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Abstract: In the data preparation phase of a data mining task the 

raw, fine granulated data has to be transformed according to 

analytical aims into a more compact form in order to represent data 

at a higher abstraction level suitable for machine processing and 

human understanding as well. Vast datasets require sophisticated, 

out-of-core methods, which are prepared to handle these datasets 

using external storages during their execution. In this paper we 

investigate different pre-processing approaches to overcome the 

limitation of the size of the main memory from theoretical and 

practical points of view. We propose possible alternatives for 

different processing scenarios. Both of the proposed out-of-core 

algorithms are capable of processing datasets which are by orders of 

magnitude larger than the main memory; all this is done in a fault-

tolerant way and even on an average PC. 

Keywords: out-of-core methods; data preparation; Periodic 

Partial Result Merging, K-way Merge based Technique; performance 

analysis  

1 Introduction and motivation 

Data mining, an interdisciplinary field of science has the 
aim of revealing the knowledge from datasets, which are not 
suitable for human understanding due their high cardinality and 
high dimensionality. A data mining tasks consists of different 
steps, one of which is data preparation. After determining the 
objective of the whole data mining process, in the data 
preparation phase the raw dataset has to be transformed 
according to analytical aims into a higher abstraction level 
form. The transformed data can be cleaned, filtered, separated 
and then an actual data mining method (e.g. classification, 
clustering, time series analysis, etc) can be performed on the 
prepared dataset.  

The transformation of the dataset usually cannot be avoided 
in data mining tasks in transaction based systems. In these 
system the primary goal, and the organizing scheme of the 
whole dataset, is to fulfill the requests of users. It is also typical 
that some meta-information related to the requests are usually 
stored in form of log files. Such log files contains in raw form 
of raw data different behaviors, frequent patterns, which are the 
typical targets of data mining based knowledge revealing. To 
serve the large number of user requests as soon as possible the 
logging in such systems must happen in a quick way. In 
everyday workflow there is no time for a long logging 
operation, thus the logs typically store elementary data. Beside 

the significant time constraint for logging we do not necessarily 
know in advance what kind of analytical task will be executed, 
thus what kind of data representation to use. Consequently 
there is no guarantee that a transformation between two high 
abstraction level datasets can be done. Because of these 
arguments the logging typically happens at a low abstraction 
level. 

The log requires a pre-processing which can consume 
significant portion of the whole data mining process; data 
preparation is one of the most time-consuming tasks regarding 
the different phases of a data mining task [1]. The acceleration 
of the whole data mining analysis can be achieved with the 
speed-up and optimization of data preparation step. The bigger 
the dataset is the more emphasized the efficient data 
preparation task should be.  

In Web analytics the log analysis is a frequently applied 
technique, when datasets based on server side logs are 
analyzed. The principle of storage at low abstraction level 
presented in the previous paragraph is reasonable in the case of 
log file analysis as well. The log files store the elementary data 
belonging to the interactions of the users (e.g. the timestamp of 
the request or the type of the browser, which initiated the user 
request, operating system, etc). With cookie-based techniques 
the users can be tracked and a profile can be derived, which 
describes the behavior of the user [2][3]. It is not the specific 
profiles that are important for content providers, but the typical 
groups of users, which is valuable information for them. To 
identify the typical user groups we can apply clustering, which 
has the aim of detecting the typical groups, but before this, the 
raw dataset must be transformed into an analyzable form.  

Our research is motivated by a real life project dealing with 
Web log mining. This paper focuses on the performance 
analysis and on factors which determine the execution time of 
out-of-core methods. The profiles about the temporal behavior 
of users are derived from a dataset containing more than 6 
billion records about the temporal behavior of users. Based on 
the user identifier and on the timestamp of the request a 
complex structure has to be derived, a temporal profile created 
by aggregating the clicks belonging to the same user. Such a 
huge cardinality calls for out-of-core methods in order to 
process the raw dataset. The fact, that a log belonging only to a 
single month contains more than 6 billion records supports the 
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need for out-of-core processing for analysis over a longer 
period of time. The proposed algorithms, the Periodic Partial 
Result Merging and K-way Merge based Technique are 
scalable, out-of-core methods, capable of process datasets 
several times bigger than the main system memory. 

The organization of this paper is as follows: Section 2 
presents the properties of methods dealing with large datasets 
and the state-of-the-art scientific approaches in this field. 
Section 3 introduces two novel out-of-core approaches, their 
execution time analysis compared to execution complexities of 
other approaches and the execution time determining factors of 
algorithms. Section 4 shows the results of algorithms measured 
on real datasets, while the last section summarizes our work 
and presents possible further work. 

2 Related work 

Although the amount of available memory has been 

significantly increasing during the past decades, handling 

large datasets is a still challenging problem in environments 

limited by. In this paper a dataset is regarded large, if it does 

not fit in the main memory at the same time. During the 

evolution of computers this size is continuously varying. In 

computer-related literature several approaches were published 

how to handle such vast datasets. 

Creating a representative subset of the original dataset 

based on statistical sampling is a frequently applied method to 

solve the problem of limited memory. With simple random 

sampling or a more sophisticated sampling technique (e.g. 

stratified sampling) a dataset can be generated which has very 

similar statistical properties to the original dataset. Thus, 

according to our assumption the processed datasets will share 

similar statistical properties as the result of the original 

dataset. But from a sample-based dataset only a partial result 

can be generated; this fact makes this method inappropriate for 

problems requiring results based on the whole dataset (e.g. 

aggregation). 

Another approach to overcome the limited memory issue is 

the compression of the dataset. This technique is based on the 

idea, that the redundancy of the dataset makes it 

unmanageable large. According to information theory, there is 

a lower bound of compression, thus in general there is no 

guarantee that the compressed dataset will in fact fit in the 

main memory. The compression of a dataset can be done using 

specific data structures which can have other favorable 

properties as well, like in [4][5][6]. Another issue related to 

the compression is whether such external data structures can 

be designed that have a similar I/O performance as the 

uncompressed structures [7]. A compressed, external data 

structure, with competitive I/O performance could further 

accelerate the data preparation step. 

If we have to process large datasets by orders of magnitude 

larger than the size of main memory out-of-core methods can 

be a well-scalable solution. Out-of-core methods make the 

processing even in a memory limited environment possible by 

the usage of secondary storages (e.g. hard disks). These 

methods follow a partitioning principle, which means that the 

original dataset is processed in smaller blocks, resulting partial 

processed sets, from which the global result can be obtained. 

Due to the high cardinality of dataset the principle is 

applicable so that the partial results are stored on a secondary 

storage, freeing the main memory for processing another 

block. 

In out-of-core literature we can find several techniques for 

generation of global result from the partial results: the global 

result of some problems can be generated as the union of the 

partial result sets, as presented in [8][9][10]. For other 

problems a merging can be the applicable technique to 

determine the global dataset from partial results [11][12]. In 

other cases a more complex algorithm has to be performed to 

derive the global result [13]. 

We have approaches which solve the memory limited 

issues using secondary storages. In this paper we discuss the 

performance analysis of these methods and an essential factor 

of the out-of-core methods can be observed even in conceptual 

phase. If we take a look at the up-to-date computer 

architecture a crucial runtime determining factor can be 

pointed out: accessing a secondary storage lasts more than 

accessing the same data being actually held in main memory. 

This factor influences the efficiency of processing, resulting 

that in an out-of-core method the number of I/O instructions 

should be kept at a minimum level.  

This requirement of minimal I/O instructions is essential 

from another point of view as well: the raw datasets are 

generated in an automated way, continuously, thus it is needed 

to avoid the extrusion of the raw data. This could be done by 

assuring that the procedural steps have linear time complexity, 

which in general cannot be satisfied. But if we keep the I/O 

instructions at the lowest level the performance of the 

processing will be still efficient to avoid data extrusion.  

Based on the two previous points the core-efficiency of the 

out-of-core methods depends on whether they read only 

constant times the input dataset or not. 

Before applying an out-of-ore method the block size has to 

be chosen: the successively, equal-sized partitioning is a 

trivial, but working method [11][12][14]. But according to [9] 

a sophisticated partitioning approach can have performance 

increasing effect. The carefully chosen size is an important 

performance determining factor, because with it the consumed 

memory can be controlled. An eager, in-memory algorithm 

will be presented in this paper to demonstrate the undesirable 

behavior of the processing when the main memory reaches its 

physical bounds. 

3 Out-of-core processing methods 

In this paragraph five different processing approaches are 
presented, together with their runtime complexity analysis and 
the resulting factors. First we discuss an in-memory algorithm, 
which have a major shortcoming assuming that processed data 
will fit in the main memory at the same time. Two different 
extension ways will be presented to overcome the problem of 
limited memory: dataset modification (sampling, compression) 
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and out-of-core methods (Periodic Partial Result Merging and a 
K-way based Merging). 

3.1 An eager method 

In order to illustrate the weaknesses of an in-memory 
algorithm an eager processing method is presented in this 
paper. This method is not only important because demonstrates 
the incapability of the eager approach, but its out-of-core 
extensions are the base of the other algorithms. Although the 
name of the algorithm suggests that this approach is not a 
sophisticated one, still some facts have to be taken into 
consideration to build an efficient core approach. During the 
aggregation we have to find one specific element among 
millions of others, thus a very fast searchable container is 
needed. This container will be held in the main memory and 
this will be refreshed periodically. A well-scaled hash-based 
container makes the search fast (O(1)). The eager method 
works as follows: at every procedural step the hash-based 
container is updated and when the processing is done, the hash-
based container from the main memory is saved to a persistent 
storage (hard disk). 

Assuming that our dataset contains n records, partitioned 
equally-sized (a block contains m records), the number of 

blocks created with partitioning is  𝑠 =  
𝑛

𝑚
 . A further 

assumption is that from an 𝑥 sized dataset 𝛼 𝑥 will be the size 
of the resulting dataset, where 𝛼 ≪ 1. Investigating the disk 
complexity of the eager method, we have to read all s pieces of 
blocks from hard disk and write the aggregated dataset back to 
it, expressed by the following formula: 

𝑐𝑑𝑖𝑠𝑘 =  𝑚

𝑠

𝑖=1

+ 𝛼 𝑛 =  1 + 𝛼  𝑛 (1.1) 

Similarly, the procedural complexity can be calculated 
based on the following expression 

𝑐𝑝𝑟𝑜𝑐 =  𝑓(𝑚)

𝑠

𝑖=1

= 𝑔 𝑚 𝑛, (1.2) 

where g(m) is a monotonically increasing function, expressing 
the time of processing of an m sized block. As the formulas 
suggests this is a fast method, but its applicability is limited 
due to immense memory need of the algorithm, bounded only 
by the size of the processed dataset. 

3.2 Sampling 

In some cases sampling could be a possible solution for a 
large dataset. This algorithm samples the block and picks up an 
m’ sized dataset, so that the whole sample will fit in the main 
memory and then the eager method can be done on it. 
Assuming a 𝛾 sampling ratio  𝛾 < 1  the disk and processing 
complexity of the algorithm can be expressed as follows.  

𝑐𝑑𝑖𝑠𝑘 =  𝑚′

𝑠

𝑖=1

+ 𝛼 ∙ 𝛾 ∙ 𝑛 =  1 + 𝛼  𝛾 ∙ 𝑛 (2.1) 

𝑐𝑝𝑟𝑜𝑐 =  𝑓(𝑚′)

𝑠

𝑖=1

= 𝛾 ∙ 𝑔 𝑚′ 𝑛 (2.2) 

The incompleteness of the resulting dataset makes this 
algorithm inappropriate for our aggregation problem, although 
the complexities are reduced. 

3.3 Compression 

Compressing the resulting datasets could mean another 
approach to handle a vast dataset: here the processing is done 
according to eager method, but every partial result is 
compressed in the memory. Assuming a compression ratio of   
𝜂,  𝜂 < 1  the disk and processing complexity of this approach 
is as follows 

𝑐𝑑𝑖𝑠𝑘 =  𝑚

𝑠

𝑖=1

+ 𝛼 ∙ 𝑛′ =  1 + 𝛼 ∙ 𝜂 𝑛 (3.1) 

𝑐𝑝𝑟𝑜𝑐 =  𝑓(𝑚)

𝑠

𝑖=1

= 𝑔′ (𝑚)𝑛, (3.2) 

where g’(m) denotes the time needed to process an m-sized 
dataset and to compress it. This approach has the same problem 
like the eager method, namely the memory constraint, because 
there is no guarantee that the compressed dataset will fit in the 
main memory. Furthermore the processing algorithm should be 
able to handle compressed data structures, which lead to 
additional runtime. 

3.4 Periodic Partial Result Merging 

The Periodic Partial Result Merging algorithm processes 
only smaller sized datasets at the same time in the main 
memory, creating a local result on the storage [15][16]. After 
processing the first dataset the result is saved to the storage, 
while in other steps the actual partial result is merged with the 
existing one from the disk. In this approach the local results are 
propagated during the phases of processing, and they are 
merged after finishing the processing of a block.  After the last 
merging the resulting dataset will be the global result. The 
processing of a data block is done according to the eager 
method, but here a block fits in the main memory. An essential 
step in whole processing is the merging phase. In order to 
elaborate an efficient working version of the algorithm, an 
ordering is needed, defined on processed datasets, this ensuring 
a minimal additional execution time, caused by merging.  

Having the same assumption regarding the cardinalities, the 
disk complexity and the processing complexity can be 
expressed as follows: 

𝑐𝑑𝑖𝑠𝑘 =  𝑚

𝑠

𝑖=1

 1 + 𝛼𝑖 2𝑖 − 1  ≈ 𝑛 +
𝛼 

𝑚
𝑛2 (4.1) 
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Figure 1. The runtime of different versions of Periodic Partial Result Merging 

 

 

 

 

𝑐𝑝𝑟𝑜𝑐 =   𝑓 𝑚 + 𝑖 ∙ 𝑚 ∙ 𝛼𝑖 ∙ 𝛽 

𝑠

𝑖=1

≈  
𝑓(𝑚)

𝑚
+

𝛼 ∙ 𝛽

2
 𝑛 +

𝛼 ∙ 𝛽

2𝑚
𝑛2 , 

(4.2) 

where β is a factor making the execution time of processing 
and merging operations commeasurable and f(m) denotes the 
processing cost of a m-sized block.  

Both of the complexities are quadratics in the number of 
elements to be processed. As mentioned in a previous 
paragraph it is essential to keep the number of I/O instruction 
linear in number of elements. This can be approximated 
making the coefficient of the quadratic member closer to zero 
than to one, thus decreasing the undesirable effect of this 

member. The average compression factor of the dataset  𝑂 1   

is a fixed property, which usually satisfies our prerequisite 
being a small positive number, close to 0. In the denominator 
of the coefficient we have the size of a block; increasing the 
size of the block the value of the fraction will decrease, making 
its value even closer to zero. Based on this observation the 
bigger the size of a block is, the more efficient will the 
algorithm be, but due to memory constraint we cannot increase 
the size of the memory arbitrarily. By choosing a big dataset 
size the effect of the quadratic member can be reduced, in the 
processing complexity as well. 

3.5 K-Way Merge based Technique  

The K-way Merge based Technique follows the partitioning 
principle too, but besides propagating the results at every 
procedural step, separates the processing from merging, being 
to different phases of the processing. As first step the algorithm 
processes all the partitioned blocks, according to eager method. 
It is essential to remark that the blocks are partitioned so, that 
the processing can be done in the main memory. After 
processing a block the resulting dataset is saved to the 
persistent storage. When all the blocks are processed, the 
merging phase will be done on partial results saved to disk, 
containing processed elements. This means a k-way merge 
among the elements, resulting at the root of the merging tree 
the global result. 

Having the same assumptions with cardinalities, the disk 
and runtime complexity of this algorithm can be expressed as 
follows: 

𝑐𝑑𝑖𝑠𝑘 = 𝑠 ∙ 𝑚 + 2   
𝑠

𝑘𝑖
 

 log 𝑘 𝑠 −1

𝑖=1

∙ 𝛼 ∙ 𝑚 ∙ 𝑘𝑖 + 𝛼 𝑚𝑘 log 𝑘 𝑠  

𝑐𝑑𝑖𝑠𝑘 ≈ 2𝛼 ∙ n ∙ log𝑘 𝑛 +  1 + 𝛼  1 − 2 log𝑘 𝑚  𝑛 (5.1) 

𝑐𝑝𝑟𝑜𝑐 = 𝑠 ∙ 𝑓 𝑚 +   
𝑠

𝑘𝑗
 𝛼 ∙ 𝑚 ∙ 𝑘𝑗 ∙    

𝑠

𝑘𝑗
 𝛼 ∙ 𝑚 ∙ 𝑘𝑗 

 log 𝑘 𝑠 

𝑖=1

 

𝑐𝑝𝑟𝑜𝑐 ≈ 𝛼 ∙ 𝑛 ∙ log𝑘 𝑛 +  
𝑓(𝑚)

𝑚
− 𝛼 ∙ log𝑘 𝑚 𝑛 (5.2) 

 

A basic runtime determining factor is the number of levels in 
the merging tree; so many times will the slow I/O instructions 
be performed. Reducing these levels, i.e. merging more files at 
the same time can increase run-time, but here another factor 
should be taken into consideration as well. Namely, reading 
from several files during a merge, causes performance 
decrease, due to continuous positioning on the hard disk. This 
factor is not expressed in formulas, but the experimental results 
support it. Both of the complexities can approximated with 
𝑂(𝑛 ∙ log𝑘 𝑛) complexity. 

3.6 Hybrid approach 

The determination of block size is a crucial step in PPRM, 
thus we propose that amount of processed data at the same time 
to be determined based on memory usage. It is an adaptive 
version of PPRM because the number of blocks processed at 
one procedural step is determined by the used memory amount.  

Beside this optimization we propose an algorithm 
consisting of two steps: first according to the adaptive version 
of PPRM we aggregate log records until we get a given number 
of partial result. This number is the optimal number of ways in 
k-way based merging, because the resulting aggregated chunks 
are processed with the k-way merge as the next step. The value 
of k in the merge phase is equal with the number of remaining 
chunks after the processing with PPRM. 

With this approach we overcome the high hard disk 
demand of the K-Way Merge based Technique, but we gain in 
performance with second step, due its lower complexity. 
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Figure 2. Performance analysis of the K-Way Merge Based Technique 

 

 

 

  

Figure 3. The block-specific execution time components of Periodic Partial Result Merging 

 

 

 

TABLE I.  PROPERTIES OF DIFFERENT APPROACHES, HANDLING LARGE 

DATASETS 

 
Eager 

method 
Sampling 

Compre

ssion 
PPRM 

K-way Merge 

based 

Technique 

I/O 

cost 
𝑂(𝑛) 𝑂(𝛾 ∙ 𝑛) 𝑂(𝑛) 𝑂(𝑛2) 𝑂(𝑛𝑙𝑜𝑔(𝑛)) 

Proc. 

cost 
𝑂(𝑛) 𝑂(𝑛) 

𝑂(𝑛)
+C/D 

𝑂(𝑛2) 𝑂(𝑛𝑙𝑜𝑔(𝑛)) 

Result 

type 
Compl. Partial Compl. Compl. Compl. 

Limits 
 Memory 

limits 
 

 Memory 

limits 

Merging is 
applicable 

to generate 

the result 

Merging is 
applicable to 

generate the 

result 

 

4 Experimental results 

The experiments were carried out in two different 

environments: the first hardware configuration (CPU: AMD 

Athlon at 2800 MHz, memory: 512 MB, operating system: 

Windows XP Professional) represented a memory limited 

environment in order to show the weaknesses of the in-

memory approach, while the second configuration (CPU: Intel 

Pentium 4 at 3200 MHz, memory: 4 GB, operating system: 

Microsoft Windows Server 2003) meant a real test 

environment. The algorithms, presented in this paper were 

implemented in C++. 

The graphs based on tests executed on the first 

configuration are presented in Figure 1; the other figures are 

created from the results of tests carried out in the second 

environment. 

Figure 1 proves the necessity of out-of-core processing. In 

this test we used the memory limited configuration to show 

the incapability of the eager method to process effectively in a 

memory limited environment. The figure on the left side 

shows the runtime of different methods. It is clearly that the 

curve corresponding to the runtime of the eager method, when 

the physical memory reaches its limit and according to virtual 

memory handling paging occurs, becomes unmanageable. The 

right side of Figure 1 presents the memory consumption of the 

algorithms. The curve of the eager method supports that the 

memory need of this method is limited only by the size of 

processed dataset, which is bigger than the size of the main 

memory. 
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Figure 4. The performance analysis of K-way Merge Based Processing (left side) and a comparative graph of execution times of K-way Merge based 

Tehcnique with different datasizes 

 

 
Figure 2 shows the dependency on I/O instructions of the 

Periodic Partial Result Merging: the graph on left side 

sketches the runtime of different versions. The more files are 

processed at the same time in the main memory, this means 

the number of I/O instructions are reduced, the faster the 

processing is. The runtime is inversely proportional to the size 

of dataset processed at the same time in the main memory. But 

there are other factors which influences the runtime of this 

out-of-core method.  The graph on the right side shows the 

used memory of algorithms: in tests the different block sizes 

fitted in the main memory. But the memory consumption 

graph shows an oscillating characteristic and in general there 

is no assurance that at every procedural step the processed 

dataset will fit the main memory.  

Figure 3 shows the time consumed by every procedural 

step on every file. The left side graph shows the case of a 

smaller block size, while the right side graph for a larger block 

size. The processing step per block at both of the approaches 

lasts nearly the same time, due to the well-scaled, hash based 

container. In this implementation the ordering was done using 

a sort on the identifier of the user. The third component, the 

merging step makes the significant difference between the two 

processing approaches, supporting our theoretical 

consideration of possible optimization. 

Figure 4 shows the runtime plots of different sized datasets 

together with the number of levels in the merging tree. For 

smaller k values the processing follows the changes of level in 

merging tree (the broken line). This is in accordance with the 

theoretical performance analysis, that the number of levels is a 

basic execution time determining factor. For bigger values of 

k there is an increase in run time, although the number of 

levels is not increasing. A bigger k value means that a merging 

is done on more files, meaning a continuous positioning of the 

head of hard disk, increasing the execution time. According to 

Figure 4 the optimal k values for the merging is somewhere 

around 32. Here another fact has to be taken into 

consideration, namely that the dataset of the test execution 

was an artificial dataset, created from the real dataset 

dissolving the overlapping between the records. 

The right side of Figure 4 shows the run time performance 

of K-way Merge Based Technique, measured on real dataset. 

Based on this graph the optimal value for the ways of merging 

is around 128, a higher value then on the artificial dataset. The 

overlapping factor is the cause of performance increase 

although the merging tree has equal levels, but handling more 

blocks together avoids the multiple propagation of a record 

during the merging. Merging from too much files causes 

increase in execution time due to the continuous positioning 

on the hard disk. The figure on the right side shows a 

summarizing graph with the execution time of total processing 

using different out-of-core approaches. 

 

5 Conclusion and further work 

In this paper we have investigated the different factors 

determining the performance of out-of-core methods and we 

have proposed two novel out-of-core approaches. The Periodic 

Partial Result Merging with continuous propagation and 

merge of partial results on disk overcomes the difficulties of 

limited memory. The K-way Merge based Technique 

processes smaller blocks of data saving the result on external 

storage and then processes the partial results according to a k-

way merge. The PPRM method requires more memory to 

process the data efficiently, while K-way Merge based 

Technique has a bigger external storage demand. 

As state-of-the-art hardware technology experience 

suggested it the number of I/O instructions has a major effect 

on the runtime of out-of-core methods; also supported by our 

empirical results. Thus to optimize an out-of-core algorithm it 

is necessary to keep the number of I/O instructions at a 

minimal level. 

As the performance analysis section of different algorithms 

showed it, the complexity of out-of-core approaches is higher 

than linear (quadratic in the case of Periodic Partial Result 

Merging, 𝑂(𝑛 log𝑘 𝑛)  in case of the K-way Merge based 

Technique), but these complexities can be reduced by 

choosing a large  block size. On the other hand, as the 

experimental results showed it, the memory consumption of 

the process has to be controlled during the whole processing to 

avoid unmanageable runtime. Beside the large processing 

block the compression factor has its reducing influence on 
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disk- and runtime complexity, but this is a given factor of the 

dataset (typically closer to 0 than to 1). 

Because of the large sizes to be processed the runtime of 

these methods can be better expressed in hours than in 

minutes, thus a fault-tolerance is a favorable, demanded 

property of the out-of-core approaches. By their nature both of 

the algorithms contain a fault-tolerance possibility.  

In K-Way Merge based Technique, based only on the 

formula, the more way we use in merging the faster the 

processing will be.  In this method the number of levels in 

merging tree should be kept at a minimal level, but other 

influencing factor is the number of files processed together at 

the same time. 

The eager method presented in this paper supports that if 

the presumption of fitting the main memory does not hold, 

out-of-core methods mean an applicable and scalable approach 

for processing. With Periodic Partial Result Merging or with 

K-Way Merge based Technique large datasets can be 

processed efficiently, in a fault-tolerant way, even on an 

average PC. 

The analysis of the parallel version of methods can be a 

further work, based on [17]. 
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Abstract— Hashing algorithms and their efficiency is mod-
eled with their expected probe lengths. This value measures
the number of algorithmic steps required to find the position
of an item inside the table. This metric, however, has an
implicit assumption that all of these steps have a uniform
cost. In this paper we show that this is not true on modern
computers, and that caches and especially cache lines have
a great impact on the performance and effectiveness of
hashing algorithms that use array-based structures. Spatial
locality of memory accesses plays a major role in the
effectiveness of an algorithm. We show a novel model of
evaluating hashing schemes; this model is based on the
number of cache misses the algorithms suffer. This new
approach is shown to model the real performance of hash
tables more precisely than previous methods. For developing
this model the sketch of proof of the expected probe length
of linear probing is included.

Keywords: hash table; hashing; linear probing; cache-aware;
performance

1. Introduction
Hashing algorithms are a popular choice in a great variety

of applications for fast storage and retrieval of items. Over
the years there have been many hashing algorithms presented
in the literature. These algorithms are usually compared
based on the expected probe lengths [1], [2], [3], [4], that
is, the number of steps the algorithm has to take before an
item can be inserted into the table. (This is equivalent to
the number of steps it takes to find an item. Both will be
referred to as probe length throughout this paper.)

It has been our observation [5], and also the suggestion
of others [4], [6], that the expected probe length does
not model the true performance correctly. Measuring the
wall-clock execution times of the algorithms and using the
expected probe length-based raking of hashing schemes we
can arrive at two contradicting conclusions; in this paper we
propose a solution that unify the expected probe length-based
comparison and the physical capabilities of the hardware,
resulting in a more precise efficiency estimation.

The fact is, that the true performance of array-based
hashing schemes is effected by the physical hardware it
is executed on. The expected probe length-based efficiency

analysis has the implicit assumption that every probe in the
probe sequence has the same cost; this is not necessarily
true though. Modern CPUs have fast (but small) integrated
caches that mask the latency of the main system memory.
Accessing data in these caches is by one or two orders of
magnitude faster than reading from the main memory. These
caches speed up temporally, and which is more relevant for
us, spatially local memory reads.

Algorithms that exploit these caches are called cache
friendly [7]. What we propose in this paper is basically a
new efficiency model that rewards cache friendly algorithms.
We focus our attention to hashing schemes that use arrays;
the basic idea however it generally applicable, and not just
to hash tables but to other data intensive algorithms as well.

The rest of the paper is organized as follows. Section 2
presents the related literature of hash tables and their per-
formance and complexity. The expected probe lengths of
two hashing schemes are presented in Section 3 followed
by the comparison of the hash tables based in the expected
probe lengths and wall-clock execution times. To resolve
the contradictory results new efficiency model is presented
in Section 4. We conclude in Section 5 with the summary
of our results.

2. Related works
Hash tables [8] store and retrieve items identified with a

unique key. A hash table is basically a fixed-size table, where
the position of an item is determined by a hash function.
If the position calculated by the hash function is already
occupied, a collision occurs. This collision can be resolved
by storing the items externally (e.g. using a linked list), the
approach of bucket hash tables; or a secondary hash function
can be applied which calculates a new address for the item.
Repeating this process until a free slot is found the algorithm
traverses a probe path. The shorter this probe path is, the
faster the hash table is.

In linear probing [8] the secondary hash function calcu-
lates the next address by adding a constant (usually one)
to the previous address. This, of course, is not a true hash
function. However, this “laziness” is what makes linear
probing cache friendly [7].

There is a theoretical hashing scheme, which produces
perfectly random address generation. The idea is that there
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is a uniformly chosen permutation from the space of per-
mutations over the possible addresses for each element.
The initial hash function returns the first element of the
permutation, the secondary hash function iterates through
the permutation. This is called uniform hashing [9]. It has
been shown, that uniform hashing is optimal over all open-
address hashing schemes in its expected probe length. It was
proven that double hashing, a practical realization of a hash
scheme [4], is asymptotically equivalent to uniform hashing
when the number of available addresses is large [10], [11].
It is generally thought that these sophisticated methods are
superior to linear probing.

Black et al. [6], however, has shown that linear probing
can have better performance than double hashing. Moreover,
by tuning the parameters of double hashing to make it
approximate linear probing, its performance increased as
well.

Heileman and Luo [4] also conducted similar examina-
tions and they ended up with another conclusion. According
to their results, the cache friendliness of linear probing
cannot compensate the disadvantage of the longer probe
sequences in case of realistic data sets. They also suggested
that the relation between the size of the data and the cache
size is what lies behind the seemingly contradictory results.
In Section 4 we will confirm their hypothesis.

3. Expected probe length based compar-
ison

The expected probe length is used to measure the effi-
ciency of hash tables. The formula is known for uniform
hashing; in this section we show the sketch of calculating it
for linear probing.

3.1 The expected probe length of uniform hash-
ing

The expected probe length for uniform hashing [8] in an
α-filled table is

E(Lαuni) = −
ln(1− α)

α
(1)

where E denotes the expected value, Luni is the expected
number of steps needed to find a uniformly chosen element
in a hash table built with uniform hashing and α is the load
factor of the hash table (i.e. the ratio between the number
of elements in the table and the number of all the slots).

3.2 The expected probe length of linear prob-
ing

In order to calculate the expected probe length (i.e.
number of steps in takes to insert an item), first we need
to understand how a single item is inserted into an α-
filled hash table using linear probing. The expected probe
length in a given state of the hash table is the average of
probe lengths needed to insert the elements of the tables.

We describe a table configuration using the following two
notions in this paper. A cluster is a group of adjoint occupied
slots. A closed cluster is formed from an empty slot and the
cluster that precedes it. If, for a certain empty slot there
is no preceding cluster (i.e. the empty slot is preceded by
another empty slot), then this empty slot forms a closed
cluster by itself. Figure 1 gives a graphical representation of
these notions. Closed clusters cover the whole table, while
clusters obviously do not.

Fig. 1: A cluster (L) and two closed clusters (τ1 and τ2).

During insertion the probe length depends on the length of
the closed cluster in which its initial address hits, since the
insertion has to iterate over the items in this closed cluster.
Suppose that the initial address for the new element is part
of a closed cluster with length τ . The expected number of
steps needed to insert the element is τ+1

2 , since the initial
address is considered to be uniformly distributed over the
whole table, and consequently, it is uniform restricted to the
given closed cluster as well. If we knew the probability of the
event that the initial address falls into a closed cluster with
length τ then we would be able to calculate the expected
probe length required to insert a new element.

The followings are just the sketch of how we can calculate
the expected probe length for linear probing. It is out of the
scope of this paper to show every step; this is merely the
general idea.

Suppose there are Xi elements initially hashed to the i-th
slot, i = 1, . . . , N . Suppose that a closed cluster starts at
the j-th position. In this case the number of elements in this
closed cluster is at least Xj , and the j-th slot can hold only
one. So Xj−1 elements will be held in the rest of the closed
cluster. The j+1-th slot adds Xj+1 elements to the cluster,
but it will hold one as well, so the number of elements in
the cluster after the j+1-th slot is Xj − 1+Xj+1− 1, and
so on. When this sum reaches 0, then the cluster is closed.

We can define the stochastic process S the following way:
S0 = 1, Si+1 = Si +Xj+i − 1. The stopping time τ (k) (2)
is a good approximation of the distribution of the length of
the closed clusters:

τ
(k)
0 = inf(i : Si = 0|S0 = k) (2)

The explicit formula for the distribution of the length of
closed clusters can be found as

p(k) = P(τ = k) =
(αk)k−1

k!
e−αk (3)

We also need the expected value of this distribution, which
is

E(τ) =
1

1− α
(4)
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The expected number of steps to find a uniformly chosen
element in the table is the average of the steps needed
to insert them. There are M elements in the table. When
inserting the i-th element, there were i− 1 already inserted.
In other words, the i-the element was inserted into an
α′ = i−1

N -filled hash-table. The average of these step counts
gives us

E(Lαlin) = 1 +
1

2

α

1− α
(5)

where E(Lαlin) denotes the expected probe length for linear
probing in an α-filled table.

3.3 Evaluation using probe lengths and wall-
clock execution times

Figure 2 shows the expected probe length for linear
probing and uniform hashing for various load factors. It is
obvious that uniform hashing has a smaller expected probe
length. Based on this fact, one could say that linear probing
is to be neglected while choosing hashing algorithms for
practical purposes.

Fig. 2: The expected probe length of linear probing and
uniform hashing for different load factors.

Our experimental results, on the other hand, show different
results. Figure 3 plots the measured wall-clock execution
times of building a table using linear probing and double
hashing. Linear probing has shorter lookup execution than
double hashing. This is the exact opposite of the previous
result.

To resolve this contradiction a new complexity function is
required, one that approximates the true performance of hash
tables. The problem with the probe length based ranking is
that it assumes that every probe has the same cost; instead,
the characteristics of the execution environment have to be
considered and integrated into the cost function.

4. Cache-line aware algorithm complex-
ity

This section presents a simple model of memory hierarchy
which is then incorporated into the cost function of the steps
of the probe sequence.

Fig. 3: The measured wall-clock execution times of linear
probing and uniform hashing for different load factors.

4.1 Caches
Open hash tables span over a large block of allocated

memory. This block is split into slots, which are identified
by a number (memory address; i.e. indexes of the array).
The address of neighboring slots are sequential, therefore in
linear probing, after slot i is visited, whose address is j, the
next slot, i+1, will have the address j+1. This is not true
for uniform hashing; the addresses of the probe sequence
will be scattered across the table. Let us explain why this is
important.

In current computer systems CPUs have caches, which
are fast access, but limit space storages integrated into the
CPU or onto the same die. The cache stores a small fraction
of the data that is stored in the system memory, therefore
a small portion of the hash table also resides in the cache.
Whenever the CPU requests data, it is first checked in the
cache. If found, the main system memory is not queried as
the cache returns the data. However, if the data is not in the
cache (this event is called a cache miss), the data is loaded
from the main system memory; this operation is by one or
two orders of magnitude slower than reading from the cache.

An other important factor is cache lines. The memory is
partitioned into small blocks, called cache lines. Whenever
data is loaded into the cache, an entire cache line is loaded;
the one the requested data is inside. This means, that with
a single memory access it is not just the requested data that
is loaded, but some neighboring addresses are read as well
- at no additional cost. If the next read is in this very same
cache line, it will be served by the low latency cache.

If accesses to the memory is temporarily or spatially
local, the cache speeds up the algorithm by not requiring
the system to read data from the system memory. When an
algorithm exploits these effects, it is called cache friendly. It
allows the algorithm to have lots of data requests at fraction
of the cost.

4.2 Cache-line based memory model
The cost difference between accessing data from the

main memory and from the cache is often neglected in
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performance models. Let physical memory requests have a
cost of one. Altering the usual memory model, where every
access has a uniform cost, we propose a new model. In our
model the blocks of the memory are grouped into lines of
equal lengths. These lines correspond to the cache lines of
the real system. The characteristics of these lines is that they
are read as one.

In this memory model, the true performance of an ap-
plication is determined not by the total number of memory
accesses, but by expected number of read lines. In case of
hashing algorithms this is equal to the number of probed
lines, which the probe sequence accesses. In other words,
the number of produced cache misses is the determining
factor.

Suppose that the parameters of the memory architecture
and the hash table are such that an integer number of hash
table slots fit in a cache line. This parameter will be denoted
with B. Figure 4 shows a scenario where three hash table
slots fit into a single cache line (B = 3). Items with the
same color are hashed to the same position by the primary
hash function.

Fig. 4: The segmentation of the memory into cache lines
of length B = 3. Items with the same color have the same
initial address.

As an example, the second item from the left can be found
with cost of one if linear probing is used, since the first
checked slot and the final position are both in the same cache
line, and the probe sequence examines no slots outside of
this line.

4.3 Cache-aware cost function for uniform
hashing and linear probing

Given a relatively large hash tables that does not fit into
the cache (usual size of caches is 2-4-8 MB) but instead
is stored in the main system memory, the CPU cache has
considerable impact. A typical hash table entry consists of
a unique integer id and a data pointer. This means that the
number of hash slots that fit in a cache line (B) is about 2-8
entries (assuming a cache line is 64 bytes) and the number
of lines that can be stored in the cache memory is negligible
compared to the number of lines that are covered by the hash
table.

For uniform hashing the probe sequence is a random
permutation of the positions in the table. Thus, it is a
fair approximation that all probes fall into one of the not
cached lines. This means that every probe has a cost of one
when uniform hashing is used. In other words every probe
produces a cache miss. This can be formalized as

E(Cαuni) = E(Lαuni) = −
ln(1− α)

α
(6)

where Cαuni is the cost of a probe sequence that finds
a random element in an α-filled table built with uniform
hashing. The value is independent of B.

To verify this formula, Figure 5 shows the calculated
values against our measured values.

Fig. 5: The theoretical and experimental number of cache
misses for double hashing (uniform hashing).

In case of linear probing the first address of a probe
sequence will not be among the list of cached addresses.
This means that the first probe will request a new line to
be read from the memory. But the following probes have a
high probability of being served from the cache, since the
neighboring slots of the first probed one were cached when
the first probe was performed. If the initial address is given
then each step will produce a cache miss with probability of
zero or one, depending on whether it is in the same cache
line, or in the next one, respectively. Since the initial address
of a probe sequence is uniform over the slots of the line it
falls into, each of the remaining Lαlin − 1 steps produce a
cache miss with probability 1

B . Thus, we can say that

E(Cαlin) = 1 +
1

B
(E(Lαlin)− 1) = 1 +

1

B

1

2

α

1− α
(7)

where Cαlin is the cost of the probe sequence that finds a
uniformly chosen element in an α-filled table built with
linear probing.

To verify this formula as well, Figure 6 plots the measured
and the calculated values for various Bs.

4.4 Cache-aware cost model and true perfor-
mance

Finally, let us compare the true performance of the hash
tables, measured in terms of wall-clock execution time, with
the proposed cost model.

Figure 7 shows how the expected number of produced
cache misses look like (left), and the what are the corre-
sponding measured execution times (right). The number of
slots that fit in a cache line is B = 2, B = 4 and B = 8.

It is clear that for any given value of B there is a load
factor αB under which linear probing has lower cost and
over which uniform hashing algorithms are better. From
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Fig. 6: The theoretical and experimental number of cache misses for linear probing.

Fig. 7: The expected number of cache misses for linear probing and uniform hashing for different load factors for B = 2, 4, 8.

equations (6) and (7) this load factor can be obtained. In
the typical operation region of α ∈ [0.3 0.8], linear probing
has lower expected cache miss count even when B = 2.
This is confirmed by the execution times as well.

In general, when choosing a hashing algorithm, one
should consider the parameters of the hash table and memory
architecture, namely parameter B should be determined and
the operational load factor should be decided.

Generally, our conclusion is that the simple algorith-
mic step count based raking of algorithms, especially for
algorithms that intensively use memory, is not sufficient.
The physical capabilities of the machine that executed the
algorithms should be taken into consideration, and with
integrating the memory model into the cost function, a better
efficiency comparison can be derived.

5. Conclusion
Hashing algorithms are usually ranked by their expected

probe lengths. It has been our observation, and also pub-
lished in the literature, that this is not always true. Based
on previous works we know that in case of open-address
hashing the performance of the algorithm is greatly effected
by its memory characteristics.

We have shown that the expected probe path based ef-
ficiency comparison is not fair for linear probing, which
is generally though of as an inferior choice of hashing

scheme. Under real-life circumstances, however, it is able to
outperform more sophisticated hash tables, such as double
hashing.

Incorporating the effect of cache lines into the cost func-
tion of hashing algorithms we have presented a novel model
of evaluation. This approach models the true performance of
these hash tables more precisely.

Acknowledgment
This project is supported by the New Hungary Devel-

opment Plan (Project ID: TÁMOP-4.2.1/B-09/1/KMR-2010-
0002) and by the fund of the Hungarian Academy of Sci-
ences for control research, the Hungarian National Research
Fund (grant number T68370).

The authors express their thanks to Sándor Juhász for his
help as scientific advisor.

References
[1] G. H. Gonnet, “Expected Length of the Longest Probe Sequence in

Hash Code Searching,” Journal of the ACM, vol. 28, no. 2, pp. 289–
304, Apr. 1981.

[2] M. V. Ramakrishna, “Hashing practice: analysis of hashing and
universal hashing,” ACM SIGMOD Record, vol. 17, no. 3, pp. 191–
199, Jun. 1988.

[3] A. Pagh, R. Pagh, and M. Ruzic, “Linear probing with constant in-
dependence,” Proceedings of the thirty-ninth annual ACM symposium
on Theory of computing - STOC ’07, p. 318, 2007.

14 Int'l Conf. Foundations of Computer Science |  FCS'11  |



[4] G. L. Heileman and W. Luo, “How Caching Affects Hashing,” in
Proc. 7th ALENEX, 2005, pp. 141–154.

[5] S. Juhász and A. Dudás, “Adapting Hash Table Design to Real-life
Datasets,” in Proc. of the IADIS European Conference on Informatics
2009, part of the IADIS Multiconference of Computer Science and
Information systems 2009, Algarve, Portugal, 2009, pp. 3–10.

[6] J. R. Black, C. U. Martel, and H. Qi, “Graph and Hashing Algorithms
for Modern Architectures: Design and Performance,” pp. 37–48, 1998.

[7] A. Binstock, “Hashing Rehashed,” Dr. Dobb’s Journal, vol. 4, no. 2,
1996.

[8] D. E. Knuth, The art of computer programming, Vol 3. Addison-
Wesley, Nov. 1973.

[9] J. L. Carter and M. N. Wegman, “Universal classes of hash functions,”
J. Comput. System Sci., vol. 18, no. 2, pp. 143–154, May 1979.

[10] L. J. Guibas, “The Analysis of Hashing Techniques That Exhibit k-ary
Clustering,” Journal of the ACM, vol. 25, no. 4, pp. 544–555, Oct.
1978.

[11] M. L. Fredman, J. Komlós, and E. Szemerédi, “Storing a Sparse Table
with 0(1) Worst Case Access Time,” Journal of the ACM, vol. 31,
no. 3, pp. 538–544, Jun. 1984.

Int'l Conf. Foundations of Computer Science |  FCS'11  | 15



Performance and Quality of Random Number Generators

V. du Preez, M.G.B. Johnson, A. Leist and K.A. Hawick
1Computer Science, Massey University

2Albany, North Shore 102-904, Auckland, New Zealand

Abstract— Random number generation continues to be
a critical component in much of computational science
and the tradeoff between quality and computational per-
formance is a key issue for many numerical simula-
tions. We review the performance and statistical quality
of some well known algorithms for generating pseudo
random numbers. Graphical Processing Units (GPUs)
are a powerful platform for accelerating computational
performance of simulations and random numbers can
be generated directly within GPU code or from hosting
CPU code. We consider an alternative approach using
high quality and genuinely “random” deviates generated
using a Quantum device and we report on how such a
PCI bus device can be linked to a CPU program. We
discuss computational performance and statistical quality
tradeoffs of this architectural model for Monte Carlo
simulations such as the Ising system.

