16=1;

2

Finally, we formalize the key scheduling function as the
following functor:

Definition 6.10: (Key Scheduling function)
let Key be Element of 64-tuples_on
BOOLEAN;

func DES-KS(Key) ->
Element of (16-tuples_on
(48-tuples_on BOOLEAN))

means
ex
C,D be sequence of (28-tuples_on
BOOLEAN)

st
C.0=Op-Left(DES-PC1(Key),28) &
D.0=Op-Right(DES-PC1(Key),28) &
(for i be Element of NAT st 0<=i &
i<=15 holds it.(i+1)=
DES-PC2((C.(i+1))^(D.(i+1))) &

C.(i+1)=Op-Shift(C.i,bitshift_DES.i) &
D.(i+1)=Op-Shift(D.i,bitshift_DES.i));

2

6.2 DES Algorithm
In this section, we formalize the DES algorithm according

to FIPS46–3[3] in the Mizar language by using our formal-
ization of the generalized DES algorithm in Section 5 and
the DES primitives in Section 6.1.

Definition 6.11: (DES Algorithm)
let RK be Element of (16-tuples_on
(48-tuples_on BOOLEAN)),

F be Function of [:32-tuples_on BOOLEAN,
48-tuples_on BOOLEAN:],
32-tuples_on BOOLEAN,

IP be Permutation of 64-tuples_on
BOOLEAN,

M be Element of 64-tuples_on BOOLEAN;
func DES-CoDec(M,F,IP,RK) ->
Element of 64-tuples_on BOOLEAN

means
ex
IPX be Permutation of (2*32)-tuples_on
BOOLEAN,

MX be Element of (2*32)-tuples_on
BOOLEAN

st
IPX=IP & MX=M &
it=DES-like-CoDec(MX,F,IPX,RK);

2

Int'l Conf. Foundations of Computer Science | FCS'11 | 67

Definition 6.12: (Encode Algorithm of DES)
let plaintext,secretkey be Element of
64-tuples_on BOOLEAN;

func DES-ENC(plaintext,secretkey) ->
Element of 64-tuples_on BOOLEAN

equals
DES-CoDec(plaintext,DES-FFUNC,DES-PIP,
DES-KS(secretkey));

2

Definition 6.13: (Decode Algorithm of DES)
let ciphertext,secretkey be Element of
64-tuples_on BOOLEAN;

func DES-DEC(ciphertext,secretkey) ->
Element of 64-tuples_on BOOLEAN

equals
DES-CoDec(ciphertext,DES-FFUNC,DES-PIP,
Rev(DES-KS(secretkey)));

2

Finally, we then prove the following theorem:

Theorem 6.1: (Correctness of DES)
for message,secretkey be Element of
64-tuples_on BOOLEAN

holds
DES-DEC(DES-ENC(message,secretkey),
secretkey)=message

2

Thus, we proved using the Mizar system that the ciphertext
encoded by the DES algorithm can be decoded uniquely
with the same algorithm and secret key that were used in
encryption.

7. Conclusion
In this study, we introduced our formalization of the DES

algorithm in Mizar. We also proved the correctness of the
DES algorithm by using the Mizar proof checking system
as a formal verification tool. Currently, we are attempting to
analyze the security of DES.

Acknowledgments
This work was supported by JSPS KAKENHI

2124000101.

References
[1] Mizar Proof Checker. Available at http://mizar.org/.
[2] E.Bonarska, An Introduction to PC Mizar, Mizar Users Group, Fonda-

tion Philippe le Hodey, Brussels, 1990.
[3] U.S. Department of Commerce/National Institute of Standards and

Technology, FIPS PUB 46-3, DATA ENCRYPTION STANDARD (DES),
Federal Information Processing Standars Publication, 1999. Available
at http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf.

[4] U.S. Department of Commerce/National Institute of Standards and
Technology, FIPS PUB 197, Advanced Encryption Standard (AES),
Federal Information Processing Standars Publication, 2001. Available
at http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf.

[5] NIST Special Publication 800-67 Version 1.1, Recommendation for
the Triple Data Encryption Algorithm (TDEA) Block Cipher, Na-
tional Institute of Standards and Technology, 2008. Available at
http://csrc.nist.gov/publications/nistpubs/800-67/SP800-67.pdf.

[6] ISO/IEC 18033-3:2010, Information technology – Security techniques
– Encryption algorithms – Part 3: Block ciphers, 2010. Available at
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?
csnumber=54531.

[7] M.Muzalewski, An Outline of PC Mizar, Fondation Philippe le Hodey,
Brussels, 1993.

[8] Y.Nakamura, T.Watanabe, Y.Tanaka, and P.Kawamoto, Mizar Lecture
Notes (4th Edition), Shinshu University, Nagano, 2001. Available at
http://markun.cs.shinshu-u.ac.jp/kiso/projects/proofchecker/mizar/index-
e.html.

[9] A.Grabowski, A.Kornilowicz, and A.Naumowicz, Mizar in a Nutshell,
Journal of Formalized Reasoning 3(2), pp.153-245, 2010.

68 Int'l Conf. Foundations of Computer Science | FCS'11 |

Reasoning about Hybrid States

Angel Rivera
Computer Science Department, Utica College, Utica, NY, U.S.A.

Abstract— In this paper, we present a new semantics for
the well-known normal system of modal logic K based on
the notion of convergence spaces. The purpose is to use
convergence spaces to model and reason about systems with
both discrete and continuous states, so-called hybrid state
spaces. K is sound and complete with respect to the class of
convergence space models, and we show that Kripke frames
and McKinsey and Tarski’s topological frames are special
cases of our convergence space models.

Keywords: Modal logic, convergence spaces, hybrid states, con-
vergence space models

1. Introduction
In Computer Science, a variety of logic-based formal

techniques are available for rigorously reasoning about the
evolution of systems in discrete time using directed graphs
for their semantics. Some of these logics, most notably S4,
have been interpreted to act on dynamical systems evolving in
continuous time using topological spaces as the base for their
semantic models. In order to deal with systems with both
digital (discrete) and analog (continuous) components, we
need a suitable framework. One such candidate can be found
in the notion of convergence spaces. Convergence spaces are
flexible, and generalize both directed graphs and topological
spaces.

In this paper, we present convergence spaces as semantic
for the (smallest) normal system of modal logic K which
we would like to use for reasoning about hybrid states.
Our convergence space models generalize two well-known
semantics for K and S4, respectively: Kripkey frames and
McKinsey and Tarski’s topological models. Our hope is that
convergence space models can serve as a bridge between
Kripke frames and topological models so they can both benefit
from the wealth of work in both areas.

This paper is organized as follows. First, we introduce
convergence spaces, and the notions of interior and closure
which we will use in defining the � and ♦ modal operators.
Next, we present the modal logics K in one of its classical
axiomatic forms. We then define a new semantic for K based
convergence spaces. We present an example of a system with
a hybrid space and show some properties using our formalism.
Last, we show that Kripke models and topological models are
special cases of convergence models, and comment on the
relation of our models and the well-known Montague-Scott’s
neighborhood semantics.

This paper overviews the framework of convergence space
models as presented in [1].

2. Preliminaries
In this section, we present the basic notation and the

different ideas that form the foundation for the rest of this
paper. We introduce the framework of Convergence spaces
starting with the notion of filters, which form their building
blocks, and present some basic properties. We end this section
with a presentation of the Modal Logic of “necessity” and
“possibility” in one of its classical axiomatic forms.

2.1 Convergence Spaces
Given a set X , a filter is a collection of subsets of X

such that it is closed under finite intersections, closed under
arbitrary unions, and it contains X . The following definition
formalizes this notion.

Definition 2.1 (Filters [2]): Let X be a non-empty set. A
collection F of subsets of X is called a filter if and only if,
for A,B ⊆ X ,
(F1) If A,B ∈ F then (A ∩B) ∈ F
(F2) If A ∈ F and A ⊆ B then B ∈ F
(F3) X ∈ F
(F4) ∅ 6∈ F

We use Φ(X) to denote the set of filters of X . A non-empty
collection B is called a filter basis if it only satisfies (F1) and
(F4). We can create filters from subsets and filter basis on
X . The principal filter of A ⊆ X , A 6= ∅, denoted by [A],
is the filter containing all the super-sets of A. If A = {x}, a
singleton, we use [x] instead and call this the point filter of
x. If B is a filter basis, then [B] is the filter consisting of all
the super-sets of elements in B. For filters F ,G ∈ Φ(X), If
F ⊆ G then we say that F is coarser than G, and G is finer
than F .

2.2 Convergence Spaces
A convergence space consists of a set X and a binary rela-

tion ↓ that associates filters with points in X . The following
definition formalize this notion.

Definition 2.2 (Convergence Space [2]): Let X be a non-
empty set. A binary relation ↓ on Φ(X)×X is a convergence
structure if it is "closed under super-filters;" that is,
(C1) if F ↓ x and F ⊆ G then G ↓ x.
Whenever F ↓ x we say that filter “F converges to x." We
call the pair (X, ↓) a convergence space, and we shall use
Conv to denote the set of all convergence spaces.

The definition of convergence spaces varies in the literature.
For instance, the definition found in [3], [4] and [5] has an
additional axiom; and in [6], [7] and [8] convergence spaces
are called filter spaces. We follow the definition of [2], and

Int'l Conf. Foundations of Computer Science | FCS'11 | 69

others, as it is the most general and compatible with existing
models for modal logics.

Notice that, aside from (C1), there is great flexibility in
the creation of a convergence relation. This allows us to see
many well-known structures "under the lens" of convergence
spaces; graphs, pretopologies and topologies, for example,
form proper subcategories of the category of convergence
spaces [5].

2.3 Digraphs, topologies and convergence spaces
For computer science, an important result on convergence

spaces is that all directed graphs, or digraphs, can induce,
or be seen as, convergence spaces. In [5], Blair et al. point
out that there are (possibly infinitely) many ways of doing
this embedding. We present the way commonly found in the
literature (cf. [5], [9], [10] and [11]).

The approach relies on using the graph-neighborhood of
a vertex as the basis for the smallest filter converging to
that vertex in the convergence structure. For digraph G =
(V,E), with vertex-set V and edge-set E, we can induce the
convergence space (V, ↓E) by demanding that, for all v ∈ V
and filter F ∈ Φ(V), F ↓v iff { v′ ∈ V | vEv′ } ∈ F .

The relation between digraphs and induced convergence
spaces works both ways. We can recover the edge-set E
of a digraph (V,E) from its induced convergence space
representation (V, ↓) by demanding that vEv′ if and only if
[v′] ↓ v, for all v, v′ ∈ V (cf. [4], [11]–[13]).

We can also induce a convergence space from a topology.
The idea is to use the collection of open sets containing a
point x as the filter basis for the smallest filter attached to
x; we then close the convergence relation under super filters.
We shall call the generated space a topological convergence
space [12], [14]–[16].

2.4 Discrete, continuous and hybrid spaces
The notions of discrete, continuous and hybrid spaces rely

on the idea of the neighborhood of a point. Following [12], the
neighborhood filter of a point x, N (x), is the filter obtained
as the intersection of all the filters converging to that point;
an element N ∈ N (x) is called a neighborhood of x.

We then stipulate that, if N (x) has a bottom element, for
every x ∈ X , then the space is discrete; for example, all
convergence spaces induced by digraphs are discrete. On the
other hand, if for every x ∈ X , N (x) does not have a bottom
element, then X is continuous; for example, let X = R,
and use its well-known standard topology as the basis of the
following convergence structure: for each x ∈ X , let F ↓ x
if F contains the collection of all open intervals containing
x, i.e. { (x′, x′′) |x′ < x < x′′ }, then the neighborhood filter
does not have a bottom element and, hence, X is continuous.

However, if X does not satisfy either condition, that is
some points are discrete and other continuous, we then call
X a hybrid space. We provide an example of a hybrid space
in its own section below.

2.5 Interior, Closure, Open sets and Closed sets
We now define the two operators we shall later use in the

semantics of modal logic presented below.
Definition 2.3 (interior and closure, [2]): Let (X, ↓) be a

convergence space.
1) int↓(A) = {x∈X | ∀F ∈Φ(X) : if F ↓x then A∈F }
2) cl↓(A) = {x∈X | ∃F ∈ Φ(X) : A ∈ F and F ↓x }
We say a set A ⊆ X is open in (X, ↓) if and only if

A = int↓(A). We say A is closed if and only if A = cl↓(A).
The definition above is compatible with the notions of

interior and closure in other spaces. In particular, Stadler
and Stadler in [2] show how these operators agree with their
topological counterparts whenever the convergence space is
induced by a topological space.

The following propositions present some useful properties,
and give us an insight on the soundness of the axioms of K.
We point out that the theorem below generalizes Theorem 1
in [2].

Theorem 2.4 (cf. theorem 1, [2]): Let (X, ↓) be a conver-
gence space and let A ⊆ X . Then the following are true:

1) X − int↓(A) = cl↓(X −A)
2) X − cl↓(A) = int↓(X −A)
3) int↓(X) = X , cl↓(∅) = ∅
4) If A ⊆ B then cl↓(A) ⊆ cl↓(B) and int↓(A) ⊆ int↓(B).
5) Let B ⊆ X , then cl↓(A) ∪ cl↓(B) = cl↓(A ∪B)
6) Let B ⊆ X , then int↓(A) ∩ int↓(B) = int↓(A ∩B)

Corollary 2.5: cl↓(A) = X − int↓(X −A)

2.6 Modal Logic
In this section we introduce the fundamentals of (classical)

modal logic in its syntactical form. The material in this section
can be found in graduate level books on modal logic. Here,
we follow the presentation [17].

2.6.1 Syntax
Definition 2.6 (The language): Let P be an indefinitely

continuable list of symbols P0,P1, . . . ,Pn, . . . , indexed by
the natural numbers N. The language L is the set of sentences
generated recursively by the following BNF-style grammar:

ϕ ::= Pi | ¬ϕ | ϕ1∧ϕ2 | �ϕ

where Pi ∈ P.
We shall use the terms sentences or formulas for the

elements in L. Elements in P are called atomic sentences.
Sentences of the form �A or ♦A are called modal sentences
and we shall say that a sentence is propositionally atomic if
is atomic or modal.

As usual, we define the other common Boolean connectives
in the following way, for ϕ,ψ ∈ L: ϕ∨ψ := ¬(¬ϕ∧¬ψ),
ϕ→ψ := ¬(ϕ∧¬ψ), and ϕ↔ψ := (ϕ→ψ)∧(ψ→ϕ). The
logical constants true and false are defined as > := ϕ∨¬ϕ
and ⊥ := ϕ∧¬ϕ, respectively, for any ϕ ∈ L. A formula
of the form �ϕ is called necessitation and ϕ is called its
necessitate. The classical negation dual of a necessitation is

70 Int'l Conf. Foundations of Computer Science | FCS'11 |

defined by ♦ϕ := ¬�¬ϕ and it is called a possibilitation
where ϕ is the possibilitate.

We shall provide meaning to these formulas by assigning
subsets of a convergence space to the atomic sentences,
and relating set operations for finding the meaning of more
complex sentences. We shall then say, for instance, that
the meaning of a negation, conjunction and disjunction of
sentences corresponds to, respectively, the set-complement,
intersection and union of the meanings of their constituent
parts. In case of the modal operators, a necessitation is
interpreted as the interior of the meaning of its necessitate
and a possibilitation as the closure of the meaning of its
possibilitate.

2.7 Normal Systems of Modal Logic
As in [17], we shall call a system of modal logic any set

of sentences that contains all propositional tautologies on the
language L and it is closed under the inference rule modus
ponens (MP). This makes classical propositional logic (PL)
the smallest system of modal logic.

We now introduce one axiomatic form of the well-known
system of modal logic known as K.

Definition 2.7 (System K [17]): Let K be the smallest sys-
tem of modal logic containing all instances of the following
schema:
Df♦. ♦A↔¬�¬A

M. �(A∧B)→(�A∧�B)
C. (�A∧�B)→�(A∧B)
N. �>
K. �(A→B)→(�A→�B)

And closed under the following inference rules:
RN. if A then �A
RE. if A↔B then �A↔�B

There are different ways to present system K (cf. [17], [18],
[19]). For instance, by just having all instances of Df♦ to K
and closing it under the inference rule RK (if (A1∧. . .∧An)→
A then (�A1∧ . . .∧�An)→�A), we obtain all the instances
of M, C, N and K; alternatively, these four axioms and the
inference rule RE can be obtained from using K and RN.
We do, however, choose the presentation above as it makes
more clear the role of the structure of convergence spaces as
models for K.

3. Convergence Space Models
A convergence space model M consists of a convergence

space (W, ↓), and a valuation function P assigning to each
atomic proposition a subset of W . The meaning of more
complex sentences can be determined using set-theoretic
operations associated to each of the Boolean and modal
operators.

3.1 Models
Definition 3.1: A convergence space model, or conver-

gence model, is a structure M = 〈W, ↓, P 〉 where:
1) W is a set called the set of possible worlds

2) (W, ↓) is a convergence space; and
3) P : P → 2W is a valuation function mapping atomic

propositions to sets of possible worlds. Since P is
indexed by N, we shall write Pn for P (Pn), with n ∈ N.

For simplicity, we shall say that α is a world in a
convergence model M whenever α is an element of W ; we
shall write α ∈ M to indicate this fact. We shall also use
Conv for the class of all convergence models.

3.2 Truth and Validity
We now define what it means for a sentence A to be valid at

a world α in a modelM, denoted byM, α |= A. We present
the validity of sentence A based on its structural form.

Definition 3.2: Let α be a world in a convergence model
M = 〈W, ↓, P 〉.

1) M, α |= Pn iff α ∈ Pn for n ∈ N
2) M, α |= > always
3) M, α |= ¬A iff M, α 6|= A
4) M, α |= A∧B iff both M, α |= A and M, α |= B
5) M, α |= �A iff (∃O ⊆ W)(∀F ∈ Φ(W)) : if F ↓α,

then O ∈ F and ∀β ∈ O :M, β |= A

We shall also say that M |= A iff M, α |= A, for every
world α ∈ M; and that Conv |= A iff M |= A, for every
model M∈ Conv.

In this definition, items 1–4 form the standard definition
of validity for non-modal formulas (i.e. without � or ♦) in
classical propositional calculus (cf. [17]). Item 5 defines the
meaning of the modal formulas in our language.

In order to complement the definition above, we introduce
the interpretation of validity using set-theoretic operations
with the help of the well-known notion of the truth set of
a sentence.

Definition 3.3 (cf. [17] definition 2.9): Let M be model
and A a sentence. The truth set of A, ‖A‖M, is defined as:

‖A‖M = {α ∈M|M, α |= A }
Combining definitions 3.2 and 3.3, we obtain the charac-

terization below which resembles the well-known topological
semantics of S4 of Tarski and McKinsey [20].

Theorem 3.4 (cf. theorem 2.10 [17]): Let M = 〈W, ↓, P 〉
be a convergence model. Then:

1) ‖Pn‖M = Pn, for n ∈ N
2) ‖>‖M = W
3) ‖¬A‖M = W − ‖A‖M
4) ‖A∧B‖M = ‖A‖M ∩ ‖B‖M
5) ‖�A‖M = int↓(‖A‖M)
As a corollary, it follows that, for example, ‖A→B‖M =

(W − ‖A‖M) ∪ ‖B‖M and ‖♦A‖M = cl↓(‖A‖M)
We can now establish the well-known relation between

truth sets and the validity of a sentence: a sentence A is
valid at a world α if α belongs to the truth set of A, ‖A‖M.
Formally:

Theorem 3.5: Let M be a convergence model and A a
sentence. Then

M, α |= A iff α ∈ ‖A‖M

Int'l Conf. Foundations of Computer Science | FCS'11 | 71

At this point, we have everything we need to reason about
convergence spaces using normal systems of modal logic. We
would now like present an example using this apparatus.

4. Example
We would like to be able to reason about the functioning

of, say, an electronic device whose behavior evolves in so-
called "real" time. Figure1 illustrates the states considered in
the functioning of the device. The device can be in one of
the discrete states Off, On, or Fail if something caused the
device to stop functioning; notice Fail is a sink state in order
to model the fact that the device cannot auto-recover from
failures.

Once the device is in operation, we use the non-negative
reals to represent the evolution of the running time of the
device: when the device starts, it moves to (time) state 0, and
advances to higher positive real values following, say, a set
of differential equations modeling the continuous behavior of
the device. In this example, and in the interest of simplicity,
we are not concerned on how this continuous evolution takes
place; we are only concerned with the running time of the
device. (Instead of the running time, we could consider, for
instance, the space Rn for modeling n continuous variables
representing the "real" state of the device.)

At any time during the running of the device, it can be
turned off (arrows from x ∈ R+

0 to the Off state), or may
stop working because of a failure (arrows from x ∈ R+

0 to
the Fail state). Notice that even at time state 0 the device may
not work (a dead battery, perhaps).

We start by constructing a convergence space for Figure1.
We will augment the standard topology on R, restricted to
the non-negative reals, with the discrete states in the system,
and use this to create the smallest filters for each x ∈ R+

0 .
For the discrete states, we will follow [5] in attaching point
filters to vertices based on their graph neighborhoods.

Let (W, ↓) be a convergence space where
W = R+

0 ∪ {On,Off,Fail } and the convergence structure ↓
is as follows:

• For all x ∈ R+,
[{ (x′, x′′) ∪ {Off,Fail } |x′ < x < x” }]↓x.
For 0, let [{ [0, x) ∪ {Off,Fail } |x > 0 }]↓0

• [Fail]↓Fail
• [On]↓Off
• 0 ∈ R+

0 , [0]↓On.
• Apply (C1) to close ↓ under super-filter inclusion.

Notice this space is hybrid: the states On, Off and Fail are
discrete, but the states x ∈ R+

0 are all continuous.
We leave to the reader to verify that the point filters [Off],

[Fail], and [x] also converge to each x ∈ R+
0 .

We now define the model M = 〈W, ↓, P 〉, where the
valuation function P is as follows:

• P0 = R+
0 .

• P1 = {On }, P2 = {Off }, P3 = {Fail }; and
• Pn = ∅, for n > 3.

On Off

Fail

0 x x’ x” R0

+

Fig. 1: Hybrid state space of a device. The device can be in
one of the discrete states ("On", "Off", or "Fail") or running
in "real" time represented by the non-negative reals.

That is, the atomic proposition P0 is identified with R+
0 , and

P1, P2, and P3 with the discrete states {On }, {Off } and
{Fail }, respectively.

We can then show, for example, that the following sen-
tences are valid in this model at all worlds x ∈ R+

0 :
• P0→♦P2: "while running, we can turn the device off."

We have that: ‖♦P2‖M = cl↓(‖P2‖M) = R+
0 , and

therefore ‖P0→♦P2‖M = (W −‖P0‖M)∪‖♦P2‖M =
W .

• P0→♦P3: "while running, the device may fail"
We have that: ‖♦P3‖M = cl↓(‖P3‖M) = R+

0 ∪
{Fail }, and therefore ‖P0→♦P3‖M = W − ‖P0‖M ∪
‖♦P3‖M = (W − R+

0) ∪ (R+
0 ∪ {Fail }) = W

• P0 → ♦�P1: "while running, it is possible to turn the
device off, and then back on again."
We have that: ‖♦�P1‖M = cl↓(int↓(‖P1‖M)) =
cl↓(int↓({On })) = cl↓({Off }) = R+

0 ∪ {On }. There-
fore, ‖P0→♦�P1‖M = W − ‖P0‖M ∪ ‖♦�P1‖M =
(W − R+

0) ∪ (R+
0 ∪ {On }) = W .

• P3 → �P3 "once the device fails, it will not auto-
recover."
We have that: ‖�P3‖M = int↓(‖P3‖M) = {Fail }.
Therefore, ‖P3→�P3‖M = W −‖P3‖M∪‖�P3‖M =
W − {Fail } ∪ { Fail } = W .

5. Properties
System K is sound and complete with respect to the class

of convergence space models [1]. Soundness, as it is often
the case, is easier to prove than completeness. Looking at the
definition and properties of filters and the interior and closure
operators we have that, for instance, Df♦ is supported by
corollary 2.5, axioms M and C follow from 2.4(5), N follows

72 Int'l Conf. Foundations of Computer Science | FCS'11 |

from 2.4(3) and K follows from the definition of the interior
operator and filter axiom (F2).

Since convergence space models include relational and
topological models as subcategories (see below), it inherits
many desired properties found in those models, like the Finite
Model property.

6. Other models for Normal Systems
In this section we briefly discuss the relationship between

Convergence models and well-known models for normal
systems. These are Kripke models, Topological models, and
Neighborhood models. We will show that the first two are
special cases of Convergence model semantics, and how our
semantics relates to that of Neighborhood models.

6.1 Kripke models
A simple inspection of the literature on modal logic in

Computer Science will reveal that Kripke semantics is by far
the most popular semantics for normal systems of modal logic
in the field. A Kripke model is a triple, consisting of a set W ,
a binary relation R, and a valuation P that assigns subsets of
W to the atomic propositions in the logic. Whenever αRβ,
for worlds α, β ∈W , we say that β is a world accessible from
α [21]. Kripke models can also be found in the literature with
the name Standard Models [17].

Definition 6.1 (Kripke models [17]): MK = 〈W,R,P 〉 is
a Kripke model if and only if

1) W is a set called the set of possible worlds.
2) R ⊆ W × W is a binary relation known as the

accessibility relation.
3) P : P → 2W is a valuation function mapping atomic

propositions to sets of possible worlds.
In section 2.1, we discussed the relationship between

relational and convergence spaces. As we mentioned there,
it is well-known that a relation on a set, or a digraph, can
induce a convergence space in (possibly infinite) many ways
while preserving the structural properties of the graph. Kripke
models are then a special case of convergence models.

Proposition 6.2: Every Kripke model MK = 〈W,R,P 〉
induces an convergence modelM = 〈W, ↓R, P 〉 where ↓R is
induced by R, and vice versa.

6.2 Topological models
Although not nearly as popular as Kripke frames, topo-

logical spaces have been shown to be useful in computer
science when a continuous element is needed. For example, in
reasoning about systems with continuous dynamics [22], and
in artificial intelligence for the representation and reasoning
of spatial information [23], [24], for example. The use of
topological spaces for modal logics can be traced back to
the seminal work of Tarski and McKinsey as semantics for
intuitionistic logic and the logic S4 [20], [25].

Definition 6.3 (Topological model): MT = 〈W,O,P 〉 is
a topological model if and only if

1) W is a set called the set of possible worlds.

2) O ⊆ 2W a collections of subsets of possible worlds
such that (i) { ∅,W } ⊆ O, (ii) O is closed under
arbitrary unions, and (iii) O is closed under finite
intersections. (W,O) is what is called a topological
space.

3) P : P → 2W is a valuation function mapping atomic
propositions to sets of possible worlds.

We mentioned in section 2.3 that topological spaces induce
(topological) convergence spaces, and since the definition of
the valuation function in topological models and convergence
models are the same, inducing a convergence model from a
topological model is rather simple.

Proposition 6.4: Every topological model MT =
〈W,O,P 〉 induces a (topological) convergence space
M = 〈W, ↓O, P 〉.

We then have that topological semantics is a special case
of convergence space semantics.

6.3 Neighborhood models
As a generalization of Kripke models and Topological

models, it is well-known that Richard Montague [26] and
Dana Scott [27] independently defined the neighborhood
semantics for modal logic in which an arbitrary collection
of subsets of possible worlds, or neighborhood system, is
attached to each world in a model.

The notion of validity that we obtain from neighborhood
models is more general, but far weaker than the one we have
with our models and Kripke models. In fact, axiom schema
M, C, N and K are not valid in the class of neighborhood
models (see, for example, [17]). The reason derives from the
fact that these axioms require a structure on the elements of
the neighborhood systems which does not necessarily exist.
These collections could be internally organized like our filters,
or just as a disparate bag of subsets. Neighborhood models
can also be found in the literature with the name minimal
models [17].

Definition 6.5 (Neighborhood model): A triple MN =
〈W,N,P 〉 is a neighborhood model if and only if

1) W is a set called the set of possible worlds.
2) N : W → 22

W

is a mapping that relates each element
in W with a collection of subsets of W .

3) P : P → 2W is a valuation function mapping atomic
propositions to sets of possible worlds.

We can see from the preceding definition that, if the
neighborhood system of a world α in a modelMN is a filter
(2.1), then it could be used as the smallest filter converging to
α, thus inducing a convergence space on W . The following
proposition formalizes this idea.

Proposition 6.6: Every neighborhood model MN =
〈W,N,P 〉 such that, for every α ∈ W , if Nα 6= ∅ then
Nα is a filter, induces a pretopological convergence model
M = 〈W, ↓N , P 〉.

A pretopological convergence spaces is one in that, if F ↓x,
for some x ∈ W , then Nx, the neighborhood filter of x,
also converges to x. Pretopological spaces are a proper subset
of convergence spaces [2], [5]. So, the relationship between

Int'l Conf. Foundations of Computer Science | FCS'11 | 73

convergence models and neighborhood models is close, but
not one-to-one. In a neighborhood model, Nα does not have to
be a filter which makes these models more generic, but at the
expense of giving us a far weaker logic. On the other hand,
the flexibility in the construction of convergence structures
(for example, there are many different structures representing
the same digraph) allows us to fine-tune these models and
work with a much richer logic.

7. Summary and Further Work
In this paper we showed the use of convergence spaces as

the basis for a semantics for the smallest normal system of
modal logic, system K. Convergence models are generaliza-
tions of Kripke models, and Topological models, and, as such,
it inherit their properties, like the Finite Model Property.

The use of convergence spaces opens up the possibility
of generalizing results found with Kripke and Topological
models, and of as a bridge between these two areas.

Specifically, convergence spaces could be used to model
hybrid systems of the kind designed with digital and analog
components, currently modeled with languages like VHDL-
AMS. This could provide one more formal tool in the
validation of these systems which could ultimately help in
reducing their time-to-market.

We would like to investigate the relationship between our
work and that of Blair et al.’s in [5]. There, a framework is
given for the differentiation of continuous functions between
convergence spaces. (For example, a continuous function with
domain R and an automaton as codomain would model a
continuous automaton. This an important notion as right now
such mapping is possible at the level of topological spaces if
the automaton is reflexive and transitively closed, which they
often are not). We would like to know how the validity of
sentences is affected as a continuous function between two
models is being differentiated.

References
[1] A. Rivera, “Reasoning about co-evolving discrete, continuous and

hybrid states,” Ph.D. dissertation, Syracuse University, Syracyse, New
York, 2008.

[2] P. F. Stadler and B. M. R. Stadler, “Basic properties of filter convergence
spaces,” preprint, 2001. [Online]. Available: http://bioinf.uni-
leipzig.de/ studia/Publications/PREPRINTS/01-pfs-007-subl1.pdf

[3] D. C. Kent, “Convergence functions and their related topologies,”
Fundamenta Mathematicae, vol. 54, pp. 125–133, 1964.

[4] R. Heckmann, “A non-topological view of dcpo’s as convergence
spaces,” Theoretical Computer Science, vol. 305, pp. 159–186, 2003.

[5] H. A. Blair, D. W. Jakel, R. J. Irwin, and A. J. Rivera, “Elementary
differential calculus on discrete and hybrid structures,” in Logical
Foundations of Computer Science: International Symposium, LCFS
2007, New York, NY, USA, June 4–7, 2007, Proceedings, ser. Lecture
Notes in Computer Science, S. N. Artemov and A. Nerode, Eds., no.
4514. Springer-Verlag, 2007, pp. 41–53.

[6] J. M. E. Hyland, “Filter spaces and continuous functionals,” Annals of
Mathematical Logic, vol. 16, pp. 101–143, 1979.

[7] D. C. Kent and N. Rath, “Filter spaces,” Applied Categorial Structures,
vol. 1, no. 3, pp. 297–309, 1993.

[8] R. Heckmann, “On the relationship between filter spaces and
equilogical spaces,” 1998, draft report. [Online]. Available:
http://rw4.cs.uni-sb.de/ heckmann/papers/fil.ps.gz

[9] B. M. R. Stadler, P. F. Stadler, G. P. Wagner, and W. Fontana,
“The topology of the possible: formal spaces underlying patterns of
evolutionary change,” Journal of Theoretical Biology, vol. 213, no. 2,
pp. 241–274, 2001.

[10] C. M. Reidys and P. F. Stadler, “Combinatorial landscapes,”
Santa Fe Institute, Tech. Rep., 2003. [Online]. Available:
http://www.santafe.edu/sfi/publications/Working−Papers/01−03−014.pdf

[11] P. S. Alexandrov, “Discrete Räume,” Math. Sb. (New Series), vol. 2
(44), no. 3, pp. 501–519, 1937.

[12] H. A. Blair, D. W. Jakel, R. J. Irwin, and A. J. Rivera, “Calculus
on discrete and hybrid structures. part i: Foundations and calculi,” in
preparation.

[13] S. Vickers, Topology via Logic, ser. Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 1989, no. 6.

[14] C. Choquet, “Convergences,” Ann. Univ. Grenoble, vol. 23, pp. 55–112,
1947.

[15] N. Bourbaki, Topologie Générale. Actualités Sci. Ind., 858 (1940),
916 (1942), 1029 (1947), 1045 (1948), 1084 (1949).

[16] J. L. Kelley, General Topology. Van Nostrand Reinhold, 1955.
[17] B. F. Chellas, Modal logic. An introduction. Cambridge University

Press, 1980.
[18] E. J. Lemmon, An Introduction to Modal Logic (The ”Lemmon Notes”),

ser. American Philosophical Quarterly, K. Segerberg, Ed. Basil
Blackwell, 1977, no. 11.

[19] G. E. Hughes and M. J. Cresswell, A New Introduction to Modal Logic.
Routledge, 1996, reprinted in 1998, 2001, 2003.

[20] J. C. C. McKinsey and A. Tarski, “Some theorems about the sentential
calculi of lewis and heyting,” The Journal of Symbolic Logic, no. 13,
pp. 1–15, 1948.

[21] S. A. Kripke, “A semantical analysis of modal logic I: Normal modal
propositional calculi,” Zeitschrift für Mathematische Logik und Grund-
lagen der Mathematik, vol. 9, pp. 67–96, 1963.

[22] V. Coulthard and J. Davoren, “Spatio-temporal logics for continuous
dynamical systems,” January 2004, conference paper submission.
[Online]. Available: http://www.ee.unimelb.edu.au/staff/davoren/00-
lics04-coulthard.pdf

[23] M. Aiello, J. van Benthem, and G. Bezhanishvili, “Reasoning about
space: the modal way,” Journal of Logic and Computation,
vol. 13, no. 6, pp. 889–920, 2003, first published as a
manuscript: Manuscript UvA, pp 01 – 18, 2001. [Online]. Available:
http://www.cs.rug.nl/ aiellom/publications/topax.pdf

[24] M. Aiello, “The topo-approach to spatial representation and reasoning,”
in AI*IA Notizie XVI, 2003, vol. 4, pp. 5–14. [Online]. Available:
http://www.cs.rug.nl/ aiellom/publications/aiiaPhDaward.pdf

[25] J. C. C. McKinsey and A. Tarski, “The algebra of topology,” Annals of
Mathematics, vol. 45, pp. 141–191, 1944.

[26] R. Montague, “Universal grammar,” Theoria, no. 36, pp. 373–398,
1970.

[27] D. Scott, “Advice in modal logic,” in Philosophical Problems in Logic,
K. Lambert, Ed. Reidel, Dordrecht, 1970, pp. 143–173.

74 Int'l Conf. Foundations of Computer Science | FCS'11 |

An Automated Derivation of Two Alternate

Axiomatic Bases for Łukasiewicz's Sentential

Calculus

Jack K. Horner

P. O. Box 266

Los Alamos, New Mexico 87544 USA

Abstract

The optimization of computing systems

incorporating Boolean-circuit-based computing

equipment must be expressed at some level in

Boolean behaviors and operations. Boolean

behaviors and operations are part of a larger

family of logics -- the logic of sentences, also

known as the "sentential calculus". Two logics

are implicationally equivalent if the axioms and

inference rules of each imply the axioms of the

other. Characterizing the inferential

equivalences of various formulations of the

sentential calculi is thus foundational to the

optimization of Boolean-oriented computing

systems. Using an automated deduction system,

I show that one of the most austere formulations

of the sentential calculus, Łukasiewicz's CN, has

at least two alternate axiomatic bases; the bases

appears to be novel. The proofs further

demonstrate a natural proving order that both

informs and constrains optimization strategies.

Keywords: propositional logic, automated

deduction, sentential calculus

1.0 Introduction

 The optimization of computing systems

incorporating Boolean-circuit-based

computing equipment must be expressed at

some level in Boolean behaviors and

operations. Boolean behaviors and

operations are part of a larger family of

logics -- the logic of sentences, also known

as the "sentential calculus". Two logics are

implicationally equivalent if the axioms and

inference rules of each imply the axioms of

the other. Characterizing the inferential

equivalences of various formulations of the

sentential calculi is thus foundational to the

optimization of Boolean-oriented computing

systems ([1],[3]-[7],[9]-[10],[12]-[15]).

 "CN", the formulation of the sentential

calculus in [1], is among the most austere:

its vocabulary contains only two logical

connectives (C, and N) and sentence

variables (p, q, r, ...). It has two inference

rules (condensed detachment and

substitution), and three axioms.

 In CN, any expression of the form Cxy or

Nz, where x, y, and z are sentences, is a

sentence. Cpq is interpreted as "sentence p

implies sentence q"; Np is interpreted as

"not-p". C and N are right-associative; N

has higher associative precedence than C.

For example,

 CCqrCpNr

translates to the more common "arrow-and-

parenthesis" notation as

 (q r) (p ~r)

where "" designates "implies" and "~"

designates "not".

 The axioms of CN in [1] are:

 CN1. CCpqCCqrCpr

 CN2. CCNppp

 CN3. CpCNpq

Int'l Conf. Foundations of Computer Science | FCS'11 | 75

 The main result of this paper is that either

 CN13. CCNpqCtCCqpp

or

 CN14. CCCtCCqpprCCNpqr

can be substituted for CN2 to obtain an

alternate basis for CN.

2.0 Method

 To prove that substituting CN13 for CN2

yields an axiomatic basis for CN, it suffices

to show that CN13 can be derived from

{CN1, CN2, CN3}, and that CN2 can be

derived from {CN1, CN3, CN13}.

 To show that CN13 is derivable from

CN1-CN3, [1] was implemented in the

prover9 ([2]) script shown in Figure 1 and

executed under on a Dell Inspiron 545 with

an Intel Core2 Quad CPU Q8200 @ 2.33

GHz and 8.00 GB RAM, running under the

Windows Vista Home Premium

(SP2)/Cygwin operating environment.

__

set(pos_hyper_resolution).

formulas(usable).

P(i(i(x,y),i(i(y,z),i(x,z)))) # label("CN1").

P(i(i(-x,x),x)) # label("CN2").

P(i(x,i(-x,y))) # label("CN3").

end_of_list.

formulas(sos).

-P(i(x,y)) | -P(x) | P(y) # label("InfConDet").

end_of_list.

formulas(goals).

P(i(i(-x,y),i(v,i(i(y,x),x)))) # label("CN13").

end_of_list.

Figure 1. The prover9 script used to show the conjunction of CN1-CN3 implies CN13. The

implementation of condensed detachment is the formula in the "sos" list; substitution is derived from

prover9's hyperresolution rule (introduced in the "set" command at the top of the script). Details of

prover9's syntax and semantics can be found in [2].

To show that CN2 is derivable from the conjunction of CN1, CN3, and CN13, [1], with CN13

substituted for CN2, was implemented in the prover9 ([2]) script shown in Figure 2 and executed

on the platform described above.

__

set(pos_hyper_resolution).

formulas(usable).

P(i(i(x,y),i(i(y,z),i(x,z)))) # label("CN1").

P(i(i(-x,y),i(v,i(i(y,x),x)))) # label("CN13").

76 Int'l Conf. Foundations of Computer Science | FCS'11 |

P(i(x,i(-x,y))) # label("CN3").

end_of_list.

formulas(sos).

-P(i(x,y)) | -P(x) | P(y) # label("InfConDet").

end_of_list.

formulas(goals).

P(i(i(-x,x),x)) # label("CN2").

end_of_list.

Figure 2. The prover9 script used to show the conjunction of CN1, CN3, and CN13 imply CN2.

Details of the syntax and semantics of the notation can be found in [2]. The implementation of

condensed detachment is the formula in the "sos" list; substitution is derived from prover9's

hyperresolution rule (introduced in the "set" command at the top of the script).

__

In this paper, showing that CN14 can be substituted for CN2 to form an alternate basis for CN

requires some intermediate results from the proof that CN13 can be substituted for CN2 to form

such a basis. The details of that argument are accordingly deferred to Section 3.0.

3.0 Results

Figure 3 shows that CN13 can be derived from the conjunction of CN1-CN3.

__

============== PROOF =================================

% Proof 1 at 0.09 (+ 0.05) seconds: "CN13".

1 P(i(i(-x,y),i(v,i(i(y,x),x)))) # label("CN13") # label(non_clause) #

label(goal). [goal].

2 P(i(i(x,y),i(i(y,z),i(x,z)))) # label("CN1"). [assumption].

3 P(i(i(-x,x),x)) # label("CN2"). [assumption].

4 P(i(x,i(-x,y))) # label("CN3"). [assumption].

5 -P(i(x,y)) | -P(x) | P(y) # label("InfConDet"). [assumption].

6 -P(i(i(-c1,c2),i(c3,i(i(c2,c1),c1)))) # label("CN13") #

answer("CN13"). [deny(1)].

10 P(i(i(i(-x,y),z),i(x,z))). [hyper(5,a,2,a,b,4,a)].

11 P(i(i(x,y),i(i(-x,x),y))). [hyper(5,a,2,a,b,3,a)].

12 P(i(i(i(i(x,y),i(z,y)),u),i(i(z,x),u))). [hyper(5,a,2,a,b,2,a)].

20 P(i(x,x)). [hyper(5,a,10,a,b,3,a)].

22 P(i(-i(x,x),y)). [hyper(5,a,4,a,b,20,a)].

24 P(i(i(x,y),i(-i(z,z),y))). [hyper(5,a,2,a,b,22,a)].

87 P(i(x,i(-i(y,y),z))). [hyper(5,a,10,a,b,24,a)].

93 P(i(i(i(-i(x,x),y),z),i(u,z))). [hyper(5,a,2,a,b,87,a)].

330 P(i(x,i(y,y))). [hyper(5,a,93,a,b,3,a)].

337 P(i(i(i(x,x),y),i(z,y))). [hyper(5,a,2,a,b,330,a)].

357 P(i(x,i(i(-y,y),y))). [hyper(5,a,337,a,b,11,a)].

391 P(i(i(i(i(-x,x),x),y),i(z,y))). [hyper(5,a,2,a,b,357,a)].

Int'l Conf. Foundations of Computer Science | FCS'11 | 77

856 P(i(i(x,i(-y,y)),i(z,i(x,y)))). [hyper(5,a,12,a,b,391,a)].

1206 P(i(i(-x,y),i(z,i(i(y,x),x)))). [hyper(5,a,12,a,b,856,a)].

1207 $F # answer("CN13"). [resolve(1206,a,6,a)].

======== end of proof ==========================

Figure 3. Summary of a prover9 ([2]) proof showing that Proposition CN13 is derivable from CN1-

CN3. The proof assumes condensed detachment (Line 5) and substitution (implied by the "set"

command) as inference rules. The general form of a line in this proof is “line_number conclusion

[derivation]”, where line_number is a unique identifier of a line in the proof, and conclusion is the

result of applying the prover9 inference rules noted (denoting the derivation), to the lines cited in

those brackets. All lines annotated as "assumption" are axioms or definitions. All prover9 proofs are

proofs by contradiction; note in particular that Line 6 is the denial of Line 1. Further detail of the

syntax and semantics of prover9 notation used in this study can be found in [2] and [4]. Note the

derivation of the Law of Identity at Line 20.

Figure 4 shows that CN2 can be derived from the conjunction of CN1, CN3, and CN13 of [1].

This is sufficient to show that these three propositions form an alternative axiomatic basis for CN.

__

====================== PROOF =================================

1 P(i(i(-x,x),x)) # label("CN2") # label(non_clause) # label(goal).

[goal].

2 P(i(i(x,y),i(i(y,z),i(x,z)))) # label("CN1"). [assumption].

3 P(i(i(-x,y),i(z,i(i(y,x),x)))) # label("CN13"). [assumption].

4 P(i(x,i(-x,y))) # label("CN3"). [assumption].

5 -P(i(x,y)) | -P(x) | P(y) # label("InfConDet"). [assumption].

6 -P(i(i(-c1,c1),c1)) # label("CN2") # answer("CN2"). [deny(1)].

10 P(i(x,i(i(i(--y,z),y),y))). [hyper(5,a,3,a,b,4,a)].

11 P(i(i(i(-x,y),z),i(x,z))). [hyper(5,a,2,a,b,4,a)].

12 P(i(i(i(x,i(i(y,z),z)),u),i(i(-z,y),u))). [hyper(5,a,2,a,b,3,a)].

61 P(i(i(i(--x,y),x),x)). [hyper(5,a,10,a,b,10,a)].

115 P(i(i(-x,y),i(i(y,x),x))). [hyper(5,a,12,a,b,61,a)].

128 P(i(x,i(i(y,x),x))). [hyper(5,a,11,a,b,115,a)].

151 P(i(i(i(i(x,y),y),z),i(y,z))). [hyper(5,a,2,a,b,128,a)].

256 P(i(x,x)). [hyper(5,a,151,a,b,61,a)].

274 P(i(i(-x,x),x)). [hyper(5,a,115,a,b,256,a)].

275 $F # answer("CN2"). [resolve(274,a,6,a)].

========================= end of proof ==========================

Figure 4. Summary of a prover9 ([2]) proof showing that Proposition CN2 (Axiom 2 in the default

formulation of CN) is derivable from CN1, CN3, and CN13. Note the derivation of the Law of

Identity at Line 256.

__

78 Int'l Conf. Foundations of Computer Science | FCS'11 |

Figures 3 and 4 demonstrate that CN1, CN3,

and CN13 collectively form an alternate

basis for CN.

Figure 5 shows that CN14 is derivable from

CN1 and CN13. Because CN13 is derivable

from {CN1, CN2, CN3}, CN14 is therefore

derivable from {CN1, CN2, CN3}.

__

========================= PROOF =================================

1 P(i(i(i(u,i(i(y,x),x)),z),i(i(-x,y),z))) # label("CN14") #

label(non_clause) # label(goal). [goal].

2 P(i(i(-x,y),i(z,i(i(y,x),x)))) # label("CN13"). [assumption].

3 P(i(i(x,y),i(i(y,z),i(x,z)))) # label("AxCN1"). [assumption].

6 -P(i(x,y)) | -P(x) | P(y) # label("InfConDet"). [assumption].

7 -P(i(i(i(c1,i(i(c2,c3),c3)),c4),i(i(-c3,c2),c4))) # label("CN14") #

answer("CN14"). [deny(1)].

15 P(i(i(i(x,i(i(y,z),z)),u),i(i(-z,y),u))). [hyper(6,a,3,a,b,2,a)].

16 $F # answer("CN14"). [resolve(15,a,7,a)].

======================= end of proof ==========================

Figure 5. Summary of prover9 proof showing that CN14 is derivable from CN1 and CN13.

========================== PROOF ===============================

1 P(i(i(-x,y),i(v,i(i(y,x),x)))) # label("CN13") # label(non_clause) #

label(goal). [goal].

2 P(i(i(i(x,i(i(y,z),z)),u),i(i(-z,y),u))) # label("CN14").

[assumption].

3 P(i(i(x,y),i(i(y,z),i(x,z)))) # label("AxCN1"). [assumption].

4 P(i(x,i(-x,y))) # label("AxCN3"). [assumption].

5 -P(i(x,y)) | -P(x) | P(y) # label("InfConDet"). [assumption].

6 -P(i(i(-c1,c2),i(c3,i(i(c2,c1),c1)))) # label("CN13") #

answer("CN13"). [deny(1)].

10 P(i(i(i(-x,y),z),i(x,z))). [hyper(5,a,3,a,b,4,a)].

20 P(i(i(-x,y),i(z,i(i(y,x),x)))). [hyper(5,a,2,a,b,10,a)].

21 $F # answer("CN13"). [resolve(20,a,6,a)].

======================== end of proof ==========================

Figure 6. Summary of prover9 proof that CN14 , CN1, and CN13 jointly imply CN13.

__

 Figure 6 shows that CN13 is derivable

from CN14, CN1, and CN13 collectively.

Because Figure 4 shows that CN13, CN1,

and CN3 jointly imply CN2, {CN14, CN1,

CN3} implies CN2. This is sufficient to

show that {CN1, CN3, CN14} is an

alternate basis for CN.

Int'l Conf. Foundations of Computer Science | FCS'11 | 79

4.0 Conclusions and discussion

 Section 3 demonstrates that CN1, CN3,

and CN13 (or CN14) collectively form an

alternate axiomatic basis for CN; these bases

appear to be novel.

 In [1], CN13 (or CN14) is treated as a

lemma to help derive CN15 (which, [1]

notes, can be substituted for CN2 to form a

basis). In [1], the derivation of CN13 (or

CN14) assumes only on CN1 and CN3; the

prover9 script for deriving CN13, however,

"spontaneously" deployed CN2, in addition

to CN1 and CN3, to derive CN13. This

result hints(but of course does not prove)

that CN13 might be substituted for CN2 to

form an alternate basis. Similarly, [1] uses

CN13 to derive CN14, hinting (but not

proving) that CN14 could be substituted for

CN2 to form an alternate basis for CN.

 These derivation relationships both

inform and constrain optimization strategies

on Boolean-based computing systems.

5.0 Acknowledgements

 This work benefited from discussions

with Tom Oberdan, Frank Pecchioni, Tony

Pawlicki, and Alberto Coffa. For any

problems that remain, I am wholly

responsible.

6.0 References

[1] Łukasiewicz J. Elements of

Mathematical Logic. Second Edition

(1958). Trans. by Wojtasiewicz O.

Pergamon Press. 1963.

[2] McCune WW. prover9 and mace4.

http://www.cs.unm.edu/~mccune/prover9/.

2009.

[3] Aristotle. Prior Analytics. Trans. by A.

J. Jenkinson. In Aristotle. The Basic Works

of Aristotle. Ed. by R. McKeon. Random

House. 1941. pp. 62-107.

[4] Aristotle. Posterior Analytics. Trans.

by G. R. G. Mure. In Aristotle. The Basic

Works of Aristotle. Ed. by R. McKeon.

Random House. 1941. pp. 108-186.

[5] Tarski A. Introduction to Logic. Trans.

by O. Helmer. Dover. 1941.

[6] Hempel C. Studies in the logic of

explanation. In Hempel C. Aspects of

Scientific Explanation and Other Essays in

the Philosophy of Science. Free Press.

1965. pp. 245-290.

[7] Quine WVO. Philosophy of Logic.

Second Edition. Harvard. 1986.

[8] Chang CC and Keisler HJ. Model

Theory. North-Holland. 1990.

[9] Russell B and Whitehead AN.

Principia Mathematica. Volume I (1910).

Merchant Books. 2009.

[10] Frege G. Begriffsschrift, eine der

arithmetischen nachgebildete Formelsprache

des reinen Denkens. Halle. 1879.

Translated in van Heijenoort J.

Begriffsschrift, a formula language, modeled

upon that of arithmetic, for pure thought.

From Frege to Gödel: A Source Book in

Mathematical Logic, 1879-1931. Harvard.

1967. pp. 3-82.

[11] Horn A. On sentences which are true

of direct unions of algebras. Journal of

Symbolic Logic 16 (1951), 14–21.

[12] Church A. Introduction to

Mathematical Logic. Volume I. Princeton.

1956.

[13] Birkhoff G and von Neumann J. The

logic of quantum mechanics. Annals of

Mathematics 37 (1936), 823-843.

[14] Kant I. Kant's Introduction to Logic

(1800). Trans. by Abbott TK. Greenwood

Press. 1963.

[15] Cohen MR and Nagel E. An

Introduction to Logic and Scientific Method.

Harcourt, Brace, and Company. 1934.

80 Int'l Conf. Foundations of Computer Science | FCS'11 |

http://www.cs.unm.edu/~mccune/prover9/

An Automated Derivation of Łukasiewicz's CN

from the Sentential Calculus of Principia

Mathematica

Jack K. Horner

P. O. Box 266

Los Alamos, New Mexico 87544 USA

Abstract

The optimization of computing systems that

incorporate Boolean-circuit-based computing

equipment must be expressed at some level in

Boolean behaviors and operations. Boolean

behaviors and operations are part of a larger

family of logics -- the logic of sentences, also

known as the "sentential calculus". Two logics

are implicationally equivalent if the axioms and

inference rules of each imply the axioms of the

other. Characterizing the inferential

equivalences of various formulations of the

sentential calculi is thus foundational to the

optimization of Boolean-based computing

systems. Two logics are implicationally

equivalent if the axioms and inference rules of

each imply the axioms of the other.

Characterizing the inferential equivalences of

various formulations of the sentential calculi is

foundational to the study of logic. Using an

automated deduction system, I show that

Łukasiewicz's CN can be derived from the

sentential calculus of the Principia Mathematica;

the proof appears to be novel.

Keywords: propositional logic, automated

deduction, sentential calculus

1.0 Introduction

 The optimization of computing systems

that incorporate Boolean-circuit-based

computing equipment must be expressed at

some level in Boolean behaviors and

operations. Boolean behaviors and

operations are part of a larger family of

logics -- the logic of sentences, also known

as the "sentential calculus". Two logics are

implicationally equivalent if the axioms and

inference rules of each imply the axioms of

the other. Characterizing the inferential

equivalences of various formulations of the

sentential calculi is thus foundational to the

optimization of Boolean computing systems.

Two logics are implicationally equivalent if

the axioms and inference rules of each imply

the axioms of the other. Characterizing the

inferential equivalences of various

formulations of the sentential calculi is

foundational to the study of logic.

Characterizing equivalences of various

formulations of the sentential calculi is

foundational to the optimization of Boolean-

oriented computing systems ([1],[3]-[7],[9]-

[10],[12]-[15]).

 "CN", the formulation of the sentential

calculus in [1], is among the most austere:

its vocabulary contains only two logical

connectives (C, and N) and sentence

variables (p, q, r, ...). It has two inference

rules (condensed detachment and

substitution), and three axioms.

 In CN, any expression of the form Cxy or

Nz, where x, y, and z are sentences, is a

sentence. Cpq is interpreted as "sentence p

implies sentence q"; Np is interpreted as

"not-p". C and N are right-associative; N

has higher associative precedence than C.

For example,

 CCqrCpNr

Int'l Conf. Foundations of Computer Science | FCS'11 | 81

translates to the more common "arrow-and-

parenthesis" notation as

 (q r) (p ~r)

where "" designates "implies" and "~"

designates "not".

 The axioms of CN in [1] are:

 CN1. CCpqCCqrCpr

 CN2. CCNppp

 CN3. CpCNpq

Cast in CN notation, the axioms of the

sentential calculus of Principia Mathematica

(PM, [9]) are

 CN73. CqApq

 CN74. CAppp

 CN75. CApqAqp

 CN76. CCqrCApqApr

 CN78. CApAqrAqApr

where Apq ≡ CNpq. The main result of this

paper is that the axioms of [9] implies the

axioms of [1].

2.0 Method

 To show that the axioms of [9] imply the

axioms of [1], the prover9 ([2]) script shown

in Figures 1 was executed under on a Dell

Inspiron 545 with an Intel Core2 Quad CPU

Q8200 @ 2.33 GHz and 8.00 GB RAM,

running under the Windows Vista Home

Premium (SP2)/Cygwin operating

environment.

__

set(hyper_resolution).

formulas(usable).

% put axioms and previously proven theorems here.

P (i(i(x, i(y,z)), i(y, i(x,z)))) # label("PM 2.04").

P (i(i(y,z), i(i(x,y), i(x,z)))) # label("PM 2.05").

P (i(-x, i(x,y))) # label("PM 2.21").

P (i(y, i(-x,y))) # label("CN73").

P (i(i(-x,x), x)) # label("CN74").

P (i(i(-x,y), i(-y,x))) # label("CN75").

P (i(i(y,z), i(i(-x,y), i(-x,z)))) # label("CN76").

P (i(i(-x, i(-y,z)), i(-y, i(-x,z)))) # label("CN78").

end_of_list.

formulas(sos).

% put inference rules here.

-P(i(x,y)) | -P(x) | P(y) # label("InfConDet").

end_of_list.

formulas(goals).

% put item(s) to be proven here.

P(i(i(x,y), i(i(y,z), i(x,z)))) # label("AxCN1").

P(i(i(-x,x), x)) # label("AxCN2").

P(i(x, i(-x,y))) # label("AxCN3").

end_of_list.

Figure 1. The prover9 script (in Horn clause ([11]) form), used to show that the axioms of PM imply

the axioms of CN. The implementation of condensed detachment is the formula in the "sos" list;

82 Int'l Conf. Foundations of Computer Science | FCS'11 |

substitution is derived from prover9's hyperresolution rule (introduced in the "set" command at the

top of the script). PM Theorems 2.04, 2.05 and 2.21 were added to the axioms of PM to facilitate the

derivation. Details of prover9's syntax and semantics can be found in [2].

3.0 Results

Figure 2 shows that PM implies CN.

============================== PROOF =================================

% Proof 1 at 0.01 (+ 0.05) seconds: "AxCN2".

% Length of proof is 4.

% Level of proof is 2.

% Maximum clause weight is 7.

% Given clauses 0.

2 P(i(i(-x,x),x)) # label("AxCN2") # label(non_clause) # label(goal).

[goal].

8 P(i(i(-x,x),x)) # label("CN74"). [assumption].

14 -P(i(i(-c4,c4),c4)) # label("AxCN2") # answer("AxCN2"). [deny(2)].

15 $F # answer("AxCN2"). [resolve(14,a,8,a)].

============================== end of proof ==========================

============================== PROOF =================================

% Proof 2 at 0.01 (+ 0.05) seconds: "AxCN3".

% Length of proof is 7.

% Level of proof is 2.

% Maximum clause weight is 8.

% Given clauses 1.

3 P(i(x,i(-x,y))) # label("AxCN3") # label(non_clause) # label(goal).

[goal].

4 P(i(i(x,i(y,z)),i(y,i(x,z)))) # label("PM 2.04"). [assumption].

6 P(i(-x,i(x,y))) # label("PM 2.21"). [assumption].

12 -P(i(x,y)) | -P(x) | P(y) # label("InfConDet"). [assumption].

16 -P(i(c5,i(-c5,c6))) # label("AxCN3") # answer("AxCN3"). [deny(3)].

50 P(i(x,i(-x,y))). [hyper(12,a,4,a,b,6,a)].

51 $F # answer("AxCN3"). [resolve(50,a,16,a)].

============================== end of proof ==========================

============================== PROOF =================================

% Proof 3 at 0.01 (+ 0.05) seconds: "AxCN1".

% Length of proof is 7.

% Level of proof is 2.

% Maximum clause weight is 12.

% Given clauses 1.

Int'l Conf. Foundations of Computer Science | FCS'11 | 83

1 P(i(i(x,y),i(i(y,z),i(x,z)))) # label("AxCN1") # label(non_clause) #

label(goal). [goal].

4 P(i(i(x,i(y,z)),i(y,i(x,z)))) # label("PM 2.04"). [assumption].

5 P(i(i(x,y),i(i(z,x),i(z,y)))) # label("PM 2.05"). [assumption].

12 -P(i(x,y)) | -P(x) | P(y) # label("InfConDet"). [assumption].

13 -P(i(i(c1,c2),i(i(c2,c3),i(c1,c3)))) # label("AxCN1") #

answer("AxCN1"). [deny(1)].

52 P(i(i(x,y),i(i(y,z),i(x,z)))). [hyper(12,a,4,a,b,5,a)].

53 $F # answer("AxCN1"). [resolve(52,a,13,a)].

============================== end of proof ==========================

Figure 2. Summary of a prover9 ([2]) proof showing that PM ([9]) implies CN ([1]).

__

The total time to complete the proofs shown in Figure 2 was ~0.2 seconds on the platform

described in Section 2.0.

4.0 Conclusions and discussion

 Section 3 demonstrates that PM implies

CN. The proof in Figure 2 appears to be

novel.

A companion paper ([16]) proves CN

implies PM. These relationships both

inform and constrain optimization strategies

on Boolean-circuit-based computing

systems.

5.0 References

[1] Łukasiewicz J. Elements of

Mathematical Logic. Second Edition

(1958). Trans. by Wojtasiewicz O.

Pergamon Press. 1963.

[2] McCune WW. prover9 and mace4.

http://www.cs.unm.edu/~mccune/prover9/.

2009.

[3] Aristotle. Prior Analytics. Trans. by A.

J. Jenkinson. In Aristotle. The Basic Works

of Aristotle. Ed. by R. McKeon. Random

House. 1941. pp. 62-107.

[4] Aristotle. Posterior Analytics. Trans.

by G. R. G. Mure. In Aristotle. The Basic

Works of Aristotle. Ed. by R. McKeon.

Random House. 1941. pp. 108-186.

[5] Tarski A. Introduction to Logic. Trans.

by O. Helmer. Dover. 1941.

[6] Hempel C. Studies in the logic of

explanation. In Hempel C. Aspects of

Scientific Explanation and Other Essays in

the Philosophy of Science. Free Press.

1965. pp. 245-290.

[7] Quine WVO. Philosophy of Logic.

Second Edition. Harvard. 1986.

[8] Chang CC and Keisler HJ. Model

Theory. North-Holland. 1990.

[9] Russell B and Whitehead AN.

Principia Mathematica. Volume I (1910).

Merchant Books. 2009.

[10] Frege G. Begriffsschrift, eine der

arithmetischen nachgebildete Formelsprache

des reinen Denkens. Halle. 1879.

Translated in van Heijenoort J.

Begriffsschrift, a formula language, modeled

upon that of arithmetic, for pure thought.

From Frege to Gödel: A Source Book in

Mathematical Logic, 1879-1931. Harvard.

1967. pp. 3-82.

84 Int'l Conf. Foundations of Computer Science | FCS'11 |

http://www.cs.unm.edu/~mccune/prover9/

[11] Horn A. On sentences which are true

of direct unions of algebras. Journal of

Symbolic Logic 16 (1951), 14–21.

[12] Church A. Introduction to

Mathematical Logic. Volume I. Princeton.

1956.

[13] Birkhoff G and von Neumann J. The

logic of quantum mechanics. Annals of

Mathematics 37 (1936), 823-843.

[14] Kant I. Kant's Introduction to Logic

(1800). Trans. by Abbott TK. Greenwood

Press. 1963.

[15] Cohen MR and Nagel E. An

Introduction to Logic and Scientific Method.

Harcourt, Brace, and Company. 1934.

[16] Horner JK. An automated derivation

of the sentential calculus of Principia

Mathematica from Łukasiewicz's CN.

Proceedings of the 2011 International

Conference on Artificial Intelligence.

CSREA Press. Forthcoming.

Int'l Conf. Foundations of Computer Science | FCS'11 | 85

An Automated Derivation of the Sentential

Calculus of Principia Mathematica from

Łukasiewicz's CN

Jack K. Horner

P. O. Box 266

Los Alamos, New Mexico 87544 USA

Abstract

The optimization of computing systems hosted

on Boolean-circuit-based computing equipment

must be expressed at some level in Boolean

behaviors and operations. Boolean behaviors

and operations are part of a larger family of

logics -- the logic of sentences, also known as the

"sentential calculus". Two logics are

implicationally equivalent if the axioms and

inference rules of each imply the axioms of the

other. Characterizing the inferential

equivalences of various formulations of the

sentential calculi is thus foundational to the

optimization of Boolean computing systems.

Using an automated deduction system, I show

that the sentential calculus of the Principia

Mathematica (PM) can be derived from

Łukasiewicz's CN; the proof appears to be novel.

The proofs variously demonstrate, furthermore,

a natural proving order.

Keywords: propositional logic, automated

deduction, sentential calculus

1.0 Introduction

 The optimization of computing systems

hosted on Boolean-circuit-based computing

equipment must be expressed at some level

in Boolean behaviors and operations.

Boolean behaviors and operations are part of

a larger family of logics -- the logic of

sentences, also known as the "sentential

calculus". Two logics are implicationally

equivalent if the axioms and inference rules

of each imply the axioms of the other.

Characterizing the inferential equivalences

of various formulations of the sentential

calculi is thus foundational to the

optimization of Boolean-oriented computing

systems ([1],[3]-[7],[9]-[10],[12]-[15]).

 "CN", the formulation of the sentential

calculus in [1], is among the most austere:

its vocabulary contains only two logical

connectives (C, and N) and sentence

variables (p, q, r, ...). It has two inference

rules (condensed detachment and

substitution), and three axioms.

 In CN, any expression of the form Cxy or

Nz, where x, y, and z are sentences, is a

sentence. Cpq is interpreted as "sentence p

implies sentence q"; Np is interpreted as

"not-p". C and N are right-associative; N

has higher associative precedence than C.

For example,

 CCqrCpNr

translates to the more common "arrow-and-

parenthesis" notation as

 (q r) (p ~r)

where "" designates "implies" and "~"

designates "not".

 The axioms of CN in [1] are:

 CN1. CCpqCCqrCpr

 CN2. CCNppp

 CN3. CpCNpq

86 Int'l Conf. Foundations of Computer Science | FCS'11 |

Cast in CN notation, the axioms of the

sentential calculus of Principia Mathematica

(PM, [9]) are

 CN73. CqApq

 CN74. CAppp

 CN75. CApqAqp

 CN76. CCqrCApqApr

 CN78. CApAqrAqApr

The main result of this paper is that [1]

implies [9].

2.0 Method

To show that [1] implies [10], the prover9

([2]) script shown in Figures 1 was executed

under on a Dell Inspiron 545 with an Intel

Core2 Quad CPU Q8200 @ 2.33 GHz and

8.00 GB RAM, running under the Windows

Vista Home Premium (SP2)/Cygwin

operating environment.

__

set(hyper_resolution).

formulas(usable).

% put axioms and previously proven theorems here.

P (i(i(u, i(y, i(x,z))), i(i(x,u), i(y, i(x,z))))) # label("CN34").

P(i(i(x,y), i(i(y,z), i(x,z)))) # label("AxCN1").

P(i(i(-x,x), x)) # label("AxCN2").

P(i(x, i(-x,y))) # label("AxCN3").

end_of_list.

formulas(sos).

% put inference rules here.

-P(i(x,y)) | -P(x) | P(y) # label("InfConDet").

end_of_list.

formulas(goals).

% put item(s) to be proven here.

P (i(y, i(-x,y))) # label("CN73").

P (i(i(-x,x), x)) # label("CN74").

P (i(i(-x,y), i(-y,x))) # label("CN75").

P (i(i(y,z), i(i(-x,y), i(-x,z)))) # label("CN76").

P (i(i(-x, i(-y,z)), i(-y, i(-x,z)))) # label("CN78").

end_of_list.

Figure 1. The prover9 script used to show that CN implies PM. The implementation of condensed

detachment is the formula in the "sos" list; substitution is derived from prover9's hyperresolution

rule (introduced in the "set" command at the top of the script). CN34, a theorem of [1], has been

added to the axioms of [1] to facilitate the derivation. Details of prover9's syntax and semantics can

be found in [2].

__

3.0 Results

Figure 2 shows that CN implies PM.

============================== PROOF =================================

% Proof 1 at 0.03 (+ 0.01) seconds: "CN74".

2 P(i(i(-x,x),x)) # label("CN74") # label(non_clause) # label(goal). [goal].

8 P(i(i(-x,x),x)) # label("AxCN2"). [assumption].

12 -P(i(i(-c3,c3),c3)) # label("CN74") # answer("CN74"). [deny(2)].

13 $F # answer("CN74"). [resolve(12,a,8,a)].

============================== end of proof ==========================

Int'l Conf. Foundations of Computer Science | FCS'11 | 87

============================== PROOF =================================

% Proof 2 at 0.80 (+ 0.01) seconds: "CN75".

3 P(i(i(-x,y),i(-y,x))) # label("CN75") # label(non_clause) # label(goal). [goal].

6 P(i(i(x,i(y,i(z,u))),i(i(z,x),i(y,i(z,u))))) # label("CN34"). [assumption].

7 P(i(i(x,y),i(i(y,z),i(x,z)))) # label("AxCN1"). [assumption].

8 P(i(i(-x,x),x)) # label("AxCN2"). [assumption].

9 P(i(x,i(-x,y))) # label("AxCN3"). [assumption].

10 -P(i(x,y)) | -P(x) | P(y) # label("InfConDet"). [assumption].

14 -P(i(i(-c4,c5),i(-c5,c4))) # label("CN75") # answer("CN75"). [deny(3)].

21 P(i(i(i(-x,y),z),i(x,z))). [hyper(10,a,7,a,b,9,a)].

22 P(i(i(x,y),i(i(-x,x),y))). [hyper(10,a,7,a,b,8,a)].

23 P(i(i(i(i(x,y),i(z,y)),u),i(i(z,x),u))). [hyper(10,a,7,a,b,7,a)].

25 P(i(i(x,y),i(-y,i(x,z)))). [hyper(10,a,6,a,b,9,a)].

39 P(i(x,x)). [hyper(10,a,21,a,b,8,a)].

42 P(i(-i(x,x),y)). [hyper(10,a,9,a,b,39,a)].

45 P(i(i(x,y),i(-i(z,z),y))). [hyper(10,a,7,a,b,42,a)].

95 P(i(i(i(-x,i(y,z)),u),i(i(y,x),u))). [hyper(10,a,7,a,b,25,a)].

234 P(i(x,i(-i(y,y),z))). [hyper(10,a,21,a,b,45,a)].

241 P(i(i(i(-i(x,x),y),z),i(u,z))). [hyper(10,a,7,a,b,234,a)].

3643 P(i(x,i(y,y))). [hyper(10,a,241,a,b,8,a)].

3662 P(i(i(i(x,x),y),i(z,y))). [hyper(10,a,7,a,b,3643,a)].

3720 P(i(i(x,y),i(z,i(x,y)))). [hyper(10,a,23,a,b,3662,a)].

3738 P(i(x,i(i(-y,y),y))). [hyper(10,a,3662,a,b,22,a)].

3882 P(i(i(x,i(x,y)),i(z,i(x,y)))). [hyper(10,a,6,a,b,3720,a)].

5584 P(i(x,i(i(y,i(y,z)),i(y,z)))). [hyper(10,a,3882,a,b,3882,a)].

6335 P(i(i(x,i(x,y)),i(x,y))). [hyper(10,a,5584,a,b,5584,a)].

6383 P(i(i(i(x,y),x),i(i(x,y),y))). [hyper(10,a,23,a,b,6335,a)].

6752 P(i(i(i(i(-x,x),x),y),y)). [hyper(10,a,6383,a,b,3738,a)].

6796 P(i(i(x,i(-y,y)),i(x,y))). [hyper(10,a,23,a,b,6752,a)].

7345 P(i(i(-x,y),i(-y,x))). [hyper(10,a,95,a,b,6796,a)].

7346 $F # answer("CN75"). [resolve(7345,a,14,a)].

============================== end of proof ==========================

============================== PROOF =================================

% Proof 3 at 1.04 (+ 0.01) seconds: "CN73".

1 P(i(y,i(-x,y))) # label("CN73") # label(non_clause) # label(goal). [goal].

6 P(i(i(x,i(y,i(z,u))),i(i(z,x),i(y,i(z,u))))) # label("CN34"). [assumption].

7 P(i(i(x,y),i(i(y,z),i(x,z)))) # label("AxCN1"). [assumption].

8 P(i(i(-x,x),x)) # label("AxCN2"). [assumption].

9 P(i(x,i(-x,y))) # label("AxCN3"). [assumption].

10 -P(i(x,y)) | -P(x) | P(y) # label("InfConDet"). [assumption].

11 -P(i(c1,i(-c2,c1))) # label("CN73") # answer("CN73"). [deny(1)].

21 P(i(i(i(-x,y),z),i(x,z))). [hyper(10,a,7,a,b,9,a)].

22 P(i(i(x,y),i(i(-x,x),y))). [hyper(10,a,7,a,b,8,a)].

23 P(i(i(i(i(x,y),i(z,y)),u),i(i(z,x),u))). [hyper(10,a,7,a,b,7,a)].

25 P(i(i(x,y),i(-y,i(x,z)))). [hyper(10,a,6,a,b,9,a)].

39 P(i(x,x)). [hyper(10,a,21,a,b,8,a)].

42 P(i(-i(x,x),y)). [hyper(10,a,9,a,b,39,a)].

45 P(i(i(x,y),i(-i(z,z),y))). [hyper(10,a,7,a,b,42,a)].

95 P(i(i(i(-x,i(y,z)),u),i(i(y,x),u))). [hyper(10,a,7,a,b,25,a)].

234 P(i(x,i(-i(y,y),z))). [hyper(10,a,21,a,b,45,a)].

241 P(i(i(i(-i(x,x),y),z),i(u,z))). [hyper(10,a,7,a,b,234,a)].

3643 P(i(x,i(y,y))). [hyper(10,a,241,a,b,8,a)].

3662 P(i(i(i(x,x),y),i(z,y))). [hyper(10,a,7,a,b,3643,a)].

3720 P(i(i(x,y),i(z,i(x,y)))). [hyper(10,a,23,a,b,3662,a)].

3738 P(i(x,i(i(-y,y),y))). [hyper(10,a,3662,a,b,22,a)].

3882 P(i(i(x,i(x,y)),i(z,i(x,y)))). [hyper(10,a,6,a,b,3720,a)].

5584 P(i(x,i(i(y,i(y,z)),i(y,z)))). [hyper(10,a,3882,a,b,3882,a)].

6335 P(i(i(x,i(x,y)),i(x,y))). [hyper(10,a,5584,a,b,5584,a)].

6383 P(i(i(i(x,y),x),i(i(x,y),y))). [hyper(10,a,23,a,b,6335,a)].

88 Int'l Conf. Foundations of Computer Science | FCS'11 |

6752 P(i(i(i(i(-x,x),x),y),y)). [hyper(10,a,6383,a,b,3738,a)].

6796 P(i(i(x,i(-y,y)),i(x,y))). [hyper(10,a,23,a,b,6752,a)].

7345 P(i(i(-x,y),i(-y,x))). [hyper(10,a,95,a,b,6796,a)].

9633 P(i(x,i(-y,x))). [hyper(10,a,21,a,b,7345,a)].

9634 $F # answer("CN73"). [resolve(9633,a,11,a)].

============================== end of proof ==========================

============================== PROOF =================================

% Proof 4 at 2.65 (+ 0.03) seconds: "CN78".

5 P(i(i(-x,i(-y,z)),i(-y,i(-x,z)))) # label("CN78") # label(non_clause) # label(goal).

[goal].

6 P(i(i(x,i(y,i(z,u))),i(i(z,x),i(y,i(z,u))))) # label("CN34"). [assumption].

7 P(i(i(x,y),i(i(y,z),i(x,z)))) # label("AxCN1"). [assumption].

8 P(i(i(-x,x),x)) # label("AxCN2"). [assumption].

9 P(i(x,i(-x,y))) # label("AxCN3"). [assumption].

10 -P(i(x,y)) | -P(x) | P(y) # label("InfConDet"). [assumption].

16 -P(i(i(-c9,i(-c10,c11)),i(-c10,i(-c9,c11)))) # label("CN78") # answer("CN78").

[deny(5)].