Keywords: quantum random number generation; GPU;
CUDA.

1. Introduction
The fast generation of good quality random numbers

[1]–[6] is a long-standing challenge [7], [8]. Random
numbers are needed for many applications, but are used
in very large quantities in computer simulations that
employ the Monte-Carlo algorithm [9], [10]. It is neither
trivial nor computationally cheap to generate large sets
of pseudo-random numbers that have the right statistical
”randomness” needed to perform an unbiased calculation.
Until recently it has not been practical to use random
number generation hardware that was economically priced
and suitably unbiased. Instead, pseudo random numbers
that were generated from a suitable deterministic algo-
rithm were employed. A great deal has been written in
the literature about such algorithms, but for the most part
there are many very good ones that are “random enough”
and are at least uncorrelated with the application so that
they suffice. One important area of use has been the
numerical investigation of phase transitions and critical
phenomena. In such work the Monte Carlo algorithm is
used to sample appropriate points in a physical model
space to simulate the actual dynamical behaviour of a
model and identify the location of critical points – abrupt
changes - that result when a model parameter such as
temperature changes by a small amount.

This work is very demanding and a certain degree
of caution is perceived in the reported literature as re-
searchers go to great lengths to be sure their simulations

Fig. 1: Quantis RNG Card for PCI Bus, showing four
independent quantum generator devices.

are not overly biased by random numbers with unfortunate
statistical properties.

Pseudo-random number generators are often formu-
lated in terms of mathematical recurrence relations [11]
whereby repeated application of a transformation will
project a number to another in an apparently random
or decorrelated sequence - at least to the extend that
any patterns discernible in the resulting sequence are on
a scale that is irrelevant to the application using them.
Any random or pseudo random number generator delivers
a sequence of random deviates - either floating point
uniform deviates or integers or sometimes just plain bits.
An application will use or consume deviates from such a
sequence as it runs.

There are still some philosophically deep questions
concerning what it really means for a sequence of deviates
to be truly random. It is widely believed however that
some quantum physical processes yield deviates that are
as random as we can ever make them. Such devices are
presently available as special purpose cards or external
drivers that connect via a bus-based hardware interface
such as PCIe or USB. We investigate the use of the ID
Quantique “Quantis” device below in section 4. Intel and
other CPU manufacturers [12] are now actively consid-
ering provision of random number generation hardware
directly on the chip. This closeness to the arithmetic and
logic hardware means that these devices will produce
very fast deviates, and the expectation is that the thermal
noise and quantum processes involved are sufficiently
well understood at a statistical level to ensure that these
sources are also unbiased.

Our paper is structured as follows: In Section 2 we
review some key issues for random number generation. In
Section 3 we briefly review the Ising model and associated
Monte Carlo analysis algorithms as demanding consumers
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of random deviates. In Section 4 we describe some of
the pseudo random number generator algorithms and
implementation strategies we have explored. We present
some performance and statistical test results for both
algorithmically generated and quantum device generated
sequences in Section 5. We discuss some of the implica-
tions for future generation simulation work and offer some
conclusions and ideas for further study in Section 6.

2. Generation Algorithm Issues
Generally speaking there are two main criteria that are

considered when choosing a pseudo-random number gen-
erator. The first is the period of the generated sequence.
Ideally this should be so long as to never repeat during
the life-cycle of the application. Modern generators – as
we discuss here – usually have periods that are very long
and that when run on current computer clock speeds have
repeat times comparable with the lifetime of the known
universe. In this sense the period is not often a direct
concern.

A few deviates generated to make a game program
behaviour “interesting” to a player does not require a
generator with a challengingly long repeat length. How-
ever, Monte Carlo calculations that may take weeks or
months of supercomputer resources must have generators
with very long period lengths. In the last 20-30 years of
steadily increasing supercomputer performance, there has
been continued interest in ever longer period generator
algorithms. This often ties in with the need for more bits
used in the generator. The 16-bit integer based generators
of the late 1970s, were superceded by 24-bit (floating-
point) algorithms such as the Marsaglia lagged-Fibonacci
algorithm [6], by the 64-bit integer based Mersenne-
Twistor and in very recent times by 128-bit algorithms
[13] and even longer for cryptographically strong random
number generation [14].

The second criteria is more subtle however and has
definitely been a known concern with some algorithms.
This issue concerns just how actually random or uncor-
related the deviates in the sequence are – in the context
of the needs of the driving application. There are some
widely used statistical tests [15] that are now in wide
circulation and which represent the research communities
best wisdom on what is “random enough.” We discuss
these in section 4.

Applications usually need either random integers with
a flat uniform probability of obtaining all values within
a set range, or uniform floating point deviates in the
range [0, 1), again with a uniform probability distribution
across the range. Generally if one has a generator that
produces either of these, one can construct deviates of
more sophisticated distributions with suitable transforma-
tion algorithms [16], [17].

The apparatus for implementing pseudo-random num-
ber generators usually give rise to raw deviates in one of
those two forms - uniform integers or uniform floating
point number and one can find ways of transforming
one to the other. In the case of floating point deviates

one can simply multiply by N to obtain integers on the
[0, N) range, and in the case of integers known to be
in that range, one can divide by N . Different processing
hardware will carry these operations out with different
speeds depending on clock speeds and floating point
standards. If one has a random source of uncorrelated b-
bits [18], [19] one can readily obtain (unsigned) integers
[20]. in a suitable range of [0, 2b) or [0, 2b − 1]. One can
then divide accordingly to obtain floating point uniform
deviates. The reverse operation is not so simple however
[18]. Most processors use the IEEE floating point standard
bit representation for 32-bit or 64 bit precision. These
specify sign bit, exponent and mantissa from which it is
not trivial to obtain evenly unbiased random bits without
some arithmetic that must necessarily waste some of the
original 32 or 64.

This gives rise to another important criteria for ran-
dom number generators - ideally they should be well
engineered in terms of having plug-compatible software
programming interfaces. This means that a code can be
tested and implemented using any number of different
generator algorithms with little code change required. A
pragmatic implementer therefore finds it is often better
to have a generator that produces unbiased integers or
raw bits from which an unbiased unsigned integer can
be constructed. It is often then easier to make a family
of suitable software interfaces to supply all the sorts of
deviates that are needed by applications from the one root
algorithm.

In this present paper, we discuss Monte Carlo algorith-
mic uses of random numbers where we need a fast supply
of good deviates. Another application is for cryptographic
use, where usually the need for extreme speed is less,
but the need for very high randomness - to the point of
uncrackability is extreme [21].

For some applications it is actually desirable to have
pseudo-random number generator that is repeatable –
from the same starting conditions. Seeding generators is
of course an interesting issue in itself and this problem is
often exacerbated when using a parallel computer. While
a generator algorithm may have a known very long period,
often one has to run the generator many times or on par-
allel processors and the choice of seeds matters to avoid
accidentally correlating the sub-sequences generated by
each instance [22], [23]. Parallel computing applications
such as parallel and supercomputer implementations of
Monte Carlo simulations have been a target for many
special purpose implementations of pseudo random num-
ber generators. Work has been done on: array processors
[24]; vector computer architectures [25]; transputers using
parallel Occam [26]; and more recently on specialist
processors such as the Cell [27] or on Graphics Processing
Units(GPUs) [28]–[30].

Techniques for generating seeds vary. When debugging
an application it can be very helpful to be able to specify
the same seed and ensure identical results. Once in pro-
duction mode seeds might be generated by an algorithm
based on precise time and dates or from special purpose
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Fig. 2: A 1024 × 1024 Ising model simulation with
temperature T = 2.0 after 1000 simulation steps.

hardware. Many operating systems will now support a
hardware source via for example /dev/random on Unix
based systems. This may supply bits from thermal noise
or other sources. Such deviates are unfortunately not nec-
essarily statistically unbiased nor necessarily particularly
fast - but they certainly suffice for seeding a proven
pseudo random algorithm that does have the required
qualities.

Another approach which has only recently become
economically feasible and which may become more
widespread soon [31], is to have a hardware source of
genuinely random numbers - that are drawn from some
quantum physical phenomena [32] that is as random as
we can imagine given our current understanding of the
universe, and which therefore do not require a starting
seed. Figure 1 shows a special purpose device, produced
by Quantis, that generates around 16MBits/s that are –
as we have determined and discussed below – of superb
quality.

3. Ising Model Applications
Monte Carlo simulations use random sampling to ap-

proximate results when it is infeasible or impossible to
compute the exact result for a physical or mathematical
system [33]. The Ising model [34]–[36] uses such a
method to calculate the critical point of metal alloy phase
transitions. The numbers in these systems need to be as
close to truly random as possible to avoid bias in the
results which may result in incorrect conclusions

Simulations of the Ising model typically start with a
random “hot” system. The system is then quenched to a
specific temperature. If this temperature is below a critical

“cold” temperature, then the system undergoes a phase
transition where like spin values begin to clump together,
creating order in the initially random system. The Ising
model has just two possible spin values, “up” and “down”,
but can be extended to the Q-state Potts model [37] that
uses Q spin values. A system quenched to a temperature
very close to the critical temperature shows clusters of
like-like spins on all possible length scales. Figure 2
illustrates a 2-dimensional Ising model simulation.

A number of different Monte-Carlo update algorithms
for the Ising model have been proposed over time [38]–
[41]. The Metropolis algorithm [38], which was later
generalised by Hastings [42], has formed the basis for
Monte-Carlo statistical mechanics [43], [44] and has been
used widely for Ising model simulations [45]–[48]. It is a
Marcov chain Monte-Carlo (MCMC) method, where the
transitions from one state to the next only depend on the
current state and not on the past. Using the Metropolis
update algorithm for the Ising model simulation, at each
discrete time step, a new system configuration is chosen at
random by picking a spin to “hit” and flipping its value.
If the energy E of the proposed configuration is lower
than or equal to the current energy, ∆E ≤ 0, then the
move to the new configuration is always accepted. Other-
wise, the new configuration is accepted with probability
exp(−∆E/kBT ), where T is the temperature and kB
is the Boltzmann constant. The current configuration is
retained if the move is rejected.

The spins in the Ising model interact with their nearest
neighbours according to an energy function or Hamilto-
nian of the form: H = −

∑
〈i,j〉 JijSiSj , where Si = ±1,

i = 1, 2, ...N sites, and Jij is |J | = 1/kBT is the
ferromagnetic coupling over neighbouring sites i and j
on the network.

The Ising model and other Monte Carlo algorithms
can be used themselves as demanding tests of the quality
of random numbers, based on comparisons with known
results [7].

4. Implementation & Timing
Common methodologies utilise computer CPUs to pro-

duce pseudo-random numbers using bitwise operations
and mathematical operations to suitably randomise a num-
ber. The Mersenne-Twistor [49] is a common generator
algorithm to produce high quality numbers, whereas the
linear congruential algorithm, which is used in Unix
rand, is a common and well known low quality example.
Producing truly random numbers is impossible when
using a algorithm running on a computer, this is the realm
of the hardware random number generators (RNGs).

The algorithmic tradeoff space covers very high-quality
generator algorithms such as the Mersenne-Twistor that
are significantly slower than those very-fast but lower-
quality algorithms such as linear congruential generators.
In between these extreme cases it is often possible to im-
prove low-quality generator algorithms by adding lag ta-
bles and shuffle tables to further randomise or decorrelate
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Fig. 3: Description of the method for producing a random
bit in the Quantis device.

the sequences of random deviates and indeed to combine
several independent algorithmic sources together.

4.1 Quantis Random Number Generator
The quantum random number generator we assess in

this paper is the Quantis PCI quantum random num-
ber generator produced by ID QUANTIQUE SA [32].
This generator uses a photon emitter directed at a semi
transparent mirror, which lets the photons through with
a theoretical probability of 50% as shown in Figure 3.
Each generator allows for a constant stream of random
bits of up to 4 MBits/s. The PCI device contains 4 separate
generators, bringing the theoretical maximum random
stream to 16MBits/s or ≈ 500 deviates per millisecond.

The Quantis card supports both Windows and various
flavours of Linux. For our testing we used Ubuntu Linux
with the standard Quantis driver installation. The drivers
API facility provides various methods for retrieving dif-
ferent data types. The most low level of these is the
QuantisRead method:
i n t Quan t i sRead ( Quan t i sDev iceType deviceType ,

unsigned i n t deviceNumber ,
void∗ b u f f e r , s i z e t s i z e ) ;

This generates size bytes of random numbers into
the variable buffer, where size is constrained to
QUANTIS_MAX_READ_SIZE. To get more than this
we must loop until the desired size has been reached.
Alternately we can use:
i n t Q u a n t i s R e a d I n t ( Quan t i sDev iceType deviceType ,

unsigned i n t deviceNumber ,
i n t ∗ v a l u e ) ;

To get a signed integer value from the device. This
method is much slower at reading multiple numbers than
reading raw bytes as we show in section 5. To overcome
this problem, we use QuantisRead in a multi-threaded
environment where one thread is caching blocks of ran-
dom bytes while the consumer thread uses them. This
method may still not be sufficient for algorithms such as
the Monte Carlo, but will significantly reduce the time
over using QuantisReadInt.

5. Performance & Quality
For most scientific purposes it is sufficient to say that

they need to be sufficiently uncorrelated that when used

for a Monte Carlo simulation or other application the devi-
ate quality does not lead to an observable bias [50]. Or put
more simply – that the random number generator does not
lead the applications programmer to the wrong answer.
Various statistical tests [8], both at a straightforward level
[51], checking for visual planar correlations [52] planes
and other approaches such as the spacing test, scatter-
plots, that detect obvious patterns or simple statistics are
possible, as well as very specific application related tests
that are highly sensitive to correlations.

To evaluate the raw performance of generators we test
four different popular pseudo-random number generators:
Mersenne Twister (MT), Ran described in the book Nu-
merical Recipes (Ran) [53], the standard Unix rand and
Marsaglia’s lagged-Fibonacci Generator (LFG). These
generators were tested for randomness using the birthday
spacings test found in the diehard testing suite for random
numbers, with the values N = 232,M = 212 and λ = 4.
This configuration is advised in [54]. Supplementary tests
were also performed with the standard diehard test suite
[55] and these confirm the below findings.

Algorithm Birthday Spacings
Pass/Fail

Ran X
LFG X
MT X

Quantis (to CPU) X
Unix Rand X

Table 1: Results of Birthday Spacings test of different
RNG algorithms. Tick and Cross indicate pass and fail
respectively

Table 1 shows that all except the Unix rand random
numbers pass the birthday spacings test. This is in line
with common knowledge about the periods of these
generators [1].

Applications of specific random number generators are
dependent on the speed in which the numbers can be
attained by the client, where client refers to a central
processing unit, graphics processing unit, etc. In random
number intensive applications, such as the Monte Carlo
algorithms in Ising/ Potts models, computation time is
negligible compared to the fetch time for random num-
bers. Whereas, in cryptography the computation time
significantly outweighs the fetch time for the random
numbers, which allows slow generators to hide their speed
by caching numbers for fast use by other threads.

To test the speed of the algorithms we generate ten
million uniform floating point numbers and find the num-
ber of deviates per millisecond on an Intel Core 2 Duo at
2.1 GHz using the four algorithms that passed the birthday
spacing test. The CPU algorithms only utilise one of the
cores available on the CPU. We have also implemented
a CUDA GPU version of the lagged-Fibonacci generator
[30] and report the performance measured on an NVidia
GeForce GTX 580.

Table 2 shows that the results for all of the CPU
pseudo-random number generators are comparable in
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Algorithm Performance
Deviates Per Millisecond

Ran 24085
LFG 13367
MT 22795

Quantis (Single Thread) 61
Quantis (Multi Thread) 111

CUDA(LFG) 1.28e107

Table 2: Performance of different RNG algorithms.

speed, with the Ran algorithm producing the most at
24085 deviates per millisecond. This is more than two or-
ders of magnitude faster than the single threaded Quantis
generator at about 61 32-bit deviates per millisecond. The
lagged-Fibonacci generator on the CUDA GPU is another
2-3 orders of magnitude faster than the CPU algorithms.

6. Discussion & Conclusions
Section 5 shows that all but the Unix rand pseudo-

random algorithms pass the Extended Birthday spacing
and Die Hard tests that we have implemented. These
are well known algorithms and the results are common
knowledge [3], hence it is unsurprising that the widely
used Unix rand failed. This is further proof that this
function should not be used. It has been suggested [3]
that lagged-Fibonacci generators may erroneously fail the
Birthday spacings test, but this does not appear to be the
case for our implementation, which passes the test.

Although these pseudo-random number generators pass
most common and also more stringent tests implemented
in this paper, this does not guarantee their true random-
ness in the face of tests yet to be adviced. Using physical
phenomena, such as photon emitters like the one used
in this paper or Intel’s on chip temperature variation
random source, allows us to guarantee that the number
is completely random and free from any bias. Although,
the question remains how to test these hardware random
sources and can we engineer a test that identifies only a
truly random number?

Performance of the generators was as expected [30],
with the CUDA GPU LFG algorithm producing 1.28e107

random deviates per millisecond. The single threaded
Quantis card algorithm produces only 61 32-bit deviates
per millisecond and 111 deviates for the multi-threaded
implementation. This is much slower than the theoretical
maximum of 500 32-bit deviates from the 16MBits/s
stream of random bits [32]. We attribute this latency to
the fetch time from the card over the PCI bus and the
conversion time to the specified data type. The speed-
up attained by introducing multiple threads is significant
as this allows us to hide the time lost in the conversion
process and by fetching the maximum number of bytes at
each API call we minimise any latency that is associated
in calling the Quantis card via the PCI bus. For Monte
Carlo algorithms even the CPU pseudo random algorithms
are the bottleneck in the simulation, hence the Quantis
card is much too slow for these. A good compromise is
to use the numbers produced by the Quantis card to seed

a good pseudo-random number generator, thus ensuring
that the seeds are statistically independent.

If Intel succeeds in creating a truly random number
generator producing 2.4 billion random bits per second
[31], then this will significantly increase the reasons
for using a hardware random source for random heavy
algorithms. Until that point, long period pseudo-random
number generators will continue to be the best choice
for Monte Carlo algorithms. However, for low random
frequency algorithms that depend on high quality random
numbers, such as generation of cryptographic keys, cur-
rent hardware generators are an excellent choice.

We have found that when used in the correct sit-
uation the Quantis card is an invaluable resource to
computer simulations. However, random number gener-
ation is very much an application specific field and we
have shown that, when compared to conventional pseudo-
random generators, the time it takes to produce a single
random deviate with the Quantis card is several orders
of magnitude slower. Furthermore, the generation with
the Quantis card is inherently serial and does not benefit
from parallelisation on either the CPU or GPU. However,
we have discussed how this latency may be hidden when
the program does not require random numbers often by
using a separate thread that fetches the numbers from the
Quantis device and prepares them for the main process
to use as needed. Another method we have discussed is
using the Quantis device to produce truly random seeds
for a high-quality pseudo-random number generator.

Graphics processing units offer a performance increase
of about 2-3 orders of magnitude over the tested sequen-
tial CPU implementations. They have been shown [56]
to be a powerful accelerator for Monte Carlo simulations
that heavily depend on random numbers. However, de-
veloping high-performance code for GPUs is significantly
more complex and time consuming than it is to write a
sequential or even multi-threaded CPU implementation.

In summary, the field of computer generated random
number algorithms is one of ”horses for courses” - there is
no single best algorithm that will satisfy all requirements.
Before starting any project using Monte Carlo algorithms
and for which the quality of the random numbers matters,
it is therefore of great worth to carefully consider which
algorithm to use.
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Abstract – Web-based search is commonly perceived 
as a desirable functionality of web sites. Although there 
are several open source search engines that can be 
tailored and embedded in a web site for free, those 
engines tend to be general and may not be easy to 
adapt them into an efficient search engine within a 
particular application domain. In this paper, I 
presented an easy but practical alternative that can be 
followed by readers as a template to build their own 
lightweight search engines with only a few 
programming. 

Keywords: Lightweight Search Engine,

1 Introduction 

 Web-Based 
Query. 

 As more and more information is digitized and 
made available on the web, nowadays, online search is 
popularly used and commonly perceived as an essential 
functionality of a web site. Although there are several 
open source search engines, such as ASPSeek [1], 
Lucene [2], Namazu [3], mnoGoSearch [4], and 
WebGlimpse [5], available for web programmers to 
customize and fit into their own business operations, 
most of those free search engines are originated from 
general purposes and may not be easy to be reformed 
into special purpose search engines [6, 7]. Besides, 
embedding a big volume component into a small scope 
of operational web site may compromise the search 
performance due to the big consumption of CUP time. 

 Another downside of being an open source search 
engine follower is the limitation on free technical 
support. Although some voluntary participants are 
willing to share their know-how through mailing list or 
online conferencing, most of the advanced consultants 
are still by payment. To this end, embedding an open 
source engine into a special purposed web site may not 
be the best choice despite the openness of its source 
code. With these concerns in mind, this hands-on 
project is crafted to provide an easy alternative for 
those in need of a web-based search engine but 
embedding an open source engine is not a practical 
practice. Instead of spending a great deal of time 

striving to understand a huge open source search engine 
and then tailor it to fit into a specific domain. We can 
actually perform a very similar functionality by crafting 
a lightweight search engine from the scratch that 
requires only a few programming. 

 As an illustrative implementation of this lightweight 
search engine, I hypothetically confined the search 
domain into online books lookup and have the search 
engine perform partial-matched searches instead of 
exact-matched search to allow some fuzziness during 
the compare operations. For the purpose of quick 
prototyping, I am using only three technologies that 
most of the programmers are familiar with, namely the 
Microsoft Access, the Active Server Page (ASP) and 
the HyperText Markup Language (HTML). To ensure 
that most of the readers can follow and try out this 
implementation, the rest of this paper is written in an 
instructional and stepwise manner. 

1.1 The Coherence of Search Operations 
 An effective search engine is not only efficient in 
the lookup for items but, more importantly, also able to 
cope with human’s partial, fuzzy, or incomplete 
memory about the keywords and other search criteria. 
Personally, I perceived this as the coherence

1.2 The Replacement for Web Crawler 

 between 
general users and the search operations. This 
expectation can be met by allowing users to perform 
searches based on their partial or fuzzy memory about 
the data they are looking for. Technically, this can be 
achieved by allowing partial and incomplete keywords 
to be used as search criteria [8]. Indeed, expecting users 
to spell out complete and correct keywords for the 
items they are looking for is neither necessary nor 
practical in real life, since most of the human memory 
can only be retained for a short term. Fuzziness and 
uncertainty caused by human’s short term memory 
should be considered and incorporated into the design 
and implementation of search operations. 

 Unlike a typical search engine that is counting on a 
web crawler to glean and index information 
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automatically from the entire World Wide Web. For 
smaller domains of search, it is not necessary to be 
overwhelmed by world-wide information. Instead, it 
could be more efficient, if the crawler is replaced by a 
supportive database which can be maintained in a 
regular manner of database design and administration. 
In this project, I adopted Microsoft Access as the 
platform for creating and maintaining the database that 
is running at the backend to support the web-based 
searches. 

2. The Supportive Database 
 In this demonstrative implementation, a relational 
database is created and executed at the backend to 
support the web-based query operations. For 
simplification, the data contents are minimized on 
purpose to have only one table that can be created by 
using the integrated development environment of 
Microsoft Access in the following steps: 

1. Start from a blank database and use the table design 
wizard to create a table named Book with the 
following schema, in which the No

  

 field is chosen to 
be the primary key: 

2. Within the same wizard, set the No

  

 field with the 
following properties: 

3. Within the same wizard, set the Title

 

 field with the 
following properties: 

 4. Within the same wizard, set the 

 

Author

  

 field with 
the following properties: 

 5.  Open the Book

  

 table and enter the following 
hypothetical data: 

6.  Name the database as BookDB.accdb 

 

and save it to 
the folder at: 
C:\inetpub\wwwroot\search

 Although the above database is very simplified, it 
does reflect the stereotype of data collections for the 
purpose of online search. The number of columns as 
well as the number of tables can be expended as needed. 
The whole database can also be further refined by 
performing a certain level of normalizations on the 
schema. 

1 

3. The User Interface 
 Since the supportive database is hidden from 
general users but running at the backend, the search 
engine must provide a friendly frontend operational 
interface that allows users to specify their search 
criteria for their target data. The engine can then go on 
to look for those items that are partially matched to 
these criteria. In the context of text-based search, the 
search criteria are usually represented by a combination 
of keywords entered from users. To work with human’s 
fuzzy and uncertain memory about their intended data, 
this search engine relaxes the restriction on search 

1 To use a Windows PC as the web server, the Internet 
Information Server (IIS) component of Windows must 
be installed.  After installing IIS, the inetpub folder and 
its subfolder wwwroot are created automatically. The 
programs have to create the search folder as a subfolder 
of wwwroot and save the database at this location. 
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criteria from a combination of exact keywords to a 
combination of patterns, i.e., a combination of partial 
keywords. 

 The user interface of this query engine is shown in 
Figure 1. Below the user prompt, there is an input form 
in which two textboxes are arranged to take search 
criteria from users and two command buttons are used 
to either submit the search or reset the form. The source 
code of this interface is listed in Figure 2. This HTML 
file is named as index.htm and saved at the same 
location where the backend database is located, 
i.e., C:\inetpub\wwwroot\search

4 The Pattern Matched Search 

.  

 Since human memory tends to be fuzzy, uncertain, 
or even partial. A real coherent search engine should be 
friendly enough to take these memory-caused factors 
into consideration [9, 10, 11]. To ensure a good 
alignment between the user’s fuzzy memory and the 
engine’s actual search operations, the following SQL 

syntax is applied to perform queries based on pattern-
matched comparison in which the LIKE operator is used 
in the WHERE clause to search for a specified pattern 
in the given column. The “%” character is used to 
define wildcards

 SELECT * 

 both before and after the pattern: 

 FROM table 
 WHERE column LIKE “%pattern%” 

 In this manner, a search criterion can be formed by 
incorporating both certain and uncertain memories from 
a user. As a result, only those rows of data containing 
the designated pattern in the given column are extracted. 
On the other hand, what are before and after the 
designated pattern in the given column are not 
concerned. 

 The source code of these search operations is listed 
in Figure 3. This ASP program is name as search.asp 
and saved at the same location where the backend 
database and frontend user interface are located, 
i.e., C:\inetpubb\wwwroot\search

 
.

 
Figure 1. The User Interface 

 

 
Figure 2. The HTML Code of User Interface 

<html> 
  <h3>Please enter your search criteria:</h3> 
  <form action="search.asp" method="post" name="fromCriteria"> 
    <table width="200"> 
      <tr> 
        <td>Title:</td> 
        <td><input name="txtTitle" type="text" size="60" maxlength="60"></td> 
      </tr> 
      <tr> 
        <td>Author:</td> 
        <td><input name="txtAuthor" type="text" size="60" maxlength="60"></td> 
      </tr> 
      <tr> 
        <td><input type="submit" value="Submit"></td> 
        <td><input type="reset" value="Reset"></td> 
      </tr> 
    </table> 
  </form> 
</html> 
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Figure 3. The ASP Code of Search Operations 

<html> 
 
  <% 
 
  dim stream   'the input stream 
  dim conn     'the connection object 
  dim results  'the query result 
  dim no, title, author  'the table data in a row 
 
  'create the input stream 
  stream = "Provider=Microsoft.ACE.OLEDB.12.0;Data Source=" & Server.MapPath("BookDB.accdb") 
 
  'attach the input stream to the database 
  set conn = server.createobject("adodb.connection") 
  conn.open stream 
 
  'get search criteria (keywords) from user 
  keyTitle = request.form("txtTitle") 
  keyAuthor = request.form("txtAuthor") 
 
  'run the query and keep the result 
  sql = "select * from Book where Title like '%" & keyTitle & "%' And Author like '%" & keyAuthor & 
"%'" 
  set results = conn.execute(sql) 
 
  %> 
 
  <h3>The Search Result:</h3> 
 
  <table border="1"> 
 
    <tr><th>No</th><th>Title</th><th>Author</th></tr> 
 
    <% 
 
    'display the results in a table 
    while (not results.eof) 
 
      'get table data 
      no = results("No") 
      title = results("Title") 
      author = results("Author") 
 
      'write a row 
      response.write("<tr><td>" & no & "</td><td>" & title & "</td><td>" & author & "</td></tr>") 
 
      'go on to the next row 
      results.movenext 
 
    wend 
 
    'close the database 
    conn.close 
    Set conn = nothing 
    set results = nothing 
 
    %> 
 
  </table> 
 
</html> 
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5. Sample Executions 
 After complete afore mentioned implementations, 
this search engine is ready to operate at the follow web 
address: 

 It can be operated in a manner similar to the 
operations of most web-based search operations. Some 
sample executions are illustrated as follows: 

http://localhost/search 

1. To look for all books having “intro” in the Title 
filed and having “an” in the Author

   

 field: 

After clicking the submit

   

 button, the search results 
are shown as follows: 

2. To look for all books having “rose” in the Author

   

 
filed: 

After clicking the submit

  

 button, the search results 
are shown as follows: 

3. To look for all books having “adv” in the Title

   

 filed: 

After clicking the submit

   

 button, the search results 
are shown as follows: 

4. The entire database can be browsed by leaving both 
criteria blank: 

   
After clicking the submit

   

 button, the search results 
are shown as follows: 

6 Conclusion 
 The modernization of communication technologies 
has turned the web into a global platform where people 
can work across time and space. This digital revolution 
is making web-based search operations more vitally 
demanded than ever. As a result, an effective search 
engine is no longer just a facilitating feature, but, more 
realistically, it has become a core function. 
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 In some way, the effectiveness of web search 
operations is empowered by the swiftness of response 
time as well as the easiness of operations. Although 
web programmers can tailor and embed open source 
search engines into their search domains, the 
customization from general purposes into special 
purposes may be time consuming and not a practical 
choice. 

 This project demonstrated an easier alternative that 
most of the readers can follow to craft their own 
lightweight search engines to suit their own search 
domains. With this self-defined search engine, users 
can flexibly turn their fuzzy memories about the 
intended data into combinational fuzzy search criteria. 
By relaxing or tensing the fuzziness of search, users can 
easily extend up or narrow down the search results until 
the target data is located. This approach is practical, 
flexible and, more importantly, it requires only a few 
programming. 
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Abstract Visual cryptography (VC, for short) encrypts the 
secret image into n shares (transparency). We cannot see any 
information from any one share, and decrypt the original image 
by stacking all of the shares. Now, we extend it to the k out of n 
secret sharing scheme. (k, n) threshold secret sharing scheme 
encrypts as the same way and decrypts the original image by 
stacking at least k shares. If one stacks less than k shares, he (or 
she) cannot recognize the secret image. In this paper, we 
construct a new scheme for (4, n) threshold secret sharing 
encrypt in VC by using a method of combination and the size of 
the share is as small as the original image. That is, there is no 
expanded need while some of the previous scheme need. 

Keywords-visual cryptography; secret sharing scheme; security; 
share. 
 

I. INTRODUCTION 

Visual cryptography (VC, for short) and the (k, 
n)-threshold secret sharing scheme were proposed by 
Naor and Shamir in 1995 [9]. Visual cryptography 
means the secret image is turned into n shares that 
combined with black and white pixel, and the 
decrypting by stacking the shares together to reveal 
the secret image. So we can decrypt the secret image 
by human’s eye without using computer. The (k, 
n)-threshold secret sharing scheme means a dealer 
sends a share to each of the n users. In the condition 
of k is small or equal than n, the fewer than k users 
stack their shares together, they cannot see any 
information from the image. But at least k users stack 
their shares together, they will find out the secret from 
the image.  

In most of the VC scheme [2, 4, 7, 8, 9, 10, 12], 
the pixel of each share will expand. The more value of 
n is, the more value of the expansion will be. 
However, the size of the share is larger than the 
original image. In 1995, Naor and Shamir [9] 
proposed some (k, n)-threshold secret sharing in VC 
for three kinds of condition. First, some of their 
schemes are the efficient solutions for (2, n) and (3, n). 
Second, they propose a general k out of k scheme. 
_________________________________ 
* Corresponding author.  

Third, they propose a general k out of n scheme when 
k is small or equal than n. But the pixel of each share 
will expand in their later two methods. For 
convenience, the third method is called NS scheme in 
this paper. 

In 2008, Fang et al. propose a new algorithm 
(called FLL scheme in this paper) [6]. They solve the 
problem in expansion. In FLL scheme, the authors use 
Hilbert-curve [1] and two queues to present a VC 
scheme. The shares they generate are as small as the 
input image S, so the pixel of each share won’t 
expand. But since Fang et al. use Naor and Shamir’s 
scheme to design their scheme, the more number of 
the expansion in Naor and Shamir’s scheme is, the 
image we decrypted will be more unclear in FLL 
scheme. 

Another subject has been considered these years, 
progressive visual secret sharing (PVSS, for shout) 
scheme [3, 5]. In 2011, Hou et al. propose a new 
algorithm for (2, n) threshold PVSS scheme [3].  

In above researches, no matter the shares will be 
expansion or not, it cannot reveal the secret image by 
stacking less than k shares and it can reveal the secret 
image by stacking at least k shares for k ≥ 4. Because 
the expansion in the most of (4, n)-threshold secret 
sharing scheme in VC is quite large and the image we 
decrypted will be not clear in FLL scheme for (4, 
n)-threshold secret sharing scheme in VC. Hence, we 
propose a new scheme to improve it. We use the 
theory of combination to construct the scheme. 
Actually, our scheme is also a (4, n) threshold PVSS 
scheme. The detail of our scheme is presented on next 
section. Some experiment results are given in section 

, and the conclusion is stated in section . 
 

II. THE PROPOSED SCHEME 

We will show our (4, n)-threshold secret sharing 
scheme in VC as follows. For convenience, let 
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Definition 1. An n × m 0-1 matrix M(n, j) is called 
totally symmetric if each column has the same weight, 
say j, and m equal to the number of n

jC  and every 

column vectors are difference to each others, where 
the weight of a column vector means the sum of each 
entry in this column vector. 

Definition 2. Given an n × m1 matrix A and an n × m2 
matrix B, we define:  

1. [A||B]be an n × (m1 + m2) matrix that obtained by 
concatenating A and B; 

2. [a × A||b × B], for any two positive integer a and b, 
be an n × (a × m1 + b × m2) matrix that obtained 
by concatenating A for a times and B for b times. 

Lemma 1. Give an n × m totally symmetric matrix A 
= M(n, j), For i = 1, 2, …, n, let fi(A) represent the 
Hamming weight of the row vector that is the result of 
applying “or” operation for any i rows in A. Then fi(A) 
= fi(M(n, j)) = in

j
n
j CC −− . 

Proof. The number of column in M(n, j) is equal to ���. When we choose any i rows, because if any one 
column vector has all zeros in these i rows, the result 
entry for applying “or” operation for these row vectors 
still will be zero. In the other way, if any one column 
vector has all zeros in these i rows, there must has j 
ones show on the other n − i rows. Hence, the number 
of those kind column vectors is in

jC − . So fi(M(n, j)) 

equals to the number of all columns subtract the 
number of columns that has all zeros in these i rows 
(and has j ones in the other n − i rows). Hence, fi(M(n, 
j)) = in

j
n
j CC −− .       

We use an example to demonstrate Lemma 1: 
 
Example 1. Let A = M(4, 2) =  

�1 11 0 1 0 0 00 1 1 00 10 0 0 1 0 11 0 1 1�. 

 
Then we have f1(A) = 3, f2(A) = 5, f3(A) = 6, and f4(A) 
= 6.             

Lemma 2. fi([A||B]) = fi(A) + fi(B) for any two totally 

symmetric matrices A and B. 

Proof. A matrix [A||B] is obtained by concatenating 
matrices A and B. Let A denote an n × m1 matrix, B 
denote an n × m2 matrix, and A = M(n, jA), B = M(n, jB). 
Then fi([A||B]) = fi([M(n, jA)||M(n, jB)]). Because do 
Hamming weight for the resulting row vector of 
applying “or” operation for some i row of [A||B] is 
equal to that [A||B] be divided into two parts A, B and 
do the same thing to these two parts, then add those 
two results together. According to the above reason, 
fi([M(n, jA)||M(n, jB)]) = fi(M(n, jA)) + fi (M(n, jB)). That 
is, fi([A||B]) = fi(A) + fi(B).       

Let [A1||A2||…||Ak] = […[[ A1||A2]||A3]||…||Ak] for 
any matrices A1, A2, …, Ak, with the size of Ai is n × mi 
for i = 1, 2, …, k. We have the following corollary. 

Corollary 1. For any k totally symmetric matrices A1, 
A2, …, Ak, where Ai = M(n, j i) for some 0 ≤ j i ≤ n for 
any 1 ≤ i ≤ k. Let [A1||A2||…||Ak] = B. Then fi(B) = fi(A1) 
+ fi(A2) + … + fi(Ak). 

Definition 3. The light transmission rate ℑ(S) = w / p 
= 1 − (b / p), where w means the number of the white 
pixel in the image S, p means the number of the all 
pixel in the image S, b means the number of the black 
pixel in the image S.  

Definition 4. Given totally symmetric matrices A1, 
A2, …, Ak. For any 1 ≤ i ≤ k, Ai = M(n, j i) for some 0 ≤ 
j i ≤ n. Let [A1||A2||…||Ak] = B and B is an n × m matrix. 
Define ℑ(B, k) = 1 – (fk(B) / m), where k ≤ n. 

To construct the (4, n) secret sharing scheme, we 
will construct two matrices, C0 and C1, which will be 
used for constructing n shares later. Since we will 
choose any one column vector of C0 (or C1, 
respectively) randomly when construct the pixels of n 
shares according to a white pixel of secret image S (or 
a black pixel of secret image S, respectively), we have 
to follow two conditions: 

−  ℑ(C0, k) = ℑ(C1, k) for 1 ≤ k ≤ 3. 
−   ℑ(C0, k) > ℑ(C1, k) for k ≥ 4. 

The first rule ensures C0 and C1 have the same 
light transmission rate when k is between one and 
three, so it won’t see any information when we stack 
less than 4 shares. The second ensure C0 and C1 have 
the different light transmission rate when k is larger 
than three, and the light transmission rate for the white 
pixel of secret image S is greater than that for the 
black pixel of secret image S, so it can reveal the 
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secret image. Hence we can finger out the secret when 
stacking at least 4 shares. For the following algorithm, 
let m = n2 – 2n = n

n
n CCn 11)3( −+−  = 

nnnn
n

n CCnC 02
65

2

2

)2( +−+−+ . 

(4, n) scheme algorithm: 

Input: A binary secret image S with size w × h and the 
value of n. 

Output: n shares R1, R2, …, Rn, each with size w × h. 

1. Let C0 = [M(n, 2)||(n – 3) × M(n, n)||((n2 – 5n + 6) 
/ 2) × M(n, 0)] and C1 = [(n – 3) × M(n, 1)||M(n, 
n – 1)], the size of C0 and C1 are both n × m. 

2. for (1 ≤ i ≤ h ; 1 ≤ j ≤ w) 
t = random(1..m); 
for (1 ≤ k ≤ n) 

  if (S(i, j) == 0) 
Rk(i, j) = C0(k, t); 

  else 
Rk(i, j) = C1(k, t); 

Theorem 1. In the proposed scheme, we stack at least 
four shares can reveal the secret, and stack one, two or 
three shares cannot. 

Proof. We use the light transmission rate to prove that 
we cannot recognize the secret if we stack less than 
four shares, but we can see the image if at least four 
shares stack together. We divided into five cases. The 
first three cases are to prove that if we stack less than 
four shares, the light transmission rate for the white 
and black pixel of the stacked image are in the same. 
The last two cases prove the light transmission rate 
for the white pixel of the stacked image is larger than 
the light transmission rate for the black pixel of the 
stacked image when at least four shares stack together. 
Therefore we can obey the (4, n)-threshold secret 
sharing scheme. For A = C0 or C1, consider the 
proposed algorithm, the definition of fi(A) and ℑ = 1 − 
(b / p), we have ℑ = 1 − (fi(A) / m) = ℑ(A, k). Note 
that Lemma 1 will be used in the following proof. 

Case 1. For any one share 

ℑ(C0, 1) 

� 1 − 
�����,���|��−�� � ���,��|���������� � � ���,����   

 

=1 −  
�!���,��" + ��−��� 
�!���,��" + ��������� ��
�!���,��"��  −��  

= 
�� − #� + #�� − �� ,  

ℑ(C1, 1)  

= 1 − 
��$��−�� � ���,%�||���,� − %�&�   
= 1 − ��−�� � 
�!���,%�" + 
�!���,� − %�"��  −��   =  �� − #� + #�� − �� . 

So ℑ(C0, 1) = ℑ(C1, 1) when one get one share, 
and one cannot see any information. 

Case 2. Stack any two shares 

ℑ(C0, 2) 

= 1 − 
�����,���|��−�� � ���,��|���������� � � ���,����  

= 1 − 
�!���,��" + ��−�� � 
�!���,��"+��������� ��
�!���,��"��  −��  

= 
�� − '� + (��  −�� , 

ℑ(C1, 2)  

= 1 − 
��$�� − �� � ���,%�||���,� − %�&�   
= 1 − �� − �� � 
�!���,%�" + 
�!���,�−%�"�� − �� � )�� + )�−��   = 

�� − '� + (�� − �� . 

So ℑ(C0, 2) = ℑ(C1, 2). That means when 
stacking any two shares, we cannot see any 
information. 

Case 3. Stack any three shares 

ℑ(C0, 3)  

= 1 − 
*����,��||��−�� � ���,��||��������� � � ���,����  

=1− 
*!���,��" + ��−�� � 
*!���,��" + ��������� � � 
*!���,��"�� − ��  

= 
�� − (� + +�� − �� , 

ℑ(C1, 3)  

= 1 − 
*!,!� �" � ���,%�||���,� - %�."  

= 1 − ��−�� � 
*!���,%�" + 
*!���,�−%�"�� − ��   
�� − (� + +�� − �� . 

Again, ℑ(C0, 3) = ℑ(C1, 3) when stacking any 
three shares, so we cannot see any information. 

Case 4. Stack any four shares 

ℑ(C0, 4)  

= 1 − 
/����,��0�!�–�" � ���,���0��������� � � ���,����  

=1 − 
/!���,��" + ��−�� �
/!���,��" + ��������� � � 
/!���,��"�� − ��  

= 
�� − 2� + %��� − �� , 

ℑ(C1, 4)  
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= 1 − 
/�$�� − �� � ���,%�||���,� − %�&�  

= 1 − �� − �� � 
/!���,%�" + 
/!���,� − %�"�� − ��  = 
�� − 2� + %��� − �� . 

Hence, ℑ(C0, 4) > ℑ(C1, 4), so we could 
recognize the secret from the image. 

Case 5. Stack any t shares, t > 4. 

 

ℑ(C0, t)  

= 1 − 
3����,��||!�–�" � ���,��||��������� �����,����  

=1 − 
3!���,��" + ��−�� � 
3!���,��" +��������� � � 
3!���,��"�� − �� , 

ℑ(C1, t)  

= 1 − 
3�$�� − �� � ���,%�||���,� − %�&�  

= 1 − �� − �� � 
3!���,%�" + 
3!���,� − %�"�� − �� . 