21 P(i(i(i(-x,y),z),i(x,z))). [hyper(10,a,7,a,b,9,a)].

22 P(i(i(x,y),i(i(-x,x),y))). [hyper(10,a,7,a,b,8,a)].

23 P(i(i(i(i(x,y),i(z,y)),u),i(i(z,x),u))). [hyper(10,a,7,a,b,7,a)].

25 P(i(i(x,y),i(-y,i(x,z)))). [hyper(10,a,6,a,b,9,a)].

39 P(i(x,x)). [hyper(10,a,21,a,b,8,a)].

42 P(i(-i(x,x),y)). [hyper(10,a,9,a,b,39,a)].

45 P(i(i(x,y),i(-i(z,z),y))). [hyper(10,a,7,a,b,42,a)].

95 P(i(i(i(-x,i(y,z)),u),i(i(y,x),u))). [hyper(10,a,7,a,b,25,a)].

100 P(i(-x,i(x,y))). [hyper(10,a,25,a,b,39,a)].

116 P(i(i(i(x,y),z),i(-x,z))). [hyper(10,a,7,a,b,100,a)].

145 P(i(i(x,i(y,z)),i(i(u,y),i(x,i(u,z))))). [hyper(10,a,23,a,b,23,a)].

234 P(i(x,i(-i(y,y),z))). [hyper(10,a,21,a,b,45,a)].

241 P(i(i(i(-i(x,x),y),z),i(u,z))). [hyper(10,a,7,a,b,234,a)].

342 P(i(--x,x)). [hyper(10,a,116,a,b,8,a)].

349 P(i(i(x,y),i(--x,y))). [hyper(10,a,7,a,b,342,a)].

406 P(i(x,i(---x,y))). [hyper(10,a,21,a,b,349,a)].

3643 P(i(x,i(y,y))). [hyper(10,a,241,a,b,8,a)].

3662 P(i(i(i(x,x),y),i(z,y))). [hyper(10,a,7,a,b,3643,a)].

3720 P(i(i(x,y),i(z,i(x,y)))). [hyper(10,a,23,a,b,3662,a)].

3738 P(i(x,i(i(-y,y),y))). [hyper(10,a,3662,a,b,22,a)].

3882 P(i(i(x,i(x,y)),i(z,i(x,y)))). [hyper(10,a,6,a,b,3720,a)].

5584 P(i(x,i(i(y,i(y,z)),i(y,z)))). [hyper(10,a,3882,a,b,3882,a)].

6335 P(i(i(x,i(x,y)),i(x,y))). [hyper(10,a,5584,a,b,5584,a)].

6383 P(i(i(i(x,y),x),i(i(x,y),y))). [hyper(10,a,23,a,b,6335,a)].

6752 P(i(i(i(i(-x,x),x),y),y)). [hyper(10,a,6383,a,b,3738,a)].

6796 P(i(i(x,i(-y,y)),i(x,y))). [hyper(10,a,23,a,b,6752,a)].

6911 P(i(i(-x,y),i(i(y,x),x))). [hyper(10,a,23,a,b,6796,a)].

6944 P(i(x,--x)). [hyper(10,a,6796,a,b,406,a)].

6959 P(i(x,i(y,--y))). [hyper(10,a,3720,a,b,6944,a)].

7345 P(i(i(-x,y),i(-y,x))). [hyper(10,a,95,a,b,6796,a)].

8122 P(i(i(i(x,--x),y),y)). [hyper(10,a,6383,a,b,6959,a)].

9633 P(i(x,i(-y,x))). [hyper(10,a,21,a,b,7345,a)].

9707 P(i(i(x,-y),i(z,i(x,z)))). [hyper(10,a,145,a,b,9633,a)].

18826 P(i(x,i(y,x))). [hyper(10,a,8122,a,b,9707,a)].

18906 P(i(i(i(x,y),z),i(y,z))). [hyper(10,a,7,a,b,18826,a)].

20404 P(i(x,i(i(x,y),y))). [hyper(10,a,18906,a,b,6911,a)].

20871 P(i(i(x,i(y,z)),i(y,i(x,z)))). [hyper(10,a,145,a,b,20404,a)].

20872 $F # answer("CN78"). [resolve(20871,a,16,a)].

============================== end of proof ==========================

============================== PROOF =================================

% Proof 5 at 7.67 (+ 0.31) seconds: "CN76".

4 P(i(i(y,z),i(i(-x,y),i(-x,z)))) # label("CN76") # label(non_clause) # label(goal).

[goal].

6 P(i(i(x,i(y,i(z,u))),i(i(z,x),i(y,i(z,u))))) # label("CN34"). [assumption].

Int'l Conf. Foundations of Computer Science | FCS'11 | 89

7 P(i(i(x,y),i(i(y,z),i(x,z)))) # label("AxCN1"). [assumption].

8 P(i(i(-x,x),x)) # label("AxCN2"). [assumption].

9 P(i(x,i(-x,y))) # label("AxCN3"). [assumption].

10 -P(i(x,y)) | -P(x) | P(y) # label("InfConDet"). [assumption].

15 -P(i(i(c6,c7),i(i(-c8,c6),i(-c8,c7)))) # label("CN76") # answer("CN76"). [deny(4)].

21 P(i(i(i(-x,y),z),i(x,z))). [hyper(10,a,7,a,b,9,a)].

22 P(i(i(x,y),i(i(-x,x),y))). [hyper(10,a,7,a,b,8,a)].

23 P(i(i(i(i(x,y),i(z,y)),u),i(i(z,x),u))). [hyper(10,a,7,a,b,7,a)].

25 P(i(i(x,y),i(-y,i(x,z)))). [hyper(10,a,6,a,b,9,a)].

39 P(i(x,x)). [hyper(10,a,21,a,b,8,a)].

42 P(i(-i(x,x),y)). [hyper(10,a,9,a,b,39,a)].

45 P(i(i(x,y),i(-i(z,z),y))). [hyper(10,a,7,a,b,42,a)].

95 P(i(i(i(-x,i(y,z)),u),i(i(y,x),u))). [hyper(10,a,7,a,b,25,a)].

100 P(i(-x,i(x,y))). [hyper(10,a,25,a,b,39,a)].

116 P(i(i(i(x,y),z),i(-x,z))). [hyper(10,a,7,a,b,100,a)].

145 P(i(i(x,i(y,z)),i(i(u,y),i(x,i(u,z))))). [hyper(10,a,23,a,b,23,a)].

234 P(i(x,i(-i(y,y),z))). [hyper(10,a,21,a,b,45,a)].

241 P(i(i(i(-i(x,x),y),z),i(u,z))). [hyper(10,a,7,a,b,234,a)].

342 P(i(--x,x)). [hyper(10,a,116,a,b,8,a)].

349 P(i(i(x,y),i(--x,y))). [hyper(10,a,7,a,b,342,a)].

406 P(i(x,i(---x,y))). [hyper(10,a,21,a,b,349,a)].

3643 P(i(x,i(y,y))). [hyper(10,a,241,a,b,8,a)].

3662 P(i(i(i(x,x),y),i(z,y))). [hyper(10,a,7,a,b,3643,a)].

3720 P(i(i(x,y),i(z,i(x,y)))). [hyper(10,a,23,a,b,3662,a)].

3738 P(i(x,i(i(-y,y),y))). [hyper(10,a,3662,a,b,22,a)].

3882 P(i(i(x,i(x,y)),i(z,i(x,y)))). [hyper(10,a,6,a,b,3720,a)].

5584 P(i(x,i(i(y,i(y,z)),i(y,z)))). [hyper(10,a,3882,a,b,3882,a)].

6335 P(i(i(x,i(x,y)),i(x,y))). [hyper(10,a,5584,a,b,5584,a)].

6383 P(i(i(i(x,y),x),i(i(x,y),y))). [hyper(10,a,23,a,b,6335,a)].

6752 P(i(i(i(i(-x,x),x),y),y)). [hyper(10,a,6383,a,b,3738,a)].

6796 P(i(i(x,i(-y,y)),i(x,y))). [hyper(10,a,23,a,b,6752,a)].

6911 P(i(i(-x,y),i(i(y,x),x))). [hyper(10,a,23,a,b,6796,a)].

6944 P(i(x,--x)). [hyper(10,a,6796,a,b,406,a)].

6959 P(i(x,i(y,--y))). [hyper(10,a,3720,a,b,6944,a)].

7345 P(i(i(-x,y),i(-y,x))). [hyper(10,a,95,a,b,6796,a)].

8122 P(i(i(i(x,--x),y),y)). [hyper(10,a,6383,a,b,6959,a)].

9633 P(i(x,i(-y,x))). [hyper(10,a,21,a,b,7345,a)].

9707 P(i(i(x,-y),i(z,i(x,z)))). [hyper(10,a,145,a,b,9633,a)].

18826 P(i(x,i(y,x))). [hyper(10,a,8122,a,b,9707,a)].

18906 P(i(i(i(x,y),z),i(y,z))). [hyper(10,a,7,a,b,18826,a)].

20404 P(i(x,i(i(x,y),y))). [hyper(10,a,18906,a,b,6911,a)].

20871 P(i(i(x,i(y,z)),i(y,i(x,z)))). [hyper(10,a,145,a,b,20404,a)].

44253 P(i(i(x,y),i(i(z,x),i(z,y)))). [hyper(10,a,20871,a,b,7,a)].

44254 $F # answer("CN76"). [resolve(44253,a,15,a)].

============================== end of proof ==========================

Figure 2. Summary of a prover9 ([2]) proof showing that CN ([1]) implies PM ([9]).

__

The total time to complete the proofs shown in Figure 2 was ~12 seconds on the platform

described in Section 2.0.

4.0 Conclusions and discussion

 Section 3 demonstrates that CN implies

PM. A companion paper ([16]) proves PM

implies CN. The proof in Figure 2 appears

to be novel.

 The proof of CN74 is trivial because

CN74 is identical to CN2.

 There are some interesting relationships

among four of the five axioms of PM. In

particular, Lines 21-7345 of the proof of

CN75 are a subproof of the proof of CN73;

this subproof can therefore be regarded as a

proof of a set of lemmas for the proof of

CN73. Similarly, Lines 21-20871 of the

proof of CN78 are a subproof of the proof of

CN78; his subproof can therefore be

regarded as the proof of a set of lemmas for

90 Int'l Conf. Foundations of Computer Science | FCS'11 |

the proof of CN78. Lines 21-95 of CN75

are a subproof of CN75, CN73, CN76, and

CN78; this subproof can therefore be

regarded as the proof of a set of lemmas for

the proof of all PM axioms other than CN74.

These relationships both inform and

constrain optimization strategies on

Boolean-circuit-bases computing systems.

5.0 References

[1] Łukasiewicz J. Elements of

Mathematical Logic. Second Edition

(1958). Trans. by Wojtasiewicz O.

Pergamon Press. 1963.

[2] McCune WW. prover9 and mace4.

http://www.cs.unm.edu/~mccune/prover9/.

2009.

[3] Aristotle. Prior Analytics. Trans. by A.

J. Jenkinson. In Aristotle. The Basic Works

of Aristotle. Ed. by R. McKeon. Random

House. 1941. pp. 62-107.

[4] Aristotle. Posterior Analytics. Trans.

by G. R. G. Mure. In Aristotle. The Basic

Works of Aristotle. Ed. by R. McKeon.

Random House. 1941. pp. 108-186.

[5] Tarski A. Introduction to Logic. Trans.

by O. Helmer. Dover. 1941.

[6] Hempel C. Studies in the logic of

explanation. In Hempel C. Aspects of

Scientific Explanation and Other Essays in

the Philosophy of Science. Free Press.

1965. pp. 245-290.

[7] Quine WVO. Philosophy of Logic.

Second Edition. Harvard. 1986.

[8] Chang CC and Keisler HJ. Model

Theory. North-Holland. 1990.

[9] Russell B and Whitehead AN.

Principia Mathematica. Volume I (1910).

Merchant Books. 2009.

[10] Frege G. Begriffsschrift, eine der

arithmetischen nachgebildete Formelsprache

des reinen Denkens. Halle. 1879.

Translated in van Heijenoort J.

Begriffsschrift, a formula language, modeled

upon that of arithmetic, for pure thought.

From Frege to Gödel: A Source Book in

Mathematical Logic, 1879-1931. Harvard.

1967. pp. 3-82.

[11] Horn A. On sentences which are true

of direct unions of algebras. Journal of

Symbolic Logic 16 (1951), 14–21.

[12] Church A. Introduction to

Mathematical Logic. Volume I. Princeton.

1956.

[13] Birkhoff G and von Neumann J. The

logic of quantum mechanics. Annals of

Mathematics 37 (1936), 823-843.

[14] Kant I. Kant's Introduction to Logic

(1800). Trans. by Abbott TK. Greenwood

Press. 1963.

[15] Cohen MR and Nagel E. An

Introduction to Logic and Scientific Method.

Harcourt, Brace, and Company. 1934.

[16] Horner JK. An automated derivation

of the sentential calculus of Principia

Mathematica from Łukasiewicz's CN.

Proceedings of the 2011 International

Conference on Artificial Intelligence.

CSREA Press. Forthcoming.

Int'l Conf. Foundations of Computer Science | FCS'11 | 91

92 Int'l Conf. Foundations of Computer Science | FCS'11 |

SESSION

GRAPH BASED METHODS AND RELATED
ISSUES

Chair(s)

TBA

Int'l Conf. Foundations of Computer Science | FCS'11 | 93

94 Int'l Conf. Foundations of Computer Science | FCS'11 |

Graph representation of hierarchical Alvis model structure

L. Kotulski1, and M. Szpyrka1
1Department of Automatics, AGH University of Science and Technology, Kraków, Poland

Abstract— Alvis Toolkit supports the development of em-
bedded systems. A result of the toolkit use is not only an
Alvis model, but also a formal model representation in the
form of a Labelled Transition System is generated in parallel.
This allows a designer to make a formal verification of the
developed embedded system behaviour. The modularisation
concept is expressed by the hierarchical agents structure.
In the paper, we propose a graph representation of this
hierarchical structure, that supports its transformation into
a flat one (equivalent to the generated LTS model) with
linear time of computational complexity.

Keywords: Alvis, embedded system, graph representation

1. Introduction
A software for an embedded system should be verified

due to a high cost of the service of equipment, where
such a software is installed. Defining a formal model that
after the verification will be used for an automatic code
generation, is counter-intuitive for engineers without a solid
mathematical experience. Alvis [1], [2], a new language for
supporting embedded software development, allows us to
design a system but in parallel with a model an abstract
representation, using the Labelled Transition System no-
tation, is created. The basic abstraction of this language
is an agent, that communicates with its environment via
ports. Communication diagrams are the visual part of the
Alvis modelling language. They are used to represent the
structure of the system under consideration. They are a way
to point out agents that communicate one with the other.
Moreover, the diagrams allow programmers to combine sets
of agents into modules, described by an abstraction called
page, that are also represented as agents (called hierarchical
agents). Finally, the system is represented by the hierarchi-
cal communication diagram [3] being a set of pages and
the substitution function (that shows, which page structure
will substitute each hierarchical agent). Each agent in an
Alvis model is either a hierarchical agent with a substi-
tution page assigned or a simple agent, whose behaviour
is described with the Alvis Code Language. Hierarchical
structure supports the modularisation concept. However, it
is difficult to understand the behaviour of the whole system
and impossible to generate the formal model directly from
it. For this purpose, the concept of a flat representation (in
which each element of a system is described by exactly one
agent) has been introduced in [3]. The formal definition uses
the hierarchical dependency and substitution relations, what

raises a fear on the effectiveness of the proposed solutions.
In the paper the consistent graph representation of the above
problems is introduced and it is proved the polynomial
computational complexity of:
• the generation of the flat representstion,
• the execution of the synthesis (analysis) operation that

allows us to move between flat representations to
achieve a more abstract (detailed) description of the
considered embedded system.

2. Hierarchical agents structure
The key concept of Alvis is an agent that denotes any

distinguished part of the system under consideration with de-
fined identity persisting in time. An agent can communicate
with other agents through ports. Each agent port must have
a unique identifier (name) assigned, but ports of different
agents may have the same identifier assigned. Thus, each
port in a model is identified using its name and its agent
name. For simplicity, we will used the so-called dot notation
– X.p denotes the port p of the agent X .

Let us define the following symbols:
• P(X) denotes the set of ports of agent X .
• P(D) denotes the set of ports of page D.
• N (W) denotes the set of names of ports belonging to

set W and card(W) returns the number of W elements.
For example, if a diagram contains only agents X1 with

port p and X2 also with port p, then P(D) = {X1.p,X2.p},
and N (P(D)) = {p}.

Alvis provides hierarchical communication diagrams used
to describe an embedded system from the control and data
flow point of view. A hierarchical diagram enables designers
to distribute parts of a diagram across multiple subdiagrams
called pages.

Definition 1: A Page is a triple D = (Ai, Ci, σi), where:
1) Ai = {Xi

1, . . . , X
i
n} is a set of agents with subsets of

active agents Ai
A, passive agents Ai

P , and hierarchical
agents Ai

H , such that Ai = Ai
A ∪Ai

P ∪Ai
H , and Ai

A,
Ai

P , Ai
H are pairwise disjoint.

2) Ci ⊆ Pi×Pi is the communication relation, such that
∀j = 1, . . . , n

(
Pi(Xj)× Pi(Xj)

)
∩ Ci = ∅, where

Pi =
⋃

j=1,...,n Pi(Xj). Each element of the relation
Ci is called a connection or a communication chanel.

3) σi : Ai
A → {False,True} is the start function that

points out initially activated agents.
We forbid designers to connect ports of one agent (see

point 2). The start function σ, from point 3, makes delaying

Int'l Conf. Foundations of Computer Science | FCS'11 | 95

activation of some agents possible – we can make them
active later with the start statement.

Pages are combined using the so-called substitution mech-
anism. A hierarchical agent at one level can be replaced by a
page on the lower level, which usually gives a more precise
and detailed description of the subsystem represented by the
agent. Let a hierarchical agent Y be given and let joinY (Di)
denote the set of all join ports of the page Di with respect
to Y , i.e. joinY (Di) = {Xi

j .p ∈ P(Di) : N (Xi
j .p) ∈

N (P(Y))}. In other words, joinY (Di) is the set of all ports
from the page Di whose names are the same as those of the
hierarchical agent Y .

Definition 2: Let a hierarchical agent Y and a page
Di = (Ai, Ci, σi) be given. The agent Y and the page
Di satisfy the substitution requirements iff card(P(Y)) ≤
card(joinY (Di)), and (joinY (Di)× joinY (Di)) ∩ Ci = ∅

We will consider a binding function π that maps ports of
a hierarchical agent to the join ports of the corresponding
page.

An example of a communication diagram is shown in
Fig. 1. Active agents are drawn as rounded boxes while
passive ones as rectangles. Ports are drawn as circles
placed at the edges of the corresponding rounded box or
rectangle. Communication channels are drawn as lines (or
broken lines). An arrowhead points out the input port for
the particular connection. Communication channels without
arrowheads represent pairs of connections with opposite
directions. Black triangles indicate hierarhical agents.

Fig. 1
SENDER-RECEIVER SYSTEM WITH BUFFER – COMMUNICATION

DIAGRAM.

Definition 3: A hierarchical communication diagram is a
pair H = (D, γ), where:
• D = {D1, . . . , Dk} is a set of pages of the hierarchical

communication diagram, such that sets of agents Ai

(i = 1, . . . , k) are pairwise disjoint.
• γ : AH → D, where AH =

⋃
i=1,...,kAi

H , is the
substitution function, such that:

1) γ is an injection.
2) For any Xi

j ∈ AH , Xi
j and γ(Xi

j) satisfy the
requirements of the substitution.

3) Labelled directed graph G = (D, E,AH),
(where D is a set of nodes, E =
{(Di, Xi

k, D
j) : γ(Xi

k) = Dj} is a set of
edges and AH is a set of labels), called page
hierarchy graph is a tree or a forest.

We assume that a system definition starts from a page or
a set of pages, thus the number of pages must be greater than
the number of hierarchical agents. Formally pages from the
set D − γ(AH) are called primary pages, they are roots of
trees that constitute a page hierarchy graph.

Fig. 2
SENDER-RECEIVER SYSTEM – PAGE Sender_page.

Fig. 3
SENDER-RECEIVER SYSTEM – PAGE Receiver_page.

An example of the substitution pages is shown in Fig. 2
and 3. The page hierarchy graph for the readers-writers
model is shown in Fig. 4.

Fig. 4
PAGE HIERARCHY GRAPH

Let us focus on the Sender_set agent. Thus, we have:
• P(Sender_set) = {Sender_set .r_out}
• joinSender_set(Sender_page) =
{S1.r_out , S2.s_out ,
S3.s_out}

• N (P(Readers)) = {r_out} =
joinSender_set(Sender_page)

In this case, the binding function π is defined as follows:
π(Sender_set .s_out) = {S1.s_out , . . . , S3.s_out}

Following symbols are valid for hierarchical communica-
tion diagrams:
• AA =

⋃
i=1,...,kAi

A,
• AP =

⋃
i=1,...,kAi

P ,
• A = AA ∪ AP ,
• σ : AA → {False,True} and ∀i = 1, . . . , k ∀Xi

j ∈
Ai

A : σ(Xi
j) = σi(Xi

j).

96 Int'l Conf. Foundations of Computer Science | FCS'11 |

3. Graph representation
In this section we introduce the graph representation of

a system defined by a hierarchical communication diagram,
that will support effective reasoning about the system prop-
erties.

Definition 4: A labelled directed graph is a tuple G =
(V,E,Σ,Γ), where:
• V is the a of nodes.
• Σ is a set of node labels.
• Γ is a set of edge labels.
• E ⊆ V × Γ× V is a set of direct edges.
Edges in a graph are directed, and for a given edge

α = (X, a, Y) the following functions return its elements:
pred(α) = X , succ(α) = Y and lab(α) = a. An undirected
edge is considered as a pair of directed edges. For any node
X , lab(X) return its label and name(X) returns the name
associated with this node.

We use labelled directed graphs to describe the structure
of an Alvis model. We assume that each agent is represented
as a node labelled by A (agent) and a set of nodes labelled
by P (port); the node representing the agent is connected
with port(s) by edge(s) labelled by b (belongs to). Two ports
(but only belonging to different agents) can be connected by
an edge labelled by c (communication channel).

For a page Di = γ(Y) all nodes, representing agents
belonging to Ai, are connected with the node representing
Y by an edge labelled by γ; analogously, appropriate nodes
representing ports are connected by edges labelled by π.

Definition 5: A hierarchical graph G(H) representing
a given hierarchical communication diagram H = (D, γ)
is a labelled directed graph G = (V,E, {A,P}, {b, c, γ, π})
such that:
• There exists an isomorphic mapping δ : V → A∪ P .
• ∀X ∈ V such that lab(X) = P, ∃!Y ∈ V : lab(Y) =
A, (X, b, Y) ∈ E and δ(X) ∈ P(δ(Y)).

• X,Y ∈ V and (δ(X), δ(Y) ∈ C)⇒ (X, c, Y) ∈ E.
• X,Y ∈ V , γ(δ(Y)) = Di and δ(X) ∈ Ai ⇒

(X, γ, Y) ∈ E (in such a case X is said to be directly
dependent on Y and denoted by X � Y).

• X,Y ∈ V and π(δ(Y)) = δ(X)⇒ (X,π, Y) ∈ E.
Let us note that in the graph representation, the direction

in edges is opposite to the introduced in γ and π functions,
due to a possibility of representing injective functions by
edges.

Figure 5 represents the graph of the Sender-Receiver
example, assuming that the Sender_set is substituted
by Sender_page (consisting of three S agents) and
Receiver_set is substituted by Receiver_page (consisting
of two R agents).

Such a graph can be modified using transformation rules
represented graphically as productions, that consist of two
graphs L – left side graph and R – right side graph. To
apply a production P : L⇒ R in the context of a graph G,
we should perform the following steps:

A

Sender_set

P

s_out

P

b_in

A

Buffer

P

b_out

P

r_in

A

Receiver_set

b c b b c b

A

S1

A

S3

P
s_out

A

S2

P
s_out

P
s_out

π π

π

b b

b

γ

γ
γ

Sender_page

A

R1

P
r_in

A

R2

P
r_in

γπ

b
π

b γ

Receiver_page

Fig. 5
EDG GRAPH REPRESENTING A SYSTEM

P
(2)

P
(3)

P
(1)

π

c

⇒
P

(2)

P
(3)

c

Fig. 6
PRODUCTION P0

• find an occurrence of L in the graph G;
• remove from G all nodes a ∈ VL − VR, all edges α

such that succ(α) = a or pred(α) = a and all edges
α ∈ EL − ER;

• add to G all nodes a ∈ VR − VL and all edges α ∈
ER − EL.

For example, in production shown in Fig. 6, the node
indexed by (1) is removed together with edges coincident
with it and a new edge is added.

4. Hierarchy elimination
The possibility of substitution of an abstract description

of an agent by a more detailed one represented by a
submodel (subpage) is very common in a system design.
It is, however, difficult when we would like to understand
(or verify) the behaviour of the whole system, associations
among their components and so on. Thus, in this section we
introduce the flat (non-hierarchical) abstraction of a system
represented by its hierarchical communication diagram. In
this representation we will use only agents and connections
among them inherited from the hierarchical communication
diagram.

To define the global set of connections, we have to take
into account not only connections from sets Ci, but also
connections resulting from replacing hierarchical agents with
subpages. For any page Di we define a set of hierarchical

Int'l Conf. Foundations of Computer Science | FCS'11 | 97

connections CiH as follows:

CiH ={(Xj
l .p,X

i
m.q) : ∃Xj

n ∈ A
j
H∧

(Xj
l .p,X

j
n.q) ∈ Cj ∧ γ(Xj

n) = Di} ∪
{(Xi

m.q,X
j
l .p) : ∃Xj

n ∈ A
j
H∧

(Xj
n.q,X

j
l .p) ∈ C

j ∧ γ(Xj
n) = Di}

(1)

Finally, the global set of hierarchical connections CH is the
sum CH =

⋃
i=1,...,k Ci ∪ CiH .

Definition 6: For any two agents X ∈ AH and Y ∈ A,
X is said to be hierarchically dependent on Y , denoted as
X � Y , iff X = Y or ∃k :X = Y1 � . . . � Yk = Y for
some Y1, . . . , Yk ∈ A.

Definition 7: A flat representation of a communication
diagram H = (D, γ) is the triple (F , C′, σ′) such that:

1) ∀X,Y ∈ F ⊆ A : ¬(X � Y),
2) ∀X ∈ A−AH ∃Y ∈ F : Y � X ,
3) C′ = {(X.p, Y.q) ∈ CH : X,Y ∈ F},
4) σ′ = σ|AA∩F .
Theorem 1: Let F be a set of active agents The verifi-

cation if there exists C′ and σ′ such that (F , C′, σ′) is a
flat representation of a communication diagram H can be
done with linear computational complexity with respect to
the number of agents in the system (i.e. O(card(A))) and
it can be generated with linear computational complexity
with respect to the number of ports in the system(i.e.
O(card(P))).

Proof:
1) For all X ∈ F :

a) We visit nodes (marking them by mu) moving
in the direction pointed by edges labelled by γ,
until no node is pointed or the destination node
is already marked.

b) We visit nodes (marking them by md) moving in
the opposite direction to the one pointed by edges
labelled by γ, until no node can be pointed. Let
us note that while traversing in the opposite di-
rection, we are traversal the tree structure. When
we find a node that has been earlier marked, we
generate negative answer and skip the algorithm.

2) We check if there exists a node (representing an agent)
that has not been marked. If such a node is found, then
we return a negative answer. Otherwise, we verify the
set of agents F as the base for generation of the flat
graph positively.

To generate C′ we copy the graph representation of H and
denote is as CGR.

1) Next we remove the following nodes and edges:
a) nodes representing agents marked by mu,
b) nodes representing agents marked by md and all

nodes representing ports associated with them,
c) edges coincident with removed nodes.

2) For all nodes representing ports in CGR’ graph (gen-
erated in the 1 phase), we apply the production P0

represented in Fig. 6. For the node indexed as (1),
we apply the production P , if we find nodes (2) and
(3) such that they are connected in the way shown in
the left side of the production. Then, we replace this
subgraph by the one presented on the right side of the
production.
Let us note that the verification phase needs visit-
ing all agents, thus its computational complexity is
O(card(A)). The generation of the flat representation
needs visiting all ports and all agents (card(P) >
card(A)) thus the computational complexity of this
algorithm is O(card(P)).

�

PH 1

A
Y

A
X
γ ⇒

A
Y

A
X
−γ

PF 1

A
X ⇒

A
Y

A
X
−γ

PH 2

A
Y

A
X
−γ

P
pi

b

P
pi

b

π ⇒
A

Y

A
X
γ

P
pi

b

P
pi

b

−π

PF 2

A
Y

A
X
γ

P
pi

b

⇒
A

Y

A
X
γ

P
pi

b

P
pi

b

π

Fig. 7
PRODUCTIONS SUPPORTING ANALYSIS GRAPH TRANSFORMATION –

COHESION MODE

It is easy to check that the set of primary pages is a flat
representation of a system represented by a hierarchical
communication diagram.

We can move from one flat system representation to
another, a more detailed one, using the analysis operation.

Definition 8: Let H be a hierarchical communication
diagram, F = (F , C′, σ′) be a flat representation of H ,
X ∈ AH ∩ F and γ(X) = Di = (Ai, Ci, σi). Analysis of
the flat representation (F , C′, σ′) of the hierarchical diagram
H in context of X is the flat representation (F∗, C∗, σ∗)
(denoted AN(H,F , X)), such that:

1) F∗ = F − {X} ∪ Ai,
2) C∗ = {(Z.p, Z ′.q) ∈ CH : Z,Z ′ ∈ F∗},
3) σ∗ = σ|AA∩F∗ .
Theorem 2: The computational complexity of the analysis

operation is linear with respect to the number of join ports
of the analysed agent X (i.e. O(card(joinX(γ(X))))).

98 Int'l Conf. Foundations of Computer Science | FCS'11 |

Proof: The algorithm of the designation flat representation
preserves the same indexation of nodes in the hierarchical
graph G(H) and the generated flat one. Thus, for the nota-
tion simplicity, we will not differ node X in the hierarchical
graph G(H) with its copy in the F graph. While generation
of the AN(H,F , X)):

1) For every Y ∈ γ(X) we apply the productions PH 1

and PF 1 presented in Fig. 7. These productions are
performed in a cohesion mode (see [4], [5] for details),
which means that either both of them are applied
or none of them is executed. Note that because the
production PH1 changes label γ onto −γ, we can
apply these pairs of productions only card(γ(X))
times.

2) We try to apply in the same cohesion mode produc-
tions PH2 and PF2 – in this case left sides of both
productions should be matched with G(H) and F .
Note that because the production PH2 changes label
π onto −π, we can apply these pairs of productions
only card(joinX(γ(X))) times.

3) In the F graph we apply production P0 (from Fig. 6)
until the edges labelled by π are eliminated.

4) We remove node X from the graph F .
5) We exchange labels −π onto π nad −γ onto γ in the

graph G(H).
Each of the transformation rules applied to generation of

the AN(H,F , X)) is applied at most card(joinX(γ(X)))
times so the final computational complexity of this algorithm
is O(card(joinX(γ(X))).

�

Definition 9: Let H be a hierarchical communication
diagram, (F , C′, σ′) be a flat representation of H , Y ∈ F
and ∃X ∈ AH such that X � Y and γ(X) = Di =
(Ai, Ci, σi). Synthesis of the flat representation (F , C′, σ′)
of the hierarchical diagram H in context of Y is the flat
representation (F∗, C∗, σ∗) (denoted as SN(H,F , Y)) such
that:

1) F∗ = F −Ai ∪ {X},
2) C∗ = {(Z.p, Z ′.q) ∈ CH : Z,Z ′ ∈ F∗},
3) σ∗ = σ|AA∩F∗ .
Theorem 3: The computational complexity of the synthe-

sis operation is linear with respect to the number of join
ports of the considered agent X (i.e. O(card(P(γ(X)))).

Proof: Analogously as in the analysis case, for the notation
simplicity, we will not differ node X in the hierarchi-
cal graph G(H) with its copy in F graph. To generate
SN(H,F , Y)) we have to perform the following steps:

1) For a node Y , we designate the representation of a
hierarchical agent X as exactly the node that belongs
to edge (Y, γ,X) ∈ EG(H). Note that X � Y .

2) For every Y ∈ γ(X) we apply the productions PH1

and PF1 presented in Fig. 8. These productions are
performed in a cohesion mode, which means that

either both of them are applied or none of them
is executed. Note that because of the fact that the
production PH1 change a label γ onto −γ, we can
apply the pair of productions only card(γ(X)) times.

3) We try to apply in the same cohesion mode the
productions PH2 and PF2 – in this case left sides of
both productions should be matched with G(H) and
F . Note that because of the fact that the production
PH2 changes a label π onto −π, we can apply the
pair of productions only card(joinX(γ(X))) times.

4) For every edge (p, π, q) ∈ F ′ and for every edge
(r, c, q) ∈ F we apply the production PF3. The
edges, such that lab(α) = π has been added in
the previous step and their number is limited by
card(joinX(γ(X))). These edges are removed in the
PF3 production, thus PF3 can be applied no more
than card(joinX(γ(X))) times.

5) For every edge (p, π, q) ∈ F ′ and for every edge
(q, c, r) ∈ F we apply the production PF4. Analo-
gously as in the previous step, PF4 can be applied no
more than card(joinX(γ(X))) times.

6) The production PF5 removes ports belonging to nodes
Y , such that X � Y . The production can be applied
no more than card(P(γ(X))) times.

7) The production PF6 removes nodes Y , such that
X � Y . The production can be applied no more than
card(γ(X)) times.

�

PH 1

A
Y

A
X
γ ⇒

A
Y

A
X
−γ

PF 1

A
X

A
Y

⇒
A

Y

A
X
γ

PH 2

A
Y

A
X
−γ

P
pi

b

P
pi

b

π ⇒
A

Y

A
X
−γ

P
pi

b

P
pi

b

−π

PF 2

A
Y

A
X
γ

P
pi

b

⇒
A

Y

A
X
γ

P
pi

b

P
pi

b

π

P
pi

b

Fig. 8
PRODUCTIONS SUPPORTING SYNTHESIS GRAPH TRANSFORMATION –

COHESION MODE

In the next section we consider a flat representation
without hierarchical agents, such a representation is the
maximal one from the analysis point of view.

Definition 10: A flat representation (F , C′, σ′) is called

Int'l Conf. Foundations of Computer Science | FCS'11 | 99

PF 3

P
pi

P
pi

P
pi

πc ⇒
P

pi
P

pi

c

PF 4

P
pi

P
pi

P
pi

πc ⇒
P

pi
P
pi

c

Fig. 9
ASSOTIATION PORTS OF THE REST SYSTEM WITH THE PORTS OF AGENT

X

PF 5

A
X

P
pi

P
pi

b

π ⇒
A

X

P
pi

b

PF 6

A
Y

A
X
γ ⇒

A
X

Fig. 10
REMOVING AGENTS AND PORTS PAGE γ(X)

the maximal flat representation iff ∀X ∈ A ∃Y ∈ F : X �
Y .

5. Usefulness of the flat representation
Even though the main topic of the paper is connected with

graphs representation, it should underlined that a complete
Alvis model contains three layers [1]. Communication di-
agrams are used to define interconnections among agents.
Each non-hierarchical agent must be also defined in the
code layer. Such a code layer for the considered example
is presented in Fig. 11.

The behaviour of each active agent in the model under
consideration is defined using an infinite loop. Senders repeat
the following steps: 1) entering the loop, 2) preparing a new
value for the k parameter (the remainder of division k + 1
by 2) and 3) sending the current value of k via the s_out
port. Receivers repeat two steps: 1) entering the loop, 2)
collecting a value for the k parameter via the r_in port.
The only passive agent Buffer provides two procedures for
putting or getting a value from it. For more details about the
Alvis Code Language see [1] or [2].

A state of a model is represented as a sequence of
agents states. To describe the current state of an agent,
we need a tuple with four pieces of information: agent
mode (am), program counter (pc), context information list
(ci) and parameters values tuple (pv) [3]. The mode is
used to indicate whether an agent is, for example, running
or waiting for an event. The program counter points out

agent S1, S2, S3 {
k :: Int = 0;
loop {
k = rem (k + 1) 2;
out s_out k; }

}

agent R1, R2 {
k :: Int = 0;
loop { in r_in k; }

}

agent Buffer {
i :: Int = 0;
proc b_in { in b_in i; }
proc b_out { out b_out i; }

}

Fig. 11
CODE LAYER

the current or the next step to be executed. The context
information list contains additional information about the
current agent’s state, e.g. the name of the port used in
the current communication. The parameters values tuple
contains values of the agent’s parameters. The initial state
for the model under consideration is as follows:

S1: (running,1,[],(0))
S2: (running,1,[],(0))
S3: (running,1,[],(0))
R1: (running,1,[],(0))
R2: (running,1,[],(0))
Buffer: (waiting,0,[in(b_in),out(b_out)],(0))

Agents S1, S2, . . . , R2 are about executing their first step.
The agent Buffer is waiting for calling one of its procedures.

We consider behaviour of Alvis models at the level of
detail of single steps. Each step is realised in the context
of one active agent. Also procedures of passive agents are
realised in the context of active agents that called them.
The third layer of an Alvis model is called system layer.
It is the predefined layer and provides, among other things,
information about the number of processors accessible in a
considered embedded system. If more than one processor
is accessible, then some agents can execute their steps
concurrently. Suppose that the α0 system layer is considered
i.e. there is unlimited number of processors (each active
agent has access to its own processor). Moreover, assume
that executing loop and exec steps takes 1 millisecond and
executing in and out steps takes 2 milliseconds. Thus, after
executing 5 loop steps concurrently, after 1 millisecond the
considered model reaches the following state:

S1: (running,2,[],(0))
S2: (running,2,[],(0))
S3: (running,2,[],(0))
R1: (running,2,[],(0))
R2: (running,2,[],(0))

100 Int'l Conf. Foundations of Computer Science | FCS'11 |

Buffer: (waiting,0,[in(b_in),out(b_out)],(0))

Similarly, after the next 1 ms we have:

S1: (running,3,[],(1))
S2: (running,3,[],(1))
S3: (running,3,[],(1))
R1: (running,2,[sft(1)],(0))
R2: (running,2,[sft(1)],(0))
Buffer: (waiting,0,[in(b_in),out(b_out)],(0))

The stf abbreviation stands for step finish time and means
that the agents R1 and R2 need 1 ms more to finish their
current step. Such a state is called snapshot. Of course, we
can take a snapshot every 1 millisecond, but we are interested
only in these snapshots where at least one step has finished
its execution. For the sake of simplicity, states where all
agents have finished their steps are also called snapshots. The
set of all reachable snapshots and transitions among them is
represented in the form of directed graph called snapshot
reachability graph or SR-graph for short. Nodes of such
a graph represent reachable snapshots, while edges sets of
concurrently executed steps that lead from one snapshot to
another. An SR-graph is a kind of LTS graph i.e. Labelled
Transition System.

The possibility of a formal model verification makes Alvis
a formal modelling language. As it has already been said,
Alvis modelling environment creates in parallel a model of
the considered system and a labelled transition system (SR-
graph) that is its formal representation. The SR-graph can
be formally verified with the CADP toolbox [6].

There are two approaches considered for the SR-graph
generation. The first one uses Haskell representation of an
Alvis model. Alvis Translator that is part of the Alvis mod-
elling environment called Alvis Toolkit translates an Alvis
model into a Haskell program that generates the SR-graph.
The second approach uses Alvis VM (Virtual Machine). In
this approach, Alvis Translator is used to translate an Alvis
model into object representation suitable for the machine and
Alvis VM is used to generate the SR-graph.

Both approaches are still under development, but what
is more important, they need the maximal flat represen-
tation of the corresponding communication diagram. The
proposed graph representation not only seems to be the
most suitable one for this purpose, but also is convenient
from implementation point of view (such a graph can be
represented, for example, in the form of a single matrix
with integer elements). The analysis operation translates one
matrix representation of a graph into another equivalent
one. Alvis Translator takes the graph representation of a
model communication diagram as its input and applies the
analysis operation until the maximal flat representation is
received. Then, the representation is used for next steps of
the transformation algorithms.

0For more details see Alvis web site: http://fm.ia.agh.edu.pl.

6. Conclusion
The formal LTS model, representing the behaviour of the

designed system, is equivalent to the some flat representation
of the hierarchical Alvis system structure described both in
Alvis Code Language and Alvis Communication Diagrams.
The introduced graph representation seems to be suitable for
implementation, but what is more important, it allows one
to formally prove the polynomial computational complexity
of the basic operations on this structure. It was proved that:
• the verification of a flat representation of a com-

munication diagram H can be done with the linear
computational complexity with respect to the number
of agents in the system (i.e. O(card(A))) and it can
be generated with the linear computational complexity
with respect to the number of ports in the system (i.e.
O(card(P))).

• the computational complexity of the analysis operation
is linear with respect to the number of join ports of the
considered agent X (i.e. O(card(joinX(γ(X))))).

• the computational complexity of the synthesis operation
is linear with respect to the number of join ports of the
considered agent X (i.e. O(card(P(γ(X)))).

Acknowledgement
The paper is supported by the Alvis Project funded from

2009-2010 resources for science as a research project.

References
[1] M. Szpyrka, P. Matyasik, and R. Mrówka, “Alvis – modelling language

for concurrent systems,” in Intelligent Decision Systems in Large-Scale
Distributed Environments, ser. Studies in Computational Intelligence,
P. Bouvry, H. Gonzalez-Velez, and J. Kołodziej, Eds. Springer-Verlag,
2011, (in press).

[2] M. Szpyrka, Alvis On-line Manual, AGH University
of Science and Technology, 2011. [Online]. Available:
http://fm.ia.agh.edu.pl/alvis:manual

[3] M. Szpyrka, P. Matyasik, R. Mrówka, L. Kotulski, and K. Balicki, “For-
mal introduction to Alvis modelling language,” International Journal
of Applied Mathematics and Computer Science, 2011, (to appear).

[4] L. Kotulski and L. Fryz, “Conjugated graph grammars as a mean to
assure consistency of systems of conjugated graphs,” in Proceedings of
the 2008 Third International Conference on Dependability of Computer
Systems DepCoS-RELCOMEX. Szklarska Poreba, Poland: IEEE
Computer Society, June 26-28 2008, pp. 119–126.

[5] L. Kotulski, “GRADIS – multiagent environment supporting distributed
graph transformations,” in Computational Science – ICCS 2008, ser.
LMCS, M. Bubak, G. van Albada, J. Dongarra, and P. Sloot, Eds.
Springer-Verlag, 2008, vol. 5103, pp. 644–653.

[6] H. Garavel, F. Lang, R. Mateescu, and W. Serwe, “CADP 2006: A
toolbox for the construction and analysis of distributed processes,”
in Computer Aided Verification (CAV’2007), ser. LNCS, vol. 4590.
Berlin, Germany: Springer, 2007, pp. 158–163.

Int'l Conf. Foundations of Computer Science | FCS'11 | 101

Inapproximability of Maximum r-Regular Induced
Connected Subgraph Problems

Yuichi Asahiro1, Hiroshi Eto2, and Eiji Miyano2

1Department of Information Science, Kyushu Sangyo University,
Fukuoka 813-8503, Japan. asahiro@is.kyusan-u.ac.jp

2Department of System Design and Informatics, Kyushu Institute of Technology,
Fukuoka 820-8502, Japan. {eto@theory., miyano@}ces.kyutech.ac.jp

Abstract— Given a graph G = (V, E) on n vertices,
the MAXIMUM r-REGULAR INDUCED CONNECTED SUB-
GRAPH (r-MaxRICS) problems ask for a maximum sized
subset of vertices S ⊆ V such that the induced subgraph
G[S] on S is connected and r-regular. For r = 2, it is known
that 2-MaxRICS is NP-hard and cannot be approximated
within a factor of n1�ε in polynomial time for any ε > 0
if P 6= NP . In this paper, we show that r-MaxRICS is
NP-hard for any fixed integer r ≥ 3, and furthermore r-
MaxRICS cannot be approximated within a factor of n1/6�ε

in polynomial time for any ε > 0 if P 6= NP .

Keywords: induced connected subgraph, regularity, NP-
hardness, inapproximability

1. Introduction

In this paper we only consider simple undirected
graphs with no loops and no multiple edges. Let G =
(V (G), E(G)) be a graph, where V (G) and E(G) denote
the set of vertices and the set of edges in G, respectively.
A graph GS is a subgraph of a graph G if V (GS) ⊆ V (G)
and E(GS) ⊆ E(G). For a subset of vertices S ⊆ V (G),
by G[S], we mean the subgraph of G induced on S, which
is called the induced subgraph.

The problem MAXIMUM INDUCED SUBGRAPH (MaxIS)
of finding the maximum number of vertices that induces
a subgraph satisfying some properties is one of the most
fundamental problems in the fields of graph theory and
combinatorial optimization, and thus extensively studied in
these decades. Unfortunately, however, it is well known that
the MaxIS problem is NP-hard for a large class of inter-
esting properties. For example, in [7], Lund and Yannakakis
prove that the MAXIMUM INDUCED SUBGRAPH problem
for the natural properties such as acyclicity, planarity, and
bipartiteness cannot be approximated within a factor of n1�ε

in polynomial time for any positive constant ε if P 6= NP ,
where n is the number of the vertices in the input graph.

1.1 Our Problems and Results
A graph is r-regular if the degree of every vertex is exactly

r. The regularity of graphs must be one of the most basic
properties. In this paper we consider the following variant of
the MaxIS problem, i.e., the desired properties the induced
subgraph must satisfy are regularity and connectivity:

MAXIMUM r-REGULAR INDUCED CONNECTED
SUBGRAPH (r-MaxRICS)

Input: A graph G = (V, E) and an integer r.
Goal: Find a maximum subset of vertices S ⊆ V

such that the induced subgraph G[S] on S is
connected and r-regular.

Since a clique is connected and regular, the MAXIMUM
CLIQUE problem may be regarded as a special one of r-
MaxRICS. The MAXIMUM CLIQUE is very difficult even to
approximate [5]. Clearly, however, the problem of finding a
clique of a constant degree is solvable in polynomial time.
On the other hand, r-MaxRICS is hard even if r is a small
constant as follows: The problem 2-MaxRICS is known
as LONGEST INDUCED CYCLE problem since a 2-regular
subgraph means a cycle in the input graph. In [6] Kann
shows the following inapproximability for 2-MaxRICS:

Theorem 1 ([6]): 2-MaxRICS cannot be approximated
in polynomial time within a factor of n1�ε for any constant
ε > 0 if P 6= NP , where n is the number of vertices in the
input graph.

In [3] Bonifaci, Di Iorio, and Laura consider the following
problem and show its NP-hardness:

MAXIMUM REGULAR INDUCED SUBGRAPH
(MaxRIS)

Input: A graph G = (V, E).
Goal: Find a maximum subset of vertices S ⊆ V

such that the induced subgraph G[S] on S is
regular.

102 Int'l Conf. Foundations of Computer Science | FCS'11 |

Strictly speaking, MaxRIS is slightly different from r-
MaxRICS, but the same reduction introduced in [3] shows
the following intractability when r = 3:

Theorem 2 ([3]): 3-MaxRICS is NP-hard.

However, it would be hard to show the hardness of
approximating r-MaxRICS for r ≥ 3 by using a similar
reduction with small modification to the reduction in [3]. In
this paper, by using a different gap-preserving reduction, we
first show the following inapproximability of 3-MaxRICS.

Theorem 3: 3-MaxRICS cannot be approximated in
polynomial time within a factor of n1/6�ε for any constant
ε > 0 if P 6= NP , where n is the number of vertices in the
input graph.

Furthermore, by using additional ideas to the reduction,
we show the same inapproximability of r-MaxRICS for any
fixed integer r ≥ 4.

Corollary 1: For any fixed integer r ≥ 4, r-MaxRICS
cannot be approximated in polynomial time within a factor
of n1/6�ε for any constant ε > 0 if P 6= NP , where n is
the number of vertices in the input graph.

The proofs of Theorem 3 and Corollary 1 will be given
in Section 3.

1.2 Related Work
Recently, the problem of finding a maximum induced

subgraph having regularity is very popular. Many researchers
study the following variant, that is, the connectivity property
is not imposed on the induced subgraph.

MAXIMUM r-REGULAR INDUCED SUBGRAPH (r-
MaxRIS)

Input: A graph G = (V,E) and an integer r.
Goal: Find a maximum subset of vertices S ⊆ V

such that the induced subgraph G[S] on S is
r-regular.

If we does not require the connectivity constraint, then
the problems when r = 0 and r = 1 correspond to the well
studied MAXIMUM INDEPENDENT SET and MAXIMUM
INDUCED MATCHING problems, respectively. The former
problem is hard even to approximate [5]. The NP-hardness
of the latter problem is also shown in [1], [10]. In [9]
Orlovich, Finke, Gordon, and Zverovich prove the MAXI-
MUM INDUCED MATCHING cannot be approximated within
a factor of |V |1/2�ε in polynomial time for any ε > 0. The
parameterized complexity and exact exponential algorithms
of r-MaxRIS are studied in [8] and [4], respectively. Very
recently, in [2] Cardoso, Kamińsi, and Lozin prove that r-
MaxRIS is NP-hard for any value of r ≥ 3. Motivated by
this result, we investigate the complexity of the connected
version problem r-MaxRICS for r ≥ 3 in this paper.

2. Notation
By (u, v) we denote an edge with endpoints u and v.

For a vertex u, the set of vertices adjacent to u in G is
denoted by NG(u) or simply by N(u), and (u,NG(u))
denotes the set {(u, v) | v ∈ NG(u)} of edges. Let the
degree of a vertex u be denoted by deg(u), i.e., |N(u)| =
deg(u). A (simple) path P of length ` from a vertex v0 to
a vertex v` is represented as a sequence of vertices such
that P = 〈v0, v1, · · · , v`〉, and |P | denotes the length of
P . A cycle C of length ` is similarly denoted by C =
〈v0, v1, · · · , v`�1, v0〉, and |C| denotes the length of C. A
chord of a path (cycle) 〈v0, · · · , v`〉 (〈v0, · · · , v`�1, v0〉) is
an edge between two vertices of the path (cycle) that is not
an edge of the path (cycle). A path (cycle) is chordless if it
contains no chords, i.e., an induced cycle must be chordless.
Let G1, G2, · · · , G` be ` graphs and also let vi be some
vertex in Gi for 1 � i � `. Then, 〈G1, G2, · · · , G`〉 denotes
the subgraph G = (V (G1)∪V (G2)∪· · ·∪V (G`), E(G1)∪
E(G2)∪· · · ,∪E(G`)∪{(v1, v2), (v2, v3), · · · , (v`�1, v`)}).
That is, two adjacent graphs Gi�1 and Gi are connected
by only one edge and G roughly forms a path. Similarly,
〈G1, G2, · · · , G`, G1〉 roughly forms a cycle.

3. Hardness of Approximating
r-MaxRICS

In this section we give the proofs of Theorem 3 and
Corollary 1. The hardness of approximating r-MaxRICS
for r ≥ 3 is shown via a gap-preserving reduction from
LONGEST INDUCED CYCLE problem, i.e., 2-MaxRICS.
Consider an input graph G = (V (G), E(G)) of 2-MaxRICS
with n vertices and m edges. Then, we construct a graph
H = (V (H), E(H)) of r-MaxRICS. First we show
the O(n1/6�ε)-inapproximability of 3-MaxRICS and then
the same O(n1/6�ε)-inapproximability of the general r-
MaxRICS problem for r ≥ 4.

Let OPT1(G) (and OPT2(H), respectively) denote the
number of vertices of an optimal solution for G of
2-MaxRICS (and H of r-MaxRICS, respectively). Let
V (G) = {v1, v2, · · · , vn} of n vertices and E(G) =
{e1, e2, · · · , em} of m edges. Let g(n) be a parameter
function of the instance G. Then we provide the gap pre-
serving reduction such that (C1) if OPT1(G) ≥ g(n), then
OPT2(H) ≥ 4(n3 + 1) × g(n), and (C2) if OPT1(G) <
g(n)
n1−ε for a positive constant ε, then OPT2(H) < 4(n3 +
1) × g(n)

n1−ε . As we will explain it, the number of vertices
in the reduced graph H is O(n6). Hence the approximation
gap is n1�ε = O(|V (H)|1/6�ε) for any constant ε > 0.

3.1 Reduction for r = 3

Without loss of generality, we can assume that there
is no vertex whose degree is one in the input graph G

Int'l Conf. Foundations of Computer Science | FCS'11 | 103

Hi

ui,i1

ui,i2

ui,i3

ui,i4

αi
Pi1,i,i4

P 1
i1,i,i4

P 2
i1,i,i4

P n3

i1,i,i4

ui,ideg(vi)

β1
i1,i,i4

β2
i1,i,i4

β3
i1,i,i4

w
p,1
i1,i,i4

w
p,3
i1,i,i4

w
p,2
i1,i,i4

γ
p
i1,i,i4

Pi2,i,i3

Pi1,i,i2

P
p
i1,i,i4

Pi1,i,ideg(vi)

Pi3,i,i4

Figure 1: Subgraph Hi

of 2-MaxRICS. The reason is that such a vertex does
not contribute to any feasible solution, i.e., a cycle, of 2-
MaxRICS and can be removed from G.

The constructed graph H consists of (i) n subgraphs, H1

through Hn, which are associated with n vertices, v1 through
vn, respectively, and (ii) m edge sets, E1 through Em, which
are associated with m edges, e1 through em, respectively.

(i) Here we describe the construction of the ith subgraph
Hi in detail for some i (1 � i � n). See Figure 1,
which illustrates Hi. Suppose that the set of vertices adjacent
to vi is N(vi) = {vi1 , vi2 , . . . , videg(vi)

}, where ij ∈
{1, 2, · · ·n} \ {i} for 1 � j � deg(vi). The subgraph Hi =
(V (Hi), E(Hi)) includes deg(vi) vertices, ui,i1 through
ui,ideg(vi)

that correspond to the vertices adjacent to vi,
and deg(vi)(deg(vi) − 1)/2 path gadgets, Pi1,i,i2 , Pi1,i,i3 ,
· · · , Pi1,i,ideg(vi)

, Pi2,i,i3 , · · · , Pideg(vi)−1,i,ideg(vi)
, where two

vertices ui,ij
and ui,ik

are connected via the path gadget
Pij ,i,ik

for vij , vik
∈ N(vi). As an example, in Figure 1,

the top vertex ui,i1 and the bottom ui,i4 are connected via
Pi1,i,i4 . Each path gadget Pij ,i,ik

includes n3 subgraphs,

P 1
ij ,i,ik

through Pn3

ij ,i,ik
, where, for each 1 � p � n3,

V (P p
ij ,i,ik

) = {wp,1
ij ,i,ik

, wp,2
ij ,i,ik

, wp,3
ij ,i,ik

, γp
ij ,i,ik

},
E(P p

ij ,i,ik
) = (γp

ij ,i,ik
, {wp,1

ij ,i,ik
, wp,2

ij ,i,ik
, wp,3

ij ,i,ik
})

∪{(wp,1
ij ,i,ik

, wp,2
ij ,i,ik

), (wp,2
ij ,i,ik

, wp,3
ij ,i,ik

)}.

In the path gadget Pij ,i,ik
, two vertices w1,1

ij ,i,ik
and

wn3,3
ij ,i,ik

are respectively identical to the vertices ui,ij

and ui,ik
prepared in the above. For 2 � p � n3,

contiguous two subgraphs P p�1
ij ,i,ik

and P p
ij ,i,ik

are con-
nected by one edge (wp�1,3

ij ,i,ik
, wp,1

ij ,i,ik
) except for a pair

P q�1
ij ,i,ik

and P q
ij ,i,ik

for some q: the two subgraphs P q�1
ij ,i,ik

and P q
ij ,i,ik

are connected by a path of length four
〈wq�1,3

ij ,i,ik
, β1

ij ,i,ik
, β2

ij ,i,ik
, β3

ij ,i,ik
, wq,1

ij ,i,ik
〉. This q can be ar-

bitrary since we just want to insert the path of length four
into the path gadget, and as an example, q = 3 in the path
gadget Pi1,i,i4 in Fig. 1. Finally, we prepare a special vertex
αi, and αi is connected to all {β1

ii,i,ik
, β2

ii,i,ik
, β3

ii,i,ik
}’s.

In the following, α1, α2, · · · , αn are called α-vertices.
Similarly, β-vertices and γ-vertices mean the vertices labeled

104 Int'l Conf. Foundations of Computer Science | FCS'11 |

ui,j uj,i

Hi Hj

ui,i2

ui,i3

ui,i4

uj,j2

uj,j3
γ

(j−1)n2+1
i2,i,i3

γ
(j−1)n2+2
i2,i,i3

γ
(j−1)n2+3
i2,i,i3

γ
(i−1)n2+1
j2,j,j4

uj,j4

γ
(i−1)n2+1
j3,j,j4

Figure 2: Ek connecting Hi and Hj

by β and γ, respectively. Since each path gadget has 4n3+3
vertices (two of which are shared with other path gadgets),
the total number of vertices in Hi is

|V (Hi)| =
deg(vi)(deg(vi) − 1)(4n3 + 1)

2
+ n + 1,

i.e., there are O(n5) vertices in Hi.
(ii) Next we explain construction of the edge sets E1

through Em. Now suppose that ek connects vi with vj for
i 6= j. Also suppose that the sets of vertices adjacent to
vi and vj are N(vi) = {j, i2, · · · , ideg(vi)} and N(vj) =
{i, j2, · · · , jdeg(vj)}, respectively. Then, (ui,j , uj,i) ∈ Ek

where ui,j ∈ V (Hi) in the ith subgraph Hi and uj,i ∈
V (Hj) in the jth subgraph Hj . Furthermore, by the follow-
ing rules, γ-vertices in the path gadgets are connected: See
Figure 2. Every vertex in the path gadget Px,i,y for x = j
or y = j in Hi is not connected to any vertex in Hj , except
for ui,j . Similarly, every vertex in Ps,j,t for s = i or t = i
in Hj is not connected to Hi, except for uj,i. For a path
gadgets Px,i,y in Hi, where j 6∈ {x, y} we prepare a set of
edges as follows. Let D = mink∈{i,j}{deg(vk)(deg(vk) −
1)/2 − (deg(vk) − 1)}.

• In Px,i,y, there are n3 γ-vertices, γ1
x,i,y through γn3

x,i,y .
Consider D γ-vertices among those n3 γ-vertices, the
((j − 1)n2 + 1)th vertex γ

(j�1)n2+1
x,i,y through the ((j −

1)n2 + D)th vertex γ
(j�1)n2+D
x,i,y .

• Next take a look at the jth subgraph Hj and the path
gadgets Ps,j,t’s for i 6∈ {s, t}. Note that the number of
such gadgets is deg(vj)(deg(vj)−1)/2−(deg(vj)−1)
and hence at least D. Then, consider the ((i − 1)n2 +
1)th vertex γ

(i�1)n2+1
s,j,t in each Ps,j,t. Here, the term

“+1” in the superscript of γ comes from the assumption
that j1 = i; if jk = i, we consider the ((i−1)n2 +k)th
γ-vertex.

• Then, we can choose any function f which assigns each
element in {1, . . . , D} to a string s, j, t such that i 6∈
{s, t} and it holds f(b) 6= f(c) if b 6= c. Finally, we
connect γ

(j�1)n2+k
x,i,y with γ

(i�1)n2+1
f(k) for 1 � k � D. It

is important that the path gadget Px,i,y is connected to
Ps,j,t via only one edge.

Just to make the above construction clear, see Figure 3.
For example, if an input instance G is the left graph,
then the reduced graph H is illustrated in the right graph,
where some details on the path gadgets are omitted due to
the space. For example, since two vertices v1 and v2 are
connected via the edge e1 in G, u1,2 in H1 is connected
to u2,1 in H2. Similarly to e2 through e6, there are five
edges, (u1,3, u3,1), (u3,4, u4,3), (u2,4, u4,2), (u2,5, u5,2), and
(u4,5, u5,4) in H . Furthermore, two path gadgets P1,2,5 and
P3,4,5 are connected by one edge (γ1, γ2).

Each subgraph Hi has O(n5) vertices and thus the total
number of vertices |V (H)| = O(n6). Clearly, this reduction
can be done in polynomial time. In the next two subsections,
we show that both conditions (C1) and (C2) are satisfied by
the above reduction.

3.2 Proof of Condition (C1)
Without loss of generality, suppose that a longest induced

cycle in G is C∗ = 〈v1, v2, · · · , v`, v1〉 of length `, and
thus OPT1(G) = |C∗| = ` ≥ g(n). Then we select the
following subset S of 4(n3 +1)×` vertices and the induced

Int'l Conf. Foundations of Computer Science | FCS'11 | 105

v1 v2

v5

v3 v4

e1

e3

e2 e4

e5

e6

G

H

H1

H3
H4

H2

H5

u1,2 u2,1

u1,3

u3,1

u3,4
u4,3

u4,5

u5,4

u5,2

u2,5

u2,4

u4,2

α1

α3

α4

α2

α5

γ1

γ2

P3,4,5

P1,2,5

P1,3,4

P2,1,3

P2,5,4

P2,4,3

P1,2,4 P4,2,5

P2,4,5

Figure 3: Input graph G (left) and reduced graph H (right)

subgraph G[S]:

S = V (P`,1,2) ∪ {α1} ∪ V (P1,2,3) ∪ {α2}
∪ · · · ∪ V (P`�1,`,1) ∪ {α`}.

For example, take a look at the graph G illustrated in
Figure 3 again. One can see that the longest induced cycle
in G is 〈v1, v3, v4, v2, v1〉. Then, we select the connected
subgraph induced on the following set of vertices:

V (P2,1,3) ∪ {α1} ∪ V (P1,3,4) ∪ {α3}
∪V (P2,4,3) ∪ {α4} ∪ V (P1,2,4) ∪ {α2}

It is easy to see that the induced subgraph is 3-regular and
connected. Hence, the reduction satisfies the condition (C1).

3.3 Proof of Condition (C2)
We show that the reduction satisfies the condition (C2)

by showing its contraposition. Suppose that OPT2(H) ≥
4(n3 + 1) · g(n)

n1−ε holds for a positive constant ε, and S∗

is an optimal set of vertices such that the subgraph H[S∗]
induced on S∗ is connected and 3-regular. In the following,
one of the crucial observations is that we can select at most
one path gadget from each subgraph Hi into the optimal set
S∗ of vertices, and if a portion of the path gadget is only
selected, then the induced subgraph cannot be 3-regular.

(I) See Figure 1 again. Suppose for example that two
path gadgets Pi1,i,i4 and Pi2,i,i3 are selected, and put their
vertices into S∗. In order to make the degree of β-vertices
three, we need to also select αi. However, the degree of α1

becomes six. This implies that we can select at most three
β-vertices from each subgraph Hi.

(II) From the above observation (I), we consider the case
that at most two of β1

j,i,k, β2
j,i,k, and β3

j,i,k are selected for
some i, j, k. Let us assume that we select β1

j,i,k and β2
j,i,k

(β1
j,i,k and β3

j,i,k, resp.) are put into S∗, but β3
j,i,k (β2

j,i,k,
resp.) is not selected. Then, the degree of β2

j,i,k (β1
j,i,k and

β3
j,i,k, resp.) is at most 2 even if we select αi, i.e., the

induced subgraph cannot be 3-regular. By a similar reason,
we can not select only one of the β-vertices. Hence, if
we select β-vertices, all of the three β-vertices in one path
gadget must be selected.

As for w-vertices, a similar discussion can be done: For
example, if we select wp,1

j,i,k and wp,3
j,i,k for some i, j, k, p,

but wp,2
j,i,k (γp

j,i,k, resp.) is not selected, then the degree of
γp

j,i,k (wp,2
j,i,k, resp.) is only 2. Thus, we need to select all the

vertices of the part P p
k,i,j if we select some vertices from it.

Combining two observations above, one can see that the
edges connecting P p�1

k,i,j and P p
k,i,j , or w-vertices and β-

vertices are necessary to make the degrees of the vertices
three. As a result, we can conclude that if only a part of one
path gadget is chosen, then the induced subgraph obtained

106 Int'l Conf. Foundations of Computer Science | FCS'11 |

Kr−2 Kr−2 Kr−2

α

β1, β2, · · · , βr−2γp,1, γp,2, · · · , γp,r−2

β0 βr−1

Figure 4: Modified path gadget in the proof of Corollary 1

cannot be 3-regular.
(III) From (I) and (II), we can assume that if some

vertices of a path gadget are selected into S∗, it means
that the whole vertices of the path gadget is selected.
For example, suppose that Pi1,i,i4 is selected. Since the
degree of the endpoint ui,i1 (ui,i4) of Pi1,i,i4 is only
2, we have to put at least one vertex into S∗ from
another subgraph adjacent to Hi, say, a vertex uj,i in
Hj . This implies that the induced subgraph H[S∗] forms
a cycle-like structure 〈Hi1 ,Hi2 , · · · , Hij ,Hi1〉 connecting
Hi1 ,Hi2 , · · · ,Hij ,Hi1 in order, where {i1, i2, · · · , ij} ⊆
{1, 2, · · · , n}.

We mention that such an induced subgraph H[S∗] is 3-
regular if and only if the corresponding subgraph in the
original graph G is an induced cycle. The if-part is clear
by the discussion of the previous section. Let us look at the
induced subgraph H[V (P2,1,3) ∪ V (P1,3,4) ∪ V (P3,4,5) ∪
V (P2,5,4) ∪ V (P1,2,5)] in the right graph H shown in
Figure 3. Then, the induced subgraph includes the chord
edge (γ1, γ2) and thus the degree of γ1 and γ4 is 4. The
reason why the induced subgraph cannot be 3-regular comes
from the fact that the cycle 〈v1, v3, v4, v5, v2, v1〉 includes
the chord edge (v1, v4) in the original graph G. The edges
between γ-vertices are placed because there is an edge
between their corresponding vertices in G. As a result,
the assumption that H[S∗] is an optimal solution, i.e., 3-
regular, implies that the corresponding induced subgraph in
the original graph G forms a cycle 〈vi1 , vi2 , · · · , vij , vi1〉.

Since the number of vertices in each path gadget is
4(n3 + 1), OPT1(G) ≥ g(n)

n1−ε holds by the assumption
OPT2(H) ≥ 4(n3 +1) · g(n)

n1−ε . Therefore, the condition (C2)
is also satisfied.

3.4 Reduction for r ≥ 4

In this section, we give a brief sketch of the ideas to
prove Corollary 1, i.e., the O(n1/6�ε) inapproximability for
r-MaxRICS for any fixed integer r ≥ 4.

The proof is very similar to that of Theorem 3. The
main difference between those proofs is the structure of
each path gadget. See Figure 4, which shows the modified

path gadget. (i) We replace each of γ-vertices in Figure 1
with the complete graph Kr�2 of r − 2 vertices, and then
connect one γ-vertex in Hi and one γ-vertex in Hj for i 6= j
by a similar manner to the reduction for the case r = 3.
(ii) As for β-vertices, we prepare Kr�2 of r − 2 vertices,
say, β1, · · · , βr�2, and two vertices, say, β0 and βr�1, such
that each of the two vertices β0 and βr�2 is adjacent to
all the vertices in Kr�2. Then, all of the β-vertices are
connected to the α-vertex similar to the reduction for r = 3.
Since the reduction requires n3 γ-vertices to connect all the
pairs of Hi’s, which is independent of the value of r, the
path gadget consists of d n3

r�2e subgraphs, say, P 1
j,i,k through

P
dn3/(r�2)e
j,i,k . Further details are omitted here.

Acknowledgment
This work is partially supported by Grant-in-Aid for

Scientific Research (KAKENHI), 22700019 and 23500020.

References
[1] K. Cameraon. Induced Matchings. Discrete Applied Math, 24, pp.97–

102 (1989)
[2] D.M. Cardoso, M. Kamińsi, and V. Lozin. Maximum k-regular

induced subgraphs. J. Combinatorial Optimization, 14(5), pp.455–463
(2007)

[3] V. Bonifaci, U. Di Iorio, and L. Laura. The complexity of uniform
Nash equilibria and related regular subgraph problems. Theoretical
Computer Science, 401, pp.144–152 (2008)

[4] S. Gupta, V. Raman, and S. Saurabh. Fast exponential algorithms for
maximum r-regular induced subgraph problems. In Proc. FSTTCS
2006, pp.139–151 (2006)

[5] J. Håstad. Clique is hard to approximate within n1−ε. Acta Mathe-
matica, 182 (1), pp.105–142, 1999.

[6] V. Kann. Strong lower bounds on the approximability of some NPO
PB-complete maximization problems. In Proc. MFCS 1995, pp.227–
236 (1995)

[7] C. Lund and M. Yannakakis. The approximation of maximum sub-
graph problems. In Proc. ICALP 1993, pp.40–51 (1993)

[8] H. Moser and S. Sikdar. The parameterized complexity of the induced
matching problem. Discrete Applied Mathematics, 157, pp.715–727
(2009)

[9] Y. Orlovich, G. Finke, V. Gordon, and I. Zverovich. Approximability
results for the maximum and minimum maximal induced matching
problems. Discrete Optimization, 5, pp.584–593 (2008)

[10] L.J. Stockmeyer and V.V. Vazirani. NP-completeness of some gener-
alizations of the maximum matching problem. Information Processing
Letters, 15(1), pp.14–19 (1982)

Int'l Conf. Foundations of Computer Science | FCS'11 | 107

Formal specification of semantics of UML 2.0 activity diagrams by
usingGraph Transformation Systems

Somayeh Azizi1, Vahid Panahi 2

Computer science department, Sama Technical and vocational, Training School, Islamic university, Arak Branch
Arak, Iran, s.azizi2011@gmail.com

2 Arak, Iran ,v.p1386@gmail.com

Abstract - Graphical structures of various kinds (like graphs,
diagrams, visual sentences) are very useful to describe complex
structures and systems. The field of Graph transformation
and Abstract State Machine has been widely used for
modeling. Graphs are well suited to describe the underlying
structures of models. They provide a good method to carry out
the analysis and verification activities and use from the AGG
(Attributed Graph Grammar) tools for design them. So the
Abstract State Machine (ASM) is a modern computation
model. ASM based tools are used in academia and industry,
albeit on a modest scale. They allow you to give high-level
operational semantics to computer artifacts and to write
executable specifications of software and hardware at the desired
abstraction level

.

Keywords: Graph Transformation, Abstract state machine,
Activity Diagram, Semantics, Verification and Validation

I. INTRODUCTION

Recently modeling is significant department of
activities that it available introduction a proper software for
security user requirement. Select proper model is base of
modeling. For complete understanding of systems and
specific relation between different stages of them, they should
model.

They are some approach for modeling such as:
 Unified modeling language(UML)
 Petri Nets

The token flow semantics of UML2.0 activity diagrams
is formally defined using Abstract State Machines and Graph
Transformation System. The state of the art in semantics for
UML 2.0 activity diagrams covers three distinct approaches:
mapping to Petri-nets, using graph transformation rules, or
providing pseudo-code. ASM using pseudo- code and graph
transformation system using graph transformation rules for
determine semantics. A major goal of this paper is ability to
determine the correctness behavior and formal semantics of
UML2.0 activity diagram by Graph Transformation System
and Abstract state machine Graph Transformation
system (GTS)

 Process Algebra
 State Diagrams

The Unified Modeling Language (UML) is a graphical
language for visualizing, specifying, constructing, and
documenting the artifacts of a software system. UML
Activity diagram is a visual representation of any system's

activities and flows of data or control between activities.
They describe the workflow behavior of a system. Activity
diagrams are similar to state diagrams because activities are
the state of doing something. The diagrams describe the state
of activities by showing the sequence of activities performed.
State diagram and activity diagrams both describe state
transitions and share many of the same elements. The main
reason to use activity diagrams is to model the workflows.
Activity Diagrams are also useful for analyzing a use case by
describing what actions need to take place and when they
should occur. Currently, the UML semantics is informally
defined in plain text and it is often unclear, ambiguous or it
contains contradictory assertions. It is difficult to present the
precise semantics which are taken as important in workflow
system with the guide provided by OMG to the UML
activity diagram. In this paper, the alternative approach of
using Abstract State Machines and Graph Transformation
System to formalize UML activity diagrams is presented. We
propose the workflow modeling methodology by applying
ASM and GTS semantics to the activity diagram. Through
the exact definition to formal semantics based on ASM and
GTS, it is possible to effectively model the workflow.

II. RELATED WORK

There is research done about formal specification
semantics of uml2.0 activity diagram using different formal
language. Harel defines state diagrams to model activities
behavior in STATEMENT structured analysis notation.

In resumption Eshuis used this method to describe the
behavior of UML1.5 activity diagram. He defines concept of
strong fairness that based on model should not be indefinite
loops. He also indicated modeled in two levels:

 Requirement level semantics: This level is easy for
analysis.

 Implementation-level semantics: This level is
difficult for analysis but it provides a real vision of
system

Bogor used abstract state machine to describe UML2.0
activity diagrams. This method is based on event and per
state is algebra. In ASM transition from one status to another
status is done by rule if- then. Hausmann defines concept
Dynamic Meta Modeling (DMM) using graph
transformation systems. He developed the old graph rules by
defining a new concept named rule invocation. In DMM
there are two types of rules: big-step and small-step rules.

Big-step rules act as traditional rules but small-step rules
should be invoked by big-step rules. Haussmann then defines

108 Int'l Conf. Foundations of Computer Science | FCS'11 |

semantics for Activity diagrams using concept of DMM.
Engels use DMM and semantics defined by Haussmann

for modeling and verification of workflows. For verification,
he use GROOVE but as GROOVE does not support
attributed typed graphs and rule invocation, they change the
rules to be verifiable by GROOVE they check deadlock
freeness and action reach ability properties on the modeled
workflows. In contrast to this work, our approach has more
flexibility to support user defined properties.

Furthermore, event and exception modeling can be
supported by our approach. Additionally, the extension
defined by Haussmann (small/big step rules and rule
invocation) cannot be modeled directly in existing graph

transformation tools; hence it is not so easy for designers to
use this approach.

III. ACTIVITY DIAGRAM

UML2.0 Activity Diagram modeling behavior aspect of
software systems particular Data Flow and control Flow.

Data Flow specific data transform from source path to
destination and Control Flow specific existing paths for data
transform an activity is operation sequence from start to end
the system done and per activity can be transaction on data
or process.
A. Kind Of Activity Nodes

1. Action Node: An action node is a atomic stage in
activity such as math function that they can
manipulate data

2. Control Nodes: A control node is Responsible for
routing of tokens. They routing based on decision
node, fork node and join node. The tokens are
production and consumption.

B. Kind Of Control Nodes

1. Initial Node: An initial node Defines start of
activity. This node has no input edge and it has only
output edge.

2. Decision Node: A decision node has an input edge
and more than one output edge. Input tokens are
moving based on constraints on one of the output
edges. The node will select different outputs based
on a given Boolean expression.

3. Merge Node: A merge node have more than one
input edges and only one output edge. This node
each token to pass to side its output edge and they
lead several workflow activities to a flow activity.

4. Fork Node: A fork node has only one input edge
and more than output edge. Each input token is
copied and passes through all the output edges. They
are divided a flow to multiple simultaneous flow in
an activity.

5. Join Node: A join node has more than input edge
and only one output edge. If all incoming edges
carry tokens In this case these nodes are used as a
synchronization point.

6. Final Node
 Activity Final: An activity final node has one or

more Than one input edge. If the first token to reach
the node then sequence of all tokens immediately
across the activity can be used and enforcement
activity will stop.

 Flow Final: A flow final node has one or more than
one input edge. This node uses each token entered

and Lead to a path is ending.

Figure 1 Kind Of Action Nodes

Figure 2 Kind Of Control Nodes

IV. GRAPH TRANSFORMATION

Graph transformation is applied for simulating the
behavior of models. It consists of three set: (i) type graph,(ii)
host graph,(iii) rules. Hence per Graph transformation
represents formally with triple AGT (TG, HG, R).

 The type graph (Meta model) defines the abstract
syntax of a modeling language. Formally, it can
be represented by a type graph (TG). Nodes in it
called classes. Per class have attributes and
functions.

 A host graph (Instance Models) describes the system
define in modeling language. In fact it is a well-
formed instance of the Meta model.

 A graph transformation rule describes dynamic
behavior of graph transformation.

Formally, A graph Transformation rule p = (L,R,N)
consists of: a graph L being the left hand side (LHS) of the
rule a graph R being the right hand side (RHS) of the rule; a
set of graphs N being the negative application conditions
(NACs). The application of a graph transformation rule

transforms a graph G, the source graph, into a graph H, the
target graph, by looking for an occurrence of L in G and then
replacing that occurrence of L with R, resulting in H. The
role of the NACs is that they can still prevent application of
the rule when an occurrence of the LHS has been found,
namely if there is an occurrence of some N N in G that
extends th the candidate occurrence of L. [1,3]

V. ABSTRACT STATE MACHINE

The Abstract State Machine (ASM) Project (formerly
known as the Evolving Algebras Project) was started by
Yuri Gurevich as an attempt to bridge the gap between

Int'l Conf. Foundations of Computer Science | FCS'11 | 109

formal models of computation and practical specification
methods.

A sequential ASM is defined as a set of transition rules of
form : { If Condition then Updates } ,which
transform first-order structures (the states of the machine),
where the guard Condition, which has to be satisfied for
a rule to be applicable, is a variable free first-
order formula, and Updates is a finite set of
function updates (containing only variable free terms) of
form: f (t1,...,tn):= t. The execution of these rules is
understood as updating, in the given state and in the
indicated way, the value of the function f at the indicated
parameters, leaving everything else unchanged. (This
proviso avoids the frame problem of declarative
approaches.) In every state, all the rules which are applicable
are simultaneously applied (if the updates are consistent) to
produce the next state. If desired or useful, declarative
features can be built into an ASM by integrity constraints
and by assumptions on the state, on the environment, and on

the applicability of rules. The ASM is formal and can
therefore serve as a foundation for the implementation of
tools. Finally, it helps to ensure that the specified behavior
meets the intuition of the modeler. Abstract State Machine
has a main rule that computation transition and uses from it
for determine token flow semantics. The semantics of

activity diagram determine base token flow. When token

available in initial, object and action nodes then calling
transition of rule. if guards evaluation true then token move
toward destination nodes. [2]

VI. WORKFLOW MODELING

The modeling of workflow should treat of each element
of the activity diagram was determined uses each node in
activity diagram is equivalent to a class in this method. Each
class consists of three parts, the class name, attributes and
functions. Class name is equivalent to the node name and

attributes of each class determine according to class
name and action it. In the proposed method of functions are
obtained from pseudo-code of state machine abstraction and
attributes are Combination of characteristics in the graph
transformation system and abstract state machine. In UMl2.0
semantic specification is based tokens. These diagrams
explain each activity and its interactions in detail, including
how it is triggered, what resources are needed and what
deliverables will be created. This knowledge will enable you
to discover and address any unstated requirements prior to
finalizing the project plan. These workflow diagrams are key
to effective analysis and communications. to model
workflows we consider these parts of Activity diagrams: Init
node, Final node, Action node, Fork node, Join node, Merge

Figure 3 rules showing the semantics of Decision node

110 Int'l Conf. Foundations of Computer Science | FCS'11 |

Figure 4 A sample activity diagram

Figure 5 The sample activity diagram in fig3 as host graph with ASM and GTS

node, Decision node We will use token-flow semantics in
our graphs. In this paper we show determine semantics of
decision node with ASM and GTS.
Decision node: pseudo-code of decision node
forall I with 1 I |accepting Edges| do t(I) :=
new(Token Offer) seq
forall I with 1 I |accepting Edges| do t(i).offered
Token := t. offered Token
t(i).paths := {p element At(accepting Edges, i)| p t.

path }
t(i).exclude := t. exclude {t(j) | 1
j|accepting Edges | I j} t(i).include := t.
include {t} add t(i) to offers (element
At(accepting Edges, I)

In Figure3:
 The NAC of this rule states that both of the

following nodes should not be Join or Merge nodes,

because these nodes have several output edge, but

Int'l Conf. Foundations of Computer Science | FCS'11 | 111

decision node chooses the output of a edge between
its output edges. This restriction is implemented by
the function Exclude. This function cause the tokens
do, not clash together. We have different rules for
cases that the following nodes are Join or Merge
nodes.

 The LHS shows the precondition of this rule. If
Decision node has the token and both of the
following nodes have not any token, then this rule
can be applied on the model and token will be routed
to only one of the following nodes. Thus offer token
entered into decision node and the value of the
attribute inequality is false. Yet offers token not
enter within nodes that they are outputs decision
nodes. Guard adjective in one of the output nodes is
True and order output node Labeled with else.

As it is shown, the RHS says that offer token must be
routed to only one of the following Nodes. Thus Is offer
token out of the decision node and based on current
conditions enter one of the output nodes.

We will use Activity diagram of figure 3 as a running
example for the rest of this paper. It describes the processing
of orders in a company.

Figure4 represent a workflow modeled with activity
diagram .this activity can be image as host graph in graph
transformation system. For each node in activity diagram,
there is a node (class) in host graph .Class diagrams have
three parts: (i) class name, (ii) attributes, (iii) functions. Class
name is name of node and one of attribute for node is token
offer attribute. Token offers computation in initial node and
this attribute values in initial node is not null and other nodes
is null. By moving token in path and inter it at a node, calling
functions and computation token offer it. When token arrives
final node, the token offer attribute for preview nodes is null
and for final node is not null. Therefore when token flow will
be terminated that token arrives final node or there is not any
path for token to be routed.

VII. VERIFICATION AND VALIDATION

The use of formal verification methods is essential in the
design process of dependable computer controlled systems.
The efficiency of applying these formal methods will be
highly increased if the underlying mathematical background
is hidden from the designer in such an integrated system
effective techniques are needed to transform the system
model to different sort of mathematical models supporting
the assessment of system characteristics.

To verification of activities must be design an approach.
The theory and application of visual languages is also based
on the strong paradigm of graph transformation. Therefore
For analyze designed activities, graph transformation system
(type graph, host graph, rules) and properties gets as input of
verification approach. Graph transformation system must be
design in AGG; also properties define by special rules. If
designers are expert in graph transformation, they can
directly to model workflows by using graph transformation
system. In this approach designers do not need to learn of
formal method. In other case, they can model workflows by
UML2.0 activity diagram, then by transformer, designed
activities in UML transformed to graph transformation.

In this approach verification done automatically and
designers do not need to define of rules for verification.
VIATRA (Visual Automated Transformations) is a model
transformation framework developed mainly for the formal
dependability analysis of UML models. In VIATRA, Meta
modeling is conceived specially: the instantiation is based on
mathematical formalisms and called Visual Precise Meta
modeling. The attribute transformation is performed by
abstract state machine statements, and there is built-in
support for attributes of basic Java types. The model
constraints can be expressed by graph patterns with arbitrary
levels of negation. The rule constraints are also specified by
graph patterns. VIATRA uses abstract state machines (ASM)
to define the control flow of the system.[1,3]

VIII. CONCLUSION

This paper proposes a formal approach base compose
Graph Transformation Systems (GTS) and Abstract State
Machine (ASM). This approach determines behavior of
UML2.0 activity diagrams base token flow. Rules of ASM
that define with pseudo-code, display by fundamental
element of GTS (LHS, RHS, NAC).

REFERENCES

[1] Vahid Rafe , Adel T. Rahmani, “Formal Analysis of
Workflows Using UML 2.0 Activities and Graph

Transformation Systems”
ICTAC 2008, LNCS 5160, pages. 305–318, 2008.

[2] Stefan Sarstedt, Walter Guttmann, “An ASM Semantics of
Token

Flow in UML2.0 Activity Diagrams”, 2008.

[3] Laszlo Lengyel, Tihamer Levendovszky, Gergely Mezei and Hassan
Charaf,” Model Transformation with a Visual Control Flow
Language”, International Journal of Computer Science Volume1
Number 1, 2005.

112 Int'l Conf. Foundations of Computer Science | FCS'11 |

SESSION

PROGRAMMING ISSUES AND TOOLS + OS +
CONCURRENCY + MODEL CHECKING

Chair(s)

TBA

Int'l Conf. Foundations of Computer Science | FCS'11 | 113

114 Int'l Conf. Foundations of Computer Science | FCS'11 |

Towards a Multi-Formalism Model Checker Based on

SDES Description

Behrang Mehrparvar
1
, Mohammad Abdollahi Azgomi

1

1
 School of Computer Engineering, Iran University of Science and Technology, Tehran, Tehran, Iran

Abstract - The role of critical concurrent systems is

increasing in today ICT systems. Formal modeling techniques

and tools provide adequate and comprehensive solutions for

verification of these systems. High-level modeling formalisms

support system designers to express systems in an abstract

manner, using multiple formalisms to model various aspects of

complex systems, eases the process of system modeling. A

multi-formalism model checker is intended to provide various

methods of model checking regardless of the formalism

defining the model. The aim has been to use SDES description

as the base of a multi-formalism model checking framework.

By translation from various high-level models, the interface

model is used for generating low-level state spaces. In this

paper, a new multi-formalism model checking approach is

introduced based on SDES description as an interface

formalism. Furthermore, an architecture for a multi-

formalism model checking component integrated in PDETool,

an existing modeling tool, is provided.

Keywords: SDES description; Model checking; Multi-

formalism; Discrete event systems; State space generation.

1 Introduction

 Model checking as an instance of system verification was

independently introduced by Clarke and Emerson [1] and

Queille and Sifakis [2]. It provides an automated efficient

search in the state graph representing all reachable states of

the model of a system. The algorithmic search is intended to

indicate whether a specific temporal property, P, is satisfied in

a model structure, M, or not. Moreover, it can provide a

counterexample for further debugging of the system [3].

Comparing to other verification techniques, model checking is

a systematic, adequate and comprehensive method to verify

critical concurrent systems.

 As mentioned before, the main inputs of model checking

approach are system model and property specification. Most

model checking tools support low-level formalisms like

transition systems, discrete-time and continuous-time Markov

chains as models of systems. Others, such as AlPiNA [4],

UPPAAL [5] and SMART [6], support high-level modeling

formalisms. These formalisms are more adequate for modeling

large scale systems in an abstract manner. In such cases, the

model checker initially applies a state generation algorithm in

order to transform the high-level formalism into the low-level

transition system or Markov chain.

Another primary consideration that should be taken into

account in choosing an appropriate model checking tool is the

type of logics provided to specify the properties being checked

within the modeled system. From this point of view, various

model checking tools provide nondeterministic model

checking methods based on LTL [7] and CTL [1] temporal

logics. The tools, such as PRISM [8] [9], provide probabilistic

and stochastic model checking based on PCTL [10] and CSL

[11]. MRMC [12] also supports model checking for reward

models [13].

 Additionally, relying on a single high-level formalism is

not either illustrative enough to express various aspects of

large and complex systems. A multi-formalism modeling tool

can support the designers by providing multiple high-level

formalisms to model the system. In such cases, the developer

can usually extend the modeling capability by defining new

modeling languages based on an interface formalism. For

instance, SMART provides a specific language for modeling

systems as the core language. The user can specify extended

models by defining formalism-specific types and functions

[14]. Also, in Möbius [15], an abstract functional interface

(AFI) is provided in the form of C++ abstract classes. New

extended models can implement basic variables and actions

defined in the AFI by use of class inheritance [16].

 Although multi-formalism multi-solution tools provide

modeling, simulation and evaluation solutions for multiple

formalisms, they rarely support various methods of model

checking such as nondeterministic, probabilistic and stochastic

methods in an integrated framework. Having considered the

basic steps in model checking process as mentioned in [17], a

multi-formalism model checking tool is assumed to provide

four basic features. These features include the support of

multiple formalisms to provide high-level models of systems,

integrated simulation engine regardless of the formalism

representing the model, multiple property specification logics

and multiple methods of model checking.

 Accordingly, by applying a unified formalism as the core

interface modeling language of an integrated tool, a multi-

formalism model checker can be developed providing different

methods of model checking for a wider range of applications.

Introduced by Zimmermann [18], SDES description provides

Int'l Conf. Foundations of Computer Science | FCS'11 | 115

a unified abstract formalism for stochastic discrete-event

systems. Popular model classes, such as different extensions of

Petri nets, queuing networks and timed automata, can be

translated into SDES description.

 Furthermore, having applied SDES description as the

core formalism, PDETool [19] provides an integrated tool to

model, simulate and evaluate discrete-event systems. Also,

some important extensions of Petri nets, such as SPNs,

GSPNs, SANs and CSANs are implemented based on SDES

description [20]. Therefore, with respect to SDES as the core

interface formalism, a multi-formalism model checking

component can be integrated into PDETool to support

nondeterministic, probabilistic and stochastic model checking.

In this paper we introduce extension of PDETool with multi-

formalism model checking capability. For this purpose, a

general state space structure is defined and generated from

SDES description which can be used as the low-level input

model for various model checking methods.

 The remainder of the paper is organized as follows.

SDES description is described in section 2. The proposed

approach is introduced in section 3, by introducing property

specification approach, state space structure, generation

approach and finally the model checking methods. Section 4

provides an example to illustrate the proposed approach. In

section 5, an architecture for multi-formalism model checker

integrated in PDETool is proposed. Finally section 6

concludes the paper.

2 SDES Description

Different classes of stochastic discrete-event systems

share common characteristics. SDES description [18] is a

unified abstract modeling formalism that represents these

common characteristics.

DEFINITION 1. (SDES Description). SDES description is

defined as a tuple SDES = (SV*, A*, S*, RV*), where:

• SV* is a finite set of state variables,

• A* is the finite set of actions,

• S* is the sort function defining the range of state variables

or action variables. The sort of a variable specifies the

values that might be assigned to it,

• RV* is defined as the set of reward variables corresponding

the quantitative evaluation of the model. Every element in

RV* specifies one reward variable and maps the stochastic

process to a real value.

By associating values to each state variable allowed by

the sort function, ∑ is defined as all theoretically possible

states of a certain SDES model:

 (1)

A state variable svi usually corresponds to a passive

element of the SDES, like a place of a Petri net or a queue of a

queuing model. Each state variable has the following

attributes:

 (2)

where Val0* is a function representing the initial value of each

state variable and Cond* indicates whether a state variable is

allowed in a specific model state or not.

 (3)

 An action a ∈ A* of SDES describes possible state

changes of the modeled system. It is composed of the

following attributes:

 (4)

Each item is defined as follows:

• Pri* associates a global priority to every action,

• The enabling degree Deg* of an action specifies the

number of activities that are permitted to run concurrently

in any state,

• The action variables Vars* define a model-dependent set of

variables Vars*(a) of an action a with individual sorts,

• The value of the Boolean enabling function Ena* of an

action for a state returns if it is enabled or not,

• Delay* describes the time that must elapse while an action

is enabled in an activity until it finishes,

• The Weight* of an action is a real number that defines the

probability to select it for execution in relation to other

weights,

• Exec* defines the state changes that occur as a result of an

action execution. So actions change the state and Exec* is

a function that associates a destination state to a source

state for each action.

A reward variable rvar* ∈ RV* is defined as a tuple

composed of the following attributes:

 (5)

where the items respectively denote state rewards, impulse

rewards, the observation interval and a variable that

determines whether the resulting measure should be computed

as an average over time or as accumulated.

3 The Proposed Approach

 The basic model checking process consists of four main

steps of system modeling, property formalization, model

checking, and counterexample simulation. However, a multi-

formalism model checker is intended to support the following

features:

Feature 1: Multiple formalisms to provide high-level models

of systems, e.g. SPNs, SANs and PEPA.

Feature 2: Integrated simulation engine regardless of the

formalism representing the model.

116 Int'l Conf. Foundations of Computer Science | FCS'11 |

Feature 3: Multiple property specification logics, e.g. CTL,

PCTL and CSL.

Feature 4: Multiple methods of model checking, e.g.

nondeterministic, probabilistic and stochastic.

 The proposed approach applies three adaptations in the

basic model checking process in order to gain the above

features. Figure 1 illustrates the process of multi-formalism

model checking.

Figure 1. The proposed multi-formalism model checking approach

 In order to support multiple property specifications,

property mapping functions are defined to enhance the model

checker in order to derive atomic propositions. Also, the

modeling step itself is broken down into three separate phases

to support multiple formalisms as input. After modeling the

system in high-level formalisms, these models are later

translated into SDES description. Afterwards, a state space

generation algorithm generates a low-level general state space

(GS), which is suited for various model checking algorithms.

 Using a general state space as model structure, various

methods of model checking can be applied on multiple high-

level formalisms. In case of dissatisfaction of the model

checking algorithm, a counterexample is provided in terms of

low-level formalism which can be later retranslated into SDES

description. Using SimGine [19] interface integrated in

PDETool, the counterexample can be simulated and also

animated in the respective high-level formalism.

3.1 Property Specification

 Properties in temporal logic are specified based on

atomic propositions. Atomic propositions are simple known

facts that formalize basic temporal characteristics of the

system. Regardless of the type of logic representing the

specification, the model checking method should be able to

check properties in a labeled model. A labeled model is a

model in which all states are labeled by items of a set

containing atomic propositions. While the existence of an

atomic proposition in a set is generally represented by Boolean

values, the states generated from SDES static model are based

on the values of not necessarily Boolean state variables. As a

result, each state variable cannot be directly considered as an

atomic proposition. Therefore, a set of mapping functions,

Map*, is defined as follows to derive each atomic proposition,

api, regarding the values of state variables:

 (6)

Each atomic proposition and the corresponding mapping

function are directly derived from the property being checked.

As an example, consider the following temporal property in

CTL:

 AG((x + y < 2) or (z > 3)) (7)

where x, y and z are state variables in SDES static model.

Consequently, two atomic propositions, ap1 and ap2, are either

automatically or manually derived from the property with the

following mapping functions:

 (8)

 (9)

Finally the model checking algorithm checks the provided

specification, regarding the set of derived mapping functions.

The resulted property is mapped as follows:

 AG (ap1 or ap2) (10)

By defining the mapping functions considering the input

property specifications, the labeling of each state is

simultaneously applied while the state space is generated.

3.2 State Space Generation

 As mentioned before, in order to check different types of

properties on models, the state space should be generated in a

suitable form of structure. For nondeterministic, probabilistic

and stochastic model checking, labeled transition systems,

discrete-time and continuous-time Markov chains are

respectively used by model checking tools. However, in order

to have a multi-formalism model checker, a general structure

should be defined to cover all the items provided in the basic

formalisms mentioned above.

DEFINITION 2. (General State Space). A general state space

is a tuple GS = (S, Act, trans, I, AP, L, R, P, ρ, ℓ), where:

• S is a set of states,

• Act is a set of actions,

• trans ⊆ S×Act×S is a set of transitions, with (s1,α,s2)∈

trans, α∈ Act and s1,s2∈ S,

• I ⊆ S is a set of initial states,

• AP is a set of atomic propositions,

Int'l Conf. Foundations of Computer Science | FCS'11 | 117

• L: S → 2
AP

 is a labeling function which assigns to each

state s∈ S the set L(s) of atomic propositions that are valid

in the state,

• R: S×S → ℝ ≥ 0 is the transition rate matrix,

• P: S×S→[0,1] is the transition probability matrix where

 for all s∈ S,

• is a state reward function which defines the

reward acquired in a state,

• is a transition reward function which defines

the reward acquired each time a transition is fired.

Considering the items defined in Definition 2, the GS
structure is inclusively considered as a super class for transition
system, DTMC, CTMC and MRM. Consequently, it is used as
the structure for representing the state space capable for
nondeterministic, probabilistic and stochastic model checking.

In order to use GS as the core state space structure for

multi-formalism model checking, the items mentioned in

Definition 2 should be directly generated from SDES

description as follows:

• All states in the SDES dynamic model are members of the

state set in GS:

 (11)

• All actions in the SDES model are members of the actions

set in GS:

 (12)

• Any transition in GS is resulted by firing an SDES

execution function:

 (13)

• The initial states in GS are generated by setting the values

of each state variable in SDES static model to its initial

value:

 (14)

• Regarding each mapping function derived from the given

property, an atomic proposition is defined as follows:

 (15)

• The result of the labeling function for each state on a

specific atomic proposition is derived from its respective

mapping function:

 (16)

• The probability matrix is derived from the weight of

executed actions:

 (17)

• The transition rate matrix is derived from the delay of

executed actions:

 (18)

• State rewards can be directly generated from rrate*:

 (19)

• Transition rewards can be directly generated from rimp*

one executed action variants AV*:

 (20)

 According to the mappings mentioned above, the state

generation algorithm for SDES description is defined as in

Figure 2.

Algorithm#1: State Space Generation

Input: SDES description

Output: General State Space GS

For all svi in SV* do Ii = Val0(svi)

S ← I; N ← I

For all api in AP

If Then

L(I) ←L(I) ⋃ api
While N != {}

Begin

NS ← N; N ← {}

For all Oi in NS

For all avi in AV*

If Ena(avi,Oi)AND Count(avi.a)<Deg(avi.a)

Then

Begin

σ = Exec(avi,Oi);

If (S ← S ⋃ σ) Then
Begin

Act ← Act ⋃ avi
Trans ← trans ⋃ (Oi,avi,σ)
N ← N ⋃ σ
P(Oi,σ) = Weight(avi)

 R(Oi,σ) = Delay(avi)

ρ(σ) = rrate(σ)

ℓ(oi,σ) = rimp(avi)

For all api in AP

If Then

L(σ) ←L(σ) ⋃api
End If

End For

End While

Figure 2. State space generation algorithm

3.3 The Model Checking Method

A multi-formalism model checker should provide three

basic methods of model checking including nondeterministic,

probabilistic and stochastic methods. Each method is applied

on specific logics and state space structures.

Nondeterministic model checking algorithm checks the

properties specified in LTL [7] or CTL [1] logics in labeled

transition systems. In LTL model checking, a Büchi automata

A is constructed from the LTL property and by constructing a

product transition system of TS⨂A the algorithm tries to

disprove the satisfaction of the property [21]. However, in

CTL model checking, the algorithm recursively calculates the

satisfaction set of states for the property [1]. In probabilistic

118 Int'l Conf. Foundations of Computer Science | FCS'11 |

and stochastic model checking, the system is modeled in

labeled discrete-time or continuous-time Markov chain and the

algorithm is able to check PCTL [10] or CSL [11] properties

on the defined model in a recursive manner [23]. However,

model checking of reward models can also be applied on

discrete-time or continuous-time Markov reward models. In

this case, PRCTL [22] or CSRL [11] logic is used to specify

properties [22]. MRMC [12] model checker provides

probabilistic and stochastic model checking on DMRMs and

CMRMs [13].

As general state space is a super class of labeled transition

system, DTMC, CTMC, and MRM, it can be used as the low-

level model structure in a multi-formalism model checker that

provides all nondeterministic, probabilistic and stochastic

model checking methods mentioned above. However, as some

of the elements in general state space are not used in all

methods of model checking, Table I illustrates how each type

of action is treated in various methods of model checking.

Table I . The view of types of actions in different methods of model checking

Method of
Model

Checking

Type of Action

Nondeterministic Probabilistic Stochastic

Nondeterministic ND ND ND

Probabilistic ND PB ND

Stochastic ND ND SC

4 An Illustrative Example

 In this section an example for multi-formalism model

checking on SDES description is provided. In this example, the

SDES model is translated from an SPN high-level model. This

model showed in Figure 3 represents a system containing two

processors, two memory blocks and one common bus.
ProcsReady

ProcsInit

Mem1wait Mem2wait
Mem1

Mem2

Mem1begin mem2begin

GBus

MemReq

Mem1Req Mem2Req

Mem1Init Mem2Init

Mem1Release Mem2Release

0.1

0.6 0.7

0.5 0.5

1 1

Figure 3 . SPN representation of a system with two processors and two

memory blocks

 As mentioned before, the main inputs of a model checker are

the state space and the property specifications. Section 4.1

defines the SDES description of the above example and also

the regarding generated state space. Section 4.2 provides the

property specifications and the final results.

4.1 Modeling the system

 The SPN model is firstly transformed into SDES

description using the approach introduced in [18]. The

corresponding SDES model of the above example is shown in

Figure 4.

State variables:

SV = {ProcsReady, ProcsInit, Mem1wait, Mem2Wait, Mem1, Mem2,

Mem1begin, Mem2begin,GBus}

Actions:

A = {MemReq, Mem1Req, Mem2Req, Mem1Init,Mem2Init,

Mem1Release, Mem2Release}

Sort functions: S (.) = {0, 1, 2}

Condition functions: Cond (.,.) = True

Initial values:

Val0(ProcsReady) = 2 Val0(ProcsInit) = 0

Val0(Mem2wait) = 0 Val0(Mem1) = 1

Val0(Mem1begin) = 0 Val0(Mem2begin) = 0

Val0(Mem1wait) = 0 Val0(Mem2) = 1

Val0(GBus) = 1

Degrees: Deg (.) = 1

Action variables: Vars(.) = {}

Delays:

Delay(MemReq) = 0.1 Delay(Mem1Req) = 0

Delay(Mem1Init) = 0 Delay(Mem2Init) = 0

Delay(Mem2Release) = 0.7 Delay(Mem2Req) = 0

Delay(Mem1Release) = 0.6

Weights:

Weight(MemReq) = 1 Weight(Mem1Req) = 0.5

Weight(Mem1Init) = 1 Weight(Mem2Init) = 1

Weight(Mem2Release) = 1 Weight(Mem2Req) = 0.5

Weight(Mem1Release) = 1

All possible states: Σ={0,1,2}3

Figure 4. SDES description of a system with two processors and two

memory blocks

Considering the algorithm of Figure 2, the general state

space, GS, regarding the above SDES description is generated

as shown in Figure 5.

4.2 Property Specification and the Results

For the model of the example in Figure 3, the following

property specifications are checked on the model:

1. The system will reach to a state where both memory blocks

are accessed.

2. The system will reach to a state with 50% probability

where a processor would wait for memory block 1 in 5

Int'l Conf. Foundations of Computer Science | FCS'11 | 119

next steps while it is waiting for the common bus at the

current time.

3. The system will reach to a state where a processor would

be available in 4 seconds.

Initial states: I ={1}

States: S={1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,

15, 16, 17, 18}

Actions: Act={MemReq,Mem1Req,Mem2Req,

Mem1Init,Mem2Init,Mem1Release,

Mem2Release}

Probabilities:

Rates:

State rewards: ρ (.) =0

Transition rewards: ℓ(.,.) =0

Figure 5. GS representation of a system with two processors and two memory

blocks

According to section 3.1, the set of atomic propositions

and the regarding mapping functions for the properties are

defined as follows:

Consequently, properties are respectively specified in CTL,

PCTL and CSL logics as follows:

Finally, the system model and the property specification are

provided to the multi-formalism model checker. Using the

approach introduced in 3.3, the model checker applies specific

model checking methods on the unique GS regarding the logic

representing the properties. Therefore, nondeterministic,

probabilistic and stochastic model checking algorithms are

respectively applied on p1, p2 and p3 in order to find the

satisfaction sets of states. Table II shows the result using

MRMC model checker.

Table II . Model checking results for the example

Model checking method Property Satisfaction set

Nondeterministic p1 {}

Probabilistic p2 {6, 8, 9, 10, 14, 16, 17, 18}

Stochastic p3 {1, 2, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,

16, 17, 18}

5 The Proposed Architecture

 In order to provide a multi-formalism model checker, the

tool must be integrated into a framework providing multi-

formalism modeling and simulation engine. On the other hand,

a high-level interface modeling formalism as the core structure

eases the collaboration of these components. The architecture

of PDETool [19] contains Model Editor and Simulation

Engine.

Having considered the multi-formalism model checking

approach proposed in Figure 1, the architecture of the multi-

formalism model checker integrated in PDETool is illustrated

in Figure 6.

SCmcPBmcNDmc

Model Checking Engine

Model Editor

SPN

Model

Editor

CSAN

Model

Editor

PEPA

Model

Editor

State Space Generator

ASgen RUNasm

SimGine

Model

Animator

H
ig

h
-L

ev
el

S
D

E
S
 L

ev
el

L
o
w

-L
ev

el

PSgui

PStrans

PSmapper

Property

Formalizer

Counterexample Engine

CXgen CXtrans

Figure 6 . The proposed architecture for a multi-formalism model checker

integrated into PDETool

The model checking component integrated in PDETool

framework is composed of four basic components arranged in

three layers. Each component is composed of the basic

components with specific functionalities.

The property formalizer component which is responsible

for defining system requirements and is composed of the

following components:

• PSgui: Property specification graphical user interface

provides an environment to specify temporal logic

properties based on the regarding high-level formalisms.

• PStrans: Property specification translator is responsible for

translating properties to SDES formalism.

• PSmapper: Atomic propositions are derived through

PSmapper and the mapping functions are defined

according to the approach introduced in 3.1.

120 Int'l Conf. Foundations of Computer Science | FCS'11 |

• The state space generation component which is responsible

for providing low-level state space structures for the

models includes the following components:

• ASgen: Assembly generator generates executable runtime

assemblies (RUNasm) based on the SDES static models.

• RUNasm: Runtime assemblies are executable assemblies

that form SDES dynamic models. Running the RUNasm

assembly using the approach introduced in 3.2, the low-

level general state space of the model is generated.

 The model checking component implements the muti-

formalism model checking approach introduced in 3.3 using

the following components:

• NDmc: This component applies nondeterministic model

checking methods on LTL and CTL temporal logics.

• PBmc: Probabilistic model checking is applied using PBmc

for PCTL and PRCTL temporal logics.

• SCmc: Properties formalized in CSL and CSRL temporal

logics are checked in stochastic model checking

component.

While the model checking engine provides the

satisfaction sets of states, the counter example engine is

responsible for providing counterexamples using the

following components:

• CXgen: Counterexample generator is responsible for

providing the states not satisfying the properties.

• CXtrans: Counterexample translator gets the

counterexamples provided by CXgen and translates them

to sequences of SDES actions that lead to the non-

satisfying states.

 The SDES level counterexamples provided by CXtrans

are used in SimGine in order to simulate the execution path

that did not satisfy the specified property. Later, the animator

component shows the counterexample in the high-level model

by re-translating it from SDES level.

6 Conclusions

 In this paper, we proposed a multi-formalism model

checking approach that provides four basic features in

PDETool framework. These features consist of supporting

multiple high-level formalisms for modeling, multiple property

specification logics, multiple methods of model checking and

providing a simulator engine independent of the model class.

Firstly, by integrating the model checking tool in PDETool,

multiple model classes such as SPNs, CSANs and PEPAs can

be modeled and translated into SDES description. Secondly,

by defining a set of mapping functions, atomic propositions can

be derived from SDES variables. Various property

specifications can be defined in LTL, CTL, PCTL and CSL,

based on defined atomic propositions. Thirdly, by defining a

general state space structure as a super-class of labeled

transition systems, DTMCs, CTMCs, DMRMs or CMRMs,

nondeterministic, probabilistic and stochastic model checking

techniques can be applied, respectively. And finally, by using

SDES as the base interface formalism in PDETool, the

simulation engine, SimGine, can be used in order to determine

the counterexamples regardless of the high-level formalism

describing the model.

7 References

[1] E. M. Clarke and E. A. Emerson. ―Design and synthesis of
synchronization skeletons using branching time temporal logic‖ in Logic
of Programs, vol. 131 of LNCS, pp. 52–71, Springer, 1981.

[2] J. P. Queille and J. Sifakis. ―Specification and verification of concurrent
systems in CESAR‖. In Proc. 5th International Symposium on
Programming, 1982, pp. 337–351.

[3] E. Emerson. ―Meanings of Model Checking‖. In Concurrency,
Compositionality, and Correctness, Design and synthesis of
synchronization skeletons using branching time temporal logic, vol.
5930 of LNCS, pp. 237-249. Springer, 2010.

[4] ―AlPiNA: an Algebraic Petri Net Analyzer‖. Internnet:
www.alpina.unige.ch, [Sep. 18, 2010].

[5] ―UPPAAL‖. Internet: www.uppaal.com, [Aug. 24, 2010].
[6] ―SMART project‖. Internet: www.cs.ucr.edu/~ciardo/SMART, [Oct. 10,

2010].
[7] A. Pnueli. ―The temporal logic of programs‖. In Proc. 18th IEEE

Symposium on Foundations of Computer Science (FOCS), 1977, pp.
46–67.

[8] ―PRISM - Probabilistic Symbolic Model Checker‖. Internet:
www.prismmodelchecker.org, [Aug. 26 2010].

[9] M. Kwiatkowska , G. Norman , D. Parker. ―PRISM: probabilistic model
checking for performance and reliability analysis‖. ACM SIGMETRICS
Performance Evaluation Review, vol. 36, n.4, Mar. 2009.

[10] H. Hansson and B. Jonsson. ―A logic for reasoning about time and
reliability‖. Formal Aspects of Computing, vol. 6, pp. 512-535, 1994.

[11] A. Aziz , K. Sanwal , V. Singhal , R. K. Brayton, ―Verifying Continuous
Time Markov Chains‖ in Proc. 8th International Conference on
Computer Aided Verification, 1996, pp. 269-276.

[12] ―Markov Reward Model Checker‖. Internet: www.mrmc-tool.org/trac,
[Sep. 10, 2010].

[13] J. Katoen, I. Zapreev, E. Hahn, H. Hermanns and D. Jansen. ―The ins
and outs of the probabilistic model checker MRMC‖. QEST IEEE CS
Press, pp. 167–176, 2009.

[14] G. Ciardo, R. Jones, A. Miner, R. Siminiceanu. ―Logic and stochastic
modeling with SMART‖. In Computer Performance, Vol. 2794 of
LNCS, 2003, pp. 78-97.

[15] ―The Möbius Tool - Overview of Features‖. Internet:
www.mobius.illinois.edu, [Aug. 15, 2010].

[16] J. M. Doyle, ―Abstract Model Specification Using the Möbius Modeling
Tool‖, M.S. thesis, University of Illinois, USA, 2000.

[17] C. Baier , J.P. Katoen. Principles of Model Checking. The MIT Press,
2008.

[18] A. Zimmermann. Stochastic Discrete-Event Systems: Modeling,
Evaluation and Applications. Heidelberg: Springer, 2008.

[19] A. Khalili, A. Jalaly Bidgoly, M. Abdollahi Azgomi, ―PDETool: A
Multi-formalism Modeling Tool for Discrete-Event Systems Based on
SDES Description‖, in Proc. 30th International Conference on
Applications and Theory of Petri Nets, 2009, pp. 22-26.

[20] A. Jalaly Bidgoly , A. Khalili , M. Abdollahi Azgomi, ―Implementation
of Coloured Stochastic Activity Networks within the PDETool
Framework‖, in Proc. of Third Asia International Conference on
Modeling & Simulation, 2009, pp.710-715.

[21] M. Y. Vardi and P. Wolper. ―An automata-theoretic approach to
automatic program verification‖, In Proc. of 1st Annual Symposium on
Logic in Computer Science (LICS), 1986, pages 332–344.

[22] A. Bianco and L. de Alfaro. ―Model checking of probabilistic and
nondeterministic systems‖. In Proc. Foundations of Software
Technology and Theoretical Computer Science, 1995, pp. 499-513.

[23] M. Kwiatkowska, G. Norman, and D. Parker. ―Stochastic model
checking‖, in Formal Methods for Performance Evaluation, vol. 4486 of
LNCS, pp. 220—270, Springer, 2007.

Int'l Conf. Foundations of Computer Science | FCS'11 | 121

A Higher-Order Computational Model for Cooperative Constraint
Programming

Rafael del Vado Vírseda and Fernando Pérez Morente
Departamento de Sistemas Informáticos y Computación

Universidad Complutense de Madrid
Facultad de Informática, Madrid, Spain

rdelvado@sip.ucm.es fperezmo@fdi.ucm.es

Abstract— This paper presents a theoretical framework
for the integration of the cooperative constraint solving of
several algebraic domains into higher-order functional and
logic programming on λ-abstractions, using the instance
CFLP(C) of the generic Constraint Functional Logic Pro-
gramming (CFLP) scheme [7] over a so-called higher-order
coordination domain C. We provide this framework as a
powerful computational model for the higher-order coope-
ration of algebraic constraint domains over real numbers
R and integers FD, which has been useful in practical
applications involving the hybrid combination of its com-
ponents, so that more declarative and efficient solutions can
be promoted. Our proposal of computational model has been
proved sound and complete with respect to the declarative
semantics provided by the CFLP scheme, and enriched
with new mechanisms for modeling the intended cooperation
among the algebraic domains and a higher-order constraint
domain h equipped with a sound and complete constraint
solver for solving higher-order equations.

Keywords: higher-order cooperation, constraint domains, func-
tional and logic programming, logic in computer science, models
of computation, hybrid computation

1. Introduction
The effort to identify suitable theoretical frameworks for
higher-order functional logic programming has grown in re-
cent years [2], [8], [9], [15]. The high number of approaches
in this area and their different scopes and objectives indicate
the high potential of such a paradigm in modeling complex
real-world problems [12].

Functional logic programming [3] is the result of integra-
ting two of the most successful declarative programming
styles: functional and logic programming, in a way that
captures the main advantages of both. Whereas higher-
order programming is standard in functional programming,
logic programming is in large part still tied to the first-
order world. Only a few higher-order logic programming
languages, most notably λ-Prolog [10], use higher-order
logic for logic programming and have shown its practical
utility, although the definition of evaluable functions is
not supported. Moreover, higher-order constructs such as

function variables and λ-abstractions of the form λx. e are
widely used in functional programming and higher-order
logic programming languages, where λ-terms are used as
data structures to obtain more of the expressivity of higher-
order functional programming.

In this research area, [14], [15] proposes a complete
theoretical framework for higher-order functional logic
programming as an extension to the setting of the simply
typed lambda calculus of a first-order rewriting logic,
where programs are presented by Conditional Pattern
Rewrite Systems (CPRS for short) on lambda abstractions.
For a first impression of this higher-order programming
framework, the following CPRS illustrates the syntax
of patterns on lambda abstractions to define a classical
higher-order function map for the application of a given
function to a list of elements.

map (λu. F (u), []) = []
map (λu. F (u), [X |Xs]) = [F (X) |map (λu. F (u),Xs)]

The first contribution of this paper is to present a theoretical
framework for the integration of higher-order functional
logic programming with constraint solving, extending
the programming language with the capacity of solving
constraints over a given algebraic constraint domain. The
term constraint is intuitively defined as a relationship
required to hold among certain entities as variables and
values (e.g., X + Y ≤ 0). We can take for instance the
set of integers or the set of real numbers with addition,
multiplication, equality, and perhaps other functions and
predicates. Among the formalisms for the integration of
constraints in functional logic programming we use in this
work the Constraint Functional Logic Programming scheme
CFLP(D) [7] which supports a powerful combination of
functional and constraint logic programming and can be
instantiated by any constraint domain D given as parameter
which provides specific data values, constraints based on
specific primitive operations, and a dedicated constraint
solver. There are different instances of the scheme for
various choices of D, providing a declarative framework
for any chosen domain. Useful constraint domains include
the Herbrand domain H which supplies equality constraints
over symbolic terms, the algebraic domain R which supplies

122 Int'l Conf. Foundations of Computer Science | FCS'11 |

arithmetic constraints over real numbers, and the algebraic
domain FD which supplies arithmetic and finite domain
constraints over integers. As a concrete example of a CPRS
integrating higher-order functional logic programming with
algebraic constraints in R, we can consider the following
variant of a classical higher-order function diff to compute
the differential of a function f at some numeric value X
under some arithmetic constraints over real numbers in the
conditional part (⇐) of program rules.

diff :: (real → real) → real → real

diff (λu. u,X) = 1
diff (λu. sin (F (u)), X) = cos (F (X)) ∗ diff (λu. F (u), X)

⇐ π/4 ≤ F (x) ≤ π/2
diff (λu. ln (F (u)), X) = diff (λu. F (u), X)/F (X)

⇐ F (X) 6= 0

In contrast to first-order programming, we can easily
formalize functions to be differentiated, or to compute
the inverse operation of the differentiation (integration) by
means of narrowing [14] as a suitable operational semantic,
a transformation rule which combines the basic execution
mechanism of functional and logic languages, namely rewrit-
ing with unification. For instance, we can compute by nar-
rowing the substitution {F 7→ λu. sin (u)} as a solution of
the goal λx. diff (λu.ln (F (u)), x) == λx. cos (x)/sin (x)
because the constraint λx. (π/4 ≤ x ≤ π/2→ sin (x) 6= 0)
is evaluated to true by an R-constraint solver.

Practical applications in higher-order functional logic pro-
gramming, however, often involve more than one “pure”
domain (i.e., H, R, FD, etc.), and sometimes problem
solutions have to be artificially adapted to fit a particular
choice of domain and solver. The cooperative combination
of constraint domains and solvers has evolved during the
last decade as a relevant research issue that is raising an in-
creasing interest in the constraint programming community.
An important idea emerging from the research in this area is
that of hybrid constraint domain (e.g., H ⊕ R ⊕ FD [1]),
built as a combination of simpler pure domains and designed
to support the cooperation of its components, so that more
declarative and efficient solutions for practical problems can
be promoted.

2. Higher-Order Algebraic Constraint
Cooperation
The second contribution of this work is to present a for-
mal framework for the cooperation of the algebraic con-
straints domains FD and R in an improved version of
the CFLP(D) scheme [7], now useful for higher-order
functional and logic programming on lambda abstractions.
As a result, we provide a powerful theoretical framework for
higher-order constraint functional logic programming with
lambda abstractions and decidable higher-order unification
in a new higher-order constraint domain h, which leads to
greater expressivity. As a motivation for the rest of the paper,
we present in this section an example of CPRS -program

involving the cooperation of the algebraic constraint domains
FD andR to illustrate the different cooperation mechanisms
that are supported by our theoretical framework, as well as
the benefits resulting from the cooperation in the higher-
order functional logic programming setting.

In engineering, a common problem is the approxima-
tion of a complicated continuous function by a simple
discrete function (e.g., the approximation of GPS satellite
coordinates). Suppose we know a real function (given by
a lambda abstraction λu. F (u)) but it is too complex to
evaluate efficiently. Then we could pick a few approximated
(integer) data points from the complicated function, and
try to interpolate those data points to construct a simpler
function, for example, a polynomial λu. P (u). Of course,
when using this polynomial function to calculate new (real)
data points we usually do not receive the same result as
when using the original function, but depending on the
problem domain and the interpolation method used the gain
in simplicity might offset the error.

disc :: (real → real) → (int → int)
disc (λu. F (u)) = λu. P (u) ⇐

domain [X] 0 N , labeling [ff] [X],
X
 RX , Y
 RY ,
|F (RX)− RY | < 1,
collection [X,Y] C, interpolation [lg] C P

The aim of this example is to approximate a continuous func-
tion represented by a lambda abstraction λu. F (u) over real
numbers by a discrete polynomial function λu. P (u) over
integer numbers. In this case, we use the FD-constraints
domain [X] 0 N , labeling [ff] [X] to generate each value
of the discrete interval [0..N], according to a first-fail (or ff)
labeling option [7]. In order to model the intended coope-
ration and communication between the constraint domains
FD and R we use a special kind of hybrid constraints

called bridges, as a key tool for communicating constraints
between different algebraic constraint domains. The first
bridge constraint X
 RX maps each integer value of
X into an equivalent real value in RX . By applying the
higher-order functional variable F to RX we obtain the R-
constraint |F (RX) − RY | < 1. From this constraint, the
R-solver computes (infinite) real values for RY . However,
because of the second bridge constraint Y
 RY , each
real value assigned to RY by the constraint solving process
causes the variable Y to be bound only to an equiva-
lent integer value. By means of the primitive constraint
collection [X,Y] C we can collect all the pairs (X,Y)
generated by the labeling-solving process into a set C.
Finally, interpolation [lg] C P finds a polynomial which
goes exactly through the points collected in C by means
of the Lagrange Interpolation (lg) method. For instance, we
can consider the following goal disc (λu. 4 ∗ u − u2) ==
λu. P (u) involving the continuous function F as λu. 4∗u−
u2 with N = 4. We obtain the set of integer pairs (xi, yi) in
C = {(0, 0), (1, 3), (2, 4), (3, 3), (4, 0)}. For this particular

Int'l Conf. Foundations of Computer Science | FCS'11 | 123

case, it is easy to check that this computed answer is simply
{P 7→ λu. 4 ∗ u− u2}.

3. A Higher-Order Constraint Domain
Taking the generic scheme CFLP(D) as a formal basis for
foundational and practical issues concerning the cooperation
of algebraic constraint domains, in this section we focus
on the formalization of a higher-order constraint domain h
which supplies λ-abstractions and equality constraints over
λ-terms in the instance CFLP(h). First, we introduce the
preliminary notions of our higher-order theoretical frame-
work to formalize the constraint domain h along with a
suitable h-constraint solver based on an approach similar to
the Huèt’s procedure of higher-order pre-unification [8], [9],
[12].

3.1 Preliminary notions
We assume the reader is familiar with the notions and
notations pertaining to λ-calculus (see, e.g., [12] for more
examples and motivations). The set of types for simply
typed λ-terms is generated by a set B of base types (as
e.g., bool , real , int) and the function type constructor “→".
Simply typed λ-terms are generated in the usual way from
a signature F of function symbols and a countably infinite
set V of variables by successive operations of abstraction
and application. We also consider the enhanced signature
F⊥ = F ∪ Bot, where Bot = {⊥b | b ∈ B} is a
set of distinguished B-typed constants. The constant ⊥b
is intended to denote an undefined value of type b. We
employ ⊥ as a generic notation for a constant from Bot.
A sequence of syntactic objects o1, . . . , on, where n ≥ 0,
is abbreviated by on. For instance, the simply typed λ-
term λx1, . . . , λxk. (· · · (a t1) · · · tn) is abbreviated by
λxk. a(tn). Substitutions γ ∈ Subst(F⊥,V) are finite type-
preserving mappings from variables to λ-terms, denoted by
{Xn 7→ tn}, and extended homomorphically from λ-terms
to λ-terms. By convention, we write {} for the identity
substitution, tγ instead of γ(t), and γγ′ for the composition
γ′ ◦ γ.

The long βη-normal form of a λ-term t, denoted by
tlηβ , is the η-expanded form of the β-normal form of t. It
is well-known that s =αβη t if slηβ =α tlηβ . Since βη-
normal forms are always defined, we will in general assume
that λ-terms are in long βη-normal form and are identified
modulo α-conversion. For brevity, we may write variables
and constants from F in η-normal form, e.g., X instead
of λxk.X(xk). We assume that the transformation into long
βη-normal form is an implicit operation, e.g., when applying
a substitution to a λ-term. With these conventions, every λ-
term t has an unique long βη-normal form λxk. a(tn), where
a ∈ F⊥∪V and a() coincides with a. The symbol a is called
the root of t and is denoted by hd(t). We distinguish between
the set T (F⊥,V) of partial λ-terms and the set T (F ,V) of
total λ-terms. The set T (F⊥,V) is a poset with respect to

the approximation ordering v, defined as the least partial
ordering such that:

λxk.⊥ v λxk. t t v t s1 v t1 · · · sn v tn
λxk. a(sn) v λxk. a(tn)

A pattern [9] is a λ-term t for which all subterms t|p =
X(tn), with X ∈ FV(t) a free variable of t and p ∈
MPos(t) a maximal position in t, satisfy the condition that
t1↓η, . . . , tn↓η is a sequence of distinct elements of the set
BV(t, p) of bound variables abstracted on the path to position
p in t. Moreover, if all such subterms of t satisfy the addi-
tional condition BV(t, p) \ {t1↓η, . . . , tn↓η} = ∅, then the
pattern t is fully extended. It is well known that unification
of patterns is decidable and unitary [9]. Therefore, for every
t ∈ T (F⊥,V) and pattern π, there exists at most one matcher
between t and π, which we denote by matcher(t, π).

3.2 The higher-order constraint domain h
Intuitively, a constraint domain D provides data values and
constraints oriented to some particular application domain.
In our higher-order setting, we need to formalize a special
higher-order constraint domain h to support computations
with symbolic equality over λ-terms of any type. Formally,
it is defined as follows:

Definition 1 (h-domain): The higher-order constraint do-
main h is a structure 〈Dh,==h〉 such that the carrier set
Dh coincides with the set of ground patterns (i.e., patterns
without free variables) over any type, and the function
symbol == is interpreted as strict equality over Dh, so that
for all t1, t2, t ∈ Dh, one has ==h ⊆ D2

h × Dh, where
t1 ==h t2 → t (i.e., (t1, t2, t) ∈ ==h) iff some of the
following three cases hold:

(1) t1 and t2 are one and the same total λ-term in Dh, and
true w t.

(2) t1 and t2 have no common upper bound in Dh w.r.t.
the approximation ordering v, and false w t.

(3) t = ⊥.

An equality constraint (or simply, h-constraint) is a multiset
{{s, t}}, written s == t, where s, t ∈ T (F⊥,V) are λ-
terms of the same type. The set of solutions of an equality
constraint s == t is defined as follows: Soln(s == t) =
{γ ∈ Subst(F⊥,V) | tγ ==h sγ → true}. Any set E of
strict equations is interpreted as conjunction, and therefore
Soln(E) =

⋂
(s== t)∈E Soln(s == t).

3.3 The h-constraint solver
Solving equality and disequality constraints in first-order
term algebras (which is also known as unification) is the
most famous symbolic constraint solving problem. In the
higher-order case, higher-order unification is a powerful
method for solving equality h-constraints between λ-terms

124 Int'l Conf. Foundations of Computer Science | FCS'11 |

and is currently used in theorem provers [15]. However,
one of the major obstacles for reasoning in the higher-order
case is that unification is undecidable. However, in this
subsection we examine a decidable higher-order unification
case of patterns by means of the development of a h-
constraint solver for the higher-order constraint domain h,
now supporting an improved treatment of the strict equality
== as a built-in primitive function symbol, rather than a
defined function.

Definition 2 (States): The constraint solver Solverh

for the higher-order domain h acts on states of the form
P ≡ 〈E | K〉, where E is a set of strict equality constraints
s == t between λ-terms s, t, and K is a set of patterns
intended to represent and store computed values in the
sense of [14], [15] during the constraint solving process.
The meaning of a state P ≡ 〈E | K〉 is as follows: [[〈E | K〉]]
= {γ ∈ Soln(E) | Kγ is a set of values }. We note that
[[〈E | K〉]] = ∅ whenever K is not a set of values. In the
sequel, we denote this state by fail and call it failure
state.

Solving a set of strict equality h-constraints amounts to
computing h-derivations, i.e., sequences of transformation
steps.

Definition 3 (Derivations): A h-derivation of a set E of
strict equality h-constraints is a maximal finite sequence of
transformation steps: P0 ≡ 〈E | ∅〉 ≡ 〈E0 | K0〉 ⇒σ1 P1 ≡
〈E1 | K1〉 ⇒σ2 · · · ⇒σm Pm ≡ 〈Em | Km〉, between states
P0, P1, . . ., Pm, such that Pm 6= fail is a final state, i.e.,
a non failure state which can not be transformed anymore.

Definition 4 (λ-constraint solver):

(1) Each transformation step in a h-derivation Π corres-
ponds to an instance of some transformation rule of
the h-constraint solver Solverh described below. We
abbreviate Π by P0 ⇒∗σ Pm, where σ = σ1 . . . σm.

(2) Given such a set E of strict equality h-constraints, the
set of computed answers produced by the h-constraint
solver Solverh is A(E) = {σγ �FV(E) | 〈E | ∅〉 ⇒∗σ P
is a h-derivation and γ ∈ [[P]] }, where FV(E) is the
set of free variables of E.

In the sequel, we will describe the transformation rules of
the h-constraint solver and analyze its main properties. The
general idea is to ensure the computation of solutions from
h-equations which are correct with respect to the semantics
given in h. Since the design considerations are quite
involved and the analysis techniques quite complicated,
we consider useful to precede our presentation with a
brief outline of our design considerations and techniques.
Typical requirements in the design of such a solver (see,

e.g., [1], [2], [7]) are soundness: every computed answer
is a solution, i.e., A(E) ⊆ Soln(E), and completeness:
for any γ ∈ Soln(E) there exists γ′ ∈ A(E) such that
γ′ � γ [FV(E)]. Note that the completeness requirement
demands the capability to compute a minimal complete
set of solutions. It is easy to see that if the higher-order
h-constraint solver is complete then it suffices to enumerate
minimal complete set of solutions of the final states.
Therefore, an important design issue is to guarantee that
minimal complete sets of solutions are easy to read off
for the final states. In the design of first-order solvers for
the Herbrand domain H [1], this is achieved by ensuring
that final states have empty components; thus the minimal
complete set of solutions of a final state consists of the
identity substitution {}. Unfortunately, things are much
more complicated in the higher-order case. This problem is
inevitably related to the problem of unifying flex λ-terms
(i.e., λ-terms t such that hd(t) ∈ FV(t)), which is in
general intractable. We adopt an approach similar to Huèt’s
procedure of higher-order pre-unification [9], [12]: we
refrain from solving equations between flex λ-terms as
much as possible. As a consequence, our final states will be
a class of states whose h-equations are only between flex
λ-terms. This guarantee that the final states are meaningful
and that it is relatively easy to read off some of their
solutions.

(an) annotation
〈{{s == t, E}} | K〉 ⇒{} 〈{{s ==H t, E}} | K ∪ {H}〉
where H is a fresh variable of a suitable type.

(sg) strict guess
〈{{λxk.a(sn) ==H t, E}} | K〉 ⇒σ

〈{{λxk.a(sn) ==Hσ t, E}} | Kσ〉
where a ∈ F ∪ {xk}, and σ = {H 7→ λxk.a(Hn(xk))}.

(d) decomposition
〈{{λxk.a(sn) ==u λxk.a(tn), E}} | K〉 ⇒σ

〈{{λxk.sn ==Hn λxk.tn, E}} | Kσ〉
where a ∈ F ∪ {xk}, and either

� u ≡ H and σ = {H 7→ λxk.a(Hn(xk))}, or
� u ≡ λxk.a(Hn(xk)) and σ = {}.

(i) imitation
〈{{λxk.X(sp) ==u λxk.f(tn), E}} | K〉 ⇒σ

〈{{λxk.Xn(sp) ==Hn λxk.tn, E}}σ | (K ∪ {X})σ〉
where X ∈ V , and either
� u ≡ H and σ = {X 7→ λyp.f(Xn(yp)),

H 7→ λxk.f(Hn(xk))}, or
� u ≡ λxk.f(Hn(xk)) and σ = {X 7→ λyp.f(Xn(yp))}.

(p) projection
〈{{λxk.X(sp) ==u t, E}} | K〉 ⇒σ

〈{{λxk.X(sp) ==u t, E}}σ | (K ∪ {X})σ〉
where X ∈ V , t is not flex, and σ = {X 7→ λyp.yi(Xn(yp))}.

(fs) flex same
〈{{λxk.X(yp) ==H λxk.X(y′p), E}} | K〉 ⇒σ

〈{{E}}σ | (K ∪ {X})σ〉
where X ∈ V , λxk.X(yp), and λxk.X(y′p) are patterns,
σ = {X 7→ λyp.Z(zq), H 7→ λxk.Z(zq)} with
{zq} = {yi | yi = y′i, 1 ≤ i ≤ n}.

(fd) flex different
〈{{λxk.X(yp) ==H λxk.Y (y′q), E}} | K〉 ⇒σ

〈{{E}}σ | (K ∪ {X,Y })σ〉

Int'l Conf. Foundations of Computer Science | FCS'11 | 125

where X,Y ∈ V , λxk.X(yp), and λxk.Y (y′q) are patterns, X 6= Y ,
σ = {X 7→ λyp.Z(zr), Y 7→ λy′q.Z(zr), H 7→ λxk.Z(zr)} with
{zr} = {yp} ∩ {y′q}.

(cf) clash failure
〈{{λxk.a(sn) ==u λxk.a

′(tm), E}} | K〉 ⇒{} fail

if a, a′ ∈ Fc ∪ {xk} (where the notation Fc will be explained in
Section 4), and either (i) a 6= a′ or (ii) hd(u) 6∈ V ∪ {a, a′}.

(oc) occur check
〈{{λxk.s ==u λxk.X(yn), E}} | K〉 ⇒{} fail
if X ∈V , λxk.X(yn) is a flex pattern, hd(λxk.s) 6= X and
(λxk.s)|p = X(zn), where zn is a sequence of distinct bound
variables and p is a maximal safe position of λxk.s (i.e., hd((λxk.
s)|q) ∈ BV(λxk.s, q) ∪ Fc for all q ≤ p).

In order to illustrate the overall behavior of our
constraint solver Solverh, we consider the following
h-derivation involving the function symbols given
in the signature of the diff -example presented in
Section 1: 〈{{λx. sin(F (x)) == λx. sin(cos(x))}} | ∅〉
⇒(an),(d),(i)
{F 7→λx. cos(x)} 〈 ∅ | {λx. sin(cos(x)), λx. cos(x)}〉.

Therefore, we have computed the substitution
{F 7→ λx. cos(x)} as the only answer in
A(λx. sin(F (x)) == λx. sin(cos(x))).

The main properties of the h-constraint solver, soundness
and completeness, relate the solutions of a set of strict
equality h-constraints to the answers computed by our
system of transformation rules for higher-order unification.

Theorem 1 (Properties of the h-solver):
(1) Soundness: Let 〈E | ∅〉 ⇒∗σ P be a h-derivation. Then,

σγ ∈ Soln(E) whenever γ ∈ [[P]].

(2) Completeness: Let E be a finite set of h-constraints.
Then, A(E) = {γ�FV(E) | γ ∈ Soln(E)}.

The proof can be found at http://www.fdi.ucm.

es/profesor/rdelvado/FCS2011/Proofs.pdf. As we
have commented, the generic scheme CFLP(D) presented
in [7] serves in this work as a logical and semantic frame-
work for lazy Constraint Functional Logic Programming
over a parametrically given constraint domain D. In order
to model the coordination of algebraic constraint domains in
the higher-order functional logic programming framework
[14], [15], we propose the construction of a higher-order
coordination domain C, as a special kind of hybrid domain
tailored to the cooperation of the algebraic domains R
and FD with the higher-order constraint domain h which
supplies lambda abstractions as data values and equalities
over lambda terms as constraints. Following the methodo-
logy of [1], we obtain a suitable theoretical framework
for the cooperation of algebraic constraint domains with
their respective solvers in higher-order functional and logic
programming using instances CFLP(C).

A coordination domain C is a kind of hybrid constraint
domain built from various component domains (as, e.g.,
H,h,R,FD, . . .) intended to cooperate. The construction

of coordination domains involves a so-called mediatorial
domain M, whose purpose is to supply mechanisms for
communication among the component domains via bridges,
projections, functional variable applications, interpolations,
and some more ad hoc operations. In this work, the com-
ponent domains will be chosen as the pure domains h,
R, and FD, equipped with constraint solvers, in such a
way that the communication provided by the mediatorial
domain will also benefit the solvers. In the remain of this
section we briefly explain the construction of this higher-
order coordination domain C, mathematically represented as
the sum C=M⊕h⊕FD⊕ R.

The construction of the coordination domain C relies on
a combined algebraic constraint domain FD ⊕ R, which
represents the amalgamated sum of the two joinable alge-
braic domains FD and R. In this case, the joinability condi-
tion asserts that the only primitive function symbol allowed
to belong to FD and R is the strict equality ==, where
the interpretation of this operator will behave as defined for
the higher-order constraint domain h. As a consequence, the
amalgamated sum h⊕FD⊕R is always possible, and give
rise to compound a higher-order algebraic domain that can
profit from the higher-order h-constraint solver. However,
in order to construct a more interesting sum for higher-
order algebraic cooperation tailored to the communication
among pure domains h, R, and FD, mediatorial domains
are needed.

The higher-order mediatorial domainM serves as a basis
for useful cooperation facilities among h, FD, and R,
including the projection of R-constraints to the FD-solver
(and vice versa) using bridges (see [1] for more details),
the specialization of h-constraints to become R- or FD-
constraints, the definition of algebraic constraints in R and
FD from the application of higher-order functional variables
in the domain h, the gathering of numeric data values to
construct a λ-abstraction in h which closely fits the data
points by means of interpolation techniques, and some other
special mechanisms designed for processing the mediatorial
constraints occurring in functional and logic computations.

4. Higher-Order Cooperative Program-
ming in CFLP(C)
We are now ready to present our computation framework
for higher-order functional and logic programming with
cooperation of algebraic constraint domains within the
CFLP(C) instance of the CFLP scheme. Building
upon the notion of higher-order coordination domain C
described in the previous section, we have designed a
formal operational semantics by means of a higher-order
cooperative constraint lazy narrowing calculus provided
by CFLP(C) which is sound and complete, extending
the formal properties presented in Section 3 for the
h-constraint solver. The calculus embodies computation

126 Int'l Conf. Foundations of Computer Science | FCS'11 |

http://www.fdi.ucm.es/profesor/rdelvado/FCS2011/Proofs.pdf
http://www.fdi.ucm.es/profesor/rdelvado/FCS2011/Proofs.pdf

rules for creating bridges, invoking constraint solvers, and
performing constraint projections as well as other more ad
hoc operations for communications among the higher-order
domain h and the algebraic constraint domains FD and
R. Moreover, the calculus uses higher-order demand-driven
narrowing with definitional trees for processing calls to
program defined functions, ensuring that function calls are
evaluated only as far as demanded by the resolution of the
C-constraints involved in the current computation. After
introducing CFLP(C)-programs and goals, we present the
goal-solving rules of the calculus and results concerning
the formal properties of our higher-order cooperative
computation model.

Definition 5 (CFLP(C)-Programs): A Constrained Pat-
tern Rewrite System over the higher-order coordination
domain C = M ⊕ h ⊕ FD ⊕ R (CPRS (C) for short)
is a finite set of C-constrained rewrite rules of the form
f(ln) = r ⇐ C, where

(a) f(ln) and r are total λ-terms of the same base type.
(b) f(ln) is a fully extended linear pattern.
(c) C is a (possibly empty) finite sequence of C-constraints.

More precisely, each C-constraints is exactly of one of
the following cases:

• h-constraint (Ch): equations s == t, with s, t ∈
T (F ,V).

• M-constraint (CM): bridge constraints X
 Y ,
with X :: int and Y :: real .

• R-constraint (CR): arithmetic constraints over real
numbers.

• FD-constraint (CFD): arithmetic and finite do-
main constraints over integers.

A goal C for a given CPRS (C) is a set of C-constraints.
Each CPRS (C) R induces a partition of the underlying
signature F into Fd (defined function symbols) and Fc (data
constructors): Fd = {f ∈ F | ∃(f(ln) = r ⇐ C) ∈ R}
and Fc = F \ Fd. We say that R is a constructor-
based CPRS (C) if each conditional pattern rewrite
rule f(ln) = r ⇐ C satisfies the condition that
l1, . . . , ln ∈ T (Fc,V).

Our higher-order cooperative computation model works
by transforming initial goals C0 into final goals C, which
serve as computed answers from a set of values K.
We represent the computation as a CFLP(C)-derivation
〈C0 | ∅〉 ⇒∗σ 〈C | K〉, extending the notation previously
introduced by the h-constraint solver in Section 3. The
core of the computational model in CFLP(C) consists of
the Higher-Order Lazy Narrowing calculus with Definitional
Trees presented in [14] for higher-order (unconstrained)
functional logic programming. We can use this calculus
in a modular way, ignoring at this moment algebraic

domain cooperation and solver invocation, in order to deal
with calls to defined functions and to apply a program
rule. More precisely, if the goal includes a constraint Ch
(analogously, CR or CFD) of the form λxk.f(sn) == t
with f ∈ Fd, we can apply the rules of the calculus
to perform a demand-driven evaluation of the function
call, represented by λxk.〈f(sn), Tf 〉 � R (see [14] for
more details). Then, higher-order narrowing is applied in
an optimized way by using an associated higher-order
definitional tree Tf to ensure an optimal choice of needed
narrowing steps by means of the selection of a suitable
(possibly non-deterministic) conditional pattern rewrite
rule {π = ri ⇐ Ci}1≤i≤m of the CFLP(C)-program R.
Therefore, we transform Ch into a flattened form R == t.
The following three rules formalize these transformations.

(on) rigid narrowing
〈{{λxk.f(sn) == t, C}} | K〉 ⇒{}
〈{{λxk.〈f(sn), Tf 〉� R,R == t, C}} | K〉
where f ∈ Fd.

(ov) flex narrowing
〈{{λxk.X(sm) == t, C}} | K〉 ⇒σ

〈{{λxk.〈X(sm), Tf 〉� R,R == t, C}}σ | (K ∪ {X})σ〉
where σ = {X 7→ λym.f(Xn(ym))} with f ∈ Fd.

(ev) evaluation
〈{{λxk.〈π′, rule(π, {ri ⇐ Ci}1≤i≤m)〉� R,C}} | K〉 ⇒{}
〈{{λykq .sq == Rq, Ci, λxk.ri == R,C}} | K ∪ {Rq}〉
if 1 ≤ i ≤ m, matcher(λxk.π

′, λxk.π) = {Rq 7→ λykq .sq},
and {Rq} = FV(λxk.π).

The following two rules describe the possible transformation
in a goal of a finite subset CD of D-constraints (where
D is the pure domain h, M, FD or R) by a D-solver’s
invocation, including the detection of failure by the
corresponding solver.

(cs) constraint solving
〈{{CD, C}} | K〉 ⇒σ 〈{{C′D, C}}σ | K

′〉
if the D-constraint solver SolverD performs a successful D-derivation
〈CD | K〉 ⇒∗σ 〈C

′
D | K

′〉.

(sf) solving failure
〈{{CD, C}} | K〉 ⇒σ fail

if the D-constraint solver SolverD performs a failure D-derivation
〈CD | K〉 ⇒∗σ fail.

The availability of the M-solver means that solving
mediatorial constraints contributes to the cooperative goal-
solving process, in addition to the role of bridges for guiding
projections. Projected constraints improve the performance
of the corresponding solver, enabling certain solvers to profit
from (the projected forms) of constraints originally intended
for other solvers. The last two rules take care of this idea of
domain cooperation, and are used to generate new bridges
and to compute projected constraints to be added to the goal.

(sb) set bridges
〈{{CD, CM, C}} | K〉 ⇒{} 〈{{CD, CM, C′M, C}} | K〉
where D is the algebraic constraint domain R (resp. FD) and D′ the
domain FD (resp. R), and bridgesD→D

′
(CD, CM) = C′M.

Int'l Conf. Foundations of Computer Science | FCS'11 | 127

(pp) propagate projections
〈{{CD, CM, C}} | K〉 ⇒{} 〈{{CD, C′D′ , CM, C}} | K〉
where D is the algebraic constraint domain R (resp. FD) and D′ the
domain FD (resp. R), and projD→D

′
(CD, CM) = C′D′ .

The concrete example given in Section 2 illustrate the
behavior of this goal-solving calculus in CFLP(C). We
conclude this section with theoretical results now ensuring
soundness and completeness for CFLP(C)-derivations. Both
properties are presented w.r.t. the declarative semantics of
the instance CFLP(C), provided by the generic CFLP(D)
scheme [7] and the semantic framework for higher-order
functional logic programs on λ-abstractions [14], [15]. For
instance, the set of solutions Soln(C) of a goal C and the
meaning [[P]] of a state P now refer to the existence of
logical proofs in the corresponding D-instance of a generic
Constrained ReWriting Logic, whose inference rules can be
found in [7], [15] for each D-constraint CD in C, where D
is R, FD, M, or h.

Theorem 2 (Properties of the calculus):
(1) Soundness: Let 〈C | ∅〉 ⇒∗σ P be a CFLP(C)-

derivation. Then, σγ ∈ Soln(C) whenever γ ∈ [[P]].

(2) Completeness: Let C be an initial goal given
by a finite set of C-constraints, and A(C)
= {σγ�FV(C) | 〈C | ∅〉 ⇒∗σ P is a finite
CFLP(C)-derivation with γ ∈ [[P]]}. Then,
A(C) = {γ�FV(C) | γ ∈ Soln(C)}.

Thanks to the soundness and completeness results modularly
presented in Section 3 for the new constraint domain h and
the higher-order narrowing calculus in [14] for declarative
programming in CFLP(h), THEOREM 2 can be proved in
the cooperative setting of CFLP(C).

5. Conclusions
In this work we have presented a suitable use of co-
operative algebraic constraint domains and solvers in a
higher-order functional and logic programming framework
on λ-abstractions. We have investigated foundational issues
concerning a sound and complete computational framework
for the cooperation of algebraic constraint domains. For
this purpose, we have designed an improved higher-order
instance CFLP(C) of an already existing generic scheme
[7] for constraint functional logic programming, now over a
higher-order coordination domain C.

In addition to already mentioned works, an important
related work in this area is the CFLP scheme developed by
Mircea Marin in his PhD Thesis [8]. This work introduces
CFLP(D,S,L), a family of languages parameterized by
a constraint domain D, a strategy S which defines the
cooperation of several constraint solvers over D, and a
constraint lazy narrowing calculus L for solving constraints
involving functions defined by user given constrained rewrite

rules. The main difference with respect to our approach is the
lack of declarative (model-theoretic and fixpoint) semantics
provided by the rewriting logic underlying our CFLP(C)
instance (see [15] for more details). Another difference is
the intended application domain. The instance of CFLP
developed by Marin combines four solvers over a constraint
domain for algebraic symbolic computation.

In the future, we would like to improve some of the
limitations of our current approach to higher-order algebraic
domain cooperation, concerning both the formal foundations
and the implemented system. For instance, the computational
model should be generalized to allow for an arbitrary higher-
order coordination domain C in place of the concrete choice
M⊕ h ⊕ R ⊕ FD, and the implemented prototype should
be properly developed, maintained and improved in various
ways. In particular, the experimentation with benchmarks
and application cases should be further developed.

Acknowledgements
This work has been partially supported by the Spanish
projects STAMP (TIN2008-06622-C03-01), Prometidos-
CM (S2009TIC-1465) and GPD (UCM-BSCH-GR35/10-A-
910502).

References
[1] S. Estévez et al. On the cooperation of the constraint domains H, R,

and FD in CFLP . Journal of TPLP, vol. 9, pp. 415–527, 2009.
[2] J.C. González, M.T. Hortalá, and M. Rodríguez. A higher-order rewrit-

ing logic for functional logic programming. In Proc. ICLP’97, pp. 153–
167, 1997.

[3] M. Hanus. The Integration of Functions into Logic Programming: From
Theory to Practice. Journal of Logic Programming 19&20, pp. 583–
628, 1994.

[4] M. Hanus and C. Prehofer. Higher-order narrowing with definitional
trees. Journal of Functional Programming, vol. 9, pp. 33–75, 1999.

[5] J.R. Hindley and J.P. Seldin. Introduction to Combinatorics and λ-
Calculus. Cambridge University Press, 1986.

[6] F.J. López and J. Sánchez. T OY: A Multiparadigm Declarative Sys-
tem. In Proc. RTA’99, Springer LNCS 1631, pp 244–247, 1999.

[7] F.J. López, M. Rodríguez, and R. del Vado. A New Generic Scheme
for Functional Logic Programming with Constraints. Journal of HOSC
20, 1/2, pp. 73–122, 2007.

[8] M. Marin. Functional Logic Programming with Distributed Constraint
Solving. PhD. Thesis, 2000.

[9] D. Miller. A logic programming language with λ-abstraction, function
variables, and simple unification. Journal of Logic and Computation,
1(4):497–536, 1991.

[10] G. Nadathur and D. Miller. An overview of λ-Prolog. In Proc. Int.
Conf. on Logic Programming (ICLP’88), The MIT Press, pp. 810–827,
1988.

[11] L.C. Paulson. Isabelle: A Generic Theorem Prover. Springer LNCS,
vol. 828, 1994.

[12] C. Prehofer. Solving Higher-Order Equations. From Logic to Program-
ming. Found. of Computing, 1998.

[13] T. Suzuki, K. Nakagawa, and T. Ida. Higher-Order Lazy Narrowing
Calculus: A Computation Model for a Higher-Order Functional Logic
Language. In Proc. of ALP’97, vol. 1298 of LNCS, pp. 99–113, 1997.

[14] R. del Vado. A Higher-Order Demand-Driven Narrowing Calculus
with Definitional Trees. In Proc. ICTAC’07, Springer LNCS 4711, pp.
169–184, 2007.

[15] R. del Vado. A Higher-Order Logical Framework for the Algorithmic
Debugging and Verification of Declarative Programs. In PPDP’09,
ACM, pp. 49–60, 2009.

128 Int'l Conf. Foundations of Computer Science | FCS'11 |

On Compilation of Higher-Order Concurrent Programs into First
Order Programs Preserving Scope Equivalence

Masaki Murakami
Department of Computer Science,

Graduate School of Natural Science and Technology, Okayama University
3-1-1 Tsushima-Naka, Okayama, 700-0082, Japan

murakami@momo.cs.okayama-u.ac.jp

Abstract— This paper discusses the expressive power of a
graph rewriting model of concurrent processes with higher-
order communication. As we reported before, it is difficult to
represent the scopes of names using models based on process
algebra. Then we presented a model of concurrent systems
based on graph rewriting. The model makes it possible to
represent the scopes of names precisely. We defined an equiv-
alence relation called scope equivalence. Two systems are
scope equivalent not only in their behavior but in extrusion of
scopes of names also. This paper presents a result that there
is no compilation mapping from the higher-order model into
the first-order model that is homomorphic wrt input context
and full abstract wrt the scope equivalence. As reported,
it is possible to compile LHOπ processes into first-order
π-calculus processes preserving a behavioral equivalence.
In that sense, the first-order calculus is as expressive as
the higher-order calculus when we focus on the behavioral
equivalence. On the other hand, this paper shows that the
higher-order model is strictly more expressive than the first-
order model if we focus on scope equivalence.

Keywords: concurrency, graph rewriting, higher-order communi-
cation

1. Introduction
LHOπ (Local Higher-Order π-calculus) [11] is a formal

model of concurrent systems with higher-order communica-
tion. It is a subcalculus of higher-order π-calculus[10] with
asynchronous communication capability. The calculus has the
expressive power to represent practically and/or theoretically
interesting examples that include program code transfer.

On the other hand, as we reported in [4], [5], [6], it is
difficult to represent the scopes of names of communication
channels precisely using models based on process algebra
such as LHOπ . We presented a model that is based on graph
rewriting instead of process algebra as a solution for the
problem on representation of scopes of names [4].

Our model of concurrent systems is based on graph
rewriting system such as [1], [2], [3], [12]. We represent
a concurrent program consists of a number of processes
(and messages on the way) using a bipartite directed
acyclic graph. A bipartite graph is a graph whose nodes are

decomposed into two disjoint sets: source nodes and sink
nodes such that no two graph nodes within the same set
are adjacent. Every edge is directed from a source node to
a sink node. The system three processes b1, b2 and b3 and
two names ai(i = 1, 2) shared by bi and bi+1 is represented
with a graph as Fig.1.

Fig. 1. A Bipartite Directed Acyclic Graph

Processes and messages on the way are represented with
source nodes. We call source nodes as behaviors. In Fig. 1.,
b1, b2 and b3 are behaviors.

We define the operational semantics of the model as a set
of rules to rewrite graphs. The intuitive description of the
rewriting rules is presented in [5], [7], [8].