 Because ℑ(A, t) = 1 − (ft(A) / m) and the value 
of m in C0 and C1 are the same, we could only use ft(A) 
to compare ℑ(C0, t) and ℑ(C1, t). If ft(C0) < ft(C1) then 
ℑ(C0, t) > ℑ(C1, t). Since  

ft(C0) 

=  45!6�7, 2�"+�7−3� � 45!6�7, 7�"+ :��-'�;(� < � 45!6�7, 0�"  

= −nC2
n
n

tn CnC )3(2 −+−   

= {(n2 – n) – (n – t)2 + (n – t)} / 2 + n – 3  

= nt + n – t(t + 1) / 2 – 3  

< nt + n – 3t  

= (n – 3)(n – (n – t)) + (n – 0)  

= )())(3( 1111
tn

n
n
n

tnn CCCCn −
−−

− −+−−  

= �7 − 3�  � 45!6�7, 1�" + 45!6�7, 7 − 1�" 

= ft(C1). 

Where – t(t + 1) / 2 – 3 < – 3t is hold because 
t(t – 5) / 2 + 3 > 0 for any t ≥ 5. Hence, ℑ(C0, t) > 
ℑ(C1, t) when t > 4, and we can recognize the secret 
from the stacked image.        

 

III. EXPERIMENTAL RESULT 

We use (4, 5)-threshold secret sharing scheme as 
an example. The input n is 4, the C0 and C1 that the 
algorithm generated are:  
C0 = [M(n, 2)||(n – 3) × M(n, n)||((n2 – 5n + 6) / 2) × 

M(n, 0)] = [M(5, 2)||2 × M(5, 5)||3 × M(5, 0)] = 

=>>
>?0 0 00 0 1 1 0 00 0 1 1 0 1 0 1 0    1 1 1 0 0 0   1 1 1 0 0 00 1 0 0 1 0 0 1 1    0 1 1 0 0 01 0 01 1 1 0 1 11 0 0 1 0 0 0 1 1 0 0 00 0 0 0 1 1 0 0 0@AA

AB , 
C1 = [(n – 3) × M(n, 1)||M(n, n – 1)] = [2 × M(5, 1) || 
M(5, 4)] =  

=>>
>?0 0 00 0 0 0 1 01 0 0 0 0 00 0 1    1 1 1 1 1 0    0 1 1 1 0 10 0 1 0 0 0 0 1 0    0 1 1 0 1 10 1 01 0 0 0 0 00 0 1 1 0 0 0 1 0 1 1 10 0 0 0 0 1 1 1 1@AA

AB.  

The experiment results show in Figure 1. We use 
an image (NCNU) to be the secret image as Figure 
1.(a) and we encrypt the secret image into 5 shares as 
Figure 1.(b), (c), (d), (e), and (f). We show the result 
of stacking share 1 and share 2 in Figure 1.(g) and the 
result of stacking any other two shares are almost the 
same, so we just show one of combined image that 
stacks any two shares. Therefore, we cannot see any 
information when stacking any two shares. We show 
the result of stacking share 1, share 2 and share 3 in 
Figure 1.(h) and the result of stacking any other three 
shares are almost the same, so we just show one of 
combined image that stacks any three shares. Again, 
we cannot see any information when stacking any 
three shares. So it can not reveal any information 
when stack less than any four shares. We show the 
result of stacking share 1, share 2, share 3 and share 4 
in Figure 1.(i) and the result of stacking any other four 
shares are almost the same, so we just show one of 
combined image that stacks any four shares. By 
watching the Figure 1.(i), we can see the secret image 
slightly. Then we show the result of stacking all the 
shares together in Figure 1.(j) and we can see the 
secret image clearly. So it reveals the secret when 
stack at least any four shares and if more and more 
share stacks together, the secret image will reveal 
more and more clearly. 

 

IV. CONCLUSIONS 

For general n ≥ 4, we had shown a (4, 
n)-threshold secret sharing scheme in VC. We 
construct the scheme by using a method of 
combination. In [9], the authors defined α which 
means the relative different in weight between C0 and 
C1 of stacking k shares. It would like α to be as large 
as possible, so the image will be clearer. The value of 
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α in (4, 5)-threshold secret sharing scheme 
scheme is approach to 1 / 4000. Because
use NS scheme to design their scheme, 
scheme is in the same as α in NS scheme
scheme, α is equal to 3 / 15 − 2 / 15 
 

(a)         

(c)                             

(e)                

(g)          

(i)         

(a) Secret image 
5, (g) The result of stacking share

share 1, share2 and share 3

threshold secret sharing scheme of NS 
Because Fang et al. 

to design their scheme, α in FFL 
in NS scheme. In our 
2 / 15 = 1 / 15 in the (4, 

5)-threshold secret sharing scheme. 
n)-threshold secret sharing scheme 
our proposed scheme has better perform
scheme [9] and FLL scheme [

                                                        

                                                  

                                                         

                                                         

                                                    
Figure 1. Experimental result of (4, 5) 

Secret image S, (b) Share 1, (c) Share 2, (d) Share 3, (e) Share 4, (f) Share
) The result of stacking share 1 and share 2, (h)The result of stacking 
1, share2 and share 3, (i) The result of stacking share 1, share2, share 

3 and share 4, (j) The result of stacking all the shares. 

threshold secret sharing scheme. Also, for any (4, 
threshold secret sharing scheme in VC for n ≥ 6, 
r proposed scheme has better performance than NS 

] and FLL scheme [6] in the value of α.  

                  (b) 

                         (d) 

                         (f) 

 (h) 

                     (j) 

) Share 
)The result of stacking 

1, share2, share 

32 Int'l Conf. Foundations of Computer Science |  FCS'11  |



Besides, there is no expansion in our scheme 
which is smaller than the NS scheme [9] and we also 
generate shares by randomly without using 
Hilbert-curve while [6] need. 

Overall, our proposed scheme reveals the secret 
image when stacking at least four shares and the 
secret image will be clearer if stacking more and more 
shares together. That is, our scheme is a (4, n) 
threshold PVSS scheme. The advantages of our 
proposed scheme are that it has no pixel expanded, 
and has the larger α that the stacked image will be 
clearer. The future work is to generate the proposed 
scheme to be a general k out of n secret sharing 
scheme in VC. 
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Puzzles 
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Abstract— Sudoku, the logic based combinatorial number-

placement puzzle has gained worldwide fame among 

mathematicians and scientists alike in the field of 

Computational Game Theory. Notably, a vast majority of 

computer-based algorithms available for solving these 

puzzles try to mimic human logic in their implementation, 

making them liable to errors from puzzle inconsistencies. 

This paper presents a straightforward computer-based 

algorithm for solving Sudoku puzzles, hereafter called the 
Test Cell algorithm. It utilizes a highly efficient 

backtracking technique that is easy to implement in most 

available computer programming languages.  Test runs of 

the algorithm, implemented using the C++ computer 

programming language, have been successful for 

essentially all valid puzzle difficulty categories. 

 

Keywords— Sudoku puzzle, Sudoku algorithms, Easy Cell 

method, Test Cell 

1. Introduction 
Introduced in Japan in 1984 and made world popular by 

British newspaper London Times in 2005[1]-[2], the 

Sudoku puzzle has become the passion of many people the 

world over in the past few years. Sudoku is a logic-based, 
combinatorial number-placement puzzle whose objective is 

to fill a 9×9 grid with digits so that each column, each row, 

and each of the nine 3×3 sub-grids that compose the grid 

(also called "boxes", "blocks", "regions", or "sub-squares") 

contains all of the digits from 1 to 9. The puzzle is a 

partially completed grid and does not necessarily have a 

single legitimate solution.  

Ironically, despite being a game of numbers, Sudoku 

doesn‟t demand an iota of mathematics of its solvers. In 

fact, no operation—including addition or multiplication 

helps in completing a grid, which in theory could be filled 
with any set of nine different symbols. Nevertheless, 

Sudoku presents mathematicians and computer scientists a 

host of challenging issues viz. the choice of the number of 

Sudoku grids that can be constructed, the minimal number 

of starting clues that yield a unique solution, and, whether   

Sudoku belongs to the N-P complete class of problems[2]-

[3].    

Unlike manually solving the puzzle with hand-developed 

algorithms or natural methods[4], computer-based 

algorithms offer quick solutions to Sudoku puzzles,  even 

with rigorous backtracking - a systematic form of trial and 
error in which partial solutions are proposed and slightly 

modified if proved wrong.  Challenging puzzles however 

tend to require multiple hand-developed solving strategies 

that may not be easily integrated into a single logically 

sound and efficient computer-based algorithm. This is a 

fundamental challenge in writing Sudoku puzzle solving 

programs that the Test Cell algorithm overcomes. 

 

2. The Test Cell Algorithm  
The Test Cell algorithm developed for solving Sudoku 

puzzles does not mimic human logic or hand-developed 

algorithms. It is a straightforward, easy to implement, 

consistent and efficient computer-based algorithm that 
employs Test Cells - special testing cells determined by a 

specific criterion,  that guide to the ultimate puzzle 

solution. While absent in typical easy puzzles (as a solution 

is reached without a need to identify them), Test Cells 

begin to appear as the difficulty of the puzzle is raised. 

Though only tested on 9X9 Sudoku grids, the Test Cell 

algorithm can  ideally be scaled to other puzzle dimensions. 

 

2.1 Algorithm Terminology 
The Test Cell algorithm is better explained by a 

preliminary  description of all terms pertaining to it in an  

intended logical order. These are:  

Lists- An empty cell has a set of numbers that cannot 

occupy it (Impossibility List) and consequently, a 

corresponding set of those that can occupy it (Possibility 

List). These lists are developed for every empty cell 

according to the Sudoku game rules. 

Invalid Puzzle Configuration- A puzzle configuration in 
which there is at least one empty cell whose Possibility List 

is empty. This shall be the only test for puzzle validity 

during the course of solving. 

Dead End- If an invalid puzzle configuration is reached 

during the course of solving a Sudoku puzzle, then we have 

hit a “Dead End”.  

Easy Cell- An empty cell whose Possibility List contains 

only one number and as such the cell can only be filled 

with that one available number. 

Solution- A fully filled Sudoku puzzle according to the 

Sudoku game rules. For a 9X9 grid, the sum of all numbers 

in each row, column and region is 45, making the sum of 
all numbers occupying the grid 405. 

Easy Cell method- A method of achieving a solution to 

the puzzle by only filling any Easy Cells if available until 

either a solution  is reached or there are no more Easy Cells 

in the puzzle, in which case the puzzle is not yet fully 

solved. This method is normally sufficient to completely  
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Figure 1: Puzzle that may be solved by the Easy Cell method alone 

solve easy puzzles. Figure 1 shows a typical puzzle that 

only requires the Easy Cell method for its solution. 

Test Cell- A special empty cell (as determined by the 

later described procedure) whose Possibility List contains 

just two numbers, only one of which is the correct one for 

insertion. It's important to note that not every cell with only 

two numbers in its Possibility List is a Test Cell. Test Cells 

are indeed special because of the procedure used to identify 

them as will be described later. Puzzles typically have a 

number of Test Cells. The sequence in which they are 

discovered and correctly filled may or may not lead to 

solution variations. Therefore, the Test Cell algorithm 
ideally has the capability to produce all the possible 

solutions for a given puzzle. 

 

2.2 Determination and Manipulation of 

Test Cells 
In determination of a Test Cell, the following procedure 

applies to and is only performed for all empty cells with 

two numbers in their Possibility Lists, in a puzzle whose 

configuration is such that all Easy Cells have been filled 

with the Easy Cell method: 

i. Let the puzzle be in configuration X 

ii. Fill/insert the empty cell with one of the numbers 

in its Possibility List and proceed with solving the 

puzzle using the Easy Cell method, while 

registering the number of newly generated and 

filled Easy Cells. 

iii.  Reset the Puzzle to configuration X 

iv. Fill/insert the empty cell with the other number in 

its Possibility list and proceed with solving the 

puzzle using the Easy Cell method, while 

registering the number of newly generated and 

filled Easy Cells. 

v. Reset the Puzzle to configuration X 

Following the above procedure, a Test Cell is identified 

as the one with a number in the Possibility List which 

registered the most number of newly generated Easy Cells. 

For this particular cell, this number is called the alpha 

number while the other number is called the beta number.  

 

Figure 2: Test Cell algorithm flow chart 

Upon realisation of a Test Cell, the alpha number is 

inserted first, as logic would dictate. If the alpha insertion 

leads to a Dead End, only then is the beta insertion made 

and considered the correct insertion. This is illustrated by 

the Test Cell algorithm flow chart shown in Figure 2. 

The  “new beta insertion” check  in the flow chart aims to 

determine if the beta insertion to be made is following an 

alpha insertion, as is required. If  not, then both the alpha 

and beta insertions led to a Dead End, a situation that 

contradicts the Test Cell theory, causing the algorithm to 

terminate without a solution to the puzzle. A solution to this 
impasse is the extended Test Cell algorithm which adds an 

easy extension to the algorithm within the confines of the 

Test Cell theory. 

Simply put, to implement the algorithm, the Easy Cell 

method is first performed.  If it doesn‟t yield a solution, and 

this is not a Dead End, identify a Test Cell and make its 

alpha insertion.  If this leads to a Dead End in the next 

single run, then the puzzle is reset appropriately and the 

Test Cell‟s beta insertion is made instead. This must lead to 

a normal progress in the next run, these steps repeating 

themselves until a solution is reached. Figure 3 shows a 

puzzle that can be solved with the Test Cell algorithm. 
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Figure 3: A moderately challenging puzzle that can be solved with the 

Test Cell algorithm. 

2.3 Extension to the Test Cell Algorithm 
For a guaranteed solution to more difficult Sudoku 

puzzles, the Test Cell algorithm adopts an easy extension 

with the use of “BackPuzzle” puzzle configurations. In this 

arrangement, Test Cells are further classified as immediate 

or non-immediate (NI) Test Cells. Immediate Test Cells are 

the commonest in puzzles falling in the typical Easy, 

Medium, and Hard categories while non-immediate Test 

Cells begin to occur in the more difficult puzzle categories. 
An immediate Test Cell is one for which insertion of the 

alpha or beta number leads to a Dead End upon performing 

the Easy Cell method for the first chosen insertion, and a 

normal progress (i.e. NOT Dead End) for the other. This is 

illustrated in Figure 4 and Figure 5 where A and B 

represent alpha and beta numbers respectively. It is 

instructive to note that the Test Cell algorithm without the 

extension assumes only immediate Test Cells for a puzzle. 

 

 
Figure 4: An immediate Test Cell with the alpha number correct and the 

beta number wrong, after performing the Easy Cell method 

 

Figure 5: An immediate Test Cell with the alpha number wrong and the 
beta number correct, after performing the Easy Cell method 

A non-immediate (NI) Test Cell on the other hand is one  

for which either insertion of the alpha or  beta number leads 

to a normal progress upon performing the Easy Cell 

method, such that either insertion appears to be correct.  

According to the Test Cell theory however, one of these 

insertions will eventually produce a Dead End at a later 
stage if you proceed solving the puzzle with it while the 

other will not, thereby remaining consistent with the Test 

Cell definition. This is illustrated in Figure 6 and Figure 7. 

The BackPuzzle configuration mentioned earlier is the 

puzzle configuration at the point when a non-immediate 

Test Cell is found to exist in the puzzle being solved. 

BackPuzzle configurations are useful because if both alpha 

and beta insertions of a Test Cell lead to a Dead End (as is 

the case when the Test Cell algorithm terminates with no 

solution to a puzzle), then the current puzzle configuration 

is reset to the most recent BackPuzzle configuration, and a 

beta insertion is made in the corresponding non-immediate 
Test Cell. This is illustrated in the flow chart for the 

extended Test Cell algorithm shown in Figure 8. 

 

 

 

Figure 6: A non-immediate (NI) Test Cell where the alpha number is 
correct while the beta number is ultimately wrong. 

 

 

Figure 7: A non-immediate Test Cell where the alpha number is ultimately 
wrong while the beta number is correct. 
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Figure 8: extended Test Cell algorithm flow chart 

In a well-written program, the algorithm exhaustively 

explores all possible hypotheses and finally determnines the 

solution, if one indeed exists. Figure 9 shows a  challenging 

puzzle that can be solved with the extended Test Cell 
algorithm. 

 

 

Figure 9: A challenging puzzle that can be solved with extended Test Cell 
algorithm 

3. Sudoku Puzzle Difficulty Ranking 

by the Test Cell Algorithm 
Sudoku puzzles are often ranked by difficulty. Perhaps 

surprisingly, the number of givens or "clues" has little or no 

bearing on a puzzle's difficulty.  A puzzle with a minimum 

number of givens may be very easy to solve, and a Sudoku 

with more than the average number of givens can still be 

extremely difficult to solve by hand. Computer solvers can 

estimate the difficulty for a human to find the solution, 

based on the complexity of the solving techniques required.  

A ranking system by the Test Cell algorithm would 
suggest that a puzzle's difficulty level for a human player  

is „Very-difficult‟ if it requires the extended Test Cell 

algorithm to be solved. This relative difficulty further 

increases with the number of BackPuzzle configurations 

that are created during the course of solving the puzzle. 

 

4. Conclusion 
    This paper has presented an alternative computer-based 

algorithm for solving Sudoku puzzles that utilizes a rather 

basic technique. Its relative simplicity coupled with its 

effectiveness merit it as a prime candidate of choice for any 

device. Tests with the algorithm have been successful with 

all puzzle categories at http://www.krazydad.com, a popular 

online resource for Sudoku puzzles. 
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algorithms runs in ����� �	, where ��denotes the height of the 

tree[4]. 

An algorithm running in at most ����	 time for the random 

generation of �-monotone polygons was described by Zhu et 

al [5]. An interesting approach for the generation of random 

polygons in the plane (but not on a given set of points) was 

researched by O'Rourke and Virmany[6]. In the next section 

three proposed heuristic algorithms are designed for this 

problem. 

3 Proposed algorithms 

 In this section, three proposed algorithms are discussed 

for generating of random polygons. each algorithm has time 

complexity ����������	. 

3.1 Algorithm 1 

 Let � be a set of random vertices and no three points are 

on the same line. The convex hull, the set of ��vertices in the 

plane (����	), of a point set � in the plane is the enclosing 

convex polygon with smallest area. With this description, this 

algorithm performs in a way that first ����	 would be 

obtained. Let ��  be a set of interior vertices of this convex hull. 

Then, for the set of those vertices which are inside it will 

perform in this way, i.e., : first the vertex with the least �-

coordinate is found. It is supposed that this vertex is �. The 

vertices of ��  is sorted according to the polar angle in the 

counter-clockwise around �. By angular scanning of these 

vertices around vertex �, visited vertices would be joined 

together. The last visited vertex is joined to vertex � and in 

this way a star-shaped polygon would be obtained (that from 

a point inside it all vertices are visited). Now, from the set of 

vertices over �����	, the closest vertex to ��is selected and it 

is supposed to be this vertex �. If the vertex close to ��over 

interior star-shaped polygon in the counter-clockwise is � and 

the vertex close to vertex � over ����	�in the counter-

clockwise is � (Fig 2-a), so the edges ��� ��	�� ���� ��	 with the 

edges ��� ��	�� ���� ��	�are replaced. Thus, a random polygon 

would be created (Fig 2-b). The procedure of this algorithm is 

as the following: 

• First, �����	 would be computed over the set of 

random vertices �. 

• The set of interior vertices ����	 is considered as ��  

and the vertex with the least �-coordinate is selected 

from the set of vertices (vertex �). 

• The vertices ��  are visited according to the polar 

angle in the counter-clockwise and a star-shaped 

polygon is obtained with angular scanning of vertices 

around vertex � and joining the sorted vertices. 

• The closest vertex to vertex � is selected From the 

set of vertices over �����	 (vertex �). 

• The vertex close to � and the vertex close to � in the 

counter-clockwise is called � and �, respectively. 

• The edges ��� ��	�� ���� ��	��re replaced by the edges 

��� ��	�� ���� ��	. 

 

(a) 

 

(b) 

Fig. 2. (a) Creating a star-shaped polygon with the points 

inside the convex hull, (b) creating the random polygon with 

the replacement of edges ��� ��	�� ���� ��	�with the edges 

��� ��	�� ���� ��	. 

3.2 Algorithm 2 

 In this algorithm like the previous algorithm, first 

�����	 is computed. Let ��  be the vertex set inside of the 

convex hull. For this set of vertices, the existing convex 

bottom algorithm would be applied which has 

����������	�time and performs in this way that first two 

vertices which has the least and the most �-coordinate is 

considered. These vertices is joined together using a 

presumptive line so that the set of vertices would be divided 

into two upper and lower half ( if the set of vertices in the 

lower half is empty, the presumptive line  is considered as the 

convex hull of two points and the algorithm executes again). 
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Now, the convex hull of the presumptive line's lower half is 

computed and the presumptive line is deleted. All remaining 

vertices would be sorted from left to right in the order of � 

and the most left and the most right points would be joined to 

the left and right end vertices of convex hull, respectively. 

Then, like the above algorithm, vertices �� �� � and ��have 

been considered as it's explain before in the previous 

algorithm (Fig 3-a) and the edges ��� ��	� ����� ��	 is replaced 

with the edges (�� ��	� ���� �	 (Fig 3-b). the created polygon is 

a simple random polygon.  

 

(a) 

 

(b) 

Fig. 3. (a) Creating a polygon with the Convex Buttom 

algorithm, (b) creating the random polygon by replacing the 

of edges ���� ��	�� ���� ��	�with  the edges ��� ��	�� ��� ��	. 

The procedure of this algorithm with assumption the existing 

convex bottom algorithm is as the following: 

• First, ����	 would be computed over the set of 

random vertices �. 

• The set of interior vertices ����	 is considered as ��  

and the vertex with the least �-coordinate is selected 

from the set of vertices (vertex ��). 

• The Convex Bottom algorithm is called for those 

vertexes which are inside of the convex hull (the set 

��). 

• The closest vertex to vertex � is selected From the 

set of vertices over �����	 (vertex ��). 

• The vertex close to � and the vertex close to � in the 

counter-clockwise is called � and �, respectively. 

• The edges  ��� ��	�� ����� ��	 is replaced with the edges 

��� ��	�� ���� �	. 

 

3.3 Algorithm 3 

 In this algorithm like the two previous algorithms, first 

�����	 is computed. Let ��  be the vertex set inside of the 

convex hull �� . for this set of vertices, the existing 

TwoPeasants algorithm (for the presumptive line according to 

�-coordinate) would be applied which it has time complexity 

�����������	 and performs in this way that first two vertices 

which has the least and the most �-coordinate is considered. 

These vertices would be joined together using a presumptive 

line so that the set of vertices would be divided into two 

upper and lower half (if the set of vertices is empty, the 

algorithm executes again) [7]. The next steps are as the 

following: The upper half vertices would be sorted while they 

started from the left end point and the lower vertices would be 

sorted like this way and the end vertices would be joined from 

both sides and like two previous algorithms the vertices 

�� �� ��and � as it's explained before in section 3-2 have been 

considered (Fig 4-a) and the edges ��� ��	� ����� ��	 is replaced 

with the edges ��� ��	� ���� �	. The shape which is obtained is a 

simple random polygon (Fig 4-b). Thus the created polygon 

in this way is a simple random polygon. The procedure of this 

algorithm with assumption the existing TwoPeasants 

algorithm is as the following: 

• First, ����	 would be computed over the set of 

random vertices �. 

• The set of interior vertices ����	 is considered as ��  

and the vertex with the least �-coordinate is selected 

from the set of vertices (vertex �). 

• The TwoPeasants algorithm is called for those 

vertexes which are inside of the convex hull (the set 

��). 

• The closest vertex to vertex � is selected From the 

set of vertices over �����	 (vertex � ). 

• From the set of vertices over ������	, the closest 

vertex to vertex � is selected ( vertex � ). 

• The vertex close to ��and the vertex close to � in the 

counter clockwise is called ��and � respectively. 

• The edges  ��� ��	�� ����� ��	 is replaced with the edges 

��� ��	�� ���� �	. 
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(b) 

Fig. 4. (a) Creating a polygon with the TwoPeasants 

algorithm, (b) creating the random polygon by replacing the 

edges (��� ��	�� ���� ��	 with the edges ��� ��	�� ��� ��	. 

 In the next section, the performance of proposed discussed 

algorithms would be evaluated. 

4 Performance evaluation 

 In this section, performance and time complexity of the 

proposed algorithms would be investigated. in the proposed 

algorithm 1, since the time complexity the computation of 

�����	, is �����������	, finding a vertex with the least �-

coordinate (vertex �), is �����	, and finding the closest vertex 

to vertex � from the vertices set �����	 is �����	, Likewise, 

since the time complexity of sorting of the set of vertices � 

according to the polar angle around vertex � is ���������	 

and the replacement the edges ���� ��	�� ���� ��	�with the edges 

��� ��	�� ��� ��	, would be performed in linear time, therefore 

the time complexity for this algorithm is ���������	. 

For the proposed algorithm 2, since time order for 

computation ����	, is ����������	, and finding a vertex with 

the least  �-coordinate (vertex � ), is �����	, and the time 

complexity of convex bottom algorithm is ����������	, so 

time complexity for this algorithm is ����������	, as well. 

In the proposed algorithm 3, time order for computation 

����	, is ����������	, finding a vertex with the least �-

coordinate (vertex �) is ����	 and time complexity of 

Towpeasants algorithm is ���������	. Thus, similar to 

previous algorithms, time complexity of this algorithm is 

����������	. In the next section, the conclusions would be 

investigated. 

5 Conclusions 

 In this paper, a review of existing algorithms was done 

for generating random polygons. Many algorithms have been 

executed for generating random polygons but no algorithm 

has been presented yet for the problem of generating simple 

random polygons in linear time. This problem causes to apply 

heuristic approaches. In this paper, three inventive algorithms 

have been proposed for generating simple random polygons 

which has time complexity of ����������	. Since the 

generation of simple polygon is not possible in less than 

����������	 time, so these algorithms have optimal order. 
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Abstract - Pseudo-triangulation is regarded as one of the 
most commonly used problems in computational geometry. In 
this paper we consider the problem of minimum pseudo-
triangulation of a given set of points S in the plane using 
convex hull layers and we propose two new methods that will 
lead to the production of minimum pseudo-triangulation. This 
means that the number of pseudo-triangles created in 
minimum pseudo-triangulation is exactly n-2 pseudo-triangles 
and the minimum number of edges needed is 2n-3. 

Keywords: pseudo-triangulation, reflex chain, convex hull 
layers, visibility 

 

1 Introduction 
  The names pseudo-triangle and pseudo-triangulation 
were coined by Pocchiola and Vegter in 1993. For polygons, 
pseudo-triangulations has been already expressed in the 
computational geometry’s literature in the early 1990’s, under 
the name of geodesic triangulations [1]. The geodesic path 
between two points of a polygon is the shortest path from one 
to the other in polygon. Pseudo-triangulations of a simple 
polygon are also called geodesic triangulations, because they 
arise by inserting non-crossing geodesic paths in polygon. 

A pseudo-triangle is a planar polygon with exactly three 
convex vertices, called corners and three reflex chains of 
edges join the corners. Let S be a set of n points in general 
position in the plane. A pseudo-triangulation for S is a 
partition of the convex hull of S into pseudo-triangles whose 
vertex set is S [2]. 

In 2000, Streinu [3] has shown that there are strong links 
between minimally rigid graphs and minimum pseudo-
triangulations. In addition, she proved that the minimum 
number of edges needed to obtain a pseudo-triangulation is 
2n-3 and thus, by Euler's polyhedron theorem, the number of 
pseudo-triangles in a minimum pseudo-triangulation is n-2, 
which does not depend on the structure of the point set but 
only on its size [4]. Every vertex of a minimum pseudo-
triangulation is pointed. A vertex is pointed if it has an 
incident angle greater than �. 

Pseudo-triangulations are received considerable attention in 
computational geometry. This is mainly due to their 
applications in rigidity theory, robot arm motion planning, 
visibility, ray-shooting, kinetic collision detection and 
guarding polygons [5-8]. 

With respect to the fact that some of the interesting geometric 
and combinatorial properties of pseudo-triangulations have 
been recently discovered, but many main open questions still 
remain [2]. In this paper we consider the problem of minimum 
pseudo-triangulation of a set S of n points in the plane and we 
show that the generation of convex hull layers for set points 
and their pseudo-triangulation, using two new methods, 
minimizes pseudo-triangulation. 

The rest of this paper has been organized as follows: In 
section 2 some basic definitions are presented. Section 3 
describes how to create convex hull layers. In section 4 
determine for all vertices in convex hull layers visible 
vertices and finally in section 5 we propose two new methods 
of pseudo-triangulation on created convex hull layers to attain 
minimum pseudo-triangulation. 

2 Initial definitions 
 A simple polygon is called a convex polygon when all the 

internal angles are less than �. According to this definition, 
the set of points S on a plane is called convex if and only if in 
exchange for both the points p,q∈ S, the line segment pq 
completely lies inside S (pq ⊆ S).  

The most applicable structure in robatic geometry is convex 
hull. Convex hull of the given points p0,…, pn-1 is the smallest 
convex set on the plane which contains the points. 

Let three points p1(x1, y1), p2(x2, y2) and p3(x3, y3) are given in 
the plane. Hence matrix A is defined as follows: 
 

                                (1) 
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Let det (A) refers to determinant of matrix A. Three cases can 
be occurred. 

• Case a:  det (A) > 0, Sequence p1, p2, p3 are counter-
clockwise (left turn). 

• Case b: det (A) < 0, Sequence p1, p2, p3 are clockwise 
(right turn). 

• Case c: A = 0 implies that the three points p1, p2, p3 are 
collinear. 

Two points p and q on the Euclidean plane are visible 
towards each other if the line segment pq doesn’t intersect 
any other line segments. 
Let p0,…, pn-1 be the vertices of a simple polygon P which lie 
in counter-clockwise direction (Fig. 1). We call �(pi,pj), the 
shortest path between the two vertices pi, pj from the vertices 
of P. �(pi, pj) path is called convex chain If we move from 
vertex pi towards vertex pj on the path, the relevant path will 
be counter-clockwise, otherwise the �(pi, pj) path is called 
reflex chain. 
 
 
 

 

 

 

 

 

Fig. 1 Convex and reflex chain 

 

3 The generation of convex hull layers 
 In this section we will consider algorithm of the 
generation of convex hull. In order to generate convex hull, 
the coordinates of vertices and the order of their connections 
are required. There are different algorithms in order to 
generate convex hull. In this paper the Graham algorithm 
version B has been used. In order to compute convex hull, 
first one should find boundary points. In this algorithm, the 
lowest point is the first starting extreme point. 

The set S with n points on a plane is given. According to 
Graham scan algorithm version B, the following steps are 
taken: 

• Step 1- Find the lowest point and call it point p0. 

• Step 2- The remaining points are put in order based on 
the angle around point p0. If two points have the 
same angle with p0, (i.e. they are collinear) then the 
point which has a larger distance from p0 is taken 

into consideration. We call these points p1,…, pn-1 
and connecting these points to one another 
generating a star shaped polygon (Fig. 2-a). 

• Step 3- Line segment p0p1 definitely lies on the convex 
hull. Thus these two vertices are pushed into a stack 
so that p1 lies on the top of the stack. Two top of 
stack vertices together with the following vertex (p2) 
are considered and the clockwise or the counter-
clockwise directions of these consecutive three 
vertices are determined. If the angle is counter- 
clockwise, the vertex will be pushed into the stack 
and the next vertex is considered, otherwise the top 
of stack is popped and similarly the algorithm is 
continued. Eventually, all the vertices which lie on 
the stack are the same vertices sorted on the most 
external convex hull layer. The time complexity of 
the presented algorithm is O(nlogn) (Fig. 2-b). 

Pseudo code of the Graham algorithm version B: 

Procedure Graham� �

p0 � find the point whose y coordinate is minimum   
Sort the other points around p0 and call them p1,…,pn-1 ��

Push (p0)��

Push (p1) ��

for  i �  2  to  n-1  do 
    while  Right (stack [top-1], stack [top], pi) do 
        Pop��

    Repeat��

    Push (pi)��

Repeat 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (a) 
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(b) 

Fig. 2 (a) Star shape polygon (b) the most external convex hull layer 

 
By extracting the convex hull points, the algorithm is 
repeated on the remaining points, a new convex hull is 
generated and this action goes on until it comes to less than 
three points. This means that just one or two points remains, 
so that in this case for using the two new methods of 
minimum pseudo-triangulation there exist certain conditions 
which should be taken into consideration. Hence, the convex 
hull layers are generated in this manner (Fig. 3). 

 

 

 

 

 

 

 

 

Fig. 3 The convex hull layers 

 
4 Suggested algorithms  
 In this section first the visible vertices in the convex 
hulls should be determined each vertex of the convex hull. If 
the two adjacent convex hulls are considered as a pitted 
polygon, the vertices which have the following term are 
visible for the vertex: the linking line between the vertex and 
the vertices sorted on the internal convex hull don’t lie 

outside this pitted polygon (i.e. it shouldn’t intersect any sides 
of the polygon). 

Among all the vertices visible for each vertex, the two 
vertices which have the smallest and the largest angle towards 
this vertex are regarded as the two farthest visible vertices. 
Hence, for all the vertices of the external layer, compared to 
the following layer, there will be two visible vertices. For 
instance, as it is shown in Fig. 4-a, the vertex p1 from the 
most external convex hull meets four vertices p3,p2,p1 and p4 
from the following convex hull so that p1 and p4 are chosen as 
the two farthest visible vertices (Fig. 4-b). 

 

 

 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

 

 

(b) 

 

Fig. 4 (a) The visible vertices of p1 from external convex hull. (b) 
The two farthest visible vertices of p1 from external convex hull. 
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As it was expressed all the vertices in the convex hull layer 
compared to the following layer have two farthest visible 
vertices. In this paper one of these two vertices should be 
chosen to generate pseudo-triangulation here two new 
methods of choosing one of these two visible vertices in order 
to generate pseudo-triangulation is put forward. 

4.1 Method of choosing clockwise visible 
vertices 

 In the method of choosing clockwise visible vertices, 
from the two farthest visible vertices determined, the one is 
selected which holds a clockwise relation between the 
relevant vertex from the external convex hull and its two 
visible vertices. If the number of layers is M, Pi,j the vertex of 
the ith in jth layer, that j shifts from 1,…,M. Thus, the 
relevant vertex in jth is considered as Pi,j and we call the two 
visible vertices Ps,j+1 (index of the nearest visible vertex) and 
Pk,j+1 (index of the farthest vertex). We consider the rotation 
from the relevant vertex toward the two visible vertices. If 
(Pi,jPs,j+1Pk,j+1) is clockwise the line segment is linked 
between Pi,j and Ps,j+1 in the case that (Pi,jPk,j+1Ps,j+1) is 
clockwise the line segment is linked between Pi,j and Pk,j+1. 
Linking these lines every layer, the clockwise visible vertices 
are produced (Fig. 5). 

 

 

 

 

 

 

 

 

 

Fig. 5 Select of the clockwise visible vertex for Pi,j 

4.2 Method of choosing counter-clockwise 
visible vertices 

 In the method of choosing counter-clockwise visible 
vertices from the two farthest visible vertices, the one is 
selected which holds a counter-clockwise relation between 
the relevant vertex from the external convex hull and its two 
visible vertices such that we consider the relevant vertex in 
the ith layer as Pi,j and call the two visible vertices Ps,j+1  and 
Pk,j+1. 

We consider the rotation from the vertex toward the two 
visible vertices. If (Pi,jPs,j+1Pk,j+1) is counter-clockwise, the 
line segment is linked between Pi,j and Ps,j+1  and in the case 
that (Pi,jPk,j+1Ps,j+1) is counter-clockwise the line segment is 
linked between Pi,j and Pk,j+1. Linking these lines in every 
layer, the counter-clockwise visible vertices are produced 
(Fig. 6). 

 

 

 

 

 

 

 

 

Fig. 6 Select of the counter-clockwise visible vertex for Pi,j 

 

If we perform one of the two proposed methods or a 
combination of the two methods (in a way that just one 
method is used for each layer), the convex layers are pseudo-
triangulated according to Fig. 7. In the next section the 
outcome will be considered. 

 

 

 

 

 

 

 

 

 

 

Fig. 7 Minimum pseudo-triangulation using two new methods 
pseudo-triangulation 
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5 Conclusions 
 In this paper two new methods for pseudo-triangulation 
of the set of points S were put forward. The trend was in a 
way that first a layer was generated for the set of points S on 
the plane of the convex hull and then performing one of the 
two methods or a combination of them on the layers the act of 
pseudo-triangulation was done. The surveys showed that the 
pseudo-triangulation performed were minimum i.e. the 
number of the produced pseudo-triangles is n-2 pseudo-
triangle and the number of edges in it is the least possible 
amount i.e. 2n-3. 
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Abstract - Generating random polygons problem is important 

for verification of geometric algorithms. Moreover, this 

problem has applications in computing and verification of 

time complexity for computational geometry algorithms such 

as Art Gallery. Since it is often not possible to get real data, a 

set of random data is a good alternative. In this paper, a 

heuristic algorithm is proposed for generating sunflower 

random polygons using ��� ��� �� time. 

Keywords: convex hull, sunflower random polygon, 

visibility  

1 Introduction 

  Computational geometry is a very important research 

field in computer science in which most computations are 

performed on known geometrical objects as polygons. 

Polygons are a convenient representation for many real-world 

objects; convenient both in that an abstract polygon is often 

an accurate model of real objects and in that it is easily 

manipulated computationally. Examples of their applications 

include representing shapes of individual letters for automatic 

character recognition, of an obstacle to be avoided in a robot's 

environment, or a piece of a solid object to be displayed on a 

graphic screen [7]. 

The generation of random geometrical objects has received 

some attention by researchers [2][3][6]. A challenge of these 

problems is the generation of random simple polygons. Since 

no polynomial time algorithm is known to solve the problem, 

researchers either try to use heuristic algorithms which don't 

have uniformed distribution or restrict the problem to certain 

classes of polygon such as monotone and star-shaped 

polygons [1][3][4]. 

The importance of geometric objects application is the 

simplicity of testing geometric algorithms. Since a set of data 

may become both too large and too hard to define for 

practical purposes, what one might do is to use randomly 

generated data that has a high probability to cover all the 

different classes of inputs. Thus, since practical data may not 

be available for testing, it is natural to test the algorithm on 

randomly input data. 

Polygons are one of the fundamental building blocks in 

geometric modeling and they are used to present a wide 

variety of shapes and figures in computer graphics, vision, 

pattern recognition, robotics and other computational fields. 

Some recent applications address uniformed random 

generation of simple polygons with given vertices, in the 

sense that a polygon will be generated with probability 
�

	
 if 

there exist a total of 
 simple polygons with such vertices. 

One of the important geometry problems in which polygons 

play an important rule, is art gallery whose purpose is 

guarding a polygonal art gallery with the least number of 

guards (cameras). A well-known kind of art gallery problem 

is sunflower art gallery. The proposed question is this: What 

is the smallest number of guards required to protect the 

Sunflower Art Gallery? 

Figur 1 shows a sunflower art gallery which is protected by 4 

stationary guards. Some of the guards can not see through 

walls around corners of art gallery. Every point is visible at 

least one guard and it would be more economical to protect 

the gallery with fewer guards, if possible [5]. 

In this paper a heuristic algorithm is proposed for the 

generation of random sunflower polygons to estimate such 

problems.  

 

Fig. 1. The sunflower art gallery [5] 

The following sections of this paper have been organized in 

this way: section 2 has been allocated to related works. In 

section 3 the needed preliminary concepts are stated. In 

section 4 the proposed algorithm is posed for generating 

random sunflower polygon and its performance and accuracy 

are investigated and finally in section 6 the conclusion will be 

discussed. 
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part, all its point set are visible from 23 on ��, because of polar 

sorting of points around 23, it is verified simply that a random 

sunflower polygon is  inevitably generative by this proposed 

algorithm on any set of given points with number of 

assumption convex hull layers � � �.  

5 Conclusions 

 In this paper, a heuristic algorithm with time complexity 

of ��� �� �� was proposed for the generation of random 

sunflower polygon. This algorithm can be used to estimate 

many algorithms and geometric problems such as art gallery. 

Also it was proved that this algorithm has properly on any set 

of given points with intricate assumption convex hulls (with 

the number of layers � � �) and it generates a random 

sunflower polygon. 
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Abstract - The generation of random simple polygon and the 
pseudo-triangulation of a polygon are regarded as the 
proposed problems in computational geometry. The 
production of a random polygon is used in the context of the 
consideration of the accuracy of algorithms. In this paper, a 
new algorithm is presented to generate a simple spiral 
polygon on a set of random points S in the plane using convex 
hull layers in a way that pseudo-triangulation is also 
performed on it simultaneously. The new algorithm can be 
done in O(nlogn) time, so it is considered as one of the 
optimal algorithms. 

Keywords: simple spiral polygon, pseudo-triangulation, 
convex hull layers, convex and concave chain  

 

1 Introduction 
  Polygons are suitable shapes to demonstrate the objects 
of real world and every object in nature is demonstrable as a 
set of polygons. The generation of random simple polygons 
has two main areas of application: a) testing the correctness 
and b) evaluating the CPU-time consumption of algorithms 
that operate on polygons. 

The generation of random geometric objects has received 
some attention by researchers. Epstein studied the uniformly 
random generation of polygon triangulation [2]. Polygon 
pseudo-triangulation is a generalized form of polygon 
triangulation. The names pseudo-triangle and pseudo-
triangulation were coined by Pocchiola and Vegter in 
1993[3]. A pseudo-triangle is a simple polygon with exactly 
three convex vertices, called corners and three concave 
chains of edges joining the corners [4]. 

Let S be a set of random n points p0,…, pn-1 in the plane. The 
goal is generation of a random simple polygon with a uniform 
distribution. A uniformly random polygon on S is a polygon 
generated with probability of 1/k if there exist k simple 
polygons on S in total [2, 5]. Since the generation of a 
polygon from a set of random points is frequently used to 
consider the performance of proposed algorithms in the 
context of polygons such as the Art gallery problem; 
therefore, the generation of similar polygons cannot show 
well the quality of the performance of the algorithms. Thus, 

we are looking for algorithms having the production ability of 
kinds of polygons with different structures, and up to now no 
solutions with the polynomial time to generate uniform 
random polygons have been known. 

The following subjects of this paper have been organized in 
this way: In section 2 the initial definitions are presented. In 
section 3 the generation manner of convex hull layers are 
expressed. In section 4 the suggested algorithm to generate 
pseudo-triangulated spiral simple polygon and the analysis of 
its time complexity is proposed. Finally in section 5, 
conclusion will be presented. 

2 Preliminaries  
 A sequence of line segments, such that the end of each 

one is the beginning of the following one, is referred as 
polygon and a polygon whose edges don’t intersect one 
another is called simple polygon. 

A simple polygon is called a convex polygon when all the 
internal angles are less than �. According to this definition, 
the set of points S on a plane is called convex if and only if in 
exchange for both the points p,q∈ S, the line segment pq 
completely lies inside S (pq ⊆ S).  

The most applicable structure in robatic geometry is convex 
hull. Convex hull of the given points p0,…, pn-1 is the smallest 
convex set on the plane which contains the points. 

Let three points p1(x1, y1), p2(x2, y2) and p3(x3, y3) are given in 
the plane. Hence matrix A is defined as follows: 
 

                                (1) 

 

Let det (A) refers to determinant of matrix A. Three cases can 
be occurred. 

• Case a:  det (A) > 0, Sequence p1, p2, p3 are counter-
clockwise (left turn). 
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• Case b: det (A) < 0, Sequence p1, p2, p3 are clockwise 
(right turn). 

• Case c: A = 0 implies that the three points p1, p2, p3 are 
collinear. 

Two points p and q on the Euclidean plane are visible 
towards each other if the line segment pq doesn’t intersect 
any other line segments. 
Let p0,…, pn-1 be the vertices of a simple polygon P which lie 
in counter-clockwise direction (Fig. 1). We call �(pi,pj), the 
shortest path between the two vertices pi, pj from the vertices 
of P. �(pi, pj) path is called convex chain If we move from 
vertex pi towards vertex pj on the path, the relevant path will 
be counter-clockwise, otherwise the �(pi, pj) path is called 
concave chain. 
 
 
 

 

 

 

 

 

Fig. 1 Convex and concave chain 

 

3 The generation of convex hull layers 
 In this section we will consider algorithm of the 
generation of convex hull. In order to generate convex hull, 
the coordinates of vertices and the order of their connections 
are required. There are different algorithms in order to 
generate convex hull. In this paper the Graham algorithm 
version B has been used. In order to compute convex hull, 
first one should find boundary points. In this algorithm, the 
lowest point is the first starting extreme point. 

The set S with n points on a plane is given. According to 
Graham scan algorithm version B, the following steps are 
taken: 

• Step 1- Find the lowest point and call it point p0. 

• Step 2- The remaining points are put in order based on 
the angle around point p0. If two points have the 
same angle with p0, (i.e. they are collinear) then the 
point which has a larger distance from p0 is taken 
into consideration. We call these points p1,…, pn-1 
and connecting these points to one another 
generating a star shaped polygon (Fig. 2-a). 

• Step 3- Line segment p0p1 definitely lies on the convex 
hull. Thus these two vertices are pushed into a stack 
so that p1 lies on the top of the stack. Two top of 
stack vertices together with the following vertex (p2) 
are considered and the clockwise or the counter-
clockwise directions of these consecutive three 
vertices are determined. If the angle is counter- 
clockwise, the vertex will be pushed into the stack 
and the next vertex is considered, otherwise the top 
of stack is popped and similarly the algorithm is 
continued. Eventually, all the vertices which lie on 
the stack are the same vertices sorted on the most 
external convex hull layer. The time complexity of 
the presented algorithm is O(nlogn) (Fig. 2-b). 

Pseudo code of the Graham algorithm version B: 

Procedure Graham� �

p0 � find the point whose y coordinate is minimum   
Sort the other points around p0 and call them p1,…,pn-1 ��

Push (p0)��

Push (p1) ��

for  i �  2  to  n-1  do 
    while  Right (stack [top-1], stack [top], pi) do 
        Pop��

    Repeat��

    Push (pi)��

Repeat 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (a) 
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(b) 

Fig. 2 (a) Star shape polygon (b) the most external convex hull layer 

 
By extracting the convex hull points, the algorithm is 
repeated on the remaining points, a new convex hull is 
generated and this action goes on until it comes to less than 
three points. This means that just one or two points remains. 
Hence, the convex hull layers are generated. In the following 
section these generated convex layers will be typically used. 
It means that these layers are not depicted for the set of points 
S on the plane and they are computed as preprocessing (Fig. 
3). 

 

 

 

 

 

 

 

 

 

Fig. 3 The convex hull layers 

 

 

4 The generation of pseudo-triangulated 
spiral simple polygon  

 In this section a new algorithm is presented for the 
generation of spiral simple polygon which is also pseudo-
triangulated simultaneously.  

4.1 The suggested algorithm 
 The suggested algorithm consists of two stages. 
Applying these two stages to the generated convex layers in 
the preceding stage, and by generating consecutive pseudo-
triangles, pseudo-triangled spiral polygon is eventually 
obtained. 

Let  M  be the number of convex layers. Lj is the jth layer that 
j = 1,…,M and Pi,j is the ith vertex in the jth layer. 

4.1.1 The first stage of the algorithm: 
• Step 1- Take j � 1 into account and choose a point 

on L1 (The most external convex layers) as the 
starting point and call it p1, j. 

• Step 2- Choose two other points in counter- 
clockwise direction respectively and call them 
p2,j and p3,j. Take these three points as the 
pseudo-triangle vertices into account and 
generate the line segments p1,jp2,j and p2,jp3,j. 

• Step 3- In this step, in order to generate the 
connecting line segment between two vertices of 
p1,j and p3,j, in case of non existing intersection 
with layer Lj+1 , the foregoing line segment is 
depicted. Otherwise, we should choose and 
depict points of layer Lj+1 from vertex p1,j to 
vertex p3,j which form a concave chain with 
these two vertices. In this stage of algorithm, a 
pseudo-triangle has been generated (Fig. 4). 

 

 

 

 

 

 

 

 

 

(a) 
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(b) 

Fig. 4  (a) Non existing intersection with layer Lj+1. (b) Intersection 
with layer Lj+1.  

 

• Step 4- In order to generate the following pseudo-
triangle the local position of vertices p1,j, p2,j and 
p3,j should be changed by considering the 
following conditions: 
a) The local position of point p1,j changes in case 
of intersection of line segment p1,jp3,j with layer 
Lj+1 and is exchanged to the neighboring point  
p3,j on the concave chain (Fig. 5). 

b) The vertex p2,j is transferred to the local 
position of the present vertex p3,j and call its 
neighboring point in counter-clockwise direction 
on the layer Lj vertex p3,j and generate line 
segment p2,jp3,j ( Fig. 5 and Fig. 6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Change the local position of triangle vertices (Intersection 
with layer Lj+1). 

 

 

 

 

 

 

 

 

 

 

Fig. 6 Change the local position of triangle vertices (Non-existing 
intersection with layer Lj+1).  

Repeat steps 3 and 4 as far as the last remaining point on the 
layer Lj. 

4.1.2 The second stage of the algorithm: 
  Meeting the last point on layer Lj, in this stage among 
the remaining points on layer Lj+1 which haven’t been used to 
generate concave chain in the first stage of algorithm, find the 
farthest visible point from the last point on the layer Lj that is 
vertex p3,j and call it v, then depict the connecting line 
segment between the two points. Also, move from vertex p1,j 
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to the visible point on layer Lj+1 and depict the line segments 
among the existing points one by one in this path. 

After finishing this stage, taking j � j+1 into account, enter 
the following layer and consider the point neighboring the 
farthest visible point (in the second stage of algorithm) in 
clockwise direct as the starting point of this layer, and from 
the second step of the first stage we continue the algorithm 
with the remaining points (except for the farthest visible 
point) in this layer and repeat the stages till j < M (Fig. 7). 

 

 

 

 

 

 

 

 

 

Fig. 7 Entering the next layer (Lj+1). 

Hence by repeating the stages of the suggested algorithm 
until j < M, a pseudo-triangulated spiral simple polygon is 
generated (Fig. 8) that in subsection of the following section 
deal with analyzing the suggested algorithm. 

 

 

 

 

 

 

 

 

 

 

Fig. 8 Pseudo-triangulated spiral simple polygon. 

Theorem1. The presented algorithm produces random simple 
polygons twice as much as the number of the existing points 
on the most external convex layer. 

Proof: Since every point of the convex polygon of the most 
external layer can be the starting point of algorithm and it can 
be selected clockwise or counter-clockwise in order to be run, 
so simple random polygons will be produced twice as much 
as the number of the existing points on the most external 
convex layer.   

Pseudo code of the counter-clockwise algorithm: 

Algorithm Random Polygon Generation 
 
j�1 
i�1 
P1,j � pi, j 
while j < M do 
     while i < nj do 
         i � i + 1 
         P2,j � pi, j 
         Draw Line (P1,j , P2,j) 
         i � i + 1 
         P3,j � pi, j 
         Draw Line (P2,j , P3,j) 
         if (P1,j , P3,j) � lj+1 � Ø then 
            find the reflex chain on lj+1 between P1,j , P3,j and draw it 
            P1,j � last element on the reflex chain 
         else 
            Draw Line (P1,j , P3,j) 
            i � i + 1 
            P2,j � p3, j 
            P3,j � pi, j 
         end if 
     end while 
     v � find last point which is visible from P3,j among all remain  
           points in lj+1  
     Draw Line (P3,j , v) 
         Draw a chain from P1,j to v 
         i � index of the nearest point to v in clockwise direction 
         j � j + 1 
end while 
end of algorithm�

 

 

4.2 Analysing the suggested algorithm 
  The suggested algorithm requires a preprocessing stage 
called visibility graph, then the generation of convex hulls 
and eventually the implementation of the suggested algorithm 
in section 4. The generation of visibility graph can be done in 
O(nlogn)[1]. The generation of convex hull layers can be 
done in O(nlogn)[6]. In section 4, implementing the 
suggested algorithm to generate the line segment between the 
two points, the issue of the visibility of the two points should 
be considered that by performing the preprocessing stage, its 
time complexity is O(nlogn). With regard to the planarity of 
the pseudo-triangulation graph to generating all of the 
pseudo-triangles O(n) is required. Thus, the algorithm can be 
done in O(nlogn). 
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5 Conclusions 
 In this paper a new algorithm was presented to generate 
pseudo-triangulated spiral simple polygons from the set of 
random points S on the plane. The work trend was such that 
first the convex hull layers were generated for the set of 
random points S. By using this suggested algorithm from the 
most external convex layer to the most internal layer 
respectively, by creating consecutive pseudo-triangles, 
pseudo-triangulated spiral polygon whose time complexity is 
O(nlogn). The generation of simple polygons out of the set of 
random points, have such applications as the consideration of 
heuristic algorithms in issues like Art gallery, and thus 
algorithms to produce polygon are very efficient in this affair. 
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     Abstract. The amount of data stored digitally 

continues to grow dramatically across many fields, along 

with the need for algorithms to efficiently compress this 

data for storage and transmission. In this paper, we 

describe an improvement of LZW data compression. We 

employ a dynamic dictionary, in which least recently 

used and aging algorithms are used to replace 

infrequently used entries. We demonstrate that these 

pruning techniques result in significant gains in 

compression ratios for large data files. 

 

     Keywords. LZW data compression, dynamic 

dictionary, table pruning, least recently used, aging 

replacement. 

 

1. Introduction 
 
     Data compression algorithms are widely used for data 

storage and data transmission. A popular lossless method 

known as Lempel-Ziv (LZ) compression [1] replaces a 

string of characters with an index into a dictionary that is 

built during the compression process. There are many 

modifications of the original LZ compression algorithm, 
many of which are feature different implementations of 

the dictionary [1]-[6]. 

     Lempel-Ziv-Welch (LZW) compression [4] is Terry 

Welch’s modification of LZ compression. This algorithm 

uses a string table to implement the dictionary. Initially, 

the string table contains all strings of length 1. During the 

process of compression, the algorithm adds every new 

string it sees to the string table. To compress, the 

algorithm scans the input data for the longest matching 

string in the string table and outputs the index of that 

string as the result of the compression. Compression 

occurs when a long string of characters is replaced by a 
shorter index. 

     One difficulty in using LZW compression on large 

data files is in managing the dictionary, as the size of the 

string table often surpasses that of available memory. 

Here we propose a new method called table pruning for 

managing the dictionary. We have demonstrated our 

method with least recently used and aging replacement 

algorithms and improved the compression ratio obtained 

from using LZW alone. Finally, we discuss some factors 

we observed to be crucial to compression ratios. 

2. Handling the Ever Growing String 

Table 
 
     One drawback to be considered in implementing the 

LZW algorithm is the ever-growing string table; as more 

data is analyzed the dictionary becomes increasingly 

large. The table must be managed, as computer memory 

is limited. Two existing methods for handling the 

ever-growing string table [1], [9] are discussed below. 

 

2.1 Table Freezing 

 
     This is the method used by the original LZW 

algorithm. This method picks a size of the string table 

and does not allow the table to grow beyond that size. 

Instead, it continues the compression according to the 

frozen table. It is simple and easy but it doesn’t work well 

with large files. 

 

2.2 Table Flushing 

 
     This is the method used in [9]. This method computes 

the current compression ratio periodically. When the 

table is full and the current compression ratio drops 

below some predetermined threshold value, it flushes the 

string table. That is, the algorithm abandons the current 

string table and builds a new one when compressing the 

remaining input data. 

     Flushing can get rid of infrequently used entries. 

However, this drastic operation also flushes out 

frequently used entries. Thus, it doesn’t improve 
compression ratios for a lot of input files. 

 

2.3 Table Pruning 
 
     We propose to prune the string table. Once the string 

table becomes full and an additional entry is needed, we 

replace an infrequently used entry with the new entry and 

the compression continues. However, the problem of 
selecting an infrequently used entry for pruning is 

non-trivial. 
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3. Selecting an Infrequently Used 

Entry for Replacement 
 
     Many strategies exist for selecting infrequently used 

entries, a problem similar to selecting replacement pages 
for virtual memory management systems. Here we utilize 

principals from two of these so-called “page replacement 

algorithms”: Least Recently Used and Aging 

Replacement. 

 

3.1 Least Recently Used (LRU) 
 
     In LRU, the entry which has not been accessed for the 

longest is selected as the replacement entry. In our 
implementation, we use a self-organizing list to select the 

least recently used entry. This list contains an index to 

every entry of the string table. During the compression, 

every time an entry is accessed, the corresponding index 

is moved to the front of the list. When a replacement 

entry is needed, it’s selected from the end of the list. 

 

3.2 Aging Replacement 

 
     In addition to LRU, we use the aging replacement 

algorithm to manage the string table. In this algorithm, 

we keep a value called time to live (TTL) for every table 

entry. When an entry is created the corresponding TTL is 

initialized to some predetermined value. Periodically, the 

TTL is decreased. When the TTL becomes zero, the 

entry is deleted from the string table. In order to let table 

accesses closer to the present time have more impact than 

table accesses long ago, when an entry is accessed, its 

TTL is reset to (current value/2+initially value). When a 

replacement entry is needed, an unused entry or the one 
with the smallest TTL will be selected. 

 

4. Implementation Complicatedness 
 
     The implementation of our idea is somewhat 

complicated mainly due to the representation and 

management of the string table. 

      In order to speed up the process of searching the 

string table, the double hashing technique is used to 

implement the string table. In order to achieve a good 

performance of the hash table, the size of the hash table is 

25% bigger than the needed size of the string table.  

     Because of hashing, deleting or replacing entry of the 

string table cannot be done directly. To replace an entry, 

we need to mark an entry as deleted and use an unused 
entry for the new entry. Because of this, we need to clean 

up marked entries before the hash table gets full. To do 

so, we need to recreate the hash table periodically. 

     Moreover, if LRU algorithm is used to select 

infrequently used entries, a linked list is added to 

implement the self-organizing list. If the aging 

replacement algorithm is used, a heap is added to 

accelerate the process of finding the entry with the 

smallest TTL. 

  

5. Factors That Affect the 

Compression Ratio 
      
     We found the following factors to be crucial to the 

resulting compression ratio, the ratio of the compressed 

file size to the original file size. 

 

5.1 The maximum size of the string table 
 

     The maximum size of the string table determines the 

number of bits needed to represent a code word, i.e. an 

index to the string table. The larger the size the greater 

number of bits will be required to represent an index. To 

compress a small file, a smaller table results in a smaller 
compressed file. To compress a large file, a smaller table 

holds less strings and thus less chance of using an index 

to encode a long string of characters and thus reduce the 

compression efficacy. Algorithms in [7]-[9] reduce the 

size of the compressed file by using variable length 

tables. According to [9], the maximum number of bits 

can be saved is 3840. For large files with millions of 

bytes, this is insignificant. 

     To fully utilize all possible combinations of bits of 

compressed codeword, the size of the string table is a 

power of 2. After experimenting with different table sizes 

ranging from 212 through 222, we found that a table of size 
216, i.e. 65536 works well with large text files.  

 

5.2 The period of recreating the hash table 
 

     The hash table must be recreated before the hash table 

becomes full. However, if the table is recreated too often, 

the program speed is greatly decreased. Moreover, 

according to our observations, different lengths of period 
result in different compression ratios. 

     According to our study, for a table of size 65536, the 

optimal period to recreate the string table is after 

compressing 4096 strings. 

 

5.3 The interval of decreasing TTLs 
 
     Recreating the hash table is a time consuming process 

in which every entries of the table must be accessed. In 
order to reduce the speed impact of managing the hash 

table, we paired the task of recreating the hash table with 

the task of decreasing TTLs. That is, recreating the hash 

table and decreasing the TTLs are done at the same time. 
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5.4 The initial value of TTLs 
 

     If the initial value of TTLs is too small, many entries 

of the string table will be deleted too soon and thus the 

table pruning method has the same draw back as the table 

flushing method. 

     After some experiments, we found the optimal initial 
TTL value to be the size of the table divided by 1024. 

That is, for a table of 65536, the best initial TTL value is 

64.  

 

6. Emperical Results 
 
     To evaluate the effectiveness of our methods, we test 

our methods with test files from the web site Canterbury 

Corpus. (http://corpus.canterbury.ac.nz). The Canterbury 

Corpus is a benchmark to enable researchers to evaluate 

lossless compression methods. 

     We present our results in the following tables. The 

three test files E.coli, bible.txt and world192.txt are in the 

large corpus collection of the Canterbury Corpus. In 

these experiments, we have used string tables of size 
65536, hash table recreating period of 4096, and TTL 

initial value of 64.  

 

Table 1: Compressed file sizes 

 
 E.coli bible.txt world192.txt 

Original 

file size 

(bytes) 

 

 

4,638,690 

 

 

4,047,392 

 

 

2,473,400 

LZW 1,213,588 1,417,762 925,826 

LZW/ 

Aging 

 

1,199,245 

 

1,242,153 

 

804,493 

LZW 

/LRU 

 

1,234,866 

 

1,291,120 

 

850,560 

 
 

Table 2: Compression ratios 

 
 E.coli bible.txt world192.txt 

LZW 3.82 2.85 2.67 

LZW/aging 3.87 

(+1%) 

3.26 

(+12%) 

3.07 

(+13%) 

LZW /LRU 3.76 
(-1%)  

3.13 
(+9%) 

2.91 
(+8%) 

 

 
     Besides the test files from The Canterbury Corpus, we 

have also tested our methods with other text files. 

Compression tests on these files yielded the following 

findings: 

 

• LZW/aging does better than LZW/LRU 90% of the 

time. 

• LZW/aging can improve the compression ratio over 

LZW by 10-15% for 90% of the files tested. 

 
     Preliminary tests of our methods with video and 

image files also gave promising results. The original 

LZW consistently inflate video and image files by about 

25%. Our LZW/aging can deflate video and image files 

by 1% consistently. In other words, LZW/aging can 

improve the compression gain by 26% for large video or 

image files over the original LZW. 

 

7. Decompression 
 
     Decompression is a simple task relative to 

compression. Since there is no need to search the string 

table, the hashing technique is not required and thus there 

is no need to recreate the hash table periodically. 

However, a heap or a self-organizing list is still needed 

for LZW/aging and LZW/LRU respectively. The 

purpose of including a heap or a self-organizing list is to 

synchronize the decompression string table with the 
compression string table so the two tables use the same 

sequence of replacement entries. 

 

8. Conclusions 
 
     We have described an improvement of LZW data 
compression which use table pruning techniques. With 

more efficient management of the dynamic dictionary, a 

better compression ratio may be achieved. Specifically, 

we show that LZW/aging can significantly improve the 

compression ratio for most large files.  

     According to our experiments, we identified four 

factors that are crucial to the compression ratios of 

LZW/aging and LZW/LRU. These factors are the size of 

the string table, the period of recreating the hash table, 

the interval of decreasing TTLs and the initial value of 

TTLs. Further work needs be done to characterize the 
combinatorial effects of these factors and determine their 

optimal combinations. 

     While the aging algorithm provided considerable 

improvement over LZW compression alone, additional 

replacement algorithms should be explored. Finally, we 

will explore more on how the compression methods 

perform on different types of data files such as video and 

image files. 
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Abstract— In this paper, we introduce our formalization of
Data Encryption Standard (DES) algorithm. DES, which was
formerly the most widely used symmetric cryptosystem in the
world, is a block cipher that was selected by the National
Bureau of Standards as an official Federal Information
Processing Standard for the United States in 1976. We prove
the correctness of our formalization by using the Mizar proof
checking system as a formal verification tool. Mizar is a
project that formalizes mathematics with a computer-aided
proving technique. The main objective of this work is to
prove the security of cryptographic systems by using the
Mizar proof checker.

Keywords: Formal Verification, Mizar, Cryptology, Data Encryp-
tion Standard (DES)

1. Introduction
Mizar[1], [2] is a project that formalizes mathematics with

a computer-aided proving technique. The objective of this
study is to prove the security of cryptographic systems by
using the Mizar proof checker. To achieve this, we are intend
to formalize some topics concerning cryptology.

In this paper, we introduce our formalization of the Data
Encryption Standard (DES). DES, which was formerly the
most widely used symmetric cryptosystem in the world, is
a block cipher that was selected by the National Bureau
of Standards as an official Federal Information Processing
Standard for the United States in 1976[3]. DES is now
considered to be insecure and has already been superseded
by the Advanced Encryption Standard (AES)[4]. Please see
[5] and [6] about recent information on DES. However, DES
is a typical block cipher, and it has a strong influence on
the design of its successors. Thus, we will verify another
block cipher system that we will develop in the future by
using a method similar to our formalization of DES with the
Mizar system. We formalized the DES algorithm as shown
in FIPS46–3[3] in the Mizar language. We then verified the
correctness of the formalized algorithm that the ciphertext
encoded by the algorithm can be decoded uniquely by the
same algorithm by using the Mizar proof checker.

The remainder of this study is organized as follows. In
Section 2, we briefly introduce the Mizar project. In Section
3, we briefly introduce the Data Encryption Standard (DES).
In Section 4, we discuss our strategy for formalizing DES
in Mizar. In Sections 5 and 6, we propose a formalization

of DES. We conclude our discussion in Section 7. The
definitions and theorems in this study have been verified
for correctness by using the Mizar proof checker.

2. Mizar
Mizar[1], [2] is an advanced project of the Mizar Society

led by Andrzej Trybulec that formalizes mathematics with
a computer-aided proving technique. The Mizar project
describes mathematical proofs in the Mizar language, which
is created to formally describe mathematics. The Mizar proof
checker operates in both Windows and UNIX environments,
and registers the proven definitions and theorems in the
Mizar Mathematical Library (MML).

Furthermore, the objective of the Mizar project is to create
a check system for mathematical theses. What formalizes
the proof of mathematics by Mizar and describes it is called
“article”. When an article is newly described, it is possible to
advance it by referring to articles registered in the MML that
have already been inspected as proof. Likewise, other articles
can refer to an article after it has been registered in the MML.
Although the Mizar language is based on the description
method for general mathematical proofs, the reader should
consult the references for its grammatical details, because
Mizar uses a specific, unique notation[1], [2], [7], [8], [9].

3. Data Encryption Standard
In this section, we review the outline of the DES algo-

rithm. The DES algorithm takes a 64bits length plaintext
block and a 64 bits length secret key, and transforms into
a 64 bits length ciphertext block. Decryption must be per-
formed using the same key as used for encryption, however it
should be performed with the key scheduling process altered
so that the decryption is the reverse of the encryption. Figure
1 shows a sketch of the structure of DES.

DES is a type of iterated block cipher with the Feistel
structure. The Feistel structure ensures that the encryption
and decryption are similar processes, except that the round
keys are used in the reverse order when decrypting. The
algorithm is composed of the Feistel structure and a key
scheduling function. In the Feistel structure of DES, there
are 16 rounds of processing iterations. Before the main
iterations, a given block of plaintext is permutated by IP
and is then divided into two 32 bits length blocks, L0 and
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Figure 1: Structure of DES

R0. The i-th round is performed as follows:

Li = Ri−1,

Ri = Li−1

⊕
f(Ri−1,Ki),

where 1 ≤ i ≤ 16, f is the Feistel function of DES, and
Ki is the i-th round key that is yielded by the key schedule
function KS from the given secret key. Figure 2 shows a
sketch of the i-th round of Feistel structure. Finally, the final
permutation IP−1 transforms the concatenation of L16 and
R16 into the ciphertext.

4. Strategy of Formalizing DES in Mizar
In Mizar, there are two ways to define computational

routines in an algorithmic sense. One way is by defining
a routine as a functor. A functor is a relation between the
input and output of a routine in Mizar. It is easy to write
and understand the formalization of a routine as a functor,
because the format of a functor in Mizar is similar to that
of a function in certain programming languages.

The other way is by defining a routine as a Function. A
Function is a map from the space of the input onto that of
the output. We can handle a Function as an element of the
set of Functions. Note that both functor and Function can
take a Function as their substitutable subroutines.

Figure 2: i-th round of Feistel structure

In Section 5, we will formalize the algorithm of general-
ized DES as a functor that takes substitutional subroutines.
This generalized definition of DES is easily reusable for
the formalization of other ciphers. In Section 6, we first
formalize the subroutines, that is, the primitives of DES,
according to FIPS46–3[3]. We will then formalize the DES
algorithm by using the formalization of the generalized
definition in Section 5 and the primitives in Section 6.1.

5. Formalization of Generalized DES

First, we formalize the generalized algorithm of DES as
a functor in the Mizar language as follows:

Definition 5.1: (Codec of generalized DES)
let n,m,k be non empty Element of NAT,
RK be Element of (k-tuples_on
(m-tuples_on BOOLEAN)),

F be Function of [:n-tuples_on BOOLEAN,
m-tuples_on BOOLEAN:],
n-tuples_on BOOLEAN,

IP be Permutation of (2*n)-tuples_on
BOOLEAN,

M be Element of (2*n)-tuples_on BOOLEAN;
func DES-like-CoDec(M,F,IP,RK) ->
Element of (2*n)-tuples_on BOOLEAN

means
ex
L,R be sequence of (n-tuples_on BOOLEAN)
st
L.0=SP-Left(IP.M) & R.0=SP-Right(IP.M) &
(for i be Element of NAT st 0<=i &
i<=k-1 holds L.(i+1)=R.i &
R.(i+1)=Op-XOR(L.i,F.(R.i,RK/.(i+1))))

& it=IP".((R.k)^(L.k));

2
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Note that we can express the algorithm of general Feistel
ciphers1 by using the functor DES-like-CoDec if we give
the identical permutation of (2∗n) tuples_on BOOLEAN IP.
Moreover, SP-Left and SP-Right are functions that divide a
finite sequence into two 32 bits length blocks(Figure 3).

Figure 3: SP-Left and SP-Right

We then prove the following theorem:

Theorem 5.1: (Correctness of generalized DES)
for n,m,k be non empty Element of NAT,
RK be Element of k-tuples_on
(m-tuples_on BOOLEAN),

F be Function of [:n-tuples_on BOOLEAN,
m-tuples_on BOOLEAN:],
n-tuples_on BOOLEAN,

IP be Permutation of (2*n)-tuples_on
BOOLEAN,

M be Element of (2*n)-tuples_on BOOLEAN
holds
DES-like-CoDec(DES-like-CoDec(M,F,IP,
RK),F,IP,Rev(RK))=M

2

Thus, we proved in the Mizar system that the ciphertext
encoded by any Feistel cipher algorithm can be decoded
uniquely with the same algorithm and secret key that were
used in encryption.

6. Formalization of DES

In this section, we formalize the DES algorithm according
to FIPS46–3[3] in the Mizar language. First, we will for-
malize the DES primitives according to FIPS46–3[3]. Next,
we will formalize and prove the correctness of the DES
algorithm.

1General Feistel ciphers are composed only of iterated rounds. In other
words, General Feistel ciphers do not have initial and final permutations.

6.1 DES Primitives
6.1.1 S-Boxes

We formalize the S-BOX S1 as the following functor in
the Mizar language:

Definition 6.1: (S-Box S1)
func DES-SBOX1 -> Function of 64,16
means
it.0=14 & it.1=4 & it.2=13 &

:
(omitted)

:
it.61=0 & it.62=6 & it.63=13;

2

We similarly defined the other S-Boxes, DES-
SBOX2,.....,and DES-SBOX8.

6.1.2 Initial Permutation
We formalize the initial permutation IP as the following

functor in the Mizar language:

Definition 6.2: (IP as functor)
let r be Element of 64-tuples_on
BOOLEAN;

func DES-IP(r) ->
Element of 64-tuples_on BOOLEAN

means
it.1=r.58 & it.2=r.50 & it.3=r.42 &

:
(omitted)

:
it.62=r.23 & it.63=r.15 & it.64=r.7;

2

We then formalize the initial permutation as the following
function:

Definition 6.3: (IP as function)
func DES-PIP ->
Function of 64-tuples_on BOOLEAN,
64-tuples_on BOOLEAN

means
for i be Element of 64-tuples_on
BOOLEAN

holds
it.i=DES-IP(i);

2

We similarly defined the functor of the final permutation
DES-IPINV and the function of the DES-PIPINV. Note that
the final permutation is the inverse of IP.

6.1.3 Feistel Function
Figure 4 shows a sketch of the Feistel function.
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Figure 4: Feistel function

We formalize the bit selection function E as the following
functor in the Mizar language:

Definition 6.4: (E as functor)
let r be Element of 32-tuples_on
BOOLEAN;

func DES-E(r) ->
Element of 48-tuples_on BOOLEAN

means
it.1=r.32 & it.2=r.1 & it.3=r.2 &

:
(omitted)

:
it.46=r.31 & it.47=r.32 & it.48=r.1;

2

We then formalize the permutation P as follows:

Definition 6.5: (P as functor)
let r be Element of 32-tuples_on
BOOLEAN;

func DES-P(r) ->
Element of 32-tuples_on BOOLEAN

means
it.1=r.16 & it.2=r.7 & it.3=r.20 &

:
(omitted)

:
it.30=r.11 & it.31=r.4 & it.32=r.25;

2

Next, we formalize the Feistel function F as the following
functor in the Mizar language:

Definition 6.6: (Feistel function F as functor)
let R be Element of 32-tuples_on

BOOLEAN,
RKey be Element of 48-tuples_on
BOOLEAN;

func DES-F(R,RKey) ->
Element of 32-tuples_on BOOLEAN

means
ex
D1,D2,D3,D4,D5,D6,D7,D8 be Element of
6-tuples_on BOOLEAN,

x1,x2,x3,x4,x5,x6,x7,x8 be Element of
4-tuples_on BOOLEAN,

C32 be Element of 32-tuples_on BOOLEAN
st
D1=(DES-DIV8(Op-XOR(DES-E(R),RKey))).1 &
D2=(DES-DIV8(Op-XOR(DES-E(R),RKey))).2 &
D3=(DES-DIV8(Op-XOR(DES-E(R),RKey))).3 &
D4=(DES-DIV8(Op-XOR(DES-E(R),RKey))).4 &
D5=(DES-DIV8(Op-XOR(DES-E(R),RKey))).5 &
D6=(DES-DIV8(Op-XOR(DES-E(R),RKey))).6 &
D7=(DES-DIV8(Op-XOR(DES-E(R),RKey))).7 &
D8=(DES-DIV8(Op-XOR(DES-E(R),RKey))).8 &
Op-XOR(DES-E(R),RKey)=
D1^D2^D3^D4^D5^D6^D7^D8 &

x1=N16toB4.(DES-SBOX1.(B6toN64(D1))) &
x2=N16toB4.(DES-SBOX2.(B6toN64(D2))) &
x3=N16toB4.(DES-SBOX3.(B6toN64(D3))) &
x4=N16toB4.(DES-SBOX4.(B6toN64(D4))) &
x5=N16toB4.(DES-SBOX5.(B6toN64(D5))) &
x6=N16toB4.(DES-SBOX6.(B6toN64(D6))) &
x7=N16toB4.(DES-SBOX7.(B6toN64(D7))) &
x8=N16toB4.(DES-SBOX8.(B6toN64(D8))) &
C32=x1^x2^x3^x4^x5^x6^x7^x8 &
it=DES-P(C32);

2

Here, the function DES-DIV8 divides the 48-bits length
input into eight 6-bits length blocks. The function N16toB4
yields a 4-bits length block from a natural number less than
16. The function B6toN64 yields a natural number less than
64 from a 6-bits length input.

Finally, we formalize the Feistel function F as the follow-
ing function:

Definition 6.7: (Feistel function F as function)
func DES-FFUNC ->
Function of [:32-tuples_on BOOLEAN,
48-tuples_on BOOLEAN:],
32-tuples_on BOOLEAN

means
for z be Element of [:32-tuples_on
BOOLEAN, 48-tuples_on BOOLEAN:]

holds
it.z=DES-F(z‘1 ,z‘2);

2
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6.1.4 Key Scheduling Function
Figure 5 shows a sketch of the key scheduling function.

Figure 5: Key Scheduling Function

We formalize the permutation PC1 as the following func-
tor in the Mizar language:

Definition 6.8: (PC1 as functor)
let r be Element of 64-tuples_on
BOOLEAN;

func DES-PC1(r) ->
Element of 56-tuples_on BOOLEAN

means
it.1=r.57 & it.2=r.49 & it.3=r.41 &

:
(omitted)

:
it.54=r.20 & it.55=r.12 & it.56=r.4;

2

We similarly defined the functor of PC2 as DES-PC2.
Next, we formalize the table of the numbers of Left-Shift

as the following functor:

Definition 6.9: (Table of Left-Shift)
func bitshift_DES -> FinSequence of NAT
means
it is 16-long & it.1=1 & it.2=1 &
it.3=2 & it.4=2 & it.5=2 & it.6=2 &
it.7=2 & it.8=2 & it.9=1 & it.10=2 &

it.11=2 & it.12=2 & it.13=2 & it.14=2 &
it.15=2 & it.16=1;

2

Finally, we formalize the key scheduling function as the
following functor:

Definition 6.10: (Key Scheduling function)
let Key be Element of 64-tuples_on
BOOLEAN;

func DES-KS(Key) ->
Element of (16-tuples_on
(48-tuples_on BOOLEAN))

means
ex
C,D be sequence of (28-tuples_on
BOOLEAN)

st
C.0=Op-Left(DES-PC1(Key),28) &
D.0=Op-Right(DES-PC1(Key),28) &
(for i be Element of NAT st 0<=i &
i<=15 holds it.(i+1)=
DES-PC2((C.(i+1))^(D.(i+1))) &

C.(i+1)=Op-Shift(C.i,bitshift_DES.i) &
D.(i+1)=Op-Shift(D.i,bitshift_DES.i));

2

6.2 DES Algorithm
In this section, we formalize the DES algorithm according

to FIPS46–3[3] in the Mizar language by using our formal-
ization of the generalized DES algorithm in Section 5 and
the DES primitives in Section 6.1.

Definition 6.11: (DES Algorithm)
let RK be Element of (16-tuples_on
(48-tuples_on BOOLEAN)),

F be Function of [:32-tuples_on BOOLEAN,
48-tuples_on BOOLEAN:],
32-tuples_on BOOLEAN,

IP be Permutation of 64-tuples_on
BOOLEAN,

M be Element of 64-tuples_on BOOLEAN;
func DES-CoDec(M,F,IP,RK) ->
Element of 64-tuples_on BOOLEAN

means
ex
IPX be Permutation of (2*32)-tuples_on
BOOLEAN,

MX be Element of (2*32)-tuples_on
BOOLEAN

st
IPX=IP & MX=M &
it=DES-like-CoDec(MX,F,IPX,RK);

2
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Definition 6.12: (Encode Algorithm of DES)
let plaintext,secretkey be Element of
64-tuples_on BOOLEAN;

func DES-ENC(plaintext,secretkey) ->
Element of 64-tuples_on BOOLEAN

equals
DES-CoDec(plaintext,DES-FFUNC,DES-PIP,
DES-KS(secretkey));

2

Definition 6.13: (Decode Algorithm of DES)
let ciphertext,secretkey be Element of
64-tuples_on BOOLEAN;

func DES-DEC(ciphertext,secretkey) ->
Element of 64-tuples_on BOOLEAN

equals
DES-CoDec(ciphertext,DES-FFUNC,DES-PIP,
Rev(DES-KS(secretkey)));

2

Finally, we then prove the following theorem:

Theorem 6.1: (Correctness of DES)
for message,secretkey be Element of
64-tuples_on BOOLEAN

holds
DES-DEC(DES-ENC(message,secretkey),
secretkey)=message

2

Thus, we proved using the Mizar system that the ciphertext
encoded by the DES algorithm can be decoded uniquely
with the same algorithm and secret key that were used in
encryption.

7. Conclusion
In this study, we introduced our formalization of the DES

algorithm in Mizar. We also proved the correctness of the
DES algorithm by using the Mizar proof checking system
as a formal verification tool. Currently, we are attempting to
analyze the security of DES.
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Abstract— In this paper, we present a new semantics for
the well-known normal system of modal logic K based on
the notion of convergence spaces. The purpose is to use
convergence spaces to model and reason about systems with
both discrete and continuous states, so-called hybrid state
spaces. K is sound and complete with respect to the class of
convergence space models, and we show that Kripke frames
and McKinsey and Tarski’s topological frames are special
cases of our convergence space models.

Keywords: Modal logic, convergence spaces, hybrid states, con-
vergence space models

1. Introduction
In Computer Science, a variety of logic-based formal

techniques are available for rigorously reasoning about the
evolution of systems in discrete time using directed graphs
for their semantics. Some of these logics, most notably S4,
have been interpreted to act on dynamical systems evolving in
continuous time using topological spaces as the base for their
semantic models. In order to deal with systems with both
digital (discrete) and analog (continuous) components, we
need a suitable framework. One such candidate can be found
in the notion of convergence spaces. Convergence spaces are
flexible, and generalize both directed graphs and topological
spaces.

In this paper, we present convergence spaces as semantic
for the (smallest) normal system of modal logic K which
we would like to use for reasoning about hybrid states.
Our convergence space models generalize two well-known
semantics for K and S4, respectively: Kripkey frames and
McKinsey and Tarski’s topological models. Our hope is that
convergence space models can serve as a bridge between
Kripke frames and topological models so they can both benefit
from the wealth of work in both areas.

This paper is organized as follows. First, we introduce
convergence spaces, and the notions of interior and closure
which we will use in defining the � and ♦ modal operators.
Next, we present the modal logics K in one of its classical
axiomatic forms. We then define a new semantic for K based
convergence spaces. We present an example of a system with
a hybrid space and show some properties using our formalism.
Last, we show that Kripke models and topological models are
special cases of convergence models, and comment on the
relation of our models and the well-known Montague-Scott’s
neighborhood semantics.

This paper overviews the framework of convergence space
models as presented in [1].

2. Preliminaries
In this section, we present the basic notation and the

different ideas that form the foundation for the rest of this
paper. We introduce the framework of Convergence spaces
starting with the notion of filters, which form their building
blocks, and present some basic properties. We end this section
with a presentation of the Modal Logic of “necessity” and
“possibility” in one of its classical axiomatic forms.

2.1 Convergence Spaces
Given a set X , a filter is a collection of subsets of X

such that it is closed under finite intersections, closed under
arbitrary unions, and it contains X . The following definition
formalizes this notion.

Definition 2.1 (Filters [2]): Let X be a non-empty set. A
collection F of subsets of X is called a filter if and only if,
for A,B ⊆ X ,
(F1) If A,B ∈ F then (A ∩B) ∈ F
(F2) If A ∈ F and A ⊆ B then B ∈ F
(F3) X ∈ F
(F4) ∅ 6∈ F

We use Φ(X) to denote the set of filters of X . A non-empty
collection B is called a filter basis if it only satisfies (F1) and
(F4). We can create filters from subsets and filter basis on
X . The principal filter of A ⊆ X , A 6= ∅, denoted by [A],
is the filter containing all the super-sets of A. If A = {x}, a
singleton, we use [x] instead and call this the point filter of
x. If B is a filter basis, then [B] is the filter consisting of all
the super-sets of elements in B. For filters F ,G ∈ Φ(X), If
F ⊆ G then we say that F is coarser than G, and G is finer
than F .

2.2 Convergence Spaces
A convergence space consists of a set X and a binary rela-

tion ↓ that associates filters with points in X . The following
definition formalize this notion.

Definition 2.2 (Convergence Space [2]): Let X be a non-
empty set. A binary relation ↓ on Φ(X)×X is a convergence
structure if it is "closed under super-filters;" that is,
(C1) if F ↓ x and F ⊆ G then G ↓ x.
Whenever F ↓ x we say that filter “F converges to x." We
call the pair (X, ↓) a convergence space, and we shall use
Conv to denote the set of all convergence spaces.

The definition of convergence spaces varies in the literature.
For instance, the definition found in [3], [4] and [5] has an
additional axiom; and in [6], [7] and [8] convergence spaces
are called filter spaces. We follow the definition of [2], and
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others, as it is the most general and compatible with existing
models for modal logics.

Notice that, aside from (C1), there is great flexibility in
the creation of a convergence relation. This allows us to see
many well-known structures "under the lens" of convergence
spaces; graphs, pretopologies and topologies, for example,
form proper subcategories of the category of convergence
spaces [5].

2.3 Digraphs, topologies and convergence spaces
For computer science, an important result on convergence

spaces is that all directed graphs, or digraphs, can induce,
or be seen as, convergence spaces. In [5], Blair et al. point
out that there are (possibly infinitely) many ways of doing
this embedding. We present the way commonly found in the
literature (cf. [5], [9], [10] and [11]).

The approach relies on using the graph-neighborhood of
a vertex as the basis for the smallest filter converging to
that vertex in the convergence structure. For digraph G =
(V,E), with vertex-set V and edge-set E, we can induce the
convergence space (V, ↓E) by demanding that, for all v ∈ V
and filter F ∈ Φ(V ), F ↓v iff { v′ ∈ V | vEv′ } ∈ F .

The relation between digraphs and induced convergence
spaces works both ways. We can recover the edge-set E
of a digraph (V,E) from its induced convergence space
representation (V, ↓) by demanding that vEv′ if and only if
[v′] ↓ v, for all v, v′ ∈ V (cf. [4], [11]–[13]).

We can also induce a convergence space from a topology.
The idea is to use the collection of open sets containing a
point x as the filter basis for the smallest filter attached to
x; we then close the convergence relation under super filters.
We shall call the generated space a topological convergence
space [12], [14]–[16].

2.4 Discrete, continuous and hybrid spaces
The notions of discrete, continuous and hybrid spaces rely

on the idea of the neighborhood of a point. Following [12], the
neighborhood filter of a point x, N (x), is the filter obtained
as the intersection of all the filters converging to that point;
an element N ∈ N (x) is called a neighborhood of x.

We then stipulate that, if N (x) has a bottom element, for
every x ∈ X , then the space is discrete; for example, all
convergence spaces induced by digraphs are discrete. On the
other hand, if for every x ∈ X , N (x) does not have a bottom
element, then X is continuous; for example, let X = R,
and use its well-known standard topology as the basis of the
following convergence structure: for each x ∈ X , let F ↓ x
if F contains the collection of all open intervals containing
x, i.e. { (x′, x′′) |x′ < x < x′′ }, then the neighborhood filter
does not have a bottom element and, hence, X is continuous.

However, if X does not satisfy either condition, that is
some points are discrete and other continuous, we then call
X a hybrid space. We provide an example of a hybrid space
in its own section below.

2.5 Interior, Closure, Open sets and Closed sets
We now define the two operators we shall later use in the

semantics of modal logic presented below.
Definition 2.3 (interior and closure, [2]): Let (X, ↓) be a

convergence space.
1) int↓(A) = {x∈X | ∀F ∈Φ(X) : if F ↓x then A∈F }
2) cl↓(A) = {x∈X | ∃F ∈ Φ(X) : A ∈ F and F ↓x }
We say a set A ⊆ X is open in (X, ↓) if and only if

A = int↓(A). We say A is closed if and only if A = cl↓(A).
The definition above is compatible with the notions of

interior and closure in other spaces. In particular, Stadler
and Stadler in [2] show how these operators agree with their
topological counterparts whenever the convergence space is
induced by a topological space.

The following propositions present some useful properties,
and give us an insight on the soundness of the axioms of K.
We point out that the theorem below generalizes Theorem 1
in [2].