We defined an equivalence relation of processes called
“scope equivalence” on the model. Intuitively, two systems
are scope equivalent not only in their behavior but in
extrusions of scopes of names. We showed the congruence
results of the scope equivalence for the first-order case[6].
We extended the the model for systems with higher-order
communication[5].

This paper discusses the expressive power of the higher-
order model. As [11] showed, it is possible to compile LHOπ

processes into first-order processes preserving a behavioral
equivalence. Namely there exists a compilation mapping
from LHOπ processes into first-order processes that is full
abstract wrt a behavioral equivalence and homomorphic
wrt first-order context. Namely there exists a compilation
mapping [[_]] such that for any higher-order processes P and
Q, P ≈ Q iff [[P]] ≈ [[Q]] and for any process P and any
first order context R[_], [[R[P]]] = [[R]][[[P]]]. In that sense,
the first-order calculus is as expressive as the higher-order

Int'l Conf. Foundations of Computer Science | FCS'11 | 129

calculus when we focus on a behavioral equivalence.

This paper presents a result that there is no compilation
mapping that is full abstract wrt the scope equivalence and
homomorphic wrt input context. Namely, there exist two
programs P and Q which are scope equivalent and for any
mapping [[_]] that is homomorphic wrt input-context, their
images [[P]] are [[Q]] not scope equivalent or for some context
R[_], R[P] and R[Q] are not scope equivalent but [[R[P]]] and
[[R[Q]]] are scope equivalent. Thus the higher-order model is
strictly more expressive than the first-order model if we focus
on scope equivalence.

2. Formal Definitions
2.1 Programs

First, a countably-infinite set of names is presupposed.

Definition 1 (program, behavior) Programs and behaviors
are defined recursively as follows.
(i) Let a1, . . . , ak are distinct names. A program is a bipartite
directed acyclic graph with source nodes b1, . . . , bm and sink
nodes a1, . . . , ak such that

² Each source node bi(1 ≤ i ≤ m) is a behavior. Dupli-
cated occurrences of the same behavior are possible.

² Each sink node is a name aj(1 ≤ j ≤ k). All aj’s are
distinct.

² Each edge is directed from a source node to a sink node.
Namely, an edge is an ordered pair (bi, aj) of a source
node and a name. For any source node bi and a name
aj there is at most one edge from bi to ai.

For a program P , we denote the multiset of all source
nodes of P as src(P), the set of all sink nodes as snk(P)
and the set of all edges as edge(P). Note that the empty
graph 0 such that src(0) = snk(0) = edge(0) = ∅ is a
program.

(ii) A behavior is an application, a message or a node consists
of the epidermis and the content defined as follows. In the
following of this definition, we assume that any element of
snk(P) nor x does not occur in anywhere else in the program.

1) A node labeled with a tuple of a name n (called the
subject of the message) and an object o is a message
and denoted as n〈o〉.

2) A tuple of a variable x and a program P is an
abstraction and denoted as (x)P . An object is a name
or an abstraction.

3) A node labeled with a tuple of an abstraction and an
object is an application. We denote an application as
A〈o〉 where A is an abstraction and o is an object.

4) A node whose epidermis is labeled with “!” and the
content is a program P is a replication, and denoted
as !P .

5) An input prefix is a node (denoted as a(x).P) that the
epidermis is labeled with a tuple of a name a and a
variable x and the content is a program P .

6) A τ -prefix is a node (denoted as τ.P) that the epidermis
is labeled with a silent action τ and the content is a
program P .

A program P is first-order if any abstraction never occurs
anywhere in P .

Definition 2 (local program) A program P is local if for
any input prefix c(x).Q and any abstraction (x)Q occurring
in P , x does not occur in the epidermis of any input prefix
in Q. An abstraction (x)P is local if P is local. A local
object is a local abstraction or a name.

Though the locality condition affects the expressive
power of the model, we do not consider that this restriction
significantly damages the expressive power. For the detail,
see [6], [7].

Definition 3 (free/bound name)
1) For a behavior or an object p, the set of free names

of p : fn(p) is defined as : fn(0) = ∅, fn(a) = {a}
for a name a, fn(a〈o〉) = fn(o) ∪ {a}, fn((x)P) =
fn(P) \ {x}, fn(!P) = fn(P), fn(τ.P) = fn(P), m
fn(a(x).P) = (fn(P) \ {x}) ∪ {a} and

2) fn(o1〈o2〉) = fn(o1) ∪ fn(o2).
3) For a program P where src(P) = {b1, . . . , bm},

fn(P) =
∪

i fn(bi) \ snk(P).
The set of bound names of P (denoted as bn(P)) is the

set of all names that occur in P but not in fn(P) (including
elements of snk(P) even if they do not occur in any element
of src(P)).

The notion of free name in our model is a little bit
different from that of process algebras such as π-calculus.
For example, a free name x occurs in Q is used as a
variable in (x)Q or a(x).Q. A channel name that is used
for communication with the environments is an element of
snk, so it is not a free name.

Definition 4 (normal program) A program P is normal
if for any b ∈ src(P) and for any n ∈ fn(b) ∩ snk(P),
(b, n) ∈ edge(P) and any program occurs in b is normal.

In the rest of this paper we consider normal programs only.

Definition 5 (composition) Let P and Q be
programs such that src(P) ∩ src(Q) = ∅ and
fn(P) ∩ snk(Q) = fn(Q) ∩ snk(P) = ∅. The
composition P‖Q of P and Q is the program such that
src(P‖Q) = src(P)∪ src(Q), snk(P‖Q) = snk(P)∪ snk(Q)
and edge(P‖Q) = edge(P) ∪ edge(Q).

130 Int'l Conf. Foundations of Computer Science | FCS'11 |

Intuitively, P‖Q is the parallel composition of P and Q.
Note that we do not assume snk(P)∩snk(Q) = ∅. Obviously
P‖Q = Q‖P and ((P‖Q)‖R) = (P‖(Q‖R)) for any P,Q
and R from the definition. The empty graph 0 is the unit
of “‖”. Note that src(P) ∪ src(Q) and edge(P) ∪ edge(Q)
denote the multiset unions while snk(P) ∪ snk(Q) denotes
the set union. It is easy to show that for normal and local
programs P and Q, P‖Q is normal and local.

Definition 6 (N -closure) For a normal program P
and a set of names N such that N ∩ bn(P) = ∅,
the N -closure νN(P) is the program such that
src(νN(P)) = src(P), snk(νN(P)) = snk(P) ∪ N
and edge(νN(P)) = edge(P) ∪ {(b, n)|b ∈ src(P), n ∈ N}.

We denote νN1(νN2(P))) as νN1νN2(P) for a program
P and sets of names N1 and N2.

Definition 7 (deleting a behavior) For a normal program
P and b ∈ src(P), P \ b is a program that is obtained by
deleting a node b and edges that are connected with b from
P . Namely, src(P \ b) = src(P) \ {b}, snk(P \ b) = snk(P)
and edge(P \ b) = edge(P) \ {(b, n)|(b, n) ∈ edge(P)}.

Note that src(P) \ {b} and edge(P) \ {(b, n)|(b, n) ∈
edge(P)} mean the multiset subtractions.

Definition 8 (context) Let P be a program and b ∈ src(P)
where b is an input prefix, a τ -prefix or a replication and the
content of b is 0. A simple first-order context is the graph P []
such that the contents 0 of b is replaced with a hole “[]”.
We call a simple context as a τ -context, an input context or
a replication context if the hole is the contents of a τ -prefix,
of an input prefix or of a replication respectively.

Let P be a program such that b ∈ src(P) and b is
an application (x)0〈Q〉. An application context P [] is the
graph obtained by replacing the behavior b with (x)[]〈Q〉. A
simple context is a simple first-order context or an application
context.

A context is a simple context or the graph P [Q[_]] that is
obtained by replacing the hole of P [] with Q[] for a simple
context P [] and a context Q[] (with some renaming of the
names occur in Q if necessary).

For a context P [] and a program Q, P [Q] is the program
obtained by replacing the hole in P [] by Q (with some
renaming of the names occur in Q if necessary).

2.2 Operational Semantics
Definition 9 (substitution) Let p be a behavior, an object
or a program and o be an object. For a name a, we assume
that a ∈ fn(p). The mapping [o/a] defined as follows is a
substitution.

² for a name c, c[o/a] =
{

o if c = a
c otherwise

² for behaviors,
– ((x)P)[o/a] = (x)(P [o/a]),
– (o1〈o2〉)[o/a] = o1[o/a]〈o2[o/a]〉,
– (!P)[o/a] =!(P [o/a]),
– (c(x).P)[o/a] = c(x).(P [o/a]) and
– (τ.P)[o/a] = τ.(P [o/a])

² and for a program P and a ∈ fn(P), P [o/a] = P ′

where P ′ is a program such that
– src(P ′) = {b[o/a]|b ∈ src(P)},
– snk(P ′) = snk(P) and
– edge(P ′) = {(b[o/a], n)|(b, n) ∈ edge(P)}.

For the cases of abstraction and input prefix, note that we
can assume x 6= a because a ∈ fn((x)P) or ∈ fn(c(x).P)
without losing generality. (We can rename x if necessary.)

Definition 10 Let p be a local program or a local object. A
substitution [a/x] is acceptable for p if for any input prefix
c(y).Q occurring in p, x 6= c.

In the rest of this paper, we consider acceptable
substitutions only for a program or an abstraction. For the
detail, see [7].

Definition 11 (action) For a name a and an object o, an input
action is a tuple a(o) and an output action is a tuple a〈o〉. An
action is a silent action τ , an output action or an input action.

Definition 12 (labeled transition) For an action α, α→ is the
least binary relation on normal programs that satisfies the
following rules.

input
If b ∈ src(P) and b = a(x).Q, then

P
a(o)→ (P \ b)‖

ν{n|(b, n) ∈ edge(P)}νM(Q[o/x])

for an object o and a set of names M such that
fn(o) ∩ snk(P) ⊂ M ⊂ fn(o) \ fn(P).

β-conversion
If b ∈ src(P) and b = (y)Q〈o〉, then

P
τ→(P \ b)‖

ν{n|(b, n) ∈ edge(P)}(Q[o/y]).

τ -action
If b ∈ src(P) and b = τ.Q, then

P
τ→ (P \ b)‖ν{n|(b, n) ∈ edge(P)}(Q).

replication 1
P

α→ P ′ if !Q = b ∈ src(P), and P‖ν{n|(b, n) ∈
edge(P)}Q′ α→ P ′, where Q′ is a program obtained
from Q by renaming all names in snk(R) to distinct
fresh names that do not occur elsewhere in P

Int'l Conf. Foundations of Computer Science | FCS'11 | 131

nor programs executed in parallel with P , for all
R’s where each R is a program that occur in Q
(including Q itself).

replication 2
P

τ→ P ′ if !Q = b ∈ src(P) and
P‖ν{n|(b, n) ∈ edge(P)}(Q′

1‖Q′
2)

τ→ P ′, where
each Q′

i(i = 1, 2) is a program obtained from
Q by renaming all names in snk(R) to distinct
fresh names that do not occur elsewhere in P
nor programs executed in parallel with P , for all
R’s where each R is a program that occur in Q
(including Q itself).

output
If b ∈ src(P), b = a〈v〉 then, P

a〈v〉→ P \ b.
communication

If b1, b2 ∈ src(P), b1 = a〈o〉, b2 = a(x).Q then,

P
τ→ ((P \ b1) \ b2)‖ν{n|(b2, n) ∈ edge(P)}

ν(fn(o) ∩ snk(P))(Q[o/x]).

The set of rules for a first-order program P is defined
as the subset of the above rules that the object that occurs
in input, output or communication rule is a name and
β-conversion rule is eliminated.

We can show that for any programs P, P ′ and any action
α such that P

α→ P ′, if P is local then P ′ is local and if P
is normal then P ′ is normal.

Weak bisimulation equivalence is defined as usual also.
We denote Q

α̂⇒ Q′ if and only if Q
τ→ ¢ ¢ ¢ τ→ α→ τ→ ¢ ¢ ¢ τ→ Q′

or α = τ and Q = Q′.

Definition 13 (weak bisimulation equivalence) A binary
relation R on normal programs is a weak bisimulation
if: for any (P,Q) ∈ R (or (Q,P) ∈ R), for any α and
P ′ if P

α→ P ′ then there exists Q′ such that Q
α̂⇒ Q′

and (P ′, Q′) ∈ R ((Q′, P ′) ∈ R respectively). Weak
bisimulation equivalence ≈ is defined as follows: P ≈ Q iff
(P,Q) ∈ R for some weak bisimulation R.

The following proposition is straightforward from the
definition.

Proposition 1 If src(P1) = src(P2) then P1 ≈ P2.

3. Scope Equivalence
Definition 14 For a program P and a name n such that n,
P/n is the program defined as follows:

src(P/n) = {b|b ∈ src(P), (b, n) ∈ edge(P)},

snk(P/n) = snk(P) \ {n}

and

edge(P/n) = {(b, a)|b ∈ src(P/n), a ∈ snk(P/n),
(b, a) ∈ edge(P)}.

Intuitively P/n is the subsystem of P that consists of
behaviors which are in the scope of n. Let P be an example
of Fig. 1, P/a1 is the subgraph of Fig. 1. obtained by
removing the node of b3 (and the edge from b3 to a2) and
a1 (and the edges to a1) as shown in Fig. 2.

Fig 2. The graph P/a1

Definition 15 (scope bisimulation) A binary relation R on
programs is scope bisimulation if for any (P,Q) ∈ R,

1) P = 0 iff Q = 0,
2) P/n is an empty graph iff Q/n is an empty for any

n ∈ snk(P) ∩ snk(Q),
3) P/n ≈ Q/n for any n ∈ snk(P) ∩ snk(Q) and
4) R is a weak bisimulation.
It is easy to show that the union of all scope bisimulations

is a scope bisimulation and it is the unique largest scope
bisimulation.

Definition 16 (scope equivalence) The largest scope
bisimulation is scope equivalence and denoted as ...∼.

It is easy to show from the definition that ...∼ is an
equivalence relation. The motivation and the background of
the definition of ...∼ is reported in [4], [6], [7]. The following
results for first-order programs can be shown as [6].

Proposition 2 If P and Q are first-order and P
...∼ Q then

1) P‖R ...∼ Q‖R for any first-order program R,
2) R[P] ...∼ R[Q] for any first-order τ -context R[],
3) R[P] ...∼ R[Q] for any first-order replication context

R[] and
4) R[P] ...∼ R[Q] for any first-order input context R[].
From Proposition 2, we have the following result.

Theorem 1 For any P and Q such that P
...∼ Q and for any

first-order context R[], R[P] ...∼ R[Q].

4. The Higher-Order Model and The
First-Order Model

We can show that both of strong bisimulation equivalence
and weak bisimulation equivalence are congruent wrt

132 Int'l Conf. Foundations of Computer Science | FCS'11 |

input prefix context and application context also[8], [9].
Unfortunately, it is not the case for strong scope equivalence
for higher-order programs[7]. We can also show that
“...∼” is not congruent wrt input context nor application
context. The essential problem is that “...∼” is not congruent
wrt substitutions of abstractions as the following counter
example shows.

Example 1 (i) Let P be a graph such that
src(P) = {b1, b2}, edge(P) = {(b1, n1), (b2, n2)}
and snk(P) = {n1, n2} and Q be a graph such
that src(Q) = {b}, edge(Q) = {(b, n1), (b, n2)} and
snk(Q) = {n1, n2} where both of b and bi(i = 1, 2) are
!x〈a〉 as Fig. 3. Note that nj(j = 1, 2) does not occur in b
nor bi(i = 1, 2).

Lemma 1 Let P and Q be as Example 1 (i). Then we have
P

...∼ Q.
proof: (outline) Definition 15, 1 is obvious as neither P nor
Q is an empty graph. For nj(j = 1, 2), both of P/nj and
Q/nj are not ∅, so Definition 15, 2. holds. For 3. P/nj is
the graph such that src(P/nj) = {bj} and Q/nj is the graph
such that src(Q/nj) = {b}. As bi = b =!x〈a〉, src(P/nj) =
src(Q/nj). From Proposition 1, P/nj ≈ Q/nj . For 3., it
is easy to show that the relation {(P,Q)} is a bisimulation

because P
x〈a〉→ P is the only transition for P and Q

x〈a〉→ Q
is the only transition for Q respectively.

Fig. 3. Graph P and Q

Example 1 (ii) Let P and Q be as Example
1(i). Now, let o be an abstraction : (y)c(u).d(v).R
where R is a program. P [o/x] is the graph such
that src(P) = {b1[o/x], b2[o/x]}, snk(P) = {n1, n2}
and edge(P) = {(b1[o/x], n1), (b2[o/x], n2)} as the
top of Fig. 4 and Q[o/x] (Fig. 5. top) is a graph
such that src(Q) = {b[o/x]}, snk(Q) = {n1, n2} and
edge(Q) = {(b[o/x], n1), (b[o/x], n2)} where b[o/x] and
bi[o/x](i = 1, 2) are !(y)c(u).d(v).R〈a〉.

Note that the object o in the counter example is an
abstraction. This happens only in the case of higher-order
substitution. In fact, scope equivalence is congruent wrt
substitution for the first-order case[6].

Fig. 4. Transition of P [o/x]

Fig. 5. Transition of Q[o/x]

Lemma 2 Let P [o/x] and Q[o/x] be as Example 1 (ii).

Int'l Conf. Foundations of Computer Science | FCS'11 | 133

Then, P [o/x] 6...∼ Q[o/x].
proof: See Appendix.

From Lemma 1 and 2, we have the following proposition.

Proposition 3 There exist P and Q such that P
...∼ Q and

P [o/x] 6...∼ Q[o/x] for some object o.

Proposition 4 There exist P and Q such that P
...∼ Q but

I[P] 6...∼ I[Q] for some input context I[].
proof: (outline) Let P and Q be as Example 1 (i) and I[_]
be a input context with a behavior m(x).[_]. Consider the

case of I[P]
m(o)→ and I[Q]

m(o)→ for o of Example 1 (ii).

Proposition 5 There exist P and Q such that P
...∼ Q but

A[P] 6...∼ A[Q] for some application context A[].
proof: (outline) Let P,Q and o be as Example 1 (ii)
and A[_] be an application context with a behavior (x)[_]〈o〉.

We denote a mapping from higher-order graphs into
first-order graphs as [[_]].

Definition 17 (full abstractness) Let R be a binary relation
on the set of programs. A mapping [[_]] from higher-order
programs into first-order programs is full abstract wrt R
if for any higher-order programs P and Q, [[P]] R [[Q]] iff
P R Q.

Definition 18 (homomorphism) A mapping [[_]] is
homomorphic wrt input context if for any input-context R[_]
and for any higher-order program P , [[R[P]]] = [[R]][[[P]]].

Theorem 2 There is no mapping from higher-order programs
into first-order programs which is full abstract wrt ...∼ and
homomorphic wrt input context.
proof(outline) Assume that there exists a mapping [[_]] that is
homomorphic wrt input context. Let P and Q be programs
as Example 1. From lemma 1, P

...∼ Q. Now we assume
[[P]] ...∼ [[Q]] otherwise [[_]] is not full abstract.

Let R[_] be an input context m(x).[_] as in the proof of
Proposition 4. Then [[R[P]]] = [[R]][[[P]]] and [[R[Q]]] =
[[R]][[[Q]]] because [[_]] is homomorphic wrt input context.
Now [[R]][_] is a first-order context and [[P]] and both of
[[Q]] are first-order programs. As ...∼ is a congruent relation
wrt for any first-order context from Theorem 1 and we
assumed [[P]] ...∼ [[Q]], then [[R]][[[P]]] ...∼ [[R]][[[Q]]]. Namely
[[R[P]]] ...∼ [[R[Q]]].

On the other hand, from the proof of Proposition 4,
R[P] 6...∼ R[Q]. Thus [[_]] is not full abstract wrt ...∼.

We can define the notion of homomorphism wrt
application context similarly. Then we can also show that
there is no compilation mapping that is full abstract wrt ...∼
and homomorphic wrt application context by the similar

argument with Proposition 5.

5. Conclusion
This paper presented the result that any compilation map-

ping from the higher-order model into the first-order model
that is homomorphic wrt input context and full abstract wrt
scope equivalence does not exist. We will study about this
problem from the following approaches as future work.

The first approach is revision of the definition of scope
equivalence. The definition of “...∼” is based on the idea that
two process are equivalent if the components that know the
name are equivalent for each name. This idea is implemented
as the Definition 15, 3. One alternative idea for the third
condition is P/N ≈ Q/N for each subset N of common
private names instead of P/n ≈ Q/n. P and Q in Example 1
are not equivalent based on this definition. We should study if
this alternative definition works well or not as an equivalence
of programs.

The second one is reconsideration of modeling of higher-
order communication. In our model, a tuple of a process
variable that receive higher-order and an argument term has
the same form as an output message. This idea is from
LHOπ[11]. One of the main reason why LHOπ adopts this
approach is type theoretical convenience. As we saw in
Lemma 2, this identification of output messages and process
variables arises the problem on the congruence of the scope
equivalence. We should reconsider about the modeling of
higher-order communication.

References
[1] Ehrig, H. and B. König, Deriving Bisimulation Congruences in the DPO

Approach to Graph Rewriting with Borrowed Contexts, Mathematical
Structures in Computer Science, vol.16, no.6, pp. 1133-1163, (2006)

[2] König, B., A Graph Rewriting Semantics for the Polyadic π-Calculus,
Proc. of GT-VMT ’00, pp. 451-458 (2000)

[3] Milner, R., The Space and Motion of Communicating Systems, Cam-
bridge University Press (2009)

[4] Murakami M., A Formal Model of Concurrent Systems Based on
Bipartite Directed Acyclic Graph, Science of Computer Programming,
Elsevier, 61 pp. 38-47 (2006)

[5] Murakami, M., A Graph Rewriting Model of Concurrent Programs with
Higher-Order Communication, Proc. of TMFCS 2008, pp.80-87 (2008)

[6] Murakami, M., Congruence Results of Scope Equivalence for a Graph
Rewriting Model of Concurrent Programs, Proc. of ICTAC2008, LNCS
5160, pp. 243-257 (2008)

[7] Murakami, M., On Congruence Property of Scope Equivalence for Con-
current Programs with Higher-Order Communication, Proc of CPA2009,
IOS Press, pp. 49-66 (2009)

[8] Murakami, M., Congruence Results of Behavioral Equivalence for A
Graph Rewriting Model of Concurrent Programs with Higher-Order
Communication, Journal of Networking Technology, Vol. 1, No.3, pp.
106-112 (2010)

[9] Murakami, M. Congruence Results of Weak Equivalence for A Graph
Rewriting Model of Concurrent Programs with Higher-Order Commu-
nication, to appear in Proc. of ICCSEA 2011

[10] Sangiorgi, D. and D. Walker, The π-calculus, A Theory of Mobile
Processes, Cambridge University Press, (2001)

[11] Sangiorgi, D. Asynchronous Process Calculi: The First- and Higher-
order Paradigms, Theoretical Computer Science, 253, pp. 311-350
(2001)

134 Int'l Conf. Foundations of Computer Science | FCS'11 |

[12] V. Sassone and P. Sobociński, Reactive systems over cospans, Proc. of
LICS ’05 IEEE, pp. 311-320, (2005)

Appendix: Proof of lemma 2 (outline)
We show that for any relation R, if (P [o/x], Q[o/x]) ∈

R, then it is not a scope bisimulation. If R is a scope
bisimulation, R is a weak bisimulation from Definition
15. Then for any P [o/x]′ such that P [o/x] α→ P [o/x]′,
there exists Q[o/x]′ such that Q[o/x] α̂⇒ Q[o/x]′ and
(P [o/x]′, Q[o/x]′) ∈ R.

From replication 1 and β-conversion, we have P [o/x]′

for α = τ such that: src(P [o/x]′) = {b′} ∪ src(P [o/x])
where b′ = c(u).d(v).R, snk(P [o/x]′) = snk(P [o/x]) and
edge(P [o/x]′) = edge(P [o/x] ∪ {(b′, n1)} (Fig. 4. middle).

On the other hand, any Q[o/x]′ such that Q[o/x] τ̂⇒
Q[o/x]′ has a form such that src(Q[o/x]′) = {b′1, . . . b′h} ∪
src(Q[o/x]) for some h(0 ≤ h) , b′k = c(u).d(v).R for 1 ≤
k ≤ h, snk(Q[o/x]′) = snk(Q[o/x]) and edge(Q[o/x]′) =
edge(Q[o/x])∪

∪
1≤k≤h{(b′k, n1), (b′k, n2)} by h applications

of replication 1 and β-conversion. As the following discus-
sion is similar for any h, we consider the case of h = 1 (Fig.
5. middle).

If R is a scope bisimulation, there exists Q[o/x]” such

that Q[o/x]′
ĉ(m)⇒ Q[o/x]” and (P [o/x]”, Q[o/x]”) ∈ R

for any P [o/x]′
c(m)→ P [o/x]”. Let P [o/x]” be a graph

such that: src(P [o/x]”) = {b”} ∪ src(P [o/x]′) where
b” = d(v).R[m/u], snk(P [o/x]”) = snk(P [o/x]′) and
edge(P [o/x]”) = edge(P [o/x]) ∪ {(b”, n1)} obtained by
applying input rule (Fig. 4. bottom).

The only transition of Q[o/x]′ that has the form of

Q[o/x]′
ĉ(m)⇒ Q[o/x]” makes src(Q[o/x]”) = {b”} ∪

src(Q[o/x]′) where b” = d(v).R[m/u], snk(Q[o/x]”) =
snk(Q[o/x]) and edge(Q[o/x]”) = edge(Q[o/x]′) ∪
{(b”, n1), (b”, n2)} (Fig. 5. bottom. It denotes the case of
c(m)→ without any τ -transitions.).

Then (P [o/x]”, Q[o/x]”) is in R if R is a bisimulation.
However, (P [o/x]”, Q[o/x]”) does not satisfy the condition
3. of Definition 15 because P [o/x]”/n2 6≈ Q[o/x]”/n2

(Fig. 6). Even if Q[o/x]′ makes any number of τ -transitions,
it does not make difference. Thus R cannot be a scope
bisimulation.

Fig. 6 P [o/x]”/n2 and Q[o/x]”/n2

Int'l Conf. Foundations of Computer Science | FCS'11 | 135

Adding Autonomy into Object
Jamil Ahmed

1
 and Sheng Yu

1

1
Department of Computer Science, University of Western Ontario, London, Ontario, Canada

Abstract - Real world objects can be classified into two kinds

according to their behavior (1)autonomous objects

(2)dependent objects. An object can behave both ways as

well. Dependent objects are those objects which are of no use

unless exploited by an external entity. Once they are created

or instantiated, they keep waiting for the driver class to invoke

theirs functions for their utilization. Example of dependent

objects include a car, a calculator, a word processing

application etc. Autonomous Objects are those objects which

when created or instantiate, then they know by their self what

they are supposed to do and then they readily start performing

their task (set of methods) with possibly no external

interaction or invocation. We emphasize that autonomy of

object intuitively needs to have these two properties (1)Object

runs its method(s) itself as soon as it is created. (2)More than

one copy of object can be running simultaneously. Example of

autonomous objects include a clock, a car set at cruise

control, an Operating system kernel that always keeps active,

a virus scan utility that always keeps active, Graphical

Actors(simulation of humans) in game programming, an

automatic robot, etc. We have established object calculus of

autonomous object definition & object creation which

incorporates the intuitive properties of autonomous objects as

well. Our proposed calculus is based on the same structures

as that of Abadi & Cardelli [1].

Keywords: Object Oriented Programming, Autonomy,

Concurrency, Multithreading, Object Calculus.

1 Introduction

 Contemporary object oriented programming languages

do not yet explicitly provide any feature of “autonomy” for

objects. We propose that an object in Object Oriented

Programming can be defined as autonomous object. Adding

the feature of autonomy to object has its own intuitive effects

and introduces new abstraction to some programming

languages contemporary features, while reducing the

complexity of those features. Autonomous objects provide

much more intuitive mechanism of programming for any

autonomous computing e.g autonomous vehicles and robots,

Graphical Actors(simulation of humans) in game

programming, a virus scan utility that remains active all the

time etc. In order to mechanize autonomous behavior as

natural and intuitive, we introduce two components: (1) A

compulsory run() method that will get invoked by default to

start the function of autonomous object as soon as object is

created. (2)When an autonomous object is created, it is by

default created in its own separate and new thread. All our

code examples in Figures are analogous to „java‟ syntax.

Autonomy of objects also provide an abstraction to an

important contemporary programming language feature,

making Object oriented programming closer to natural way of

programming and hiding much of the complexities of that

language features. We propose that following feature gets

new abstraction by virtue of the notion of “autonomy”.

 Concurrency (Multithreading)

 As we argue that Autonomous object provide

concurrency which is more intuitive and close to the

concurrency of real world objects because with autonomous

object we do not need to explicitly care about threads just like

real world objects.

1.1 Autonomous Object Definition

 We introduce a special method “run()” as a mandatory

method of object definition for the object which is supposed

to behave like autonomous object. This method is supposed to

be invoked by constructor method of autonomous object by

default. The purpose of “run()” method is to define in its body

that what operations this autonomous object must start

performing right after its creation. We give structure of

autonomous object definition code below.

Fig. (A)

1.2 Autonomous Object Creation

 We introduce the keyword “auto” to be used in

conjunction with autonomous object creation. This “auto”

keyword will force the object created as autonomous objects.

Whenever an object is created with “auto” keyword, the

compiler expects that the object must have special method

“run()” defined in its definition. An attempt to create

autonomous object using “auto” keyword will generate

compile time error if the object definition doesn‟t have

“run()” method defined. We give autonomous object creation

code below.

 This research is supported by Higher Education Commission, Pakistan
(www.hec.gov.pk) and NSERC (Natural Science and Engineering Research

Council of Canada) grant number 41630.

Class auto_class{

…..

Public void run()

{….. }

…..

public auto_class ()

{…..}//constructor is optional as

usual

…..

}

136 Int'l Conf. Foundations of Computer Science | FCS'11 |

Fig (B)

 If the object definition have “run()” method defined

but the object is not created with “auto” keyword then there

will be no compiler error. Object creation without “auto”

keyword will lead to usual object i.e non-autonomous or

dependent object creation. The object created without “auto”

keyword will not invoke the “run()” method, if there is any.

2 Concurrency by Virtue of Autonomy

 Although the feature of concurrency is already

provided by contemporary programming languages but this

feature is provided by introducing additional and distinct

entity rather than a built-in feature of object which makes it

language based feature rather than a built counterpart of

object. Those distinct entity (e.g thread) are then applied on

objects and this is how objects can exploit the feature of

concurrency so far. Although concurrency with the help of

distinct entity like thread also gives a certain level of

autonomy to Objects but as we propose autonomy as a built in

feature of objects which cause concurrency to be a rather

naturally associated and inherent to autonomous objects.

Consequently the concurrency feature of programming

languages will be under the hood of autonomous objects.

Once we have autonomous objects, these independent

autonomous objects will be well suited to inherently have

concurrency capabilities.

Hence , notion of autonomous object provide new

abstraction to thread such that each new instance of

autonomous object will be created in its new and separate

thread. This notion helps us to get rid of explicitly thinking in

terms of thread and creating threads on our own. All we need

to think about is Autonomous object. We won‟t need to know

new language based ways (e.g thread libraries) and constructs

or syntax for implementing and exploiting concurrency as we

do by now in contemporary programming languages. With

autonomous object, creating new thread and its handling

won‟t be the responsibility of programmer any more.

This new abstraction will also be conducive in hiding

many contemporary issues of multithreading (explicitly

creating and destroying thread, races between the threads,

deadlocks etc). It means multithreading will then become an

inherent part of autonomous objects. All the principles and

practices of concurrent programming (such as races between

the threads, locks, deadlocks etc) will remain intact. The only

differences will come up is that the thread management will

be taken care of by autonomous object. Hence, the difference

will appear in the view point by achieving higher abstraction

to concurrent programming.

When an autonomous object is created, it is by default created

in its own separate and new thread. The keyword “auto”

instructs the compiler that the objects created will run in

separate thread. Hence, this reserve word causes the compiler

to create a new thread by default so that this object is run on

top of that thread.

The object created without auto keyword will not invoke the

“run()” method and a separate thread will not be created.

3 Architecture of Autonomous Object

and Concurrency

 We propose architecture of Autonomous object and

its concurrency in Fig (C). We introduce a new built in class

of object oriented system in the compiler called

“Autonomous” class. “Autonomous” class works in

collaboration with built in “thread” class. Whenever an object

is created with “auto” keyword, it gets inherited by the built in

“Autonomous” class by default. The “auto” keyword invokes

its “run()” method from within its constructor. It also enforces

to inherit the autonomous object from a special class

“Autonomous”. This “Autonomous” class in turn create a new

thread object within it, using “Has a” inheritance, on top of

which a newly created autonomous object will run. The

“run()” method of autonomous object will by default invoke

the “super.run()” instruction to override the “run()” method of

“Autonomous” class.

Each autonomous object, when created, by default

creates a “thread” object internally and hides thread level

details inside it, thus providing a single and higher abstract

level of concurrency. In other words we can say each

autonomous object is created on top of a thread object to

ensure autonomy. This thread is called primary thread of the

object. Figure (C) gives our porposed architecture for any

object definition say “auto_class” when an object of this class

is created as an autonomous object.

To exploit autonomous object we show a driver class

with “main()” function in which we can create one or more

object as autonomous object. Each of those objects when

created will get functional in separate threads synchronously.

Compiler will take care of thread creation responsibility. The

“driver” class and “auto_class” are user defined whereas the

“autonomous” class and “thread” class are built in class which

gets associated with the “auto_class” by the compiler.

By virtue of autonomy we have introduced a new abstraction

for multithreading. Now we can exploit more than one

autonomous objects to perform their operation concurrently.

When two instances of same autonomous object are created, it

is equivalent to two threads performing an operation

concurrently.

 In section 6 we show examples of contemporary code of

multithreading (Example2-code#1) and equivalent code

proposed by us (Example2-code#2) according to the notion of

concurrency by autonomous objects.

Class Driver

{

 main(){

 …..

auto_class auto objA =new auto_class ();

….. }

}

Int'l Conf. Foundations of Computer Science | FCS'11 | 137

Fig (C)

4 Motivation of Concurrency by

Autonomous Objects

 Autonomous Objects will be the primary and base

entity for concurrency instead of thread. Autonomous object

notion provides higher abstraction to the widely varying

language constructs and libraries of thread. Since concurrency

is now represented by Objects at the higher abstract level, it

will be very intuitive to define the soundness of Object calculi

for autonomous object with built in concurrency feature. We

won‟t need to introduce a separate entity, within the calculus,

to represent threads unlike most of the alternate object

calculus which introduces new constructs within calculus to

incorporate thread and concurrency as in [3] , [4].

 Objects, as an abstract entity for concurrency,

represent more natural point of view for multithreading much

closer to the concurrency point of view of real world objects

as illustrated ahead by some multithreading scenario.

5 Single Threaded Autonomous Object

 Example 1 illustrates a single threaded autonomous

object. Main thread of driver class creates only one object

with “auto” keyword to get only one new thread for

autonomous object.

5.1 Example 1

 In this example we have given object definition of an

Autonomous “AutoPrinter” object. As soon as an autonomous

object is created, the autonomous printer object is supposed to

start printing autonomously without any external request.

Within run() method we have defined the startprinting()

method. When object is created using “auto” keyword then

AutoPrinter object gets implicitly inherited by built in class

“Autonomous”, a new thread is created on top of which this

object gets functional and “run()” method is invoked, by

default, implicitly and synchronously from within the

constructor of AutoPrinter. The implicit call to run() is taken

care of by the compiler.

Example 1

class AutoPrinter{

 String name;

 int i=0;

 AutoPrinter () {

 System.out.println("Auto. Thread started ");

 }

 public void run() {

 StartPrinting();

 }

 Public StartPrinting(){

 While(i<100){

 System.out.println("Print in progress");

 }

 }

}

class Driver{

 public static void main (String args[]){

 System.out.println("Main thread started");

 AutoPrinter auto objA =new AutoPrinter ();

 System.out.println("Main thread terminated");

 }

}

Fig (D)

6 Synchronization

 While exploiting multithreading, there are times, when

more than one thread share the same resource. More than one

thread can invoke the same method of that resource at the

same time. Obviously only one of them should be allowed to

Class Thread

{ ….

run(){….}

Synchronized(Object obj){….} //this

//method will lock the object‟s methods to

//be called by two threads at the same time

isAlive(){….} //determines whether a

//thread is still running

Join(){….}//causes the main thread //(from

where it is invoked) to wait until //the child

thread terminates and “joins” main thread.

….

}

Class Autonomous

{ …

Public Thread thread;

Autonomous()

{ thread=new Thread(); }

…

run()

{ thread.run(); …. }

…

}

Class auto_class

{ …

run() // super.run() is invoked by default

{ ….}

auto_class () // constructor

{ ….. }

…

}

Class driver

{ …

auto_class auto objA=new auto_class ();

//creating objA with “auto” keyword will

//force “auto_class” to get implicitly

//inherited from “Autonomous” class.

….

 }

138 Int'l Conf. Foundations of Computer Science | FCS'11 |

access the resource/method at one time. In this case we need

to synchronize the threads.

 Example2, code#2 illustrates a multithreaded

autonomous object as two object are created with “auto”

keyword. In this Example, we show by comparison that how

autonomous object serves perfectly well in code#2 as an

alternate of contemporary multithreading technique in code#1.

Code#2 hides all thread level management code so that we

can best appreciate the simplicity of code#2 and realize the

abstraction of “concurrency by virtue of Autonomy”.

6.1 Example 2

Fig (E)

Fig (E) gives a scenario using contemporary techniques of

concurrency in java. The method “Printlist” of printer is

shared by two computer threads. We have explicitly

synchronized the call to this method so that both threads do

not intermingle their execution of this method.

Synchronization statement clocks the invocation of this

method by other thread as long as the execution of this

method by first thread is under process.

Fig (F) gives alternate solution of this problem by

exploiting the inherent power of autonomous object of our

proposal. In code#1 we have to explicitly care about creating

threads and using shared resource within the threads and then

synchronizing. Where as in code #2 we can simply define the

shared printer as an autonomous object and every time a new

autonomous object is created, compiler will itself take care of

the new thread creation issues.

This example best realizes the significance of

abstraction provided by the notion of Autonomy. We can see

that we gain same multithreading in code#2 as in code#1 but

we don‟t even need to explicitly think about thread creation in

code#2. All thread creation, for the sake of implementation, is

done internally under the abstraction of autonomous object.

Fig (F)

Example 2—Code#1

class Printer {

 void Printlist (String s) {

 System.out.print ("printing long list for”+s);

 try {

 Thread.sleep (1000);

 } catch (InterruptedException e) {

 System.out.println ("Interrupted");

 }

 System.out.print ("printing long list Ends for”+s);

 }

}

class CompThread implements Runnable {

 String s1;

 Printer p1;

 Thread t;

 public CompThread (Printer p2, String s2) {

 p1= p2;

 s1= s2;

 t = new Thread(this);

 t.start();

 }

 public void run() {

 synchronized(p1){

 p1.Printlist(s1);

 }

 }

}

class Driver{

 public static void main (String args[]) {

 Printer p3 = new Printer();

 CompThread name1 = new CompThread (p3, "Bob");

 CompThread name2 = new CompThread (p3,"Mary");

 try {

 name1.t.join();

 name2.t.join();

 } catch (InterruptedException e) {

 System.out.println("Interrupted");

 }

 }

}

Example 2—Code#2

class AutoPrinter {

 public string pname;

public void run() {

 thread.synchronized(){

 this.Printlist(pname);

 }

 }

public AutoPrinter (string nm){ pname=nm; }

public void Printlist (String s) {

 system.out.print ("printing long list”+s);

 try {

 Thread.sleep (1000);

 } catch (InterruptedException e) {

 System.out.println ("Interrupted");

 }

 System.out.print ("printing long list Ends”);

}

}

class Demo{

 public static void main (String args[]) {

 try {

 AutoPrinter auto p1 =new AutoPrinter("Bob");

 AutoPrinter auto p2 =new AutoPrinter("Mary");

 } catch (InterruptedException e) {

 System.out.println("Interrupted");

 }

 }

}

Int'l Conf. Foundations of Computer Science | FCS'11 | 139

7 Calculus

 A class is an object definition used to generate object.

Pre-methods are the method definitions which becomes

methods once embedded into objects as mentioned in [1]. A

class is a collection of pre-methods together with a method

called “new” for generating new objects. Class in the

terminology of calculus is written as below:

c ∆ [new = б(z)[li = б(s)z. li(s)
iє 1…n

],

 li= λ(s)bi
iє 1…n

]

The method new = б(z)[li = б(s)z. li(s) iє 1…n] ,

applies the pre-methods of class to the self of the object,

thereby converting the pre-methods into methods.

Given any class “c”, the invocation c.new produces

an object “o” as below and given in [1].

o ∆ c.new = [li = б(xi)bi
iє 1…n

]

7.1 Calculus for Autonomous Object

In our setting, as we have defined in section 3, in order

to make a class behave as autonomous, it must be inherit from

a parent “Autonomous” class. In our calculus we call it

“c_super_auto” class and formally given as below

c_super_auto ∆ [new = б(z)[li = б(s)z.li(s)
iє 1…n

 ,

 б(s)z.run(s)], thread=b,

 run=λ(s)(s.thread:=s.thread.new),

 li = λ(s)bi
iє 1…n

]
 thread=b stands for thread= б(s)b, for an unused s

because thread=b is a field.

 run=λ(s)(s.thread:=s.thread.new), A new instance of

thread is created, so that each autonomous object

can run in this new and separate thread.

 (s.thread:=s.thread.new) is the body of run method.

 new method not only applies the pre-methods of

class to the self of the object but also invoke the run

method.

 run is also a special method similar to new method.

A new thread instance is created within run method.

Hence a new thread instance is created before new

method is returned.

 li= λ(s)bi
iє 1…n

 represents all pre-methods of

“c_super_auto” class.

In order to make a class behave as autonomous, it

must be inherit from a parent “c_super_auto” class.

As soon as object of a class is created with “auto” keyword,

the class by default gets inherited from “c_super_auto” class.

Compiler is supposed to enforce this by default inheritance.

In our calculus, we call the inherited class “c_auto” and

formally given as below:

c_ auto ∆ [new = б(z)[li = б(s)z. li(s)
iє 1…n+m

 ,

 б(s)z .run(s)],

 run= λ(s)c_super_auto.run(br)(s),

 li =c_super_auto.lj
jє 1…n

,

 lk= λ(s)bk
kє n+1…n+m

]

 “c_auto” as an inherited class can reuse all the pre-

methods of “c_super_auto”.

 (c_super_auto.lj
jє 1…n

) are the pre-methods of

“c_super_auto” inherited into “c_auto”.

 lk= λ(s)bk
kє n+1…n+m

 are more pre-methods peculiar to

“c_auto”.

 run= λ(s) c_super_auto.run(br) (s) shows that run is

the inherited but over ridden pre-method which also

invoke its parent‟s run pre-method.

 c_super_auto.run(br) (s) is the body of run pre-method

of “c_auto”.

 c_super_auto.run is the part of run pre-method body

which is invoking the run method of parent.

 (br) is the remaining body of run pre-method which

represent any custom user defined code.

 (s) is the self parameter of “c_auto” also passed on to

c_super_auto.run

In our calculus an autonomous object “ao” is created from

“c_auto” class is formally given as below:

ao ∆ c_auto.new = [br {{x<-ao}}, li = б(xi)bi
iє 1…n+m

]

 br {{x<-ao}} shows that run method is invoked from

within the c_auto.new i.e as soon as “ao” is created.

 li = б(xi)bi
iє 1…n+m

 shows the methods embedded

into “ao” corresponds to the pre-methods of

“c_auto” class. These methods include the „m‟ pre-

methods of c_ auto as well as „n‟ pre-methods of

c_super_auto.

8 Conclusion

Our proposed autonomous object notion is compatible

with all contemporary Object Oriented Programming

techniques. It is not new programming paradigm. According

to our proposed syntax when an Autonomous object is

defined, its object can still be created as a usual, as a non-

140 Int'l Conf. Foundations of Computer Science | FCS'11 |

autonomous object, without any extra care. Autonomous

object provides better abstraction over thread and concurrency

and is also sound in Object calculus as we have shown.

9 References

[1] M.Abadi and L.Cardeli, “A Theory of Objects”,

Springer, New York, 1996. Chapter 6.

[2] Michael Papathomas, Dimitri Konstantas, “Integration

concurrency and Object Oriented Programming. An

Evaluation of Hybrid”

[3] Andrew D. Gordon, Paul D. Hankin, University of

Cambridge Computer Laboratory, Cambridge, UK, “A

Concurrent Object Calculus: Reduction and Typing”.

[4] Alan Jeffrey, DePaul University, “A Distributed object

calculus”, December 1999, Proc. FOOL 2000

[5] Suresh Jagannathan!, Jan Vitek, Adam Welc, Antony

Hosking, April 2005, Dept. of Comp. Sci., Purdue University,

USA “A transactional object calculus”.

[6] Jonathan Aldrich Joshua Sunshine Darpan Saini Zachary

Sparks, School of Comp. Sci., Carnegie Mellon University,

OOPSLA 2009, “Typestate-Oriented Programming”.

[7] Haitong Wu, Sheng Yu, Dept. of Comp. Sci, Univ. of

Western Ontario, “Adding states into Object Types”.

[8] Haitong Wu, Sheng Yu, Dept. of Comp. Sci, Univ. of

Western Ontario, 2006 Elsevier, “Type Theory and Language

Constructs for Objects with States”.

Int'l Conf. Foundations of Computer Science | FCS'11 | 141

Type Disjointness in the Language of Effective Definitions

Jarred Blount and J. Nelson Rushton

Dept of Computer Science, Texas Tech University

Abstract - This paper presents portions of the LED type

system. LED types include integer, boolean, variable, set,

tuple, function, and union types as well as user-defined

recursive types. To accommodate overloading of function

symbols in LED program, while ensuring deterministic

evaluation of LED expressions, definitions of functions

symbols must not be ambiguous. The concept of type

disjointness is utilized to determine if the declared domains of

LED definitions are disjoint. An algorithm is presented for

determining if two types are disjoint, that is, have any

inhabitants in common. The algorithm is shown to be sound

and complete a restricted form of the LED type system.

Keywords: functional programming, type safety

1 Introduction

 The Language of Effective Definitions (LED) is a formal

language for defining computable functions. It allows

recursive definitions employing rational arithmetic, finite sets

and tuples, and quantification and set comprehension

restricted to finite sets. Since these are well known operations

and their LED syntax is visually similar to their traditional

informal syntax, we will not define the language formally

here. For current purposes, an informal reading of function

definitions is identical to its formal reading. For complete

semantics see (Rushton and Blount 2011).

 In this paper, the goal is to develop an algorithm that will be

used to allow function symbols to be overloaded for

arguments of different types, while guaranteeing at compile

time that definitions are not ambiguous. For expressivity, we

include variable (unknown or undetermined), set, tuple,

function, and union types as well as user defined recursive

types. The restrictions we are assuming at this time are that

recursive type are explicitly defined by type rules, and hence

are regular. We also prohibit mutually recursive types. This

paper only introduces an overview of planned type system

and one statically checkable type relationship, disjointness.

 Related worked includes many systems that include one

some of the features our system, and exclude others. Union

types in programming languages, while having long been

played a role in program analysis (Palsberg and Pavlopoulou,

1999), have been featured in few programming languages

(notably algol 68; cf. van Wijngaarden et al., 1978). More

recently, they have being applied in the context of type

systems for “semi-structured” database formats such as XML

(Buneman and Pierce, 1998; Hosoya,Vouillon,and

Pierce,1991). Tuple and function types have long been

featured in the simply typed lambda calculus. Basic properties

of recursive types are were established in (MacQueen,

Plotkin, and Sethi, 1986).

 This paper is organized as follows, section 2 introduces the

LED types along with some example LED expressions of

each type, then more presented in detail in section 3. Section

4 presents the semantics of the LED type system. Section 5

presents the algorithm for determining type disjointness, and

its proof of correctness wrt to a restricted form of the LED

type system.

2 Simple Examples

 The simplest of LED expression are the atomic

expressions symbols, strings of digits, and decimal fractions.

For example, the LED symbols true, and false are of type

boolean. The LED numerals 0 and 256 are of type

integer, and the LED decimal fractions 3.14 and 1.23

are scalar.

 Second, are the literals for sets and tuple, following the

normal conventions, {1,2,3,52} and is a set of integers

denoted by {integer}, and {} is of type {X}, meaning the

empty set is an object or inhabitant of any set type. The tuple

(1,2) is a 2-tuple of integers denoted by

integer×integer, and the tuple

(1.2,2.3,3,true) is a 4-tuple denoted by (scalar,

scalar, integer, boolean).

 The built-in function symbol, + is a function from a 2-

tuple, or pair, of integer to an integer denoted by

integer×integer->integer, but is also overloaded in

that + is also a function from a 2-tuple of scalar to a

scalar denoted by scalar×scalar->scalar.

 User defined types can given by type rules. For example a

user defined type number, could be defined by a type rule

number::=integer|scalar, intuitively meaning that

any object of type number is exactly those objects that are

either integer or scalar. Lists of integer can be

described using the LED tuple operator. For example,

142 Int'l Conf. Foundations of Computer Science | FCS'11 |

(1,(2.3,(5,emptyl))) is a valid LED tuple

expression, and is an intlist using the type rules

intlist ::= emptyl|integer×intlist , and built-

in type emptyl.

3 Definitions and Syntax

 A type lexicon is a 4-tuple (B,D,V,<,disj) where B, D, V are

disjoint finite sets of symbols, and < and disj are binary

relations on B for subtype and disjoint. B, D, and V are the

built-in, defined, and variable type symbols, respectively, of

(B,D,V,<,disj). The operators „{}‟,‟×‟,‟->‟, and ‟|‟ are called

the set, tuple, function and union type constructors

respectively. For any positive integer i, Ti is a meta-variable

for any type, ti is a meta-variable for any type symbol, and L

is a meta-variable for a type lexicon. When no ambiguity will

be introduced “over type lexicon L” will be omitted from

subsequent occurrences of a definition.

A type over a type lexicon L is one of the following:

 T1 where T1 is a type symbol of L

 {T1} where T1 is a type

 T1× … ×Tn where n>2

 T1| … |Tn where n>2

 Several later definitions will make use of view that types

are abstract syntax trees. In this view, leaf nodes are be

labeled by type symbols, and non-leaf nodes will be labeled

by type constructors or type symbols. If the root node of, (the

abstract tree representation), of type T, is R, then T is called a

R type. Likewise, if the root node of, (the abstract tree

representation), of type T, is not R, then T is called a non-R

type For example, the types int, int|bool, {int},

int×int are a built-in type, set type, union type, tuple type

respectively. If the root is labeled by a type constructor, the

type is a constructed type.

 A type rule over L is an expression of the form T1::=T2,

where T1 is a defined type symbol, and T2 is either a type or

LED symbol. T1 and T2 are called the head and body of

T1::=T2 respectively. A type rule is T1::=T2 well-founded

if

(1) T2 is a union type, and

(2) There is at least one child of T2 containing only built-in

type symbols, non-union type constructors, and

(3) Each occurrence of T1 in T2 occurs within a set or tuple

type constructor.

 For example, the type rules p::={}|{p}, and

pp::={{}}|{{pp}} are well-founded. Examples of non

simply well-founded type rules include q::={q}, which

violates condition (1), q::={q}|q×int, which violates

condition (2), and q::=q|q×int which violates condition

(3). A grammar over L is a finite set G of type rules over L,

such that each defined symbol of L occurs as the left side of

one rule in G. We consider grammars containing only well-

founded rules.

;)

4 Semantics

 A literal is one of the following:

(1) a symbol (string or non-white-space characters not

beginning with a digit and containing no left or right

parenthesis),

(2) a numeral,

(3) a decimal fraction,

(4) (l1,…,ln) where n>1 and each li is a literal, or

(5) {l1,…,ln} where n>1 and each li is a literal, or

 Cases (1), (2), and (3) are called atomic literals. Cases (4)

and (5) are set and tuple literals respectively, and are

compound literals collectively. For any positive integer j, lj is

a meta-variable for an arbitrary literal. Equality is defined in

the obvious way for all literals.

 Given a type lexicon L=(B,D,<,disj), a model of L maps

each built-in type symbol T1 of L to a set of atomic literals

M(T1) such that for any type T2 of L:

1. M(T1) is a subset of M(T2) whenever T1< T2, and

2. M(T1) is disjoint from M(T2) whenever disj(T1,T2).

 Given a lexicon L, a model M of L, and a grammar G over

L. inhab(L,M,G) is the smallest set S of type judgments l:T,

(where l is a literal and T is a type over L) such that:

1. If l ∈ M(T) then l:T ∈ S

2. If li:T ∈ S for all 1≤i≤n, then {l1,…,ln}:T ∈ S

3. If li:Ti ∈ S for all 1≤i≤n, then (l1,…,ln):T1×…×Tn ∈ S

4. If l:Ti ∈ S for some 1≤i≤n then l:T1|… |Tn ∈ S

5. If T1::=T2 is a rule in G, and l:T2 ∈ S then l:T1 ∈ S.

Definition 1. Disjoint types

Given a type lexicon L, grammar G over L, and model M of L,

types T1 and T2 over L are disjoint if ∀ x,y . if x:T1 ∈
inhab(L,M,G) and y:T2 ∈ inhab(L,M,G) then x ≠ y.

5 Type Disjointness algorithm

 Given a type theory L with lexicon(B,D,<,disj) grammar

G over L, we give an algorithm by defining an piecewise

effective binary predicate D over types of L.

Definition 2. Algorithm D

D(T1,T2) if any of the following:

When either T1 or T2 is a built-in type

(1) disj(T1,T2), or

(2) T1 is a built-in type, and T2 is a set or tuple, or

(3) T2 is a built-in type, and T1 is a set or tuple,

Int'l Conf. Foundations of Computer Science | FCS'11 | 143

When either T1 or T2 is a union type

(4) T1 is a union type, and for each child of Ti of T1

D(T1,T2), or

(5) T2 is a union type, and for each child of Ti of T2

D(Ti,T1), or

When both T1 and T2 are set or tuple types

(6) If both T1 and T2 are tuple types, and every pair of

corresponding children , D(T1i,T2i), or

(7) If both T1 and T2 are set types with children Ti and Tj,

respectively, and D(Ti,Tj),

(8) If T1 is a set type and T2 is a tuple type.

(9) If T2 is a set type and T1 is a tuple type.

When either T1 or T2 are defined types

(10) If T1 is defined by T1::=T3, and D(T3,T2), or

(11) If T2 is defined by T2::=T3,and D(T1,T3), or

(12) If T1 and T2 are distinct defined type symbols defined

by T1::=T3 and T2::=T4 and D(T3,T4),

 The following theorem is the main result of this paper,

and says that types T1 and T2 are disjoint if and only if C(T1,

T2).

Theorem 1. Given a type lexicon L, with no defined type

symbols, an empty grammar G over L, a model M of L, and

types T1 and T2 over L, D(T1,T2) if and only if T1 and T2 are

disjoint.

Proof of Theorem 1 (only if)

 Suppose D(T1,T2), the proof proceeds by strong induction

over the sum of the heights of the (syntax tree representation

of) T1 and T2. Both the base case and induction step will then

proceed by cases, having one case for each branch of the

algorithm. The cases for branches (10), (11), (12) are

vacuously true, ie. they never apply, because the grammar G

is empty.

 In the base case T1 and T2 are built-in type symbols, hence

only branch (1) of the disjoint algorithm need be examined.

From the definition of the algorithm D follows disj(T1,T2), it

follows from the definition of model, that M(T1) and M(T2)

are pair-wise disjoint sets. Consequently, T1 and T2 are

disjoint.

 The induction step will proceed by cases, one case for each

branch of the definition of the disjoint algorithm. Notice that

in the cases for branches (2), (3), (7), and (9) that no recursive

call is made. We appeal directly to the definition of LED

equality and definition of literal.

 Suppose that case (2) applies, it can be shown that no

atomic literal is equal to any tuple literal or set literal. A

similarly argument will be used in case (3). In the cases (7)

and (9), it can be shown that that no set literal is equal to any

tuple literal, and so T1 and T2 are disjoint.

 The cases for the remaining branches (4), (5), (6), (7), will

require the induction hypothesis. In each of these branches D

is applied to a single child, or children of either T1 and T2, so

T1 and T2 are disjoint by the induction hypothesis and

definition of disjoint.

Proof of Theorem 1 (if)

 Suppose T1 and T2 are disjoint. The proof proceeds by

strong induction over the sum of the heights of the (syntax

tree representation of) T1 and T2. Both the base case and

induction step will then proceed by cases of possible

combinations of labels of the root of T1 and T2. While there

are at least 16 cases, |{built-in, set, tuple, union}|
2. All built-

in type symbols can be handled by a single meta-variable for

an arbitrary built-in type symbol.

 For the base case, the roots of T1 and T2 are labeled by

built-in type symbols, and so disj(T1,T2) is true by definition

of a model. Hence D(T1,T2) by branch (1) of the definition of

D.

 For the induction step, the proof will proceed with the

following cases.

 Suppose the root of T1 is labeled by a built-in type symbol

and T2 is labeled by set or tuple, then D(T1,T2) is true by

branch (3) of the definition of D.

 Suppose the root of T2 is labeled by a built-in type symbol

and T1 is labeled by set or tuple, then D(T1,T2) is true by

branch (2) of the definition of D.

 Suppose the root of T1 is labeled by set and T2 is labeled by

tuple, then D(T1,T2) is true by branch (8) of the definition of

D.

 Suppose the root of T2 is labeled by set and T1 is labeled by

tuple, then D(T1,T2) is true by branch (9) of the definition of

D.

 Suppose that both T1 or T2 are labeled with set, and the

child of T1 is T1c and child of T2 is T2c. It can be shown that

T1c and T2c are disjoint by the definition of LED equality

between sets and the definition of disjoint types. D(T1c,T2c)

follows using the induction hypothesis. A similar argument is

used if both T1 and T2 are labeled with tuple.

 Suppose that T1 are labeled by union. For every child T1c

of T1, T1c and T2 are disjoint by the definition of disjoint

types. D(T1c,T2c) follows using the induction hypothesis. A

similar argument is used if T2 is labeled with union.

Definition 2. Given a type lexicon L, and a grammar G over

L, G is stratified if there exists a function f from type

symbols of L to non-negative integers such that:

1. f (T) = 0 if T is a built-in type symbol, and

2. f (T1) > f (T2) if T1::=T3 ∈ G, T2 is a leaf of T3.

144 Int'l Conf. Foundations of Computer Science | FCS'11 |

Conjecture 1. Given a type lexicon L, with stratified

grammar G over L, a model M of L, and types T1 and T2 over

L, D(T1,T2) if and only if T1 and T2 are disjoint.

6 Conclusion and future work

 The main theorem is critical to planned future work, in

particular a proof of conjecture 1, that is, to extend algorithm

D to user defined recursive types, and then incorporate

function types, extend LED type system semantics to include

function types, show LED to be type-safe. Well-typed LED

will contain unambiguous function definitions that are correct

wrt their declared signatures. Finally, we work to include

type inference (and not require explicit type signatures), and

parameterized user defined types such as list(int), lists

of integers.

7 References

[1] Buneman, Peter and Benjamin Pierce. Union types for

semistructured data. In Internet Programming Languages.

Springer-Verlag, September 1998. Proceedings of the

International Database Programming Languages Workshop.

LNCS 1686.

[2] Jim, Trevor and Jens Palsberg. Type inference in systems

of recursive types with subtyping. Manuscript, 1999.

[3] MacQueen, David, Gordon Plotkin, and Ravi Sethi. An

ideal model for recursive polymorphic types. Information and

Control, 71: 95–130, 1986.

[4] Rushton, J., Blount, J. The Language of Effective

Definitions. International Conference on Frontiers in

Education: Computer Science and Computer Engineering.

[5] van Wijngaarden, Adriaan, B. J. Mailloux, J. E. L. Peck,

C. H. A. Koster, M. Sintzoff, C. H. Lindsey, L. G. L. T.

Meertens, and R. G. Fisker. Revised report on the algorithmic

language ALGOL 68. Acta Informatica, 5 (1–3): 1–236,

1975.

Int'l Conf. Foundations of Computer Science | FCS'11 | 145

Performance Evaluation of the EXT4 File System

A Comparative Study Against EXT3, ReiserFS and JFS

Alireza Ghobadi
1
, Amir Hesam Yaribakht

1
, Sanam Maham

2
, Mohammad Hossein Ghods

2

1
Faculty of Information Technology Multimedia University Cyberjaya 63000 Selangor, Malaysia

2
SOHA Sdn. Bhd.,AB1 MSC Center, Cyberjaya, Selangor, Malaysia

Abstract— Base on several definition of File System, File

System is a system which is responsible to handle files and

managing data in any operating system [1]. According to

these definitions, choose a File System to managing data on

your system, is one of the consideration for anybody who use

a computer. Anybody can fill this problem when you have a

lot of files with a large portion. File System types can be

classified into disk File Systems, network File Systems and

special purpose File Systems[2][3][4.] The purpose of this

Paper is “comparison Performance evaluation among four

File Systems”. According to above goals, there are several

file systems on Linux operation system. These file system are

EXT2, EXT3, EXT4, ReiserFS, JFS, and etc. In this paper, we

are neither define several file systems on Linux nor compare

them and tested by IOzone and Postmark benchmark tools

[5][6]. The performance result has shown base on read, re-

read, write and re-write of file for IOzone benchmark tool

and create, read, append, delete for Postmark benchmark

tool. We have chosen IOzone bench mark for our experiments

as it is preferred for operating system evaluation [7].

Keywords- Performance Evaluation, File System, EXT4,

EXT3, ReiserFS

1 Introduction

 Base on several definition of file system, File system is a

system which is responsible to handle files and managing data

in any operating system [1]. According to these definitions,

choose a good file system with the best performance is one of

the considerations [1].

 File system types can be classified into disk, network

and special purpose. A disk file system designed for the file

storage on a data storage device. Normally disk drive, directly

or indirectly connected to the computer or any computer

device.

 The principal aims of file system are to address

scalability, performance, reliability, capabilities and

robustness. On the other hand, the most popular Linux file

system due to its reliability, rich feature set, relatively good

performance, and strong compatibility between versions of

file system.

According to above goals, there is several file system on

Linux operating system. These file system are EXT2, EXT3,

EXT4, ReiserFS, JFS, and etc [7][8][9][10][11][12].

In this paper, we are neither define several operating

systems on Linux nor compare them and tested by IOzone

and Postmark benchmark tools. We will be showing

performance of them based on read, re-read, write and re-

write of file.

We have chosen IOzone and Postmark benchmark tools for

our experiments as it is preferred for operating system

evaluation [13][14].

1.1 Instructions for authors

 This paper, compares and evaluates EXT4 against EXT3

and ReiserFS, JFS file systems on Linux. The paper studies on

these four file system in section 2, 3, 4. Related work in

section 5. Then, it focuses on performance evaluation tools in

section 6. Implementation of benchmark tools in section 7.

Results and discussion in section 8, and finally, conclusion

and future work in section 9.

2 Extent file systems

 Extent file system was earlier file system that developed

on Linux by Rmy Card, Laboratoire. Until now Extended has

four generations and implement on several version of Linux

[10].

 EXT2 designed by Wayne Davidson and Stephen

Tweedie and Theodore. They extended from EXT file system

which designed byRemy Card and implement on the standard

Linux file system [15][16].

 EXT3 is one of the traditional Unix-derived file systems.

it used a indirect block mapping scheme to keep track of each

block. It the same data structures and supports journaling.

EXT3, which just added some features to EXT2 while

keeping the on-line format and approach of EXT2 [9].

 EXT4 was developed by Theodore Ts’o, who was, at the

time In 2006. The uber Linux developer, which developed the

EXT3 maintainer, began work on EXT4., EXT4 changed a

deep code change and the data structures. These changes used

146 Int'l Conf. Foundations of Computer Science | FCS'11 |

http://en.wikipedia.org/wiki/Disk_drive
http://en.wikipedia.org/wiki/Theodore_Ts%27o

to make a better file system, faster, reliable, more features,

and better code. The most important and hard working on

EXT4, added new features such as, Extents, journaling check

summing, block allocation, delayed allocation, faster fsck, on-

line defragmentation, and larger directory sizes (up to 64,000

files) [12].

3 ReiserFS

 ReiserFS was developed as a part of the standard Linux

kernel by Hans Reiser. [2] It is available on the most version

of Linux operating system. ReiserFS supports metadata

journaling. The ReiserFS has excellent performance for small-

files. ReiserFS Developed based on B* Balanced Trees to

organize directories, files, and data. B* provides fast directory

lookups and fast deletes operations. Other performance

features include support for sparse files and dynamic disk

inode allocation [2].

4 Journalin File Systems (JFS)

JFS introduced by IBM as UNIX file system with the initial

release of AIX Version 3.1. It has now introduced a second

file system that is to run on AIX systems called Enhanced

Journal File System (JFS2). JFS2 is available in AIX Version

5.0. The JFS Open Source code on originated [17].

JFS is modified primarily for the high throughput and

reliability requirements of servers. JFS uses extent-based

addressing structures, along with clustered block allocation

policies. It is make compact, efficient, and scalable structures

for mapping logical offsets within files to physical addresses

on disk. An extent is a sequence of contiguous blocks

allocated to a file as a unit. The addressing structure is a

B+Tree populated with extent descriptors, rooted in I-node

and keyed by logical offset within the file [17].

JFS supports block sizes of 512, 1024, 2048, and 4096

bytes on a per-file system basis. Smaller block sizes reduce the

amount of internal fragmentation. However, small blocks can

increase path length since block allocation activities may

occur more often than if a large block size was used. The

default block size is 4096 bytes [18].

JFS supports both sparse (which allow data to be written to

random locations within a file without instantiating others

unwritten file blocks.) and dense files, on a per-file system

basis. [18]

5 Related Work

Some researcher studied on Extents file

systems.[12][13][14] Avantika Mathur have worked on EXT3.

The purpose of their research was to provide branch of EXT4

from EXT3.[4] They compared EXT3, EXT4; XFS file

systems with three tools as FFSB, IOzone and Postmark. With

FFSB tool they test these file systems base on throughput

(MB/Sec) and CPU percent usage. [13] [14]

This test has shown that XFS has higher throughput

(MB/Sec) than EXT3 and EXT4, but it has lower CPU percent

usage than EXT3 and EXT4. EXT4 has higher throughput

(MB/Sec) performance than EXT3, but it has lower CPU

percent usage than EXT3 [9]. By IOzone tool they test these

file systems base of six operations as write, re-write, read, re-

read, random write and random read [11]. In this test shows

that in Write, re-write, random write and random read, EXT4

has higher throughput (KB/Sec) performance than XFS and in

general EXT4 has higher throughput (KB/Sec) performance in

all six operations than EXT3[9].

The test also shows that in read and re-read operations XFS

has higher throughput (KB/Sec) performance than EXT3 and

EXT4. Also observe that in re-write, random write, random

read, XFS has higher throughput (KB/Sec) performance than

EXT3. In write operation EXT3 has higher throughput

(KB/Sec) performance than XFS. With Postmark tool they test

these file systems based on two operations as read and write.

The test result not only shows that EXT4 has higher

throughput (MB/Sec) performance than EXT3 and XFS, but

also EXT3 has higher throughput (MB/Sec) performance than

XFS. In their comparison they find that EXT4 has a good

improvement of EXT3 and has become an enterprise-ready

solution, with a good balance of scalability, reliability,

performance and stability. [2]

Other researcher named, Ricardo Galli works on journal file

systems available for Linux as EXT3, ReiserFS, XFS and JFS

and they introduce to the basic concepts of file systems,

buffer-cache, and page-cache carried out in the Linux kernel.

[17]Their performance result shows that XFS, ReiserFS and

EXT3 have demonstrated that they are excellent and reliable

file systems. In this research, they achieved (i) EXT3 is going

to be the standard file system for Linux operating system,

specially Red Hat, (ii) JFS is a valid alternative for migrating

AIX and OS/2 installation to Linux.

(iii) In all journal file systems, ReiserFS is the only file

system which has standard Linux tree since 2.4.1 which SuSE

supports it. (iv) XFS is being used in large servers (especially

in the Hollywood industry). It is due mainly to the influence of

SGI market. (v) JFS has gotten the worst results (when tested

by any benchmarks) not only on performance, but also for

stability issue in the Linux port.

Dr. Oliver Diedrich has a well done study on EXT3 and

EXT4 file systems. He compares the structure of EXT3 and

EXT4 file systems base on large volumes, huge files and

extent trees. He evaluates a performance of these two file

systems based on creation (based on time and write speed) and

deletion (based on time) of eight 1 GB files and 10000

random read and write operations in 8 GB. He did not mention

what tools he used in his test, the performance with large files

between EXT3 and EXT4. The tests shows that in creation of

eight 1 GB files, time in EXT4 improved 6.9% and write

speed also improved 7.0% than EXT3. In deletion of eight 1

GB files, time improved 97.2% than EXT3. And among

10000 random read and write operations in 8 GB, EXT4

improved 10.9% than EXT3[11].

Int'l Conf. Foundations of Computer Science | FCS'11 | 147

6 Performance Evaluation Tools

Benchmark is a tool for performance evaluation. There are

several benchmarks for file system available [13]

IOzone is one of the famous benchmark tools on file

system to generate and measures a selection of file operations.

It has been runs for test many operating systems. The IOzone

tests file I/O performance. I/O performance tests based on

Read, re-read, read backwards, read strided, write, re-write,

fread, fwrite, random read/write, pread/pwrite variants,

aio_read, aio_write, mmap.It is useful for file system analysis

of a vendor’s computer platform. [13]

Another famous benchmark is The Postmark. It is

responsible to creating a massive bulk of alternatively

modifying files and calculating the transaction rates for a

workload approximating a large Internet electronic mail server

[14]. Postmark operation, produces random text files. The text

files size categorizes from low bound to high bound. The size

is configurable between low and high bound The text file pool

is of configurable size and can be located on any accessible

file system.[14] Once the bulk has been created consists of a

pair of smaller transactions (i) Create file or Delete file and

(ii) Read file or Append file operation.

According to comparison of these benchmark tools, the

achievement the IOzone performance shows that, this tool is

more suitable for experimental result due to the performance

of IOzone is higher than Postmark tool.

7 Implementation

File system benchmarking requires careful setup. An issue

one must often contend with is how to defeat the effects of the

file system buffer cache. Without careful experimental design,

all of the file system requests could be satisfied in the cache

and no disk activity would occur. A usual way to avoid this

problem is to use a total file size that exceeds the amount of

main memory available on the system.

Another approach is to use a file-access mode that bypasses

the file system buffer cache, such as O_DIRECT. We chose to

not use O_DIRECT for this paper

The second issue that one must address is estimating the

accuracy of the results of the test. In our experience, file

system benchmarks are notorious for being non repeatable,

bimodal, and full of hysteresis effects, making it a challenge to

get consistent results.

In this paper we have IOzone and Postmark benchmarks

using below system:

 The small system that is Intel(R) processor Core(TM)

Duo 2.20 GHz with 4GB of memory and a 320 GB SATA

disk. For the experiments of this paper, this machine was

booted with 4 GB of RAM.

 Nowadays, mentioned machine provides a sampling used

to run Linux.

 For using IOzone and Postmark benchmarks firstly we

should install them in the system.

 Now searching is in process and gives the latest model of

the searched benchmark.

8 Results and Discussion

This section is a description of test result. Each graph defines

system’s structure.

8.1 IOzone result

Read graph shows that EXT4 has not good performance in

those file size less that 100 MB. EXT4 is Extent base

allocation. It is block allocation and it use contiguous

allocation to allocate the file in blocks of disk. Because of this

type of allocation, EXT4 has overhead and performance is not

good on small file. In other hand, small file size because it is

contiguous when file finish there are some space in the

contiguous file that still empty. The other reason is the

overhead for read the file system should refer to directory that

has file name. Address of file and length of the file and if the

file be small, this cause overhead happened. [13]

Allocation features use for large file size. Figure 4 shows

that the performance of EXT4 is higher than other file

systems. For the large file, EXT4’s performance is higher than

other file systems because of block allocation that fill the

contiguous block in disk.

EXT3 allocates blocks for a file one at a time (typically

using 4KB blocks). For very large files, the associated

function that doses the allocation will have to be called

thousands of times. EXT4 uses ―multi-block allocation‖. It

allows multiple blocks (hence the name) to be allocated during

one function call. This can greatly improve the performance of

EXT4 relative to EXT3, particularly for large files. [12]

JFS dynamically allocate space for disk I-nodes as

required, freeing the space when it is no longer needed. Two

different directory organizations are provided. (i) The first

organization is used for small directories and stores the

directory contents within the directory’s I-node. This

eliminates need for separate directory block I/O as well as

need to allocate separate storage. [18] By using directory’s I-

node can eliminate separate directory block I/O and allocate

separate storage. (ii) Organization is used for larger directories

and represents each directory as a B+Tree keyed on name. It

provides faster directory lookup, insertion, and deletion

capabilities.

Because of these reasons JFS in small file has better

performance than EXT4 but for file size from 100MB and

above JFS has lower performance than EXT4. [12]

ReiserFS uses B* Balanced Trees to organize directories,

files, and data. This provides fast directory lookups. [2] So it

has better performance on read operation in small file size

generally less and equal than 20MB file size.

First graph shows result base on read feature. Figure1

shows that experience by IOzone benchmark.

148 Int'l Conf. Foundations of Computer Science | FCS'11 |

Figure 1: IOzone test for Read feature

According to above explanation, Figure1 shows that EXT4

has weakness in small file. Also this graph shows that

ReiserFS and EXT3 have a good performance with small file.

But with increasing file size, EXT4 performance increase as

well. Also this graph shows that JFS more stable than other

file system.

Figure 2: IOzone test for Re-Read feature

Figure2 shows that EXT3, ReiserFS, and JFS has a good

performance when file size is small. But with increasing file

size, JFS and EXT3 performance decrease slowly and EXT4

performance increase. Figure2 Shows with large file size JFS

has higher performance.

Figure3: IOzone test for Write feature

Figure3 shows write performance in these four file

system. Figure3 shows that EXT4 and JFS has a good

performance with small file size. ReiserFS has the lowest

performance. But with increasing file size the EXT4

performance is not change too much, but JFS performance

decreasing too much. In large file size JSF has the worst

performance.

Figure 4: IOzone test for Re-Write feature

Figure4 shows Re-write feature that tested by four file

system. For this feature, JFS has the best performance base on

small file size and large file size. This graph shows that EXT4

performance slowly increase and JFS performance deeply

decrease.

Int'l Conf. Foundations of Computer Science | FCS'11 | 149

Figure5: All feature performance for small file size (1MB).

Figure6: All feature performance for large file size (100MB).

Figure 5 and Figure 6 shows other perspective of

performance of these four file system. With comparison four

feature performance in small file size; JFS has a good

performance in Re-Write, and Re-Read. Also the worth

performance in small file size belong to EXT4. Comparison

between EXT3 and EXT4 which are using extent, EXT3 is

much better than EXT4.

Also according to large file size, EXT4 mostly has a better

performance than others. Specially, on their write file. JFS

also has a good performance on read file.

Postmark result

According to postmark description, run postmark on four

file systems. (EXT4, JFS, EXT3, and ReiserFS) Postmark

used maximum create, read, append, and delete files base on

Table 1.

Table1: Four file systems comparison table with postmark.