Theorem 2.4 (cf. theorem 1, [2]): Let (X, ↓) be a conver-
gence space and let A ⊆ X . Then the following are true:

1) X − int↓(A) = cl↓(X −A)
2) X − cl↓(A) = int↓(X −A)
3) int↓(X) = X , cl↓(∅) = ∅
4) If A ⊆ B then cl↓(A) ⊆ cl↓(B) and int↓(A) ⊆ int↓(B).
5) Let B ⊆ X , then cl↓(A) ∪ cl↓(B) = cl↓(A ∪B)
6) Let B ⊆ X , then int↓(A) ∩ int↓(B) = int↓(A ∩B)

Corollary 2.5: cl↓(A) = X − int↓(X −A)

2.6 Modal Logic
In this section we introduce the fundamentals of (classical)

modal logic in its syntactical form. The material in this section
can be found in graduate level books on modal logic. Here,
we follow the presentation [17].

2.6.1 Syntax
Definition 2.6 (The language): Let P be an indefinitely

continuable list of symbols P0,P1, . . . ,Pn, . . . , indexed by
the natural numbers N. The language L is the set of sentences
generated recursively by the following BNF-style grammar:

ϕ ::= Pi | ¬ϕ | ϕ1∧ϕ2 | �ϕ

where Pi ∈ P.
We shall use the terms sentences or formulas for the

elements in L. Elements in P are called atomic sentences.
Sentences of the form �A or ♦A are called modal sentences
and we shall say that a sentence is propositionally atomic if
is atomic or modal.

As usual, we define the other common Boolean connectives
in the following way, for ϕ,ψ ∈ L: ϕ∨ψ := ¬(¬ϕ∧¬ψ),
ϕ→ψ := ¬(ϕ∧¬ψ), and ϕ↔ψ := (ϕ→ψ)∧(ψ→ϕ). The
logical constants true and false are defined as > := ϕ∨¬ϕ
and ⊥ := ϕ∧¬ϕ, respectively, for any ϕ ∈ L. A formula
of the form �ϕ is called necessitation and ϕ is called its
necessitate. The classical negation dual of a necessitation is
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defined by ♦ϕ := ¬�¬ϕ and it is called a possibilitation
where ϕ is the possibilitate.

We shall provide meaning to these formulas by assigning
subsets of a convergence space to the atomic sentences,
and relating set operations for finding the meaning of more
complex sentences. We shall then say, for instance, that
the meaning of a negation, conjunction and disjunction of
sentences corresponds to, respectively, the set-complement,
intersection and union of the meanings of their constituent
parts. In case of the modal operators, a necessitation is
interpreted as the interior of the meaning of its necessitate
and a possibilitation as the closure of the meaning of its
possibilitate.

2.7 Normal Systems of Modal Logic
As in [17], we shall call a system of modal logic any set

of sentences that contains all propositional tautologies on the
language L and it is closed under the inference rule modus
ponens (MP). This makes classical propositional logic (PL)
the smallest system of modal logic.

We now introduce one axiomatic form of the well-known
system of modal logic known as K.

Definition 2.7 (System K [17]): Let K be the smallest sys-
tem of modal logic containing all instances of the following
schema:
Df♦. ♦A↔¬�¬A

M. �(A∧B)→(�A∧�B)
C. (�A∧�B)→�(A∧B)
N. �>
K. �(A→B)→(�A→�B)

And closed under the following inference rules:
RN. if A then �A
RE. if A↔B then �A↔�B

There are different ways to present system K (cf. [17], [18],
[19]). For instance, by just having all instances of Df♦ to K
and closing it under the inference rule RK (if (A1∧. . .∧An)→
A then (�A1∧ . . .∧�An)→�A), we obtain all the instances
of M, C, N and K; alternatively, these four axioms and the
inference rule RE can be obtained from using K and RN.
We do, however, choose the presentation above as it makes
more clear the role of the structure of convergence spaces as
models for K.

3. Convergence Space Models
A convergence space model M consists of a convergence

space (W, ↓), and a valuation function P assigning to each
atomic proposition a subset of W . The meaning of more
complex sentences can be determined using set-theoretic
operations associated to each of the Boolean and modal
operators.

3.1 Models
Definition 3.1: A convergence space model, or conver-

gence model, is a structure M = 〈W, ↓, P 〉 where:
1) W is a set called the set of possible worlds

2) (W, ↓) is a convergence space; and
3) P : P → 2W is a valuation function mapping atomic

propositions to sets of possible worlds. Since P is
indexed by N, we shall write Pn for P (Pn), with n ∈ N.

For simplicity, we shall say that α is a world in a
convergence model M whenever α is an element of W ; we
shall write α ∈ M to indicate this fact. We shall also use
Conv for the class of all convergence models.

3.2 Truth and Validity
We now define what it means for a sentence A to be valid at

a world α in a modelM, denoted byM, α |= A. We present
the validity of sentence A based on its structural form.

Definition 3.2: Let α be a world in a convergence model
M = 〈W, ↓, P 〉.

1) M, α |= Pn iff α ∈ Pn for n ∈ N
2) M, α |= > always
3) M, α |= ¬A iff M, α 6|= A
4) M, α |= A∧B iff both M, α |= A and M, α |= B
5) M, α |= �A iff (∃O ⊆ W )(∀F ∈ Φ(W )) : if F ↓α,

then O ∈ F and ∀β ∈ O :M, β |= A

We shall also say that M |= A iff M, α |= A, for every
world α ∈ M; and that Conv |= A iff M |= A, for every
model M∈ Conv.

In this definition, items 1–4 form the standard definition
of validity for non-modal formulas (i.e. without � or ♦) in
classical propositional calculus (cf. [17]). Item 5 defines the
meaning of the modal formulas in our language.

In order to complement the definition above, we introduce
the interpretation of validity using set-theoretic operations
with the help of the well-known notion of the truth set of
a sentence.

Definition 3.3 (cf. [17] definition 2.9): Let M be model
and A a sentence. The truth set of A, ‖A‖M, is defined as:

‖A‖M = {α ∈M|M, α |= A }
Combining definitions 3.2 and 3.3, we obtain the charac-

terization below which resembles the well-known topological
semantics of S4 of Tarski and McKinsey [20].

Theorem 3.4 (cf. theorem 2.10 [17]): Let M = 〈W, ↓, P 〉
be a convergence model. Then:

1) ‖Pn‖M = Pn, for n ∈ N
2) ‖>‖M = W
3) ‖¬A‖M = W − ‖A‖M
4) ‖A∧B‖M = ‖A‖M ∩ ‖B‖M
5) ‖�A‖M = int↓(‖A‖M)
As a corollary, it follows that, for example, ‖A→B‖M =

(W − ‖A‖M) ∪ ‖B‖M and ‖♦A‖M = cl↓(‖A‖M)
We can now establish the well-known relation between

truth sets and the validity of a sentence: a sentence A is
valid at a world α if α belongs to the truth set of A, ‖A‖M.
Formally:

Theorem 3.5: Let M be a convergence model and A a
sentence. Then

M, α |= A iff α ∈ ‖A‖M
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At this point, we have everything we need to reason about
convergence spaces using normal systems of modal logic. We
would now like present an example using this apparatus.

4. Example
We would like to be able to reason about the functioning

of, say, an electronic device whose behavior evolves in so-
called "real" time. Figure1 illustrates the states considered in
the functioning of the device. The device can be in one of
the discrete states Off, On, or Fail if something caused the
device to stop functioning; notice Fail is a sink state in order
to model the fact that the device cannot auto-recover from
failures.

Once the device is in operation, we use the non-negative
reals to represent the evolution of the running time of the
device: when the device starts, it moves to (time) state 0, and
advances to higher positive real values following, say, a set
of differential equations modeling the continuous behavior of
the device. In this example, and in the interest of simplicity,
we are not concerned on how this continuous evolution takes
place; we are only concerned with the running time of the
device. (Instead of the running time, we could consider, for
instance, the space Rn for modeling n continuous variables
representing the "real" state of the device.)

At any time during the running of the device, it can be
turned off (arrows from x ∈ R+

0 to the Off state), or may
stop working because of a failure (arrows from x ∈ R+

0 to
the Fail state). Notice that even at time state 0 the device may
not work (a dead battery, perhaps).

We start by constructing a convergence space for Figure1.
We will augment the standard topology on R, restricted to
the non-negative reals, with the discrete states in the system,
and use this to create the smallest filters for each x ∈ R+

0 .
For the discrete states, we will follow [5] in attaching point
filters to vertices based on their graph neighborhoods.

Let (W, ↓) be a convergence space where
W = R+

0 ∪ {On,Off,Fail } and the convergence structure ↓
is as follows:

• For all x ∈ R+,
[{ (x′, x′′) ∪ {Off,Fail } |x′ < x < x” }]↓x.
For 0, let [{ [0, x) ∪ {Off,Fail } |x > 0 }]↓0

• [Fail]↓Fail
• [On]↓Off
• 0 ∈ R+

0 , [0]↓On.
• Apply (C1) to close ↓ under super-filter inclusion.

Notice this space is hybrid: the states On, Off and Fail are
discrete, but the states x ∈ R+

0 are all continuous.
We leave to the reader to verify that the point filters [Off],

[Fail], and [x] also converge to each x ∈ R+
0 .

We now define the model M = 〈W, ↓, P 〉, where the
valuation function P is as follows:

• P0 = R+
0 .

• P1 = {On }, P2 = {Off }, P3 = {Fail }; and
• Pn = ∅, for n > 3.

On Off

Fail

0 x x’ x” R0

+

Fig. 1: Hybrid state space of a device. The device can be in
one of the discrete states ("On", "Off", or "Fail") or running
in "real" time represented by the non-negative reals.

That is, the atomic proposition P0 is identified with R+
0 , and

P1, P2, and P3 with the discrete states {On }, {Off } and
{Fail }, respectively.

We can then show, for example, that the following sen-
tences are valid in this model at all worlds x ∈ R+

0 :
• P0→♦P2: "while running, we can turn the device off."

We have that: ‖♦P2‖M = cl↓(‖P2‖M) = R+
0 , and

therefore ‖P0→♦P2‖M = (W −‖P0‖M)∪‖♦P2‖M =
W .

• P0→♦P3: "while running, the device may fail"
We have that: ‖♦P3‖M = cl↓(‖P3‖M) = R+

0 ∪
{Fail }, and therefore ‖P0→♦P3‖M = W − ‖P0‖M ∪
‖♦P3‖M = (W − R+

0 ) ∪ (R+
0 ∪ {Fail }) = W

• P0 → ♦�P1: "while running, it is possible to turn the
device off, and then back on again."
We have that: ‖♦�P1‖M = cl↓(int↓(‖P1‖M)) =
cl↓(int↓({On })) = cl↓({Off }) = R+

0 ∪ {On }. There-
fore, ‖P0→♦�P1‖M = W − ‖P0‖M ∪ ‖♦�P1‖M =
(W − R+

0 ) ∪ (R+
0 ∪ {On }) = W .

• P3 → �P3 "once the device fails, it will not auto-
recover."
We have that: ‖�P3‖M = int↓(‖P3‖M) = {Fail }.
Therefore, ‖P3→�P3‖M = W −‖P3‖M∪‖�P3‖M =
W − {Fail } ∪ { Fail } = W .

5. Properties
System K is sound and complete with respect to the class

of convergence space models [1]. Soundness, as it is often
the case, is easier to prove than completeness. Looking at the
definition and properties of filters and the interior and closure
operators we have that, for instance, Df♦ is supported by
corollary 2.5, axioms M and C follow from 2.4(5), N follows
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from 2.4(3) and K follows from the definition of the interior
operator and filter axiom (F2).

Since convergence space models include relational and
topological models as subcategories (see below), it inherits
many desired properties found in those models, like the Finite
Model property.

6. Other models for Normal Systems
In this section we briefly discuss the relationship between

Convergence models and well-known models for normal
systems. These are Kripke models, Topological models, and
Neighborhood models. We will show that the first two are
special cases of Convergence model semantics, and how our
semantics relates to that of Neighborhood models.

6.1 Kripke models
A simple inspection of the literature on modal logic in

Computer Science will reveal that Kripke semantics is by far
the most popular semantics for normal systems of modal logic
in the field. A Kripke model is a triple, consisting of a set W ,
a binary relation R, and a valuation P that assigns subsets of
W to the atomic propositions in the logic. Whenever αRβ,
for worlds α, β ∈W , we say that β is a world accessible from
α [21]. Kripke models can also be found in the literature with
the name Standard Models [17].

Definition 6.1 (Kripke models [17]): MK = 〈W,R,P 〉 is
a Kripke model if and only if

1) W is a set called the set of possible worlds.
2) R ⊆ W × W is a binary relation known as the

accessibility relation.
3) P : P → 2W is a valuation function mapping atomic

propositions to sets of possible worlds.
In section 2.1, we discussed the relationship between

relational and convergence spaces. As we mentioned there,
it is well-known that a relation on a set, or a digraph, can
induce a convergence space in (possibly infinite) many ways
while preserving the structural properties of the graph. Kripke
models are then a special case of convergence models.

Proposition 6.2: Every Kripke model MK = 〈W,R,P 〉
induces an convergence modelM = 〈W, ↓R, P 〉 where ↓R is
induced by R, and vice versa.

6.2 Topological models
Although not nearly as popular as Kripke frames, topo-

logical spaces have been shown to be useful in computer
science when a continuous element is needed. For example, in
reasoning about systems with continuous dynamics [22], and
in artificial intelligence for the representation and reasoning
of spatial information [23], [24], for example. The use of
topological spaces for modal logics can be traced back to
the seminal work of Tarski and McKinsey as semantics for
intuitionistic logic and the logic S4 [20], [25].

Definition 6.3 (Topological model): MT = 〈W,O,P 〉 is
a topological model if and only if

1) W is a set called the set of possible worlds.

2) O ⊆ 2W a collections of subsets of possible worlds
such that (i) { ∅,W } ⊆ O, (ii) O is closed under
arbitrary unions, and (iii) O is closed under finite
intersections. (W,O) is what is called a topological
space.

3) P : P → 2W is a valuation function mapping atomic
propositions to sets of possible worlds.

We mentioned in section 2.3 that topological spaces induce
(topological) convergence spaces, and since the definition of
the valuation function in topological models and convergence
models are the same, inducing a convergence model from a
topological model is rather simple.

Proposition 6.4: Every topological model MT =
〈W,O,P 〉 induces a (topological) convergence space
M = 〈W, ↓O, P 〉.

We then have that topological semantics is a special case
of convergence space semantics.

6.3 Neighborhood models
As a generalization of Kripke models and Topological

models, it is well-known that Richard Montague [26] and
Dana Scott [27] independently defined the neighborhood
semantics for modal logic in which an arbitrary collection
of subsets of possible worlds, or neighborhood system, is
attached to each world in a model.

The notion of validity that we obtain from neighborhood
models is more general, but far weaker than the one we have
with our models and Kripke models. In fact, axiom schema
M, C, N and K are not valid in the class of neighborhood
models (see, for example, [17]). The reason derives from the
fact that these axioms require a structure on the elements of
the neighborhood systems which does not necessarily exist.
These collections could be internally organized like our filters,
or just as a disparate bag of subsets. Neighborhood models
can also be found in the literature with the name minimal
models [17].

Definition 6.5 (Neighborhood model): A triple MN =
〈W,N,P 〉 is a neighborhood model if and only if

1) W is a set called the set of possible worlds.
2) N : W → 22

W

is a mapping that relates each element
in W with a collection of subsets of W .

3) P : P → 2W is a valuation function mapping atomic
propositions to sets of possible worlds.

We can see from the preceding definition that, if the
neighborhood system of a world α in a modelMN is a filter
(2.1), then it could be used as the smallest filter converging to
α, thus inducing a convergence space on W . The following
proposition formalizes this idea.

Proposition 6.6: Every neighborhood model MN =
〈W,N,P 〉 such that, for every α ∈ W , if Nα 6= ∅ then
Nα is a filter, induces a pretopological convergence model
M = 〈W, ↓N , P 〉.

A pretopological convergence spaces is one in that, if F ↓x,
for some x ∈ W , then Nx, the neighborhood filter of x,
also converges to x. Pretopological spaces are a proper subset
of convergence spaces [2], [5]. So, the relationship between
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convergence models and neighborhood models is close, but
not one-to-one. In a neighborhood model, Nα does not have to
be a filter which makes these models more generic, but at the
expense of giving us a far weaker logic. On the other hand,
the flexibility in the construction of convergence structures
(for example, there are many different structures representing
the same digraph) allows us to fine-tune these models and
work with a much richer logic.

7. Summary and Further Work
In this paper we showed the use of convergence spaces as

the basis for a semantics for the smallest normal system of
modal logic, system K. Convergence models are generaliza-
tions of Kripke models, and Topological models, and, as such,
it inherit their properties, like the Finite Model Property.

The use of convergence spaces opens up the possibility
of generalizing results found with Kripke and Topological
models, and of as a bridge between these two areas.

Specifically, convergence spaces could be used to model
hybrid systems of the kind designed with digital and analog
components, currently modeled with languages like VHDL-
AMS. This could provide one more formal tool in the
validation of these systems which could ultimately help in
reducing their time-to-market.

We would like to investigate the relationship between our
work and that of Blair et al.’s in [5]. There, a framework is
given for the differentiation of continuous functions between
convergence spaces. (For example, a continuous function with
domain R and an automaton as codomain would model a
continuous automaton. This an important notion as right now
such mapping is possible at the level of topological spaces if
the automaton is reflexive and transitively closed, which they
often are not). We would like to know how the validity of
sentences is affected as a continuous function between two
models is being differentiated.
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Abstract 
 

The optimization of  computing systems 

incorporating Boolean-circuit-based computing 

equipment must be expressed at some level in 

Boolean behaviors and operations.  Boolean 

behaviors and operations are part of a larger 

family of logics -- the logic of sentences, also 

known as the "sentential calculus".  Two logics 

are implicationally equivalent if the axioms and 

inference rules of each imply the axioms of the 

other.  Characterizing the inferential 

equivalences of  various formulations of the 

sentential calculi is thus foundational to the 

optimization of Boolean-oriented  computing 

systems.  Using an automated deduction system,  

I show that one of the most austere formulations 

of the sentential calculus, Łukasiewicz's CN, has 

at least two alternate axiomatic bases; the bases 

appears to be novel.  The proofs further 

demonstrate a natural proving order that both 

informs and constrains optimization strategies. 

 

Keywords:  propositional logic, automated 

deduction,  sentential calculus 

 

 

1.0  Introduction 

 
     The optimization of  computing systems 

incorporating Boolean-circuit-based 

computing equipment must be expressed at 

some level in Boolean behaviors and 

operations.  Boolean behaviors and 

operations are part of a larger family of 

logics -- the logic of sentences, also known 

as the "sentential calculus".  Two logics are 

implicationally equivalent if the axioms and 

inference rules of each imply the axioms of 

the other.  Characterizing the inferential 

equivalences of  various formulations of the 

sentential calculi is thus foundational to the 

optimization of Boolean-oriented computing 

systems  ([1],[3]-[7],[9]-[10],[12]-[15]). 

     "CN", the formulation of the sentential 

calculus in [1], is among the most austere: 

its vocabulary contains only two logical 

connectives (C, and N) and sentence 

variables (p, q, r, ...).  It has two inference 

rules (condensed detachment and 

substitution), and  three axioms.   

     In CN, any expression of the form Cxy or 

Nz, where x, y, and z are sentences, is a 

sentence.    Cpq is interpreted as "sentence p 

implies sentence q"; Np is interpreted as 

"not-p".  C and N are right-associative; N 

has higher associative precedence than C.  

For example,  

  

 CCqrCpNr   

 

translates to the more common "arrow-and-

parenthesis" notation as  

 

 (q  r)    (p  ~r) 

 

where  "" designates "implies" and  "~" 

designates "not". 

     The axioms of  CN in [1] are: 

 

 CN1.  CCpqCCqrCpr 

 CN2.  CCNppp 

 CN3.  CpCNpq 
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     The main result of this paper is that either 

 

 CN13.  CCNpqCtCCqpp 

or 

 

 CN14.  CCCtCCqpprCCNpqr 

 

can be substituted for CN2 to obtain an 

alternate basis for CN.   

 

 

 

 

 

 

2.0  Method 
 

     To prove that substituting CN13 for CN2 

yields an axiomatic basis for CN, it suffices 

to show that CN13  can be derived from 

{CN1, CN2, CN3}, and that CN2 can be 

derived from {CN1, CN3, CN13}. 

     To show that CN13 is derivable from 

CN1-CN3, [1] was implemented in the 

prover9 ([2]) script shown in Figure 1 and 

executed under on a Dell Inspiron 545 with 

an  Intel Core2 Quad CPU Q8200 @ 2.33 

GHz and 8.00 GB RAM, running under the 

Windows Vista Home Premium 

(SP2)/Cygwin operating environment.

 

______________________________________________________________________________ 
 

set(pos_hyper_resolution). 

 

formulas(usable). 

P(i(i(x,y),i(i(y,z),i(x,z)))) # label("CN1"). 

P(i(i(-x,x),x)) # label("CN2"). 

P(i(x,i(-x,y))) # label("CN3"). 

end_of_list. 

 

formulas(sos). 

-P(i(x,y)) | -P(x) | P(y) # label("InfConDet"). 

end_of_list. 

 

formulas(goals). 

P(i(i(-x,y),i(v,i(i(y,x),x)))) # label("CN13"). 

end_of_list. 

 

 

Figure 1.  The prover9 script used to show the conjunction of CN1-CN3 implies  CN13.   The 

implementation of condensed detachment is the formula in the "sos" list; substitution is derived from 

prover9's hyperresolution rule (introduced in the "set" command at the top of the script).  Details of 

prover9's syntax and semantics can be found in [2].    

_____________________________________________________________________________ 

 

To show that CN2 is derivable from the conjunction of CN1, CN3, and CN13, [1], with CN13 

substituted for CN2, was implemented in the prover9 ([2]) script shown in Figure 2 and executed 

on the platform described above.   

 

______________________________________________________________________________ 

 
set(pos_hyper_resolution). 

 

formulas(usable). 

P(i(i(x,y),i(i(y,z),i(x,z))))  # label("CN1"). 

P(i(i(-x,y),i(v,i(i(y,x),x)))) # label("CN13"). 
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P(i(x,i(-x,y)))                # label("CN3"). 

end_of_list. 

 

formulas(sos). 

-P(i(x,y)) | -P(x) | P(y)      # label("InfConDet"). 

end_of_list. 

 

formulas(goals). 

P(i(i(-x,x),x))                # label("CN2"). 

end_of_list. 

 

Figure 2.  The prover9 script used to show the conjunction of CN1, CN3, and CN13 imply CN2.  

Details of the syntax and semantics of the notation can be found in [2].   The implementation of 

condensed detachment is the formula in the "sos" list; substitution is derived from prover9's 

hyperresolution rule (introduced in the "set" command at the top of the script). 

 

______________________________________________________________________________ 

 

In this paper, showing that CN14 can be substituted for CN2 to form an alternate basis  for CN 

requires some intermediate results from the proof that CN13 can be substituted for CN2 to form 

such a basis.  The details of that argument are accordingly deferred to Section 3.0. 

 

 

3.0  Results 

 
Figure 3 shows that CN13 can be derived from the conjunction of CN1-CN3.   

 

______________________________________________________________________________ 

 

 
============== PROOF ================================= 

 

% Proof 1 at 0.09 (+ 0.05) seconds: "CN13". 

 

1 P(i(i(-x,y),i(v,i(i(y,x),x)))) # label("CN13") # label(non_clause) # 

label(goal).  [goal]. 

2 P(i(i(x,y),i(i(y,z),i(x,z)))) # label("CN1").  [assumption]. 

3 P(i(i(-x,x),x)) # label("CN2").  [assumption]. 

4 P(i(x,i(-x,y))) # label("CN3").  [assumption]. 

5 -P(i(x,y)) | -P(x) | P(y) # label("InfConDet").  [assumption]. 

6 -P(i(i(-c1,c2),i(c3,i(i(c2,c1),c1)))) # label("CN13") # 

answer("CN13").  [deny(1)]. 

10 P(i(i(i(-x,y),z),i(x,z))).  [hyper(5,a,2,a,b,4,a)]. 

11 P(i(i(x,y),i(i(-x,x),y))).  [hyper(5,a,2,a,b,3,a)]. 

12 P(i(i(i(i(x,y),i(z,y)),u),i(i(z,x),u))).  [hyper(5,a,2,a,b,2,a)]. 

20 P(i(x,x)).  [hyper(5,a,10,a,b,3,a)]. 

22 P(i(-i(x,x),y)).  [hyper(5,a,4,a,b,20,a)]. 

24 P(i(i(x,y),i(-i(z,z),y))).  [hyper(5,a,2,a,b,22,a)]. 

87 P(i(x,i(-i(y,y),z))).  [hyper(5,a,10,a,b,24,a)]. 

93 P(i(i(i(-i(x,x),y),z),i(u,z))).  [hyper(5,a,2,a,b,87,a)]. 

330 P(i(x,i(y,y))).  [hyper(5,a,93,a,b,3,a)]. 

337 P(i(i(i(x,x),y),i(z,y))).  [hyper(5,a,2,a,b,330,a)]. 

357 P(i(x,i(i(-y,y),y))).  [hyper(5,a,337,a,b,11,a)]. 

391 P(i(i(i(i(-x,x),x),y),i(z,y))).  [hyper(5,a,2,a,b,357,a)]. 
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856 P(i(i(x,i(-y,y)),i(z,i(x,y)))).  [hyper(5,a,12,a,b,391,a)]. 

1206 P(i(i(-x,y),i(z,i(i(y,x),x)))).  [hyper(5,a,12,a,b,856,a)]. 

1207 $F # answer("CN13").  [resolve(1206,a,6,a)]. 

 

======== end of proof ========================== 

 

Figure 3.  Summary of a prover9 ([2]) proof showing that Proposition CN13 is derivable from CN1- 

CN3.   The proof assumes condensed detachment (Line 5) and substitution (implied by the "set" 

command) as inference rules. The general form of a line in this proof is “line_number conclusion 

[derivation]”, where line_number is a unique identifier of a line in the proof, and conclusion is the 

result of applying the prover9 inference rules noted  (denoting the derivation), to the lines cited in 

those brackets.  All lines annotated as "assumption" are axioms or definitions.  All prover9 proofs are 

proofs by contradiction; note in particular that Line 6 is the denial of Line 1.  Further detail of the 

syntax and semantics of prover9 notation used in this study can be found in [2] and [4].   Note the 

derivation of the Law of Identity at Line 20.   

 

_________________________________________________________________ 

 

Figure 4 shows that CN2 can be derived from the conjunction of CN1, CN3, and CN13 of [1].  

This is sufficient to show that these three propositions form an alternative axiomatic basis for CN. 
 

______________________________________________________________________________ 

 
====================== PROOF ================================= 

 

 

 

1 P(i(i(-x,x),x)) # label("CN2") # label(non_clause) # label(goal).  

[goal]. 

2 P(i(i(x,y),i(i(y,z),i(x,z)))) # label("CN1").  [assumption]. 

3 P(i(i(-x,y),i(z,i(i(y,x),x)))) # label("CN13").  [assumption]. 

4 P(i(x,i(-x,y))) # label("CN3").  [assumption]. 

5 -P(i(x,y)) | -P(x) | P(y) # label("InfConDet").  [assumption]. 

6 -P(i(i(-c1,c1),c1)) # label("CN2") # answer("CN2").  [deny(1)]. 

10 P(i(x,i(i(i(--y,z),y),y))).  [hyper(5,a,3,a,b,4,a)]. 

11 P(i(i(i(-x,y),z),i(x,z))).  [hyper(5,a,2,a,b,4,a)]. 

12 P(i(i(i(x,i(i(y,z),z)),u),i(i(-z,y),u))).  [hyper(5,a,2,a,b,3,a)]. 

61 P(i(i(i(--x,y),x),x)).  [hyper(5,a,10,a,b,10,a)]. 

115 P(i(i(-x,y),i(i(y,x),x))).  [hyper(5,a,12,a,b,61,a)]. 

128 P(i(x,i(i(y,x),x))).  [hyper(5,a,11,a,b,115,a)]. 

151 P(i(i(i(i(x,y),y),z),i(y,z))).  [hyper(5,a,2,a,b,128,a)]. 

256 P(i(x,x)).  [hyper(5,a,151,a,b,61,a)]. 

274 P(i(i(-x,x),x)).  [hyper(5,a,115,a,b,256,a)]. 

275 $F # answer("CN2").  [resolve(274,a,6,a)]. 

 

========================= end of proof ========================== 

 

Figure 4.  Summary of a prover9 ([2]) proof showing that Proposition CN2 (Axiom 2 in the default 

formulation of CN) is derivable from CN1, CN3, and CN13.  Note the derivation of the Law of 

Identity at Line 256. 

 

 

______________________________________________________________________________ 
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Figures 3 and 4 demonstrate that CN1, CN3, 

and CN13 collectively form an alternate 

basis for CN.  

  

Figure 5 shows that CN14 is derivable from 

CN1 and CN13.  Because CN13 is derivable 

from {CN1, CN2, CN3}, CN14 is therefore 

derivable from {CN1, CN2, CN3}. 

 

______________________________________________________________________________ 

 

 
========================= PROOF ================================= 

 

1 P(i(i(i(u,i(i(y,x),x)),z),i(i(-x,y),z))) # label("CN14") # 

label(non_clause) # label(goal).  [goal]. 

2 P(i(i(-x,y),i(z,i(i(y,x),x)))) # label("CN13").  [assumption]. 

3 P(i(i(x,y),i(i(y,z),i(x,z)))) # label("AxCN1").  [assumption]. 

6 -P(i(x,y)) | -P(x) | P(y) # label("InfConDet").  [assumption]. 

7 -P(i(i(i(c1,i(i(c2,c3),c3)),c4),i(i(-c3,c2),c4))) # label("CN14") # 

answer("CN14").  [deny(1)]. 

15 P(i(i(i(x,i(i(y,z),z)),u),i(i(-z,y),u))).  [hyper(6,a,3,a,b,2,a)]. 

16 $F # answer("CN14").  [resolve(15,a,7,a)]. 

 

======================= end of proof ========================== 

 

Figure 5.  Summary of prover9 proof showing that CN14 is derivable from CN1 and CN13. 

 

 

 

========================== PROOF =============================== 

 

1 P(i(i(-x,y),i(v,i(i(y,x),x)))) # label("CN13") # label(non_clause) # 

label(goal).  [goal]. 

2 P(i(i(i(x,i(i(y,z),z)),u),i(i(-z,y),u))) # label("CN14").  

[assumption]. 

3 P(i(i(x,y),i(i(y,z),i(x,z)))) # label("AxCN1").  [assumption]. 

4 P(i(x,i(-x,y))) # label("AxCN3").  [assumption]. 

5 -P(i(x,y)) | -P(x) | P(y) # label("InfConDet").  [assumption]. 

6 -P(i(i(-c1,c2),i(c3,i(i(c2,c1),c1)))) # label("CN13") # 

answer("CN13").  [deny(1)]. 

10 P(i(i(i(-x,y),z),i(x,z))).  [hyper(5,a,3,a,b,4,a)]. 

20 P(i(i(-x,y),i(z,i(i(y,x),x)))).  [hyper(5,a,2,a,b,10,a)]. 

21 $F # answer("CN13").  [resolve(20,a,6,a)]. 

 

======================== end of proof ========================== 

 

Figure 6.   Summary of  prover9 proof  that  CN14 , CN1, and CN13 jointly  imply CN13. 

 

 

______________________________________________________________________________ 

 

     Figure 6 shows that CN13 is derivable 

from CN14,  CN1, and CN13 collectively.  

Because Figure 4 shows that CN13, CN1, 

and CN3 jointly imply CN2, {CN14, CN1, 

CN3} implies CN2.  This is sufficient to 

show that {CN1, CN3, CN14} is an 

alternate basis for CN.   
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4.0  Conclusions and discussion 
 

     Section 3 demonstrates that CN1, CN3, 

and CN13 (or CN14) collectively form an 

alternate axiomatic basis for CN; these bases 

appear to be novel. 

     In [1], CN13 (or CN14) is  treated as a 

lemma to help derive CN15 (which, [1] 

notes, can be substituted for CN2 to form a 

basis).   In [1], the derivation of CN13 (or 

CN14) assumes only on CN1 and CN3; the 

prover9 script for deriving CN13, however, 

"spontaneously" deployed  CN2,  in addition 

to CN1 and CN3, to derive CN13.  This 

result hints(but of course does not prove) 

that CN13 might  be substituted for  CN2 to 

form an alternate basis.   Similarly, [1] uses 

CN13 to derive CN14, hinting (but not 

proving) that CN14 could be substituted for 

CN2 to form an alternate basis for CN. 

     These derivation relationships both 

inform and constrain optimization strategies 

on Boolean-based computing systems. 
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Abstract 
 

The optimization of  computing systems that 

incorporate Boolean-circuit-based computing 

equipment must be expressed at some level in 

Boolean behaviors and operations.  Boolean 

behaviors and operations are part of a larger 

family of logics -- the logic of sentences, also 

known as the "sentential calculus".  Two logics 

are implicationally equivalent if the axioms and 

inference rules of each imply the axioms of the 

other.  Characterizing the inferential 

equivalences of  various formulations of the 

sentential calculi is thus foundational to the 

optimization of Boolean-based computing 

systems.  Two logics are implicationally 

equivalent if the axioms and inference rules of 

each imply the axioms of the other.  

Characterizing the inferential equivalences of  

various formulations of the sentential calculi is 

foundational to the study of logic.  Using an 

automated deduction system,  I show that 

Łukasiewicz's CN can be derived from the 

sentential calculus of the Principia Mathematica; 

the proof appears to be novel.   

 

Keywords:  propositional logic, automated 

deduction,  sentential calculus 

 

 

1.0  Introduction 

 
     The optimization of  computing systems 

that incorporate Boolean-circuit-based 

computing equipment must be expressed at 

some level in Boolean behaviors and 

operations.  Boolean behaviors and 

operations are part of a larger family of 

logics -- the logic of sentences, also known 

as the "sentential calculus".  Two logics are 

implicationally equivalent if the axioms and 

inference rules of each imply the axioms of 

the other.  Characterizing the inferential 

equivalences of  various formulations of the 

sentential calculi is thus foundational to the 

optimization of Boolean computing systems.  

Two logics are implicationally equivalent if 

the axioms and inference rules of each imply 

the axioms of the other.  Characterizing the 

inferential equivalences of  various 

formulations of the sentential calculi is 

foundational to the study of logic.  

Characterizing equivalences of various 

formulations of the sentential calculi is 

foundational to the optimization of Boolean-

oriented computing systems ([1],[3]-[7],[9]-

[10],[12]-[15]). 

     "CN", the formulation of the sentential 

calculus in [1], is among the most austere: 

its vocabulary contains only two logical 

connectives (C, and N) and sentence 

variables (p, q, r, ...).  It has two inference 

rules (condensed detachment and 

substitution), and  three axioms.   

     In CN, any expression of the form Cxy or 

Nz, where x, y, and z are sentences, is a 

sentence.    Cpq is interpreted as "sentence p 

implies sentence q"; Np is interpreted as 

"not-p".  C and N are right-associative; N 

has higher associative precedence than C.  

For example,  

  

 CCqrCpNr   
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translates to the more common "arrow-and-

parenthesis" notation as  

 

 (q  r)    (p  ~r) 

 

where  "" designates "implies" and  "~" 

designates "not". 

     The axioms of  CN in [1] are: 

 

 CN1.  CCpqCCqrCpr 

 CN2.  CCNppp 

 CN3.  CpCNpq 

 

Cast in CN notation, the axioms of the 

sentential calculus of Principia Mathematica 

(PM, [9]) are 

 

 CN73.  CqApq 

 CN74.  CAppp 

 CN75.  CApqAqp 

 CN76.  CCqrCApqApr 

 CN78.  CApAqrAqApr 

 

 

where Apq ≡ CNpq. The main result of this 

paper is that the axioms of [9] implies the 

axioms of [1]. 

 

 

2.0  Method 
 

     To show that the axioms of [9] imply the 

axioms of [1], the prover9 ([2]) script shown 

in Figures 1 was executed under on a Dell 

Inspiron 545 with an  Intel Core2 Quad CPU 

Q8200 @ 2.33 GHz and 8.00 GB RAM, 

running under the Windows Vista Home 

Premium (SP2)/Cygwin operating 

environment.

 

______________________________________________________________________________ 

 

 
set(hyper_resolution). 

 

formulas(usable). 

% put axioms and previously proven theorems here. 

P ( i(i(x, i(y,z)), i(y, i(x,z))) )      # label("PM 2.04"). 

P ( i(i(y,z), i(i(x,y), i(x,z))) )       # label("PM 2.05"). 

P ( i(-x, i(x,y)) )                      # label("PM 2.21"). 

P ( i(y, i(-x,y)) )                      # label("CN73"). 

P ( i(i(-x,x), x) )                      # label("CN74"). 

P ( i(i(-x,y), i(-y,x)) )                # label("CN75"). 

P ( i(i(y,z), i(i(-x,y), i(-x,z))) )     # label("CN76"). 

P ( i(i(-x, i(-y,z)), i(-y, i(-x,z))) )  # label("CN78"). 

end_of_list. 

 

formulas(sos). 

% put inference rules here. 

-P(i(x,y)) | -P(x) | P(y)          # label("InfConDet").  

end_of_list. 

 

formulas(goals). 

%  put item(s) to be proven here. 

P( i(i(x,y), i(i(y,z), i(x,z))) )      # label("AxCN1"). 

P( i(i(-x,x), x) )                     # label("AxCN2"). 

P( i(x, i(-x,y)) )                     # label("AxCN3"). 

end_of_list. 
 

 

Figure 1.  The prover9 script (in Horn clause ([11]) form), used to show that the axioms of PM imply 

the axioms of CN.   The implementation of condensed detachment is the formula in the "sos" list; 
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substitution is derived from prover9's hyperresolution rule (introduced in the "set" command at the 

top of the script).  PM Theorems 2.04, 2.05 and 2.21 were added to the axioms of PM to facilitate the 

derivation.  Details of prover9's syntax and semantics can be found in [2].    

_____________________________________________________________ 

 

3.0  Results 

 
Figure 2 shows that PM implies CN. 

 
_______________________________________________________________________ 

 

 

============================== PROOF ================================= 

 

% Proof 1 at 0.01 (+ 0.05) seconds: "AxCN2". 

% Length of proof is 4. 

% Level of proof is 2. 

% Maximum clause weight is 7. 

% Given clauses 0. 

  

2 P(i(i(-x,x),x)) # label("AxCN2") # label(non_clause) # label(goal).  

[goal]. 

8 P(i(i(-x,x),x)) # label("CN74").  [assumption]. 

14 -P(i(i(-c4,c4),c4)) # label("AxCN2") # answer("AxCN2").  [deny(2)]. 

15 $F # answer("AxCN2").  [resolve(14,a,8,a)]. 

 

============================== end of proof ========================== 

 

============================== PROOF ================================= 

 

% Proof 2 at 0.01 (+ 0.05) seconds: "AxCN3". 

% Length of proof is 7. 

% Level of proof is 2. 

% Maximum clause weight is 8. 

% Given clauses 1. 

 

3 P(i(x,i(-x,y))) # label("AxCN3") # label(non_clause) # label(goal).  

[goal]. 

4 P(i(i(x,i(y,z)),i(y,i(x,z)))) # label("PM 2.04").  [assumption]. 

6 P(i(-x,i(x,y))) # label("PM 2.21").  [assumption]. 

12 -P(i(x,y)) | -P(x) | P(y) # label("InfConDet").  [assumption]. 

16 -P(i(c5,i(-c5,c6))) # label("AxCN3") # answer("AxCN3").  [deny(3)]. 

50 P(i(x,i(-x,y))).  [hyper(12,a,4,a,b,6,a)]. 

51 $F # answer("AxCN3").  [resolve(50,a,16,a)]. 

 

============================== end of proof ========================== 

 

============================== PROOF ================================= 

 

% Proof 3 at 0.01 (+ 0.05) seconds: "AxCN1". 

% Length of proof is 7. 

% Level of proof is 2. 

% Maximum clause weight is 12. 

% Given clauses 1. 
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1 P(i(i(x,y),i(i(y,z),i(x,z)))) # label("AxCN1") # label(non_clause) # 

label(goal).  [goal]. 

4 P(i(i(x,i(y,z)),i(y,i(x,z)))) # label("PM 2.04").  [assumption]. 

5 P(i(i(x,y),i(i(z,x),i(z,y)))) # label("PM 2.05").  [assumption]. 

12 -P(i(x,y)) | -P(x) | P(y) # label("InfConDet").  [assumption]. 

13 -P(i(i(c1,c2),i(i(c2,c3),i(c1,c3)))) # label("AxCN1") # 

answer("AxCN1").  [deny(1)]. 

52 P(i(i(x,y),i(i(y,z),i(x,z)))).  [hyper(12,a,4,a,b,5,a)]. 

53 $F # answer("AxCN1").  [resolve(52,a,13,a)]. 

 

============================== end of proof ========================== 

 

Figure 2.  Summary of a prover9 ([2]) proof showing that PM ([9]) implies CN ([1]).  

______________________________________________________________________________________ 

 

 

The total time to complete the proofs shown in Figure 2 was  ~0.2 seconds on the platform 

described in Section 2.0. 

 

4.0  Conclusions and discussion 
 

     Section 3 demonstrates that PM implies 

CN.  The proof in Figure 2 appears to be 

novel.   

A companion paper ([16]) proves CN 

implies PM.  These relationships both 

inform and constrain optimization strategies 

on Boolean-circuit-based computing 

systems. 
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Abstract 
 

The optimization of  computing systems hosted 

on Boolean-circuit-based computing equipment 

must be expressed at some level in Boolean 

behaviors and operations.  Boolean behaviors 

and operations are part of a larger family of 

logics -- the logic of sentences, also known as the 

"sentential calculus".  Two logics are 

implicationally equivalent if the axioms and 

inference rules of each imply the axioms of the 

other.  Characterizing the inferential 

equivalences of  various formulations of the 

sentential calculi is thus foundational to the 

optimization of Boolean computing systems.  

Using an automated deduction system,  I show 

that the sentential calculus of the Principia 

Mathematica (PM)  can be derived from 

Łukasiewicz's CN; the proof appears to be novel.  

The proofs variously demonstrate,  furthermore, 

a natural proving order. 
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1.0  Introduction 

 
     The optimization of computing systems 

hosted on Boolean-circuit-based computing 

equipment must be expressed at some level 

in Boolean behaviors and operations.  

Boolean behaviors and operations are part of 

a larger family of logics -- the logic of 

sentences, also known as the "sentential 

calculus".  Two logics are implicationally 

equivalent if the axioms and inference rules 

of each imply the axioms of the other.  

Characterizing the inferential equivalences 

of  various formulations of the sentential 

calculi is thus foundational to the 

optimization of Boolean-oriented computing 

systems ([1],[3]-[7],[9]-[10],[12]-[15]).   

     "CN", the formulation of the sentential 

calculus in [1], is among the most austere: 

its vocabulary contains only two logical 

connectives (C, and N) and sentence 

variables (p, q, r, ...).  It has two inference 

rules (condensed detachment and 

substitution), and  three axioms.   

     In CN, any expression of the form Cxy or 

Nz, where x, y, and z are sentences, is a 

sentence.    Cpq is interpreted as "sentence p 

implies sentence q"; Np is interpreted as 

"not-p".  C and N are right-associative; N 

has higher associative precedence than C.  

For example,  

  

 CCqrCpNr   

 

translates to the more common "arrow-and-

parenthesis" notation as  

 

 (q  r)    (p  ~r) 

 

where  "" designates "implies" and  "~" 

designates "not". 

     The axioms of  CN in [1] are: 

 

 CN1.  CCpqCCqrCpr 

 CN2.  CCNppp 

 CN3.  CpCNpq 
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Cast in CN notation, the axioms of the 

sentential calculus of Principia Mathematica 

(PM, [9]) are 

 

 CN73.  CqApq 

 CN74.  CAppp 

 CN75.  CApqAqp 

 CN76.  CCqrCApqApr 

 CN78.  CApAqrAqApr 

 

 

The main result of this paper is that [1] 

implies [9]. 

 

2.0  Method 
 

To show that [1] implies [10], the prover9 

([2]) script shown in Figures 1 was executed 

under on a Dell Inspiron 545 with an  Intel 

Core2 Quad CPU Q8200 @ 2.33 GHz and 

8.00 GB RAM, running under the Windows 

Vista Home Premium (SP2)/Cygwin 

operating environment. 

______________________________________________________________________________ 

 
set(hyper_resolution). 

 

formulas(usable). 

% put axioms and previously proven theorems here. 

P ( i(i(u, i(y, i(x,z))), i(i(x,u), i(y, i(x,z)))) )  # label("CN34"). 

P( i(i(x,y), i(i(y,z), i(x,z))) )      # label("AxCN1"). 

P( i(i(-x,x), x) )                     # label("AxCN2"). 

P( i(x, i(-x,y)) )                     # label("AxCN3"). 

end_of_list. 

 

formulas(sos). 

% put inference rules here. 

-P(i(x,y)) | -P(x) | P(y)          # label("InfConDet").  

end_of_list. 

 

formulas(goals). 

%  put item(s) to be proven here. 

P ( i(y, i(-x,y)) )                      # label("CN73"). 

P ( i(i(-x,x), x) )                      # label("CN74"). 

P ( i(i(-x,y), i(-y,x)) )                # label("CN75"). 

P ( i(i(y,z), i(i(-x,y), i(-x,z))) )     # label("CN76"). 

P ( i(i(-x, i(-y,z)), i(-y, i(-x,z))) )  # label("CN78"). 

end_of_list. 

 

Figure 1.  The prover9 script used to show that CN  implies  PM.   The implementation of condensed 

detachment is the formula in the "sos" list; substitution is derived from prover9's hyperresolution 

rule (introduced in the "set" command at the top of the script).  CN34, a theorem of [1], has been 

added to the axioms of [1] to facilitate the derivation.  Details of prover9's syntax and semantics can 

be found in [2].    

______________________________________________________________________________________ 

 

3.0  Results 

 
Figure 2 shows that CN implies PM. 

 
============================== PROOF ================================= 

 

% Proof 1 at 0.03 (+ 0.01) seconds: "CN74". 

 

2 P(i(i(-x,x),x)) # label("CN74") # label(non_clause) # label(goal).  [goal]. 

8 P(i(i(-x,x),x)) # label("AxCN2").  [assumption]. 

12 -P(i(i(-c3,c3),c3)) # label("CN74") # answer("CN74").  [deny(2)]. 

13 $F # answer("CN74").  [resolve(12,a,8,a)]. 

 

============================== end of proof ========================== 
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============================== PROOF ================================= 

 

% Proof 2 at 0.80 (+ 0.01) seconds: "CN75". 

 

3 P(i(i(-x,y),i(-y,x))) # label("CN75") # label(non_clause) # label(goal).  [goal]. 

6 P(i(i(x,i(y,i(z,u))),i(i(z,x),i(y,i(z,u))))) # label("CN34").  [assumption]. 

7 P(i(i(x,y),i(i(y,z),i(x,z)))) # label("AxCN1").  [assumption]. 

8 P(i(i(-x,x),x)) # label("AxCN2").  [assumption]. 

9 P(i(x,i(-x,y))) # label("AxCN3").  [assumption]. 

10 -P(i(x,y)) | -P(x) | P(y) # label("InfConDet").  [assumption]. 

14 -P(i(i(-c4,c5),i(-c5,c4))) # label("CN75") # answer("CN75").  [deny(3)]. 

21 P(i(i(i(-x,y),z),i(x,z))).  [hyper(10,a,7,a,b,9,a)]. 

22 P(i(i(x,y),i(i(-x,x),y))).  [hyper(10,a,7,a,b,8,a)]. 

23 P(i(i(i(i(x,y),i(z,y)),u),i(i(z,x),u))).  [hyper(10,a,7,a,b,7,a)]. 

25 P(i(i(x,y),i(-y,i(x,z)))).  [hyper(10,a,6,a,b,9,a)]. 

39 P(i(x,x)).  [hyper(10,a,21,a,b,8,a)]. 

42 P(i(-i(x,x),y)).  [hyper(10,a,9,a,b,39,a)]. 

45 P(i(i(x,y),i(-i(z,z),y))).  [hyper(10,a,7,a,b,42,a)]. 

95 P(i(i(i(-x,i(y,z)),u),i(i(y,x),u))).  [hyper(10,a,7,a,b,25,a)]. 

234 P(i(x,i(-i(y,y),z))).  [hyper(10,a,21,a,b,45,a)]. 

241 P(i(i(i(-i(x,x),y),z),i(u,z))).  [hyper(10,a,7,a,b,234,a)]. 

3643 P(i(x,i(y,y))).  [hyper(10,a,241,a,b,8,a)]. 

3662 P(i(i(i(x,x),y),i(z,y))).  [hyper(10,a,7,a,b,3643,a)]. 

3720 P(i(i(x,y),i(z,i(x,y)))).  [hyper(10,a,23,a,b,3662,a)]. 

3738 P(i(x,i(i(-y,y),y))).  [hyper(10,a,3662,a,b,22,a)]. 

3882 P(i(i(x,i(x,y)),i(z,i(x,y)))).  [hyper(10,a,6,a,b,3720,a)]. 

5584 P(i(x,i(i(y,i(y,z)),i(y,z)))).  [hyper(10,a,3882,a,b,3882,a)]. 

6335 P(i(i(x,i(x,y)),i(x,y))).  [hyper(10,a,5584,a,b,5584,a)]. 

6383 P(i(i(i(x,y),x),i(i(x,y),y))).  [hyper(10,a,23,a,b,6335,a)]. 

6752 P(i(i(i(i(-x,x),x),y),y)).  [hyper(10,a,6383,a,b,3738,a)]. 

6796 P(i(i(x,i(-y,y)),i(x,y))).  [hyper(10,a,23,a,b,6752,a)]. 

7345 P(i(i(-x,y),i(-y,x))).  [hyper(10,a,95,a,b,6796,a)]. 

7346 $F # answer("CN75").  [resolve(7345,a,14,a)]. 

 

============================== end of proof ========================== 

 

 

 

 

============================== PROOF ================================= 

 

% Proof 3 at 1.04 (+ 0.01) seconds: "CN73". 

 

1 P(i(y,i(-x,y))) # label("CN73") # label(non_clause) # label(goal).  [goal]. 

6 P(i(i(x,i(y,i(z,u))),i(i(z,x),i(y,i(z,u))))) # label("CN34").  [assumption]. 

7 P(i(i(x,y),i(i(y,z),i(x,z)))) # label("AxCN1").  [assumption]. 

8 P(i(i(-x,x),x)) # label("AxCN2").  [assumption]. 

9 P(i(x,i(-x,y))) # label("AxCN3").  [assumption]. 

10 -P(i(x,y)) | -P(x) | P(y) # label("InfConDet").  [assumption]. 

11 -P(i(c1,i(-c2,c1))) # label("CN73") # answer("CN73").  [deny(1)]. 

21 P(i(i(i(-x,y),z),i(x,z))).  [hyper(10,a,7,a,b,9,a)]. 

22 P(i(i(x,y),i(i(-x,x),y))).  [hyper(10,a,7,a,b,8,a)]. 

23 P(i(i(i(i(x,y),i(z,y)),u),i(i(z,x),u))).  [hyper(10,a,7,a,b,7,a)]. 

25 P(i(i(x,y),i(-y,i(x,z)))).  [hyper(10,a,6,a,b,9,a)]. 

39 P(i(x,x)).  [hyper(10,a,21,a,b,8,a)]. 

42 P(i(-i(x,x),y)).  [hyper(10,a,9,a,b,39,a)]. 

45 P(i(i(x,y),i(-i(z,z),y))).  [hyper(10,a,7,a,b,42,a)]. 

95 P(i(i(i(-x,i(y,z)),u),i(i(y,x),u))).  [hyper(10,a,7,a,b,25,a)]. 

234 P(i(x,i(-i(y,y),z))).  [hyper(10,a,21,a,b,45,a)]. 

241 P(i(i(i(-i(x,x),y),z),i(u,z))).  [hyper(10,a,7,a,b,234,a)]. 

3643 P(i(x,i(y,y))).  [hyper(10,a,241,a,b,8,a)]. 

3662 P(i(i(i(x,x),y),i(z,y))).  [hyper(10,a,7,a,b,3643,a)]. 

3720 P(i(i(x,y),i(z,i(x,y)))).  [hyper(10,a,23,a,b,3662,a)]. 

3738 P(i(x,i(i(-y,y),y))).  [hyper(10,a,3662,a,b,22,a)]. 

3882 P(i(i(x,i(x,y)),i(z,i(x,y)))).  [hyper(10,a,6,a,b,3720,a)]. 

5584 P(i(x,i(i(y,i(y,z)),i(y,z)))).  [hyper(10,a,3882,a,b,3882,a)]. 

6335 P(i(i(x,i(x,y)),i(x,y))).  [hyper(10,a,5584,a,b,5584,a)]. 

6383 P(i(i(i(x,y),x),i(i(x,y),y))).  [hyper(10,a,23,a,b,6335,a)]. 
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6752 P(i(i(i(i(-x,x),x),y),y)).  [hyper(10,a,6383,a,b,3738,a)]. 

6796 P(i(i(x,i(-y,y)),i(x,y))).  [hyper(10,a,23,a,b,6752,a)]. 

7345 P(i(i(-x,y),i(-y,x))).  [hyper(10,a,95,a,b,6796,a)]. 

9633 P(i(x,i(-y,x))).  [hyper(10,a,21,a,b,7345,a)]. 

9634 $F # answer("CN73").  [resolve(9633,a,11,a)]. 

 

============================== end of proof ========================== 

 

 

============================== PROOF ================================= 

 

% Proof 4 at 2.65 (+ 0.03) seconds: "CN78". 

 

5 P(i(i(-x,i(-y,z)),i(-y,i(-x,z)))) # label("CN78") # label(non_clause) # label(goal).  

[goal]. 

6 P(i(i(x,i(y,i(z,u))),i(i(z,x),i(y,i(z,u))))) # label("CN34").  [assumption]. 

7 P(i(i(x,y),i(i(y,z),i(x,z)))) # label("AxCN1").  [assumption]. 

8 P(i(i(-x,x),x)) # label("AxCN2").  [assumption]. 

9 P(i(x,i(-x,y))) # label("AxCN3").  [assumption]. 

10 -P(i(x,y)) | -P(x) | P(y) # label("InfConDet").  [assumption]. 

16 -P(i(i(-c9,i(-c10,c11)),i(-c10,i(-c9,c11)))) # label("CN78") # answer("CN78").  

[deny(5)]. 

21 P(i(i(i(-x,y),z),i(x,z))).  [hyper(10,a,7,a,b,9,a)]. 

22 P(i(i(x,y),i(i(-x,x),y))).  [hyper(10,a,7,a,b,8,a)]. 

23 P(i(i(i(i(x,y),i(z,y)),u),i(i(z,x),u))).  [hyper(10,a,7,a,b,7,a)]. 

25 P(i(i(x,y),i(-y,i(x,z)))).  [hyper(10,a,6,a,b,9,a)]. 

39 P(i(x,x)).  [hyper(10,a,21,a,b,8,a)]. 

42 P(i(-i(x,x),y)).  [hyper(10,a,9,a,b,39,a)]. 

45 P(i(i(x,y),i(-i(z,z),y))).  [hyper(10,a,7,a,b,42,a)]. 

95 P(i(i(i(-x,i(y,z)),u),i(i(y,x),u))).  [hyper(10,a,7,a,b,25,a)]. 

100 P(i(-x,i(x,y))).  [hyper(10,a,25,a,b,39,a)]. 

116 P(i(i(i(x,y),z),i(-x,z))).  [hyper(10,a,7,a,b,100,a)]. 

145 P(i(i(x,i(y,z)),i(i(u,y),i(x,i(u,z))))).  [hyper(10,a,23,a,b,23,a)]. 

234 P(i(x,i(-i(y,y),z))).  [hyper(10,a,21,a,b,45,a)]. 

241 P(i(i(i(-i(x,x),y),z),i(u,z))).  [hyper(10,a,7,a,b,234,a)]. 

342 P(i(--x,x)).  [hyper(10,a,116,a,b,8,a)]. 

349 P(i(i(x,y),i(--x,y))).  [hyper(10,a,7,a,b,342,a)]. 

406 P(i(x,i(---x,y))).  [hyper(10,a,21,a,b,349,a)]. 

3643 P(i(x,i(y,y))).  [hyper(10,a,241,a,b,8,a)]. 

3662 P(i(i(i(x,x),y),i(z,y))).  [hyper(10,a,7,a,b,3643,a)]. 

3720 P(i(i(x,y),i(z,i(x,y)))).  [hyper(10,a,23,a,b,3662,a)]. 

3738 P(i(x,i(i(-y,y),y))).  [hyper(10,a,3662,a,b,22,a)]. 

3882 P(i(i(x,i(x,y)),i(z,i(x,y)))).  [hyper(10,a,6,a,b,3720,a)]. 

5584 P(i(x,i(i(y,i(y,z)),i(y,z)))).  [hyper(10,a,3882,a,b,3882,a)]. 

6335 P(i(i(x,i(x,y)),i(x,y))).  [hyper(10,a,5584,a,b,5584,a)]. 

6383 P(i(i(i(x,y),x),i(i(x,y),y))).  [hyper(10,a,23,a,b,6335,a)]. 

6752 P(i(i(i(i(-x,x),x),y),y)).  [hyper(10,a,6383,a,b,3738,a)]. 

6796 P(i(i(x,i(-y,y)),i(x,y))).  [hyper(10,a,23,a,b,6752,a)]. 

6911 P(i(i(-x,y),i(i(y,x),x))).  [hyper(10,a,23,a,b,6796,a)]. 

6944 P(i(x,--x)).  [hyper(10,a,6796,a,b,406,a)]. 

6959 P(i(x,i(y,--y))).  [hyper(10,a,3720,a,b,6944,a)]. 

7345 P(i(i(-x,y),i(-y,x))).  [hyper(10,a,95,a,b,6796,a)]. 

8122 P(i(i(i(x,--x),y),y)).  [hyper(10,a,6383,a,b,6959,a)]. 

9633 P(i(x,i(-y,x))).  [hyper(10,a,21,a,b,7345,a)]. 

9707 P(i(i(x,-y),i(z,i(x,z)))).  [hyper(10,a,145,a,b,9633,a)]. 

18826 P(i(x,i(y,x))).  [hyper(10,a,8122,a,b,9707,a)]. 

18906 P(i(i(i(x,y),z),i(y,z))).  [hyper(10,a,7,a,b,18826,a)]. 

20404 P(i(x,i(i(x,y),y))).  [hyper(10,a,18906,a,b,6911,a)]. 

20871 P(i(i(x,i(y,z)),i(y,i(x,z)))).  [hyper(10,a,145,a,b,20404,a)]. 

20872 $F # answer("CN78").  [resolve(20871,a,16,a)]. 

 

============================== end of proof ========================== 

 

 

============================== PROOF ================================= 

 

% Proof 5 at 7.67 (+ 0.31) seconds: "CN76". 

 

4 P(i(i(y,z),i(i(-x,y),i(-x,z)))) # label("CN76") # label(non_clause) # label(goal).  

[goal]. 

6 P(i(i(x,i(y,i(z,u))),i(i(z,x),i(y,i(z,u))))) # label("CN34").  [assumption]. 
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7 P(i(i(x,y),i(i(y,z),i(x,z)))) # label("AxCN1").  [assumption]. 

8 P(i(i(-x,x),x)) # label("AxCN2").  [assumption]. 

9 P(i(x,i(-x,y))) # label("AxCN3").  [assumption]. 

10 -P(i(x,y)) | -P(x) | P(y) # label("InfConDet").  [assumption]. 

15 -P(i(i(c6,c7),i(i(-c8,c6),i(-c8,c7)))) # label("CN76") # answer("CN76").  [deny(4)]. 

21 P(i(i(i(-x,y),z),i(x,z))).  [hyper(10,a,7,a,b,9,a)]. 

22 P(i(i(x,y),i(i(-x,x),y))).  [hyper(10,a,7,a,b,8,a)]. 

23 P(i(i(i(i(x,y),i(z,y)),u),i(i(z,x),u))).  [hyper(10,a,7,a,b,7,a)]. 

25 P(i(i(x,y),i(-y,i(x,z)))).  [hyper(10,a,6,a,b,9,a)]. 

39 P(i(x,x)).  [hyper(10,a,21,a,b,8,a)]. 

42 P(i(-i(x,x),y)).  [hyper(10,a,9,a,b,39,a)]. 

45 P(i(i(x,y),i(-i(z,z),y))).  [hyper(10,a,7,a,b,42,a)]. 

95 P(i(i(i(-x,i(y,z)),u),i(i(y,x),u))).  [hyper(10,a,7,a,b,25,a)]. 

100 P(i(-x,i(x,y))).  [hyper(10,a,25,a,b,39,a)]. 

116 P(i(i(i(x,y),z),i(-x,z))).  [hyper(10,a,7,a,b,100,a)]. 

145 P(i(i(x,i(y,z)),i(i(u,y),i(x,i(u,z))))).  [hyper(10,a,23,a,b,23,a)]. 

234 P(i(x,i(-i(y,y),z))).  [hyper(10,a,21,a,b,45,a)]. 

241 P(i(i(i(-i(x,x),y),z),i(u,z))).  [hyper(10,a,7,a,b,234,a)]. 

342 P(i(--x,x)).  [hyper(10,a,116,a,b,8,a)]. 

349 P(i(i(x,y),i(--x,y))).  [hyper(10,a,7,a,b,342,a)]. 

406 P(i(x,i(---x,y))).  [hyper(10,a,21,a,b,349,a)]. 

3643 P(i(x,i(y,y))).  [hyper(10,a,241,a,b,8,a)]. 

3662 P(i(i(i(x,x),y),i(z,y))).  [hyper(10,a,7,a,b,3643,a)]. 

3720 P(i(i(x,y),i(z,i(x,y)))).  [hyper(10,a,23,a,b,3662,a)]. 

3738 P(i(x,i(i(-y,y),y))).  [hyper(10,a,3662,a,b,22,a)]. 

3882 P(i(i(x,i(x,y)),i(z,i(x,y)))).  [hyper(10,a,6,a,b,3720,a)]. 

5584 P(i(x,i(i(y,i(y,z)),i(y,z)))).  [hyper(10,a,3882,a,b,3882,a)]. 

6335 P(i(i(x,i(x,y)),i(x,y))).  [hyper(10,a,5584,a,b,5584,a)]. 

6383 P(i(i(i(x,y),x),i(i(x,y),y))).  [hyper(10,a,23,a,b,6335,a)]. 

6752 P(i(i(i(i(-x,x),x),y),y)).  [hyper(10,a,6383,a,b,3738,a)]. 

6796 P(i(i(x,i(-y,y)),i(x,y))).  [hyper(10,a,23,a,b,6752,a)]. 

6911 P(i(i(-x,y),i(i(y,x),x))).  [hyper(10,a,23,a,b,6796,a)]. 

6944 P(i(x,--x)).  [hyper(10,a,6796,a,b,406,a)]. 

6959 P(i(x,i(y,--y))).  [hyper(10,a,3720,a,b,6944,a)]. 

7345 P(i(i(-x,y),i(-y,x))).  [hyper(10,a,95,a,b,6796,a)]. 

8122 P(i(i(i(x,--x),y),y)).  [hyper(10,a,6383,a,b,6959,a)]. 

9633 P(i(x,i(-y,x))).  [hyper(10,a,21,a,b,7345,a)]. 

9707 P(i(i(x,-y),i(z,i(x,z)))).  [hyper(10,a,145,a,b,9633,a)]. 

18826 P(i(x,i(y,x))).  [hyper(10,a,8122,a,b,9707,a)]. 

18906 P(i(i(i(x,y),z),i(y,z))).  [hyper(10,a,7,a,b,18826,a)]. 

20404 P(i(x,i(i(x,y),y))).  [hyper(10,a,18906,a,b,6911,a)]. 

20871 P(i(i(x,i(y,z)),i(y,i(x,z)))).  [hyper(10,a,145,a,b,20404,a)]. 

44253 P(i(i(x,y),i(i(z,x),i(z,y)))).  [hyper(10,a,20871,a,b,7,a)]. 

44254 $F # answer("CN76").  [resolve(44253,a,15,a)]. 

 

============================== end of proof ========================== 

 

 

Figure 2.  Summary of a prover9 ([2]) proof showing that CN ([1]) implies PM ([9]).  

______________________________________________________________________________ 

 

The total time to complete the proofs shown in Figure 2 was  ~12 seconds on the platform 

described in Section 2.0. 

 

4.0  Conclusions and discussion 
 

     Section 3 demonstrates that CN implies 

PM.  A companion paper ([16]) proves PM 

implies CN.  The proof in Figure 2 appears 

to be novel.   

     The proof of CN74 is trivial because 

CN74 is identical to CN2.   

 

     There are some interesting relationships 

among four of the five axioms of PM.  In 

particular, Lines 21-7345 of the proof of 

CN75 are a subproof of the proof of CN73;  

this subproof can therefore be regarded as a 

proof of a set of lemmas for the proof of 

CN73.  Similarly,  Lines 21-20871 of the 

proof of CN78 are a subproof of the proof of 

CN78; his subproof can therefore be 

regarded as the proof of a set of lemmas for 
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the proof of CN78.  Lines 21-95 of CN75 

are a subproof of CN75, CN73, CN76, and 

CN78; this subproof can therefore be 

regarded as the proof of a set of lemmas for 

the proof of all PM axioms other than CN74.  

These relationships both inform and 

constrain optimization strategies on 

Boolean-circuit-bases computing systems. 
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Graph representation of hierarchical Alvis model structure

L. Kotulski1, and M. Szpyrka1
1Department of Automatics, AGH University of Science and Technology, Kraków, Poland

Abstract— Alvis Toolkit supports the development of em-
bedded systems. A result of the toolkit use is not only an
Alvis model, but also a formal model representation in the
form of a Labelled Transition System is generated in parallel.
This allows a designer to make a formal verification of the
developed embedded system behaviour. The modularisation
concept is expressed by the hierarchical agents structure.
In the paper, we propose a graph representation of this
hierarchical structure, that supports its transformation into
a flat one (equivalent to the generated LTS model) with
linear time of computational complexity.

Keywords: Alvis, embedded system, graph representation

1. Introduction
A software for an embedded system should be verified

due to a high cost of the service of equipment, where
such a software is installed. Defining a formal model that
after the verification will be used for an automatic code
generation, is counter-intuitive for engineers without a solid
mathematical experience. Alvis [1], [2], a new language for
supporting embedded software development, allows us to
design a system but in parallel with a model an abstract
representation, using the Labelled Transition System no-
tation, is created. The basic abstraction of this language
is an agent, that communicates with its environment via
ports. Communication diagrams are the visual part of the
Alvis modelling language. They are used to represent the
structure of the system under consideration. They are a way
to point out agents that communicate one with the other.
Moreover, the diagrams allow programmers to combine sets
of agents into modules, described by an abstraction called
page, that are also represented as agents (called hierarchical
agents). Finally, the system is represented by the hierarchi-
cal communication diagram [3] being a set of pages and
the substitution function (that shows, which page structure
will substitute each hierarchical agent). Each agent in an
Alvis model is either a hierarchical agent with a substi-
tution page assigned or a simple agent, whose behaviour
is described with the Alvis Code Language. Hierarchical
structure supports the modularisation concept. However, it
is difficult to understand the behaviour of the whole system
and impossible to generate the formal model directly from
it. For this purpose, the concept of a flat representation (in
which each element of a system is described by exactly one
agent) has been introduced in [3]. The formal definition uses
the hierarchical dependency and substitution relations, what

raises a fear on the effectiveness of the proposed solutions.
In the paper the consistent graph representation of the above
problems is introduced and it is proved the polynomial
computational complexity of:
• the generation of the flat representstion,
• the execution of the synthesis (analysis) operation that

allows us to move between flat representations to
achieve a more abstract (detailed) description of the
considered embedded system.

2. Hierarchical agents structure
The key concept of Alvis is an agent that denotes any

distinguished part of the system under consideration with de-
fined identity persisting in time. An agent can communicate
with other agents through ports. Each agent port must have
a unique identifier (name) assigned, but ports of different
agents may have the same identifier assigned. Thus, each
port in a model is identified using its name and its agent
name. For simplicity, we will used the so-called dot notation
– X.p denotes the port p of the agent X .

Let us define the following symbols:
• P(X) denotes the set of ports of agent X .
• P(D) denotes the set of ports of page D.
• N (W ) denotes the set of names of ports belonging to

set W and card(W ) returns the number of W elements.
For example, if a diagram contains only agents X1 with

port p and X2 also with port p, then P(D) = {X1.p,X2.p},
and N (P(D)) = {p}.

Alvis provides hierarchical communication diagrams used
to describe an embedded system from the control and data
flow point of view. A hierarchical diagram enables designers
to distribute parts of a diagram across multiple subdiagrams
called pages.

Definition 1: A Page is a triple D = (Ai, Ci, σi), where:
1) Ai = {Xi

1, . . . , X
i
n} is a set of agents with subsets of

active agents Ai
A, passive agents Ai

P , and hierarchical
agents Ai

H , such that Ai = Ai
A ∪Ai

P ∪Ai
H , and Ai

A,
Ai

P , Ai
H are pairwise disjoint.

2) Ci ⊆ Pi×Pi is the communication relation, such that
∀j = 1, . . . , n

(
Pi(Xj)× Pi(Xj)

)
∩ Ci = ∅, where

Pi =
⋃

j=1,...,n Pi(Xj). Each element of the relation
Ci is called a connection or a communication chanel.

3) σi : Ai
A → {False,True} is the start function that

points out initially activated agents.
We forbid designers to connect ports of one agent (see

point 2). The start function σ, from point 3, makes delaying
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activation of some agents possible – we can make them
active later with the start statement.

Pages are combined using the so-called substitution mech-
anism. A hierarchical agent at one level can be replaced by a
page on the lower level, which usually gives a more precise
and detailed description of the subsystem represented by the
agent. Let a hierarchical agent Y be given and let joinY (Di)
denote the set of all join ports of the page Di with respect
to Y , i.e. joinY (Di) = {Xi

j .p ∈ P(Di) : N (Xi
j .p) ∈

N (P(Y ))}. In other words, joinY (Di) is the set of all ports
from the page Di whose names are the same as those of the
hierarchical agent Y .

Definition 2: Let a hierarchical agent Y and a page
Di = (Ai, Ci, σi) be given. The agent Y and the page
Di satisfy the substitution requirements iff card(P(Y )) ≤
card(joinY (Di)), and (joinY (Di)× joinY (Di)) ∩ Ci = ∅

We will consider a binding function π that maps ports of
a hierarchical agent to the join ports of the corresponding
page.

An example of a communication diagram is shown in
Fig. 1. Active agents are drawn as rounded boxes while
passive ones as rectangles. Ports are drawn as circles
placed at the edges of the corresponding rounded box or
rectangle. Communication channels are drawn as lines (or
broken lines). An arrowhead points out the input port for
the particular connection. Communication channels without
arrowheads represent pairs of connections with opposite
directions. Black triangles indicate hierarhical agents.

Fig. 1
SENDER-RECEIVER SYSTEM WITH BUFFER – COMMUNICATION

DIAGRAM.

Definition 3: A hierarchical communication diagram is a
pair H = (D, γ), where:
• D = {D1, . . . , Dk} is a set of pages of the hierarchical

communication diagram, such that sets of agents Ai

(i = 1, . . . , k) are pairwise disjoint.
• γ : AH → D, where AH =

⋃
i=1,...,kAi

H , is the
substitution function, such that:

1) γ is an injection.
2) For any Xi

j ∈ AH , Xi
j and γ(Xi

j) satisfy the
requirements of the substitution.

3) Labelled directed graph G = (D, E,AH),
(where D is a set of nodes, E =
{(Di, Xi

k, D
j) : γ(Xi

k) = Dj} is a set of
edges and AH is a set of labels), called page
hierarchy graph is a tree or a forest.

We assume that a system definition starts from a page or
a set of pages, thus the number of pages must be greater than
the number of hierarchical agents. Formally pages from the
set D − γ(AH) are called primary pages, they are roots of
trees that constitute a page hierarchy graph.

Fig. 2
SENDER-RECEIVER SYSTEM – PAGE Sender_page.

Fig. 3
SENDER-RECEIVER SYSTEM – PAGE Receiver_page.

An example of the substitution pages is shown in Fig. 2
and 3. The page hierarchy graph for the readers-writers
model is shown in Fig. 4.

Fig. 4
PAGE HIERARCHY GRAPH

Let us focus on the Sender_set agent. Thus, we have:
• P(Sender_set) = {Sender_set .r_out}
• joinSender_set(Sender_page) =
{S1.r_out , S2.s_out ,
S3.s_out}

• N (P(Readers)) = {r_out} =
joinSender_set(Sender_page)

In this case, the binding function π is defined as follows:
π(Sender_set .s_out) = {S1.s_out , . . . , S3.s_out}

Following symbols are valid for hierarchical communica-
tion diagrams:
• AA =

⋃
i=1,...,kAi

A,
• AP =

⋃
i=1,...,kAi

P ,
• A = AA ∪ AP ,
• σ : AA → {False,True} and ∀i = 1, . . . , k ∀Xi

j ∈
Ai

A : σ(Xi
j) = σi(Xi

j).
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3. Graph representation
In this section we introduce the graph representation of

a system defined by a hierarchical communication diagram,
that will support effective reasoning about the system prop-
erties.

Definition 4: A labelled directed graph is a tuple G =
(V,E,Σ,Γ), where:
• V is the a of nodes.
• Σ is a set of node labels.
• Γ is a set of edge labels.
• E ⊆ V × Γ× V is a set of direct edges.
Edges in a graph are directed, and for a given edge

α = (X, a, Y ) the following functions return its elements:
pred(α) = X , succ(α) = Y and lab(α) = a. An undirected
edge is considered as a pair of directed edges. For any node
X , lab(X) return its label and name(X) returns the name
associated with this node.

We use labelled directed graphs to describe the structure
of an Alvis model. We assume that each agent is represented
as a node labelled by A (agent) and a set of nodes labelled
by P (port); the node representing the agent is connected
with port(s) by edge(s) labelled by b (belongs to). Two ports
(but only belonging to different agents) can be connected by
an edge labelled by c (communication channel).

For a page Di = γ(Y ) all nodes, representing agents
belonging to Ai, are connected with the node representing
Y by an edge labelled by γ; analogously, appropriate nodes
representing ports are connected by edges labelled by π.

Definition 5: A hierarchical graph G(H) representing
a given hierarchical communication diagram H = (D, γ)
is a labelled directed graph G = (V,E, {A,P}, {b, c, γ, π})
such that:
• There exists an isomorphic mapping δ : V → A∪ P .
• ∀X ∈ V such that lab(X) = P, ∃!Y ∈ V : lab(Y ) =
A, (X, b, Y ) ∈ E and δ(X) ∈ P(δ(Y )).

• X,Y ∈ V and (δ(X), δ(Y ) ∈ C)⇒ (X, c, Y ) ∈ E.
• X,Y ∈ V , γ(δ(Y )) = Di and δ(X) ∈ Ai ⇒

(X, γ, Y ) ∈ E (in such a case X is said to be directly
dependent on Y and denoted by X � Y ).

• X,Y ∈ V and π(δ(Y )) = δ(X)⇒ (X,π, Y ) ∈ E.
Let us note that in the graph representation, the direction

in edges is opposite to the introduced in γ and π functions,
due to a possibility of representing injective functions by
edges.

Figure 5 represents the graph of the Sender-Receiver
example, assuming that the Sender_set is substituted
by Sender_page (consisting of three S agents) and
Receiver_set is substituted by Receiver_page (consisting
of two R agents).

Such a graph can be modified using transformation rules
represented graphically as productions, that consist of two
graphs L – left side graph and R – right side graph. To
apply a production P : L⇒ R in the context of a graph G,
we should perform the following steps:

A

Sender_set

P

s_out

P

b_in

A

Buffer

P

b_out

P

r_in

A

Receiver_set

b c b b c b

A

S1

A

S3

P
s_out

A

S2

P
s_out

P
s_out

π π

π

b b

b

γ

γ
γ

Sender_page

A

R1

P
r_in

A

R2

P
r_in

γπ

b
π

b γ

Receiver_page

Fig. 5
EDG GRAPH REPRESENTING A SYSTEM

P
(2)

P
(3)

P
(1)

π

c

⇒
P

(2)

P
(3)

c

Fig. 6
PRODUCTION P0

• find an occurrence of L in the graph G;
• remove from G all nodes a ∈ VL − VR, all edges α

such that succ(α) = a or pred(α) = a and all edges
α ∈ EL − ER;

• add to G all nodes a ∈ VR − VL and all edges α ∈
ER − EL.

For example, in production shown in Fig. 6, the node
indexed by (1) is removed together with edges coincident
with it and a new edge is added.

4. Hierarchy elimination
The possibility of substitution of an abstract description

of an agent by a more detailed one represented by a
submodel (subpage) is very common in a system design.
It is, however, difficult when we would like to understand
(or verify) the behaviour of the whole system, associations
among their components and so on. Thus, in this section we
introduce the flat (non-hierarchical) abstraction of a system
represented by its hierarchical communication diagram. In
this representation we will use only agents and connections
among them inherited from the hierarchical communication
diagram.

To define the global set of connections, we have to take
into account not only connections from sets Ci, but also
connections resulting from replacing hierarchical agents with
subpages. For any page Di we define a set of hierarchical
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connections CiH as follows:

CiH ={(Xj
l .p,X

i
m.q) : ∃Xj

n ∈ A
j
H∧

(Xj
l .p,X

j
n.q) ∈ Cj ∧ γ(Xj

n) = Di} ∪
{(Xi

m.q,X
j
l .p) : ∃Xj

n ∈ A
j
H∧

(Xj
n.q,X

j
l .p) ∈ C

j ∧ γ(Xj
n) = Di}

(1)

Finally, the global set of hierarchical connections CH is the
sum CH =

⋃
i=1,...,k Ci ∪ CiH .

Definition 6: For any two agents X ∈ AH and Y ∈ A,
X is said to be hierarchically dependent on Y , denoted as
X � Y , iff X = Y or ∃k :X = Y1 � . . . � Yk = Y for
some Y1, . . . , Yk ∈ A.

Definition 7: A flat representation of a communication
diagram H = (D, γ) is the triple (F , C′, σ′) such that:

1) ∀X,Y ∈ F ⊆ A : ¬(X � Y ),
2) ∀X ∈ A−AH ∃Y ∈ F : Y � X ,
3) C′ = {(X.p, Y.q) ∈ CH : X,Y ∈ F},
4) σ′ = σ|AA∩F .
Theorem 1: Let F be a set of active agents The verifi-

cation if there exists C′ and σ′ such that (F , C′, σ′) is a
flat representation of a communication diagram H can be
done with linear computational complexity with respect to
the number of agents in the system (i.e. O(card(A))) and
it can be generated with linear computational complexity
with respect to the number of ports in the system(i.e.
O(card(P))).

Proof:
1) For all X ∈ F :

a) We visit nodes (marking them by mu) moving
in the direction pointed by edges labelled by γ,
until no node is pointed or the destination node
is already marked.

b) We visit nodes (marking them by md) moving in
the opposite direction to the one pointed by edges
labelled by γ, until no node can be pointed. Let
us note that while traversing in the opposite di-
rection, we are traversal the tree structure. When
we find a node that has been earlier marked, we
generate negative answer and skip the algorithm.

2) We check if there exists a node (representing an agent)
that has not been marked. If such a node is found, then
we return a negative answer. Otherwise, we verify the
set of agents F as the base for generation of the flat
graph positively.

To generate C′ we copy the graph representation of H and
denote is as CGR.

1) Next we remove the following nodes and edges:
a) nodes representing agents marked by mu,
b) nodes representing agents marked by md and all

nodes representing ports associated with them,
c) edges coincident with removed nodes.

2) For all nodes representing ports in CGR’ graph (gen-
erated in the 1 phase), we apply the production P0

represented in Fig. 6. For the node indexed as (1),
we apply the production P , if we find nodes (2) and
(3) such that they are connected in the way shown in
the left side of the production. Then, we replace this
subgraph by the one presented on the right side of the
production.
Let us note that the verification phase needs visit-
ing all agents, thus its computational complexity is
O(card(A)). The generation of the flat representation
needs visiting all ports and all agents (card(P) >
card(A)) thus the computational complexity of this
algorithm is O(card(P)).
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Fig. 7
PRODUCTIONS SUPPORTING ANALYSIS GRAPH TRANSFORMATION –

COHESION MODE

It is easy to check that the set of primary pages is a flat
representation of a system represented by a hierarchical
communication diagram.

We can move from one flat system representation to
another, a more detailed one, using the analysis operation.

Definition 8: Let H be a hierarchical communication
diagram, F = (F , C′, σ′) be a flat representation of H ,
X ∈ AH ∩ F and γ(X) = Di = (Ai, Ci, σi). Analysis of
the flat representation (F , C′, σ′) of the hierarchical diagram
H in context of X is the flat representation (F∗, C∗, σ∗)
(denoted AN(H,F , X)), such that:

1) F∗ = F − {X} ∪ Ai,
2) C∗ = {(Z.p, Z ′.q) ∈ CH : Z,Z ′ ∈ F∗},
3) σ∗ = σ|AA∩F∗ .
Theorem 2: The computational complexity of the analysis

operation is linear with respect to the number of join ports
of the analysed agent X (i.e. O(card(joinX(γ(X))))).
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Proof: The algorithm of the designation flat representation
preserves the same indexation of nodes in the hierarchical
graph G(H) and the generated flat one. Thus, for the nota-
tion simplicity, we will not differ node X in the hierarchical
graph G(H) with its copy in the F graph. While generation
of the AN(H,F , X)):

1) For every Y ∈ γ(X) we apply the productions PH 1

and PF 1 presented in Fig. 7. These productions are
performed in a cohesion mode (see [4], [5] for details),
which means that either both of them are applied
or none of them is executed. Note that because the
production PH1 changes label γ onto −γ, we can
apply these pairs of productions only card(γ(X))
times.

2) We try to apply in the same cohesion mode produc-
tions PH2 and PF2 – in this case left sides of both
productions should be matched with G(H) and F .
Note that because the production PH2 changes label
π onto −π, we can apply these pairs of productions
only card(joinX(γ(X))) times.

3) In the F graph we apply production P0 (from Fig. 6)
until the edges labelled by π are eliminated.

4) We remove node X from the graph F .
5) We exchange labels −π onto π nad −γ onto γ in the

graph G(H).
Each of the transformation rules applied to generation of

the AN(H,F , X)) is applied at most card(joinX(γ(X)))
times so the final computational complexity of this algorithm
is O(card(joinX(γ(X))).

�

Definition 9: Let H be a hierarchical communication
diagram, (F , C′, σ′) be a flat representation of H , Y ∈ F
and ∃X ∈ AH such that X � Y and γ(X) = Di =
(Ai, Ci, σi). Synthesis of the flat representation (F , C′, σ′)
of the hierarchical diagram H in context of Y is the flat
representation (F∗, C∗, σ∗) (denoted as SN(H,F , Y )) such
that:

1) F∗ = F −Ai ∪ {X},
2) C∗ = {(Z.p, Z ′.q) ∈ CH : Z,Z ′ ∈ F∗},
3) σ∗ = σ|AA∩F∗ .
Theorem 3: The computational complexity of the synthe-

sis operation is linear with respect to the number of join
ports of the considered agent X (i.e. O(card(P(γ(X)))).

Proof: Analogously as in the analysis case, for the notation
simplicity, we will not differ node X in the hierarchi-
cal graph G(H) with its copy in F graph. To generate
SN(H,F , Y )) we have to perform the following steps:

1) For a node Y , we designate the representation of a
hierarchical agent X as exactly the node that belongs
to edge (Y, γ,X) ∈ EG(H). Note that X � Y .

2) For every Y ∈ γ(X) we apply the productions PH1

and PF1 presented in Fig. 8. These productions are
performed in a cohesion mode, which means that

either both of them are applied or none of them
is executed. Note that because of the fact that the
production PH1 change a label γ onto −γ, we can
apply the pair of productions only card(γ(X)) times.

3) We try to apply in the same cohesion mode the
productions PH2 and PF2 – in this case left sides of
both productions should be matched with G(H) and
F . Note that because of the fact that the production
PH2 changes a label π onto −π, we can apply the
pair of productions only card(joinX(γ(X))) times.

4) For every edge (p, π, q) ∈ F ′ and for every edge
(r, c, q) ∈ F we apply the production PF3. The
edges, such that lab(α) = π has been added in
the previous step and their number is limited by
card(joinX(γ(X))). These edges are removed in the
PF3 production, thus PF3 can be applied no more
than card(joinX(γ(X))) times.

5) For every edge (p, π, q) ∈ F ′ and for every edge
(q, c, r) ∈ F we apply the production PF4. Analo-
gously as in the previous step, PF4 can be applied no
more than card(joinX(γ(X))) times.

6) The production PF5 removes ports belonging to nodes
Y , such that X � Y . The production can be applied
no more than card(P(γ(X))) times.

7) The production PF6 removes nodes Y , such that
X � Y . The production can be applied no more than
card(γ(X)) times.
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PRODUCTIONS SUPPORTING SYNTHESIS GRAPH TRANSFORMATION –

COHESION MODE

In the next section we consider a flat representation
without hierarchical agents, such a representation is the
maximal one from the analysis point of view.

Definition 10: A flat representation (F , C′, σ′) is called
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REMOVING AGENTS AND PORTS PAGE γ(X)

the maximal flat representation iff ∀X ∈ A ∃Y ∈ F : X �
Y .

5. Usefulness of the flat representation
Even though the main topic of the paper is connected with

graphs representation, it should underlined that a complete
Alvis model contains three layers [1]. Communication di-
agrams are used to define interconnections among agents.
Each non-hierarchical agent must be also defined in the
code layer. Such a code layer for the considered example
is presented in Fig. 11.

The behaviour of each active agent in the model under
consideration is defined using an infinite loop. Senders repeat
the following steps: 1) entering the loop, 2) preparing a new
value for the k parameter (the remainder of division k + 1
by 2) and 3) sending the current value of k via the s_out
port. Receivers repeat two steps: 1) entering the loop, 2)
collecting a value for the k parameter via the r_in port.
The only passive agent Buffer provides two procedures for
putting or getting a value from it. For more details about the
Alvis Code Language see [1] or [2].