Figure7 shows result of postmark testing. This graph shows

that EXT4 is the fastest file system in all of the execution part.

Also ReiserFS are in the second level.

Figure7: Postmark test result base on creation, append,

deletion, and read.

1. CONCLUSION AND FUTURE WORK

Choose a file system to managing data on your system, is

one of the consideration for anybody who use a computer.

Anybody can fill this problem when you have a lot of files

with a large portion [20].

This project define base on famous file system comparison

on Linux. Project starts which a research on file system on

Linux and then find some research on these file systems.

There is some evaluator tools look like FFSB, IOzone, and

Postmark. Benchmark which using IOZONE and

POSTMORK which is more famous. These tools are choosing

to check which one is more reliable for evaluation for my

project. Some of the Research objectives in this project are

carrying out as follow (i) Assess different type of FS on Linux

Assess different type of file system performance evaluator

tools (ii) Categorizes file system base in performance.

The result shows that EXT4 which is using extend have a

performance on large file size but it is not suitable for small

file size. In other word, with increase file size, the EXT4

performance increase. Other file systems (which is JFS and

using journaling) also has a good performance (especially in

write and Re-write file). But JFS is not update any more

during 2 years. EXT3 also has a reliable performance on small

file size.

9 Reference

[1] Bryant, R., Forester, R., & Hawkes, J. (n.d.). File system

Performance and Scalability in Linux 2.4.17. Proceedings of

the FREENIX Track:2002 USENIX Annual Technical

Conference. USENIX.

[2] Sun Microsystems (2004). File System Performance:

The Solaris™ OS, UFS, Linux EXT3, and ReiserFS. Aug.

[3] How to Find the Block Size. (2005, Aug 18). Retrieved

Oct 17, 2009, from LINFO:

http://www.linfo.org/get_block_size.html

150 Int'l Conf. Foundations of Computer Science | FCS'11 |

http://www.zdnetasia.com/whitepaper/sun-microsystems_org-20022744.htm

[4] Terminal Window Definition. (2005, May 1). Retrieved

Nov 9, 2009, from The Linux Information Project:

http://www.linfo.org/terminal_window.html

[5] Inode Definition. (2006, Sep 15). Retrieved Jan 5, 2010,

from The Linux Information Project:

http://www.linfo.org/inode.html

[6] Boyne, J. (2005). Disc and Volume Size Limits.

[7] Diedrich, O. (2009, May 29). The Ext4 Linux File

System. Retrieved Dec20,2009,from the Open:http://www.h-

online.com/open/features/The-Ext4-Linux-file-system-

746579.html

[8] Henson, V., Brown, Z., Ts’o, T., & van de Ven, A.

(2006). Reducing fsck time for EXT2 file systems. Linux

Symposium, p. 395.

[9] Ts'o, T. (2002). Planned extensions to the Linux

EXT2/EXT3 File system. USENIX 2002 Annual Technical

Conference, Freenix Track , pp. 235–244 .

[10] Tweedie, S. (98). Journaling the Linux EXT2fs File

system. LinuxExpo.

[11] Y. Ts'o , T., & Stephen, T. (2002, June 10). Planned

extensions to the Linux EXT2/EXT3 File system . USENIX

Association.

[12] Layton, J. (2009, March 28). EXT4 File System:

Introduction and Benchmarks. Retrieved Dec 29, 2009, from

Linux mag: http://www.linux-mag.com/id/7271/1

[13] Norcott., W. (98). IOzone File system Benchmark.

Retrieved Sep 15, 2009,from IOzone:

ttp://www.IOzone.org/docs/IOzone_msword_98.pdf

[14] Katcher, J. (97, 10 8). Postmark: A New File System

Benchmark. Retrieved Dec 1, 2009, from

http://www.netapp.com/technology/level3/3022.html:

http://communities.netapp.com/servlet/JiveServlet/download/

2609-1551/Katcher97-postmark-netapp-

[15] Y. Ts'o , T., & Stephen, T. (2002, June 10). Planned

Extensions to the Linux Ext2/Ext3 Filesystem . USENIX

Association.

[16] Tweedie, S. (98). Journaling the Linux ext2fs

Filesystem. LinuxExpo.

[17] Galli Granada, P. (2002, Jan 1). Journal File Systems in

Linux. p. 6.

[18] Steve. (2000, Jan 1). JFS overview . Best works in the

Software Solutions & Strategy Division of IBM in Austin.

[19] Norcott., W. (98). Iozone Filesystem Benchmark.

Retrieved Sep 15, 2009, from iozone:

http://www.iozone.org/docs/IOzone_msword_98.pdf

[20] Stepohen, S. (2010). Novell makes file storage software

shift. Retrieved Dec 23, 2009, from

Int'l Conf. Foundations of Computer Science | FCS'11 | 151

152 Int'l Conf. Foundations of Computer Science | FCS'11 |

SESSION

QUANTUM COMPUTING + AUTOMATA

Chair(s)

TBA

Int'l Conf. Foundations of Computer Science | FCS'11 | 153

154 Int'l Conf. Foundations of Computer Science | FCS'11 |

On The Power Of Distributed Bottom-up Tree Automata

Kamala Krithivasan 1 and Ajeesh Ramanujan1
1Department of Computer Science and Engineering
Indian Institute of Technology Madras, Chennai - 36

kamala@iitm.ac.in, ajeeshramanujan@yahoo.com

Abstract— Tree automata have been defined to accept trees.
Different types of acceptance like bottom-up, top-down, tree
walking have been considered in the literature. In this
paper, we consider bottom-up tree automata and discuss
the sequential distributed version of this model. Generally,
this type of distribution is called cooperative distributed
automata or the blackboard model. We define the traditional
five modes of cooperation, viz.∗-mode,t-mode,= k, ≥ k,
≤ k (k ≥ 1) modes on bottom-up tree automata. We discuss
the accepting power of cooperative distributed tree automata
under these modes of cooperation. We find that the∗-
mode does not increase the power, whereas the other modes
increase the power. We discuss a few results comparing the
acceptance power under different modes of cooperation.
Keywords:Tree Automata, ranked alphabet, distributed nondeter-
ministic tree automata, modes of cooperation

1. Introduction
Finite tree automata are generalizations of word automata.

While a word automaton accepts a word, a tree automa-
ton accepts a tree . The theory of tree automata arises
as a straight forward extension of the theory of finite
automata [6]. Tree automata were introduced in [4], [5]
and [12] to solve certain decision problems in logic. Since
then they were successfully applied to many other decision
problems in logic and term rewriting, see e.g. [1]. Even
though the two models are used in different settings they
are closely related to each other since a finite automaton
can be seen as a special case of a finite tree automaton.
Trees appear in many areas of computer science and engi-
neering and tree automata are used in applications such as
XML manipulation, natural language processing, and formal
verification and logic design.

According to the manner in which the automaton runs on
the input tree, finite tree automata can be either bottom-up or
top-down. A top-down tree automaton starts its computation
at the root of the tree and then simultaneously works down
the paths of the tree level by level. The tree automaton
accepts the tree if such a run can be defined. A bottom-
up tree automaton starts its computation in the leaves of the
input tree and works its way up towards the root.

A finite tree automaton can be either deterministic or non-
deterministic. This is an important issue since deterministic
top-down automata are strictly less expressive than non-
deterministic top-down automata. For the bottom-up case,

deterministic bottom-up tree automata are just as powerful,
from the point of view of language equivalence, as non-
deterministic bottom-up tree automata. Non-deterministic
top-down tree automata are equivalent to non-deterministic
bottom-up tree automata [1].

In the last few years distributed and parallel comput-
ing has played an important role in Computer Science.
Modelling these concepts using formal models has given
rise to the concept of grammar systems and distributed
automata. Grammar systems can be sequential or parallel. A
co-operating distributed (CD) grammar system is sequential.
Here, all grammars work on one sentential form. At any in-
stant only one grammar is active. This is called a blackboard
model. Suppose a problem is to be solved in a class. The
teacher asks one student to start working on the problem on
the blackboard. The student writes a few steps, then goes
back. Another student comes and continues working on the
problem. On his return, a third student comes and continues.
The process continues till the problem is solved. Now, the
question arises: at what time does one student return and
the next one starts? There may be several ways for defining
this. Correspondingly, in the CD grammar system, there are
different modes of co-operation. The student may return
when he is not able to proceed further (terminating mode);
he may return at any time (∗-mode); he may return after
doing k-steps (=k-mode); he may return after doingk or
less steps (≤-mode); he may return after doingk or more
steps (≥-mode).

In this paper, we consider bottom-up tree automata and
discuss the sequential distributed version of this model.
We define the traditional five modes of cooperation, viz.
∗-mode, t-mode, = k, ≥ k, ≤ k (k ≥ 1) modes on
bottom-up tree automata. We discuss the accepting power
of cooperative distributed tree automata under these modes
of cooperation. We find that the∗-mode does not increase
the power, whereas the other modes increase the power. We
discuss a few results comparing the acceptance power under
different modes of cooperation.

In the next section we give basic definitions needed for the
paper. Section3 contains the definition of cooperative dis-
tributed tree automata and some results about their accepting
power. The paper concludes with a note in section4.

Int'l Conf. Foundations of Computer Science | FCS'11 | 155

2. Basic Definitions
Let N be the set of positive integers. Then the set of

finite strings overN is denoted byN∗. The empty string is
denoted byǫ. A ranked alphabetΣ is a finite set of symbols
together with a functionRank : Σ → N . For f ∈ Σ, the
valueRank(f) is called the rank off . For anyn ≥ 0, we
denote byΣn the set of all symbols of rankn. Elements
of rank 0, 1, · · · , n are respectively called constants, unary,
· · · , n-ary symbols.

A tree t over an alphabetΣ is a partial mapping
t : N∗ → Σ that satisfies the following conditions:

• dom(t) is a finite, prefix-closed subset ofN∗, and
• for eachp ∈ dom(t), if Rank(t(p)) = n > 0, then

{i|pi ∈ dom(t)} = {1, 2, · · · , n}.

Each p ∈ dom(t) is called a node of t. The node
with domain elementǫ is the root. For a nodep , we
define the i th child of p to be the nodepi, and we
define the i th subtree of p to be the treet

′

such that
t
′

(p
′

) = t(pip
′

) for all p
′

∈ dom(t
′

). A leaf of t is a
nodep which does not have any children, i.e. there is no
i ∈ N with pi ∈ dom(t). We denote byT (Σ) the set of
all trees over the alphabetΣ. The size of a tree t is the
number of elements indom(t). The height of a tree t is
max{|w| : w ∈ dom(t)}. Given a finite treet, the frontier
of t is the set{p ∈ dom(t)| for all n ∈ N,pn 6∈ dom(t)}.
A tree with roota and subtreest1, t2, · · · , tr is represented
by a(t1, t2, · · · , tr).

Example 1:Let Σ = {a, b, c, g, f},f ∈ Σ2,g ∈ Σ1,

a, b ∈ Σ0. A tree overΣ and its diagrammatic representation
is shown in Figure 1

Let t be the treef(g(a)f(bc)).
dom(t) = {ǫ, 1, 11, 2, 21, 22}.
size(t) = 6.
height(t) = 2.
frontier(t) = {11, 21, 22}.

fǫ

g1

a11

f 2

b21 c 22

Fig. 1: A tree and its diagrammatic representation

A nondeterministic finite tree automata(NFTA) over an
alphabetΣ is a tupleA = (Q,Σ, Qf ,∆) where,

• Q is a finite set of states,
• Σ is a ranked input alphabet,
• Qf ⊆ Q is a set of final states,
• ∆ is a finite set of transition rules.

Each transition rule is a triple of the form
((q1, q2, · · · , qn), f, q) whereq1, q2, · · · , qn, q ∈ Q, f ∈ Σn,

i.e. Rank(f) = n. We usef(q1, q2, · · · , qn) → q to denote
that ((q1, q2, · · · , qn), f, q) ∈ ∆. If Rank(f) = 0, i.e.
f is a constant, then we use rules of the formf → q.
The epsilon rules are denoted by rules of the form
qi → qj . A run of A over a treet ∈ T (Σ) is a mapping
r : dom(t) → Q such that for each nodep ∈ dom(t)
whereq = r(p), we have that ifqi = r(pi) for 1 ≤ i ≤ n

then ∆ has the rulet(p)(q1, q2, · · · , qn) → q. A set
B = {q1, q2, · · · , qn} ⊆ Q,n ≥ 1 with respect to a tree
t
′

∈ T (Σ ∪ Q) is said to be an active state set if every
qi = r(pi), i ≥ 0 for somep ∈ dom(t) and t(p) ∈ Σ.

An instantaneous description(ID)of a NFTA is a pair
(B, t), wheret ∈ T (Σ ∪ Q) andB is a set of active state
set with respect tot.

For two ID’s (B, t), (B
′

, t
′

) we write (B, t) ⊢ (B
′

, t
′

)
if there is a rule of the forma(q1, q2, · · · , qn) → q

′

∈ ∆
such thatt

′

is obtained fromt by replacing a subtree oft
of the form a(t1, t2, · · · , tn) by q

′

(t1, t2, · · · , tn), where
a ∈ Σn, n ≥ 0, t1, t2, · · · , tn ∈ T (Q),r(root(t1)) = q1,

r(root(t2)) = q2, · · · , r(root(tn)) = qn, q1, q2, · · · , qn ∈ B

and B
′

is the set of active state set after performing the
transition.

The initial ID is (φ, t), t ∈ T (Σ) and the final ID is
({qf}, t

′

) for someqf ∈ Qf , t
′

∈ T (Q).The reflexive and
transitive closure of⊢ is denoted by⊢∗.

A run represents the effect of a sequence of ID’s from the
initial ID to a final ID.

For a NFTA A, L(A) = {t ∈ T (Σ)|(φ, t) ⊢∗ ({qf}, t
′

),
qf ∈ Qf , t

′

∈ T (Q)}.
A set L of tree languages overΣ is recognizable if

L = L(A) for some NFTAA. Two NFTA are said to be
equivalentif they recognize the same tree language.

We give an example to show that certain tree languages
are not recognizable.

Example 2:Let Σ = {f, g, a}, whereRank(f) = 2,
Rank(g) = 1, Rank(a) = 0. Consider the tree language
L = {f(gi(a), gi(a))|i > 0}. Let us suppose thatL is
recognizable by an automatonA having k states. Consider
the treet = f(gk(a), gk(a)). t belongs toL, therefore there
is a successful run ofA on t. As k is the cardinality of
the state set, there are two distinct positions along the first
branch of the tree labeled with the same state. Therefore,
one could cut the first branch between these two positions
leading to a termt′ = f(gj(a), gk(a)) with j < k such that
a successful run ofA can be defined ont′ . This leads to a
contradiction withL(A) = L.

The proof can be generalized into a theorem, similar
to pumping lemma for recognizable string languages, to
recognizable tree languages [1].

3. Distributed Nondeterministic Tree Automata
(DNTA)

In this section we define distributed nondeterministic
tree automata(DNTA), the different modes of acceptance

156 Int'l Conf. Foundations of Computer Science | FCS'11 |

of DNTA and discuss the power of different modes of
acceptance.

Definition 1: A DNTA is a 4-tuple D = (K,Σ, F,∆)
where,

• K is ann-tuple (K1,K2, · · · ,Kn) where eachKi is a
set of states of theith component;

• Σ is a finite set of ranked alphabet;
• F ⊆

⋃
i Ki is the set of final states;

• ∆ is a n-tuple (δ1, δ2, · · · , δn) of state transistion
function where eachδi is a set of transition rules of the
ith component having the formf(q1, q2, · · · , qn) → q,

f ∈ Σn, q1, q2, · · · , qn ∈ Ki, q ∈
⋃

i Ki or qi → qj .

In the case of DNTA, we can consider many modes of
acceptance depending upon the number of steps the system
has to go through in each of then components. The different
modes of acceptance are∗-mode, t-mode,≤ k-mode,≥
k-mode, and= k-mode, wherek is a positive integer.
Description of each of the above modes of acceptance is
as follows:
t-mode acceptance :An automaton that has a leaf transition
rule begins processing the input tree. Suppose that the system
starts from the componenti. The control stays in component
i as long as it can follow the transition rules in componenti.
Otherwise, it transfers the control to some other component
j, j 6= i which has the transition function to proceed. If
more than one component succeeds, then the selection of
j is done nondeterministically. The process is repeated and
we accept the tree if the system reaches any one of the final
states. It does not matter which component the system is in
while accepting.

Definition 2: The instantaneous description(ID) of a
DNTA D = (K,Σ, F,∆) working in t-mode is given by a
triple (B, t, i) whereB ⊆

⋃
i Ki and it denotes the current

active state set of the whole system,t ∈ T (Σ ∪
⋃

i Ki) and
i, 1 ≤ i ≤ n the index of the component in which the system
is currently in.

The transition between the ID’s is defined as follows:

i) (B, t, i) ⊢t (B
′

, t
′

, i) if there is a rule of the
form a(q1, q2, · · · , qn) → q

′

∈ δi such thatt
′

is
obtained from t by replacing a subtree oft of
the form a(t1, t2, · · · , tn) by q

′

(t1, t2, · · · , tn),
where a ∈ Σn, n ≥ 0, t1, t2, · · · , tn ∈ T (

⋃
i Ki),

r(root(t1)) = q1, r(root(t2)) = q2, · · · ,
r(root(tn)) = qn, q1, q2, · · · , qn ∈ B and B

′

is the set of active state set after performing the
transition.

ii) (B, t, i) ⊢t (B, t, j) iff componenti does not have a
transition to proceed and componentj has a transition
to proceed.

The reflexive and transitive closure of⊢t is denoted by
⊢∗
t .
Definition 3: The language accepted by a DNTA

D = (K,Σ, F,∆) working in t-mode is defined as follows:

Lt(D) = {t ∈ T (Σ)|(φ, t, i) ⊢∗
t ({qf}, t

′

, j),
t
′

∈ T (
⋃

i Ki), for someqf ∈ F, 1 ≤ i, j ≤ n}.
We now give an example of a distributed bottom up tree

automata working int-mode.
Example 3:Consider the language

L1 = {a(bd(gjd)i(f), ce(hke)l(f)), i, j, k, l ≥ 1,
|i− l| ≤ 1} overΣ = {a, b, c, d, e, f, g, h}, a ∈ Σ2,b, c, d, e,

g, h ∈ Σ1,f ∈ Σ0.

We define a distributed tree automaton
D1 = (K,Σ, {qa},∆) working in t-mode as follows.

The components are defined as follows
• Component1

– K1 = {qf , qg, q1, q2},
– δ1 = {d(qf) → qg, g(qg) → q1, g(q1) → q1,

q2 → qf}

• Component2
– K2 = {qf , qe, q1, q2},
– δ2 = {e(qf) → qe, h(qe) → q2, h(q2) → q2,

q1 → qf}

• Component3
– K3 = {qf , qa, qb, qc, qd, qe, q1, q2},
– δ3 = {f → qf , b(qg) → qb, c(qe) → qc,

a(qb, qc) → qa}
The processing starts in component 3 , with the two leaves

using the rulef → qf . As further processing is not possible
in component3, processing continues with2 or 1. Then it
alternates between1 and2 processingd’s, g’s, e’s andf ’s.
Finally when the labels areb andc, processing takes the tree
to qb andqc and in component3 stateqa is reached by the
root.

Theorem 1:There exists a language accepted by a DNTA
working in t-mode which is not recognizable.

Proof: Consider the tree languageL1. Let us suppose
thatL1 is recognizable by an automatonA havingk states.
Consider the treet = a(bd(gd)k(f), ce(he)k(f)), k > 0.
t belongs toL1, therefore there is a successful run ofA

on t. As k is the cardinality of the state set, there are
two distinct positions along the first branch of the tree
labeled with the same state. Therefore, one could cut the
first branch between these two positions leading to a term
t′ = a(bd(gd)j(f), ce(he)k(f)) with j < k such that a
successful run ofA can be defined ont′ . This leads to
a contradiction withL(A) = L1. SoL1 is not recognizable.

∗-mode acceptance :An automaton that has a leaf transi-
tion rule begins processing the input tree. Suppose that the
system starts from the componenti. Unlike the termination
mode, the automaton can transfer the control to any of the
components at any time i.e., if there is somej, j 6= i such
that the next move is possible then the system can transfer
the control to the componentj. The selection ofj is done
nondeterministically if there is more than onej.
The ID and the language accepted by the system in∗ mode,
L∗(D) is defined as follows.

Int'l Conf. Foundations of Computer Science | FCS'11 | 157

Definition 4: The instantaneous description(ID) of a
DNTA D = (K,Σ, F,∆) working in ∗-mode is given by a
triple (B, t, i) whereB ⊆

⋃
i Ki and it denotes the current

active state set of the whole system,t ∈ T (Σ ∪
⋃

i Ki) and
i, 1 ≤ i ≤ n the index of the component in which the system
is currently in.
The transition between the ID’s is defined as follows:

i) (B, t, i) ⊢∗ (B
′

, t
′

, i) if there is a rule of the
form a(q1, q2, · · · , qn) → q

′

∈ δi such thatt
′

is
obtained from t by replacing a subtree oft of
the form a(t1, t2, · · · , tn) by q

′

(t1, t2, · · · , tn),
where a ∈ Σn, n ≥ 0, t1, t2, · · · , tn ∈ T (

⋃
i Ki),

r(root(t1)) = q1, r(root(t2)) = q2, · · · ,
r(root(tn)) = qn, q1, q2, · · · , qn ∈ B and B

′

is
the set of active state set after performing the
transition.

ii) (B, t, i) ⊢∗ (B, t, j) iff componentj has a transition
to proceed.

The reflexive and transitive closure of⊢∗ is denoted by
⊢∗
∗.
Definition 5: The language accepted by a DNTA

D = (K,Σ, F,∆) working in ∗-mode is defined as follows:
L∗(D) = {t ∈ T (Σ)|(φ, t, i) ⊢∗

∗ ({qf}, t
′

, j),
t
′

∈ T (
⋃

i Ki), for someqf ∈ F, 1 ≤ i, j ≤ n}
We give an example of a distributed bottom up tree

automata working in∗-mode.
Example 4:Consider the language

L2 = {a(bi(d), cj(d)), i, j ≥ 1} overΣ = {a, b, c, d},
a ∈ Σ2, b, c ∈ Σ1,d ∈ Σ0. We define a distributed tree
automatonD2 = (K,Σ, {qf},∆) as follows.

The components are defined as follows
• Component1

– K1 = {qb, qd}
– δ1 = {b(qd) → qb, b(qb) → qb}

• Component2
– K2 = {qd, qc}
– δ2 = {c(qd) → qc, c(qc) → qc}

• Component3
– K3 = {qf , qb, qc, qd}
– δ3 = {d → qd, a(qb, qc) → qf}

Processing starts in component 3, with the two leaves using
the rule d → qd. As further processing is not possible in
component 3, processing continues with components 1 or 2.
Then it alternates between components 1 and 2 processing
b’s and c’s. When all theb’s and c’s are exhausted the
automaton moves to component 3 and reaches the final state
by using rulea(qb, qc) → qf . The processing of any tree
in L2 uses component 3 two times, in the first and the last
step.

Theorem 2:For any DNTAD working in∗-mode,L∗(D)
is recognizable.

Proof: Let D = (K,Σ, F,∆) be a DNTA work-
ing in ∗-mode where,∆ = (δ1, δ2, · · · , δn) and the

components have statesK1,K2, · · · ,Kn. Define a NFTA
N = (K

′

,Σ, F
′

, δ) where,

K
′

= {[q, i]|q ∈
⋃

i

Ki, 1 ≤ i ≤ n}

F
′

= {[qf , i]|qf ∈ F, 1 ≤ i ≤ n}

δ contains the following transitions
for eacha(q1, q2, · · · , qr) → q ∈ δi, r ≥ 0, q1, q2, · · · ,
qr ∈ Ki, 1 ≤ i ≤ n, a ∈ Σ,
{a([q1, i1], [q2, i2], · · · , [qr, ir]) → [q, j]} ∈ δ,

1 ≤ j ≤ n, q ∈ Kj , 1 ≤ i1, i2, · · · , ir ≤ n.
If qs → qt is a rule in theith component andqt ∈ Ki, then
add [qs, i] → [qt, j], 1 ≤ j ≤ n to δ.
If a tree t is accepted by a DNTA, then there is a sequence
of ID’s (φ, t) ⊢ (B1, t1) ⊢ · · · ⊢ ({qf}, tr) leading to accep-
tance. The corresponding sequence of ID’s for the NFTA is
as follows:(φ, t, i0) ⊢ (B1, t1, i1) ⊢ · · · ⊢ ({qf}, tr, ir),
1 ≤ ij ≤ n. Similarly, if there is a sequence of ID’s
leading to acceptance in NFTA, then there is a corresponding
sequence of ID’s leading to acceptance in the DNTA. This
construction of NFTA shows thatL∗(D) = L(N) and so
L∗(D) is recognizable.

= k-mode (≤ k-mode,≥ k-mode)acceptance :An
automaton that has a leaf transition rule begins processing
the input tree. Suppose that the system starts from the
componenti. The automaton transfers the control to another
componentj, j 6= i only after the completion of exactly
k(k

′

(k
′

≤ k), (k
′

≥ k)) number of steps in the component
i. The selection ofj is done nondeterministically if there is
more than onej.

Definition 6: The instantaneous description(ID) of a
DNTA D = (K,Σ, F,∆) working in = k-mode, ≤ k-
mode,≥ k-mode is given by a4-tuple (B, t, i, j) where
B ⊆

⋃
i Ki and it denotes the current active state set of

the whole system,t ∈ T (Σ ∪
⋃

i Ki), i the index of the
component in which the system is currently in,1 ≤ i ≤ n,
j ≥ 0 denotes the number of steps for which the system has
been in theith component.
The system accepts the tree only if the DNTA is in the
final state in some componenti after processing the tree
and provided it has completedk-steps in the componenti in
the case of= k-mode of acceptance (it has completed some
k

′

(k
′

≤ k) steps in the componenti in the case of≤ k-
mode acceptance or it has completed somek

′

(k
′

≥ k) steps
in the componenti in the case of≥ k-mode of acceptance.
The language accepted by the respective modes are denoted
asL=k, L≤k, L≥k.

We give an example of a distributed bottom-up tree
automata working in= 2-mode.

Example 5:Consider the language
L4 = {b(a(b2i(d), c2j(d)), i, j ≥ 1, i = j or i = j + 1 or
j = i+ 1} overΣ = {a, b, c, d}, a ∈ Σ2, b, c ∈ Σ1, d ∈ Σ0.

158 Int'l Conf. Foundations of Computer Science | FCS'11 |

We define a distributed tree automaton
D4 = (K,Σ, {qf},∆) working in = 2-mode as follows.

The components are defined as follows

• Component1

– K1 = {qb, qd},
– δ1 = {b(qd) → qb, b(qb) → qb}

• Component2

– K2 = {qd, qc},
– δ2 = {c(qd) → qc, c(qc) → qc}

• Component3

– K3 = {qf , qa, qb, qc, qd},
– δ3 = {d → qd, a(qb, qc) → qa, b(qa) → qf}

Component 3 starts the processing, active for the first two
steps, then the system switches between component 1 and
2 and ends the processing with component 3 for the last 2
steps. Using the technique used in example 2 we can show
thatL4 is not recognizable.

Similarly we can find languages for= k-mode fork ≥ 3.
Theorem 3:There exists a language accepted by a DNTA

working in = k-mode,k ≥ 1 which is not recognizable.
Proof: For k = 2, example 5 prove the result. For

k > 2 consider the language
L5 = {ak−1ak−2 · · · a1a0(b

ki(ek−2(d)), ckj(g)),i, j ≥ 1,
k > 2, i = j or i = j + 1 or j = i+ 1} over
Σ = {b, c, d, e, g, a0, a1, a1, a2, · · · , ak−1}, a0 ∈ Σ2, b, c, e,

a1, · · · , ak−1 ∈ Σ1, d, g ∈ Σ0.
Constructing a DNTA forL5 is similar to the construction in
example 5. It is not difficult to see thatL5 can be accepted
by a DNTA working in = k-mode with 3 components.
Using the technique used in example 2 we can show that
L5 is not recognizable.

Theorem 4:Thereexists a language accepted by a DNTA
working in ≥ k-mode,k ≥ 1 which is not recognizable.

Proof: Consider the language
L6 = {fnak−1ak−2 · · · a1a0(b

ki(ek−2(d)), ckj(g)), i, j,
n ≥ 1, k > 2, i = j or i = j + 1 or j = i + 1} over
Σ = {b, c, d, e, f, g, a0, a1, a2, · · · , ak−1}, a0 ∈ Σ2, b, c, e,

f, a1, · · · , ak−1 ∈ Σ1, d, g ∈ Σ0.
Constructing a DNTA forL6 is similar to the construction

in example 5. It is not difficult to see thatL6 can be accepted
by a DNTA working in≥ k-mode with3 components. Using
the technique used in example 2 we can show thatL6 is
not recognizable. Fork = 2, example similar to 5 can be
provided.

Theorem 5:Thereexists a language accepted by a DNTA
working in ≤ k-mode, which is not recognizable.

Proof: Consider the language
L7 = {g(am(e), bn(e)),m ≥ 3, m+5

8
≤ n ≤ m+3

2
} over

Σ = {g, a, b, e}, g ∈ Σ2, a, b ∈ Σ1, e ∈ Σ0.
We define a distributed tree automaton
D7 = (K,Σ, {qf},∆) working in ≤ 2-mode as follows.

The components are defined as follows

• Component1

– K1 = {q11, q12, q21, q22, q23},
– δ1 = {a(q11) → q12, a(q12) → q12, e → q11,

g(q12, q21) → qf , g(q12, q22) → qf ,

g(q12, q23) → qf}

• Component2

– K2 = {q11, q21, q22, q23, },
– δ2 = {e → q11, b(q11) → q21, q21 → q22,

q22 → q23, q23 → q11}

Using the technique used in example 2 we can show that
L7 is not recognizable.

Theorem 6:For any recognizable languageL, there is a
DNTA D working in = 1-mode with two components.

Proof: Let A = (Q,Σ, Qf ,∆) be a NFTA rec-
ognizing L. We construct a distributed tree automaton
D = (K,Σ, Qf ,∆

′

) working in = 1-mode as follows.
The components are defined as follows

• Component1

– K1 = Q,
– δ1 = ∆

• Component2

– K2 = Q,
– δ2 = ∆

The construction shows that any recognizable language
can recognized by by a DNTA working in= 1-mode with
two components.

Theorem 7:For any recognizable languageL, there is a
DNTA D working in t-mode with two components.

Proof: Let A = (Q,Σ, Qf ,∆) be a NFTA rec-
ognizing L. We construct a distributed tree automaton
D = (K,Σ, Qf ,∆

′

) working in t-mode as follows.
The components are defined as follows

• Component1

– K1 = Q ∪ {q
′

|q ∈ Q}
– δ1 contains the following transitions

for eacha(q1, q2, · · · , qn) → q ∈ ∆, n ≥ 0,
q1, q2, · · · , qn ∈ K1, a ∈ Σ ∪ {ǫ}
a(q1, q2, · · · , qn) → q

′

∈ δ1, q
′

∈ K1.

• Component2

– K2 = Q ∪ {q
′

|q ∈ Q}
– δ2 contains the following transitions

∀q
′

∈ K2, q
′

→ q ∈ δ2, q ∈ K2.

The construction shows that any recognizable language can
recognized by by a DNTA working int-mode with two
components.

Theorem 8:For any DNTA working in ∗-mode, there is
a DNTA working in= 1-mode with two components.

Proof: From theorem 2 we know that any DNTA
working in ∗-mode is recognizable. The theorem follows
from the result of theorem 6.

Int'l Conf. Foundations of Computer Science | FCS'11 | 159

We conjecture the following.
Conjecture 1: Any DNTA D working in = k mode with

2 components is recognizable.
Conjecture 2:For any DNTA working in = k-mode,

there is a DNTA working in= 1-mode.

4. Conclusion
In this paper we have defined cooperative dis-

tributed tree automata and the languages accepted under
∗, t,= k,≤ k,≥ k (wherek is an integer≥ 1) modes. We
showed that the power of tree automata is not increased
by the ∗ mode of cooperation, whereas under the other
modes, the power is increased. We have proved some results
comparing their acceptance power. Other comparisons and
decidability issues are being pursued. We are also looking
into other application areas like representation of XML
schemas and in syntactic pattern recognition.

The application of variable arity trees in representing
XML schemas is considered in Murata [9]. The inference
of such tree grammars is considered in [10]. Whether
distributed tree automata (may be for variable arity trees)
will be a better model for representing of XML schemas in
an application which can be explored. Distributed version
of automata for variable arity trees and other models of
tree automata like top-down acceptance and tree walking
automata may be more helpful in the above process.

References
[1] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez,

S. Tison, and M. Tommasi. Tree automata techniques and applica-
tions. Draft book; available electronically on http://www.grappa.univ-
lille3.fr/tata, 2008.

[2] E. Csuha j-Varju, J.Dassow, J.Kleeman and Gh. Paun. Grammar
Systems: A Grammatical Approach to Distribution and cooperation.
Gordon and Breach, London, 1994.

[3] J. Dassow, G. Paun and G. Rozenberg, Grammar Systems chapter in
Handbook of Formal Languages Vol2. edited by G. Rozenberg and
A. Salomaa., Springer, 1997.

[4] J. E. Doner. Decidability of the week-second order theory of two
successors.Notices of the American Mathematical Society, 12:365-
468, 1965.

[5] J. E. Doner. Tree acceptors and some of their applications.J. Comput.
Syst. Sci., 4(5):406-451,1970.

[6] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley, 1979.

[7] K. Krithivasan, M.Sakthi Balan and P.Harsha. Distributed Processing
in Automata, International Journal of Foundations of Computer
Science, 10(4): 443-464, 1999.

[8] K. Krithivasan and R. Rama. Introduction to Formal Languages,
Automata Theory and Computation. Pearson, 2009.

[9] M. Murata, D. Lee, M. Mani and K. Kawaguchi. Taxonomy of XML
Schema Languages using Formal Language Theory,ACM Trans. Inter.
Tech., 5(4):660-704, 2005.

[10] Neetha Sebastian and K. Krithivasan. Learning Algorithms for Gram-
mars of Variable Arity Trees,International Conference of Machine
Learning and Applications, 98-103, 2007.

[11] G. Paun. Grammar Systems: A Grammatical Approach to Distribution
and Computation,Lecture Notes in Computer Science, 944:429-443,
1995.

[12] J. W. Thatcher and J. B. Wright. Generalized finite automata theory
with an application to a decision problem of second-order logic,
Mathematical Systems Theory, 2:57-82, 1968.

160 Int'l Conf. Foundations of Computer Science | FCS'11 |

Quantum Algorithm for Decomposing Black-Box Finite Abelian
Groups

Yong Zhang
Department of Computer Science, Kutztown University of Pennsylvania, Kutztown, PA 19530

Abstract— Cheung and Mosca [1] gave an efficient quan-
tum algorithm for decomposing finite abelian groups in a
unique-encoding group model. We present another efficient
quantum algorithm for this problem in a more general model,
the black-box group model, where each group element is not
necessarily uniquely encoded.

Keywords: quantum computation, black-box group model

1. Introduction

Any finite abelian group G can be decomposed into
the direct sum of cyclic subgroups of prime power order.
However, given a set of generators for G, no efficient
classical algorithm is known to find the decomposition of
G, i.e., find generators for the cyclic subgroups of G. This
problem is at least as hard as INTEGER FACTORIZATION –
finding nontrivial factors of a given integer N is equivalent
to finding the decomposition of the (finite abelian) group
Z∗
N , the multiplicative group of integers modulo N .

Decomposing finite abelian groups plays an important
role in quantum computation, the study of the information
processing tasks that can be accomplished using quantum
mechanical systems. We call an algorithm that is defined
over a traditional computational model a classical algorithm
and an algorithm that is defined over a quantum computa-
tional model a quantum algorithm.

In 1994 Shor [2] presented polynomial-time quantum
algorithms for two important problems INTEGER FACTOR-
IZATION and DISCRETE LOGARITHM. No efficient classical
algorithms are known for these two problems. These two
problems are widely believed to be hard on classical com-
puters; their hardness are the basic assumptions for several
cryptosystems including the widely used RSA public-key
cryptosystem. Shor’s paper is the first illustration of the
practical importance of quantum computation. A key com-
ponent in Shor’s algorithms is the efficient implementation
of the Quantum Fourier Transform (QFT), which explores
the underlying algebraic structure of the problems. From
this perspective, Shor’s quantum algorithms, together with
several other quantum algorithms, can be further generalized

to a quantum algorithm for the HIDDEN SUBGROUP problem
where the given group G is abelian. In the case when G is
non-abelian, the HIDDEN SUBGROUP problem generalizes
other well-known problems such as GRAPH ISOMORPHISM.
However, the non-abelian case is much harder to solve and
remains a major challenge in quantum computation.

Before one can efficiently implement QFT to solve the
abelian HIDDEN SUBGROUP problem, the decomposition of
the given abelian group G must be known. Cheung and
Mosca [1] first studied the problem of decomposing finite
abelian groups. They gave an efficient quantum algorithm
for this problem. However, one of their assumptions is that
each element of the input group G is uniquely represented
by a binary string. In another word, their quantum algorithm
only works for a unique-encoding group model.

In this paper we study the problem of decomposing finite
abelian groups in a more general group model — the black-
box group model. In the black-box group model elements
of the input group G are not necessarily uniquely encoded.
The black-box group model was first introduced by Babai
and Szemerédi [3] as a general framework for studying algo-
rithmic problems for finite groups. It is a widely used model
in computational group theory and quantum computation
[4], [5], [6], [7], [8], [9]. This non-unique encoding feature
enables this model to handle factor groups [3]. A factor
group (also known as quotient group) is a group obtained
by identifying together elements of a larger group using
an equivalence relation. In this paper we give an efficient
quantum algorithm for decomposing finite abelian groups in
the black-box group model.

2. Perliminaries

In this section we give a brief introduction of the fun-
damental results in group theory. We refer the readers to a
classic book on group theory [10] for more details.

A set G is called a group if there is a binary operation ·
defined on G such that:

1) for any x, y ∈ G, x · y ∈ G.
2) for any x, y, z ∈ G, (x · y) · z = x · (y · z).

Int'l Conf. Foundations of Computer Science | FCS'11 | 161

3) there is an identity element e ∈ G such that for any
x ∈ G, x · e = e · x = x.

4) for any x ∈ G, there is a unique x−1 ∈ G such that
x · x−1 = x−1 · x = e.

The set of integers Z together with the “+” operation is
an example of a group. Usually if the binary operation · is
obvious from the context, we will just write xy instead of
x · y.

A group G is abelian if and only if for any x, y ∈ G,
xy = yx. Otherwise, G is nonabelian. A group G is cyclic
if there exist a ∈ G such that G = {an|n ∈ Z}. Then we
say a is a generator of G. A subgroup H of a group G is a
subset which is also a group under the same operation in G.
If H is a subgroup of a group G, then a right coset of H is a
subset S of G such that ∃x ∈ G for which S = Hx = {yx :
y ∈ H}. A left coset of H is defined similarly. The order of
a group G, denoted by |G|, is the cardinality of the set G.
The order of the element a is the smallest number n such
that an = e, denoted by ord(a). If such n ∈ Z exists, we
say a has finite order. In fact, the subset {e, a, a2, . . . , an−1}
forms a subgroup. We call this subgroup the cyclic subgroup
generated by a and denote it by 〈a〉.

Lagrange’s Theorem states that if H is a subgroup of a
group G, then |H| divides |G|. We say [G : H] = |G|/|H| is
the index of H in G. Let G be a group, p be a prime number,
and P be a subgroup of G. If |P | = pr for some r ∈ Z, we
say P is a p-subgroup of G. If furthermore pr divides |G|
but pr+1 does not, then we say P is a Sylow p-subgroup
of G. Let G1, G2 be groups such that G1 ∩G2 = {e}. The
set {(a1, a2) | a1 ∈ G1, a2 ∈ G2}, denoted by G1 ⊕ G2,
is called the direct sum of G1 and G2. G1 ⊕G2 is a group
under the binary operation · such that (a1, b1) · (a2, b2) =
(a1a2, b1b2).

The fundamental theorem of finite abelian groups states
the following.

Theorem 2.1: Given a set {g1, . . . , gn} of generators
of the finite abelian group G, find a set of elements
h1, . . . , hk ∈ G such that G = 〈h1〉 ⊕ · · · ⊕ 〈hk〉 and 〈hi〉
is a cyclic group of prime power order for all 1 ≤ i ≤ k.

Next we introduce the black-box group model. We fix the
alphabet Σ = {0, 1}. A group family is a countable sequence
B = {Bm}m≥1 of finite groups Bm, such that there exist
polynomials p and q satisfying the following conditions. For
each m ≥ 1, elements of Bm are encoded as strings (not
necessarily unique) in Σp(m). The group operations (inverse,
product and identity testing) of Bm are performed at unit
cost by black-boxes (or group oracles). The order of Bm is
computable in time bounded by q(m), for each m. We refer

to the groups Bm of a group family and their subgroups
(presented by generator sets) as black-box groups. Common
examples of black-box groups are {Sn}n≥1 where Sn is the
permutation group on n elements, and {GLn(q)}n≥1 where
GLn(q) is the group of n × n invertible matrices over the
finite field Fq. Depending on whether the group elements are
uniquely encoded, we have the unique encoding model and
non-unique encoding model, the latter of which enables us
to deal with factor groups [3]. In the non-unique encoding
model an additional group oracle has to be provided to test
if two strings represent the same group element.

3. The Algorithm

Our algorithm uses a divide-and-conquer approach. The
algorithm first finds the Sylow p-subgroups of the given
input group and then decomposes each Sylow p-subgroup.
We start with two technical Lemmas. The first Lemma shows
how to find a p-Sylow subgroup in quantum polynomial
time.

Lemma 3.1: Let B = {Bm}m>0 be a group family. Let
G < Bm be an abelian black-box group given by generating
sets S = {g1, . . . , gs}. For any prime number p, the gener-
ating sets for the p-Sylow subgroup of G can be computed
in quantum polynomial time.

Proof: Since G is abelian, for any prime p, there
is an unique p-Sylow subgroup of G. Let n be the the
order of Bm. By our assumption for black-box model, we
can efficiently compute n. Furthermore, we can use Shor’s
algorithm to compute the prime factorization pe11 · · · perr of n.
If p is not a factor of n, then clearly the p-Sylow subgroup of
G is trivial. If p is equal to pk for some 1 ≤ k ≤ r, then we
compute the set Sk = {g′1, . . . , g′s} where g′i = g

n/p
ek
k

i . Note
that this can be done efficiently using modular exponetiation.
We claim that Sk is the generating set for the p-Sylow
subgroup. Clearly the order of g′i is power of p for all i,
so 〈Sk〉 is a p-subgroup of G. To show that 〈Sk〉 is indeed
the p-Sylow subgroup it suffices to show that any gi ∈ S
can be written as products of elements in 〈S1〉, . . . , 〈Sr〉, i.e.,
G = 〈S1〉 ⊕ · · · ⊕ 〈Sr〉. Since Σr

l=1n/p
el
l is coprime with n

and thus the order of any elements in G, for any gi ∈ G,
g
Σr

l=1n/p
el
l

i , which is a product of elements in 〈S1〉, . . . , 〈Sr〉,
generates the same cyclic subgroup that gi generates.

Any finite abelian p-group can be expressed as a direct
sum of m cyclic groups with order pe1 , . . . , pem and e1 ≤
· · · ≤ em. We say that (e1, . . . , em) is the type of the
p-group. In the second lemma we describe a method to
decompose a finite abelian p-group.

Lemma 3.2: Let G be a finite abelian p-group of type

162 Int'l Conf. Foundations of Computer Science | FCS'11 |

(m1,m2, . . . ,ms). Let g1, . . . , gi be elements of G of or-
ders pm1 , . . . , pmi and for any j 6= k and 1 ≤ j, k ≤
i the cyclic groups 〈gj〉, 〈gk〉 have trivial intersection.
Given a〈g1, . . . , gi〉 as an element in the factor group
G/〈g1, . . . , gi〉 of order pmi+1 with ap

mi+1
= gx1

1 · · · gxi
i ,

we can efficiently find another element gi+1 of order pmi+1

where 〈gi+1〉 and is 〈g1, . . . , gi〉 have trivial intersection.

Proof: First we show that xj is a multiple of pmi+1

for all 1 ≤ j ≤ i.

ap
mi

= (ap
mi+1

)p
mi−mi+1

= (gx1
1 · · · gxi

i)p
mi−mi+1

= gx1p
mi−mi+1

1 · · · gxip
mi−mi+1

i .

But ap
mi is clearly in 〈g1, . . . , gi−1〉, so gxip

mi−mi+1

i is
also in 〈g1, . . . , gi−1〉, therefore xi is a multiple of pmi+1 .
Similarly we have

ap
mi−1

= (ap
mi+1

)p
mi−1−mi+1

= gx1p
mi−1−mi+1

1 · · · gxip
mi−1−mi+1

i

= gx1p
mi−1−mi+1

1 · · · gxi−1p
mi−1−mi+1

i−1 .

By the same reasoning xi−1 is also a multiple of pmi+1 .
Clearly this inductive procedure can go down to i = 1. Thus
xj is a multiple of pmi+1 for all 1 ≤ j ≤ i. Let yj =
xj/p

mi+1 for 1 ≤ j ≤ i and gi+1 = ag−y1

1 · · · g−yi

i . Then

gp
mi+1

i+1 = (ag−y1

1 · · · g−yi

i)p
mi+1

= ag−x1
1 · · · g−xi

i

= e

It is also easy to verify that 〈gi+1〉 and 〈g1, . . . , gi〉 have
trivial intersection.

Now we describe the whole algorithm. Given a generating
set {g1, . . . , gs} of a finite abelian group G ⊆ Bm, we
want to output a set of elements {d1, . . . , dl} such that
G = 〈d1〉 ⊕ · · · ⊕ 〈dl〉. The algorithm uses a divide-and-
conquer approach. It first computes the generating set of each
p-Sylow subgroup, and then convert each generating set into
an “indepedent generating set”. We say a generating set S
of a group is indepedent if for any two element si, sj ∈ S,
〈si〉 and 〈sj〉 has trivial intersection. Note that in a p-group
an independent generating set is exactly the decomposition
of the p-group.

We first compute |Bm|. Recall that in the black-box
model, |Bm| is computable in time bounded by q(m), for
each m. In some cases, we will also obtain the prime
factorization of |Bm|. If not, we can always use Shor’s
quantum algorithm for INTEGER FACTORIZATION to get the
prime factorization pe11 · · · perr . For 1 ≤ i ≤ s, compute
the order of gi. This can be done using Watrous’s quantum

procedure for computing order of an group element in any
solvable group [4]. Then, by Lemma 3.1 we can compute
the generating set of each pi-Sylow subgroup, 1 ≤ i ≤ r.

Let Xi be the generating set for the pi-Sylow subgroup.
For each 1 ≤ i ≤ r, we use Lemma 3.2 to compute an
independent generating set Si of the pi-Sylow subgroup.
We will construct Si in steps. Initially Si is empty. We
add one element to Si at each step. Suppose after the
(j − 1)’th step, Si = {s1, . . . , sj−1}. At the j’th step,
first compute an element h ∈ Xi such that h〈Si〉 has the
maximum possible order in the factor group 〈Xi〉/〈Si〉. This
can be done by the constructive group membership test
described in [11], i.e., we will get x1, . . . , xj−1 such that
hord(h〈Si〉) = Πj−1

k=1s
xk

k . By Lemma 3.2, we will add the
element sj = hΠj−1

k=1s
−xk/ord(h〈Si〉)
k to the set Si. We then

test if Xi is a subset of 〈Si〉. If yes, we can stop and return
Si as the independent generating set. Otherwise, we will go
to the j + 1’th step.

Once we compute the independent generating set Si for
each pi-Sylow subgroup, the decomposition of G is obtained
as ∪r

i=1Si.

4. Discussion

In this paper we present an efficient quantum algorithm
to decompose finite-abelian groups in a more general group
model — black-box group model. Comparing to Cheung
and Mosca’s algorithm [1], our algorithm is conceptually
simpler and only uses elementary results in group theory.
Components of our algorithm may be used to construct
quantum algorithms for HIDDEN SUBGROUP problem over
certain non-abelian finite groups.

References

[1] K. Cheung and M. Mosca, “Decomposing finite abelian groups,”
Quantum Information and Computation, vol. 1, no. 3, 2001.

[2] P. W. Shor, “Polynomial-time algorithms for prime factorization
and discrete logarithms on a quantum computer,” SIAM Journal on
Computing, vol. 26, pp. 1484–1509, 1997.

[3] L. Babai and E. Szemerédi, “On the complexity of matrix group prob-
lems I.” in Proceedings of the 25th IEEE Symposium on Foundations
of Computer Science, 1984, pp. 229–240.

[4] J. Watrous, “Quantum algorithms for solvable groups,” in Proceedings
of the 33rd ACM Symposium on the Theory of Computing, 2001, pp.
60–67.

[5] ——, “Succinct quantum proofs for properties of finite groups,” in
Proceedings of the 41st IEEE Symposium on Foundations of Computer
Science, 2000.

[6] K. Friedl, G. Ivanyos, F. Magniez, M. Santha, and P. Sen, “Hidden
translation and orbit coset in quantum computing,” in Proceedings of
the 35th ACM Symposium on the Theory of Computing, 2003, pp.
1–9.

Int'l Conf. Foundations of Computer Science | FCS'11 | 163

[7] S. Fenner and Y. Zhang, “Quantum algorithms for a set of group-
theoretic problems,” in Proceedings of the Ninth IC-EATCS Italian
Conference on Theoretical Computer Science, Siena, Italy, 2005, pp.
215–227, lecture notes in computer science No. 3701.

[8] L. Babai, R. Beals, and A. Seress, “Polynomial-time theory of matrix
groups,” in Proceedings of the 41st annual ACM symposium on Theory
of computing, ser. STOC ’09, 2009, pp. 55–64.

[9] P. Holmes, S. Linton, E. O’Brien, A. Ryba, and R. Wilson, “Con-
structive membership in black-box groups,” Jounal of Group Theory,
vol. 11, pp. 747–763, 2008.

[10] W. Burnside, Theory of Groups of Finite Order. Dover Publications,
Inc, 1955.

[11] G. Ivanyos, F. Magniez, and M. Santha, “Efficient quantum algorithms
for some instances of the non-abelian hidden subgroup problem,” in
Proceedings of 13th ACM Symposium on Parallelism in Algorithms
and Architectures, 2001, pp. 263–270.

164 Int'l Conf. Foundations of Computer Science | FCS'11 |

Tree Insertion Systems

Kamala Krithivasan 1, K. S Sunil1
1Department of CSE, Indian Institute of Technology Madras, Chennai - 36, Tamilnadu, India

Abstract— We define tree insertion systems which generates
trees. The generative power is compared with the traditional
generating and accepting devices for trees. Methods for
conversion of tree insertion system to regular tree grammar
and finite state bottom-up tree automata to tree insertion
system are expalined with suitable examples. An outline
of proof by induction for the equivalence of tree insertion
system and regular tree grammars is given. Some extensions
of tree insertion system, where tree nodes can have variable,
but fixed arity and their powers are also discussed. Its found
that such an extended system is capable of generating parse
trees of context-fre grammars.

Keywords: Tree insertion system, Regular tree grammar, Non
deterministic finite tree automata, Extended tree insertion system

1. Introduction

Insertion-deletion systems are one of the models studied
inspired by biology [2]. The operation of insertion and
deletion on strings have some relevances to some phenomena
in human genetics [3]. A DNA strand can be inserted
into/deleted from another strand. The idea of insertion-
deletion has been extended to arrays also [5]. In this paper
we consider the insertion systems for trees. Trees are impor-
tant data structures and find use in many applications from
the description of parse trees to representation of XML and
DTD [6]. Considering insertion systems in trees can have
profound applications in such areas [1].

An insdel system [2] is a constructγ = (V, T,A,R),
whereV is an alphabet,T ⊆ V , A is a finite language over
V, and R is a finite set of triples of the form(u, α/β, v),
whereu, v ∈ V ∗, (α, β) ∈ (V + × {λ}) ∪ ({λ} × V +). The
elements ofT are terminal symbols, those ofA areaxioms,
the triples inR are insertion-deletion rules. The meaning of
(u, λ/β, v) is that β can be inserted in betweenu and v;
the meaning of(u, α/λ, v) is thatα can be deleted from the
context (u, v). Stated otherwise,(u, λ/β, v) corresponding
to the rewriting ruleuv → uβv, and(u, α/λ, v) corresponds
to the rewriting ruleuαv → uv.

Similarly a tree, sayt can be inserted as a sub-tree of
another tree, sayT based on some context. The insertion
may be fixed arity or variable arity. Here arity refers to
the arity of nodes in treeT . In this paper we consider
the insertion of trees into trees and call it astree insertion
system. The major focus in this paper is fixed arity insertion.

1.1 Basic Definitions

Let N be the set of positive integers. Then the set of
finite strings overN is denoted byN∗. The empty string is
denoted byǫ. A ranked alphabetΣ is a finite set of symbols
together with a functionRank: Σ → N . For f ∈ Σ, the
value Rank(f) is called the rank off . For everyn ≥ 0,
we denote byΣn the set of all symbols of rankn. Elements
of rank 0, 1, · · · , n are respectively called constants, unary,
· · · , n-ary symbols.

A tree t [4] over an alphabetΣ is a partial mapping
t : N∗ → Σ that satisfies the following conditions:

• dom(t) is a finite, prefix-closed subset ofN∗, and
• for eachp ∈ dom(t), if Rank(t(p)) = n > 0, then

{i|p.i ∈ dom(t)} = {1, 2, · · · , n}

Eachp ∈ dom(t) is called anodeof t. The node with domain
elementΣ is theroot. For a nodep, we define theith child

of p to be the nodep.i, and we define theith subtree

of p to be the treet′ such that t′(p) = t(p.i.p′),∀p′ ∈
dom(t). We denote byT (Σ) the set of all trees over the
alphabetΣ. The sizeof a tree is the number of elements in
dom(t). The height of a treet is max{|w| : w ∈ dom(t)}.
Given a finite tree t, the frontier of t is the set
{p ∈ dom(t)|∀n ∈ N, p.n /∈ dom(t)}. A tree with root a
and subtreest1, t2, · · · , tr is represented bya(t1, t2, · · · , tr).

Example 1:Let Σ = {a, b, c}, b ∈ Σ2, c ∈ Σ1, a ∈ Σ0.

A tree overΣ and its diagrammatic representation is shown
in Fig. 1

Let t be the treeb(b(b(a, a), a), c(a)).
dom(t) = {ǫ, 1, 1.1, 1.1.1, 1.1.2, 1.2, 2, 2.1}.
size(t) = 8.
height(t) = 3.
frontier(t) = {1.1.1, 1.1.2, 1.2, 2.1}.

bǫ

b1

b1.1

a1.1.1 a 1.1.2

a1.2

c 2

a 2.1

Fig. 1: A tree and its diagrammatic representation

Int'l Conf. Foundations of Computer Science | FCS'11 | 165

A Regular Tree Grammar(RTG) [4] is a construct
G = (N,T, S, P) where,

• N is a finite set of non terminals,
• T is a finite set of terminals,
• S ∈ N is the start symbol,
• P is a finite set of production rules.

Each rule in P is of the form
X → x(X1, X2, · · · , Xp),p ≥ 0, where x ∈ T and
X,X1, X2, · · · , Xp ∈ N .

The language generatedby anRTG G is represented by
L(G), is defined as the set of trees generated byG using
productions rules inP , starting from S. A regular tree
languageis a language generated by a regular tree grammar.

Example 2:The language generated by the tree gram-
mar Gr2 = (N,T, S, P) where, N = {S,B,B′, C,H},
T = {a2, b1, c1, h0} and

P = {S → a(B,C), B → b(B′), B′ → b(B)|b(H),

C → c(C)|c(H), H → h}

is L(Gr2) = {a(bi(h), cj(h)), i, j ≥ 1, i%2 = 0}.

A non deterministic botttom-up finite tree automata
(NFTA) [4] over an alphabetΣ is a tuple
D = (Q,Σ, Qf ,∆) where,

• Q is a finite set of states,
• Σ is a ranked input alphabet,
• Qf ⊆ Q is a set of final states,
• ∆ is a finite set of transition rules.

Each transition rule is a triple of the form
((q1, q2, · · · , qn), f, q) whereq1, q2, · · · , qn, q ∈ Q,f ∈ Σn,
i.e. Rank(f) = n. We usef(q1, q2, · · · , qn) → q to denote
that((q1, q2, · · · , qn), f, q) ∈ ∆. If Rank(f) = 0 ,i.e.f is a
constant, then we use rules of the formf → q. The epsilon
rules are denoted by rules of the formqi → qj . A run
of A over a treet ∈ T (Σ) is a mappingr : dom(t) → Q

such that for each nodep ∈ dom(t) where q = r(p), we
have that ifqi = r(pi) for 1 ≤ i ≤ n then ∆ has the rule
t(p)(q1, q2, · · · , qn) → q.

Example 3:The tree automata Dr4 = (Q,Σ, Qf ,∆)
accepts trees with odd number ofa′s over the alphabet
Σ = {a2, b2, c0} where Q = {e, o},Qf = {o} and ∆
contains following transitions.

c → e b(e, e) → e b(o, o) → e

a(e, o) → e a(o, e) → e b(e, o) → o

b(o, e) → o a(e, e) → o a(o, o) → o

2. Definition
The tree insertion systemis a tuple

Γ = (Σ,A,A′, R) where,

• Σ is a finite set ofranked alphabets.
• A = {A1∪A2∪ · · ·∪Am}, where eachAi, 1 ≤ i ≤ m

is a finite set of axioms.
With each setAi is associated a flagFi which is a
triple [xi, yi, zi], where xi, yi, zi ∈ {−1, 0, 1, · · · , k},
for some fixedk, are integers, which plays some role
in language generation unlessxi = yi = zi = −1. (For
each insertion fromAi, the xi value gets incremented
if xi ≤ yi and thexi value gets decremented ifxi > yi.
Thexi will be set tozi if one insertion fromAi happens
when xi = yi. The tree insertion system is said to be
stable, ifxi = yi for all flags withxi ≤ yi initially and
xi 6= yi for all flags withxi > yi initially.)

• A′ ⊆ A is a finite set ofinitial axioms.
• R = {r1, r2, · · · , rn} is a finite set ofinsertion rules

Each ri, for 1 ≤ i ≤ n is of the form
(χ,C1, C2, · · · , Cp) where,

– χ = (root, left, right) which represents a context.

∗ root is any node in the tree
∗ left is ith child of root.
∗ right is (i + 1)th child of root.

0 ≤ i ≤ arity(root) andp ≤ arity(root)
(− checks for the absence of a child).

– Ci = (X, rt′, k), 1 ≤ i ≤ p,X ∈ A

∗ rt′ is the root of the tree to be attached.
∗ k is the position at whichrt′ is to get attached.

1 ≤ k ≤ arity(root) and it is between the nodes
left andright.

As examples,χ = (a, b, c) denotes a node with label
a having a node with labelb as ith child and a node
with label c as (i+ 1)th child for 1 ≤ i < arity(a).
χ = (a,−,−) denotes a leaf node with labela.

The derivation stepis described as follows.
If r = (χ,C1, C2, . . . , Cp) is a rule withχ = (a, b, c) and

Ci = (X, d, k) whereX is an axiom with trees having root
with labeld andt is a tree with rootp(domain) having label
a. Thent ⇒ t′ by rule r wheret′(p.k) is the tree with root
labeld, t′(p.i) is tree with root labelb andt′(p.(i+ p+ 1))
is tree with root labelc.

∗
⇒ is the reflexive transitive closure of⇒.

The flag associated withX is also updated whenr
is applied. For each insertion fromX, the xi value gets
incremented ifxi ≤ yi , the xi value gets decremented if
xi > yi and thexi will be set tozi if xi = yi. We describe
the derivation informally with an example.

Suppose a
a c

is a treeA1 =

{

a

a c

, b

c c

}

be

the axiom andr1 = ((a,−,−), (A1, b, 1), (A1, a, 2)) be the
insertion rule. Then by usingr1

166 Int'l Conf. Foundations of Computer Science | FCS'11 |

a
a c

⇒ a
a

b
c c

a
a c

c

Here, at leaf nodea, a subtree with rootb is attached as
the first child and another subtree with roota is attached as
the second child.

The language generatedby a tree insertion systemΓ,
represented byL(Γ), is the set of trees, with each node
having children exactly equal to its arity, derivable inΓ,
when it is instable stae, from an initial axiom, using rules
of Γ.

L(Γ) =

t|S
∗
⇒ t, S in someAi ∈ A′. Each node oft
has children exactly as its arity and

Γ is in stable state

Example 4:Lr2 = {a(bi(h), cj(h)), i, j ≥ 1, i%2 = 0}

Γr2 = (Σ,A,A′, R) where,
Σ = {a2, b1, c1, h0}, A = {A1, A2}, A′ = {A1},
F1 = [−1,−1,−1], F2 = [−1,−1,−1], where

A1 =

a

b

b

c

, a

b

b

h

c

h

, A2 =

b

b

, c , h

R = {r1, r2, r3, r4}, where
r1 = (χ1, C1), r2 = (χ2, C2),
r3 = (χ1, C3), r4 = (χ2, C3),
χ1 = (b,−), χ2 = (c,−) ,
C1 = (A2, b, 1) , C2 = (A2, c, 1) , C3 = (A2, h, 1)

Example 5:Lr4 = {t|na(t)%2 6= 0}

Γr4 = (Σ,A,A′, R) where,
Σ = {a2, b2, c0}, A = {A1, A2},A′ = {A1, A2}
F1 = [−1,−1,−1], F2 = [0, 1, 2],

A1 =

{

b

b b

, b

b c

, b

c b

, b, c
}

A2 =

a

c c

, a

b b

, a

b c

, a

c b

, a

a a

,

b

a c

, b

b a

, b

a b

, b

c a

, a

R = {r1, r2}, where
r1 = (χ1, U1, U2), r2 = (χ2, U1, U2),
χ1 = (a,−,−), χ2 = (b,−,−),
U1 ∈ {C1, C3}, U2 ∈ {C2, C4},
C1 = (A1, V1, 1), C2 = (A1, V1, 2),
C3 = (A2, V2, 1), C4 = (A2, V2, 2),
V1 ∈ {c, b}, V2 ∈ {a, b}

3. Equivalence with Regular Tree Grammar
Tree grammarsare generating devices which is used for

generating trees. The language generated by regular tree
grammar is calledregular tree language.

3.1 Insertion System to Regular Tree Grammar

3.1.1 Method of conversion

For a given tree insertion systemΓ = (Σ,A,A′, R)
we can construct an equivalent regular tree grammar
G = (N,T, S, P̄).

First we consider the simple case where the flag
Fi = [−1,−1,−1],∀Ai ∈ A

• T = Σ
• N contains the start symbolS initially and more

symbols of the formM ′,M2
′

, · · · ,Mk′

for some fixed
k, are added toN as we proceed to define the rules.

• ∀Ai ∈ A′, if t ∈ Ai with root with label p having
arity m > 0 and children with labelp1, p2, · · · , pm,
thenS → p(P1, P2, · · · , Pm) will be a production rule
and if there is a node int with label q and ar-
ity r having children with labelsq1, q2, · · · , qr, then
Q → q(Y1, Y2, · · · , Yr) will be a production rule where
Yi = Qi, ∀qi with label not equal toq andYi = Q′

i, ∀qi
with label equal toq. Q′

i → q(Y1, Y2, · · · , Yr) with
Yi = Q2

′

i , ∀Yi = Qi.
In general Qn′

i → q(Y1, Y2, · · · , Yr) with
Yi = Q

(n+1)
′

i , ∀Yi = Qn′

i .
If m = 0, S → P is a production rule.

• ∀ri ∈ R, ri = (χ,C1, C2, · · · , Ck) where
χ = (p, left, right), Cj = (Xj , rtj , k

′), ∀j ≤ k

with rtj ∈ Σ, Xj ∈ A, Pn′

→ p(RTj), whereRTj is
the non terminal corresponding tortj , is a production
rule.

• ∀t ∈ A−A′ with root node having labelp and arity 0,
thenP → p is a production rule.

• N will includes all suchPi , Qi andQ′
i.

It can easily be proved by induction thatL(G) = L(Γ).

Example 6:Lr2 = {a(bi(h), cj(h)), i, j ≥ 1, i%2 = 0}

Γr2 = (Σ,A,A′, R) where,
Σ = {a2, b1, c1, h0}, A = {A1, A2},A′ = {A1},
F1 = [−1,−1,−1], F2 = [−1,−1,−1],

A1 =

a

b

b

c

, a

b

b

h

c

h

, A2 =

b

b

, c , h

R = {r1, r2, r3, r4}, where

r1 = (χ1, C1), r2 = (χ2, C2),
r3 = (χ1, C3), r4 = (χ2, C3),
χ1 = (b,−), χ2 = (c,−),
C1 = (A2, b, 1), C2 = (A2, c, 1), C3 = (A2, h, 1)

Int'l Conf. Foundations of Computer Science | FCS'11 | 167

The production rules are

P̄ = {S → a(B,C), B → b(B′), B′ → b(B)|b(H),

C → c(C)|c(H), H → h}

The regular tree grammar corresponding toΓr2 is
Gr2 = ({S,B,B′, C,H}, {a, b, c, h}, S, P̄)

The above case will not take care of languages like trees
with node labelsa, b, and c where number ofa′s is odd.
For such cases we give the construction below.

• T = Σ
• N contains the start symbolS initially and more

symbols of the formM ′,M2
′

, · · · ,Mk′

for some fixed
k, are added toN as we proceed to define the rules.

• Let AJ ⊆ A′, where for each Ai ∈ AJ ,
xi = yi = zi in Fi and AI = (A′ − AJ), where
for eachAi ∈ AI,ni = |xi − yi|. (This is used to take
care of some constraint on the number of a particular
terminal symbolσk ∈ Σ).

• ∀Ai ∈ A, if there is a node with labelp arity 0 is in
Ai, thenP → p is a production rule.

• ∀Ai ∈ AJ

If ∃Al ∈ AI with (xl 6= yl) in Fl, t ∈ Ai with root
node with labelp having arity m and children with
label p1, p2, · · · , pm, where for somej ≤ m, pj is
the label of root node of somet′ ∈ Al, then from
S → p(P1, P2, · · · , Pm) write j production rules, with
Pk = S, ∀k ≤ j.
If m = 0, S → P will be a production rule.
∀A′

l ∈ AI, if (x′
l = y′l) in F ′

l then
S → p(P1, P2, · · · , Pm) will also be a production rule.
N will includes all suchPi.

• ∀Ai ∈ AI with ni = 1
If t ∈ Ai with root with label p having ar-
ity m and children with labelp1, p2, · · · , pm, then
S → p(P1, P2, · · · , Pm) will be a production rule
and if there is a node int with label q and ar-
ity r having children with labelsq1, q2, · · · , qr, then,
Q → q(Q1, Q2, · · · , Qr) will be a production rule.
If m = 0, S → P will be a production rule.

∀ri ∈ R, ri = (χ,C1, C2, · · · , Ck′) where,
χ = (p, left, right), Cj = (Xj , rtj , k

′′), ∀j ≤ k′

with rtj ∈ Σ, Xj ∈ A
If ∀j ≤ k′, Xj /∈ AI, P → p(RT1, RT2, · · · , RTk) will
be a production rule,
If ∃Xj ∈ AI, j ≤ k,

– P → p(Y1, Y2, · · · , Yk) will be a production rule
with Yj = RTj , ∀j whereXj /∈ AI andYj = RT ′

j ,
∀j whereXj ∈ AI.
If rtj = σj where Xj ∈ AI then
RT ′

σk
→ rtj(Y1, Y2, · · · , Yp′) will be a production

rule with Yp′′
= S for somep′′ ≤ p′, wherep′ is

the arity ofrtj .

If rtj 6= σk where Xj ∈ AI then
RT ′

j → rtj(Y1, Y2, · · · , Yp′) will be a production
rule Yp′′

= RT ′
σk

for somep
′′

≤ p′.

N will includes all suchPi, Qi, RT ′
i andYi.

• ∀Ai ∈ AI with ni 6= 1
If t ∈ Ai with root with label p 6= σi having arity
m and children with labelp1, p2, · · · , pm, with some
pj = σk, j ≤ m thenS → p(P1, P2, · · · , Pm) , where
both Pj = Pσk

and Pj = S are production rules.
Then Pσk

→ S and Pσk
→ pσk

(Y1, Y2, · · · , Ym′)
will be production rules wherem′ is the arity
of node with label pσk

and for somem′′ ≤ m′,
Ym′′ = P ′

σk
. P ′

σk
→ pσk

(Y1, Y2, · · · , Ym′) and
for some m′′ ≤ m′,Ym′′ = P 2

′

σk
. In general

P q′

σk
→ pσk

(Y1, Y2, · · · , Ym′) and for somem′′ ≤ m′,

Ym′′ = P
(q+1)

′

σk and P
z′

i
σk → pσk

(Y1, Y2, · · · , Ym′) and
for somem′′ ≤ m′, Ym′′ = S.
If m = 0, S → P will be a production rule.
If t ∈ Ai with root node with labelp = σk having arity
m and children with labelp1, p2, · · · , pm, with somepj
,j ≤ m is the label of root node of somet′ ∈ AI, then
S → p(P1, P2, · · · , Pm) will be a production rule with
Pj = P ′

j and P ′
j → pj(Y1, Y2, · · · , Ym′) where m′ is

the arity of node with labelpj and for somem′′ ≤ m′,
Ym′′ = P ′

σk
.

∀ri ∈ R, ri = (χ,C1, C2, · · · , C
′
k) where

χ = (p, left, right), Cj = (Xj , rtj , k
′′), ∀j ≤ k′

with rtj ∈ Σ, Xj ∈ A
If ∀j,Xj ∈ AJ , with p 6= σk then
P → p(RT1, RT2, · · · , RTm) will be a production
rule wherem is the arity of node with labelp.
If ∀j,Xj ∈ AI, if p 6= σk then
P → p(RT ′

1, RT ′
2, · · · , RT ′

m) will be a production
rule wherem is the arity of node with labelp.
If p = σk thenP → p(Y1, Y2, · · · , Yk) is a production
rule with Yj = RTj , ∀j whereXj ∈ AJ Yj = RT ′

j ,∀j
whereXj ∈ AI.
If rtj = σk where Xj ∈ AI then
RT ′

σk
→ rtj(Y1, Y2, · · · , Yp′) will be a production rule

with Yp′′
= RT 2

′

σk
for somep′′ ≤ p′, wherep′ is the

arity of rtj .
In general, for some p′′ ≤ p,
RT

(zj−1)
′

σk → rtj(Y1, Y2, · · · , Yp′), with

Yp′′
= RT

(zi)
′

σk , and RT
z′

i
σk → rtj(Y1, Y2, · · · , Yp′),

with Yp′′
= S.

If rtj 6= σk where Xj ∈ AI then
RT ′

j → rtj(Y1, Y2, · · · , Yp′) will be a production
rule Yp′′

= RT ′
σk

for somep
′′

≤ p′.
N will includes all suchP ′

is, RT ′
is andY ′

i s.
• If ∀k, Yk = RT ′

j for some rtj
in P → p(Y1, Y2, · · · , Yr), then
P → p(RT1, RT2, · · · , RTk) will be a production

168 Int'l Conf. Foundations of Computer Science | FCS'11 |

rule.
It can easily be proved by induction thatL(G) = L(Γ).

Example 7:Lr4 = {t|na(t)%2 6= 0}

Γr4 = (Σ,A,A′, R) where,
Σ = {a2, b2, c0}, A = {A1, A2}, A′ = {A1, A2}
F1 = [−1,−1,−1], F2 = [0, 1, 0],

A1 =

{

b

b b

, b

b c

, b

c b

, b, c
}

A2 =

a

c c

, a

b b

, a

b c

, a

c b

, a

a a

,

b

a c

, b

b a

, b

a b

, b

c a

, a

R = {r1, r2}, where
r1 = (χ1, U1, U2)), r2 = (χ2, U1, U2),
χ1 = (a,−,−), χ2 = (b,−,−),
U1 ∈ {C1, C3}, U2 ∈ {C2, C4},
C1 = (A1, V1, 1), C2 = (A1, V1, 2),
C3 = (A2, V2, 1), C4 = (A2, V2, 2)
V1 ∈ {c, b}, V2 ∈ {a, b}

The production rules are

P = {S → a(C,C)|a(B,B)|a(B,C)|a(C,B)|a(A,A)|A

b(A,C)|b(B,A)|b(A,B)|b(C,A)|

b(S,B)|b(B,S)|b(S,C)|b(C, S)

A → a(C,C)|a(C,B)|a(B,C)|a(B,B)|a(C,A′)|

a(C,B′)|a(B,A
′)|a(B,B

′)|a(A′

, C)|a(A′

, B)|

a(B′

, C)|a(B′

, B)|a(A′

, A
′)|a(A′

, B
′)|

a(B′

, A
′)|a(B′

, B
′)|a(A,A)|a(B,B)

B → b(C,C)|b(C,B)|b(B,C)|b(B,B)|b(C,A′)|

b(C,B′)|b(B,A
′)|b(B,B

′)|b(A′

, C)|b(A′

, B)|

b(B′

, C)|b(B′

, B)|b(A′

, A
′)|b(A′

, B
′)|

b(B′

, A
′)|b(B′

, B
′)|b(A,A)|b(B,B)

A
′ → a(S,C)|a(S,B)|a(C, S)|a(B,S)|

a(S,A′)|a(A′

, S)|a(S,B′)|a(B′

, S)

B
′ → b(A′

, C)|b(A′

, B)|b(C,A′)|b(B,A
′)|

b(A′

, A
′)|b(A,A)|b(B′

, A
′)|b(A′

, B
′)

C → c

}

The regular tree grammar corresponding toΓr4 is
Gr4 = ({S,A,A′, B,B′, C}, {a, b, c}, S, P)

Result 1: Given a tree insertion system, we can construct
an equivalent regular tree grammar.

3.2 Finite state Bottom-up Tree Automata to Insertion
System

Tree automataare accepting devices for trees. Finite tree
automata are generalizations of word automata. While a
word automaton accepts a word, a tree automaton accepts
a tree. Finite tree automata can be either bottom-up or top-
down [4]. A top-down tree automatonstarts its computation

at the root of the tree and then simultaneously works down
the paths of the tree level by level.

Since there exists a bottom-up finite tree automata for
accepting a regular tree language,it is enough to simulate
that automata using the tree insertion system, to show the
equivalence of tree insertion system and regular tree gram-
mars. Abottom-up tree automatonstarts its computation in
the leaves of the input tree and works its way up towards
the root.

3.2.1 Method of conversion

For a given deterministic bottom-up tree automata
D = (Σ′, Q,Qf ,∆) we can construct a tree insertion system
Γ = (Σ,A,A′, R), where

• Σ = Σ′

• If transitions are non-recursive
For each transition of the formp(q1, q2, · · · , qk) → qg,
where q1, q2, · · · , qk, qg ∈ Q, p ∈ Σ′, k is the ar-
ity of node with label p and qg ∈ Qf ,

p

q1 q2 · · · qi · · · qk

will be in A′

∀qi, 1 ≤ i ≤ k, if {c1(qi1) → qi, c2(qi2) →
qi1 · · · cn(qin) → qin−1

} ∈ ∆ where qin = qi ,
ci ∈ Σ′, 1 ≤ i ≤ n and ∀i, j, qij ∈ Q, 1 ≤ j ≤ n,

p

q1 q2 · · · c1...‘cn

· · · qk

will be in A′

If {c1(qi1) → qi, c2(qi2) → qi1 · · · cn(qin) →
qin−1

, a → qin} ∈ ∆ where a, ci ∈
Σ′, 1 ≤ i ≤ n and ∀i, j, qij ∈ Q, 1 ≤ j ≤ n,

p

q1 q2 · · · c1...
cn
‘a

· · · qk

will be in A′

For each transition of the formp(q1, q2, · · · , qk) → qg,
where q1, q2, · · · , qk, qg ∈ Q, p ∈ Σ′, k is the arity
of node with labelp and qg ∈ Qf ∀qi, 1 ≤ i ≤ p if
{c1(qi1) → qi, c2(qi2) → qi1 · · · cn(qin) → qin−1

} ∈ ∆
where qin = qi , ci ∈ Σ′, 1 ≤ i ≤ n and
∀i, j,qij ∈ Q,1 ≤ j ≤ n, c1..

cn

will be in A−A′

If {c1(qi1) → qi, c2(qi2) → qi1 · · · cn(qin) →
qin−1

, a → qin} ∈ ∆ where a, ci ∈ Σ′, 1 ≤ i ≤ n

and∀i, j, qij ∈ Q, 1 ≤ j ≤ n, c1..
cn
‘a

will be in A−A′

Set flagFi = [xi, yi, zi] associated with eachAi ∈ A
as [-1,-1,-1].

Int'l Conf. Foundations of Computer Science | FCS'11 | 169

• If transitions are recursive
Let AF andAN are two temporary axiom sets
For each transition of the formp(q1, q2, · · · , qk) → qg,
whereq1, q2, · · · , qk, qg ∈ Q, p ∈ Σ′, k is the arity of
node with labelp, p

q1 q2 · · · qk

will be in

AF if qg ∈ Qf and it will be in AN if qg /∈ Qf .

Let t = p

q1 q2 · · · qk

and

t′ = p

t1 t2 · · · tk

∀t ∈ AF , if all q1, q2, · · · , qk ∈ Qf , thenp will be in
AF .

∀t ∈ AN , if all q1, q2, · · · , qk /∈ Qf , thenp will be in
AN

∀t ∈ AF , t′ will be in AF with ti having the label of
root node of somet′′ ∈ AF , ∀qi ∈ Qf .

∀t ∈ AN , t′ will be in AN with ti having the label of
root node of somet′′ ∈ AN , ∀qi /∈ Qf .

∀t ∈ AF , t′ will be in AF with ti having the label of
root node of somet′′ ∈ AN , ∀qi /∈ Qf .

∀t ∈ AN , t′ will be in AN with ti having the label of
root node of somet′′ ∈ AF , ∀qi ∈ Qf .

Set flag FAN = [x, y, z] associated withAN as
[−1,−1,−1].

Set flagFAF = [x, y, z] associated with an axiomAF ,
which has a constraint onσi ∈ Σ, as follows.

– x = 0.
– If ∃t = p

p1 p2 · · · pk

∈ AF , k ≥ 0, if

p, p1, p2, · · · , pk 6= σi thenyi = 0.

– Else if ∃t ∈ AF , with n nodes oft have labelσi,
thenyi = zi = n.

– If t′ = q

q1 q2 · · · q′k

∈ AF , k′ ≥ 0

having m ≥ n nodes oft are with labelσi.

∗ z = (m− n)− 1, if y = 0.
∗ z = (m− 1), if y 6= 0.

Now A′ = AF andA = AF ∪AN

• For each transitions of the forma → qa ∈ ∆ where,
a ∈ Σ′, qa ∈ Q, a will be in A′, if qa ∈ Qf anda
will be in A−A′, if qa /∈ Qf

• ∀t ∈ A which is of the form p

t1 t2 · · · tk
r = (χ,C1, C2, · · · , Ck) ∈ R where,
χ = (p,−, · · · ,−) and ∀i ≤ k, Ci = (X, a, i) where,
X ∈ A, for somet′ ∈ X,t′ hasa as root.
And ∀ti, 1 ≤ i ≤ k which is of the form

p′

t1 t2 · · · tk′

r = (χ,C1, C2, · · · , Ck′) ∈ R where,
χ = (p′,−, · · · ,−) and ∀i ≤ k′, Ci = (X, a, i)
where,X ∈ A, for somet′ ∈ X, t′ hasa as root.

Example 8:Lr5 = {a(bi(h), cj(h)), i, j ≥ 1, i%3 =
0 and j%2 = 0} Consider the tree automata
Dr5 = (Q,Σ′, Qf ,∆) which accepts the language
Lr5 over the alphabetΣ′ = {a2, b1, c1, h0} where
Q = {qa, qb, qb1 , qb2 , qc, qc1 , qh}, Qf = {qa} and ∆
contains following transitions.

h → qh b(qh) → qb1 b(qb1) → qb2
b(qb2) → qb b(qb) → qb1 c(qh) → qc1
c(qc1) → qc c(qc) → qc1 a(qb, qc) → qa

A1 =

a

b

b

b

c

c

, a

b

b

b

h

c

c

h

,

A2 =

c

c

, c

c

h

, b

b

b

, b

b

b

h

, h

R = {r1, r2, r3},where
r1 = (χ1, C1, C2), r2 = (χ2, U1), r3 = (χ3, U2) ,
χ1 = (a,−,−), χ2 = (b,−), χ3 = (c,−),
U1 ∈ {C1, C4}, U2 ∈ {C3, C4}, C1 = (A2, b, 1),
C2 = (A2, c, 2), C3 = (A2, c, 1), C4 = (A2, h, 1)

So the tree insertion system equivalent toDr5 is
Γr5 = (Σ,A,A′, R) where,

Σ = {a2, b1, c1, h0}, A = {A1, A2},A′ = {A1},
F1 = [−1,−1,−1], F2 = [−1,−1,−1]

Example 9:Lr4 = {t|na(t)%2 6= 0}

Consider the tree automataDr4 = (Q,Σ′, Qf ,∆) which
accepts the languageLr4 over the alphabetΣ′ = {a2, b2, c0}
where Q = {e, o}, Qf = {o} and ∆ contains following
transitions.
c → e b(e, e) → e b(o, o) → e

a(e, o) → e a(o, e) → e b(e, o) → o

b(o, e) → o a(e, e) → o a(o, o) → o

Here the transition shows a recursive behaviour and

170 Int'l Conf. Foundations of Computer Science | FCS'11 |

so it is not possible to generate all axioms for this language.
Generatetemporary axioms:AF , from final state transitions
andAN , from non-final state transitions.

AF initially contains
{

b

e o

, b

o e

, a

e e

, a

o o

}

which leads to

b

c a

, b

b a

, b

a c

, b

a b

, a

c c

,

a

b b

, a

c b

, a

b c

, a

a a

, a

AN initially contains
{

c, b

e e

, b

o o

, a

e o

, a

o e

}

which leads to

c, b, b

b b

, b

c c

, b

b c

, b

c b

,

b

a a

, a

c a

, a

b a

, a

a b

, a

a c

The two axiom setsAF and AN differs in the number
of a′s. So AF has some constraint ona. Set the flag
associated withAF . Herex = 0. Since all axioms inAF

containsa, n = 1 and one of the axiom contains 3a′s,
m = 3. So y = 1 andz = 2
In AF , split the axioms so that each axiom contains single
a′s.

AF =

b

c a

, b

b a

, b

a c

, b

a b

,

a

c c

, a

b b

, a

c b

, a

b c

, a

Now let A1 = AN andA2 = AF .
As botha andb can lead to final state directly, the insertion
can be start from eitherA1 or A2. HenceA = {A1, A2},
A′ = {A1, A2}, F1 = [−1,−1,−1], F2 = [0, 1, 2].

Create rules for generating all trees both inA1 and inA2.
R = {r1, r2}, where
r1 = (χ1, U1, U2), r2 = (χ2, U1, U2),
χ1 = (a,−,−), χ2 = (b,−,−), U1 ∈ {C1, C3},
U2 ∈ {C2, C4}, C1 = (A1, V1, 1), C2 = (A1, V1, 2),
C3 = (A2, V2, 1), C4 = (A2, V2, 2), V1 ∈ {c, b}, V2 ∈ {a, b}
So the tree insertion system equivalent toDr4 is
Γr4 = (Σ,A,A′, R) where, Σ = {a2, b2, c0}, A,A′ andR
as given above.

Result 2: Given a finite bottom-up tree automata, we can
constructan equivalent tree insertion system.

Theorem 1:From Result 1 and Result 2, the generative
powers of tree insertion systems and regular tree grammars
are equal.

4. Extended Systems
An extended tree insertion systemcan be defined by defin-

ing two types of alphabetsT andN with Σ = T ∪N and
additional restriction that the symbols inT have arity0 and
each symbol fromN has a finite number of arities. With
this extended definition, the parse trees of a context-free
grammar can be generated.

As an example, consider the CFG

G = ({S}, {a, b}, {S → aSS, S → b}, S). The parse tree
of G can be generated by the extended tree insertion system
(Σ,A,A′, R) with Σ = N ∪ T , N = {S}, T = {a, b}, arity
of S is {1, 3}. Axioms are A1 = {S} and A2 = {a, S, b}

with flags F1 = [−1,−1,−1],F2 = [−1,−1,−1], where
A′ = {A1}. The rules are r1 = (χ1, C1, C2, C3) and
r2 = (χ1, C4), where χ1 = (S,−,−), C1 = (A2, a, 1),
C2 = (A1, S, 2), C3 = (A1, S, 3), C4 = (A2, b, 1).
As an example of derivation

S ⇒ S

a S S

⇒ S

a S

b

S

⇒

S

a S

b

S

a S S

⇒ S

a S

b

S

a S

b

S

⇒ S

a S

b

S

a S

b

S

b

5. Conclusion
In this paper we defined tree insertion systems and

showed that the generative power is the same as that of
non deterministic bottom-up tree automata (or equivalently
regular tree grammars). By defining an extended system, the
power slightly increases. It should be noted that the insertion
definition given here is a restricted one with the inserted tree
occupying lower levels only. It may be interesting to widen
the definition in such a way that a subtree is inserted into
a tree by cutting the tree at an internal node and inserting
the subtree with the cut subtree attaching to a leaf of the
inserted tree. Exploring the generative power of such systems
with different contraints is being explored. It would also be
interesting to considerdeletion systemalso.

References
[1] Akihiro Takaharai,. Takashi Yokomori, On the Computational power of

insertion-deletion systems, Natural Computing 2. pp. 321-336. Kluwer
Academic Publishers,(2003)

[2] Gheorghe Paun., Grzegorz Rozenberg., Arto Saloma,. DNA Computing,
New Computing Paradigms. Springer, (1998)

[3] Lila Kari., Georghe Paun., Thierrin,G., Yu,S., At the crooroads of DNA
computing and formal languages: Characterizing RE using insertion-
deletion systems. Proc. of3rd DIMACS Workshop on DNA based
Computing, Philadelphia, pp. 318-333, (1997)

[4] Hubert Comon., Max Dauchet Remi Gilleron.,Florent Jacquemard
Denis Lugiez., Christof Loding., Sophie Tison Marc Tommasi., Tree
Automata Techniques and Applications. Draft book; available electron-
ically on http://www.grappa.univ-lille3.fr/tata, 2008.

[5] M B Siddardha and K. Krithivasan, Ambiguity in Insertion-Deletion
Kolam Array Grammers , Journal of Combinatorics, Information and
System Sciences, Vol. 33,Nos. 3-4, pages 323-337, 2008.

[6] M. Murata, D. Lee, M. Mani and K. Kawaguchi. Taxonomy of XML
Schema Languages using Formal Language Theory,ACM Trans. Inter.
Tech., 5(4):660-704, 2005.

Int'l Conf. Foundations of Computer Science | FCS'11 | 171

Avalanche in States; Combination of Sandpile and Cellular
Automata for Generate Random Numbers

Seyed Morteza Hosseini1, Hossein Karimi2, Majid Vafaei Jahan3
1,2,3 Department of Software Engineering, Mashhad Branch - Islamic Azad University, Mashhad, Iran

Abstract- Cellular Automata (CA) is a self organizing
structure with complex behavior which can be used in
pseudo-random numbers generation(PRNG). Pure CA has
a simple structure but has no ability to produce long
sequences of random numbers. In order to rectify this
problem, programmable CA (PCA), using stimulating
factor or combination of different self organizing Criticality
phenomenon can be used. In this paper, a PCA by using
Sandpile model is proposed. The Sandpile is a complex
system operating at a critical state between chaos and
order. This state is known as Self-Organized Criticality
(SOC) and is characterized by displaying scale invariant
behavior. In the precise case of the Sandpile Model, by
randomly and continuously dropping “sand grains” on top
of a two dimensional grid lattice, a power-law relationship
between the frequency and size of sand “avalanches” is
observed. The avalanche behavior and the pure CA
behavior are combined in a novel method which can be
used as the pseudo-random number generator.

Keywords: Random Number Generator, Self-Organizing
Criticality, Sandpile Model, Cellular Automata.

1 Introduction

Random number generators (RNGs) play an important
role in several computational fields, including Monte
Carlo techniques [1], Brownian dynamics [2], stochastic
optimization methods [2, 3] and key-based cryptography
[4]. It is usual to use mathematical or even evolutionary
methods to construct RNGs that yields high quality
generators. The quality of generators that determined by
statistical tests have a great important role; for example,
in cryptography, low quality of RNGs causes easily
breaking the encrypted context [4]. In solving
optimization problems, as shown in [5], performance and
speed of algorithms directly depend on quality of used
RNGs. Because of simple structure of CA and its complex
behavior and high ability to be used parallel, CA has a
well ability in generating random numbers. But one of the
major problems of CA is its bounded generated random
number sequence because of the self-organizing ability

and generate frequent numbers with specific rules. Hence,
a strategy for increasing the complexity of behavior and
the implementation of CA to present a better random
number sequence is required. In this paper, a new method
for stimulating CA and increasing the complexity of CA`s
behavior based on Sandpile model has been presented.
Sandpile model, because of existence of avalanche
phenomenon has a non-equilibrium behavior. Hybridizing
this model with cellular automata causes a random
behavior that it leads to generate a qualified sequence of
random numbers.

Herein a two dimensional n × m CA and combination
of 8 rules has been used. The obtained results show that
the sequence of generated numbers by CA passed all parts
of diehard test suite, entropy and chi-square and other
static tests. Some of the other of advantages of this
method are uniform distribution of generated numbers by
CA, high ability of parallel processing and also the
sensitivity to bit changes in particular applications such as
cryptography. This paper is organized as following: in
following section related works discussed. Section 3,
contains the basic concepts of CA and Sandpile model. In
section 4 the proposed RNG algorithm and its behavior
are discussed. In section 5, the experimental results are
illustrated and finally, in section 6, , the conclusion and
future works are discussed.

2 Related Works

The first work to apply CA as RNG was done by
Wolfram in 1986. His work shows the ability of CA to
generate random bits [6, 7]. Basic researches on CA are
on producing RNG by one dimensional CA with 3
neighbors [7]. Other researches are focused on increasing
CA's complexity with combinations of controllable cells
[4, 8] or increasing CA`s complexity with increasing
dimensionality. RNG are produced by using one
dimensional CA studied in [9, 10, 11, 12, 13] and two
dimensional CA in [14, 15, 16] and three dimensional CA
in [17]. Hortensius proposed the first non-uniform CA or
programmable CA (PCA) by using of the combination of
two rules, 90 and 150 in 1989[9]. PCA is a non-uniform
CA that allows different rules to be used at different time
steps on the same cell. He also represented another

172 Int'l Conf. Foundations of Computer Science | FCS'11 |

generator using the combination of rules 30 and 45 in [10]
that its output bits have more dependencies to each other
rather than rules 90 and 150.

 Recently, extensive studies have been done on PCA
for generating random numbers [11, 15, 16, 18, 19]. First
works on two dimensional CA represented by Chaudhuri
et al. in 1994 [14]. Their results show that produced
generator using this CA works better rather than one
dimensional CA with the same size. In [20, 21] all 256
(simple) elementary cellular automata were investigated
(including those with rules given 90 and 150). It was
found that CA with nonlinear rules 45 (or its equivalent
rules 75, 89 or 101) exhibit chaotic (or pseudo-random)
behaviors similar to those obtained in LFSRs.

3 Cellular Automata and Sandpile
Model

3.1 Cellular Automata
A cellular automaton (CA), introduced by Von

Neumann in 1940s, is a dynamic system in which its time,
space and states are all discrete. The CA evolves
deterministically in discrete time steps and each cell takes its
value from a finite set S, called the State Set. A CA is named
Boolean if S = {0,1} . The 푖 − 푡ℎ cell is denoted by ‹i› and the
state of cell ‹i› at time t is denoted by 푎 . For each cell ‹i›,
called central cell, a symmetric neighborhood of radius r is
defined by (1):

푣 = {‹푖 − 푟›, … . , ‹푖›, … . , ‹푖 + 푟›} (1)
the value of each cell ‹i› is updated by a local transition
function 푓 -called rule- which for a symmetric neighborhood
with radius r is defined as follows (2):

푎 = 푓(푎 , … , 푎 , … , 푎) (2)

or equivalently by (3):

푎 = 푓(푣) (3)

Such that 푣 is as follows (4):

푣 = 푓(푎 , … , 푎 , … , 푎) (4)

To represent a symmetric rule of radius r for a Boolean CA,
a binary string of length L is used, where 퐿 = 2 , Table 1
Shows the rule 90 of radius one (r=1).

Table 1. The Rule Representation Of Boolean Symmetric
Rule 90 Of Radius One
Neighborhood

Number
7 6 5 4 3 2 1 0

풗풊
풕 111 110 101 100 011 010 001 000

풇(풗풊
풕) 0 1 0 1 1 0 1 0

If all CA cells obey the same rule, then the CA is said

to be a uniform CA; otherwise, it is a non-uniform
CA[22]; in addition, a CA is said to be a CA with periodic
boundary condition if the extreme cells are adjacent to

each other else it called null-boundary CA. If a CA rule
involves only XOR logic, it is called a linear rule; rules
involving XNOR logic are referred to complemented
rules. A CA with all cells having linear rules is called
linear CA, whereas a CA having a combination of linear
and complemented rules is called an additive CA [23].
Nandi et al. presented a programmable CA (PCA) in 1994
[23]. A CA is said to be a PCA if it uses a control CA to
determine the rules of each cell. A control CA is
essentially just another basic CA which is usually of
uniform nature. The rule function used by each cell
changes with time and is decided by the control CA. PCA
is, in fact, a non-uniform CA because all its cells
collectively use different rule functions. A PCA may use
m-bit control CA, where m 1. For each cell, there are 2m
rules to choose from, thereby, allowing less probability of
correlations among the cells. Compared to uniform CA,
PCA allows several control lines per cell. Through these
control lines, different rules can be applied to the same
cell at different time steps according to the rule control
signals. Fig. 1, shows a PCA cell structure.

Fig. 1. A PCA cell structure

As Illustrated in Fig. 1, control signals select cell's rule. In
this paper a two dimensional Sandpile model and two
dimensional PCA with non-periodic boundary condition
is considered. Each PCA cell's state can be a number as 0,
1, 2, 3. Herein, applied rules are the same rules that were
used in elementary CA.

3.2 Sandpile Model

In 1987, Bak at al. [24] identified the SOC
phenomenon associated with dynamical systems. The first
system were SOC was observed was named after its
inspiration as the Sandpile model, and consists of a
cellular automata where at each cell of the lattice, there is
a value which corresponds to the slope of the pile. Grains
of sand are randomly “thrown” into the lattice where they
pile up and increment the values of the cells. When a
value exceeds a specific threshold, an avalanche takes
place and four grains belonging to that cell are distributed
by the neighboring sites (von Neumann neighborhood). If
one of those sites also exceeds the threshold value(zc), the
avalanche continues, and the grains are also sent to the
adjacent cells. The procedure of the Sandpile model is
shown in fig. 2.

 With these settings, and depending on the state of the
lattice and the position of the new grain, a grain may
cause rather different responses. It may not cause any
change in the system if it falls in a cell with its value
bellow threshold (other than increasing the sand on the

Int'l Conf. Foundations of Computer Science | FCS'11 | 173

cell, of course) and it may generate large avalanches of
sand that will strongly redefine the shape of the pile.

Fig. 2. 2D Bak-Tang-Wisenfeld Sandpile Model

4 Proposed RNG Based On

Combination of Sandpile and PCA

4.1 Proposed RNG
In this scheme a two dimensional 푛 × 푚 PCA with

Null boundary condition is used to generate random
numbers by using 8 rules: 153, 30, 90, 165, 86, 105, 110,
150. According to [25], generated numbers by these rules
have the best results in different tests such as entropy, chi-
square and diehard. The Boolean expression of each CA
rule is shown in Table 2.

In this paper, for Sandpile implementation, the

threshold value is considered equal to 4 and each cell has
four nearest neighbors: up, down, left and right (Von-
Neuman neighborhood). The value of each CA`s cell is an
integer between 0 and 3. For converting these numbers to
0 and 1(binary state), their residual over 2 is used. Hence,
numbers 0 and 2 (even numbers) are delegated to 0 and
numbers 1 and 3 (odd numbers) are delegated to 1. In
order to generate random numbers, the CA was
initialized by random numbers between 0 and 3. At each
time step, there are two steps that are discussed in the
following:

Firstly, a 푛 × 푚 CA is set to the binary state and each
row divides into 4-cell’s parts (each part has four cells).
In each word the first two cells show the number of time
that Sandpile run on each cell (휑) and the second two
cells show the cell that action should be run on it (훼).

Each word (φ, α), is extracted from the word in the
previous row. Because of increasing 휑 has no tangible
effect on the quality of the generated random numbers
and only increases processing time, 휑 is restricted to the
maximum equal to 2. If the first two cell of each word is
equal to 0, 1 or 2 the Sandpile action is run once; else if it
is equal to 3 the Sandpile action is run twice. Fig. 3, show
the hardware schema process of way of selection for
performing sandpile action and the number of sandpile
actions for a 4 cell section in row i+1.

Fig. 3. Proposed CCA with selection of a cell for running
Sandpile action.

For example, Fig. 4(a), shows the three rows of CA;
and Fig. 4(b), shows its binary state. These figures show
the number of Sandpile runs and the cells that Sandpile
applied on them.

(b) binary state of three rows (a) three rows of CA
Fig. 4. An example of CA and its binary state

For determination of (φ, α), in the first word of the
second row, the corresponding data in the previous row
i.e. first row was used. The value of the first two bits of
the first word of first row is (11) that imply number 3.
So as mentioned, the number of Sandpile run in first word
of the second row would be equal to 3. The value of the
second two bits of the first word of the first row is
(10) that shows cell 2 is selected. So Sandpile is run
twice on cell 2 of the first word of second row i.e. the cell
[1, 2]. Because the considered CA is periodic, previous
row of the first row is the last row (seventh row). It is
repeated for second word of second row similarly. The
second word of the first row, which determine the number
of Sandpile run is (10) = 2 and the next word which
determine the cell that the Sandpile applied it
was (00) = 0, Thus on the zero cell of the second word
of the second row i.e. cell [1, 4], the Sandpile was
performed once. For all rows, these data inferred
synchronically.

In the second step, the CA has been updated by the
eight mentioned rules. This step comprised three parts. In
the first part, a rule for each cell, according to the Table 3

Table 2: The detail and Boolean expression of each CA Rule

Boolean Representation Possible Input Configuration Rule
Name 000 001 010 011 100 101 110 111

[xi-1 nor xi+1] or [(xi xor
xi+1) and xi-1] 1 0 1 0 0 1 1 0 101
Not[xi-1 xor xi xor xi+1]1 0 0 1 0 1 1 0 105
[xi-1 nor xi] xor [not(xi+1)]0 1 1 0 1 0 1 0 86
[xi-1] xnor [xi+1]1 0 1 0 0 1 0 1 165
[xi-1] xor [xi+1]0 1 0 1 1 0 1 0 90
[xi-1] xor [xi or xi+1] 0 1 1 1 1 0 0 0 30
[xi] xnor [xi+1]1 0 0 1 1 0 0 1 153
[xi-1] xor [xi] xor [xi+1]0 1 1 0 1 0 0 1 150

174 Int'l Conf. Foundations of Computer Science | FCS'11 |

synchronically determined. The number of rules which
used in this paper is specified. To determine a rule for cell
[i, j], the procedure is shown as following: for cells [i-1, j-
1], [i-1, j], [i-1, j+1] and [i+1, j-1], [i+1, j], [i+1, j+1], the
XOR operator was used on them correspondingly (i.e. the
XOR operator applied on cells [i-1,j-1] and [i+1,j-1] and
so forth) and generate an integer between 0 and 7. Fig. 5,
shows the PCA Structure and hardware presentation of
determined rules 90/ 150/ 165/ 105/ 101/ 86/ 30/153 for
cell [i,j].

Fig. 5. Proposed PCA with Determined rules for cell [i,j]

The obtained number is the rule number that must be
applied on the cell [i, j]. For instance, if after performing
Sandpile action, the values of CA will be Fig. 4(b), the
number of determined rule for cell [1, 1] is equal to
111 ⊕ 001 = 110, i.e. which is the 6th rule. In other
words, according to Table 3 in performing rule section on
CA, the rule which should be applied on the cell [1, 1] is
153.

Table 3. CA rules lookup Table
7

(111)
6

(110)
5

(101)
4

(100)
3

(011)
2

(010)
1

(001)
0

(000)
150 153 30 90 165 86 105 101

In the second part, determined rules were applied.
Using rules also is synchronously and the rules would be
applied with respect to the rows. For example, in Fig.
4(b), the result after performing rule 153 on cell [1, 1] is
equal to 푅푢푙푒 (101) = 0. In the third part, for updating
the CA, the value of each CA cell should be added to the
value that obtained from the used rule on that cell, which
will be 0 or 1, and since all values must be an integer
between 0 and 3, their integer residual of them by 4 were
calculated.

4.2 How Use of Sandpile Model Results in
Random State in Cellular Automata?

Role of sandpile model in this model is to actuate and
produce the maximum disturbance in cellular automata
for preventing from cycle formation and reaching the
maximum entropy in cellular automata. As it was stated,

The Sandpile is a complex system operating at a critical
state between chaos and order and a power-law
relationship between the frequency and size of sand
“avalanches” is observed .In a system exhibiting critical
behavior, A small perturbation in one given location of
the system may generate a small effect on its
neighbourhoods or a chain reaction that affects all the
constituents of the system. The statistical distributions

describing the response of the system exhibiting SOC are
given by power laws in the form

 P(s) ~ 푠 (5)
where s is the number of constituents of the system

affected by the perturbation, d is the duration of the chain
reaction(lifetime), and 휏 are constants. Large avalanches
are very rare while small ones appear very often.
Without any fine-tuning of parameters, the system
evolves to a non-equilibrium critical state. Fig. 6 shows a
distribution of avalanches created by our sandpile model
with a dimension of 12 × 12, which has been running for
100000 steps.

(a) Size of avalanches over
time (steps); right: Log-log

(b) Log-log transformation of the
size of avalanches in relation to
their frequency of occurence

Fig. 6. Power law number output of the sandpile model.

As it is shown in figure 6, behavior of applied sandpile
model in the proposed generator follows power law and
the number of avalanche occurrences is inversely
proportional with the size of avalanche. The average
occurred state change in cellular automata was measured
equal to %47.83 after performing sandpile on rows.

Fig. 7. Percentage Changes in Cells After Applying
Sandpile

Fig. 7 shows percentage changes in cells after 1000 times

sandpile performance. Combining this model with cellular
automata, in addition to disturbing cells state, causes a
severe mutation in values of cellular automata because of
creating huge avalanches and prevents from short period
length sequences and leads to the maximum entropy in
cells values. Average of Percentage changes after
performing rules of cellular automata and performing
sandpile action on cells is %50.1.

5 Experimental Results

For analyze the proposed generator, the generated bits
sequence divided into 4-bit parts and so, different tests
such as entropy, chi-square and the changes sensitivity

Int'l Conf. Foundations of Computer Science | FCS'11 | 175

and other tests on the obtained numbers were assessed
which are between 0 and 15. To perform all tests which
will be presented in following sections, an 8 × 8 cellular
automata is applied with random initial values.

5.1 Several Basic Statistical Tests For PRNG
Let s =푠 , 푠 , 푠 , … , 푠 be a binary sequence of

length n. This subsection presents several basic statistical
tests that are commonly used for determining whether the
binary sequence s possesses some specific characteristics
that a truly random sequence would be likely to exhibit. It
is emphasized again that the outcome of each test is not
definite, but rather probabilistic.

5.1.1 Frequency Test (Monobit Test)
The purpose of this test is to determine whether the

number of 0’푠 and 1’푠 in s are approximately the same, as
would be expected for a random sequence. Let 푛 , 푛
denote the number of 0’푠 and 1’푠 in s, respectively. The
statistic used is:

푥1 =
(푛 − 푛)

푛 (6)

which approximately follows 푎 푥 distribution with 1
degree of freedom if 푛 ≥ 10. For a significance level of
α = 0.05, the threshold values for this test is 3.8415 [26].

5.1.2 Serial Test (Two-Bit Test)

The purpose of this test is to determine whether the
number of occurrences of 00, 01, 10, and 11 as
subsequences of 푠 are approximately the same, as would
be expected for a random sequence. Let 푛 , 푛 denote the
number of 0’푠 and 1’푠 in s, respectively, and let
푛00, 푛01, 푛10, 푛11 denote the number of occurrences of
00, 01, 10, 11 in s, respectively. Note that 푛00 + 푛01 +
 푛10 + 푛11 = (푛 − 1) since the subsequences are
allowed to overlap. The statistic used is:

4
푛 − 1

(푛00 + 푛01 + 푛10 + 푛11) −
2
푛

(푛 + 푛) + 1 (7)

 which approximately follows 푎 푥 distribution with 2
degrees of freedom if 푛 ≥ 21. For a significance level of
α = 0.05, the threshold values for this test is 5.9915 [26].

5.1.3 Poker Test

Let 푚 be a positive integer such that ≥ 5. (2)

and let 푘 = . Divide the sequence s into k non-
overlapping parts each of length 푚, and let 푛 be the
number of occurrences of the 푖 type of sequence of
length 푚, 1 ≤ 푖 ≤ 2푚. The poker test determines
whether the sequences of length 푚 each appear
approximately the same number of times in 푠, as would be
expected for a random sequence. The statistic used is:

푥3 =
2
푘 푛 − 푘 (8)

Which approximately follows 푎 푥 distribution with
2 − 1degrees of freedom. Note that the poker test is a
generalization of the frequency test: setting m = 1in the
poker test yields the frequency test. . For a significance

level of α = 0.05, the threshold values for this test is
14.0671 [26].

5.1.4 Autocorrelation Test

The purpose of this test is to check for correlations
between the sequence 푠 and (non-cyclic) shifted versions
of it. Let 푑 be a fixed integer,1 ≤ 푑 ≤ 푛

2 . The number
of bits in s not equal to their d-shifts is 퐴(푑) =
 ∑ 푠 ⊕ 푠 where ⊕ denotes the XOR operator.
The statistic used is:

푥 = 2 퐴(푑) −
푛 − 푑

2 /√푛 − 푑 (9)

Which approximately follows an 푁(0; 1) distribution if
푛 − 푑 ≥ 10. Since small values of 퐴(푑) are as
unexpected as large values of 퐴(푑), a two-sided test
should be used. . For a significance level of α = 0.05, the
threshold values for this test is 1.96 [26]. In Table 4,
values of discussed tests are presented for the proposed
generator. For this, a sequence of random numbers is
generated with 1 million bits and discussed tests are
implemented on it. This procedure is repeated 100 times
and its average is given, too..

As it is shown in Table 4, generator is able to pass all
tests.

5.2 ENT Test
The ENT test is useful for evaluating pseudorandom

number generators for encryption and statistical sampling
applications, compression algorithms, and other
applications where the information density of a file is of
interest [27]. The ENT test is a collective term for three
tests, known as the Entropy test, Chi-square test, and
Serial correlation coefficient (SCC) test. Table 5 shows
values of this test for the proposed generator. In entropy
test, its maximum value is 4 and Chi- Square test with
freedom degree 4 and precision of 0.1 is used. For doing
these tests, a sequence of length 2 is used.

Table 5. ENT Test
TESTS

Entropy Chi-Square SCC
3.9999 3.0185 0.00008

As it is represented in above table, generated sequence
is able to pass all tests successfully and with good result.

5.3 PRNG Quality Evaluation
To compare how our PRNG performs against several

different PRNGs, we use Diehard test suite [28]. For this
reason, the proposed generator based on obtained score
from DIEHRD test is compared with other generators. we
used Johnson’s scoring scheme [29]: we initialized (a0,
a1, a2, a3, a4, a5, a6, a7) with 32 different random values
obtained from http://randomnumber.org, got 32 different
10MB files, and then assigned scores based on the results
of the Diehard tests. The PRNGs we have compared to

Table 4. Values of 4 basic statistical test
TESTS

Pass
Frequency Serial Poker Autocorrelation

0.459 2.533 8.851 0.312 4/4

176 Int'l Conf. Foundations of Computer Science | FCS'11 |

ours are of several different kinds: Linear Congruential
Generators (rand [30], rand1k [31], pm [32]), Multiply
with Carry Generators (mother [33]), Additive and
Subtractive Generators (add [30], sub [32]), Compound
Generators (shsub [30], shpm [32], shlec [32]), Feedback
Shift Register Generators (tgfsr [34], fsr [35]), and
Tausworthe Generators (tauss [36]).

Each of the Diehard tests produces one or more p-
values. We categorize them as good, suspect or rejected.
We classify a p-value as rejected if p ≥ 0.998, and as
suspect if 0.95 ≤ p < 0.998; all other p-values are
considered to be good. We assign two points for every
rejection, one point for every suspect classification, and
no points for the rest. Finally, we add up these points to
produce a global Diehard score for each PRNG, and
compute the average over the 32 evaluations: low scores
indicate good PRNG quality. The information relating to
the different PRNGs was taken from [31, 37]. The results
are presented in Table 6. We note that our PRNG is
outstandingly better than the rest of the analyzed PRNGs:
the lowest scores correspond to shsub (17.125) and fsr
(17.90625), significantly greater than our PRNG
(12.718750). On the other hand, the average scores
increase up to 50.59375 (pm), 66.53125 (rand), and even
291.78125 (rand1k).

Table 6. PRNG Diehard Scores

PRNG Total Score Mean
Rand 2129 66.531250
rand1k 9337 291.78125
Pm 1619 50.593750
Mother 602 18.812500
Add 577 18.031250
Sub 655 20.468750
Shsub 548 17.125000
shpm 799 24.968750
shlec 751 23.468750
fsr 573 17.906250
tgfsr 584 18.250000
tauss 935 29.218750
Proposed PRNG 407 12.718750

5.4 Avalanche Effect

Bit change sensitivity analysis is used to analyze the
RNGs that are used in cryptography. One of the desired
properties in each cryptography algorithm is that a small
change in plaintext or key yields salient changes in
ciphertext. In special case, changing one bit in key or
plaintext should change in half of the ciphertext. This
property is known as avalanche and represented by Fiestel
in 1973 [16].

As mentioned before, the proposed generator could be
used to generate key in cryptography. To generate a
unique key in both encoding and decoding, the initial
values must be available. Thus, for high security in
cryptography, generated bits stream must have too much
dependency to this parameter. As mentioned before, a
8 × 8 CA with an integer between 0 and 3 as the value of
each cell was used. Then two bits are needed to determine
the value of each cell and 128 bits could determine the

value of cells. Two analysis of this section, 128 bits
randomly generated to determine the initial state and the
generated bits sequence generated from one cell. Then
one of these 128 bits has been inverted and the sequence
of generated bits with the new initial state of the same cell
generated. At last, the both sequences have been
compared with each other. Fig. 8, shows the changes
percent of generated sequences from one specific cell
with two initial states that differ only in the 푖푡ℎ bit
(horizontal axis).

Fig. 8. changes percentage between generated data
from two keys that only differ in one bit

6 Conclusion

In this paper, a new PCA for generating random
numbers using CA and Sandpile model presented. This
method, have the high performance in all tests and could
be used in cryptography. Because of avalanche and self
organizing properties of Sandpile model, it has a complex
behavior and could be used as a convenient factor in
stimulating of CA to generate a high quality sequence of
random numbers. In each step, first the Sandpile process
applied on the four neighbors of each cell of the two
dimensional automata and then the CA has been updated
by the synthetic of 8 rules 165, 105, 90, 150, 153, 101, 30,
86. The results of applied tests on the generated numbers
show that this generator has the maximum entropy and
since passing the chi-square and diehard tests. This
generator also has a convenient speed and holds the
ability of parallelism of CA.

Reference

[1] J. Gentle, "Random number generation and Monte Carlo
methods," Springer New York 2003, 2th edition, 2004, ISBN-
10: 0387001786
[2] A. Reese, "Random number generators in genetic
algorithms for unconstrained and constrained optimization,"
Nonlinear Analysis: Theory, Methods & Applications, Vol. 71,
pp: 679 - 692, 2009.
[3] P.L.Ecuyer, "Random numbers for simulation,
" Communications of the ACM, Vol. 33, pp:85-97, 1990.
[4] M. Tomassini, M. Sipper, and M. Perrenoud, "On the
generation of high quality random numbers by two-dimensional
Cellular Automata," IEEE Transactions on Computers, Vol.
49, pp: 1146 –1151, 2000.

Int'l Conf. Foundations of Computer Science | FCS'11 | 177

[5] J.Carmelo, A. Bastos-Filho, D. Jดulio, D. Andrade, R.
Marcelo, S. Pita, D. Ramos, "Impact of the Quality of Random
Numbers Generators on the Performance of Particle Swarm
Optimization," IEEE International Conference on Systems,
Man and Cybernetics , pp: 4988–4993, 2009.
[6] S. Wolfram, "Cryptography with cellular automata," in
Proc. CRTPTO 85 Advances in Cryptography, Vol. 218, pp:
429–432, 1985.
[7] S. Wolfram, "Theory and Applications of Cellular
Automata," River Edge, NJ: World Scientific, pp:1983–1986,
1986.
[8] S.-U. Guan and S. Zhang, "A family of controllable cellular
automata for pseudorandom number generation," International
Journal of Modern Physics C, Vol. 13, Issue 8, pp:1047-1073
2002.
[9] P. D. Hortensius, R. D. Mcleod, and H. C. Card, "Parallel
random number generation for VLSI system using cellular
automata," IEEE Transactions on Computers, Vol. 38, pp:
1466–1473, 1989.
[10] P. D. Hortensius, R. D. Mcleod,W. Pries, D. M. Miller,
and H. C. Card, "Cellular automata-based pseudorandom
number generators for built-in self-test," IEEE Transactions on
Computers, Vol. 8, pp: 842–859, 1989.
[11] P. Anghelescu “Encryption Algorithm using
Programmable Cellular Automata”, World Congress on
Internet Security (WorldCIS), pp: 233 – 239, 2011
[12] S.H. Shin, K.Y. Yoo, “Analysis of 2-State, 3-
Neighborhood Cellular Automata Rules for Cryptographic
Pseudorandom Number Generation
 “,International Conference on Computational Science and
Engineering, CSE '09, pp: 399 – 404,2009.
[13] X.Xuewen, L.Yuanxiang, X.Zhuliang, W.Rong, “Data
Encryption Based on Multi-Granularity Reversible Cellular
Automata”, International Conference on Computational
Intelligence and Security, 2009. CIS '09, pp: 192 – 196, 2009.
[14] D. R. Chowdhury, I. S. Gupta, and P. P. Chaudhuri, "A
class of two-dimensional cellular automata and applications in
random pattern testing," Journal of Electronic Testing: Theory
and Applications, Vol. 5, pp: 65–80, 1994.
[15] B.H.Kang, D.H.Lee, C.P.Hong, "High-Performance
Pseudorandom Number Generator Using Two-Dimensional
Cellular Automata", 4th IEEE International Symposium on
Electronic Design, Test and Applications, pp:597 - 602, 2008
[16] B.H.Kang, D.H.Lee, C.P.Hong, ”Pseudorandom Number
Generation Using Cellular Automata", Novel Algorithms and
Techniques In Telecommunications, Automation and Industrial
Electronics, pp:401-404, 2008.
[17] S.H.Shin, G.D.Park, K.Y.Yoo, “A Virtual Three-
Dimension Cellular Automata Pseudorandom Number
Generator Based on the Moore Neighborhood Method”, 4th
International Conference on Intelligent Computing, ICIC 2008,
pp: 174-181, 2008.
[18] A. Ray, D. Das, “Encryption Algorithm for Block Ciphers
Based on Programmable Cellular Automata”, Information
Processing and Management, Vol.70, pp:269-275, 2010.

[19] N.S.Maiti, S.Ghosh, B.K.Shikdar, P.P.Chaudhuri ,
“Programmable Cellular Automata (PCA) Based Advanced
Encryption Standard (AES) Hardware”, 9th International
Conference on Cellular Automata for Research and Industry,
ACRI, pp:271-274, 2010.
[20] R. Dogaru, I. Dogaru, and H. Kim, "Binary chaos
synchronization inelementary cellular automata", Int. J.
Bifurcation and Chaos, 19, 2009.
[21] R. Dogaru, I. Dogaru, H.Kim,"Synchronization in
elementary cellular automata", Proceedings of the 1Oth
International Workshop on Multimedia Signal Processing and
Transmission (MSPT'08, July 21-22, pp. 35-40, 2008.
[22] I.Kokolakis, I.Andreadis, and P. Tsalids, "Comparison
between cellular automata and linear feedback shift registers
based pseudo-random number generators," Microprocessors
and Microsystems, Vol. 20, pp: 643–658, 1997.
[23] S. Nandi, B. K. Kar, and P. P. Chowdhuri, "Theory and
applications of cellular automata in cryptography,” IEEE
Transactions on Computers, Vol. 43, pp:1346–1357, 1994.
[24] P.Bak, C.Tang, , K.Wiesenfeld, “Self-organized criticality:
an explanation of 1/f noise”, Physical Review of Letters, pp:
381-384, 1987
[25] F. Seredynski, P. Bouvry, and A.Y. Zomaya, "Cellular
automata computations and secret key cryptography," Parallel
Computing, Vol.30, pp: 753-766, 2004.
[26] Alfred J. Menezes, Paul C. van Oorschot, Scott
A.Vanstone “Handbook of Applied Cryptograph”, CRC Press;
1 edition, pp:181-183, 1996, ISBN-10: 0849385237.
[27] ENT Test Suite, http:// www.fourmilab.ch/random
[28] G.Marsaglia, Diehard test, http://stat.fsu.edu/
~geo/diehard.html, 1998.
[29] B.C. Johnson. Radix-b extensions to some common
empirical tests for PRNGs. ACM Trans. on Modeling and
Comp. Sim., 6(4):261–273, 1996.
[30] D.E. Knuth. The Art of Computer Programming, Volume
2, Addison-Wesley, 3rd edition, 1998.
[31] M.M. Meysenburg and J.A. Foster. Randomness and GA
performance, revisited.In Proc. of GECCO’99, volume 1, pages
425–432. Morgan Kaufmann, 1999.
[32] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P.
Flannery. Numerical Recipes in C. Cambridge University
Press, 2nd edition, 1992.
[33] G. Marsaglia. Yet another RNG. Posted to sci.stat.math,
1994.
[34] M. Matsumoto and Y. Kurita. Twisted GFSR generators.
ACM Trans. on Modeling and Comp. Sim., 2(3):179–194,1992.
[35] B. Schneier. Applied Cryptography. John Wiley, 1994.
[36] S. Tezuka and P. L’Ecuyer. Efficient and portable
combined Tausworthe Random Number Generators. ACM
Trans. on Modeling and Comp. Sim., 1(2):99–112, 1991.
[37] M.M. Meysenburg and J.A. Foster. The quality of PRNGs
and simple genetic algorithm performance. In Proc. of the 7th
Int. Conference on Genetic Algorithms, pp: 276–281, 1997.
[38] W. Stallings, "Cryptography and Network Security,"
Prentice Hall, 3th Edition, 2002, ISBN-10: 0130914290.

178 Int'l Conf. Foundations of Computer Science | FCS'11 |

The Role of Orthomodularity in the Marsden-

Herman Theorem in Quantum Logic

Jack K. Horner

P. O. Box 266

Los Alamos, New Mexico 87544 USA

Abstract

The optimization of quantum computing circuitry

and compilers at some level must be expressed in

terms of quantum-mechanical behaviors and

operations. In much the same way that the

structure of conventional propositional

(Boolean) logic (BL) is the logic of the

description of the behavior of classical physical

systems and is isomorphic to a Boolean algebra

(BA), so also the algebra, C(H), of closed linear

subspaces of (equivalently, the system of linear

operators on (observables in)) a Hilbert space is

a logic of the descriptions of the behavior of

quantum mechanical systems and is a model of

an ortholattice (OL). An OL can thus be thought

of as a kind of “quantum logic” (QL). C(H) is

also a model of an orthomodular lattice, which is

an OL conjoined with the orthomodularity axiom

(OMA). Because the propositions of a QL are

not in general commutative, quantum logicians

have paid much attention to "quasi"-

commutative theorems, one of the better known

of which is the Marsden-Herman theorem

(MHT). In a QL, the non-commutativity of

(certain) observables can be captured as the

failure of the (Boolean) distributive law.

Informally, the MHT states that if there is a

cyclic chain of commuting elements in an

orthomodular lattice, a strong version of the

distributive law holds. Here I provide an

automated deduction of the MHT that uses the

OMA and show that OMA is required by the

MHT.

Keywords: automated deduction, quantum

computing, orthomodular lattice, Hilbert space

1.0 Introduction

 The optimization of quantum computing

circuitry and compilers at some level must

be expressed in terms of the description of

quantum-mechanical behaviors ([1], [17],

[18], [20]). In much the same way that

conventional propositional (Boolean) logic

(BL,[12]) is the logical structure of

description of the behavior of classical

physical systems (e.g. “the measurements of

the position and momentum of particle P are

commutative”) and is isomorphic to a

Boolean lattice ([10], [11], [19]), so also the

algebra, C(H), of the closed linear subspaces

of (equivalently, the system of linear

operators on (observables in)) a Hilbert

space H ([1], [4], [6], [9], [13]) is a logic of

the descriptions of the behavior of quantum

mechanical systems (e.g., “the

measurements of the position and

momentum of particle P are not

commutative”) and is a model ([10]) of an

ortholattice (OL; [8]). An OL can thus be

thought of as a kind of “quantum logic”

(QL; [19]). C(H) is also a model of (i.e.,

isomorphic to a set of sentences which hold

in) an orthomodular lattice (OML; [7], [8]),

which is an OL conjoined with the

orthomodularity axiom (OMA; see Figure

1). The rationalization of the OMA as a

claim proper to physics has proven

problematic ([13], Section 5-6), motivating

the question of whether the OMA is required

in an adequate characterization of QL. Thus

formulated, the question suggests that the

OMA is specific to an OML, and that as a

consequence, banning the OMA from QL

yields a "truer" quantum logic.

Int'l Conf. Foundations of Computer Science | FCS'11 | 179

Lattice axioms

 x = c(c(x)) (AxLat1)

 x v y = y v x (AxLat2)

 (x v y) v z = x v (y v z) (AxLat3)

 (x ^ y) ^ z = x ^ (y ^ z) (AxLat4)

 x v (x ^ y) = x (AxLat5)

 x ^ (x v y) = x (AxLat6)

Ortholattice axioms

 c(x) ^ x = 0 (AxOL1)

 c(x) v x = 1 (AxOL2)

 x ^ y = c(c(x) v c(y)) (AxOL3)

Orthomodularity axiom

 y v (c(y) ^ (x v y)) = x v y (AxOM)

where

 x, y are variables ranging over lattice nodes

 ^ is lattice meet

 v is lattice join

 c(x) is the orthocomplement of x

 = is equivalence ([12])

 1 is the maximum lattice element (= x v c(x))

 0 is the minimum lattice element (= c(1))

 Figure 1. Lattice, ortholattice, and orthomodularity axioms.

__

 In QL, the non-commutativity of

(certain) observables can be captured as the

failure of the distributive law (x v (y ^

z) = (x v y) ^ (x v z)). (This is

a lattice-theoretic way of representing non-

commutativity; a physicist would likely say

that non-commutativity is fundamental and

the failure of distributivity is derivative.

The two representations are formally

equivalent.) A QL (without AxOM), in fact,

can be thought of as a BL in which the

distribution law does not hold. Because of

the fundamental role that non-commutativity

plays in QL, quantum logicians have paid

much attention to "quasi"-commutative

theorems, which help to ground a large class

of equivalence representations in quantum

logic, and are thus of potential interest in

optimizing quantum circuit design. Among

the better known of the quasi-commutative

theorems is the Marsden-Herman Theorem

(MHT, [8]), shown is in Figure 2

__

 If u, z, w, and x are elements of an orthomodular lattice and

 C(u,z) & C(z,w) & C(w,x) & C(x,u)

 then

 (((u v z) ^ (w v x))) =

 (((u ^ w) v (u ^ x)) v ((z ^ w) v (z ^ x))).

180 Int'l Conf. Foundations of Computer Science | FCS'11 |

 where C(x,y), "x commutes with y", is defined as

 C(x,y) <-> (x = ((x ^ y) v (x ^ c(y))))

 <-> means "if and only if"

 Figure 2. The Marsden-Herman Theorem.

__

 Informally stated, the MHT says that if

there is a four-element cyclic commutative

chain of elements in an orthomodular lattice,

then a strong distribution law holds for those

elements.

2.0 Method

 The OML axiomatizations of Megill,

Pavičić, and Horner ([5], [14], [15], [16],

[21], [22]) were implemented in a prover9

([2]) script ([3]) configured to derive the

MHT, and to show that the MHT requires

the orthomodularity axiom, (AxOM), then

executed in that framework on a Dell

Inspiron 545 with an Intel Core2 Quad CPU

Q8200 (clocked @ 2.33 GHz) and 8.00 GB

RAM, running under the Windows Vista

Home Premium (SP2)/Cygwin operating

environment.

3.0 Results

 Figure 3 shows the proof of the MHT

produced by [3] on the platform described in

Section 2.0.

__

============================== PROOF =================================

% Proof 1 at 59.44 (+ 0.37) seconds.

% Length of proof is 81.

% Level of proof is 13.

2 C(x,y) <-> x = (x ^ y) v (x ^ c(y)) # label("Df--commutes") # label(non_clause).

[assumption].

3 C(u,z) & C(z,w) & C(w,x) & C(x,u) # label(non_clause). [assumption].

4 (u v z) ^ (w v x) = ((u ^ w) v (u ^ x)) v ((z ^ w) v (z ^ x)) # label(non_clause) #

label(goal). [goal].

8 -C(x,y) | (x ^ y) v (x ^ c(y)) = x # label("Df--commutes"). [clausify(2)].

9 C(x,y). [clausify(3)].

13 x = c(c(x)) # label("AxLat1"). [assumption].

14 c(c(x)) = x. [copy(13),flip(a)].

15 x v y = y v x # label("AxLat2"). [assumption].

16 (x v y) v z = x v (y v z) # label("AxLat3"). [assumption].

18 x v (x ^ y) = x # label("AxLat5"). [assumption].

19 x ^ (x v y) = x. [assumption].

20 c(x) ^ x = 0 # label("AxOL1"). [assumption].

21 c(x) v x = 1 # label("AxOL2"). [assumption].

22 x v c(x) = 1. [copy(21),rewrite([15(2)])].

23 x ^ y = c(c(x) v c(y)) # label("AxOL3"). [assumption].

24 x v (c(x) ^ (y v x)) = y v x # label("AxOM"). [assumption].

25 x v c(x v c(y v x)) = y v x. [copy(24),rewrite([23(3),14(2)])].

36 ((c1 ^ c3) v (c1 ^ c4)) v ((c2 ^ c3) v (c2 ^ c4)) != (c1 v c2) ^ (c3 v c4).

[deny(4)].

37 c(c(c1 v c2) v c(c3 v c4)) != c(c(c1) v c(c3)) v (c(c(c1) v c(c4)) v (c(c(c2) v c(c3))

v c(c(c2) v c(c4)))).

[copy(36),rewrite([23(3),23(9),23(16),23(22),16(27),23(34)]),flip(a)].

38 (x ^ y) v (x ^ c(y)) = x. [resolve(9,a,8,a)].

Int'l Conf. Foundations of Computer Science | FCS'11 | 181

39 c(c(x) v y) v c(c(x) v c(y)) = x. [copy(38),rewrite([23(1),23(6),14(7),15(8)])].

40 c(1) = 0. [back_rewrite(20),rewrite([23(2),14(2),22(2)])].

41 c(c(x) v c(x v y)) = x. [back_rewrite(19),rewrite([23(2)])].

42 x v c(c(x) v c(y)) = x. [back_rewrite(18),rewrite([23(1)])].

45 x v (y v z) = y v (x v z). [para(15(a,1),16(a,1,1)),rewrite([16(2)])].

46 c(c(c1 v c2) v c(c3 v c4)) != c(c(c1) v c(c3)) v (c(c(c2) v c(c3)) v (c(c(c1) v c(c4))

v c(c(c2) v c(c4)))). [back_rewrite(37),rewrite([45(36)])].

51 x v (c(x v c(y v x)) v z) = y v (x v z).

[para(25(a,1),16(a,1,1)),rewrite([16(2)]),flip(a)].

52 x v (y v c(x v (y v c(z v (x v y))))) = z v (x v y).

[para(25(a,1),16(a,1)),rewrite([16(7)]),flip(a)].

53 x v c(x v c(y v (z v x))) = y v (z v x).

[para(16(a,1),25(a,1,2,1,2,1)),rewrite([16(8)])].

56 c(x v y) v c(x v c(y)) = c(x). [para(14(a,1),39(a,1,1,1,1)),rewrite([14(4)])].

60 0 v c(c(x) v c(x)) = x. [para(22(a,1),39(a,1,1,1)),rewrite([40(2),14(4)])].

66 c(x) v c(x v y) = c(x). [para(41(a,1),14(a,1,1)),flip(a)].

73 c(x v x) = c(x). [para(41(a,1),41(a,1,1,2)),rewrite([14(2)])].

75 0 v x = x. [back_rewrite(60),rewrite([73(5),14(3)])].

76 x v c(c(x) v y) = x. [para(14(a,1),42(a,1,2,1,2))].

81 x v c(y v c(x)) = x. [para(25(a,1),42(a,1,2,1))].

82 x v x = x. [para(40(a,1),42(a,1,2,1,2)),rewrite([15(3),75(3),14(2)])].

85 x v (y v c(x v c(z v x))) = y v (z v x). [para(25(a,1),45(a,1,2)),flip(a)].

93 x v (y v x) = y v x. [para(82(a,1),16(a,2,2)),rewrite([15(2)])].

108 x v (c(c(x) v y) v z) = x v z. [para(76(a,1),16(a,1,1)),flip(a)].

110 x v (y v c(c(x) v z)) = y v x. [para(76(a,1),45(a,1,2)),flip(a)].

112 c(x) v c(y v x) = c(x). [para(14(a,1),81(a,1,2,1,2))].

113 x v (c(y v c(x)) v z) = x v z. [para(81(a,1),16(a,1,1)),flip(a)].

129 c(x) v (c(x v y) v z) = c(x) v z. [para(66(a,1),16(a,1,1)),flip(a)].

130 c(x v y) v c(x v (y v z)) = c(x v y). [para(16(a,1),66(a,1,2,1))].

174 c(c(x) v y) v (z v x) = z v x.

[para(76(a,1),52(a,1,2,2,1,2,2,1,2)),rewrite([108(10),85(9),76(9)])].

185 c(x) v (c(y v x) v z) = c(x) v z. [para(112(a,1),16(a,1,1)),flip(a)].

188 c(x) v (y v c(z v x)) = y v c(x). [para(112(a,1),45(a,1,2)),flip(a)].

190 c(x v y) v (c(y v c(x v y)) v z) = c(y) v z.

[para(112(a,1),51(a,1,2,1,1,2,1)),rewrite([14(6),15(5),185(13)])].

202 x v c(x v c(y v (z v (u v x)))) = y v (z v (u v x)).

[para(16(a,1),53(a,1,2,1,2,1,2)),rewrite([16(9)])].

236 c(x v y) v c(y v c(x)) = c(y). [para(15(a,1),56(a,1,1,1))].

237 c(x v y) v c(c(y) v x) = c(x). [para(15(a,1),56(a,1,2,1))].

253 x v c(x v c(y)) = x v y.

[para(56(a,1),56(a,1,1,1)),rewrite([14(2),14(6),15(5),16(5),112(4),14(7)])].

255 x v (y v (z v (u v x))) = y v (z v (u v x)). [back_rewrite(202),rewrite([253(7)])].

257 x v c(x v y) = x v c(y). [para(14(a,1),253(a,1,2,1,2))].

305 x v c(y v x) = x v c(y). [para(15(a,1),257(a,1,2,1))].

306 x v (c(x v y) v z) = x v (c(y) v z).

[para(257(a,1),16(a,1,1)),rewrite([16(3)]),flip(a)].

308 x v (y v c(x v z)) = y v (x v c(z)). [para(257(a,1),45(a,1,2)),flip(a)].

322 c(x v y) v (c(y v c(x)) v z) = c(y) v z. [back_rewrite(190),rewrite([305(5)])].

401 c(x v y) v c(c(z v c(x)) v y) = c(c(z v c(x)) v y).

[para(113(a,1),112(a,1,2,1)),rewrite([15(8)])].

481 c(x v y) v c(c(x) v y) = c(y). [para(15(a,1),236(a,1,2,1))].

491 c(c(x v y) v z) = c(c(x) v z) v c(x v (c(y) v z)).

[para(129(a,1),236(a,1,1,1)),rewrite([14(8),15(7),306(7)]),flip(a)].

500 c(c(x) v y) v c(x v (z v y)) = c(c(x) v y) v c(z v y).

[back_rewrite(401),rewrite([491(7),14(7),188(10),491(11),14(11)]),flip(a)].

507 c(c(c1) v c(c3 v c4)) v c(c(c2) v c(c3 v c4)) != c(c(c1) v c(c3)) v (c(c(c2) v c(c3))

v (c(c(c1) v c(c4)) v c(c(c2) v c(c4)))). [back_rewrite(46),rewrite([491(10),500(19)])].

512 c(x v y) v (z v c(c(y) v x)) = z v c(x). [para(237(a,1),45(a,1,2)),flip(a)].

516 c(x v c(y v z)) = c(x v (y v c(z))) v c(x v c(y)).

[para(110(a,1),237(a,1,2,1)),rewrite([14(2),15(4),308(4),14(10)]),flip(a)].

525 c(c(c1) v c(c3)) v (c(c(c2) v c(c3)) v (c(c3 v (c(c1) v c(c4))) v c(c3 v (c(c2) v

c(c4))))) != c(c(c1) v c(c3)) v (c(c(c2) v c(c3)) v (c(c(c1) v c(c4)) v c(c(c2) v

c(c4)))).

[back_rewrite(507),rewrite([516(8),45(7),15(15),516(23),45(22),15(30),45(31),16(30),45(31

)])].

542 c(x v y) v c(y v x) = c(x v y). [para(93(a,1),130(a,1,2,1))].

549 c(x v c(y)) v (c(x v (z v c(y))) v c(x v c(z))) = c(x v (z v c(y))) v c(x v c(z)).

[para(236(a,1),130(a,1,2,1,2)),rewrite([516(4),15(12),516(16)])].

563 c(x v y) v (c(c(x) v y) v z) = c(y) v z. [para(481(a,1),16(a,1,1)),flip(a)].

656 c(x v y) v (c(x v (z v y)) v u) = c(x v y) v u. [para(45(a,1),185(a,1,2,1,1))].

182 Int'l Conf. Foundations of Computer Science | FCS'11 |

664 c(x v (y v c(z))) v c(x v c(y)) = c(x v c(z)) v c(x v c(y)).

[back_rewrite(549),rewrite([656(12)]),flip(a)].

677 c(x v c(y v z)) = c(x v c(z)) v c(x v c(y)). [back_rewrite(516),rewrite([664(12)])].

680 c(x) v (y v (z v c(u v x))) = y v (z v c(x)).

[para(16(a,1),188(a,1,2)),rewrite([16(9)])].

814 c(x v (y v z)) v c(y v x) = c(y v x).

[para(542(a,1),174(a,1,2)),rewrite([14(3),16(2),542(11)])].

1741 c(x v (y v z)) v (c(y v x) v u) = c(y v x) v u. [para(814(a,1),16(a,1,1)),flip(a)].

2626 c(x v c(y)) v (c(y v (x v z)) v u) = c(x v c(y)) v (c(x v z) v u).

[para(512(a,1),322(a,1,1,1)),rewrite([14(10),15(9),16(9),110(8),677(13),14(13),16(15)])].

2886 c(c(x) v y) v (z v (u v c(x v y))) = z v (u v c(y)).

[para(563(a,1),255(a,1)),rewrite([680(6)]),flip(a)].

26019 c(x v c(y)) v (z v c(y v (x v u))) = c(x v c(y)) v (z v c(x v u)).

[para(2886(a,1),1741(a,1)),flip(a)].

26036 c(c(c1) v c(c3)) v (c(c(c2) v c(c3)) v (c(c3 v (c(c1) v c(c4))) v c(c(c2) v

c(c4)))) != c(c(c1) v c(c3)) v (c(c(c2) v c(c3)) v (c(c(c1) v c(c4)) v c(c(c2) v

c(c4)))). [back_rewrite(525),rewrite([26019(30)])].

26094 $F. [para(45(a,1),26036(a,1)),rewrite([2626(28),45(27)]),xx(a)].

============================== end of proof ==========================

Figure 3. Summary of a prover9 ([2]) proof of the Marsden-Herman Theorem ([8]). The proof

assumes the inference rules of prover9. The general form of a line in this proof is “line_number

conclusion [derivation]”, where line_number is a unique identifier of a line in the proof, and

conclusion is the result of applying the prover9 inference rules (such as paramodulation, copying, and

rewriting), noted in square brackets (denoting the derivation), to the lines cited in those brackets.

Note that some of “logical” proof lines in the above have been transformed to two text lines, with the

derivation appearing on a text line following a text line containing the first part of that logical line.

The detailed syntax and semantics of these notations can be found in [2]. All prover9 proofs are by

default proofs by contradiction. Note that this proof uses the orthomodularity axiom, AxOM.

__

 The total time to produce the proof in

Figure 3 on the platform described in

Section 2.0 was ~1 minute.

 Not only does the proof in Figure 3

use the modularity axiom AxOM,

AxOM is required by the MHT, as

Figure 4 shows.

__

============================== PROOF =================================

% Proof 1 at 0.08 (+ 0.03) seconds: "AxOM".

% Length of proof is 48.

% Level of proof is 11.

2 C(x,y) <-> x = (x ^ y) v (x ^ c(y)) # label("Df--commutes") # label(non_clause).

[assumption].

3 C(u,z) & C(z,w) & C(w,x) & C(x,u) -> (u v z) ^ (w v x) = ((u ^ w) v (u ^ x)) v ((z ^ w)

v (z ^ x)) # label("Marsden-Herman Theorem") # label(non_clause). [assumption].

4 y v (c(y) ^ (x v y)) = x v y # label("AxOM") # label(non_clause) # label(goal).

[goal].

7 x = c(c(x)) # label("AxLat1"). [assumption].

8 c(c(x)) = x. [copy(7),flip(a)].

9 x v y = y v x # label("AxLat2"). [assumption].

10 (x v y) v z = x v (y v z) # label("AxLat3"). [assumption].

12 x v (x ^ y) = x # label("AxLat5"). [assumption].

13 x ^ (x v y) = x. [assumption].

14 c(x) ^ x = 0 # label("AxOL1"). [assumption].

15 c(x) v x = 1 # label("AxOL2"). [assumption].

Int'l Conf. Foundations of Computer Science | FCS'11 | 183

16 x v c(x) = 1. [copy(15),rewrite([9(2)])].

17 x ^ y = c(c(x) v c(y)) # label("AxOL3"). [assumption].

28 -C(x,y) | (x ^ y) v (x ^ c(y)) = x # label("Df--commutes"). [clausify(2)].

29 -C(x,y) | c(c(x) v y) v c(c(x) v c(y)) = x.

[copy(28),rewrite([17(2),17(7),8(8),9(9)])].

30 C(x,y) | (x ^ y) v (x ^ c(y)) != x # label("Df--commutes"). [clausify(2)].

31 C(x,y) | c(c(x) v y) v c(c(x) v c(y)) != x.

[copy(30),rewrite([17(2),17(7),8(8),9(9)])].

32 -C(x,y) | -C(y,z) | -C(z,u) | -C(u,x) | ((x ^ z) v (x ^ u)) v ((y ^ z) v (y ^ u)) = (x

v y) ^ (z v u) # label("Marsden-Herman Theorem"). [clausify(3)].

33 -C(x,y) | -C(y,z) | -C(z,u) | -C(u,x) | c(c(x v y) v c(z v u)) = c(c(x) v c(z)) v

(c(c(x) v c(u)) v (c(c(y) v c(z)) v c(c(y) v c(u)))).

[copy(32),rewrite([17(5),17(9),17(14),17(18),10(23),17(26)]),flip(e)].

34 c1 v (c(c1) ^ (c2 v c1)) != c2 v c1 # label("AxOM") # answer("AxOM"). [deny(4)].

35 c1 v c(c1 v c(c1 v c2)) != c1 v c2 # answer("AxOM").

[copy(34),rewrite([9(6),17(7),8(4),9(12)])].

36 c(1) = 0. [back_rewrite(14),rewrite([17(2),8(2),16(2)])].

37 c(c(x) v c(x v y)) = x. [back_rewrite(13),rewrite([17(2)])].

38 x v c(c(x) v c(y)) = x. [back_rewrite(12),rewrite([17(1)])].

40 x v (y v z) = y v (x v z). [para(9(a,1),10(a,1,1)),rewrite([10(2)])].

42 x v (c(x) v y) = 1 v y. [para(16(a,1),10(a,1,1)),flip(a)].

49 C(x,c(x)) | 0 v c(c(x) v c(x)) != x.

[para(16(a,1),31(b,1,2,1)),rewrite([36(8),9(8)])].

50 c(0) = 1. [para(36(a,1),8(a,1,1))].

53 C(x,1) | c(0 v c(x)) v c(1 v c(x)) != x.

[para(36(a,1),31(b,1,2,1,2)),rewrite([9(5),9(9),9(11)])].

54 c(x) v c(x v y) = c(x). [para(37(a,1),8(a,1,1)),flip(a)].

58 c(0 v c(x)) = x. [para(16(a,1),37(a,1,1,2,1)),rewrite([36(3),9(3)])].

60 C(x,x v y) | c(1 v y) v x != x. [para(37(a,1),31(b,1,2)),rewrite([40(5),42(5)])].

61 1 v x = 1. [para(36(a,1),37(a,1,1,1)),rewrite([58(6)])].

62 c(x v x) = c(x). [para(37(a,1),37(a,1,1,2)),rewrite([8(2)])].

63 C(x,1) | x v 0 != x. [back_rewrite(53),rewrite([58(6),61(5),36(4)])].

65 C(x,x v y) | 0 v x != x. [back_rewrite(60),rewrite([61(4),36(4)])].

68 C(x,c(x)) | 0 v x != x. [back_rewrite(49),rewrite([62(7),8(5)])].

74 x v 0 = x. [para(16(a,1),38(a,1,2,1)),rewrite([36(2)])].

76 x v x = x. [para(36(a,1),38(a,1,2,1,2)),rewrite([9(3),58(4)])].

78 C(x,1). [back_rewrite(63),rewrite([74(4)]),xx(b)].

81 0 v x = x. [hyper(29,a,78,a),rewrite([9(3),61(3),36(2),36(4),9(4),58(5)])].

83 C(x,c(x)). [back_rewrite(68),rewrite([81(4)]),xx(b)].

84 C(x,x v y). [back_rewrite(65),rewrite([81(4)]),xx(b)].

88 C(0,x).

[para(50(a,1),31(b,1,1,1,1)),rewrite([61(4),36(4),50(5),61(6),36(5),76(5)]),xx(b)].

89 C(x,0).

[para(50(a,1),31(b,1,2,1,2)),rewrite([9(5),81(5),8(4),9(5),61(5),36(4),74(4)]),xx(b)].

95 C(c(x),x). [para(8(a,1),83(a,2))].

112 x v c(x v c(x v y)) = x v y.

[hyper(33,a,89,a,b,88,a,c,95,a,d,84,a),rewrite([9(3),81(3),9(4),16(4),36(4),9(4),81(4),8(

3),8(5),9(4),9(9),54(9),8(7),50(7),8(8),61(7),36(7),50(8),61(9),36(8),76(8),74(7),9(6)]),

flip(a)].

113 $F # answer("AxOM"). [resolve(112,a,35,a)].

============================== end of proof ==========================

Figure 4. Summary of prover9 proof showing the MHT requires the

orthomodularity axiom, AxOM.

__

 The total time to complete the proof shown in Figure 4 on the platform described in

Section 2.0 was 0.11 seconds.

184 Int'l Conf. Foundations of Computer Science | FCS'11 |

4.0 Acknowledgements

 This work benefited from discussions

with Tom Oberdan, Frank Pecchioni, Tony

Pawlicki, and the late John K. Prentice,

whose passion for foundations of physics

inspired those of us privileged to have

known him. For any infelicities that remain,

I am solely responsible.

5.0 References

[1] von Neumann J. Mathematical

Foundations of Quantum Mechanics. 1936.

Translated by R. T. Beyer. Princeton. 1983.

[2] McCune WW. prover9 and mace4.

URL

http://www.cs.unm.edu/~mccune/prover9/.

2009.

[3] Horner JK. MHT prover9 scripts.

2011. Available from the author on request.

[4] Dalla Chiara ML and Giuntini R.

Quantum Logics. URL

http://xxx.lanl.gov/abs/quant-ph/0101028.

2004.

[5] Megill ND and Pavičić M.

Orthomodular lattices and quantum algebra.

International Journal of Theoretical Physics

40 (2001), pp. 1387-1410.

[6] Akhiezer NI and Glazman IM. Theory

of Linear Operators in Hilbert Space.

Volume I. Translated by M. Nestell.

Frederick Ungar. 1961.

[7] Holland, Jr. SS Orthomodularity in

infinite dimensions: a theorem of M. Solèr.

Bulletin of the American Mathematical

Society 32 (1995), pp. 205-234.

[8] Marsden EL and Herman LM. A

condition for distribution in orthomodular

lattices.

Kansas State University Technical Report

#40. 1974.

[9] Knuth DE and Bendix PB. Simple word

problems in universal algebras. In J. Leech,

ed. Computational Problems in Abstract

Algebra. Pergamon Press. 1970. pp. 263-

297.

[10] Chang CC and Keisler HJ. Model

Theory. North-Holland. 1990. pp. 38-39.

[11] Birkhoff G. Lattice Theory. Third

Edition. American Mathematical Society.

1967.

 [12] Church A. Introduction to

Mathematical Logic. Volume I. Princeton.

1956.

[13] Jauch J. Foundations of Quantum

Mechanics. Addison-Wesley. 1968.

[14] Megill ND. Metamath. URL

http://us.metamath.org/qlegif/mmql.html#un

ify. 2004.

[15] Horner JK. An automated deduction

system for orthomodular lattice theory.

Proceedings of the 2005 International

Conference on Artificial Intelligence.

CSREA Press. 2005. pp. 260-265.

[16] Horner JK. An automated equational

logic deduction of join elimination in

orthomodular lattice theory. Proceedings of

the 2007 International Conference on

Artificial Intelligence. CSREA Press. 2007.

pp. 481-488.

[17] Messiah A. Quantum Mechanics.

Dover. 1958.

[18] Horner JK. Using automated theorem-

provers to aid the design of efficient

compilers for quantum computing. Los

Alamos National Laboratory Quantum

Institute Workshop. December 9–10, 2002.

URL

http://www.lanl.gov/science/centers/quantu

m/qls_pdfs/horner.pdf.

[19] Birkhoff G and von Neumann J. The

logic of quantum mechanics. Annals of

Mathematics 37 (1936), 823-243.

[20] Nielsen MA and Chuang L . Quantum

Computation and Quantum Information.

Cambridge. 2000.

[21] Pavičić M and Megill N. Quantum and

classical implicational algebras with

primitive implication. International Journal

of Theoretical Physics 37 (1998), 2091-

2098. ftp://m3k.grad.hr/pavicic/quantum-

logic/1998-int-j-theor-phys-2.ps.gz.

[22] Horner JK. An automated deduction of

the relative strength of orthomodular and

weakly orthomodular lattice theory.

Proceedings of the 2009 International

Conference on Artificial Intelligence.

CSREA Press. 2009. pp. 525-530.

Int'l Conf. Foundations of Computer Science | FCS'11 | 185

Requiring Multiplicity for Nondeterministic Automata

Jeffrey W. Holcomb
1
,
2

1
Holcomb Technologies, Irving, Texas, USA

2
Computer Science and Engineering, Southern Methodist University, Dallas, Texas USA

Abstract—This paper is the second in a series of papers to

formalize the proof presented in [1] that the set difference

between NP and P is not the empty set . The critical

difference between the proof presented in [1] and previous

attempts at this problem is that the proof in [1] focuses on the

nature of the answers to our set of problems belonging to P

and NP instead of the set of problem directly. In a previous

work [2] we presented a formalization of deterministic

automata in terms of [1]. Here, we will begin the

formalization of nondeterministic automata in terms of the

structures required by [1]. Specifically, we will demonstrate

that, for nondeterministic automata, at least one of the stage

games for our Bayesian/Markov game will need to be non-

cooperative.

Key words: Automata and formal languages; Complexity

Theory; Game Theory

1 Introduction

 Earlier this year our group proposed redirecting the

question of whether or not |NP/P| > 0 from focusing on the

problems being studied to focusing on the nature of the

answers to said problems [1]. Specifically, and bearing in

mind the structural constraints of deterministic automata, can

deterministic automaton generate truly stochastic answers [1],

[2]?

 Many talented researchers have contributed greatly to

our understanding of this problem [3], [4], [5], [6], [7], and

many attempts have been made to solve this problem [8], [9],

[10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20],

[21], [22]; most recently a proof proposed by Vinay

Deolalikar. The question regarding the emptiness of |NP/P|

has been one of the most elusive questions in mathematics

and computer science since it was first discussed in a 1965

paper by Jack Edmonds [23]; however until recently, the

focus has been on the problems belonging to P and NP: not

the answers to said problems. It is our hope that a change in

focus will finally bring an end to this long debate.

 In this paper we continue to formalize our high level

proof [1]. Specifically, we will begin to formalize the

structural properties of nondeterministic automata. Because

of the flexibility of nondeterministic automata, this is actually

a much simpler task than our formalization of deterministic

automata [2]. First we will discuss the structure of the stage

games G

 for GB and then the structure for our component

Markov games with respect to single automaton/algorithm

implementations.

 This paper is divided into six sections: Introduction,

Definitions, Background, Research, Conclusion, and Future

Research. Our Definitions section covers the definitions

specifically relevant to this paper, the Background section

covers work done by previous researchers that is relevant to

this paper, the Research section presents the research done by

our group, the Conclusion section is a brief synopsis of the

conclusions drawn by our group, and the Future Research

section outlines the work that must still be completed.

2 Definitions

Definition 1 A stochastic answer Asto to a problem P is

an answer that has both the internal quality of

randomness and the external quality of randomness in

occurrence such that a problem instance P cannot be

mapped directly to a single given answer A [1].

Definition 2 A non-stochastic answer Anon-sto to a

problem P is an answer that can be determined directly

from the supplied problem instance such that ⊨ A [1].