A state of a model is represented as a sequence of
agents states. To describe the current state of an agent,
we need a tuple with four pieces of information: agent
mode (am), program counter (pc), context information list
(ci) and parameters values tuple (pv) [3]. The mode is
used to indicate whether an agent is, for example, running
or waiting for an event. The program counter points out

agent S1, S2, S3 {
k :: Int = 0;
loop {
k = rem (k + 1) 2;
out s_out k; }

}

agent R1, R2 {
k :: Int = 0;
loop { in r_in k; }

}

agent Buffer {
i :: Int = 0;
proc b_in { in b_in i; }
proc b_out { out b_out i; }

}

Fig. 11
CODE LAYER

the current or the next step to be executed. The context
information list contains additional information about the
current agent’s state, e.g. the name of the port used in
the current communication. The parameters values tuple
contains values of the agent’s parameters. The initial state
for the model under consideration is as follows:

S1: (running,1,[],(0))
S2: (running,1,[],(0))
S3: (running,1,[],(0))
R1: (running,1,[],(0))
R2: (running,1,[],(0))
Buffer: (waiting,0,[in(b_in),out(b_out)],(0))

Agents S1, S2, . . . , R2 are about executing their first step.
The agent Buffer is waiting for calling one of its procedures.

We consider behaviour of Alvis models at the level of
detail of single steps. Each step is realised in the context
of one active agent. Also procedures of passive agents are
realised in the context of active agents that called them.
The third layer of an Alvis model is called system layer.
It is the predefined layer and provides, among other things,
information about the number of processors accessible in a
considered embedded system. If more than one processor
is accessible, then some agents can execute their steps
concurrently. Suppose that the α0 system layer is considered
i.e. there is unlimited number of processors (each active
agent has access to its own processor). Moreover, assume
that executing loop and exec steps takes 1 millisecond and
executing in and out steps takes 2 milliseconds. Thus, after
executing 5 loop steps concurrently, after 1 millisecond the
considered model reaches the following state:

S1: (running,2,[],(0))
S2: (running,2,[],(0))
S3: (running,2,[],(0))
R1: (running,2,[],(0))
R2: (running,2,[],(0))
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Buffer: (waiting,0,[in(b_in),out(b_out)],(0))

Similarly, after the next 1 ms we have:

S1: (running,3,[],(1))
S2: (running,3,[],(1))
S3: (running,3,[],(1))
R1: (running,2,[sft(1)],(0))
R2: (running,2,[sft(1)],(0))
Buffer: (waiting,0,[in(b_in),out(b_out)],(0))

The stf abbreviation stands for step finish time and means
that the agents R1 and R2 need 1 ms more to finish their
current step. Such a state is called snapshot. Of course, we
can take a snapshot every 1 millisecond, but we are interested
only in these snapshots where at least one step has finished
its execution. For the sake of simplicity, states where all
agents have finished their steps are also called snapshots. The
set of all reachable snapshots and transitions among them is
represented in the form of directed graph called snapshot
reachability graph or SR-graph for short. Nodes of such
a graph represent reachable snapshots, while edges sets of
concurrently executed steps that lead from one snapshot to
another. An SR-graph is a kind of LTS graph i.e. Labelled
Transition System.

The possibility of a formal model verification makes Alvis
a formal modelling language. As it has already been said,
Alvis modelling environment creates in parallel a model of
the considered system and a labelled transition system (SR-
graph) that is its formal representation. The SR-graph can
be formally verified with the CADP toolbox [6].

There are two approaches considered for the SR-graph
generation. The first one uses Haskell representation of an
Alvis model. Alvis Translator that is part of the Alvis mod-
elling environment called Alvis Toolkit translates an Alvis
model into a Haskell program that generates the SR-graph.
The second approach uses Alvis VM (Virtual Machine). In
this approach, Alvis Translator is used to translate an Alvis
model into object representation suitable for the machine and
Alvis VM is used to generate the SR-graph.

Both approaches are still under development, but what
is more important, they need the maximal flat represen-
tation of the corresponding communication diagram. The
proposed graph representation not only seems to be the
most suitable one for this purpose, but also is convenient
from implementation point of view (such a graph can be
represented, for example, in the form of a single matrix
with integer elements). The analysis operation translates one
matrix representation of a graph into another equivalent
one. Alvis Translator takes the graph representation of a
model communication diagram as its input and applies the
analysis operation until the maximal flat representation is
received. Then, the representation is used for next steps of
the transformation algorithms.

0For more details see Alvis web site: http://fm.ia.agh.edu.pl.

6. Conclusion
The formal LTS model, representing the behaviour of the

designed system, is equivalent to the some flat representation
of the hierarchical Alvis system structure described both in
Alvis Code Language and Alvis Communication Diagrams.
The introduced graph representation seems to be suitable for
implementation, but what is more important, it allows one
to formally prove the polynomial computational complexity
of the basic operations on this structure. It was proved that:
• the verification of a flat representation of a com-

munication diagram H can be done with the linear
computational complexity with respect to the number
of agents in the system (i.e. O(card(A))) and it can
be generated with the linear computational complexity
with respect to the number of ports in the system (i.e.
O(card(P))).

• the computational complexity of the analysis operation
is linear with respect to the number of join ports of the
considered agent X (i.e. O(card(joinX(γ(X))))).

• the computational complexity of the synthesis operation
is linear with respect to the number of join ports of the
considered agent X (i.e. O(card(P(γ(X)))).
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Abstract— Given a graph G = (V, E) on n vertices,
the MAXIMUM r-REGULAR INDUCED CONNECTED SUB-
GRAPH (r-MaxRICS) problems ask for a maximum sized
subset of vertices S ⊆ V such that the induced subgraph
G[S] on S is connected and r-regular. For r = 2, it is known
that 2-MaxRICS is NP-hard and cannot be approximated
within a factor of n1�ε in polynomial time for any ε > 0
if P 6= NP . In this paper, we show that r-MaxRICS is
NP-hard for any fixed integer r ≥ 3, and furthermore r-
MaxRICS cannot be approximated within a factor of n1/6�ε

in polynomial time for any ε > 0 if P 6= NP .

Keywords: induced connected subgraph, regularity, NP-
hardness, inapproximability

1. Introduction

In this paper we only consider simple undirected
graphs with no loops and no multiple edges. Let G =
(V (G), E(G)) be a graph, where V (G) and E(G) denote
the set of vertices and the set of edges in G, respectively.
A graph GS is a subgraph of a graph G if V (GS) ⊆ V (G)
and E(GS) ⊆ E(G). For a subset of vertices S ⊆ V (G),
by G[S], we mean the subgraph of G induced on S, which
is called the induced subgraph.

The problem MAXIMUM INDUCED SUBGRAPH (MaxIS)
of finding the maximum number of vertices that induces
a subgraph satisfying some properties is one of the most
fundamental problems in the fields of graph theory and
combinatorial optimization, and thus extensively studied in
these decades. Unfortunately, however, it is well known that
the MaxIS problem is NP-hard for a large class of inter-
esting properties. For example, in [7], Lund and Yannakakis
prove that the MAXIMUM INDUCED SUBGRAPH problem
for the natural properties such as acyclicity, planarity, and
bipartiteness cannot be approximated within a factor of n1�ε

in polynomial time for any positive constant ε if P 6= NP ,
where n is the number of the vertices in the input graph.

1.1 Our Problems and Results
A graph is r-regular if the degree of every vertex is exactly

r. The regularity of graphs must be one of the most basic
properties. In this paper we consider the following variant of
the MaxIS problem, i.e., the desired properties the induced
subgraph must satisfy are regularity and connectivity:

MAXIMUM r-REGULAR INDUCED CONNECTED
SUBGRAPH (r-MaxRICS)

Input: A graph G = (V, E) and an integer r.
Goal: Find a maximum subset of vertices S ⊆ V

such that the induced subgraph G[S] on S is
connected and r-regular.

Since a clique is connected and regular, the MAXIMUM
CLIQUE problem may be regarded as a special one of r-
MaxRICS. The MAXIMUM CLIQUE is very difficult even to
approximate [5]. Clearly, however, the problem of finding a
clique of a constant degree is solvable in polynomial time.
On the other hand, r-MaxRICS is hard even if r is a small
constant as follows: The problem 2-MaxRICS is known
as LONGEST INDUCED CYCLE problem since a 2-regular
subgraph means a cycle in the input graph. In [6] Kann
shows the following inapproximability for 2-MaxRICS:

Theorem 1 ([6]): 2-MaxRICS cannot be approximated
in polynomial time within a factor of n1�ε for any constant
ε > 0 if P 6= NP , where n is the number of vertices in the
input graph.

In [3] Bonifaci, Di Iorio, and Laura consider the following
problem and show its NP-hardness:

MAXIMUM REGULAR INDUCED SUBGRAPH
(MaxRIS)

Input: A graph G = (V, E).
Goal: Find a maximum subset of vertices S ⊆ V

such that the induced subgraph G[S] on S is
regular.
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Strictly speaking, MaxRIS is slightly different from r-
MaxRICS, but the same reduction introduced in [3] shows
the following intractability when r = 3:

Theorem 2 ([3]): 3-MaxRICS is NP-hard.

However, it would be hard to show the hardness of
approximating r-MaxRICS for r ≥ 3 by using a similar
reduction with small modification to the reduction in [3]. In
this paper, by using a different gap-preserving reduction, we
first show the following inapproximability of 3-MaxRICS.

Theorem 3: 3-MaxRICS cannot be approximated in
polynomial time within a factor of n1/6�ε for any constant
ε > 0 if P 6= NP , where n is the number of vertices in the
input graph.

Furthermore, by using additional ideas to the reduction,
we show the same inapproximability of r-MaxRICS for any
fixed integer r ≥ 4.

Corollary 1: For any fixed integer r ≥ 4, r-MaxRICS
cannot be approximated in polynomial time within a factor
of n1/6�ε for any constant ε > 0 if P 6= NP , where n is
the number of vertices in the input graph.

The proofs of Theorem 3 and Corollary 1 will be given
in Section 3.

1.2 Related Work
Recently, the problem of finding a maximum induced

subgraph having regularity is very popular. Many researchers
study the following variant, that is, the connectivity property
is not imposed on the induced subgraph.

MAXIMUM r-REGULAR INDUCED SUBGRAPH (r-
MaxRIS)

Input: A graph G = (V,E) and an integer r.
Goal: Find a maximum subset of vertices S ⊆ V

such that the induced subgraph G[S] on S is
r-regular.

If we does not require the connectivity constraint, then
the problems when r = 0 and r = 1 correspond to the well
studied MAXIMUM INDEPENDENT SET and MAXIMUM
INDUCED MATCHING problems, respectively. The former
problem is hard even to approximate [5]. The NP-hardness
of the latter problem is also shown in [1], [10]. In [9]
Orlovich, Finke, Gordon, and Zverovich prove the MAXI-
MUM INDUCED MATCHING cannot be approximated within
a factor of |V |1/2�ε in polynomial time for any ε > 0. The
parameterized complexity and exact exponential algorithms
of r-MaxRIS are studied in [8] and [4], respectively. Very
recently, in [2] Cardoso, Kamińsi, and Lozin prove that r-
MaxRIS is NP-hard for any value of r ≥ 3. Motivated by
this result, we investigate the complexity of the connected
version problem r-MaxRICS for r ≥ 3 in this paper.

2. Notation
By (u, v) we denote an edge with endpoints u and v.

For a vertex u, the set of vertices adjacent to u in G is
denoted by NG(u) or simply by N(u), and (u,NG(u))
denotes the set {(u, v) | v ∈ NG(u)} of edges. Let the
degree of a vertex u be denoted by deg(u), i.e., |N(u)| =
deg(u). A (simple) path P of length ` from a vertex v0 to
a vertex v` is represented as a sequence of vertices such
that P = 〈v0, v1, · · · , v`〉, and |P | denotes the length of
P . A cycle C of length ` is similarly denoted by C =
〈v0, v1, · · · , v`�1, v0〉, and |C| denotes the length of C. A
chord of a path (cycle) 〈v0, · · · , v`〉 (〈v0, · · · , v`�1, v0〉) is
an edge between two vertices of the path (cycle) that is not
an edge of the path (cycle). A path (cycle) is chordless if it
contains no chords, i.e., an induced cycle must be chordless.
Let G1, G2, · · · , G` be ` graphs and also let vi be some
vertex in Gi for 1 � i � `. Then, 〈G1, G2, · · · , G`〉 denotes
the subgraph G = (V (G1)∪V (G2)∪· · ·∪V (G`), E(G1)∪
E(G2)∪· · · ,∪E(G`)∪{(v1, v2), (v2, v3), · · · , (v`�1, v`)}).
That is, two adjacent graphs Gi�1 and Gi are connected
by only one edge and G roughly forms a path. Similarly,
〈G1, G2, · · · , G`, G1〉 roughly forms a cycle.

3. Hardness of Approximating
r-MaxRICS

In this section we give the proofs of Theorem 3 and
Corollary 1. The hardness of approximating r-MaxRICS
for r ≥ 3 is shown via a gap-preserving reduction from
LONGEST INDUCED CYCLE problem, i.e., 2-MaxRICS.
Consider an input graph G = (V (G), E(G)) of 2-MaxRICS
with n vertices and m edges. Then, we construct a graph
H = (V (H), E(H)) of r-MaxRICS. First we show
the O(n1/6�ε)-inapproximability of 3-MaxRICS and then
the same O(n1/6�ε)-inapproximability of the general r-
MaxRICS problem for r ≥ 4.

Let OPT1(G) (and OPT2(H), respectively) denote the
number of vertices of an optimal solution for G of
2-MaxRICS (and H of r-MaxRICS, respectively). Let
V (G) = {v1, v2, · · · , vn} of n vertices and E(G) =
{e1, e2, · · · , em} of m edges. Let g(n) be a parameter
function of the instance G. Then we provide the gap pre-
serving reduction such that (C1) if OPT1(G) ≥ g(n), then
OPT2(H) ≥ 4(n3 + 1) × g(n), and (C2) if OPT1(G) <
g(n)
n1−ε for a positive constant ε, then OPT2(H) < 4(n3 +
1) × g(n)

n1−ε . As we will explain it, the number of vertices
in the reduced graph H is O(n6). Hence the approximation
gap is n1�ε = O(|V (H)|1/6�ε) for any constant ε > 0.

3.1 Reduction for r = 3

Without loss of generality, we can assume that there
is no vertex whose degree is one in the input graph G
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Figure 1: Subgraph Hi

of 2-MaxRICS. The reason is that such a vertex does
not contribute to any feasible solution, i.e., a cycle, of 2-
MaxRICS and can be removed from G.

The constructed graph H consists of (i) n subgraphs, H1

through Hn, which are associated with n vertices, v1 through
vn, respectively, and (ii) m edge sets, E1 through Em, which
are associated with m edges, e1 through em, respectively.

(i) Here we describe the construction of the ith subgraph
Hi in detail for some i (1 � i � n). See Figure 1,
which illustrates Hi. Suppose that the set of vertices adjacent
to vi is N(vi) = {vi1 , vi2 , . . . , videg(vi)

}, where ij ∈
{1, 2, · · ·n} \ {i} for 1 � j � deg(vi). The subgraph Hi =
(V (Hi), E(Hi)) includes deg(vi) vertices, ui,i1 through
ui,ideg(vi)

that correspond to the vertices adjacent to vi,
and deg(vi)(deg(vi) − 1)/2 path gadgets, Pi1,i,i2 , Pi1,i,i3 ,
· · · , Pi1,i,ideg(vi)

, Pi2,i,i3 , · · · , Pideg(vi)−1,i,ideg(vi)
, where two

vertices ui,ij
and ui,ik

are connected via the path gadget
Pij ,i,ik

for vij , vik
∈ N(vi). As an example, in Figure 1,

the top vertex ui,i1 and the bottom ui,i4 are connected via
Pi1,i,i4 . Each path gadget Pij ,i,ik

includes n3 subgraphs,

P 1
ij ,i,ik

through Pn3

ij ,i,ik
, where, for each 1 � p � n3,

V (P p
ij ,i,ik

) = {wp,1
ij ,i,ik

, wp,2
ij ,i,ik

, wp,3
ij ,i,ik

, γp
ij ,i,ik

},
E(P p

ij ,i,ik
) = (γp

ij ,i,ik
, {wp,1

ij ,i,ik
, wp,2

ij ,i,ik
, wp,3

ij ,i,ik
})

∪{(wp,1
ij ,i,ik

, wp,2
ij ,i,ik

), (wp,2
ij ,i,ik

, wp,3
ij ,i,ik

)}.

In the path gadget Pij ,i,ik
, two vertices w1,1

ij ,i,ik
and

wn3,3
ij ,i,ik

are respectively identical to the vertices ui,ij

and ui,ik
prepared in the above. For 2 � p � n3,

contiguous two subgraphs P p�1
ij ,i,ik

and P p
ij ,i,ik

are con-
nected by one edge (wp�1,3

ij ,i,ik
, wp,1

ij ,i,ik
) except for a pair

P q�1
ij ,i,ik

and P q
ij ,i,ik

for some q: the two subgraphs P q�1
ij ,i,ik

and P q
ij ,i,ik

are connected by a path of length four
〈wq�1,3

ij ,i,ik
, β1

ij ,i,ik
, β2

ij ,i,ik
, β3

ij ,i,ik
, wq,1

ij ,i,ik
〉. This q can be ar-

bitrary since we just want to insert the path of length four
into the path gadget, and as an example, q = 3 in the path
gadget Pi1,i,i4 in Fig. 1. Finally, we prepare a special vertex
αi, and αi is connected to all {β1

ii,i,ik
, β2

ii,i,ik
, β3

ii,i,ik
}’s.

In the following, α1, α2, · · · , αn are called α-vertices.
Similarly, β-vertices and γ-vertices mean the vertices labeled

104 Int'l Conf. Foundations of Computer Science |  FCS'11  |



ui,j uj,i

Hi Hj

ui,i2

ui,i3

ui,i4

uj,j2

uj,j3
γ

(j−1)n2+1
i2,i,i3

γ
(j−1)n2+2
i2,i,i3

γ
(j−1)n2+3
i2,i,i3

γ
(i−1)n2+1
j2,j,j4

uj,j4

γ
(i−1)n2+1
j3,j,j4

Figure 2: Ek connecting Hi and Hj

by β and γ, respectively. Since each path gadget has 4n3+3
vertices (two of which are shared with other path gadgets),
the total number of vertices in Hi is

|V (Hi)| =
deg(vi)(deg(vi) − 1)(4n3 + 1)

2
+ n + 1,

i.e., there are O(n5) vertices in Hi.
(ii) Next we explain construction of the edge sets E1

through Em. Now suppose that ek connects vi with vj for
i 6= j. Also suppose that the sets of vertices adjacent to
vi and vj are N(vi) = {j, i2, · · · , ideg(vi)} and N(vj) =
{i, j2, · · · , jdeg(vj)}, respectively. Then, (ui,j , uj,i) ∈ Ek

where ui,j ∈ V (Hi) in the ith subgraph Hi and uj,i ∈
V (Hj) in the jth subgraph Hj . Furthermore, by the follow-
ing rules, γ-vertices in the path gadgets are connected: See
Figure 2. Every vertex in the path gadget Px,i,y for x = j
or y = j in Hi is not connected to any vertex in Hj , except
for ui,j . Similarly, every vertex in Ps,j,t for s = i or t = i
in Hj is not connected to Hi, except for uj,i. For a path
gadgets Px,i,y in Hi, where j 6∈ {x, y} we prepare a set of
edges as follows. Let D = mink∈{i,j}{deg(vk)(deg(vk) −
1)/2 − (deg(vk) − 1)}.

• In Px,i,y, there are n3 γ-vertices, γ1
x,i,y through γn3

x,i,y .
Consider D γ-vertices among those n3 γ-vertices, the
((j − 1)n2 + 1)th vertex γ

(j�1)n2+1
x,i,y through the ((j −

1)n2 + D)th vertex γ
(j�1)n2+D
x,i,y .

• Next take a look at the jth subgraph Hj and the path
gadgets Ps,j,t’s for i 6∈ {s, t}. Note that the number of
such gadgets is deg(vj)(deg(vj)−1)/2−(deg(vj)−1)
and hence at least D. Then, consider the ((i − 1)n2 +
1)th vertex γ

(i�1)n2+1
s,j,t in each Ps,j,t. Here, the term

“+1” in the superscript of γ comes from the assumption
that j1 = i; if jk = i, we consider the ((i−1)n2 +k)th
γ-vertex.

• Then, we can choose any function f which assigns each
element in {1, . . . , D} to a string s, j, t such that i 6∈
{s, t} and it holds f(b) 6= f(c) if b 6= c. Finally, we
connect γ

(j�1)n2+k
x,i,y with γ

(i�1)n2+1
f(k) for 1 � k � D. It

is important that the path gadget Px,i,y is connected to
Ps,j,t via only one edge.

Just to make the above construction clear, see Figure 3.
For example, if an input instance G is the left graph,
then the reduced graph H is illustrated in the right graph,
where some details on the path gadgets are omitted due to
the space. For example, since two vertices v1 and v2 are
connected via the edge e1 in G, u1,2 in H1 is connected
to u2,1 in H2. Similarly to e2 through e6, there are five
edges, (u1,3, u3,1), (u3,4, u4,3), (u2,4, u4,2), (u2,5, u5,2), and
(u4,5, u5,4) in H . Furthermore, two path gadgets P1,2,5 and
P3,4,5 are connected by one edge (γ1, γ2).

Each subgraph Hi has O(n5) vertices and thus the total
number of vertices |V (H)| = O(n6). Clearly, this reduction
can be done in polynomial time. In the next two subsections,
we show that both conditions (C1) and (C2) are satisfied by
the above reduction.

3.2 Proof of Condition (C1)
Without loss of generality, suppose that a longest induced

cycle in G is C∗ = 〈v1, v2, · · · , v`, v1〉 of length `, and
thus OPT1(G) = |C∗| = ` ≥ g(n). Then we select the
following subset S of 4(n3 +1)×` vertices and the induced
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Figure 3: Input graph G (left) and reduced graph H (right)

subgraph G[S]:

S = V (P`,1,2) ∪ {α1} ∪ V (P1,2,3) ∪ {α2}
∪ · · · ∪ V (P`�1,`,1) ∪ {α`}.

For example, take a look at the graph G illustrated in
Figure 3 again. One can see that the longest induced cycle
in G is 〈v1, v3, v4, v2, v1〉. Then, we select the connected
subgraph induced on the following set of vertices:

V (P2,1,3) ∪ {α1} ∪ V (P1,3,4) ∪ {α3}
∪V (P2,4,3) ∪ {α4} ∪ V (P1,2,4) ∪ {α2}

It is easy to see that the induced subgraph is 3-regular and
connected. Hence, the reduction satisfies the condition (C1).

3.3 Proof of Condition (C2)
We show that the reduction satisfies the condition (C2)

by showing its contraposition. Suppose that OPT2(H) ≥
4(n3 + 1) · g(n)

n1−ε holds for a positive constant ε, and S∗

is an optimal set of vertices such that the subgraph H[S∗]
induced on S∗ is connected and 3-regular. In the following,
one of the crucial observations is that we can select at most
one path gadget from each subgraph Hi into the optimal set
S∗ of vertices, and if a portion of the path gadget is only
selected, then the induced subgraph cannot be 3-regular.

(I) See Figure 1 again. Suppose for example that two
path gadgets Pi1,i,i4 and Pi2,i,i3 are selected, and put their
vertices into S∗. In order to make the degree of β-vertices
three, we need to also select αi. However, the degree of α1

becomes six. This implies that we can select at most three
β-vertices from each subgraph Hi.

(II) From the above observation (I), we consider the case
that at most two of β1

j,i,k, β2
j,i,k, and β3

j,i,k are selected for
some i, j, k. Let us assume that we select β1

j,i,k and β2
j,i,k

(β1
j,i,k and β3

j,i,k, resp.) are put into S∗, but β3
j,i,k (β2

j,i,k,
resp.) is not selected. Then, the degree of β2

j,i,k (β1
j,i,k and

β3
j,i,k, resp.) is at most 2 even if we select αi, i.e., the

induced subgraph cannot be 3-regular. By a similar reason,
we can not select only one of the β-vertices. Hence, if
we select β-vertices, all of the three β-vertices in one path
gadget must be selected.

As for w-vertices, a similar discussion can be done: For
example, if we select wp,1

j,i,k and wp,3
j,i,k for some i, j, k, p,

but wp,2
j,i,k (γp

j,i,k, resp.) is not selected, then the degree of
γp

j,i,k (wp,2
j,i,k, resp.) is only 2. Thus, we need to select all the

vertices of the part P p
k,i,j if we select some vertices from it.

Combining two observations above, one can see that the
edges connecting P p�1

k,i,j and P p
k,i,j , or w-vertices and β-

vertices are necessary to make the degrees of the vertices
three. As a result, we can conclude that if only a part of one
path gadget is chosen, then the induced subgraph obtained
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Figure 4: Modified path gadget in the proof of Corollary 1

cannot be 3-regular.
(III) From (I) and (II), we can assume that if some

vertices of a path gadget are selected into S∗, it means
that the whole vertices of the path gadget is selected.
For example, suppose that Pi1,i,i4 is selected. Since the
degree of the endpoint ui,i1 (ui,i4 ) of Pi1,i,i4 is only
2, we have to put at least one vertex into S∗ from
another subgraph adjacent to Hi, say, a vertex uj,i in
Hj . This implies that the induced subgraph H[S∗] forms
a cycle-like structure 〈Hi1 ,Hi2 , · · · , Hij ,Hi1〉 connecting
Hi1 ,Hi2 , · · · ,Hij ,Hi1 in order, where {i1, i2, · · · , ij} ⊆
{1, 2, · · · , n}.

We mention that such an induced subgraph H[S∗] is 3-
regular if and only if the corresponding subgraph in the
original graph G is an induced cycle. The if-part is clear
by the discussion of the previous section. Let us look at the
induced subgraph H[V (P2,1,3) ∪ V (P1,3,4) ∪ V (P3,4,5) ∪
V (P2,5,4) ∪ V (P1,2,5)] in the right graph H shown in
Figure 3. Then, the induced subgraph includes the chord
edge (γ1, γ2) and thus the degree of γ1 and γ4 is 4. The
reason why the induced subgraph cannot be 3-regular comes
from the fact that the cycle 〈v1, v3, v4, v5, v2, v1〉 includes
the chord edge (v1, v4) in the original graph G. The edges
between γ-vertices are placed because there is an edge
between their corresponding vertices in G. As a result,
the assumption that H[S∗] is an optimal solution, i.e., 3-
regular, implies that the corresponding induced subgraph in
the original graph G forms a cycle 〈vi1 , vi2 , · · · , vij , vi1〉.

Since the number of vertices in each path gadget is
4(n3 + 1), OPT1(G) ≥ g(n)

n1−ε holds by the assumption
OPT2(H) ≥ 4(n3 +1) · g(n)

n1−ε . Therefore, the condition (C2)
is also satisfied.

3.4 Reduction for r ≥ 4

In this section, we give a brief sketch of the ideas to
prove Corollary 1, i.e., the O(n1/6�ε) inapproximability for
r-MaxRICS for any fixed integer r ≥ 4.

The proof is very similar to that of Theorem 3. The
main difference between those proofs is the structure of
each path gadget. See Figure 4, which shows the modified

path gadget. (i) We replace each of γ-vertices in Figure 1
with the complete graph Kr�2 of r − 2 vertices, and then
connect one γ-vertex in Hi and one γ-vertex in Hj for i 6= j
by a similar manner to the reduction for the case r = 3.
(ii) As for β-vertices, we prepare Kr�2 of r − 2 vertices,
say, β1, · · · , βr�2, and two vertices, say, β0 and βr�1, such
that each of the two vertices β0 and βr�2 is adjacent to
all the vertices in Kr�2. Then, all of the β-vertices are
connected to the α-vertex similar to the reduction for r = 3.
Since the reduction requires n3 γ-vertices to connect all the
pairs of Hi’s, which is independent of the value of r, the
path gadget consists of d n3

r�2e subgraphs, say, P 1
j,i,k through

P
dn3/(r�2)e
j,i,k . Further details are omitted here.
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Abstract - Graphical structures of various kinds (like graphs, 
diagrams, visual sentences) are very useful to describe complex 
structures and systems. The field of Graph transformation
and Abstract State Machine has been widely used for 
modeling. Graphs are well suited to describe the underlying
structures of models. They provide a good method to carry out 
the analysis and verification activities and use from the AGG
(Attributed Graph Grammar) tools for design them. So the
Abstract State Machine (ASM) is a modern computation
model. ASM based tools are used in academia and industry, 
albeit on a modest scale. They allow you to give high-level
operational semantics to computer artifacts and to write 
executable specifications of software and hardware at the desired 
abstraction level

.

Keywords: Graph Transformation, Abstract state machine,   
Activity   Diagram,   Semantics,   Verification   and Validation

I. INTRODUCTION

Recently modeling is significant department of
activities that it available introduction a proper software for
security user requirement. Select proper model is base of
modeling. For complete understanding of systems and
specific relation between different stages of them, they should
model.

They are some approach for modeling such as:
 Unified modeling language(UML)
 Petri Nets

The token flow semantics of UML2.0 activity diagrams
is formally defined using Abstract State Machines and Graph 
Transformation System. The state of the art in semantics for 
UML 2.0 activity diagrams covers three distinct approaches: 
mapping to Petri-nets, using graph transformation rules, or 
providing pseudo-code. ASM using pseudo- code and graph 
transformation system using graph transformation rules for 
determine semantics. A major goal of this paper is ability to 
determine the correctness behavior and formal semantics of 
UML2.0 activity diagram by Graph Transformation System 
and Abstract state machine   Graph Transformation 
system (GTS)

 Process Algebra
 State Diagrams

The Unified Modeling Language (UML) is a graphical 
language for visualizing, specifying, constructing, and 
documenting the artifacts of a software system. UML 
Activity diagram is a visual representation of any system's

activities and flows of data or control between activities. 
They describe the workflow behavior of a system. Activity 
diagrams are similar to state diagrams because activities are 
the state of doing something. The diagrams describe the state 
of activities by showing the sequence of activities performed. 
State diagram and activity diagrams both describe state 
transitions and share many of the same elements. The main 
reason to use activity diagrams is to model the workflows. 
Activity Diagrams are also useful for analyzing a use case by 
describing what actions need to take place and when they 
should occur. Currently, the UML semantics is informally 
defined in plain text and it is often unclear, ambiguous or it 
contains contradictory assertions. It is difficult to present the 
precise semantics which are taken as important in workflow 
system with the guide provided  by OMG to the UML 
activity diagram. In this paper, the alternative approach of 
using Abstract State Machines and Graph Transformation 
System to formalize UML activity diagrams is presented. We 
propose the workflow modeling methodology by applying 
ASM and GTS semantics to the activity diagram. Through 
the exact definition to formal semantics based on ASM and 
GTS, it is possible to effectively model the workflow. 

II. RELATED WORK

There is research done about formal specification 
semantics of uml2.0 activity diagram using different formal 
language. Harel defines state diagrams to model activities 
behavior in STATEMENT structured analysis notation.

In resumption Eshuis used this method to describe the 
behavior of UML1.5 activity diagram. He defines concept of 
strong fairness that based on model should not be indefinite
loops. He also indicated modeled in two levels:

 Requirement level semantics: This level is easy for 
analysis.

 Implementation-level semantics: This level is 
difficult for analysis but it provides a real vision of 
system

Bogor used abstract state machine to describe UML2.0 
activity diagrams. This method is based on event and per 
state is algebra. In ASM transition from one status to another 
status is done by rule if- then. Hausmann defines concept 
Dynamic Meta Modeling (DMM) using graph 
transformation systems. He developed the old graph rules by 
defining a new concept named rule invocation. In DMM 
there are two types of rules: big-step and small-step rules.

Big-step rules act as traditional rules but small-step rules 
should be invoked by big-step rules. Haussmann then defines 
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semantics for Activity diagrams using concept of DMM.
Engels use DMM and semantics defined by Haussmann 

for modeling and verification of workflows. For verification, 
he use GROOVE but as GROOVE does not support 
attributed typed graphs and rule invocation, they change the 
rules to be verifiable by  GROOVE they check deadlock 
freeness and action reach ability properties on the modeled 
workflows. In contrast to this work, our approach has more 
flexibility to support user defined properties.

Furthermore, event and exception modeling can be 
supported by our approach. Additionally, the extension 
defined by Haussmann (small/big step rules and rule 
invocation) cannot be modeled directly in existing graph

transformation tools; hence it is not so easy for designers to 
use this approach.

III. ACTIVITY DIAGRAM

UML2.0 Activity Diagram modeling behavior aspect of 
software systems particular Data Flow and control Flow.

Data Flow specific data transform from source path to
destination and Control Flow specific existing paths for data 
transform an activity is operation sequence from start to end 
the system done and per activity can be transaction on data 
or process.
A.  Kind Of Activity Nodes

1. Action Node: An action node is a atomic stage in 
activity such as math function that they can 
manipulate data

2. Control Nodes: A control node is Responsible for 
routing of tokens. They routing based on decision 
node, fork node and join node. The tokens are 
production and consumption.

B.  Kind Of Control Nodes

1. Initial Node: An initial node Defines start of 
activity. This node has no input edge and it has only 
output edge.

2. Decision Node: A decision node has an input edge 
and more than one output edge. Input tokens are 
moving  based on constraints on one of the output 
edges. The node will select different outputs based 
on a given Boolean expression.

3. Merge Node: A merge node have more than one 
input edges and only one output edge. This node 
each token to pass to side its output edge and they 
lead several workflow activities to a flow activity.

4. Fork Node: A fork node has only one input edge 
and more than output edge. Each input  token is 
copied and passes through all the output edges. They 
are divided a flow to multiple simultaneous flow in 
an activity.

5. Join Node: A join node has more than input edge 
and only one output edge. If  all  incoming edges 
carry tokens In this case these nodes are used as a 
synchronization point.

6. Final Node
 Activity Final: An activity final node has one or 

more Than one input edge. If the first token to reach 
the node then sequence of all tokens immediately 
across the activity can be used and enforcement 
activity will stop.

 Flow Final: A flow final node has one or more than 
one input edge. This node uses each token entered 

and Lead to a path is ending.

Figure 1 Kind Of Action Nodes

Figure 2 Kind Of Control Nodes

IV. GRAPH TRANSFORMATION

Graph transformation is applied for simulating the 
behavior of models. It consists of three set: (i) type graph,(ii) 
host graph,(iii) rules. Hence per Graph transformation 
represents formally with triple AGT (TG, HG, R).

 The type graph (Meta model) defines the abstract 
syntax of a modeling  language. Formally, it can 
be represented by a type graph (TG). Nodes in it 
called  classes.  Per  class   have  attributes  and 
functions.

 A host graph (Instance Models) describes the system 
define in modeling language. In fact it is a well-
formed instance of the Meta model.

 A graph transformation rule describes dynamic 
behavior of graph transformation.

Formally, A graph Transformation rule p = (L,R,N) 
consists of: a graph L being the left hand side (LHS) of the 
rule a graph R being the right hand side (RHS) of the rule; a 
set of graphs N being the negative application conditions 
(NACs). The application of a graph transformation rule

transforms a graph G, the source graph, into a graph H, the 
target graph, by looking for an occurrence of L in G and then 
replacing that occurrence of L with R, resulting in H. The 
role of the NACs is that they can still prevent application of 
the rule when an occurrence of the LHS has been found, 
namely if there is an occurrence of some N  N in G that 
extends th the candidate occurrence of L. [1,3]

V. ABSTRACT STATE MACHINE

The Abstract  State  Machine (ASM) Project (formerly 
known as the Evolving Algebras   Project) was started by 
Yuri Gurevich as an attempt to bridge the gap  between 
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formal models of computation and  practical specification 
methods.

A sequential ASM is defined as a set of transition rules of 
form : { If Condition then Updates } ,which 
transform first-order structures (the states of the machine), 
where the guard Condition, which has to be satisfied for 
a rule to be applicable, is a variable free first-
order formula, and Updates is a finite set of 
function updates (containing only variable free terms) of 
form: f (t1,...,tn):= t. The execution of these rules is 
understood as updating, in the given state and in the 
indicated way, the value of the function f at the indicated 
parameters, leaving everything else unchanged. (This 
proviso avoids the frame problem of declarative 
approaches.) In every state, all the rules which are applicable 
are simultaneously applied (if the updates are consistent) to 
produce the next state. If desired or useful, declarative 
features can be built into an ASM by integrity constraints 
and by assumptions on the state, on the environment, and on

the applicability of rules. The ASM is formal and can 
therefore serve as a foundation for the implementation of 
tools. Finally, it helps to ensure that the specified behavior 
meets the intuition of the modeler. Abstract State Machine 
has a main rule that computation transition and uses from it 
for determine token  flow semantics. The semantics of 

activity diagram determine base token flow.  When token 

available in initial, object and action nodes then calling 
transition of rule. if guards evaluation true then token move 
toward destination nodes. [2]

VI. WORKFLOW MODELING

The modeling of workflow should treat of each element 
of the activity diagram was determined uses each node in 
activity diagram is equivalent to a class in this method. Each 
class consists of three parts, the class name, attributes and 
functions. Class name is equivalent to the node name and 

attributes of each class determine according to class
name and action it. In the proposed method of functions are 
obtained from pseudo-code of state machine abstraction and 
attributes  are Combination of characteristics in  the graph 
transformation system and abstract state machine. In UMl2.0
semantic specification is based tokens. These diagrams 
explain each activity and its interactions in detail, including 
how it is triggered, what  resources are needed and what 
deliverables will be created. This knowledge will enable you 
to discover and address any unstated requirements prior to 
finalizing the project plan. These workflow diagrams are key 
to effective analysis and communications. to model 
workflows we consider these parts of Activity diagrams: Init 
node, Final node, Action node, Fork node, Join node, Merge

Figure 3 rules showing the semantics of Decision node
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Figure 4 A sample activity diagram

Figure 5 The sample activity diagram in fig3 as host graph with ASM and GTS

node, Decision node We will use token-flow semantics in 
our graphs. In this paper we show determine semantics of 
decision node with ASM and GTS.
Decision node: pseudo-code of decision node
forall I with 1 I  |accepting Edges| do t( I ) :=
new(Token Offer) seq
forall I with 1  I  |accepting Edges| do t(i).offered 
Token := t. offered Token
t(i).paths := {p element At(accepting Edges, i)| p t.

path  }
t(i).exclude := t. exclude  {t(j) | 1
j|accepting Edges | I  j} t(i).include := t. 
include  {t} add t(i) to offers (element
At(accepting Edges, I )

In Figure3:
 The NAC of this rule states that both of  the

following nodes should not be Join or Merge  nodes,

because these nodes have several output edge, but 
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decision node chooses the output of a edge between
its output edges. This restriction is implemented by 
the function Exclude. This function cause the tokens 
do, not clash together. We have different rules for 
cases that the following nodes are Join or Merge 
nodes.

 The LHS shows the precondition of this  rule. If
Decision node has the token and both of  the 
following nodes have not any token, then this rule
can be applied on the model and token will be routed
to only one of the following nodes. Thus offer token 
entered into decision node and the value of the 
attribute inequality is false. Yet offers token not 
enter within nodes that they are outputs decision
nodes. Guard adjective in one of the output nodes is
True and order output node Labeled with else.

As it is shown, the RHS says that offer token must be 
routed to only one of the following Nodes. Thus Is offer 
token out of the decision node and based on current 
conditions enter one of the output nodes.

We will use Activity diagram of figure 3 as a running 
example for the rest of this paper. It describes the processing 
of orders in a company.

Figure4 represent a workflow modeled with activity 
diagram .this activity can be image as host graph in graph 
transformation system. For each node in activity diagram, 
there is a node (class) in host graph .Class diagrams have 
three parts: (i) class name, (ii) attributes, (iii) functions. Class 
name is name of node and one of attribute for node is token 
offer attribute. Token offers computation in initial node and 
this attribute values in initial node is not null and other nodes 
is null. By moving token in path and inter it at a node, calling 
functions and computation token offer it. When token arrives 
final node, the token offer attribute for preview nodes is null 
and for final node is not null. Therefore when token flow will 
be terminated that token arrives final node or there is not any 
path for token to be routed.

VII.  VERIFICATION AND VALIDATION

The use of formal verification methods is essential in the 
design process of dependable computer controlled systems. 
The efficiency of applying these formal  methods will be 
highly increased if the underlying mathematical background 
is hidden from the designer in such an integrated system 
effective techniques are needed to transform the system 
model to different sort of mathematical models supporting 
the assessment of system characteristics.

To verification of activities must be design an approach. 
The theory and application of visual languages is also based 
on the strong paradigm of graph transformation. Therefore 
For analyze designed activities, graph transformation system 
(type graph, host graph, rules) and properties gets as input of 
verification approach. Graph transformation system must be 
design in AGG; also properties define by special rules. If 
designers are expert in graph transformation, they can 
directly to model workflows by using graph transformation 
system. In this approach designers do not need to learn of 
formal method. In other case, they can model workflows by 
UML2.0 activity diagram, then by transformer, designed 
activities in UML transformed to graph transformation.

In this approach verification done automatically and 
designers do not need to define of rules for verification.
VIATRA (Visual Automated Transformations) is a model 
transformation framework developed mainly for the formal 
dependability analysis of UML models. In VIATRA, Meta 
modeling is conceived specially: the instantiation is based on 
mathematical formalisms and called  Visual Precise  Meta 
modeling. The attribute transformation is performed by 
abstract state machine statements, and there  is built-in 
support for attributes of basic Java types. The model 
constraints can be expressed by graph patterns with arbitrary 
levels of negation. The rule constraints are also specified by 
graph patterns. VIATRA uses abstract state machines (ASM) 
to define the control flow of the system.[1,3]

VIII.  CONCLUSION

This paper proposes a formal approach base compose 
Graph  Transformation Systems (GTS) and Abstract State 
Machine (ASM). This approach determines behavior of 
UML2.0 activity diagrams base token flow. Rules of ASM 
that define with pseudo-code, display by fundamental 
element of GTS (LHS, RHS, NAC).
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Abstract - The role of critical concurrent systems is 

increasing in today ICT systems. Formal modeling techniques 

and tools provide adequate and comprehensive solutions for 

verification of these systems. High-level modeling formalisms 

support system designers to express systems in an abstract 

manner, using multiple formalisms to model various aspects of 

complex systems, eases the process of system modeling. A 

multi-formalism model checker is intended to provide various 

methods of model checking regardless of the formalism 

defining the model. The aim has been to use SDES description 

as the base of a multi-formalism model checking framework. 

By translation from various high-level models, the interface 

model is used for generating low-level state spaces. In this 

paper, a new multi-formalism model checking approach is 

introduced based on SDES description as an interface 

formalism. Furthermore, an architecture for a multi-

formalism model checking component integrated in PDETool, 

an existing modeling tool, is provided. 

Keywords: SDES description; Model checking; Multi-

formalism; Discrete event systems; State space generation.  

1 Introduction 

  Model checking as an instance of system verification was 

independently introduced by Clarke and Emerson [1] and 

Queille and Sifakis [2]. It provides an automated efficient 

search in the state graph representing all reachable states of 

the model of a system. The algorithmic search is intended to 

indicate whether a specific temporal property, P, is satisfied in 

a model structure, M, or not. Moreover, it can provide a 

counterexample for further debugging of the system [3]. 

Comparing to other verification techniques, model checking is 

a systematic, adequate and comprehensive method to verify 

critical concurrent systems.  

 As mentioned before, the main inputs of model checking 

approach are system model and property specification. Most 

model checking tools support low-level formalisms like 

transition systems, discrete-time and continuous-time Markov 

chains as models of systems. Others, such as AlPiNA [4], 

UPPAAL [5] and SMART [6], support high-level modeling 

formalisms. These formalisms are more adequate for modeling 

large scale systems in an abstract manner. In such cases, the 

model checker initially applies a state generation algorithm in 

order to transform the high-level formalism into the low-level 

transition system or Markov chain.  