3 Background

 The question regarding the emptiness of |NP/P| has been

recognized by the Clay Mathematics Institute as one of the

top seven hardest questions in mathematics, and has been an

open question since it was first investigated by Jack Edmonds

[23] in 1965. Many researchers have contributed greatly to

our understanding of this problem [8], [9], [10], [11], [12],

[13], [14], [15], [16], [17], [18], [19], [20], [21], [22];

however, our approach differs substantially from previous

attempts to answer this question. Specifically, most

researchers begin their investigation by analyzing the various

problems that belong to P and NP; whereas, we began our

investigation by looking for methodologies to model system

equilibria. Secondly, after a bit of analysis we came to the

conclusion that it would be more beneficial to investigate the

characteristics of the answers to problems belonging to P and

NP. This led us to the formulation of stochastic answers their

application to the question of whether or not |NP/P| = [1].

In [1], we presented a high level outline for the arguments

that we will be utilizing in our proof. We then began to

186 Int'l Conf. Foundations of Computer Science | FCS'11 |

formalize this proof in [2] with respect to deterministic

automata.

 All of the main structural elements utilized by our proof

are taken from temporal logic [24], [25], [26], [27], [28], [29],

[30], [31], [32], [33], [34], [35] and extensive form games.

The arguments presented by our proof are with respect to

Bayes-Nash equilibria [36] over our temporal logic structures.

For our research, we are mainly interested in the game

theoretic formulations for the various forms of temporal logic

[26], [32], [33], [37], [38], [39], [40], [41].

4 Research

4.1 Model Structure

 The purpose of this section is to provide an overview of

the structure utilized by the arguments in this paper to model

automata. For our arguments, we are not concerned about

specific implementations or applications of automata, but are

concerned with the natural structure of automata in general.

As such, we will consider an automaton M as a generic

automaton that is capable of solving any given solvable

problem P for an answer A.

 Since P must be expressed in a manner that is

understandable to M, we will consider an instance of P as an

acceptable word : where P itself is a set of related words. In

this manner, the set ï of all problems P is also the complete

set of acceptable words for our generic automaton M: finite

and infinite.

 We define M formally according to the quintuple

(Q,,, q
0
, F): where Q is a finite set of states for M, is

M’s input alphabet; is a state transition function for M; q
0
 is

the initial state, or set of initial states, for M; and F is the set

of final, or accepting, states for M such that F Q. For

nondeterministic automata M our transition function will be

defined as :Q2
Q
 [34].

 Since we have not yet applied a specific problem P to M

we are not concerned about our acceptance condition for M;

however, we are concerned about the set ï of acceptable

words . From ï we construct our -tree t for M; where t is

defined according to the pair (v, ï) such that v: ï . We

then say that a run r on t is performed by M if r maps ï to Q

[25], [28]; where r is a single instance of M and the set r of

runs r forms a Q-tree q in like manner as our -tree t
1
.

1 We define a Q-tree q as a pair (, r) where r is our set of runs r, :rQ,

and r: ïQ. We define a q-tree in this manner rather than as was done by
Pnueli and Rosner in [28] because we find it more intuitive to our adaptation

for a Bayesian game. That is, a run r can now be interpreted directly as a

sequence of state-input pairs that are easily reinterpreted as pure strategies for

our Bayesian game. Ultimately, defining our Q-tree this way enables us to

define the probability distribution for our Bayesian game on top of our Q-tree

instead of as an integral part of our Q-tree.

 With our -tree and our Q-tree defined and

characterized, we can now define our high level game

structure. We define our high level game GB as a Bayesian

game over r, and according to the quadruple (N, G, ,);

where N is the set of n players for GB, G is a set of component

games for GB, is a common prior over all component games

that participate in GB, and is a tuple of partitions of GB

for each agent iN. We define a partitioning

r

r
22: PΠ (1)

of GB as a Bayes-Nash equilibrium A
2
 for GB with respect to

P, and an ordering of the pure strategies of GB into partitions

 that define the component games for our current instance

of GB; where each component game is defined as a Markov

game GM over the sub-tree defined by the set of pure

strategies r,a; and where our set of Markov games, for an

instance of GB, exist in a one-to-one correspondence with our

set of partitions and are viewed as concurrent game

structures with respect to a given problem P. Here, we will

view each partition as an independent algorithm

implementable on M. For our purposes, N will always be

defined as the set {time, memory}, regardless of our instances

of M. Initially, and before we apply P to M, will be

defined according to the total likelihood that our players i will

play a pure strategy ra in response to any given problem

instance a; however, after we apply P to M, thereby

imparting a partitioning (P, r), but before we apply a

specific problem instance P to M we will induce a re-

evaluation of such that will now only provide support to

partitions that may be used in response to P. As such, the

individual probabilities ci,,a associated with each individual

pure strategy r,a will now be proportional to the likelihood

that a given pure strategy r,a will be played in response to a

given problem instance a with respect to P.

4.2 Nondeterministic Games

 There is a wide variety of nondeterministic behavior

with respect to automata: some of which originating from

within the automaton and some of which originates from

outside the automaton. This includes indeterminism with

respect to environmental input [26], [32], [39], indeterminism

with respect a guessing module [6], indeterminism with

respect to circuit error [4], [7], and really any other source of

indeterminacy with respect to our circuit behavior. Our goal

here is to construct a formalization for a model of automata

that is capable of accurately incorporating all of these forms

of nondeterministic behavior. This goal is what has led us to

the formulation of nondeterministic games.

 By nondeterministic game we mean a Bayesian game

that is being utilized to model a nondeterministic automaton,

2 The set of all Bayes-Nash equilibria for GB will be denoted as Ä.

Int'l Conf. Foundations of Computer Science | FCS'11 | 187

or algorithm, that can be utilized to solve a nondeterministic

problem PNP
3
. Since we know that GB is partitioned into

Markov subgames GM, where each subgame is defined over a

partition that represents an independent algorithm that can

be implemented on M, let us first consider how we can

implement a nondeterministic algorithm as a Markov

subgame GM. The implementation of a nondeterministic

game GM is almost identical to that of deterministic games

discussed in [2]. The main difference between our

nondeterministic games and our deterministic games is that

our nondeterministic games GM do not have an equality

restriction on their mixed strategies, see [2], and therefore

their mixed strategies are not required to be reducible to a

single pure strategy r,a: or a

 for a stage game G

.

Axiom 1: A nondeterministic stage game
gstabilizinnonQ that

contains a nondeterministic state transition defined by the

transition function :Q2
Q
 for an algorithm defined

over a finite, nondeterministic automaton M must contain

at least one Nash equilibrium S

 such that there exists a

positive probability

 ajai cc ,,,, that the players i,jN will

choose disparate actions

 ajai aa ,,,, , for at least two

players i and j; where 0,,,,

 ajai cc even after the value

for is known.

Proof:

As shown by the proof of Axiom 4 and Corollary 1 in [2],

if after the value for is known,

 ajai aa ,,,, for all

actions a

 and all pairs of players i and j for all stage games

G

 across all runs r,a then all transitions a

 are predictable,

and therefore determinable based upon the input . This

essentially means that if only a single transition

a can be

performed from q

 in response to a given input , and

therefore

ajai aaa ,,,, , then

a

is determinable base

upon . However, if multiple transitions , ,
ba aa can be

performed in response to the input then will determine

3 We should note that we do recognize a difference between a

nondeterministic automata and a completely stochastic game. This difference

is simply the understanding that the various runs r,a in an algorithm will
have at least a minimal, recognizable relationship between them whereas a

completely and purely stochastic game will have no discernable means,

throughout the entirety of the game, to determine either which action
aa will

be performed or which state 1
aq will be transitioned to at any given time

instance . This acknowledgement, or assumption, is important because it

allows us to continue to sort, or partition, the pure strategies r,a in GB into

independent algorithms based upon the similarities, or relationships,

between our pure strategies . These relationships can either be established

across observed structural relationships between our pure strategies , upon

a desired structure for the -tree that will represent our desired algorithm ,

a desired objective A to a problem P, or any other method for establishing

relationships between our pure strategies r,a for GB.

the set of transitions

a that can be performed from q

. This

set of transitions

a enables M to choose a next state during

G

 via some other factor than our input value , such as

random behavior. As such, in order for G

 to be

nondeterministic there must exist a Nash equilibrium point

S

 for G

 such that

ji
aa for the actions of at least two

players i,jN.

Let us assume to the contrary that a) a

 is not determinable

based upon and that b) M can behave non-

deterministically when

ji
aa for all players i and j and all

stage games G

.

a. If a

 is not determinable based upon then there

exists a transition

a , or set a

 of transitions (

a ,…,

a

), that is independent of . Since our transition function

 is defined with respect to both q

 and , as (q

,),

the existence of

a or a

 is in contradiction to the

definition of M and therefore Axiom 1 is correct.

b. If M can behave nondeterministically when all

players i agree upon a pure strategy a

 then M can

behave independently of a

. This is in contradiction to

the definition of M and the definition of a

. As such,

Axiom 1 must be correct.

 The probability distribution for s is popularly modeled

as an error function [26], [32], [39], [42]: which is closely in

line with the existence of non-stabilizing circuits [34].

However, to appreciate how this error function behaves we

need to know more about its implementation on the Q-tree

upon which GB is defined. Specifically, it is a rather simple

analogy to argue that our non-reducible mixed strategy s,

with respect to its associated stage game G

, is representative

of a non-stabilizing circuit in that we do not know how the

subsequent stablizable circuitry q
 + 1

 will interpret the values

produced by q

 until after q

 + 1
 has performed its associated

operations on said values. This is reflected in our model in

that we will not be able to determine which pure strategy r,a

will be instantiated by M until after we have reached G
 + 1

 or

G
 + 2

: assuming that our model is capable of perfect recall
4
.

 This source of instability within our stage games G

obliges us to analyze the word structure for the Q-tree

automaton that GM, via GB, is defined over. Primarily, unlike

deterministic games which can be reduced to simple

coordination games when the value for a is known, our

sources of instability, such as non-stabilizing circuits, prevent

us from being able to reduce the tree structure for GM to a

single pure strategy even when the value for a is known.

4 In truth, even if our model does not have perfect recall, we can still

theoretically back-compute r,a via the methods outlined in [45], [44].

188 Int'l Conf. Foundations of Computer Science | FCS'11 |

Corollary 1: A nondeterministic algorithm instantiated on

an automaton M can be defined via a Markov game GM

such that a) the pure strategies r,a in GM represent the

instances of M over a given input sequence a, and where at

least one of the stage games G

 is a nondeterministic stage

game; and b) any given possible instance of on M can

be defined by a pure strategy r,a.

Proof:

a. We know from Axiom 1 and [2] that if all of the stage

games in GM are deterministic then the outcome of any

given instance r,a of GM will be completely

determinable based upon its associated input sequence

a. As such, in order for GM to be nondeterministic there

must exist at least one nondeterministic stage game

gstabilizinnonq in GM. To assume the contrary of this

would be in contradiction to the definition of a

nondeterministic automaton.

b. We know that GM represents all possible ways in

which we can instantiate an algorithm on M over an

input vector ï, or set of input sequences a. As such, if

M performs a transition a

 from our set A of actions in

response to an input a then a

 must exist in GM; for

all transitions a

 performed during the instantiation of

 in response to the input sequence a. The sequence

of transitions a

 that are performed by M during an

instantiation of define a single path, or pure strategy

r,a through the tree structure of GB. Since all of the

actions a

 that are performed during our instantiation of

 must exist in GM, r,a must also exist in GM: and

therefore r,a.

c. Let us assume to the contrary that there can exist an

instance of on M that cannot be defined by a pure

strategy r,a. If this were true then there must exist

an action a

 that exist in GM but that does not exist in .

Since GM is defined by , this would be in

contradiction to the definition of GM.

 It should be noted that the nondeterministic algorithm

described in Corollary 1 is not a concurrent process and

therefore only involves a single algorithm being performed on

a single automaton M. This is similar to the nondeterministic

automaton described by Garey and Johnson in [6] that

utilized a guessing module: where our guessing module is

represented by a stage game G

, representative of a state

gstabilizinnonq , during which at least two players i and j disagree

upon which transition

aa should be performed. This model

for nondeterministic algorithms is common in modern

interpretations of nondeterministic automata that incorporate

an error function for our non-stabilizing circuit components

gstabilizinnonq [26], [32], [39], [42]. However, this does not

exclude us from consideration of the concurrent models for

nondeterministic automata [24], [26], [28], [35], [40], and

[43]. In concurrent models, our nondeterministic automaton

simultaneously runs multiple concurrent, deterministic

algorithms not knowing which algorithm will run to

completion first. Similarly, we could state that we

concurrently run multiple deterministic automata without

knowing how each, individual automaton will contribute to

the various parts or components of the final answer. We can

directly interpret this traditional model for nondeterministic

automata as concurrently providing support to multiple

partitions of GB. From an implementation standpoint, we can

consider this to represent either a single physical automaton

M that concurrently implements multiple algorithms, each

represented by a separate partition , or a set M of

concurrent automatons M that are each, individually complete

with respect to P5.

5 Conclusion

 In this paper we formalized the structural nature of

nondeterministic automata, as modeled by a Bayesian game,

with respect to our overall proof that NP/P [1]. During

this formalization we demonstrated that nondeterministic

stage games requires a non-reducible mixed strategy and that

nondeterministic Markov games require non-reducible mixed

strategies. The vast majority of the details presented here had

been demonstrated previous by many very talented

researchers [24], [25], [26], [27], [28], [29], [30], [31], [32],

[33], [34], [35], [37], [38], [39], [40], [41] but not in the

context of our high level proof that NP/P . Between [2],

Axiom 1, and Corollary 1 it should begin to become

somewhat evident as to why deterministic automata cannot,

by themselves, generate stochastic answers. That is,

deterministic automata lack the multiplicity of runs, or

actions, with respect to at least one input sequence that is

inherent in nondeterministic automata.

 That said, Axiom 1 and Corollary 1 is only half way

through our formalization of nondeterministic automata. That

is, we still need to characterize the use case of an

implementation involving multiple, concurrent deterministic

automata running to solve the same problem. Additionally,

we will have to show how these two perspectives on

nondeterministic automata are equivalent. Both of these will

need to be demonstrated before we can finalize the

formalization of the high level proof presented in [1].

6 Future Research

 At this point we have formalized deterministic automata

[2] but our formulization of nondeterministic automata is still

incomplete. As such, we will need to complete our

formulization of nondeterministic automata. Once we have

fully completed our formulization of nondeterministic

5 Though it is not required, we will always assume here that each MM

is a universal automaton that is complete with respect to our Q-tree q.

Int'l Conf. Foundations of Computer Science | FCS'11 | 189

automata in the context of [1] then we can finally pull

everything together and present the formal concluding

arguments for [1].

 For more information on the work presented here please

see the author’s website at

www.holcombtechnologies.com/dissertation.aspx.

7 References

[1] J. Holcomb, "Stochastic Answers and the Question of

Whether or Not PSPACE is a Proper Subset of NPSPACE";

Proceedings of Intellectbase International Consortium,

Intellectbase International Consortium, Vol. 15, 2011, pp.

142-148.

[2] J. Holcomb, "Deterministic Automata on Bayesian

Games"; unpublished.

[3] S. Arora, "The Approximability of NP-Hard Problems";

Proceedings of the 30th Annual ACM Symposium on Theory

of Computing, 1998, pp. 337-348.

[4] R. Impagliazzo, "Can every Randomized Algorithm be

Derandomized"; Proceedings of the 38th Annual ACM

Symposium on Theory of Computing, ACM, 2006, pp. 373-

374.

[5] D. S. Johnson, "THe NP-Completeness Column: An

Ongoing Guide--The Tale of the Second Prover"; Journal of

Algorithms, Vol. 13, Issue 3, pp. 502-524, 1992.

[6] M. R. Garey, and D. S. Johnson, Computers and

Intractability, A Guide to the Theory of NP-Completeness,

W. H. Freeman and Company, 1979.

[7] P. B. Miltersen, Handbook of Randomized Computing,

Kluwer, 2001, pp. 843-941.

[8] B. S. Anand, "Why Brouwer was Justified in his

Objection to Hilbert's Unqualified Iterpretation of

Quantification"; Proceedings of the 2008 International

Conference on Foundations of Computer Science, CSREA

Press, 2008, pp. 166-169.

[9] N. Argall, "P=NP - An Impossible Question";

unpublished, 2003.

[10] G. Bolotashvili, "Solution of the Linear Ordering

Problem (NP=P)"; Computing Research Repository

(CoRR)informal publication, 2003.

[11] F. Capasso, "A Polynomial-time Heuristic for Circuit-

SAT"; informal publication, 2005.

[12] M. Diaby, "On the Equality of Complexity Classes P

and NP: Linear Programming Formulation of the Quadratic

Assignment Problem"; Proceedings of the International

MultiConference of Engineers and Computer Scientists

(IMECS), Newswood Limited, 2006, pp. 774-779.

[13] M. Diaby, "A Linear Programmign Formulation of the

Traveling Salesman Problem"; Proceedings of the 11th

WSEAS International Conference on Applied Mathematics,

World Scientific and Engineering Academy and Society

(WSEAS), Issue 6, 2007, pp. 97-102.

[14] M. Diaby, "Linear Programming Formulation of the

Vertex Colouring Problem"; Int. J. Mathematics in

Operational Research, Vol. 2, Issue 3, pp. 259-289, 2010.

[15] M. Diaby, "Linear Programming Formulation of the Set

Partitioning Problem"; Int. J. Operational Research, Vol. 8,

Issue 4, pp. 399-427, 2010.

[16] S. Gram, "Redundancy, Obscurity, Self-Containment &

Independence"; 3rd International Conference on Information

and Communications Security, Springer, Vol. 2229, 2001, pp.

495-501.

[17] S. Gubin, "A Polynomial Time Algorithm for the

Traveling Salesman Problem"; CoRR, informal publication,

2008.

[18] A. D. Plotnikov, "Polynomial Time Partition of a Graph

into Cliques"; South West Journal of Pure and Applied

Mathematics (SWJPAM), Vol. 1, pp. 16-29, November 1996.

[19] K. Riaz, and M. S. Khiyal, "Finding Hamiltonian Cycle

in Polynomial Time"; Information Technology Journal, Vol.

5, pp. 851-859, 2006.

[20] C. B. Romero, "The Complexity of The NP-Class";

CoRR, informal publication, 2010.

[21] C. Sauerbier, "A Polynomial Time (Heuristic) SAT

Algorithm"; CoRR, informal publication, 2002.

[22] G. Zhu, "The Complexity of HCP in Digraphs with

Degree Bound Two"; CoRR, informal publication, 2007.

[23] J. Edmonds, "Paths, Trees, and Flowers"; Canadian

Journal of Mathematics, Vol. 17, pp. 449-467, 1965.

[24] A. Pnueli, "The Temporal Logic of Programs"; Proc.

18th Ann. Symp. Foundations of Computer Science

(FOCS'77), IEEE, 1977, pp. 46-57.

[25] M. O. Rabin, "Decidability of Second-Order Theories

and Automata on Infinite Trees"; Bulletin of the American

Mathematical Society, Vol. 74, Issue 5, pp. 1025-1029, 1968.

[26] R. Alur, A. T. Henzinger, and O. Kupferman,

"Alternating-Time Temporal Logic"; Journal of the ACM,

Vol. 49, Issue 5, pp. 672-713, September 2002.

190 Int'l Conf. Foundations of Computer Science | FCS'11 |

[27] O. Kupferman, M. Y. Vardi, and P. Wolper, "An

Automata-Theoretic Approach to Branching-Time Model

Checking"; Journal of the ACM, Vol. 47, Issue 2, pp. 312-

360, 2000.

[28] A. Pnueli, and R. Rosner, "On the Synthesis of a

Reactive Module"; Proceedings f the 16th ACM Symposium

on Principles of Programming Languages (SIGPLAN-POPL),

ACM, 1989, pp. 179-190.

[29] E. A. Emerson, and C. Jutla, "Tree Automata, mu-

calculus and Determinacy"; Proceedings of the 32nd Annual

Symposium on Foundations of Computer Science, IEEE,

1991, pp. 368-377.

[30] M. De Wulf, L. Doyen, N. Maquet, and J. Raskin,

"Antichains: Alternative Algorithms for LTL Satisfiability

and Model-Checking"; Tools and Algorithms for the

Construction and Analysis of Systems, 14th International

Conference, Springer, Vol. 4963, 2008, pp. 63-77.

[31] M. De Wulf, L. Doyen, T. A. Henzinger, and J. Raskin,

"Antichains: A New Algorithm for Checking Universality of

Finite Automata"; Computer Aided Verification, 18th

International Conference, Springer, Vol. 4144, 2006, pp. 17-

30.

[32] F. Horn, W. Thomas, and N. Wallmeier, "Optimal

Strategy Synthesis in Request-Response Games"; Automated

Technology for Verification and Analysis, 6th International

Symposium, (ATVA '08), Springer, Vol. 5311, 2008, pp.

361-373.

[33] K. Chatterjee, T. A. Henzinger, and F. Horn, "Finitary

Winning in Omega-Regular Games"; ACM Trans. Comput.

Log., Vol. 11, pp. 257-271, 2009.

[34] S. Safra, "On the Complexity of Omega-Automata";

29th Annual Symposium on Foundations of Computer

Science (FOCS), IEEE, 1988, pp. 319-327.

[35] M. Y. Vardi, "Automatic Verification of Probabilistic

Concurrent Finite-State Programs"; Proc. 26th IEEE Symp.

on Foundations of Computer Science, 1985, pp. 327-338.

[36] K. Leyton-Brown, and Y. Shoham, Essentials of Game

Theory, a Concise, Multidisciplinary Introduction, Morgan &

Claypool Publishers, 2008.

[37] E. Filiot, N. Jin, and J. Raskin, "An Antichain

Algorithm for LTL Realizability"; Proceedings of the 21st

International Conference Computer Aided Verification (CAV

'09), Springer-Verlag, Vol. 5643, 2009, pp. 263-277.

[38] B. Jobstmann, and R. Bloem, "Optimizations for LTL

synthesis"; Formal Methods in Computer-Aided Design, 6th

International Conference (FMCAD), IEEE Computer Society,

2006, pp. 117-124.

[39] K. Chatterjee, L. Doyen, T. A. Henzinger, and J. Raskin,

"Algorithms for Omega-Regular Games with Imperfect

Information"; Lecture Notes in Computer Science, Vol. 4207,

Issue 3:4, pp. 287-302, September 2006.

[40] T. Agotnes, V. Goranko, and W. Jamroga, "Alternating-

Time Temporal Logics with Irrevocable Strategies";

Proceedings of the 11th Confrence on Theoretical Aspects of

Rationality and Knowledge (TARK '07), ACM, 2007, pp. 15-

24.

[41] K. Chatterjee, T. A. Henzinger, and N. Piterman,

"Strategy Logic"; CONCUR 2007 - Concurrency Theory,

18th International Conference, Vol. 4703, 2007, pp. 59-73.

[42] R. Shaltiel, "Typically-Correct Derandomization";

SIGACT News, Vol. 41, Issue 2, pp. 57-72, June 2010.

[43] E. W. Weisstein, CRC Concise Encyclopedia of

Mathematics, Chapmen & Hall, 1999.

[44] G. H. Mealy, "A Method for Synthesizing Sequential

Circuits"; Bell System Technical Journal, Vol. 34, Issue 5, pp.

1045-1079, September 1955.

[45] E. F. Moore, "Gedanken-Experiments on Sequential

Machines"; Journal of Symbolic Logic, pp. 129-153, 1956.

Int'l Conf. Foundations of Computer Science | FCS'11 | 191

An Automated Deduction of the Gudder-Schelp-

Beran Theorem from Ortholattice Theory

Jack K. Horner

P. O. Box 266

Los Alamos, New Mexico 87544 USA

Abstract

The optimization of quantum computing circuitry

and compilers at some level must be expressed in

terms of quantum-mechanical behaviors and

operations. In much the same way that the

structure of conventional propositional

(Boolean) logic (BL) is the logic of the

description of the behavior of classical physical

systems and is isomorphic to a Boolean algebra

(BA), so also the algebra, C(H), of closed linear

subspaces of (equivalently, the system of linear

operators on (observables in)) a Hilbert space is

a logic of the descriptions of the behavior of

quantum mechanical systems and is a model of

an ortholattice (OL). An OL can thus be thought

of as a kind of “quantum logic” (QL). C(H) is

also a model of an orthomodular lattice, which is

an OL conjoined with the orthomodularity axiom

(OMA). Because the propositions of a QL are

not in general commutative, quantum logicians

have paid much attention to "quasi"-

commutative theorems, including the so-called

"exchange" theorems, one of the best known of

which is the Gudder-Schelp-Beran (GSB)

theorem . Here I show that, contrary to

apparently universal practice, the GSB can be

proved without using the orthomodularity

assumption, and thus holds even in ortholattices

proper. This result appears to be novel.

Keywords: automated deduction, quantum

computing, orthomodular lattice, Hilbert space

1.0 Introduction

The optimization of quantum computing

circuitry and compilers at some level must

be expressed in terms of the description of

quantum-mechanical behaviors ([1], [17],

[18], [20]). In much the same way that

conventional propositional (Boolean) logic

(BL,[12]) is the logical structure of

description of the behavior of classical

physical systems (e.g. “the measurements of

the position and momentum of particle P are

commutative”) and is isomorphic to a

Boolean lattice ([10], [11], [19]), so also the

algebra, C(H), of the closed linear subspaces

of (equivalently, the system of linear

operators on (observables in)) a Hilbert

space H ([1], [4], [6], [9], [13]) is a logic of

the descriptions of the behavior of quantum

mechanical systems (e.g., “the

measurements of the position and

momentum of particle P are not

commutative”) and is a model ([10]) of an

ortholattice (OL; [8]). An OL can thus be

thought of as a kind of “quantum logic”

(QL; [19]). C(H) is also a model of (i.e.,

isomorphic to a set of sentences which hold

in) an orthomodular lattice (OML; [7], [8]),

which is an OL conjoined with the

orthomodularity axiom (OMA; see Figure

1). The rationalization of the OMA as a

claim proper to physics has proven

problematic ([13], Section 5-6), motivating

the question of whether the OMA is required

in an adequate characterization of QL. Thus

formulated, the question suggests that the

OMA is specific to an OML, and that as a

consequence, banning the OMA from QL

yields a "truer" quantum logic.

192 Int'l Conf. Foundations of Computer Science | FCS'11 |

Lattice axioms

 x = c(c(x)) (AxLat1)

 x v y = y v x (AxLat2)

 (x v y) v z = x v (y v z) (AxLat3)

 (x ^ y) ^ z = x ^ (y ^ z) (AxLat4)

 x v (x ^ y) = x (AxLat5)

 x ^ (x v y) = x (AxLat6)

Ortholattice axioms

 c(x) ^ x = 0 (AxOL1)

 c(x) v x = 1 (AxOL2)

 x ^ y = c(c(x) v c(y)) (AxOL3)

Orthomodularity axiom (OMA)

 y v (c(y) ^ (x v y)) = x v y (AxOM)

where

 x, y are variables ranging over lattice nodes

 ^ is lattice meet

 v is lattice join

 c(x) is the orthocomplement of x

 = is equivalence ([12])

 1 is the maximum lattice element (= x v c(x))

 0 is the minimum lattice element (= c(1))

 Figure 1. Lattice, ortholattice, and orthomodularity axioms.

__

 In QL, the non-commutativity of

(certain) observables can be captured as the

failure of the distributive law (x v (y ^

z) = (x v y) ^ (x v z)). (This is

a lattice-theoretic way of representing non-

commutativity; a physicist would likely say

that non-commutativity is fundamental and

the failure of distributivity is derivative.

The two representations are formally

equivalent.) A QL (without AxOM), in fact,

can be thought of as a BL in which the

distribution law does not hold. Because of

the fundamental role that non-commutativity

plays in QL, quantum logicians have paid

much attention to "quasi"-commutative

theorems. In this family of "almost"-

commutative theorems are the so-called

"exchange" theorems, which help to ground

a large class of equivalence representations

in quantum logic, and are thus of potential

interest in optimizing quantum circuit

design. Among the best known of the

exchange theorems is the Gudder-Schelp-

Beran (GSB) theorem ([8], Theorem 4.2, p.

263), shown is in Figure 2

 If x, y, and z are elements of an orthomodular lattice and

 C(y,z) (Hypothesis 1)

 and

 C(x, (y ^ z)), (Hypothesis 2)

 then

Int'l Conf. Foundations of Computer Science | FCS'11 | 193

 C((x ^ y), z) (i)

 C((x ^ z), y) (ii)

 C((c(x) ^ y, z)) (iii)

 C(c(x) ^ z, y) (iv)

 C(c(x) v c(y), z) (v)

 C(c(x) v c(z), y) (vi)

 C(x v c(y), z) (vii)

 C(x v c(z), y) (viii)

 where C(x,y), "x commutes with y", is defined as

 C(x,y) <-> (x = ((x ^ y) v (x ^ c(y))))

 <-> means "if and only if"

 Figure 2. The GSB theorem

__

2.0 Method

 The OML axiomatizations of Megill,

Pavičić, and Horner ([5], [14], [15], [16],

[21], [22]) were implemented in a prover9

([2]) script ([3]) configured to derive the

GSB theorem and executed in that

framework on a Dell Inspiron 545 with an

Intel Core2 Quad CPU Q8200 (clocked @

2.33 GHz) and 8.00 GB RAM, running

under the Windows Vista Home Premium

(SP2)/Cygwin operating environment.

3.0 Results

 Figure 3 shows the proof of the GSB

theorem produced by [3] on the platform

described in Section 2.0.

========================= PROOF =================================

3 C(x ^ y,z) # label("Theorem 4.2(i)") # label(non_clause) #

label(goal). [goal].

23 x ^ y = c(c(x) v c(y)) # label("AxOL3"). [assumption].

40 C(x,y) # label("Hyp1, Beran Thm 4.2"). [assumption].

42 -C(c1 ^ c2,c3) # label("Theorem 4.2(i)") # answer("Theorem 4.2(i)").

[deny(3)].

43 -C(c(c(c1) v c(c2)),c3) # answer("Theorem 4.2(i)").

[copy(42),rewrite([23(3)])].

44 $F # answer("Theorem 4.2(i)"). [resolve(43,a,40,a)].

========================= end of proof ==========================

========================= PROOF =================================

4 C(x ^ z,y) # label("Theorem 4.2(ii)") # label(non_clause) #

label(goal). [goal].

23 x ^ y = c(c(x) v c(y)) # label("AxOL3"). [assumption].

40 C(x,y) # label("Hyp1, Beran Thm 4.2"). [assumption].

45 -C(c4 ^ c5,c6) # label("Theorem 4.2(ii)") # answer("Theorem

4.2(ii)"). [deny(4)].

46 -C(c(c(c4) v c(c5)),c6) # answer("Theorem 4.2(ii)").

[copy(45),rewrite([23(3)])].

194 Int'l Conf. Foundations of Computer Science | FCS'11 |

47 $F # answer("Theorem 4.2(ii)"). [resolve(46,a,40,a)].

========================= end of proof ==========================

========================= PROOF =================================

5 C(c(x) ^ y,z) # label("Theorem 4.2(iii)") # label(non_clause) #

label(goal). [goal].

13 x = c(c(x)) # label("AxLat1"). [assumption].

14 c(c(x)) = x. [copy(13),flip(a)].

23 x ^ y = c(c(x) v c(y)) # label("AxOL3"). [assumption].

40 C(x,y) # label("Hyp1, Beran Thm 4.2"). [assumption].

48 -C(c(c7) ^ c8,c9) # label("Theorem 4.2(iii)") # answer("Theorem

4.2(iii)"). [deny(5)].

49 -C(c(c7 v c(c8)),c9) # answer("Theorem 4.2(iii)").

[copy(48),rewrite([23(4),14(3)])].

50 $F # answer("Theorem 4.2(iii)"). [resolve(49,a,40,a)].

========================= end of proof ==========================

========================= PROOF =================================

6 C(c(x) ^ z,y) # label("Theorem 4.2(iv)") # label(non_clause) #

label(goal). [goal].

13 x = c(c(x)) # label("AxLat1"). [assumption].

14 c(c(x)) = x. [copy(13),flip(a)].

23 x ^ y = c(c(x) v c(y)) # label("AxOL3"). [assumption].

40 C(x,y) # label("Hyp1, Beran Thm 4.2"). [assumption].

51 -C(c(c10) ^ c11,c12) # label("Theorem 4.2(iv)") # answer("Theorem

4.2(iv)"). [deny(6)].

52 -C(c(c10 v c(c11)),c12) # answer("Theorem 4.2(iv)").

[copy(51),rewrite([23(4),14(3)])].

53 $F # answer("Theorem 4.2(iv)"). [resolve(52,a,40,a)].

========================= end of proof ==========================

========================= PROOF =================================

7 C(c(x) v c(y),z) # label("Theorem 4.2(v)") # label(non_clause) #

label(goal). [goal].

40 C(x,y) # label("Hyp1, Beran Thm 4.2"). [assumption].

54 -C(c(c13) v c(c14),c15) # label("Theorem 4.2(v)") # answer("Theorem

4.2(v)"). [deny(7)].

55 $F # answer("Theorem 4.2(v)"). [resolve(54,a,40,a)].

========================= end of proof ==========================

========================= PROOF =================================

8 C(c(x) v c(z),y) # label("Theorem 4.2(vi)") # label(non_clause) #

label(goal). [goal].

40 C(x,y) # label("Hyp1, Beran Thm 4.2"). [assumption].

56 -C(c(c16) v c(c17),c18) # label("Theorem 4.2(vi)") # answer("Theorem

4.2(vi)"). [deny(8)].

57 $F # answer("Theorem 4.2(vi)"). [resolve(56,a,40,a)].

Int'l Conf. Foundations of Computer Science | FCS'11 | 195

========================= end of proof ==========================

========================= PROOF =================================

9 C(x v c(y),z) # label("Theorem 4.2(vii)") # label(non_clause) #

label(goal). [goal].

40 C(x,y) # label("Hyp1, Beran Thm 4.2"). [assumption].

58 -C(c19 v c(c20),c21) # label("Theorem 4.2(vii)") # answer("Theorem

4.2(vii)"). [deny(9)].

59 $F # answer("Theorem 4.2(vii)"). [resolve(58,a,40,a)].

========================= end of proof ==========================

========================= PROOF =================================

10 C(x v c(z),y) # label("Theorem 4.2(viii)") # label(non_clause) #

label(goal). [goal].

40 C(x,y) # label("Hyp1, Beran Thm 4.2"). [assumption].

60 -C(c22 v c(c23),c24) # label("Theorem 4.2(viii)") # answer("Theorem

4.2(viii)"). [deny(10)].

61 $F # answer("Theorem 4.2(viii)"). [resolve(60,a,40,a)].

========================== end of proof ==========================

Figure 3. Summary of a prover9 ([2]) proof of the Gudder-Schelp-Beran theorem ([8], p. 263). The

proof assumes the inference rules of prover9. The general form of a line in this proof is “line_number

conclusion [derivation]”, where line_number is a unique identifier of a line in the proof, and

conclusion is the result of applying the prover9 inference rules (such as hyperresolution, copying, and

rewriting), noted in square brackets (denoting the derivation), to the lines cited in those brackets.

Note that some of “logical” proof lines in the above have been transformed to two text lines, with the

derivation appearing on a text line following a text line containing the first part of that logical line.

The detailed syntax and semantics of these notations can be found in [2]. All prover9 proofs are by

default proofs by contradiction.

__

The total time to produce the proofs in Figure 3 on the platform described in Section 2.0

was ~0.4 seconds.

4.0 Discussion

 Several features of the proofs in Section

3.0 are worth noting:

 1. The proofs nowhere use the OMA,

and thus are actually proofs that GSB holds

without the modularity assumption (i.e.,

GSB holds for all ortholattices, not just

orthomodular lattices. It appears that all of

the published proofs to date of GSB use the

OMA.)

 2. None of the proofs use Hypothesis 2

of the GSB as formulated in Figure 2

(Hypothesis 2 can be derived from

Hypothesis 1 by substituting x for y, and y ^

z for z, in Hypothesis 1). Therefore,

Hypothesis 2 is redundant.

 3. The proofs of consequences (i) - (iv)

use only ortholattice axiom 3 (AxOL3).

This means that the GSB restricted to

consequences (i)-(iv) holds in a subtheory of

ortholattice theory.

196 Int'l Conf. Foundations of Computer Science | FCS'11 |

 4. The proofs of consequences (v) - (viii)

use only the first hypothesis of GSB. This

means that the GSB restricted to

consequences (v)-(viii) holds in a subtheory

of lattice theory. Note also that proof by

contradiction in these cases results in very

short proofs that do not need to use the

definiens of the "commutes" relation.

 5. The proofs in Section 3.0 deploy

several inference rules (rewriting, copying,

and hyperresolution) that are on the surface

more powerful than the combination of

condensed detachment and substitution per

se, a behavior which puts the dependencies

of the GSB consequents on its hypotheses in

sharp relief. Each of prover9's inference

rules is derivable from the combination of

condensed detachment and substitution

alone, however, so the more inclusive set of

inference rules used here can be invoked

without loss of generality.

5.0 Acknowledgements

 This work benefited from discussions

with Tom Oberdan, Frank Pecchioni, Tony

Pawlicki, George Hrabovsky of the Madison

Area Science and Technology Institute for

Scientific Computing, and the late John K.

Prentice, whose passion for foundations of

physics inspired those of us privileged to

have known him. For any infelicities that

remain, I am solely responsible.

6.0 References

[1] von Neumann J. Mathematical

Foundations of Quantum Mechanics. 1936.

Translated by R. T. Beyer. Princeton. 1983.

[2] McCune WW. prover9 and mace4.

URL

http://www.cs.unm.edu/~mccune/prover9/.

2009.

[3] Horner JK. GSB prover9 script. 2011.

Available from the author on request.

[4] Dalla Chiara ML and Giuntini R.

Quantum Logics. URL

http://xxx.lanl.gov/abs/quant-ph/0101028.

2004.

[5] Megill ND and Pavičić M.

Orthomodular lattices and quantum algebra.

International Journal of Theoretical Physics

40 (2001), pp. 1387-1410.

[6] Akhiezer NI and Glazman IM. Theory

of Linear Operators in Hilbert Space.

Volume I. Translated by M. Nestell.

Frederick Ungar. 1961.

[7] Holland, Jr. SS Orthomodularity in

infinite dimensions: a theorem of M. Solèr.

Bulletin of the American Mathematical

Society 32 (1995), pp. 205-234.

[8] Beran L. Orthomodular Lattices:

Algebraic Approach. D. Reidel. 1985.

[9] Knuth DE and Bendix PB. Simple word

problems in universal algebras. In J. Leech,

ed. Computational Problems in Abstract

Algebra. Pergamon Press. 1970. pp. 263-

297.

[10] Chang CC and Keisler HJ. Model

Theory. North-Holland. 1990. pp. 38-39.

[11] Birkhoff G. Lattice Theory. Third

Edition. American Mathematical Society.

1967.

[12] Church A. Introduction to

Mathematical Logic. Volume I. Princeton.

1956.

[13] Jauch J. Foundations of Quantum

Mechanics. Addison-Wesley. 1968.

[14] Megill ND. Metamath. URL

http://us.metamath.org/qlegif/mmql.html#un

ify. 2004.

Int'l Conf. Foundations of Computer Science | FCS'11 | 197

[15] Horner JK. An automated deduction

system for orthomodular lattice theory.

Proceedings of the 2005 International

Conference on Artificial Intelligence.

CSREA Press. 2005. pp. 260-265.

[16] Horner JK. An automated equational

logic deduction of join elimination in

orthomodular lattice theory. Proceedings of

the 2007 International Conference on

Artificial Intelligence. CSREA Press. 2007.

pp. 481-488.

[17] Messiah A. Quantum Mechanics.

Dover. 1958.

[18] Horner JK. Using automated theorem-

provers to aid the design of efficient

compilers for quantum computing. Los

Alamos National Laboratory Quantum

Institute Workshop. December 9–10, 2002.

URL

http://www.lanl.gov/science/centers/quantu

m/qls_pdfs/horner.pdf.

[19] Birkhoff G and von Neumann J. The

logic of quantum mechanics. Annals of

Mathematics 37 (1936), 823-243.

[20] Nielsen MA and Chuang L . Quantum

Computation and Quantum Information.

Cambridge. 2000.

[21] Pavičić M and Megill N. Quantum and

classical implicational algebras with

primitive implication. International Journal

of Theoretical Physics 37 (1998), 2091-

2098. ftp://m3k.grad.hr/pavicic/quantum-

logic/1998-int-j-theor-phys-2.ps.gz.

[22] Horner JK. An automated deduction of

the relative strength of orthomodular and

weakly orthomodular lattice theory.

Proceedings of the 2009 International

Conference on Artificial Intelligence.

CSREA Press. 2009. pp. 525-530.

198 Int'l Conf. Foundations of Computer Science | FCS'11 |

http://www.lanl.gov/science/centers/quantum/qls_pdfs/horner.pdf
http://www.lanl.gov/science/centers/quantum/qls_pdfs/horner.pdf

SESSION

NOVEL ALGORITHMS + DNA BASED
COMPUTING + GAME THEORY + TURING

MACHINES

Chair(s)

Prof. Hamid R. Arabnia

Int'l Conf. Foundations of Computer Science | FCS'11 | 199

200 Int'l Conf. Foundations of Computer Science | FCS'11 |

Molecular solutions for the maximum K-Facility dispersion
problem on DNA-based supercomputing

 Nozar Safaei 2,Babak Dalvand 2,Saeed Safaei 1,Vahid Safaei
1-Department of Mathematics, Arak University, Arak, Markazi, Iran
2-Department of Mathematics, Islamic Azad University of Khoramabad, Lorestan, Iran
3-Department of Mechanics, Islamic Azad University of Khomini shahr, Esfahan, Iran

Abstract - In recent works for high-performance computing,
computation with DNA molecules, i.e. DNA computing, has
considerable attention as one of non-silicon-based computing.
Watson–Crick complementarity and massive parallelism are
two important features of DNA. Using the features, one can
solve an NP-complete problem, which usually needs
exponential time on a silicon-based computer, in a polynomial
number of steps with DNA molecules.In this paper, we
consider a procedure for maximum K-Facility dispersion
problem in the Adleman–Lipton model. The procedure works
in)(2nO steps for maximum K-Facility dispersion problem of
a directed graph with n vertices.

Keywords:maximum K-Facility dispersion problem;
Adleman–Lipton model, NP complete;

1 Introduction
 In recent works for high-performance computing,
computation with DNA molecules, i.e. DNA computing, has
considerable attention as one of non-silicon-based computing.
Watson–Crick complementarity and massive parallelism are
two important features of DNA. Using the features, one can
solve an NP-complete problem, which usually needs
exponential time on a silicon-based computer, in a
polynomial number of steps with DNA molecules. As the
first work for DNA computing, Adleman (1994) presented an
idea of solving the Hamiltonian path problem of size n in

 O(n) steps using DNA molecules. Lipton (1995)
demonstrated that Adleman’s experiment could be used to
determine the NP-complete satisfiability (SAT) problem (the
first NP-complete problem). Ouyang et al. (1997) presented a
molecule biology-based experimental solution to the maximal
clique NP-complete problem. In recent years, lots of papers
have occurred for designing DNA procedures and algorithms
to solve various NP-complete problems. Moreover,
procedures for primitive operations, such as logic or

arithmetic operations, have been also proposed so as to apply
DNA computing on a wide range of problems (Frisco, 2002;
Fujiwara et al., 2004; Guarnieri et al., 1996; Gupta et al.,
1997; Hug and Schuler, 2001; and Kamio et al., 2003).

In this paper, the DNA operations proposed by Adleman
(1994) and Lipton (1995) are used for figuring out solutions
of maximum K-Facility dispersion problem.

Given a complete directed graph E)(V,G = with costs on
edge satisfying the triangle inequality and an integer k find a
set kFVF =⊆ ||, so as to minimize

)},({min 21, 21
ffdFff ∈

The rest of this paper is organized as follows. In Section 2,
the Adleman–Lipton model is introduced in detail. Section 3
we present a DNA algorithm for solving the maximum K-
Facility dispersion problem and the complexity of the
proposed algorithm is described. We give conclusions in
Section 4.

2 The Adleman–Lipton model
 Bio-molecular computers work at the molecular level.
Because biological and mathematical operations have some
similarities, DNA, the genetic material that encodes for living
organisms, is stable and predictable in its reactions and can be
used to encode information for mathematical systems.

A DNA (deoxyribonucleic acid) is a polymer which is strung
together from monomers called deoxyribo-nucleotides (Pâun
et al., 1998). Distinct nucleotides are detected only with their
bases. Those bases are, respectively, abbreviated as A
(adenine), G (guanine), C (cytosine) and T (thymine). Two
strands of DNA can form (under appropriate conditions) a
double strand, if the respective bases are the Watson-Crick
complements of each other – A matches T and C matches G;
also 3' -end matches 5' -end, e.g. the singled strands 5'-

Int'l Conf. Foundations of Computer Science | FCS'11 | 201

ACCGGATGTCA-3' and 3' –TGGCCTACAGT-5' can form
a double strand. We also call the strand 3'-
TGGCCTACAGT-5' as the complementary strand of 5'-
ACCGGATGTCA-3' and simply denote 3'-
TGGCCTACAGT-5' by A ACCGGATGTC . The length of a
single stranded DNA is the number of nucleotides comprising
the single strand. Thus, if a single stranded DNA includes 20
nucleotides, it is called a 20 mer. The length of a double
stranded DNA (where each nucleotide is base paired) is

Fig. 1. Graph G.

counted in the number of base pairs. Thus, if we make a
double stranded DNA from a single stranded 20 mer, then the
length of the double stranded DNA is 20 base pairs, also
written as 20 bp.

The Adleman–Lipton model: A (test) tube is a set of
molecules of DNA (i.e. a multi-set of finite strings over the
alphabet {A, C, G, T}). Given a tube, one can perform the
following operations:

(1) Merge (T1, T2): for two given test tubes T1, T2 it stores the
union 21 TT ∪ in T1 and leaves T2 empty;

(2) Copy (T1, T2): for a given test tube T1 it produces a test
tube T2 with the same contents as T1;

(3) Detect (T): Given a test tube T it outputs ‘‘yes’’ if T
contains at least one strand, otherwise, outputs ‘‘no’’;

(4) Separation (T1, X, T2): for a given test tube T1 and a given
set of strings X it removes all single strands containing a
string in X from T1 , and produces a test tube T2 with the
removed strands;

(5) Selection (T1, L, T2): for a given test tube T1 and a given
integer L it removes all strands with length L from T1, and
produces a test tube T2 with the removed strands;

(6) Cleavage (T, 10σσ): for a given test tube T and a string of
two (specified) symbols 10σσ it cuts each double trend

containing ⎥
⎦

⎤
⎢
⎣

⎡

10

10

σσ
σσ

 in T into two double strands as follows:

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
⇒⎥

⎦

⎤
⎢
⎣

⎡

11

01

01

00

1101

0100 ,
βσ
βσ

σα
σα

βσσα
βσσα

(7) Annealing (T): for a given test tube T it produces all
feasible double strands in T. The produced double strands are
still stored in T after Annealing;

(8) Denaturation (T): for a given test tube T it dissociates
each double strand in T into two single strands;

(9) Discard (T): for a given test tube T it discards the tube T;

(10) Append (T, Z): for a given test tube T and a given short
DNA singled strand Z it appends Z onto the end of every
strand in the tube T;

(11) Read (T): for a given tube T, the operation is used to
describe a single molecule, which is contained in the tube T.
Even if T contains many different molecules each encoding a
different set of bases, the operation can give an explicit
description of exactly one of them.

Since these eleven manipulations are implemented with a
constant number of biological steps for DNA strands (Pâun et
al., 1998), we assume that the complexity of each
manipulation is)1(O steps.

3 DNA algorithm for the maximum K-
Facility dispersion problem

 Let),(EVG = be a directed graph with the set of
vertices being },,2,1|{ nkAV k K== and the set of edges
being },1|{ njisomeforeE ij ≤≤= . Let |E|=d. Then

)1(−≤ nnd . Note that ije is in E if the vertices iA and

jA are connected by an edge.

In the following, the symbols),,2,1(,,,#,1,0 nkBAX kk K=
denote distinct DNA singled strands with same length, say
10-mer.And ||.|| denotes the length of the DNA singled
strand. Obviously the length of the DNA singled strands
greatly depends on the size of the problem involved in order

202 Int'l Conf. Foundations of Computer Science | FCS'11 |

to distinguish all above symbols and to avoid hairpin
formation (Li et al., 2003). The DNA singled strand Yij is
used to denote the weights on the edges Eeij ∈ with

ijij wY =|||| if the corresponding weight equals ijw .Suppose

that all weights in the given graph are commensurable, i.e.,
there exists a number y such that each weight is an integral
multiple of y (here, take y = 10) in the following discussion.

ijY single strings represents the distance between vertices iA

and vertices jA . Besides that, the single string ii1AB shows

that the iA vertices exist in the set whereas ii 0AB illustrates
that iA vertices does not exist in the set.

If ji = and there is no edge between iA and jA then the
length of the strings representing this edge is considered to be
0 mer. Let

n},2,3,k|BA,B#,#AX,{0,1, P 1-kkn1 …==

n},2,3,k|0AB,1AB,#{Q kkkk …==

j}i n,ji,1|{YH ij ≠≤≤=

We design the following algorithm to solve the maximum K-
Facility dispersion problem problem and give the
corresponding DNA operations as follows:

3.1 Produce each possible subset of the set V
 For a graph with n vertices, each possible subset of the
set V of vertices is represented by an n-digit binary number.
A bit set to 1 represents a vertex in the subset, and a bit set to
0 represents a vertex out of the subset. For example, the
subset)A,(A 56 in Fig. 1 is represented by the binary number
0110000. In this way, we transform all possible subsets of V
in an n-vertex graph into an ensemble of all n-digit binary
numbers. We call this the data pool.

P);},B{#,(T Separation 6)-(1
(P); Discard 5)-(1

);T},#{A(P, Separation 4)-(1
(P);on Denaturati 3)-(1

(P); Annealing 2)-(1
Q);(P, Merge 1)-(1

ntmp

tmp1

After above six steps of manipulation, singled strands in tube
P will encode all n2 partitions of V in the form of n-digit

ternary numbers. For example, for the graph in Fig. 1 with
n=7 we have, e.g. the singled strand

#0110010# 11223344556677 ABABABABABABAB

which denotes the subset }A,A,{A 236 corresponding to the
binary number 0100110. This operation can be finished in
O(1) steps since each manipulation above works in
O(1) steps.

Suppose that all edges cost of Fig.1 satisfying the triangle
inequality.

3.2 Counting vertices of each subset
At first we want to counting vertices of each subset.

If a vertex exists in the set, the following algorithm will add a
string X to its corresponding string.

forEnd
)(T Discard 4-2
)T(P, Merge 3-2
X) ,(T Append 2-2

)T},1A{B (P, separation 1-2
nd to1dFor

1

1

1

1dd

==

Time analysis of the above algorithm

Each of the above actions will conclude at O(1) . Therefore
the algorithm will terminate at O(n) .

3.3 Finding sets of k vertices
Separation of all the strings representing subsets that contain
k vertices. Therefore to find sets of k vertices, strings that
contain }XXXX{

k times
43421 … must be found.

)T(P, Merge 4-3

)T },XXXX{ ,(T Separation 3-3
(P) Discard 2-3

)T },XXXX{ (P, Separation 1-3

1

2
 times1k

1

1
k times

43421

43421

+

…

…

Instruction (3-1) will separate all the strings
containing }XXXX{

k times
43421 … , }XXXX{

 times1k
43421

+

… , }XXXX{
 times2k
43421

+

… ,… from

tube P and will place them in tube T1.

Int'l Conf. Foundations of Computer Science | FCS'11 | 203

Instruction (3-3) will separate all the strings containing
}XXXX{

 times1k
43421

+

… , }XXXX{
 times2k
43421

+

… , }XXXX{
 times3k
43421

+

… ,… from tube T1 and

will place them in tube T2.

Hence all the strings containing }XXXX{
k times

43421 … will remain in

T1 tube.

Time analysis of the above algorithm:

Each of the above actions will conclude at O(1) . Therefore
the algorithm will terminate at O(n) .

3.4 Step 4
Let the subset F correspond the n-digit
binary number. 1a · · · a · · ·a · · · a j in For each pair

)a ,(a ji with 0=1= a , a ji or 1 a 0, a ji == we

append the singled strand ,y ji or ijy , to the end

of the singled strand which encode the n-digit
binary number 1a · · · a · · ·a · · · a j in . For example,

the singled strands

 #0110110# 11223344556677 ABABABABABABAB
(representing the binary number 0110110 for the

graph in Fig. 1) is transformed into

3,5,3

,65,611223344556677

yy
y y#0110110#

2

2ABABABABABABAB

where the singled strands 2,53,6 y,y do not appear since there
are
not corresponding edges in the graph shown in
Fig. 1

For End
)T Merge(P, 5)-(4

For End
)T ,(T Merge 4)-(4

)y ,(T Append 3)-(4
)T },1A{B ,(T Separation 2)-(4

1 i n to iFor
)T },1A{B (P, Separation 1)-(4

1 k n to k For

1

21

ik,2

2ii1

1kk

==

==

Time analysis of the above algorithm

Each of the above actions will conclude at O(1) . This
algorithm consists of 2 for blocks, therefore the algorithm
will terminate at)O(n2 .

3.5 Step 5
In the last stage, the set with the minimum distance must be
recognized.

To do this ji,Y strings must be sorted based on their length.

These strings will be indexed from 1 to 2n , in a way that the
string with the minimum length will be indexed 1 and the
string with the shortest length will be indexed 2n .

n.circulatio thecontinue elsefor end then
yes, is detect(T) if 2)-(5

)T ,Y (P, Separation 1)-(5
n to1dFor

1d

2=

Time analysis of the above algorithm

Each of the above actions will conclude at O(1) . This
algorithm consists of 2 for blocks, therefore the algorithm
will terminate at)O(n2 .

3.6 Giving the exact solutions
 Finally the Read operation is applied to giving the exact
solutions to the maximum K-Facility dispersion.

(T). Read)16(−

4 Conclusion
As the first work for DNA computing, (Adleman, 1994)
presented an idea to demonstrate that deoxyribonucleic acid
(DNA) strands can be applied

to solving the Hamiltonian path NP-complete problem of size
n in O(n) steps using DNA molecules. Adleman’s work
shows that one can solve an NP-complete problem, which
usually needs exponential time on a silicon-based computer,
in a polynomial number of steps with DNA molecules. From
then on, Lipton (1995) demonstrated that Adleman’s
experiment could be used to determine the NP-complete
satisfiability (SAT) problem (the first NP-complete problem).
Ouyang et al. (1997) showed that restriction enzymes could
be used to solve the NP-complete clique problem. In recent
years, lots of papers have occurred for designing DNA
procedures and algorithms to solve various NP-complete
problems. As Guo et al. (2005) pointed out, it is still
important to design DNA procedures and algorithms for

204 Int'l Conf. Foundations of Computer Science | FCS'11 |

solving various NP-complete problems since it is very
difficult to use biological operations for replacing
mathematical operations.

In this paper, we propose a procedure for maximum K-
Facility dispersion NP-complete problems in the Adleman–
Lipton model. The procedure works in)(2nO steps for
maximum K-Facility dispersion problem problem of a
directed graph with n vertices. All our results in this paper are
based on a theoretical model. However, the proposed
procedures can be implemented practically since every DNA
manipulation used in this model has been already realized in
lab level.

5 References:
[1] Adleman, L.M., Molecular computation of solution to
combinatorial problems. Science 266, 1021– 1024, 1994.

[2] Frisco, P., Parallel arithmetic with splicing. Romanian
J. Inf.Sci. Technol. 2, 113–128, 2002.

[3] Fujiwara, A., Matsumoto, K., Chen, Wei. Procedures
for logic and arithmetic operations with DNA molecules.
Int. J. Found. Comput. Sci. 15, 461–474, 2004.

[4] Guarnieri, F., Fliss, M., Bancroft, C. Making DNA add.
Science 273, 220–223, 1996..

[5] Guo, M.Y., Chang, W.L., Ho, M., Lu, J., Cao, J.N. Is
optimal solution of every NP-complete or NP-hard problem
determined from its characteristic for DNA-Based computing.
BioSystem 80, 71–82, 2005.

[6] Gupta, V., Parthasarathy, S., Zaki, M.J. Arithmetic and
logic operations with DNA. In: Proceedings of Third
DIMACSWorkshop on DNA-Based Computers, 212–220,
1997.

[7] Hug, H., Schuler, R. DNA-based parallel computation
of simple arithmetic. In: Proceedings of the Seventh
International Meeting on DNA-based Computers, 159–166,
2001.

[8] Kamio, S., Takehara, A., Fujiwara, A. Procedures for
computing the maximum with DNA strands. In: Arabnia,
Humid, R., Mun, Youngsong (Eds.), In:
Proceedings of the International Conference on DNA-Based
Computers. 2003.

[9] Li, D., Huang, H., Li, X., Li, X. Hairpin formation in
DNA computation presents limits for large NP-complete
problems. BioSystem 72, 203–207, 2003.

[10] Lipton, R.J. DNA solution of HARD computational
problems. Science 268, 542–545, 1995.

[11] Ouyang, Q., Kaplan, Peter, D., Liu, S., Libchaber, A.
DNA solution of the maximal clique problem. Science 278,
446–449, 1997.

[12] Pâun, G., Rozeberg, G., Salomaa, A. DNA Computing.
Springer-Verlag. 1998.

Int'l Conf. Foundations of Computer Science | FCS'11 | 205

An Inclusion-Exclusion Algorithm for the k-tour Problem

Haseeb Baluch and Andrzej Lingas
Department of Computer Science, Lund University, Sweden

Abstract— Consider an undirected graph G with n vertices,
among them a distinguished vertex s called the origin, and
nonnegative-integer edge weights in {1, ..., M}.

The k-tour problem for G is to cover all vertices of G with
cycles such that: each cycle passes through s and includes at
most k other vertices, each vertex different from s is visited
exactly once by the cycles, and the total weight of the cycles
is minimal. This problem is a special case of the general
vehicle routing problem and it is known to be NP-hard for
k ≥ 3.

We show that the k-tour problem for G can be solved in
time O(2nn7k2M2(n log n + log M)) and space
O(n4kM(n logn + log M)).

Keywords: k-tour problem, vehicle routing problem, time com-
plexity, space complexity

1. Introduction
The k-tour cover problem (k-TC) is a natural and well

known generalization of the traveling salesperson problem
(TSP) to include several tours [2], [3], [10], [13]. We are
given an undirected graph(V, E), a distinguished vertexs ∈
V called the origin as well as a weight function defined on
E. The weight of an edge(v, u) is interpreted as the distance
between the sites corresponding tov andu, respectively. A
k-tour is a cycle in the graph which includes the origin and
at mostk other vertices. The weight of ak-tour is the sum of
weights of the edges included in it. The objective is to find
a set ofk-tours which visits each vertex inV \ {s} exactly
once and achieves the minimum total weight.

Thek-TC problem corresponds to the so calledcapacitated
vehicle routing problem well known in Operations Research
[13]. The latter name reflects the standard application when
the vertices inV model customer locations, and the origins
models a depot. A set of vehicles deployed at the depot has to
serve all the customers under the constraint that each vehicle
can serve at mostk customers. The objective is to minimize
the total distance run by the vehicles. The capacitated vehicle
routing problem is one of the basic cases of a general vehicle
routing problem studied very extensively in the literature (cf.
[13]) since many years ago [7].

The k-TC problem fork = n − 1 is equivalent to the
TSP problem at least in the metric case and hence it isNP-
hard. In fact, thek-TC problem is known to beNP-hard
for all k ≥ 3 [2]. Both because of the hardness ofk-TC and
its applications, the mostly studied variants ofk-TC are the
metric ones, when the weight function satisfies the triangle

inequality, and in particular the two-dimensional Euclidean
one, when the vertices are points in the plane and the weight
of an edge is the Euclidean length of the straight-line segment
connecting its endpoints.

While the general metric case ofk-TC for k ≥ 3 is
known to be APX-complete [2], the approximability status
of the two-dimensional Euclideank-TC problem has not
been resolved completely yet. The latter variant is known
to admit the so called quasi-PTAS [8] and even PTAS for
k ≤ 2logo(1) n [1] (see also [3], [10]) ork = Ω(n) [3].

In this paper we focus on the exact complexity of the
general, non-necessarily metric variant ofk-TC. [1] (see
also [3], [10]) There is an extensive literature on the ex-
act complexity of the Hamiltonian cycle or path problem.
For several decades, the best known upper-time bound was
2nnO(1) [11], where n is the number of vertices of the
host graph. This upper time-bound is even achievable when
only polynomial space is used [4], [12]. Very recently,
Björklund has presented a novel Monte Carlo algorithm for
Hamiltonicity detection in an undirected graph, running in
time O(1.657n) [5]. In Operations Research, computational
results on exact algorithms for the vehicle routing problem
are also known [6].

A straightforward approach to the generalk-TC follows
from the observation thatk-tours covering all vertices can
be combined into a single tour visiting each vertex different
from the origin exactly once. By enumerating sequences of
vertices of length at most2n − 2, trying all its partitions
into fragments of length at mostk + 1, we can sieve out all
reasonable feasible sets ofk-tours covering all the vertices
and choose among them the minimum one roughly in time
2O(n log n).

A better straightforward method is to enumerate all pos-
sible partitions of the input set of vertices different from
s into two subsets whose cardinalities are different by at
most k and apply the method recursively to each of the
subsets. One returns a union of solutions to two such subsets
achieving the minimum total weight. At the bottom of the
recursion for instances on at most3k vertices one can apply
the aforementioned2O(n log n)-time algorithm. This divide-
and-conquer method takes22n+O(k log n) time.

Our contributions
Our algorithm for k-TC is based on the use of the

principle of exclusion-inclusion to count the number of
feasible solutions. This method was originally applied by
Karp in [12] (rediscovered in [4]) in order to count the
number of Hamiltonian cycles using the concept of walks

206 Int'l Conf. Foundations of Computer Science | FCS'11 |

avoiding a subset of the vertex set. We rely on and intro-
duce a generalization of the latter concept to include the
so calledk-walks avoiding a subset of the vertex set. In
consequence, we can solve thek-tour problem in a graph
with n vertices and nonnegative-integer edge weights in
{1, ..., M} in time O(2nn7kM2(n log n+log M)) and space
O(n4kM(n logn + log M)).

In the next section, we introduce the concept of subset
avoidingk-walks. In Section 3, we present our algorithm for
the k-tour problem.

2. k-walks
Let G = (V, E) be an undirected graph onn vertices

with a distinguished origin vertexs, and nonnegative integer
edge weights not exceedingM. For k ∈ {1, .., n}, define
a k-walk in G as an alternating sequence of vertices and
edges ofG x0, e1, x1, . . . , el, xl such thatx0 = s, ei =
(xi−1, xi) for i = 1, ..., l, and any maximal subsequence
of consecutive vertices different froms contains at most
k vertices. It follows in particular thatxi−1, xi cannot
be both equal tos for i = 1, ..., l. The length of k-
walk is the total number of its edges while its weight is
the total weight of its edges. Ak-walk avoids a set of
verticesS if x0, . . . , xl /∈ S. For a subsetS ⊆ V \ {s},
m ∈ {1, . . . , 2n − 2}, q ∈ {⌈n/k⌉, ⌈n/k⌉ + 1, ..., n − 1},
l ∈ {1, ..., k}, v ∈ V \ {s}, W ∈ {0, 1, ..., (2n− 2)M}, we
definek−WALKm,q,l

v (S, W) as the set of allk-walks that
start in the origins, end in the vertexv, have lengthm, visit
the origin vertexq times, have a maximal suffix of vertices
different froms of length l ≤ k, avoid all vertices in the set
S and have total weightW .

For a given subsetS ⊆ V \ {s}, given m ∈
{1, . . . , 2n− 2}, given l ∈ {0, 1, . . . , k}, given
q ∈

{
⌈n

k ⌉, ⌈n
k ⌉+ 1, . . . , n

}
, given v ∈ V \ {s}, given

W ∈ {0, 1, . . . , (2n− 2)M}, we can compute the
cardinalities | k − WALKm,q,l

v (S, W) | from the
cardinalities | k − WALKm−1,q′,l′

v′ (S, W ′) | by the
following recurrences, wherev′ /∈ S, q′ ∈ {q − 1, q} and
W ′ ≤W :

| k −WALKm,q,l
v (S, W) |=∑

(v′,v)∈E | k −WALKm−1,q,l−1
v′ (S, W − weight((v′, v)))

| k −WALKm,q,0
s (S, W) |=∑k

r=1

∑
(v′,s)∈E&v′ /∈S | k − WALKm−1,q−1,r

v′ (S, W −
weight((v′, s))) |

For convention, at the bottom of the recursion, we set

| k −WALK0,1,0
s (S, 0) |= 1

and if q > 1 or l 6= 0 or W 6= 0

| k −WALK0,q,l
s (S, W) |= 0

The recurrences lead to the following algorithm for count-
ing the cardinalities of sets ofk-walks with different param-
eters.

Algorithm 1 Cardinalities ofk-Walks
1: Input: integer k, an edge weighted graphG = (V, E),

where for (x, y) ∈ E the weight of(x, y) is denoted
by w(x, y), a vertexs designated as the origin, a subset
S ⊆ V \ {s} andn =| V |.

2: Output: for all m ∈ {1, . . . , 2n}, q ∈{
⌈n

k ⌉, ⌈n
k ⌉+ 1, . . . , n

}
, l ∈ {0, 1, . . . , k}, v ∈ V \S,

and W ∈ {0, 1, . . . , (2n− 2M)}, the cardinalities
|k −Walkm,q,l

s (S, W)|.
3: begin
4: |k −Walk0,0,0

s (S, 0)| ← 0
5: for all m ∈ {1, . . . , 2n− 2} do
6: for all q ∈

{
⌈n

k ⌉, ⌈n
k ⌉+ 1, . . . , n

}
do

7: for all l ∈ {0, 1, . . . , k} do
8: for all v ∈ V \S do
9: for all W ∈ {0, 1, . . . , (2n− 2)M} do

10: if m = 0 then
11: if q = 1&l = 0&W = 0 then
12: |k −Walkm,q,l

s (S, 0)| ← 1
13: else
14: |k −Walkm,q,l

s (S, W)| ← 0
15: else
16: if l = 0&v = s then
17: | k − WALKm,q,l

v (S, W) |←∑k
r=1

∑
(v′,s)∈E&v′ /∈S | k −

WALKm−1,q−1,r
v′ (S, W −

weight((v′, s))) |
18: else
19: if l 6= 0&v 6= s then
20: | k − WALKm,q,l

v (S, W) |←∑
(v′,v)∈E&v′ /∈S | k −

WALKm−1,q,l−1
v′ (S, W −

weight((v′, v))) |
21: else
22: | k −WALKm,q,l

v (S, W) |← 0
23: end

The cardinality of k − Walkm,q,l
s (S, W) can be an

O(n lg n) bit number. In the computation there areO(nk)
additions of O(n lg n) bit numbers as well as subtrac-
tions of O(lg n + lg M) bit numbers. Thus, it takes time
O(kn(n lg n + lg M)) and spaceO(n lg n + lg M). Hence,
we obtain the following lemma.

Lemma 1. For a given subset S ⊆ V \ {s}, all
m ∈ {0, 1, . . . , 2n− 2}, all l ∈ {0, 1, . . . , k}, all q ∈{
⌈n

k ⌉, ⌈n
k ⌉+ 1, . . . , n

}
, all v ∈ V \ {s}, and all W ∈

{0, 1, . . . , (2n− 2)M}, one can compute the cardinalities
| k−WALKm,q,l

v (S, W) | in time O(n5k2M(n lg n+lgM))
and space O(n4kM(n lg n + lg M)).

Int'l Conf. Foundations of Computer Science | FCS'11 | 207

By a closedk-walk, we shall mean ak-walk that starts
and ends at the origins. For short, we shall denotek −
WALKm,q,0

s (S, W) by k − CWm,q(S, W).

Corollary 2. For a given subset S ⊆ V \ {s}, all q ∈{
⌈n

k ⌉, ⌈n
k ⌉+ 1, . . . , n

}
, all m ∈ {0, 1, . . . , 2n− 2} and all

W ∈ {0, 1, . . . , (2n− 2)M}, we can compute the cardinali-
ties | k−CWm,q(S, W) | in time O(n5k2M(n lg n+lgM))
and space O(n4kM(n lg n + lg M)).

3. An exact algorithm for the k-tour
problem

Our algorithm for thek-tour problem relies on the follow-
ing lemma following from the inclusion-exclusion principle.

Lemma 3. For m ∈ {0, 1, . . . , 2n− 2}, q ∈ {⌈n
k ⌉, ⌈n

k ⌉ +
1, . . . , n} and W ∈ {0, 1, . . . , (2n − 2)M}, the number of
closed k-walks that cover all the vertices in graph G =
(V, E), visit the origin q times, achieve the total length m
and the total weight W is∑

S⊆V \{s}(−1)|S| | k − CWm,q(S, W) |.
Proof: To obtain the number ofk-walks that correspond

to the desired closedk-walks, we need to subtract from
|CWm,q(∅, W)| the number of closedk-walks of lengthm
and weightW, visiting the originq times, that avoid at least
one vertex, that is, belong to

⋃
v∈V \{s} CWm,q({v}, W). By

the inclusion-exclusion principle

|k − CWm,q(∅, W)| − |⋃v∈V \{o} k − CWm,q({v}, W)| =∑
S⊆V \{o}(−1)|S||k − CWm,q(S, W)|.

By combing Corollary 2 and Lemma 3, we can com-
pute the number of closedk-walks covering all then
vertices in the input graph, achieving a given total length
m and a given total weightW , and visiting the originq
times, in time O(2nn5k2M(n log n + log M)) and space
O(n4kM(n logn + log M)).

By performing the counts for eachm ∈ {n, ..., (2n− 2)},
W ∈ {n, (2n − 2)M}, and q = m − (n − 1) + 1, we can
determine the minimum weight of a solution to thek-tour
problem for the input graphG in timeO(2nn7kM2(n log n+
log M)) and spaceO(n4kM(n log n + log M)). By a stan-
dard backtracking, we can also determine a solution to the
k-tour problem forG achieving the minimum weight within
the same asymptotic time. Hence, we obtain our main result.

Theorem 4. The k-tour problem for an undirected graph
with n vertices and nonnegative integer weights in {1, ..., M}
can be solved in time O(2nn7k2M2(n log n + log M)) and
space O(n4kM(n log n + log M)).

4. Final remarks
We assume a strict definition ofk-TC that requires a set of

k-tours to visit each vertex different from the origin exactly
once. In the literature [2], [3], [10], [13] which is concerned

solely with the Euclidean and metric cases it is sufficient to
require a set ofk-tours to cover all the vertices. Because
of the triangle inequality and the possibility of shortcutting,
one can always trivially transform a set ofk-tours to a not
heavier one which satisfies the strict definition. Thus, the
strict definition and the relaxed one which allows for visiting
a vertex several times are essentially equivalent in the metric
case. This is not the case in the general graph case. For
instance, it is well known that generally TSP does not admit
any reasonable approximation while the relaxed TSP can be
trivially approximated within2 by doubling the edges of a
minimum spaning tree of the input graph.

Our exact method of solvingk-TC can be easily adapted
to the relaxed variant ofk-TC, where each vertex different
from the origin may be visited several times. The adaptation
involves increasing the upper bound on the total length
of k tours up to (k + 1)(n − 1) which in turn adds an
additional polynomial factor ink to the resulting time and
space complexities.

Our method subsumes the aforementioned straightforward
permutation and divide-and-conquer methods if the max-
imum edge weighM satisfies M ≪

√
n! and M ≪

2n+O(k lg n), respectively.

References
[1] A. Adamaszek, A. Czumaj and A. Lingas. PTAS for k-tour cover

problem on the plane for moderately large values of k. Proc. ISAAC
2009, Lecture Notes in Computer Science, Springer Verlag, pp. 994-
1003.

[2] T. Asano, N. Katoh, H. Tamaki, and T. Tokuyama. Covering points in
the plane byk-tours: a polynomial time approximation scheme for fixed
k. IBM Tokyo Research Laboratory Research Report RT0162, 1996.

[3] T. Asano, N. Katoh, H. Tamaki, and T. Tokuyama. Covering points in
the plane byk-tours: Towards a polynomial time approximation scheme
for generalk. In Proceedings of the 29th Annual ACM Symposium on
Theory of Computing (STOC), pages 275–283, 1997.

[4] E.T. Bax. Inclusion and exclusion algorithm for the Hamiltonian path
problem. Information Processing Letters 47(4), pp. 203-207, 1993.

[5] A. Björklund. Determinant Sums for Undirected Hamiltonity. In
Proceedings of the th IEEE Symposium on Foundations of Computer
Science (FOCS), pages , 2010.

[6] N. Christofides, A. Mingozzi and P. Toth. Exact algorithms for the
vehicle routing problem, based on spanning tree and shortest path
relaxations. Mathematical Programming 20 (1981) pp. 255-282, Noth-
Holland Publishing Company.

[7] G. B. Dantzig and R, H. Ramser. The truck dispatching problem.
Management Science, 6(1):80–91, October 1959.

[8] A. Das and C. Mathieu. A quasi-polynomial time approximation scheme
for Euclidean capacitated vehicle routing. Proc. SODA 2010, pp. 390-
403.

[9] M.R. Garey and D.S. Johnson.Computers and Intractability. A Guide
to the Theory of NP-completeness. W.H. Freeman and Company, New
York 1979.

[10] M. Haimovich and A.H.G. Rinnooy Kan. Bounds and heuristics for
capacitated routing problems.Mathematics of Operation Research,
10(4):527–542, 1985.

[11] M. Held and R. Karp. A dynamic programming approach to sequenc-
ing problems. Journal of SIAM 10, pp. 196-210.

[12] R.M. Karp. Dynamic programming meets the principle of inclusion
and exclusion. Operations Research Letters 1(2), pp. 49-51, 1982.

[13] P. Toth and D. Vigo.The Vehicle Routing Problem. SIAM, Philadel-
phia, 2001.

208 Int'l Conf. Foundations of Computer Science | FCS'11 |

Sub-Exponential Algorithms for
0/1 Knapsack and Bin Packing

Thomas E. O’Neil
Computer Science Department

University of North Dakota
Grand Forks, ND, USA 58202-9015

Abstract - This paper presents simple algorithms for 0/1
Knapsack and Bin Packing with a fixed number of bins that
achieve time complexity p n⋅2Ox where x is the total
bit length of a list of sizes for n objects. The algorithms are
adaptations of a method that achieves a similar complexity
for the Partition and Subset Sum problems. The method is
shown to be general enough to be applied to other
optimization or decision problem based on a list of numeric
sizes or weights. This establishes that 0/1 Knapsack and
Bin Packing have sub-exponential time complexity using
input length as the complexity parameter. It also supports
the expectation that all NP-complete problems with
pseudo-polynomial time algorithms can be solved
deterministically in sub-exponential time.

Keywords: 0/1 Knapsack, dynamic programming, Bin
Packing, sub-exponential time, NP-complete problems.

1 Introduction

The comparative complexity of problems within the
class NP-Complete has been a recurring theme in computer
science research since the problems were defined and
cataloged in the early years of the discipline [2]. In 1990,
Stearns and Hunt [7] classified a problem to have power
index i if the fastest algorithm that solves it requires

2O ni steps. Assuming that Satisfiability has power
index 1, they argued that the Clique and Partition problems
have power index one-half. Their analysis is based on two
algorithms with time complexity p n⋅2Ox , where x is
the length in bits of the input representations and p(n) is a
polynomial function of the number of graph edges (for
Clique) or the number of integers in the input set (for
Partition). These results were interpreted to provide strong
evidence that Clique and Partition were easier problems
than Satisfiability and most other NP-Complete problems.

In a subsequent study, Impagliazzo, Paturi, and Zane
[3] presented another framework for comparison of NP-
complete problems. Instead of adopting the power index
terminology of Stearns and Hunt, they categorized problems
based on weakly exponential (2n1

) or strongly

exponential (2n) lower bounds (assuming that
Satisfiability will one day be proven to be strongly
exponential) and sub-exponential (2o n) upper bounds.
To avoid inconsistencies related to the characterization of
input length, they defined a family of reductions (the Sub-
Exponential Reduction Family) that would allow the
complexity measure to be parameterized. This framework
tolerated polynomial differences in the lengths of problem
instances, and there was no complexity distinction among
Clique, Independent Set, Vertex Cover or k-Sat. These
conclusions are not consistent with those of Stearns and
Hunt, where both Clique and Partition were easier than
Satisfiability. It is clear that representations and complexity
measures for problem instances play a critical role in
complexity analysis.

In classical complexity theory, the complexity measure
is the length of the input string. This parameter is formally
determined, simply by counting the bits in the string. The
advantage of using the formal measure is that it requires no
semantic interpretation of the input string, and problems
with vastly different semantics can by grouped together in
formal complexity classes. Within the class NP-complete,
we find that for many problems, the use of simple semantic
complexity measures will not clash with detailed analysis
based on the formal measure. This is generally true of
strong NP-complete problems, where the objects in the
input representing variables or nodes or set elements can be
numbered (in binary). The numbers are just labels used for
identification of the objects. There are other problems in
the class, however, where the input contains a list of weights
or values, and analysis based on semantic measures such as
the number of objects versus the sum (or maximum) of the
values can give radically different results: exponential time
with one measure, polynomial time with the other. This
collection of problems includes Partition, Subset Sum, 0/1
Knapsack, and Bin Packing, which we will refer to as the
Subset Sum family. The safest approach to analysis of these
problems is to use the formal complexity measure, which
incorporates both relevant semantic parameters, and in this
paper we show that the Subset Sum family of pseudo-
polynomial-time problems is 2O x (which is sub-
exponential).

Int'l Conf. Foundations of Computer Science | FCS'11 | 209

Stearns and Hunt [7] were apparently the first to
demonstrate that an algorithm for the Partition problem
exhibits sub-exponential time. The significance of this
result was probably obscured by the claim in the same paper
that the Clique problem is also sub-exponential, while its
dual problem Independent Set remains strongly exponential.
This apparent anomaly is a representation-dependent
distinction, and it disappears when a symmetric
representation for the problem instance is used [5]. The
complexity distinction between Partition and Satisfiability,
however, appears to have stronger credibility. In [6] it is
shown that the sub-exponential upper bound for Partition is
also valid for Subset Sum. The algorithm for Subset Sum is
a variant of dynamic programming that is much simpler and
more general than the backtracking/dynamic programming
hybrid that Stearns and Hunt designed for Partition. In this
paper, the sub-exponential Subset Sum algorithm is adapted
to 0/1 Knapsack and Bin Packing with a fixed number of
bins, establishing that these problems are also sub-
exponential with respect to the formal complexity measure
(total bit-length of input, denoted x). We also abstract from
the previous methods a lemma that identifies the property of
ordered sets of integers that is exploited to achieve sub-
exponential time.

More recent complexity studies in the research
literature for problems in the Subset Sum family do not
typically use the input length as the complexity parameter.
The current upper bound for both Subset Sum and 0/1
Knapsack is apparently 2O n/2 when the number of
objects in the list is used as the complexity measure [8]. A
lower bound of 2 n/2/n for Knapsack has also been
demonstrated in [1]. The lower bound applies only to
algorithms within a model defined generally enough to
include most backtracking and dynamic programming
approaches. The sub-exponential bounds derived here
using the formal complexity measure complement rather
than supersede the strongly exponential bounds derived
using the number of objects in the input list (denoted n) as
the complexity parameter.

2 Generalized Dynamic Programming

The Stearns and Hunt algorithm for Partition [7]
combines backtracking with dynamic programming. Such
hybrid approaches had been previously described in
operations research literature (e.g. [4]). The input set is
ordered and divided into a denser and a sparser subset.
Backtracking is employed on the sparse subset, while
dynamic programming is used for the dense subset. The
results are combined to achieve time complexity 2O x ,
where x is the total length in bits of the input.

In this paper we employ a simpler algorithm that
achieves the same goal. The approach was first developed
for Subset Sum and Partition [6]. Similar to conventional

dynamic programming, it represents a breadth-first
enumeration of partial solutions. The problem instance is a
list of objects, each of which has a size. The algorithm
maintains a pool of partial solutions as it processes each
object. The list of objects is ordered by size, and the largest
objects are processed first. In contrast with conventional
dynamic programming, the pool of solutions is dynamically
allocated (hence the acronym DDP, for dynamic dynamic
programming). It first grows and then shrinks as more
objects are processed. The entire pool of solutions is
traversed for each object, updating each solution by
possibly subtracting the current object's size from the
solution's remaining capacity. Each solution is also
evaluated relative to the sum of sizes of the objects yet to be
processed. The sum of remaining sizes can be used to
prune the pool of solutions depending on problem
semantics. This pruning relative to the sum of sizes of the
unprocessed objects places a sub-exponential upper bound
on the number of partial solutions in the pool.

The time analysis of the DDP method relies on a simple
lemma (abstracted from the analysis in [6]) that allows us to
bound the kth value in an ordered list as a function of its
position in the list and the total bit-length of the entire list
(see Lemma 1 below). Bounding the kth value allows us to
bound the sum of the first k values as well. This, in turn,
leads to a bound on the length of the pool of partial
solutions in DDP algorithms.

Lemma 1: Let L represent a list of n positive natural
numbers in non-decreasing order, let L[k] represent the kth

number in the list, let bk be the bit length of the kth number,
and let b be total number of bits in the entire list:

b =∑
i=1

n

bi =∑
i=1

n

1⌊ lg L[i]⌋ . Then L[k] < 2(b−k+1)/(n−k+1)+1 .

Proof: An upper bound on the value of L[k] for any list
with total bit length b is obtained by reserving as few bits as
possible for the smaller numbers in the list and as many bits
as possible for L[k] and the numbers that follow it. This is
accomplished by setting L[1] through L[k-1] to 1 and
distributing the remaining bits equally among the higher n─
k + 1 numbers. In that case, L[k] has no more than (b−k+1)/
(n−k+1) bits, establishing L[k] < 2(b−k+1)/(n−k+1)+1 .

3 The Knapsack Problem

The 0/1 Knapsack problem is defined as follows: given
a set of n objects S with sizes s[1..n] and values v[1..n], find
a subset of objects with the highest value whose size is less
than or equal to C, the capacity of the knapsack [2]. The
problem can also be expressed as a decision problem, where
we determine the existence of a subset whose value is
greater than or equal to a target value V.

210 Int'l Conf. Foundations of Computer Science | FCS'11 |

3.1 The Knapsack algorithm

In adapting the DDP method to the Knapsack problem,
we can iterate either the size or the value array as the
control for the outer loop. Here we use the size array. The
algorithm keeps a pool of (capacity, value) pairs
representing partially filled knapsacks, initially containing
an empty sack represented as (C, 0), where C is the capacity
of the empty sack. For each object in S and for each sack
currently in the pool, we add a new sack representing the
current sack plus the current object. This is accomplished
by subtracting the object size from the sack's remaining
capacity and adding the object value to the sack's value.

Pseudo-code for the Knapsack algorithm is shown in
Figure 1. Lines 1-3 initialize the global Pool, the bestval
variable, and variables representing the cumulative size and
value of the remaining objects. There is one iteration of the
outer for loop (lines 4-17) for each object in the set S = {y1,
y2, ..., yn}. The size array s, in which s[i] is the size of

object yi, is assumed to be in non-decreasing order, and the
largest numbers are processed first, so object yn–i+1 is
processed during the ith iteration. The pool of partially
filled sacks is updated by the inner for loop (lines 7-15).
For each sack in the pool, s[n–i+1] is subtracted from its
capacity and v[n–i+1] is added to its value, placing the new
(capacity, value) on a second ordered sack list. The pool
and the new sack list are merged in the last step of the outer
loop (line 17). The best value for a filled sack is updated
when appropriate in lines 11 and 14, whenever an updated
sack is created. At completion of the outer loop, the best
value is returned. The algorithm does not return the
contents of the sack with the best value, but this could be
accomplished by adding a reference to a subset object to the
(capacity, value) pairs in the pool, increasing the time
complexity by no more than a factor of n.

The inner loop has two conditions that moderate the
length of the pool. Lines 8 and 9 skip sacks that can't hold
the current object. Also, in lines 10-12, sacks with enough
capacity to hold all remaining objects are removed from the
pool after updating the bestval variable. If all remaining
objects will fit in a sack, there is no process them one-by-
one.

The outer loop also has logic to control the size of the
pool. The last step in the outer loop is a sequential merge
operation that adds the new partially filled sacks to the pool.
If two sacks with the same capacity are encountered during
the merge, only the sack with the higher value is added to
the pool. Thus the capacities of all sacks in the pool are
unique.

3.2 Time Analysis of Knapsack

The time analysis closely follows the method used for
the Subset Sum algorithm in [6]. Let S = {y1, y2, ..., yn} and
assume the sizes are stored in non-decreasing order (s[i] ≤
s[i+1]). The total number of steps is determined by the size
of Pool. With each iteration of the outer for loop, Pool is
traversed and possibly extended (requiring 2 passes – one
by the inner for loop and the other by the sequential merge
step). The total amount of work is closely estimated (within
a factor of 2) by

∑
i=1

n

∣Pool i ∣ (1)

where ∣Pool i ∣ is the length of Pool at the beginning of
outer loop iteration i.

Since the merge operation eliminates duplication of
capacities, we can describe length of Pool(i) as at most
MaxC(i), the largest capacity of any sack on the list at the
beginning of iteration i. The list is actually smaller than
this, since all the capacities between zero and the maximum
are not present. We also know that the length of the list
can, at most, double with each loop iteration, so regardless

Figure 1. The Knapsack algorithm.

//* Given a set of n objects whose sizes are specified
in an array s[1..n] in non-decreasing order and whose
values are stored in an array v[1..n], find the highest
valued subset whose total size is less than or equal to
capacity C. */

public int Knapsack()
 1) bestval ← 0;

 2) sizeofrest ← ∑
i=1

n

s[i] ; valueofrest ← ∑
i=1

n

v[i] ;

 3) Pool ← {(C, 0)};
 4) for i ← 1 to n
 5) size ← s[n – i +1]; value ← v[n – i +1];
 6) NewList ← { };
 7) for each sack in Pool
 8) if (sack.capacity < size)
 9) continue;
10) else if (sack.capacity > sizeofrest)
11) bestval ← max (bestval,
 sack.value + valueofrest)
12) remove sack from Pool;
13) else
14) bestval ← max (bestval,
 sack.value + value);
15) NewList.append ((sack.capacity – size,
 sack.value + value));
 end for
16) sizeofrest ← sizeofrest – size;
 valueofrest ← valueofrest – value;
17) Pool ← merge(Pool, NewList);
 end for
18) return bestval;

Int'l Conf. Foundations of Computer Science | FCS'11 | 211

of the maximum value in the list, its length cannot exceed 2i.
This gives us

∣Pool i ∣ ≤ min2i , MaxC i . (2)

The length of Pool will grow rapidly and later possibly
shrink as i approaches n. Our goal is to find an upper
bound for MaxC(i). Initially MaxC(1) = C, which is the
capacity of the empty sack. Only smaller-capacity sacks are
added to the list, and eventually the larger-capacity sacks
are removed when the condition in line 10 becomes true, so

 MaxC i ≤ ∑
j=1

n−i1

s [j] ≤ n−i1 ⋅s[n−i1]. (3)

Bounding MaxC(i) thus reduces to finding an upper
bound for s[n─ i + 1], and Lemma 1 is invoked for this
purpose. To complete the analysis, we bound the step
counts as a function of b, the total bit length of the size
array s. We consider two cases.

Case 1. n ≤ b . Here we have

 ∑
i=1

n

∣Pool i ∣≤∑
i=1

n

min2i , MaxC i≤ n⋅2b . (4)

Case 2. n > b . In this case we split the summation at
i = b .

 ∑
i=1

n

∣Pool i ∣≤∑
i=1

n

min2i , MaxC i (5)

≤ ∑
i=1

b−1

min2i , MaxC i ∑
i=b

n

min2i ,MaxC i (6)

≤ b−1 ⋅2b−1 ∑
i=b

n

min2i , MaxC i (7)

≤ b−1 ⋅2b−1 n−b1⋅MaxC b (8)

≤ b−1 ⋅2b−1 n−b1⋅ ∑
j=1

n−b1

s[j] . (9)

≤ b−1 ⋅2b−1 n−b12⋅s[n−b1] (10)

At this point, we employ Lemma 1 to compute the bound
for s[k] where k=n−b1 , and we continue by
replacing s [n−b1] with 2b1 :

 b−1 ⋅2b−1 n−b12⋅2b1 (11)
 bn12⋅2b1 (12)
 2n26 n2⋅2b . (13)

This establishes that the time complexity of Knapsack
is O p n2b for a polynomial function p(n). The
argument b is the total bit length of the list of sizes. The
entire input for the problem also includes the capacity C and
a list of n values. We can't make any specific assumptions
about the relative magnitudes of the sizes and values, but we
are certain that if x is the total input length, then b will be
smaller than x, and the O p n2b step count will also
be O p n2x.

4 The Bin Packing Problem

The Bin Packing problem is defined as follows: given
a set of n objects S with sizes s[1..n], determine whether the
objects will fit into a fixed number of k bins, each with a
capacity of B. The problem can also be expressed as an
optimization problem in which the smallest B is determined
[2]. When B is equal to the sum of all sizes divided by k,
the problem represents a generalization of the Partition
problem.

4.1 The BinPack Algorithm

When we adapt the DDP strategy to Bin Packing, we
find a few significant differences from the Knapsack
version. The BinPack algorithm is shown in Figure 2. The
pool of partial solutions must be a list of k-tuples, where
each component of a tuple is the remaining capacity of one
of the bins (see line 2). Also, we are not searching for a
subset. All the objects in the original set S must be included
in the solution. This has implications for the logic in the
nested loops of the algorithm. Any partial solution in the
inner loop that cannot accommodate the next object can be

Figure 2. The BinPack algorithm.

/* Given a set of n objects whose sizes are specified
in an array s[1..n] in non-decreasing order, determine
whether all objects can be stored in k bins, each with
capacity B.
*/

public boolean BinPack()

 1) sizeofrest = ∑
i=1

n

s[i] ;

 2) Pool = {(B, B, …, B)};
 3) for i ← 1 to n
 4) nextsize ← s[n – i +1];
 5) NewList ← { };
 6) for each bintuple in Pool
 7) if (bintuple.capacity[1] < nextsize)
 8) continue;
 9) else if (bintuple.capacity[1] > sizeofrest)
10) return true;
11) else
12) for j ← 1 to k
13) newtuple ← update(bintuple, j, nextsize);
14) if (newtuple != null)
15) NewList.insert (newtuple);
 end for
 end for
16) Pool ← NewList;
17) sizeofrest ← sizeofrest – nextsize;
 end for
18) return false;

212 Int'l Conf. Foundations of Computer Science | FCS'11 |

discarded (lines 7-8), and the pool of updated partial
solutions created by the inner loop replaces the pool from
the previous iteration of the outer loop (rather than merging
with the previous pool; see line 16). We also find that the
test enforcing the upper limit on the size of the pool
(relative to the sum of the remaining object sizes) triggers
early termination (lines 9-10). This version of the algorithm
does not specify what objects are placed in what bins, but
this information could be included by associating a
reference to a size n object to each partial solution. This
would increase the time complexity by no more than a
factor of n.

4.2 Time Analysis of BinPack

The time analysis of BinPack follows the same general
logic as the analysis for Knapsack. The major difference is
the growth rate of the pool of partial solutions. While the
pool can double in length with each iteration of the inner
loop in Knapsack, it can increase in length by a factor of k
in BinPack. Another significant difference is the cost of
suppressing duplicates in the pool of partial solutions. We
make the conservative assumption that the insertion of an
updated partial solution in the pool takes linear time in the
current length of the pool. We demonstrate below that in
spite of these significant differences, the time complexity of
the algorithm remains sub-exponential.

To proceed with the analysis, let S = {y1, y2, ..., yn}, and
assume the sizes are stored in non-decreasing order (s[i] ≤
s[i+1]). As with Knapsack, The total number of steps is
closely related to the size of Pool. With each iteration of
the outer for loop, Pool is traversed and replaced with an
updated version (called NewList). Each insertion into
NewList requires linear time. The total amount of work is
therefore estimated as

 ∑
i=1

n

∣Pool i ∣2 (14)

where ∣Pool i ∣ is the length of Pool at the beginning of
outer loop iteration i.

Since the insert operation of line 15 eliminates
duplication of capacities, we can describe length of Pool(i)
as at most MaxC(i)k. If MaxC(i) is the largest capacity of
any bin in any tuple on the list at the beginning of iteration
i, the number of distinct tuples cannot exceed this quantity
raised to the power k. This grossly overestimates the
number of tuples, since the capacities within each tuple are
in non-increasing order and since all the tuples have the
same sum. It is an interesting counting problem to
determine a tight upper bound for the number of tuples, but
the loose bound is sufficient to establish the desired
complexity result. We also know that the length of the list
can, at most, grow by a factor of k with each loop iteration,
so regardless of the maximum value in the list, its length
cannot exceed ki. This gives us

∣Pool i ∣ ≤ mink i , MaxC i k . (15)

Lines 9 and 10 assure us that the algorithm terminates if
MaxC(i) exceeds the sum of the remaining object sizes, so
we have

 MaxC i ≤ ∑
j=1

n−i1

s [j] ≤ n−i1 ⋅s[n−i1]. (16)
To complete the analysis, we bound the step counts as a

function of x, the total bit length of the size array s. As
before, we consider two cases.

Case 1. n ≤ x . Here we have

∑
i=1

n

∣Pool i∣2 ≤∑
i=1

n

mink i ,MaxC ik2 (17)

≤ n⋅kn2 ≤ n⋅k2 x≤ n⋅22 lg k x. (18)

Case 2. n > x . In this case we split the summation at
i = x .

∑
i=1

n

∣Pool i∣2 ≤∑
i=1

n

mink i ,MaxC ik2 (19)

≤∑
i=1

x−1

mink i , MaxC i k 2∑
i=x

n

mink i , MaxC i k 2 (20)

≤ x−1 ⋅kx−1 n− x1⋅MaxC xk 2 (21)
Then by Lemma 1:
 x−1 ⋅kx−1 n− x1n− x1 2x12k (22)

and by algebraic simplification:
 n n2k 122k x1 (23)

Since k is a constant, this establishes that the time
complexity of BinPack is p n⋅2Ox for a polynomial
function p(n).

5 Conclusion
The algorithms in the previous sections demonstrate

that dynamic programming with dynamic allocation (DDP)
can be used to prove that 0/1 Knapsack and Bin Packing
with a fixed number of bins have time complexity

p n⋅2Ox where x is the total bit length of n input
numbers. This places these problems with Partition and
Subset Sum in the subclass of NP-complete problems that
have sub-exponential upper bounds on running time, when
input length is used as the complexity parameter.

The Knapsack problem was formulated as an
optimization problem above, while Bin Packing was
presented as a decision problem. It is apparent that the
Knapsack algorithm can be modified to solve the decision
version of the problem without changing its time
complexity. It is also possible to modify BinPack to find
the smallest bin capacity needed to store all objects in k
bins, as long as k is constant, without changing its time
complexity. Given the simplicity and generality of Lemma

Int'l Conf. Foundations of Computer Science | FCS'11 | 213

1, which provides the foundation for the time analyses, we
expect that the DDP method can be applied to any NP-
complete problem involving a list of weighted objects that
has pseudo-polynomial time complexity.

References

[1] M. Alekhnovich, A. Borodin, J. Buresh-Oppenheim, R.
Impagliazzo, A. Magen, and T. Pitassi, “Toward a
Model for Backtracking and Dynamic Programming,”
Proceedings of the 20th Annual IEEE Conference on
Computational Complexity, pp. 308-322 (2005).

[2] M. Garey and D. Johnson, Computers and
Intractability: A Guide to the Theory of NP-
Completeness, Freeman Press, San Francisco, CA
(1979).

[3] R. Impagliazzo, R. Paturi, and F. Zane, “Which
Problems Have Strongly Exponential Complexity?,”
Journal of Computer and System Sciences 63, pp.
512-530, Elsevier Science (2001).

[4] S. Martello and P. Toth, “A mixture of dynamic
programming and branch-and-bound for the subset sum
problem,” Management Science 30(6), pp. 765-771
(1984).

[5] T. E. O'Neil, “The Importance of Symmetric
Representation,” Proceedings of the 2009
International Conference on Foundations of Computer
Science (FCS 2009), pp. 115-119, CSREA Press
(2009).

[6] T. E. O'Neil and S. Kerlin, “A Simple 2O x

Algorithm for Partition and Subset Sum,” Proceedings
of the 2010 International Conference on Foundations
of Computer Science (FCS 2010), pp. 55-58, CSREA
Press (2010).

[7] R. Stearns and H. Hunt, “Power Indices and Easier Hard
Problems”, Mathematical Systems Theory 23 (1990),
pp. 209-225.

[8] G. J. Woeginger, “Exact Algorithms for NP-Hard
Problems: A Survey,” Lecture Notes in Computer
Science 2570, pp. 185-207, Springer-Verlaug, Berlin
(2003).

214 Int'l Conf. Foundations of Computer Science | FCS'11 |

On the Computing Power of Statecharts

Hanlin Lu and Sheng Yu
Department of Computer Science, University of Western Ontario, London, Ontario, Canada, N6A5B7

{hlu47, syu}@csd.uwo.ca

Abstract— Statecharts provide a practical and expressive
visual formalism to describe reactive systems. They have
been adopted by a number of object modeling techniques
and languages, such as the UML state machines. Although
Statecharts’ semantics has attracted much attention, the
computation power of Statecharts was seldom considered. In
this paper, we study the computation power of Statecharts
by linking them to Wegner’s Interaction Machines.

Keywords: statecharts, computing power, finite automata, turing
machines, interaction machines, interactive turing machines

1. Introduction
Statechart [5] was introduced by David Harel in 1987

as one of the most popular state-based visual/graphical
formalism for designing reactive systems. With the hier-
archy, concurrency and many other features, the statechart
was more practical and expressive than the classical state
diagrams [1]. They have been adopted by a number of object
modeling techniques and languages, including the Object
Modeling Technique (OMT) [17] and the Unified Modeling
Language (UML) [18]. Besides, there are many formalisms
for statecharts supported by software such as STATEMATE
[7], Rhapsody [6], etc.

An accurate and comprehensive description of statecharts
will benefit their applications greatly. However, Statecharts’
semantics was not defined precisely in Harel’s original paper
[5], as described in [19]. The study for the semantics of
statecharts has began by Harel et al. [8] right after the
publication of [5]. Since then, many related papers have been
published, e.g., [16], [11]. During the last twenty years, it has
attracted much attention to formalize Statecharts’ semantics,
especially for the UML State machines, and various kinds
of formal approaches have been introduced, e.g. Petri-net,
temporal logic, graph transformation systems, etc. In the
survey [2] by Crane and Dingel in 2005, the semantics for
the UML state machines were categorized into 26 kinds
based on the formalization approach.

We find that although so many formal models have been
applied to describe Statecharts, the computation power of
Statecharts was seldom considered. And not much research,
[3], [9], on the computation power of the models that
has been used to formalize Statecharts has been done. On

Research supported in part by the Natural Sciences and Engineering
Council of Canada Discovery Grant 41630.

the contrary, we can find descriptions like “Statecharts are
extended finite automata” in many places to equate the
computation power of statecharts to finite automata. It has
been shown in [12] clearly that they are very different.
We will show in this paper that the computation power
of statecharts is more appropriately modeled by Interaction
Machines [20].

In the next section, we will introduce the basic defini-
tions. In Section 3, we will investigate the linkage between
Statecharts and Interaction Machines. We will conclude our
study in Section 4.

2. Preliminary
In this section, we will review the basic definitions for

Statecharts and Interaction Machines.

2.1 Statecharts
There are already many models for formalizing the State-

charts’ semantics. In this paper, however, we intend to study
their computing power rather than any specific definition of
semantics. Hence we need a brief yet powerful definition for
Statecharts, which includes only the essential elements.

Definition 1 (Statecharts): A statechart is a 9-tuple,

(Q, v,E,A,C, δ, η, s, T),

where Q is the nonempty finite set of states; v is an
unbounded variable; E is the nonempty finite set of events;
A is the finite set of actions, which is split into two subsets:
the set of external actions Aex, which is a finite set of
symbols, and the set of internal actions Ain, which is a finite
set of functions p : v → v; C is the finite set of conditions,
where each condition is a boolean-valued function of the
form q : v → {0, 1}; δ : Q× E × C∗ → Q is the transition
function; η : δ → A∗ is the action function; s is the initial
state; and T ⊆ Q is the set of terminating states.

We use only one unbounded variable v, for simplicity, to
represent all variables used in any instance of statecharts.
Each state q ∈ Q can be defined recursively as a statechart
Sq of the next level. However, a multi-level statechart can
always be transformed into an equivalent one-level statechart
although the number of states can increase significantly.

This definition is not intended to include all the features
of statecharts. For example, the “activities” [18] can be
included in the definition, which are associated with states,
the history pseudo states can be described by variables, etc.

Int'l Conf. Foundations of Computer Science | FCS'11 | 215

2.2 Interaction Machines
Interaction Machines (IMs) [20] were introduced by Peter

Wegner more than ten years ago. They were considered to be
a further development of Turing machines (TMs) model. He
claimed that TMs shut out the world during the computation
and stop their computation after generating outputs, thus they
can not model interaction behaviors [4], [20], [21].

IMs extend TMs with dynamic streams to record interac-
tion histories. The behavior of an IM will depend on both
the current input and its previous inputs. We consider that
IMs are more accurate theoretical models for statecharts than
TMs since IMs are better models for interactions.

Based on Wegner’s IMs, Sheng Yu defined Interactive
Turing Machines (ITMs) [22], which extend Multi-tape TMs
with interaction tapes. The Sequential ITMs (SITMs) [22]
provide detailed relations between TMs’ computing and
sequential interactions. In this paper, we use SITMs as the
model for Statecharts. For simplicity, we define SITMs with
only one work tape.

Definition 2 (Sequential Interactive Turing Machines):
Formally, a Sequential Interactive Turing machine (SITM)
M is an 11-tuple

(I,O,Q,Γ, γ, ω, s,#, $, B, T),

where I is the finite input alphabet; O is the finite output
alphabet; Q is the nonempty finite set of states; #, $, B are
three special symbols, where # is the delimiter preceding
an input string and at the end of an output string, $ is the
other delimiter that is ending an input string and preceding
an output string, B is the blank symbol of the interaction
tape and k work tapes; Γ is the finite work-tape alphabet;

γ : Q× (I ∪ {#, $})× Γ → Q× {R,S} × (Γ× {L,R, S})

is the transition function of M in the reading phase (when
the SITM can only read on the interaction tape);

ω : Q×{B}×Γ → Q×(O∪{#}×{R,S})×(Γ×{L,R, S})

is the transition function of M in the writing phase, where
L (left), R (right), and S (stationary) are directions of the
movement of a head; s ∈ Q is the starting state of M ;
T ⊆ Q is the set of terminating states.

3. Linkage between Statecharts and In-
teractive Turing Machines

In this section, we will use a general notion to study
the linkage between Statecharts and Interactive Turing Ma-
chines.

3.1 Labelled Transition Systems
Basically, both Statecharts and Interactive Turing Ma-

chines satisfy the general notion, Labelled transition systems
(LTSs) [15], which is consist of only the states, transitions

and labels. Note that, in LTSs, none of the three elements
are necessarily finite.

Definition 3 (Labelled transition system): A Labelled
transition system (LTS) is a 3-tuple

(S, T, { t→ |t ∈ T}),

where S is the set of states, T is the set of labels, t→⊆ S×S,
where t ∈ T , is the set of labelled transitions.

Example 1: Let statechart S be the 9-tuple

(Qs, vs, Es, As, Cs, δs, ηs, ss, Ts).

Then S can be expressed as

((Qs, vs), Es,
Es→⊆ (Qs, vs)× (Qs, vs))

in terms of an LTS, where the set of states is the pair formed
by S’s states Qs and the variable vs (we will call this pair
S’s configuration in the following to avoid confusion with
the states of S, Qs); the labels is the set of events Es of
S; the transitions are obtained by applying S’s transition
function δs to its action functions ηs, though all external
actions are not considered here since they do not directly
affect the statechart’s state transitions.

Example 2: Let an SITM M be the tuple

(Im, Om, Qm,Γm, γm, ωm, sm,#, $, B, Tm).

We can write an LTS Lm as the following, which is exactly
M ,

((Qm,Γ∗, P), Im ∪ {#, $, B} ∪ {ϵ},
Im∪{#,$,B}∪{ϵ}−→ ⊆ (Qm,Γ∗, P)× (Qm,Γ∗, P)).

The state set of Lm is the tuple formed by M ’s state Qm, the
set of possible strings on M ’s work tape Γ∗ and the set of all
positions of the head, P , on work tape, to avoid confusion
with M ’s states Qm, we call this tuple M ’s configuration in
the following; the labels of Lm contains all possible symbols
on M ’s interaction tape, Im ∪ {#, $, B}, and the empty
symbol ϵ, since the head on the interaction tape is allowed
to stay after each transition which means no new input will
be read at the next step; the set of transitions is isomorphic
to the set γm ∪ ωm, though we do not consider the output
that M writes on the interaction tapes for every transition.

3.2 Bisimulation and Observation Equivalence
Our method to show Statecharts are Interaction Machines

is based on bisimulation, which has been studied by David
Park [14] and Robin Milner [13].

Bisimulation is an equivalence relation describing whether
two agents behave in the same way based on observation.
The “agents" are computing systems that are identified by
their states, e.g. Statecharts and SITMs. The relation is
also known as the weak bisimulation, since agents’ internal
interactions that cannot be detected from outside are not
required to match exactly.

216 Int'l Conf. Foundations of Computer Science | FCS'11 |

To express a sequence of state transition behaviors for
agents, we need the following definition.

Definition 4: Let L = (S, T, { t−→ |t ∈ T}) be an LTS. If
{a1, . . . , an} ∈ T , {P0, . . . , Pn} ∈ S, we write

P0
a1−→ . . .

an−−→ Pn, (1)

if
P0

a1−→ P1
a2−→ . . .

an−−→ Pn.

We also write
P (

a1−→)∗P ′, (2)

if there is an arbitrary number of transitions labelled by a1
such that

P
a1−→ . . .

a1−→ P ′.
We may notice from Example 2, there can be transitions in

SITMs that are triggered by nothing (an empty input ϵ) from
outside. In [13], such input is considered as a silent action,
by which the transitions are labelled can execute without
awareness from outside.

Definition 5 (Bisimulation): A binary relation R ⊆ P×P
over agents is a (weak) bisimulation if (P,Q) ∈ R implies,
for all α ∈ Act,

1) Whenever P α−→ P ′ then, for some Q′,

Q(
ϵ−→)

∗ α̂−→ (
ϵ−→)

∗
Q′

and (P ′, Q′) ∈ R
2) Whenever Q α−→ Q′ then, for some P ′,

P (
ϵ−→)

∗ α̂−→ (
ϵ−→)

∗
P ′

and (P ′, Q′) ∈ R

Where P is the set of agents; Act is the set of labels;

α̂ =

{
α if α is non-silent, e.g. α ∈ Act\{ϵ},
ϵ if α = ϵ.

Based on the above definitions, we can claim the follow-
ing:

Theorem 1: For any Statechart S, there is a Sequential
Interactive Turing Machine M such that M and S satisfy
the bisimulation relation.

Proof: We prove this by providing a method to con-
struct an Sequential Interactive Turing Machine (SITM) M
for any given statechart S such that M bisimulates S. We
may consider the statechart S in Example 1.

Let M ’s input alphabet Im formed by the all the elements
of the events Es of S such that

Im = Es.

Since M ’s work tape and S’s variables are essentially
equivalent storage models, there exists a bijection between
the string on the work tape and the value of the variable,

f : Γ∗ → vs.

However, at each computing step, the work tape is allowed
to read/write only one symbol from a finite set, which is
different from operating a variable, M may require a finite
number of steps to modify its work tape in order to simulate
the change of value of vs in S.

Let M has the same number of states as S such that
there is a bijection between Qm and Qs. Note that Qm

will be expanded later. Let the initial configuration of M ,
(sm, ϵ, p0), simulates that of S, (ss, val0), where ϵ ∈ Γ∗

represents the value of the blank work tape and p0 is the
starting position of the work tape’s head, val0 ∈ vs is the
initial value of vs.

For every configuration (qs, val) ∈ (Qs, vs) of S, if and
only if ∃i ∈ Es such that

(qs, val)
i→ (q′s, val

′),

we construct a (finite sequence of) transition(s)

(qm, tm, p)(
ϵ−→)∗

i−→ (
ϵ−→)∗(q′m, t′m, p′),

in M such that ϵ is the “silent action" of M , (qm, tm, p)
simulates (qs, val) and (q′m, t′m, p′) simulates (q′s, val

′),
where

(qm, tm, p), (q′m, t′m, p′) ∈ (Qm,Γ∗, P)

and

(qs, val), (q
′
s, val

′) ∈ (Qs, vs).

The set of states Qm may be expanded after the construction
of transitions.

Since all the configurations of M are constructed to simu-
late that of S, it can be verified that for every configurations
of M , (qm, tm, p) ∈ (Qm,Γ∗, P), if there exists a transition

(qm, tm, p)
i−→ (q′m, t′m, p′),

where i ∈ Im ∪ {ϵ} and (qm, tm, p) is simulating (qs, vs) ∈
(Qs, Vs), then

1) if i ̸= ϵ, S has the configuration (q′s, v
′
s) such that

(qs, vs)
i→ (q′s, v

′
s),

where es ∈ Es is identical to im, and (q′s, v
′
s) is

simulating (q′m, t′m, p′);
2) if i = ϵ, S does not have any corresponding transition

and (qs, vs) is simulating (q′m, t′m, p′).

Theorem 2: For any SITM N , there is a Statechart T such
that T and N satisfy the bisimulation relation.

The proof for Theorem 2 has been omitted since it is
similar to the proof for Theorem 1. Now we have shown
that Statecharts and SITMs are equivalent models.

Int'l Conf. Foundations of Computer Science | FCS'11 | 217

4. Conclusions
Although much research has been done to achieve a pre-

cise semantics for Statecharts, the issues on the computation
power of statecharts have not gained much attention. In this
paper, we use an approach which is different from other
formalisms. We claim that Wegner’s Interaction Machines
are more precise models for Statecharts and we have shown
that Statecharts and Interactive Turing Machines [22] are
equivalent based on bisimulation. We believe that an accurate
and comprehensive description of statecharts will benefit the
applications of statecharts greatly, for example, providing a
more accurate description for computing objects.

References
[1] Taylor L. Booth, In book of Sequential Machines and Automata

Theory. John Wiley & Sons, (1967).
[2] Michelle L. Crane and Juergen Dingel On the semantics of UML

State machines: Categorization and Comparison Technical Report,
Queen’s University, (2005).

[3] Doron Drusinsky and David Harel. On the Power of Bounded
Concurrency I: Finite Automata, Journal of the ACM, Vol. 41, 517–
539 (1994).

[4] Dina Goldin and Peter Wegner. The interactive nature of computing:
refuting the strong Church-Turing thesis. Minds and Machines,
18(1):17–38 (2008).

[5] David Harel. Statecharts: A visual formulation for complex systems.
Science of Computer Programming, 8(3):231–274 (1987).

[6] David Harel, Hillel Kugler. The Rhapsody Semantics of Statecharts
(or, On the Executable Core of the UML) In Integration of Software
Specification Techniques for Application in Engineering, LNCS 3147,
325-354 (2001)

[7] David Harel, Hag Lachover, Amnon Naamad, Amir Pnueli, Michal
Politi, Rivi Sherman, Aharon Shtull-Trauring. STATEMATE: A work-
ing environment for the development of complex reactive systems.
IEEE Transactions on Software Engineering, Vol. 16, No. 4, 403ĺC414
(1990)

[8] D. Harel, A. Pnueli, J. P. Schmidt, and S. Sherman. On the
formal semantics of statecharts. In Proceedings of the Second IEEE
Symposium on Logic in Computation, IEEE, 54ĺC64 (1987).

[9] Tirza Hirst and David Harel. On the power of bounded concurrency
II: pushdown automata, Journal of the ACM, Vol. 41, 540–554 (1994).

[10] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata
Theory, Languages, and Computation. Addison Wesley (1979).

[11] Cornelis Huizing, Rob Gerth and Willem P. de Roever. Modeling
Statecharts Behaviour in a Fully Abstract Way. In Proceedings of the
13th Colloquium on Trees in Algebra and Programming, 271–294
(1988).

[12] Hanlin Lu and Sheng Yu. Are Statecharts Finite Automata. In
Proceedings of the 14th International Conference on Implementation
and Application of Automata, LNCS 5642, Springer, 258-261 (2009).

[13] Robin Milner. In the Book Communication and Concurrency. Printice
Hall, 88-128 (1989).

[14] David Park. Concurrency and automata on infinite sequences.
Theoretical Computer Science, LNCS 104, 167-183 (1981).

[15] Gordon D. Plotkin. A Structural Approach to Operational Seman-
tics, Report DAIMI-FN-19,Computer Science Dept, Århus University,
Denmark (1981).

[16] Amir Pnueli and M. Shalev. What is in a step: On the semantics of
statecharts. In TACS ’91: Proceedings of the International Conference
on Theoretical Aspects of Computer Software, Springer-Verlag, 244-
264 (1991).

[17] James Rumbaugh, Michael Blaha, William Premerlani, Frederick
Eddy, and William Lorensen. Object-Oriented Modeling and Design.
Prentice Hall (1991).

[18] James Rumbaugh, Ivar Jacobson and Grady Booch. Unified Modeling
Language Reference Manual, The (2nd Edition). Pearson Higher
Education (2004).

[19] Michael von der Beeek A comparison of statecharts variants.
in Formal Techniques in Real-Time and Fault-Tolerant Systems
(FTRTFT’94), LNCS 863, Springer, 128-148(1994).

[20] Peter Wegner. Why interaction is more powerful than algorithms.
Commun. ACM, 40(5):80–91 (1997).

[21] Peter Wegner. Interactive foundations of computing. Theoretical
Computer Science 192(2):315–351 (1998).

[22] Sheng Yu. The time dimension of computation models. In Book of
Where mathematics, computer science, linguistics and biology meet,
Chapter 14, 161-172 (2001).

[23] Sheng Yu. Regular Languages. In Handbook of Formal Languages,
vol. 1, edited by G. Rozenberg and A. Salomaa, Springer (1997).

218 Int'l Conf. Foundations of Computer Science | FCS'11 |

Playing Challenging Iterated Two-Person Games Well:
A Case Study on the Iterated Traveler’s Dilemma

Philip Dasler, Predrag T. Tošić
Department of Computer Science, University of Houston, Houston, Texas, USA

{philip.dasler, pedja.tosic}@gmail.com

Abstract— We study an interesting 2-player game known
as the Iterated Traveler’s Dilemma, a non-zero sum game
in which there is a large number of possible actions in
each round and therefore an astronomic number of possible
strategies overall. What makes the Iterated TD particularly
interesting is that it defies the usual prescriptions of classi-
cal game theory insofar as what constitutes an “optimal”
strategy. In particular, TD has a single Nash equilibrium, yet
that equilibrium corresponds to a very low payoff, essentially
minimizing social welfare. We propose a number of possible
strategies for ITD and perform a thorough comparison via a
round-robin tournament in the spirit of Axelrod’s well-known
work on the Prisoner’s Dilemma. We motivate the choices of
“players” that comprise our tournament and then analyze
their performance with respect to several metrics. Finally, we
share some interesting conclusions and outline directions for
future work.

Keywords: game theory, two-person non-zero-sum games,
bounded rationality, decision making under uncertainty, tourna-
ments

1. Introduction
Theoretical computer science, mathematical economics

and AI research communities have extensively studied strate-
gic interactions among two or more autonomous agents
from a game-theoretic standpoint. Game theory provides
mathematical foundations for modeling interactions among,
in general, self-interested autonomous agents that may need
to combine competition and cooperation in non-trivial ways
in order to meet their objectives [1–3]. A classical example
of such interactions is the iterated prisoner’s dilemma [4, 5],
a two-person non-zero sum game that has been extensively
studied by psychologists, sociologists, economists and po-
litical scientists, as well as mathematicians and computer
scientists.

We have been studying an interesting and complex 2-
player game known as the Iterated Traveler’s Dilemma [6–
8]. The Traveler’s Dilemma (TD) is a non-zero sum game in
which each player has a large number of possible actions.
In the iterated context, this means many possible actions
in each round and therefore (for games with many rounds)
an astronomic number of possible strategies overall. What

makes Iterated TD particularly interesting, is that its struc-
ture defies the usual prescriptions of classical game theory
insofar as what constitutes an “optimal” strategy. There are
two fundamental problems to be addressed in this context.
One is finding an optimal, or close to optimal, strategy from
the standpoint of an individual intelligent agent. This is the
“default” problem in classical game theory: finding the best
“play” for each agent participating in the game. The second
core problem is identifying pairs of strategies that would
result in an overall desirable behavior, such as maximizing
a joint utility function of some sort (i.e., appropriately
defined “social welfare”). We have been investigating both
these problems in the context of the Iterated Traveler’s
Dilemma, which has thus far received only modest attention
by the computer science research communities. In this paper,
we shed some light on the first problem above using a
round-robin, many-round tournament and several different
performance metrics. We also draw several interesting (and
possibly controversial) conclusions based on our extensive
experimentation and analyses.

The rest of this paper is organized as follows. We first de-
scribe the Traveler’s Dilemma (TD) game and motivate why
we find it interesting. We also briefly survey the prior art. We
then describe the Iterated TD round-robin tournament that
we have devised, implemented and experimented with. In
that context, we focus on the actual strategies we have cho-
sen as the participants in this tournament, and on why these
strategies are good examples of the kinds of strategies one
would expect to be “reasonable”. We then describe several
metrics that we have used as yardsticks of performance of the
various strategies involved in our round-robin tournament.
Next, we summarize our tournament results and discuss our
main findings, both those that we expected and those that we
honestly find fairly surprising. Finally, we draw conclusions
based on our analytical and experimental results to date and
outline some promising directions for future research.

2. Traveler’s Dilemma (TD)
The Traveler’s Dilemma was originally introduced by K.

Basu in 1994 [9]. The motivation behind the game was
to show the limitations of classical game theory [10], and
in particular the notions of individual rationality that stem
from game theoretic notions of “solution” or ”optimal play”

Int'l Conf. Foundations of Computer Science | FCS'11 | 219

based on well-known mathematical concepts such as Nash
equilibria [3, 9, 11]. TD is defined with the following
parable:

“An airline loses two suitcases belonging to two different
travelers. Both suitcases happen to be identical and contain
identical antiques. An airline manager tasked to settle the
claims of both travelers explains that the airline is liable for
a maximum of $100 per suitcase, and in order to determine
an honest appraised value of the antiques the manager
separates both travelers so they can’t confer, and asks them
to write down the amount of their value at no less than $2
and no larger than $100. He also tells them that if both
write down the same number, he will treat that number as
the true dollar value of both suitcases and reimburse both
travelers that amount. However, if one writes down a smaller
number than the other, this smaller number will be taken as
the true dollar value, and both travelers will receive that
amount along with a bonus/malus: $2 extra will be paid
to the traveler who wrote down the lower value and a $2
deduction will be taken from the person who wrote down
the higher amount. The challenge is: what strategy should
both travelers follow to decide the value they should write
down?”

This game has several interesting properties. Perhaps the
most striking among them is that its unique Nash equilib-
rium, the action pair (p, q) = ($2, $2), is actually rather bad
for both players. This choice of actions results in:
• very low payoff to each player individually (basically,

only slightly above the absolutely worst possible, which
is $0); and, moreover,

• it minimizes social welfare, if we understand social
welfare to simply be the sum of the two players’
individual utilities.

Yet, it has been argued [7, 9, 12] that a perfectly rational
player, according to classical game theory, would “reason
through” and converge to choosing the lowest possible value,
$2. Given that the TD game is symmetric, each player would
reason along the same lines and, once selecting $2, not
deviate from it, as unilaterally deviating from a Nash equilib-
rium is presumably bad ”by definition”. However, the non-
equilibrium pair of strategies ($100, $100) results in each
player earning $100, very near the best possible individual
payoff. Hence, the early studies of TD concluded that this
game demonstrates a woeful inadequacy of classical, Nash
Equilibrium based notions of rational behavior. It has also
been shown that humans (both game theory experts and
laymen) tend to play far from the Nash equilibrium [6], and
therefore fare much better than they would if they followed
the classical approach.

In general, basing the notion of a “solution” to a game on
Nash equilibria (NE) has been known to be tricky. Among
other things, a game may fail to have any NE (in pure
strategies), or it may have multiple Nash equilibria. TD is
interesting precisely because it has a unique pure-strategy

Nash equilibrium, yet this NE results in nearly as low a
payoff as one can get. The situation is further complicated by
the fact that the game’s only “stable” strategy pair is easily
seen to be nowhere close to Pareto optimal; there are many
obvious ways of making both players much better off than
if they play the equilibrium strategies. In particular, while
neither stable nor an equilibrium, ($100, $100) is the unique
strategy pair that maximizes social welfare (understood as
the sum of individual payoffs), and is, in particular, Pareto
optimal. So, the fundamental question arises, how can agents
learn to sufficiently trust each other so that they end up
playing this optimal strategy pair in the Iterated TD or
similar scenarios?

3. The Iterated TD Tournament
Our Iterated Traveler’s Dilemma tournament is similar

to Axelrod’s Iterated Prisoner’s Dilemma tournament [13].
In particular, it is a round-robin tournament where each
agent plays N matches against each other agent and its
own “twin”. A match consists of T rounds. In order to
have statistically significant results (esp. given that many of
our strategies involve randomization in some way), we have
selected N = 100 and T = 1000. In each round, both agents
must select a valid bid within the action space, defined as
A = {2, 3, . . . , 100}.

The method in which an agent chooses its next action
for all possible histories of previous rounds is known as a
strategy. A valid strategy is a function S that maps some set
of inputs to an action: S : · → A. In general, the input
may include the entire history of prior play, or, in the case
of bounded rationality models, an appropriate summary of
the past histories.

We next define the participants in the tournament, that
is, the set of strategies that play one-against-one matches
with each other. Let C be the set of agents competing in the
tournament: C = {c : (c ∈ S) ∧ (c is in the tournament)}.

We specify a pair of agents competing in a match as
(x, y) ∈ C. While we refer to agents as opponents or
competitors, this need not necessarily imply that the agents
act as each other’s adversaries.

We define agents’ actions as follows:

xt = the bid traveler x makes on round t.
xnt = the bid traveler x makes on round t of match n.

We next define the reward function that describes agent
payoffs. Reward per round, R : A × A → Z ∈ [0, 101],
for action α against action β, where α, β ∈ A, is defined
as R(α, β) = min(α, β) + 2 · sgn(β − α), where sgn(x)
is the usual sign function. Therefore, the total reward M :
S × S → R received by agent x in a match against y is
defined as:

M(x, y) =
T∑

t=1

R(xt, yt)

220 Int'l Conf. Foundations of Computer Science | FCS'11 |

Within a sequence of matches, the reward received by
agent x in the nth match against y shall be denoted as
Mn(x, y).

4. Strategies in the Tournament
In order to make a reasonable baseline comparison, we

chose to utilize the same strategies used by [14], ranging
from rather simplistic to relatively complex. What follows
is a brief description of the 9 classes of strategies. For a
more in depth description see [14].

Randoms: The first, and simplest, class of strategies play
a random value, uniformly distributed across a given interval.
We have implemented two instances using the following
integer intervals: [2, 100] and [99, 100].

Simpletons: The second extremely simple class of strate-
gies are agents that choose the same dollar amount in every
round. The $ values we used in the tournament were xt = 2
(the lowest possible), xt = 51 (“median”), xt = 99 (one
below maximal possible, resulting in maximal payoff should
the opponent make the highest possible bid), and xt = 100
(the highest possible).

Tit-for-Tat, in spirit: The next class of strategies are
those that can be viewed as Tit-for-Tat-in-spirit, where Tit-
for-Tat is the famously simple, yet effective, strategy for the
iterated prisoner’s dilemma [4, 5, 13, 15]. The idea behind
Tit-for-Tat is simple: cooperate on the first round, then do
exactly what your opponent did on the previous round. In
the iterated TD, each agent has many actions at his disposal,
hence there are different ways of responding appropriately in
a Tit-for-Tat manner. In general, playing high values can be
considered as an approximate equivalent of “cooperating”,
whereas playing low values is an analogue of “defecting”.
Following this basic intuition, we have defined several Tit-
for-Tat-like strategies for the iterated TD. These strategies
can be roughly grouped into two categories. First, the simple
Tit-for-Tat strategies bid some value ε below the bid made by
the opponent in the last round, where ε ∈ {1, 2}. Second,
the predictive Tit-for-Tat strategies compare whether their
last bid was lower than, equal to, or higher than that of their
opponent. Then a bid is made similar to the simple TFT
strategy, i.e. some value ε below the bid made by competitor
c in the last round, where c ∈ [x, y] and ε ∈ {1, 2}. The key
distinction is that a bid can be made relative to either the
opponent’s last bid or the bid made by one’s own strategy
itself. In essence, this strategy is predicting that the opponent
may make a bid based on the agent’s own last move and,
given that prediction, it attempts to “outsmart” the opponent.

Mixed: The mixed strategies probabilistically combine
up to three strategies. For each mixed strategy, a strategy
σ is selected from one of the other strategies defined in
the competition (i.e., σ ∈ C) for each round according to
a probability mass distribution. Once a strategy has been
selected, the value that σ would bid at time step t is bid.
We chose to use only mixtures of the TFT, Simpleton, and

Random strategies. This allowed for greater transparency
when attempting to interpret and understand the causes of a
particular strategy’s performance.

Buckets – Deterministic: These strategies keep a count
of each bid by the opponent in an array of "buckets". The
bucket that is most full (i.e., the value bid most often) is
used as the predicted value, with ties being broken by one
of the following methods: the highest valued bucket wins, the
lowest valued bucket wins, a random bucket wins, and the
most recently tied-for-the-largest bucket wins. The strategy
then bids the next lowest value below the predicted value.
An instance of each tie breaking method competed in the
tournament.

Buckets – Probability Mass Function based: As above,
this strategy class counts instances of the opponent’s bids
and uses them to predict the agent’s own next bid. Rather
than picking the value most often bid, the buckets are used to
define a probability mass function from which a prediction
is randomly selected. Values in the buckets decay over time
in order to emphasize newer data over old and we have
set a retention rate (0 ≤ γ ≤ 1) to determine the rate of
decay. We have entered into our tournament several instances
of this strategy using the following rate of retention values
γ: 0.8, 0.5, and 0.2. As above, the strategy bids the next
lowest value below the predicted value. We observe that the
“bucket” strategies based on probability mass buckets are
quite similar to a learning model in [7].

Simple Trend: This strategy looks at the previous k time
steps, creates a line of best fit on the rewards earned, and
compares its slope to a threshold δ. If the trend has a positive
slope greater than δ, then the agent will continue to play the
same bid it has been as the rewards are increasing. If the
slope is negative and |slope| > δ, then the system is trending
toward the Nash equilibrium and, thus, the smaller rewards.
In this case, the agent will attempt to maximize social
welfare and play 100. Otherwise, the system of bidding
and payouts is relatively stable and the agent will play the
“one under” strategy. We have implemented instances of this
strategy with δ = 0.5 and the following values of k: 3, 10,
and 25. While our choice of δ intuitively makes sense, we
admit that picking δ “half-way” between 0.0 and 1.0 is fairly
arbitrary.

Q-learning: This strategy uses a learning rate α to em-
phasize new information and a discount rate γ to emphasize
future gains. In particular, the learners in our tournament
are simple implementations of Q-learning [16] as a way
of predicting the best action at time (t + 1) based on the
action selections and payoffs at times {1, 2, ..., t}. This is
similar to the Friend-or-Foe Q-learning method [17] without
the limitation of having to classify the allegiance of one’s
opponent.

Due to scaling issues, our implementation of Q-learning
does not capture the entire state/action space but rather
divides it into a small number of meaningful classes, namely,

Int'l Conf. Foundations of Computer Science | FCS'11 | 221

three states and three actions, as follows:
State: The opponent played higher, lower, or equal to our

last bid.
Action: Play one higher than, one lower than, or equal to

our previous bid.
Recall that actions are defined for a single round. Our

implementation treats each state as a collection of moves by
the opponent over the last k rounds. We have decided to
use 5 as an arbitrary value for k as it allows us to capture
some history without data sizes becoming unmanageable.
We have implemented this basic Q-learning algorithm with
the learning rates of 0.8, 0.5 and 0.2, and with discount
rates of 0.0 and 0.9, for a total of 6 different variations of
Q-learning.

Zeuthen Strategies: A Zeuthen Strategy [18] calculates
the level of risk of each agent, and makes concessions
accordingly. Risk is the ratio of loss from accepting the
opponent’s proposal to the loss of forcing the conflict deal
(the deal made when no acceptable proposal can be found).
While ITD is not a strict negotiation, we treat each bid as
a proposal. If xt = i, then X is proposing (i, i+ 1) be the
next action pair. For the Traveler’s Dilemma, we consider
the conflict deal to be the Nash Equilibrium at ($2, $2).

Given the proposals of each agent, a risk comparison is
done. An agent will continue to make the same proposal
while its risk is greater than or equal to its opponent’s. Other-
wise, the agent will make the minimal sufficient concession,
i.e. the agent adjusts its proposal so that (i) the agent’s risk is
higher than that of its opponent and (ii) the opponent’s utility
increases as little as possible. Due to the peculiar structure
of the Iterated TD game, it is possible for the “concession”
to actually lead to a loss of utility for the opponent. We
have therefore implemented two variations: one that allows
a negative concession and one that does not.

5. Utility metrics
In order to classify a particular strategy as better than

another, one needs to define the metric used to make this
determination. Our experimentation and subsequent analysis
were performed with respect to four distinct utility metrics.
The first, U1, treats the actual dollar amount as the direct
payoff to the agent. This is the most common metric in the
game theory literature; prior art on Iterated TD generally
considers only this metric or some variant of it. In contrast,
U2 is a “pairwise victory” metric: an agent strives to beat its
opponent, regardless of the actual dollar amount it receives.
Finally, we introduce two additional metrics, U3 and U ′3, that
attempt to capture both the payoff (dollar amount) that an
agent has achieved, and the “opportunity lost” due to not
playing differently. In a sense, both of these metrics attempt
to quantify how much an agent wins compared to how much
an omniscient agent (i.e., one that always correctly predicts
the other agent’s bid) would be able to win. To be clear, the
assumption here is one of omniscience, not omnipotence:

an “ideal” omniscient agent is still not able to actually force
what the other agent does.
Total reward: U1

This metric captures the overall utility rewarded to the
agent. It is simply a sum of all money gained, normalized
by the total number of rounds played and the maximum
allowable reward. It is defined as follows:

U1(x) =
1

|C|
∑
j∈C

[
1

max(R)NT

N∑
n=1

Mn(x, j)

]
where:
• max(R) is the maximum possible reward given in one

round;
• N is the number of matches played between each pair

of competitors;
• T is the number of rounds to be played in each match;

and
• |C| is the number of competitors in the tournament.

Pairwise Victory Count : U2

This metric captures the agent’s ability to do better than
its opponents on a match per match basis. The metric itself is
essentially the difference between matches won and matches
lost. The result is normalized and 0.5 is added in order to
bring all values inside the range [0.0, 1.0]. It is defined as
follows:

U2(x) = 0.5+
1

2|C|
∑
j∈C

[
1

N

N∑
n=1

sgn(Mn(x, j)−Mn(j, x))

]
where:
• N is the number of matches played between each pair

of competitors;
• |C| is the number of competitors in the tournament.
The intent of this metric is to capture a strategy’s ability

to “outsmart” its opponent, regardless of the possibility of a
Pyrrhic victory.
Perfect Score Proportion : U3

This metric attempts to capture the level of optimality of
an agent, where both the achieved payoff and the missed op-
portunity for yet higher payoff (based on what the opposing
agent does) are taken into account. The metric captures these
two aspects of performance by keeping a running total of
the lost reward ratio. This is the ratio of the reward received
to the best possible reward, given what the opponent has
played. The resulting sum is then normalized by the total
number of rounds played. The metric is formally defined as
follows:

U3 =
1

|C|
∑
j∈C

[
1

N

N∑
m=1

(
1

T

T∑
t=1

R(xmt, jmt)

R(max(2, (jmt − 1)), jmt)

)]
where:

222 Int'l Conf. Foundations of Computer Science | FCS'11 |

• N is the number of matches played between each pair
of competitors

• T is the number of rounds to be played in each match
• |C| is the number of competitors in the tournament

During the course of our work, it has been observed that this
metric tends to be biased in favor of strategies that overbid.
When overbidding, the difference between the reward re-
ceived and the optimal reward is at worst 4. Thus, regardless
of by how much an agent overbids, the lost reward ratio
remains relatively small.
Perfect Bid Proportion : U ′3

This metric is another attempt to capture the level of
optimality of the agent, but without the overbid bias. It does
so by keeping a running total of the bid imperfection ratio.
This is the difference between the agent’s bid and the ideal
bid, given what the opponent has played, divided by the
greatest possible difference in bids. Since we want to look
favorably upon a smaller difference, this value is subtracted
from 1. This sum is then normalized using the total number
of rounds played. The metric is defined as follows:

U ′3 =
1

|C|
∑
j∈C

[
1

N

N∑
m=1

(
1

T

T∑
t=1

[
1− |xmt − (jmt − 1)|

max(A)−min(A)

])]
where:
• N is the number of matches played between each pair

of competitors;
• T is the number of rounds to be played in each match;
• |C| is the number of competitors in the tournament.

6. Results and Analysis
The Traveler’s Dilemma Tournament that we have experi-

mented with involves a total of 38 competitors (i.e., distinct
strategies). Each competitor plays each other competitor (in-
cluding its own “twin”) 100 times. Each match is played for
1000 rounds. No meta-knowledge or knowledge of the future
is allowed: learning and adaptation of those agents whose
strategies are adaptable takes place exclusively based on the
previous rounds in a match against a given opponent without
a priori knowledge of that opponent. For definitions of the
shorthand notation used in the sequel, see [14]. Throughout
the rest of the paper, we assume the default version of ITD:
the space of allowable bids is the interval of integers [2,
100], granularity of bids is 1, and the Bonus/Malus is equal
to 2.

[Note: due to space constraints, we do not include the
tabulated tournament results with respect to metric U ′3.]

The top three performers in our tournament, with respect
to the earned dollar amount as the bottom line (metric
U1), are three “dumb” strategies that always bid very high.
Interestingly enough, randomly alternating between the high-
est possible bid ($100) and “one under” the highest bid
($99) slightly outperforms both “always max. possible” and
“always one under max. possible” strategies. We find it

Table 1: Ranking Based on U1
0.760787 Random [99, 100]
0.758874 Always 100
0.754229 Always 99
0.754138 Zeuthen Strategy - Positive
0.744326 Mixed - L(y-g) E(x-g) H(x-g), 80%); (100, 20%)
0.703589 Simple Trend - K = 3, Eps = 0.5
0.681784 Mixed - TFT (y-1), 80%); (R[99, 100], 20%)
0.666224 Simple Trend - K = 10, Eps = 0.5
0.639572 Simple Trend - K = 25, Eps = 0.5
0.637088 Mixed - L(x) E(x) H(y-g), 80%); (100, 20%)
0.534378 Mixed - L(y-g) E(x-g) H(x-g), 80%); (100, 10%); (2, 10%)
0.498134 Q Learn - alpha= 0.2, discount= 0.0
0.497121 Q Learn - alpha= 0.5, discount= 0.0
0.496878 Q Learn - alpha= 0.5, discount= 0.9
0.495956 Q Learn - alpha= 0.2, discount= 0.9
0.493640 Q Learn - alpha= 0.8, discount= 0.0
0.493639 Buckets - (Fullest, Highest)
0.493300 Q Learn - alpha= 0.8, discount= 0.9
0.492662 TFT - Low(y-g) Equal(x-g) High(x-g)
0.452596 Zeuthen Strategy - Negative
0.413992 Buckets - PD, Retention = 0.5
0.413249 Always 51
0.412834 Buckets - PD, Retention = 0.2
0.408751 Buckets - PD, Retention = 0.8
0.406273 Buckets - (Fullest, Random)
0.390303 TFT - Simple (y-1)
0.387105 Buckets - (Fullest, Newest)
0.334967 Buckets - (Fullest, Lowest)
0.329227 TFT - Simple (y-2)
0.316201 Random [2, 100]
0.232063 Mixed - L(y-g) E(x-g) H(x-g), 80%); (2, 20%)
0.164531 Mixed - L(x) E(x) H(y-g), 80%); (100, 10%); (2, 10%)
0.136013 TFT - Low(x) Equal(x) High(y-g)
0.135321 TFT - Low(x) Equal(x-2g) High(y-g)
0.030905 TFT - Low(x-2g) Equal(x) High(y-g)
0.030182 TFT - Low(x-2g) Equal(x-2g) High(y-g)
0.026784 Mixed - L(x) E(x) H(y-g), 80%); (2, 20%)
0.024322 Always 2

somewhat surprising that the performance of Tit-for-Tat-
based strategies varies so greatly depending on the details
of bid prediction method and metric choice. So, while a
relatively complex TFT-based strategy that, in particular,
(i) makes a nontrivial model of the other agent’s behavior
and (ii) “mixes in” some randomization, is among the top
performers with respect to metric U1, other TFT-based
strategies have fairly mediocre performance with respect
to the same metric, and are, indeed, scattered all over the
tournament table. In contrast, if metric U3 is used, then the
simplest, deterministic ”one under what the opponent did on
the previous round” TFT strategy, which is a direct analog of
the famous TFT in Axelrod’s Iterated Prisoner’s Dilemma, is
the top performer among all 38 strategies in the tournament
– while more sophisticated TFT strategies, with considerably
more complex models of the opponent’s behavior and/or
randomization involved, show fairly average performance.
Moreover, if U3 is used as the yardstick, then (i) 3 out of the
top 4 performers overall are TFT-based strategies, and (ii) all
simplistic TFT strategies outperform all more sophisticated
ones.

Not very surprisingly, the top (and bottom) performers
with respect to metric U1 and those with respect to U2 are
practically inverted; so, for example, the very best performer

Int'l Conf. Foundations of Computer Science | FCS'11 | 223

Table 2: Ranking Based on U2
0.984342 Always 2
0.924474 TFT - Low(x-2g) Equal(x-2g) High(y-g)
0.915263 TFT - Low(x-2g) Equal(x) High(y-g)
0.887500 Mixed - L(x) E(x) H(y-g), 80%); (2, 20%)
0.845132 TFT - Simple (y-2)
0.839868 TFT - Low(x) Equal(x-2g) High(y-g)
0.832368 TFT - Low(x) Equal(x) High(y-g)
0.791842 TFT - Simple (y-1)
0.727105 Buckets - PD, Retention = 0.2
0.681842 Mixed - L(x) E(x) H(y-g), 80%); (100, 20%)
0.669079 Mixed - L(y-g) E(x-g) H(x-g), 80%); (2, 20%)
0.653816 Buckets - PD, Retention = 0.5
0.629605 Mixed - L(x) E(x) H(y-g), 80%); (100, 10%); (2, 10%)
0.622632 TFT - Low(y-g) Equal(x-g) High(x-g)
0.616711 Buckets - PD, Retention = 0.8
0.558158 Mixed - TFT (y-1), 80%); (R[99, 100], 20%)
0.557368 Buckets - (Fullest, Newest)
0.539342 Simple Trend - K = 25, Eps = 0.5
0.528421 Buckets - (Fullest, Lowest)
0.491842 Random [2, 100]
0.483684 Simple Trend - K = 10, Eps = 0.5
0.480789 Buckets - (Fullest, Random)
0.463816 Buckets - (Fullest, Highest)
0.455000 Mixed - L(y-g) E(x-g) H(x-g), 80%); (100, 10%); (2, 10%)
0.407500 Simple Trend - K = 3, Eps = 0.5
0.303158 Mixed - L(y-g) E(x-g) H(x-g), 80%); (100, 20%)
0.260263 Q Learn - alpha= 0.5, discount= 0.0
0.255658 Q Learn - alpha= 0.8, discount= 0.0
0.253289 Q Learn - alpha= 0.8, discount= 0.9
0.252763 Q Learn - alpha= 0.2, discount= 0.0
0.249605 Q Learn - alpha= 0.5, discount= 0.9
0.247237 Q Learn - alpha= 0.2, discount= 0.9
0.200000 Always 51
0.183289 Zeuthen Strategy - Negative
0.092368 Always 99
0.066711 Random [99, 100]
0.040789 Zeuthen Strategy - Positive
0.013289 Always 100

with respect to U2 is the strategy “always bid $2” (which
also happens to be the only non-dominated strategy in
the classical game theoretic-sense). On the other hand, the
three best performers with respect to U1 are all among
the four bottom performers with respect to U2, with the
only strategy that may maximize social welfare (bidding
$100 against a collaborative opponent) falling at the rock
bottom of the U2 ranking. The main conclusion we draw
from this performance inversion is that when a two-player
game has a structure that makes it very far from being zero-
sum, the traditional precepts from classical game theory
on what constitutes good strategies are more likely to fail.
This does not mean to suggest that classical game theory is
useless; rather, we’d argue that the appropriate quantitative,
mathematical models of rationality for zero-sum, or nearly
zero-sum, encounters aren’t necessarily the most appropriate
notions for games that are rather far from being zero-sum.

Returning to our tournament results, what we have found
very surprising is the relative mediocrity of the learning
based strategies: Q-learning based strategies did not excel
with respect to any of the four metrics we studied. On the
other hand, it should be noted that the adaptability of Q-
learning based strategies apparently ensures that they do not
do too badly overall, regardless of the choice of metric.

Table 3: Ranking Based on U3
0.973118 Buckets - PD, Retention = 0.2
0.970587 Buckets - PD, Retention = 0.5
0.970356 TFT - Simple (y-1)
0.968923 Simple Trend - K = 10, Eps = 0.5
0.967860 TFT - Low(y-g) Equal(x-g) High(x-g)
0.965654 TFT - Simple (y-2)
0.962212 Simple Trend - K = 3, Eps = 0.5
0.959252 Buckets - PD, Retention = 0.8
0.955886 Simple Trend - K = 25, Eps = 0.5
0.953725 Buckets - (Fullest, Newest)
0.945405 Buckets - (Fullest, Random)
0.945222 Buckets - (Fullest, Lowest)
0.943694 Buckets - (Fullest, Highest)
0.919699 Mixed - TFT (y-1), 80%); (R[99, 100], 20%)
0.908562 Mixed - L(y-g) E(x-g) H(x-g), 80%); (2, 20%)
0.899511 Mixed - L(x) E(x) H(y-g), 80%); (100, 20%)
0.864914 TFT - Low(x) Equal(x) High(y-g)
0.863831 TFT - Low(x) Equal(x-2g) High(y-g)
0.823397 Mixed - L(y-g) E(x-g) H(x-g), 80%); (100, 20%)
0.822670 Random [99, 100]
0.820128 Always 99
0.818674 Always 100
0.817728 Zeuthen Strategy - Positive
0.803646 Q Learn - alpha= 0.2, discount= 0.9
0.801725 Q Learn - alpha= 0.5, discount= 0.0
0.801380 Q Learn - alpha= 0.2, discount= 0.0
0.800006 Q Learn - alpha= 0.5, discount= 0.9
0.798992 TFT - Low(x-2g) Equal(x) High(y-g)
0.798681 TFT - Low(x-2g) Equal(x-2g) High(y-g)
0.798417 Always 2
0.798402 Q Learn - alpha= 0.8, discount= 0.9
0.798277 Mixed - L(x) E(x) H(y-g), 80%); (2, 20%)
0.797728 Q Learn - alpha= 0.8, discount= 0.0
0.758573 Mixed - L(x) E(x) H(y-g), 80%); (100, 10%); (2, 10%)
0.751044 Mixed - L(y-g) E(x-g) H(x-g), 80%); (100, 10%); (2, 10%)
0.741721 Always 51
0.521901 Zeuthen Strategy - Negative
0.518840 Random [2, 100]

Furthermore, the choice of the learning rate seems to make
very little difference: for each of the four metrics, all three
Q-learning based strategies show similar performance, and
hence end up ranked adjacently or almost adjacently.

Another interesting result is the performance of Zeuthen-
based strategies. ITD as a strategic encounter is not of a
negotiation nature, hence we have been criticized for even
considering Zeuthen-like strategies as legitimate contenders
in our tournament. However, excellent performance of the
Zeuthen strategy with positive concessions only (at least
w.r.t. the “bottom line” metric U1) validates our approach.
Interestingly enough, the same strategy does not perform
particularly well w.r.t. metric U3. It is worth noting, how-
ever, that the only three strategies that outperform Zeuthen-
positive with respect to U1 perform similarly to Zeuthen-
positive with respect to U3. Those strategies perform only
slightly better than Zeuthen and way below the best perform-
ers with respect to U3, namely, the bucket-based, simplistic
TFT-based, and simple-trend-based strategies.

Finally, given the performance of Zeuthen-negative (the
variant allowing negative “concessions”) with respect to all
metrics, it appears that “enticing” the opponent to behave
differently indeed does not work when the “concessions” are
not true concessions. Intuitively, this makes a perfect sense;

224 Int'l Conf. Foundations of Computer Science | FCS'11 |

our simulation results provide an experimental validation of
that common-sense intuition.

Due to space constraints, further analysis of our tourna-
ment results is left for the future work.

7. Summary and Future Work
We study the Iterated Traveler’s Dilemma two-player

game by designing, implementing and analyzing a round
robin tournament with 38 distinct participating strategies.
Our detailed analysis of the performance of various strategies
with respect to several different metrics has corroborated
that, for a game whose structure is far from zero-sum, the tra-
ditional game-theoretic notions of rationality and optimality
may turn out to be rather unsatisfactory. Our investigations
raise several interesting questions, among which we are
particularly keen to further investigate the following:

(i) To what extent simple models of reinforcement learn-
ing, such as Q-learning, can be really expected to help
performance?

(ii) To what extent complex models of the other agent
really help an agent increase its payoff in the repeated play?

(iii) Why are performances of various TFT-based strate-
gies so broadly different from each other? This opens
up interesting questions from meta-learning [19, 20] and
meta-reasoning standpoints: how can one design TFT-based
strategies that are likely to do well across tournaments (that
is, choices of opponents) and across performance metrics.

(iv) What effects on strategies and their performance
would an adjustment in the bonus/malus have? For prior
research on how human behavior changes with a change in
bonus/malus, see [7] and [12].

In our future work, in addition to more detailed analysis of
the existing strategies and study of some new ones, we plan
to pursue a systematic comparative analysis of how groups
of closely related strategies perform against each other when
viewed as teams. We also plan to further investigate other
notions of game equilibria, and try to determine which such
notions adequately capture what our intuition would tell us
constitutes good ways of playing the iterated TD and other
‘far-from-zero-sum” two-player games.

References
[1] J. S. Rosenschein and G. Zlotkin, Rules of en-

counter: designing conventions for automated negotia-
tion among computers. MIT Press, 1994.

[2] S. Parsons and M. Wooldridge, “Game theory and
decision theory in Multi-Agent systems,” Autonomous
Agents and Multi-Agent Systems, vol. 5, pp. 243–254,
2002.

[3] M. Wooldridge, An Introduction to MultiAgent Systems.
John Wiley and Sons, 2009.

[4] R. Axelrod, “Effective choice in the prisoner’s
dilemma,” Journal of Conflict Resolution, vol. 24,
no. 1, pp. 3 –25, Mar. 1980.

[5] ——, “The evolution of cooperation,” Science, vol.
211, no. 4489, pp. 1390–1396, 1981.

[6] T. Becker, M. Carter, and J. Naeve, “Experts playing
the traveler’s dilemma,” Department of Economics,
University of Hohenheim, Germany, Tech. Rep., Jan.
2005.

[7] C. M. Capra, J. K. Goeree, R. Gómez, and C. A. Holt,
“Anomalous behavior in a traveler’s dilemma?” The
American Economic Review, vol. 89, no. 3, pp. 678–
690, Jun. 1999.

[8] M. Pace, “How a genetic algorithm learns to play
traveler’s dilemma by choosing dominated strategies
to achieve greater payoffs,” in Proc. of the 5th inter-
national conference on Computational Intelligence and
Games, 2009, pp. 194–200.

[9] K. Basu, “The traveler’s dilemma: Paradoxes of ra-
tionality in game theory,” The American Economic
Review, vol. 84, no. 2, pp. 391–395, May 1994.

[10] J. V. Neumann and O. Morgenstern, Theory of games
and economic behavior. Princeton Univ. Press, 1944.

[11] K. Basu, “The traveler’s dilemma,” Scientific American
Magazine, Jun. 2007.

[12] J. K. Goeree and C. A. Holt, “Ten little treasures
of game theory and ten intuitive contradictions,” The
American Economic Review, vol. 91, no. 5, pp. 1402–
1422, Dec. 2001.

[13] R. Axelrod, The evolution of cooperation. Basic
Books, 2006.

[14] P. Dasler and P. Tosic, “The iterated traveler’s dilemma:
Finding good strategies in games with “bad” structure:
Preliminary results and analysis,” in 8th Euro. Work-
shop on Multi-Agent Systems, EUMAS’10, Dec 2010.

[15] A. Rapoport and A. M. Chammah, Prisoner’s
Dilemma. Univ. of Michigan Press, Dec. 1965.

[16] C. Watkins and P. Dayan, “Q-learning,” Machine
Learning, vol. 8, no. 3-4, pp. 279–292, 1992.

[17] M. L. Littman, “Friend-or-Foe q-learning in General-
Sum games,” in Proc. of the 18th Int’l Conf. on
Machine Learning. Morgan Kaufmann Publishers Inc.,
2001, pp. 322–328.

[18] F. F. Zeuthen, Problems of monopoly and economic
warfare / by F. Zeuthen ; with a preface by Joseph A.
Schumpeter. London: Routledge and K. Paul, 1967,
first published 1930 by George Routledge & Sons Ltd.

[19] R. Sun, “Meta-Learning processes in Multi-Agent sys-
tems,” Proceedings of Intelligent Agent Technology, pp.
210—219, 2001.

[20] P. T. Tosic and R. Vilalta, “A unified framework for
reinforcement learning, co-learning and meta-learning
how to coordinate in collaborative multi-agent sys-
tems,” Procedia Computer Science, vol. 1, no. 1, pp.
2211–2220, May 2010.

Int'l Conf. Foundations of Computer Science | FCS'11 | 225

226 Int'l Conf. Foundations of Computer Science | FCS'11 |