Another primary consideration that should be taken into 

account in choosing an appropriate model checking tool is the 

type of logics provided to specify the properties being checked 

within the modeled system. From this point of view, various 

model checking tools provide nondeterministic model 

checking methods based on LTL [7] and CTL [1] temporal 

logics. The tools, such as PRISM [8] [9], provide probabilistic 

and stochastic model checking based on PCTL [10] and CSL 

[11]. MRMC [12] also supports model checking for reward 

models [13]. 

 Additionally, relying on a single high-level formalism is 

not either illustrative enough to express various aspects of 

large and complex systems. A multi-formalism modeling tool 

can support the designers by providing multiple high-level 

formalisms to model the system. In such cases, the developer 

can usually extend the modeling capability by defining new 

modeling languages based on an interface formalism. For 

instance, SMART provides a specific language for modeling 

systems as the core language. The user can specify extended 

models by defining formalism-specific types and functions 

[14]. Also, in Möbius [15], an abstract functional interface 

(AFI) is provided in the form of C++ abstract classes. New 

extended models can implement basic variables and actions 

defined in the AFI by use of class inheritance [16]. 

 Although multi-formalism multi-solution tools provide 

modeling, simulation and evaluation solutions for multiple 

formalisms, they rarely support various methods of model 

checking such as nondeterministic, probabilistic and stochastic 

methods in an integrated framework. Having considered the 

basic steps in model checking process as mentioned in [17], a 

multi-formalism model checking tool is assumed to provide 

four basic features. These features include the support of 

multiple formalisms to provide high-level models of systems, 

integrated simulation engine regardless of the formalism 

representing the model, multiple property specification logics 

and multiple methods of model checking. 

 Accordingly, by applying a unified formalism as the core 

interface modeling language of an integrated tool, a multi-

formalism model checker can be developed providing different 

methods of model checking for a wider range of applications. 

Introduced by Zimmermann [18], SDES description provides 
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a unified abstract formalism for stochastic discrete-event 

systems. Popular model classes, such as different extensions of 

Petri nets, queuing networks and timed automata, can be 

translated into SDES description.  

 Furthermore, having applied SDES description as the 

core formalism, PDETool [19] provides an integrated tool to 

model, simulate and evaluate discrete-event systems. Also, 

some important extensions of Petri nets, such as SPNs, 

GSPNs, SANs and CSANs are implemented based on SDES 

description [20]. Therefore, with respect to SDES as the core 

interface formalism, a multi-formalism model checking 

component can be integrated into PDETool to support 

nondeterministic, probabilistic and stochastic model checking.  

In this paper we introduce extension of PDETool with multi-

formalism model checking capability. For this purpose, a 

general state space structure is defined and generated from 

SDES description which can be used as the low-level input 

model for various model checking methods. 

 The remainder of the paper is organized as follows. 

SDES description is described in section 2. The proposed 

approach is introduced in section 3, by introducing property 

specification approach, state space structure, generation 

approach and finally the model checking methods. Section 4 

provides an example to illustrate the proposed approach. In 

section 5, an architecture for multi-formalism model checker 

integrated in PDETool is proposed. Finally section 6 

concludes the paper. 

2 SDES Description 

Different classes of stochastic discrete-event systems 

share common characteristics. SDES description [18] is a 

unified abstract modeling formalism that represents these 

common characteristics. 

DEFINITION 1. (SDES Description). SDES description is 

defined as a tuple SDES = (SV*, A*, S*, RV*), where: 

•  SV* is a finite set of state variables, 

•  A* is the finite set of actions, 

•  S* is the sort function defining the range of state variables 

or action variables. The sort of a variable specifies the 

values that might be assigned to it, 

•   RV* is defined as the set of reward variables corresponding 

the quantitative evaluation of the model. Every element in 

RV* specifies one reward variable and maps the stochastic 

process to a real value. 

By associating values to each state variable allowed by 

the sort function, ∑ is defined as all theoretically possible 

states of a certain SDES model: 

  (1) 

A state variable svi usually corresponds to a passive 

element of the SDES, like a place of a Petri net or a queue of a 

queuing model. Each state variable has the following 

attributes: 

  (2) 

where Val0* is a function representing the initial value of each 

state variable and Cond* indicates whether a state variable is 

allowed in a specific model state or not. 

  (3) 

 An action a ∈  A* of SDES describes possible state 

changes of the modeled system. It is composed of the 

following attributes: 

 (4) 

Each item is defined as follows: 

•  Pri* associates a global priority to every action, 

•  The enabling degree Deg* of an action specifies the 

number of activities that are permitted to run concurrently 

in any state, 

•  The action variables Vars* define a model-dependent set of 

variables Vars*(a) of an action a with individual sorts, 

•  The value of the Boolean enabling function Ena* of an 

action for a state returns if it is enabled or not, 

•  Delay* describes the time that must elapse while an action 

is enabled in an activity until it finishes, 

•  The Weight* of an action is a real number that defines the 

probability to select it for execution in relation to other 

weights, 

•   Exec* defines the state changes that occur as a result of an 

action execution. So actions change the state and Exec* is 

a function that associates a destination state to a source 

state for each action. 

A reward variable rvar* ∈  RV* is defined as a tuple 

composed of the following attributes: 

  (5) 

where the items respectively denote state rewards, impulse 

rewards, the observation interval and a variable that 

determines whether the resulting measure should be computed 

as an average over time or as accumulated. 

3 The Proposed Approach 

 The basic model checking process consists of four main 

steps of system modeling, property formalization, model 

checking, and counterexample simulation. However, a multi-

formalism model checker is intended to support the following 

features: 

Feature 1: Multiple formalisms to provide high-level models 

of systems, e.g. SPNs, SANs and PEPA. 

Feature 2: Integrated simulation engine regardless of the 

formalism representing the model. 
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Feature 3: Multiple property specification logics, e.g. CTL, 

PCTL and CSL. 

Feature 4: Multiple methods of model checking, e.g. 

nondeterministic, probabilistic and stochastic. 

 The proposed approach applies three adaptations in the 

basic model checking process in order to gain the above 

features. Figure 1 illustrates the process of multi-formalism 

model checking.  

 
Figure 1. The proposed multi-formalism model checking approach 

 In order to support multiple property specifications, 

property mapping functions are defined to enhance the model 

checker in order to derive atomic propositions.  Also, the 

modeling step itself is broken down into three separate phases 

to support multiple formalisms as input. After modeling the 

system in high-level formalisms, these models are later 

translated into SDES description. Afterwards, a state space 

generation algorithm generates a low-level general state space 

(GS), which is suited for various model checking algorithms. 

  Using a general state space as model structure, various 

methods of model checking can be applied on multiple high-

level formalisms.  In case of dissatisfaction of the model 

checking algorithm, a counterexample is provided in terms of 

low-level formalism which can be later retranslated into SDES 

description. Using SimGine [19] interface integrated in 

PDETool, the counterexample can be simulated and also 

animated in the respective high-level formalism. 

3.1 Property Specification 

 Properties in temporal logic are specified based on 

atomic propositions. Atomic propositions are simple known 

facts that formalize basic temporal characteristics of the 

system. Regardless of the type of logic representing the 

specification, the model checking method should be able to 

check properties in a labeled model. A labeled model is a 

model in which all states are labeled by items of a set 

containing atomic propositions. While the existence of an 

atomic proposition in a set is generally represented by Boolean 

values, the states generated from SDES static model are based 

on the values of not necessarily Boolean state variables. As a 

result, each state variable cannot be directly considered as an 

atomic proposition. Therefore, a set of mapping functions, 

Map*, is defined as follows to derive each atomic proposition, 

api, regarding the values of state variables: 

  (6) 

Each atomic proposition and the corresponding mapping 

function are directly derived from the property being checked. 

As an example, consider the following temporal property in 

CTL: 

 AG((x + y < 2) or (z > 3)) (7) 

where x, y and z are state variables in SDES static model. 

Consequently, two atomic propositions, ap1 and ap2, are either 

automatically or manually derived from the property with the 

following mapping functions: 

  (8) 

  (9) 

Finally the model checking algorithm checks the provided 

specification, regarding the set of derived mapping functions. 

The resulted property is mapped as follows: 

 AG (ap1 or ap2) (10) 

By defining the mapping functions considering the input 

property specifications, the labeling of each state is 

simultaneously applied while the state space is generated. 

3.2 State Space Generation 

 As mentioned before, in order to check different types of 

properties on models, the state space should be generated in a 

suitable form of structure. For nondeterministic, probabilistic 

and stochastic model checking, labeled transition systems, 

discrete-time and continuous-time Markov chains are 

respectively used by model checking tools. However, in order 

to have a multi-formalism model checker, a general structure 

should be defined to cover all the items provided in the basic 

formalisms mentioned above. 

DEFINITION 2. (General State Space). A general state space 

is a tuple GS = (S, Act, trans, I, AP, L, R, P, ρ, ℓ), where: 

•  S is a set of states, 

•  Act is a set of actions, 

•  trans ⊆ S×Act×S is a set of transitions, with (s1,α,s2)∈  

trans, α∈  Act and s1,s2∈  S, 

•  I ⊆ S is a set of initial states, 

•  AP is a set of atomic propositions, 
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•  L: S → 2
AP

  is a labeling function which assigns to each 

state s∈  S the set L(s) of atomic propositions that are valid 

in the state, 

•  R: S×S → ℝ ≥ 0  is the transition rate matrix, 

•  P: S×S→[0,1] is the transition probability matrix where 

  for all  s∈  S, 

•   is a state reward function which defines the 

reward acquired in a state, 

•   is a transition reward function which defines 

the reward acquired each time a transition is fired. 

Considering the items defined in Definition 2, the GS 
structure is inclusively considered as a super class for transition 
system, DTMC, CTMC and MRM. Consequently, it is used as 
the structure for representing the state space capable for 
nondeterministic, probabilistic and stochastic model checking. 

In order to use GS as the core state space structure for 

multi-formalism model checking, the items mentioned in 

Definition 2 should be directly generated from SDES 

description as follows: 

•  All states in the SDES dynamic model are members of the 

state set in GS: 

  (11) 

•  All actions in the SDES model are members of the actions 

set in GS: 

  (12) 

•  Any transition in GS is resulted by firing an SDES 

execution function: 

  (13) 

•  The initial states in GS are generated by setting the values 

of each state variable in SDES static model to its initial 

value: 

  (14) 

•  Regarding each mapping function derived from the given 

property, an atomic proposition is defined as follows: 

  (15) 

•  The result of the labeling function for each state on a 

specific atomic proposition is derived from its respective 

mapping function: 

  (16) 

•  The probability matrix is derived from the weight of 

executed actions:  

  (17) 

•  The transition rate matrix is derived from the delay of 

executed actions: 

  (18) 

•  State rewards can be directly generated from rrate*: 

  (19) 

•  Transition rewards can be directly generated from rimp* 

one executed action variants AV*: 

  (20) 

 According to the mappings mentioned above, the state 

generation algorithm for SDES description is defined as in 

Figure 2. 

Algorithm#1: State Space Generation 

Input: SDES description 

Output: General State Space GS 

 

For all svi in SV* do Ii = Val0(svi) 

S ← I; N ← I 

For all api in AP 

If  Then 

L(I) ←L(I) ⋃ api 
While N != {}   

Begin 

NS ← N; N ← {} 

For all Oi in NS   

For all avi in AV*   

If Ena(avi,Oi)AND Count(avi.a)<Deg(avi.a) 

Then 

Begin 

σ = Exec(avi,Oi); 

If (S ← S ⋃ σ) Then  
Begin 

Act ← Act ⋃ avi 
Trans ← trans ⋃ (Oi,avi,σ) 
N ← N ⋃ σ 
P(Oi,σ) = Weight(avi) 

   R(Oi,σ) = Delay(avi) 

ρ(σ) = rrate(σ) 

ℓ(oi,σ) = rimp(avi) 

For all api in AP 

If  Then 

L(σ) ←L(σ) ⋃api 
End If 

End For 

End While 

Figure 2. State space generation algorithm 

3.3 The Model Checking Method 

A multi-formalism model checker should provide three 

basic methods of model checking including nondeterministic, 

probabilistic and stochastic methods. Each method is applied 

on specific logics and state space structures. 

Nondeterministic model checking algorithm checks the 

properties specified in LTL [7] or CTL [1] logics in labeled 

transition systems. In LTL model checking, a Büchi automata 

A is constructed from the LTL property and by constructing a 

product transition system of TS⨂A the algorithm tries to 

disprove the satisfaction of the property [21]. However, in 

CTL model checking, the algorithm recursively calculates the 

satisfaction set of states for the property [1]. In probabilistic 
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and stochastic model checking, the system is modeled in 

labeled discrete-time or continuous-time Markov chain and the 

algorithm is able to check PCTL [10] or CSL [11] properties 

on the defined model in a recursive manner [23]. However, 

model checking of reward models can also be applied on 

discrete-time or continuous-time Markov reward models. In 

this case, PRCTL [22] or CSRL [11] logic is used to specify 

properties [22]. MRMC [12] model checker provides 

probabilistic and stochastic model checking on DMRMs and 

CMRMs [13].  

As general state space is a super class of labeled transition 

system, DTMC, CTMC, and MRM, it can be used as the low-

level model structure in a multi-formalism model checker that 

provides all nondeterministic, probabilistic and stochastic 

model checking methods mentioned above. However, as some 

of the elements in general state space are not used in all 

methods of model checking, Table I illustrates how each type 

of action is treated in various methods of model checking. 

Table I . The view of types of actions in different methods of model checking 

Method of 
Model 

Checking 

Type of Action 

Nondeterministic Probabilistic Stochastic 

Nondeterministic ND ND ND 

Probabilistic ND PB ND 

Stochastic ND ND SC 

4 An Illustrative Example 

 In this section an example for multi-formalism model 

checking on SDES description is provided. In this example, the 

SDES model is translated from an SPN high-level model. This 

model showed in Figure 3 represents a system containing two 

processors, two memory blocks and one common bus. 
ProcsReady

ProcsInit

Mem1wait Mem2wait
Mem1

Mem2

Mem1begin mem2begin

GBus

MemReq

Mem1Req Mem2Req

Mem1Init Mem2Init

Mem1Release Mem2Release

0.1

0.6 0.7

0.5 0.5

1 1

 
Figure 3 . SPN representation of a system with two processors and two 

memory blocks 

 As mentioned before, the main inputs of a model checker are 

the state space and the property specifications. Section 4.1 

defines the SDES description of the above example and also 

the regarding generated state space. Section 4.2 provides the 

property specifications and the final results. 

4.1 Modeling the system 

 The SPN model is firstly transformed into SDES 

description using the approach introduced in [18]. The 

corresponding SDES model of the above example is shown in 

Figure 4. 

State variables: 

SV = {ProcsReady, ProcsInit, Mem1wait, Mem2Wait, Mem1, Mem2, 

Mem1begin, Mem2begin,GBus} 

Actions: 

A = {MemReq, Mem1Req, Mem2Req, Mem1Init,Mem2Init, 

Mem1Release, Mem2Release} 

Sort functions: S (.) = {0, 1, 2} 

Condition functions: Cond (.,.) = True 

Initial values:  

Val0(ProcsReady) = 2 Val0(ProcsInit) = 0 

Val0(Mem2wait) = 0 Val0(Mem1) = 1 

Val0(Mem1begin) = 0 Val0(Mem2begin) = 0 

Val0(Mem1wait) = 0 Val0(Mem2) = 1 

Val0(GBus) = 1  

Degrees: Deg (.) = 1 

Action variables: Vars(.) = {} 

Delays:  

Delay(MemReq) = 0.1 Delay(Mem1Req) = 0 

Delay(Mem1Init) = 0 Delay(Mem2Init) = 0 

Delay(Mem2Release) = 0.7 Delay(Mem2Req) = 0 

Delay(Mem1Release) = 0.6  

Weights:  

Weight(MemReq) = 1 Weight(Mem1Req) = 0.5 

Weight(Mem1Init) = 1 Weight(Mem2Init) = 1 

Weight(Mem2Release) = 1 Weight(Mem2Req) = 0.5 

Weight(Mem1Release) = 1  

All possible states: Σ={0,1,2}3 

Figure 4. SDES description of a system with two processors and two 

memory blocks 

Considering the algorithm of Figure 2, the general state 

space, GS, regarding the above SDES description is generated 

as shown in Figure 5. 

4.2 Property Specification and the Results 

For the model of the example in Figure 3, the following 

property specifications are checked on the model: 

1. The system will reach to a state where both memory blocks 

are accessed. 

2. The system will reach to a state with 50% probability 

where a processor would wait for memory block 1 in 5 
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next steps while it is waiting for the common bus at the 

current time. 

3. The system will reach to a state where a processor would 

be available in 4 seconds. 

Initial states: I ={1} 

States: S={1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 

15, 16, 17, 18} 

Actions: Act={MemReq,Mem1Req,Mem2Req, 

Mem1Init,Mem2Init,Mem1Release, 

Mem2Release} 

Probabilities: 

 

Rates: 

 

State rewards: ρ (.) =0 

Transition rewards: ℓ(.,.) =0 

Figure 5. GS representation of a system with two processors and two memory 

blocks 

According to section 3.1, the set of atomic propositions 

and the regarding mapping functions for the properties are 

defined as follows: 

  

 

  

  

  

Consequently, properties are respectively specified in CTL, 

PCTL and CSL logics as follows: 

  

  

  

Finally, the system model and the property specification are 

provided to the multi-formalism model checker.  Using the 

approach introduced in 3.3, the model checker applies specific 

model checking methods on the unique GS regarding the logic 

representing the properties. Therefore, nondeterministic, 

probabilistic and stochastic model checking algorithms are 

respectively applied on p1, p2 and p3 in order to find the 

satisfaction sets of states. Table II shows the result using 

MRMC model checker. 

 

 

Table II . Model checking results for the example 

Model checking method Property Satisfaction set 

Nondeterministic p1 {} 

Probabilistic p2 {6, 8, 9, 10, 14, 16, 17, 18} 

Stochastic p3 {1, 2, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 

16, 17, 18} 

 

5 The Proposed Architecture 

 In order to provide a multi-formalism model checker, the 

tool must be integrated into a framework providing multi-

formalism modeling and simulation engine. On the other hand, 

a high-level interface modeling formalism as the core structure 

eases the collaboration of these components. The architecture 

of PDETool [19] contains Model Editor and Simulation 

Engine.  

Having considered the multi-formalism model checking 

approach proposed in Figure 1, the architecture of the multi-

formalism model checker integrated in PDETool is illustrated 

in Figure 6. 
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Figure 6 . The proposed architecture for a multi-formalism model checker 

integrated into PDETool 

The model checking component integrated in PDETool 

framework is composed of four basic components arranged in 

three layers. Each component is composed of the basic 

components with specific functionalities. 

The property formalizer component which is responsible 

for defining system requirements and is composed of the 

following components: 

•  PSgui: Property specification graphical user interface 

provides an environment to specify temporal logic 

properties based on the regarding high-level formalisms. 

•  PStrans: Property specification translator is responsible for 

translating properties to SDES formalism. 

•  PSmapper: Atomic propositions are derived through 

PSmapper and the mapping functions are defined 

according to the approach introduced in 3.1. 
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•  The state space generation component which is responsible 

for providing low-level state space structures for the 

models includes the following components: 

•  ASgen: Assembly generator generates executable runtime 

assemblies (RUNasm) based on the SDES static models. 

• RUNasm: Runtime assemblies are executable assemblies 

that form SDES dynamic models. Running the RUNasm 

assembly using the approach introduced in 3.2, the low-

level general state space of the model is generated. 

 The model checking component implements the muti-

formalism model checking approach introduced in 3.3 using 

the following components: 

•  NDmc: This component applies nondeterministic model 

checking methods on LTL and CTL temporal logics. 

•  PBmc: Probabilistic model checking is applied using PBmc 

for PCTL and PRCTL temporal logics. 

•  SCmc: Properties formalized in CSL and CSRL temporal 

logics are checked in stochastic model checking 

component. 

While the model checking engine provides the 

satisfaction sets of states, the counter example engine is 

responsible for providing counterexamples using the 

following components: 

•  CXgen: Counterexample generator is responsible for 

providing the states not satisfying the properties.  

• CXtrans: Counterexample translator gets the 

counterexamples provided by CXgen and translates them 

to sequences of SDES actions that lead to the non-

satisfying states. 

 The SDES level counterexamples provided by CXtrans 

are used in SimGine in order to simulate the execution path 

that did not satisfy the specified property. Later, the animator 

component shows the counterexample in the high-level model 

by re-translating it from SDES level. 

6 Conclusions 

 In this paper, we proposed a multi-formalism model 

checking approach that provides four basic features in 

PDETool framework. These features consist of supporting 

multiple high-level formalisms for modeling, multiple property 

specification logics, multiple methods of model checking and 

providing a simulator engine independent of the model class.  

Firstly, by integrating the model checking tool in PDETool, 

multiple model classes such as SPNs, CSANs and PEPAs can 

be modeled and translated into SDES description. Secondly, 

by defining a set of mapping functions, atomic propositions can 

be derived from SDES variables. Various property 

specifications can be defined in LTL, CTL, PCTL and CSL, 

based on defined atomic propositions. Thirdly, by defining a 

general state space structure as a super-class of labeled 

transition systems, DTMCs, CTMCs, DMRMs or CMRMs, 

nondeterministic, probabilistic and stochastic model checking 

techniques can be applied, respectively. And finally, by using 

SDES as the base interface formalism in PDETool, the 

simulation engine, SimGine, can be used in order to determine 

the counterexamples regardless of the high-level formalism 

describing the model. 
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Abstract— This paper presents a theoretical framework
for the integration of the cooperative constraint solving of
several algebraic domains into higher-order functional and
logic programming on λ-abstractions, using the instance
CFLP(C) of the generic Constraint Functional Logic Pro-
gramming (CFLP ) scheme [7] over a so-called higher-order
coordination domain C. We provide this framework as a
powerful computational model for the higher-order coope-
ration of algebraic constraint domains over real numbers
R and integers FD, which has been useful in practical
applications involving the hybrid combination of its com-
ponents, so that more declarative and efficient solutions can
be promoted. Our proposal of computational model has been
proved sound and complete with respect to the declarative
semantics provided by the CFLP scheme, and enriched
with new mechanisms for modeling the intended cooperation
among the algebraic domains and a higher-order constraint
domain h equipped with a sound and complete constraint
solver for solving higher-order equations.

Keywords: higher-order cooperation, constraint domains, func-
tional and logic programming, logic in computer science, models
of computation, hybrid computation

1. Introduction
The effort to identify suitable theoretical frameworks for
higher-order functional logic programming has grown in re-
cent years [2], [8], [9], [15]. The high number of approaches
in this area and their different scopes and objectives indicate
the high potential of such a paradigm in modeling complex
real-world problems [12].

Functional logic programming [3] is the result of integra-
ting two of the most successful declarative programming
styles: functional and logic programming, in a way that
captures the main advantages of both. Whereas higher-
order programming is standard in functional programming,
logic programming is in large part still tied to the first-
order world. Only a few higher-order logic programming
languages, most notably λ-Prolog [10], use higher-order
logic for logic programming and have shown its practical
utility, although the definition of evaluable functions is
not supported. Moreover, higher-order constructs such as

function variables and λ-abstractions of the form λx. e are
widely used in functional programming and higher-order
logic programming languages, where λ-terms are used as
data structures to obtain more of the expressivity of higher-
order functional programming.

In this research area, [14], [15] proposes a complete
theoretical framework for higher-order functional logic
programming as an extension to the setting of the simply
typed lambda calculus of a first-order rewriting logic,
where programs are presented by Conditional Pattern
Rewrite Systems (CPRS for short) on lambda abstractions.
For a first impression of this higher-order programming
framework, the following CPRS illustrates the syntax
of patterns on lambda abstractions to define a classical
higher-order function map for the application of a given
function to a list of elements.

map (λu. F (u), [ ]) = [ ]
map (λu. F (u), [X |Xs ]) = [F (X) |map (λu. F (u),Xs) ]

The first contribution of this paper is to present a theoretical
framework for the integration of higher-order functional
logic programming with constraint solving, extending
the programming language with the capacity of solving
constraints over a given algebraic constraint domain. The
term constraint is intuitively defined as a relationship
required to hold among certain entities as variables and
values (e.g., X + Y ≤ 0). We can take for instance the
set of integers or the set of real numbers with addition,
multiplication, equality, and perhaps other functions and
predicates. Among the formalisms for the integration of
constraints in functional logic programming we use in this
work the Constraint Functional Logic Programming scheme
CFLP(D) [7] which supports a powerful combination of
functional and constraint logic programming and can be
instantiated by any constraint domain D given as parameter
which provides specific data values, constraints based on
specific primitive operations, and a dedicated constraint
solver. There are different instances of the scheme for
various choices of D, providing a declarative framework
for any chosen domain. Useful constraint domains include
the Herbrand domain H which supplies equality constraints
over symbolic terms, the algebraic domain R which supplies
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arithmetic constraints over real numbers, and the algebraic
domain FD which supplies arithmetic and finite domain
constraints over integers. As a concrete example of a CPRS
integrating higher-order functional logic programming with
algebraic constraints in R, we can consider the following
variant of a classical higher-order function diff to compute
the differential of a function f at some numeric value X
under some arithmetic constraints over real numbers in the
conditional part (⇐) of program rules.

diff :: (real → real) → real → real

diff (λu. u,X) = 1
diff (λu. sin (F (u)), X) = cos (F (X)) ∗ diff (λu. F (u), X)

⇐ π/4 ≤ F (x) ≤ π/2
diff (λu. ln (F (u)), X) = diff (λu. F (u), X)/F (X)

⇐ F (X) 6= 0

In contrast to first-order programming, we can easily
formalize functions to be differentiated, or to compute
the inverse operation of the differentiation (integration) by
means of narrowing [14] as a suitable operational semantic,
a transformation rule which combines the basic execution
mechanism of functional and logic languages, namely rewrit-
ing with unification. For instance, we can compute by nar-
rowing the substitution {F 7→ λu. sin (u)} as a solution of
the goal λx. diff (λu.ln (F (u)), x) == λx. cos (x)/sin (x)
because the constraint λx. (π/4 ≤ x ≤ π/2→ sin (x) 6= 0)
is evaluated to true by an R-constraint solver.

Practical applications in higher-order functional logic pro-
gramming, however, often involve more than one “pure”
domain (i.e., H, R, FD, etc.), and sometimes problem
solutions have to be artificially adapted to fit a particular
choice of domain and solver. The cooperative combination
of constraint domains and solvers has evolved during the
last decade as a relevant research issue that is raising an in-
creasing interest in the constraint programming community.
An important idea emerging from the research in this area is
that of hybrid constraint domain (e.g., H ⊕ R ⊕ FD [1]),
built as a combination of simpler pure domains and designed
to support the cooperation of its components, so that more
declarative and efficient solutions for practical problems can
be promoted.

2. Higher-Order Algebraic Constraint
Cooperation
The second contribution of this work is to present a for-
mal framework for the cooperation of the algebraic con-
straints domains FD and R in an improved version of
the CFLP(D) scheme [7], now useful for higher-order
functional and logic programming on lambda abstractions.
As a result, we provide a powerful theoretical framework for
higher-order constraint functional logic programming with
lambda abstractions and decidable higher-order unification
in a new higher-order constraint domain h, which leads to
greater expressivity. As a motivation for the rest of the paper,
we present in this section an example of CPRS -program

involving the cooperation of the algebraic constraint domains
FD andR to illustrate the different cooperation mechanisms
that are supported by our theoretical framework, as well as
the benefits resulting from the cooperation in the higher-
order functional logic programming setting.

In engineering, a common problem is the approxima-
tion of a complicated continuous function by a simple
discrete function (e.g., the approximation of GPS satellite
coordinates). Suppose we know a real function (given by
a lambda abstraction λu. F (u)) but it is too complex to
evaluate efficiently. Then we could pick a few approximated
(integer) data points from the complicated function, and
try to interpolate those data points to construct a simpler
function, for example, a polynomial λu. P (u). Of course,
when using this polynomial function to calculate new (real)
data points we usually do not receive the same result as
when using the original function, but depending on the
problem domain and the interpolation method used the gain
in simplicity might offset the error.

disc :: (real → real ) → (int → int)
disc (λu. F (u)) = λu. P (u) ⇐

domain [X] 0 N , labeling [ff ] [X],
X 
 RX , Y 
 RY ,
|F (RX )− RY | < 1,
collection [X,Y ] C, interpolation [lg ] C P

The aim of this example is to approximate a continuous func-
tion represented by a lambda abstraction λu. F (u) over real
numbers by a discrete polynomial function λu. P (u) over
integer numbers. In this case, we use the FD-constraints
domain [X] 0 N , labeling [ff ] [X] to generate each value
of the discrete interval [0..N ], according to a first-fail (or ff)
labeling option [7]. In order to model the intended coope-
ration and communication between the constraint domains
FD and R we use a special kind of hybrid constraints 

called bridges, as a key tool for communicating constraints
between different algebraic constraint domains. The first
bridge constraint X 
 RX maps each integer value of
X into an equivalent real value in RX . By applying the
higher-order functional variable F to RX we obtain the R-
constraint |F (RX ) − RY | < 1. From this constraint, the
R-solver computes (infinite) real values for RY . However,
because of the second bridge constraint Y 
 RY , each
real value assigned to RY by the constraint solving process
causes the variable Y to be bound only to an equiva-
lent integer value. By means of the primitive constraint
collection [X,Y ] C we can collect all the pairs (X,Y )
generated by the labeling-solving process into a set C.
Finally, interpolation [lg ] C P finds a polynomial which
goes exactly through the points collected in C by means
of the Lagrange Interpolation (lg) method. For instance, we
can consider the following goal disc (λu. 4 ∗ u − u2) ==
λu. P (u) involving the continuous function F as λu. 4∗u−
u2 with N = 4. We obtain the set of integer pairs (xi, yi) in
C = {(0, 0), (1, 3), (2, 4), (3, 3), (4, 0)}. For this particular
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case, it is easy to check that this computed answer is simply
{P 7→ λu. 4 ∗ u− u2}.

3. A Higher-Order Constraint Domain
Taking the generic scheme CFLP(D) as a formal basis for
foundational and practical issues concerning the cooperation
of algebraic constraint domains, in this section we focus
on the formalization of a higher-order constraint domain h
which supplies λ-abstractions and equality constraints over
λ-terms in the instance CFLP(h). First, we introduce the
preliminary notions of our higher-order theoretical frame-
work to formalize the constraint domain h along with a
suitable h-constraint solver based on an approach similar to
the Huèt’s procedure of higher-order pre-unification [8], [9],
[12].

3.1 Preliminary notions
We assume the reader is familiar with the notions and
notations pertaining to λ-calculus (see, e.g., [12] for more
examples and motivations). The set of types for simply
typed λ-terms is generated by a set B of base types (as
e.g., bool , real , int) and the function type constructor “→".
Simply typed λ-terms are generated in the usual way from
a signature F of function symbols and a countably infinite
set V of variables by successive operations of abstraction
and application. We also consider the enhanced signature
F⊥ = F ∪ Bot, where Bot = {⊥b | b ∈ B} is a
set of distinguished B-typed constants. The constant ⊥b
is intended to denote an undefined value of type b. We
employ ⊥ as a generic notation for a constant from Bot.
A sequence of syntactic objects o1, . . . , on, where n ≥ 0,
is abbreviated by on. For instance, the simply typed λ-
term λx1, . . . , λxk. (· · · (a t1) · · · tn) is abbreviated by
λxk. a(tn). Substitutions γ ∈ Subst(F⊥,V) are finite type-
preserving mappings from variables to λ-terms, denoted by
{Xn 7→ tn}, and extended homomorphically from λ-terms
to λ-terms. By convention, we write {} for the identity
substitution, tγ instead of γ(t), and γγ′ for the composition
γ′ ◦ γ.

The long βη-normal form of a λ-term t, denoted by
tlηβ , is the η-expanded form of the β-normal form of t. It
is well-known that s =αβη t if slηβ =α tlηβ . Since βη-
normal forms are always defined, we will in general assume
that λ-terms are in long βη-normal form and are identified
modulo α-conversion. For brevity, we may write variables
and constants from F in η-normal form, e.g., X instead
of λxk.X(xk). We assume that the transformation into long
βη-normal form is an implicit operation, e.g., when applying
a substitution to a λ-term. With these conventions, every λ-
term t has an unique long βη-normal form λxk. a(tn), where
a ∈ F⊥∪V and a() coincides with a. The symbol a is called
the root of t and is denoted by hd(t). We distinguish between
the set T (F⊥,V) of partial λ-terms and the set T (F ,V) of
total λ-terms. The set T (F⊥,V) is a poset with respect to

the approximation ordering v, defined as the least partial
ordering such that:

λxk.⊥ v λxk. t t v t s1 v t1 · · · sn v tn
λxk. a(sn) v λxk. a(tn)

A pattern [9] is a λ-term t for which all subterms t|p =
X(tn), with X ∈ FV(t) a free variable of t and p ∈
MPos(t) a maximal position in t, satisfy the condition that
t1↓η, . . . , tn↓η is a sequence of distinct elements of the set
BV(t, p) of bound variables abstracted on the path to position
p in t. Moreover, if all such subterms of t satisfy the addi-
tional condition BV(t, p) \ {t1↓η, . . . , tn↓η} = ∅, then the
pattern t is fully extended. It is well known that unification
of patterns is decidable and unitary [9]. Therefore, for every
t ∈ T (F⊥,V) and pattern π, there exists at most one matcher
between t and π, which we denote by matcher(t, π).

3.2 The higher-order constraint domain h
Intuitively, a constraint domain D provides data values and
constraints oriented to some particular application domain.
In our higher-order setting, we need to formalize a special
higher-order constraint domain h to support computations
with symbolic equality over λ-terms of any type. Formally,
it is defined as follows:

Definition 1 (h-domain): The higher-order constraint do-
main h is a structure 〈Dh,==h〉 such that the carrier set
Dh coincides with the set of ground patterns (i.e., patterns
without free variables) over any type, and the function
symbol == is interpreted as strict equality over Dh, so that
for all t1, t2, t ∈ Dh, one has ==h ⊆ D2

h × Dh, where
t1 ==h t2 → t (i.e., (t1, t2, t) ∈ ==h) iff some of the
following three cases hold:

(1) t1 and t2 are one and the same total λ-term in Dh, and
true w t.

(2) t1 and t2 have no common upper bound in Dh w.r.t.
the approximation ordering v, and false w t.

(3) t = ⊥.

An equality constraint (or simply, h-constraint) is a multiset
{{s, t}}, written s == t, where s, t ∈ T (F⊥,V) are λ-
terms of the same type. The set of solutions of an equality
constraint s == t is defined as follows: Soln(s == t) =
{γ ∈ Subst(F⊥,V) | tγ ==h sγ → true}. Any set E of
strict equations is interpreted as conjunction, and therefore
Soln(E) =

⋂
(s== t)∈E Soln(s == t).

3.3 The h-constraint solver
Solving equality and disequality constraints in first-order
term algebras (which is also known as unification) is the
most famous symbolic constraint solving problem. In the
higher-order case, higher-order unification is a powerful
method for solving equality h-constraints between λ-terms
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and is currently used in theorem provers [15]. However,
one of the major obstacles for reasoning in the higher-order
case is that unification is undecidable. However, in this
subsection we examine a decidable higher-order unification
case of patterns by means of the development of a h-
constraint solver for the higher-order constraint domain h,
now supporting an improved treatment of the strict equality
== as a built-in primitive function symbol, rather than a
defined function.

Definition 2 (States): The constraint solver Solverh

for the higher-order domain h acts on states of the form
P ≡ 〈E | K〉, where E is a set of strict equality constraints
s == t between λ-terms s, t, and K is a set of patterns
intended to represent and store computed values in the
sense of [14], [15] during the constraint solving process.
The meaning of a state P ≡ 〈E | K〉 is as follows: [[〈E | K〉]]
= {γ ∈ Soln(E) | Kγ is a set of values }. We note that
[[〈E | K〉]] = ∅ whenever K is not a set of values. In the
sequel, we denote this state by fail and call it failure
state.

Solving a set of strict equality h-constraints amounts to
computing h-derivations, i.e., sequences of transformation
steps.

Definition 3 (Derivations): A h-derivation of a set E of
strict equality h-constraints is a maximal finite sequence of
transformation steps: P0 ≡ 〈E | ∅〉 ≡ 〈E0 | K0〉 ⇒σ1 P1 ≡
〈E1 | K1〉 ⇒σ2 · · · ⇒σm Pm ≡ 〈Em | Km〉, between states
P0, P1, . . ., Pm, such that Pm 6= fail is a final state, i.e.,
a non failure state which can not be transformed anymore.

Definition 4 (λ-constraint solver):

(1) Each transformation step in a h-derivation Π corres-
ponds to an instance of some transformation rule of
the h-constraint solver Solverh described below. We
abbreviate Π by P0 ⇒∗σ Pm, where σ = σ1 . . . σm.

(2) Given such a set E of strict equality h-constraints, the
set of computed answers produced by the h-constraint
solver Solverh is A(E) = {σγ �FV(E) | 〈E | ∅〉 ⇒∗σ P
is a h-derivation and γ ∈ [[P ]] }, where FV(E) is the
set of free variables of E.

In the sequel, we will describe the transformation rules of
the h-constraint solver and analyze its main properties. The
general idea is to ensure the computation of solutions from
h-equations which are correct with respect to the semantics
given in h. Since the design considerations are quite
involved and the analysis techniques quite complicated,
we consider useful to precede our presentation with a
brief outline of our design considerations and techniques.
Typical requirements in the design of such a solver (see,

e.g., [1], [2], [7]) are soundness: every computed answer
is a solution, i.e., A(E) ⊆ Soln(E), and completeness:
for any γ ∈ Soln(E) there exists γ′ ∈ A(E) such that
γ′ � γ [FV(E)]. Note that the completeness requirement
demands the capability to compute a minimal complete
set of solutions. It is easy to see that if the higher-order
h-constraint solver is complete then it suffices to enumerate
minimal complete set of solutions of the final states.
Therefore, an important design issue is to guarantee that
minimal complete sets of solutions are easy to read off
for the final states. In the design of first-order solvers for
the Herbrand domain H [1], this is achieved by ensuring
that final states have empty components; thus the minimal
complete set of solutions of a final state consists of the
identity substitution {}. Unfortunately, things are much
more complicated in the higher-order case. This problem is
inevitably related to the problem of unifying flex λ-terms
(i.e., λ-terms t such that hd(t) ∈ FV(t)), which is in
general intractable. We adopt an approach similar to Huèt’s
procedure of higher-order pre-unification [9], [12]: we
refrain from solving equations between flex λ-terms as
much as possible. As a consequence, our final states will be
a class of states whose h-equations are only between flex
λ-terms. This guarantee that the final states are meaningful
and that it is relatively easy to read off some of their
solutions.

(an) annotation
〈{{s == t, E}} | K〉 ⇒{} 〈{{s ==H t, E}} | K ∪ {H}〉
where H is a fresh variable of a suitable type.

(sg) strict guess
〈{{λxk.a(sn) ==H t, E}} | K〉 ⇒σ

〈{{λxk.a(sn) ==Hσ t, E}} | Kσ〉
where a ∈ F ∪ {xk}, and σ = {H 7→ λxk.a(Hn(xk))}.

(d) decomposition
〈{{λxk.a(sn) ==u λxk.a(tn), E}} | K〉 ⇒σ

〈{{λxk.sn ==Hn λxk.tn, E}} | Kσ〉
where a ∈ F ∪ {xk}, and either

� u ≡ H and σ = {H 7→ λxk.a(Hn(xk))}, or
� u ≡ λxk.a(Hn(xk)) and σ = {}.

(i) imitation
〈{{λxk.X(sp) ==u λxk.f(tn), E}} | K〉 ⇒σ

〈{{λxk.Xn(sp) ==Hn λxk.tn, E}}σ | (K ∪ {X})σ〉
where X ∈ V , and either
� u ≡ H and σ = {X 7→ λyp.f(Xn(yp)),

H 7→ λxk.f(Hn(xk))}, or
� u ≡ λxk.f(Hn(xk)) and σ = {X 7→ λyp.f(Xn(yp))}.

(p) projection
〈{{λxk.X(sp) ==u t, E}} | K〉 ⇒σ

〈{{λxk.X(sp) ==u t, E}}σ | (K ∪ {X})σ〉
where X ∈ V , t is not flex, and σ = {X 7→ λyp.yi(Xn(yp))}.

(fs) flex same
〈{{λxk.X(yp) ==H λxk.X(y′p), E}} | K〉 ⇒σ

〈{{E}}σ | (K ∪ {X})σ〉
where X ∈ V , λxk.X(yp), and λxk.X(y′p) are patterns,
σ = {X 7→ λyp.Z(zq), H 7→ λxk.Z(zq)} with
{zq} = {yi | yi = y′i, 1 ≤ i ≤ n}.

(fd) flex different
〈{{λxk.X(yp) ==H λxk.Y (y′q), E}} | K〉 ⇒σ

〈{{E}}σ | (K ∪ {X,Y })σ〉
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where X,Y ∈ V , λxk.X(yp), and λxk.Y (y′q) are patterns, X 6= Y ,
σ = {X 7→ λyp.Z(zr), Y 7→ λy′q.Z(zr), H 7→ λxk.Z(zr)} with
{zr} = {yp} ∩ {y′q}.

(cf ) clash failure
〈{{λxk.a(sn) ==u λxk.a

′(tm), E}} | K〉 ⇒{} fail

if a, a′ ∈ Fc ∪ {xk} (where the notation Fc will be explained in
Section 4), and either (i) a 6= a′ or (ii) hd(u) 6∈ V ∪ {a, a′}.

(oc) occur check
〈{{λxk.s ==u λxk.X(yn), E}} | K〉 ⇒{} fail
if X ∈V , λxk.X(yn) is a flex pattern, hd(λxk.s) 6= X and
(λxk.s)|p = X(zn), where zn is a sequence of distinct bound
variables and p is a maximal safe position of λxk.s (i.e., hd((λxk.
s)|q) ∈ BV(λxk.s, q) ∪ Fc for all q ≤ p).

In order to illustrate the overall behavior of our
constraint solver Solverh, we consider the following
h-derivation involving the function symbols given
in the signature of the diff -example presented in
Section 1: 〈{{λx. sin(F (x)) == λx. sin(cos(x))}} | ∅〉
⇒(an),(d),(i)
{F 7→λx. cos(x)} 〈 ∅ | {λx. sin(cos(x)), λx. cos(x)}〉.

Therefore, we have computed the substitution
{F 7→ λx. cos(x)} as the only answer in
A(λx. sin(F (x)) == λx. sin(cos(x))).

The main properties of the h-constraint solver, soundness
and completeness, relate the solutions of a set of strict
equality h-constraints to the answers computed by our
system of transformation rules for higher-order unification.

Theorem 1 (Properties of the h-solver):
(1) Soundness: Let 〈E | ∅〉 ⇒∗σ P be a h-derivation. Then,

σγ ∈ Soln(E) whenever γ ∈ [[P ]].

(2) Completeness: Let E be a finite set of h-constraints.
Then, A(E) = {γ�FV(E) | γ ∈ Soln(E)}.

The proof can be found at http://www.fdi.ucm.

es/profesor/rdelvado/FCS2011/Proofs.pdf. As we
have commented, the generic scheme CFLP(D) presented
in [7] serves in this work as a logical and semantic frame-
work for lazy Constraint Functional Logic Programming
over a parametrically given constraint domain D. In order
to model the coordination of algebraic constraint domains in
the higher-order functional logic programming framework
[14], [15], we propose the construction of a higher-order
coordination domain C, as a special kind of hybrid domain
tailored to the cooperation of the algebraic domains R
and FD with the higher-order constraint domain h which
supplies lambda abstractions as data values and equalities
over lambda terms as constraints. Following the methodo-
logy of [1], we obtain a suitable theoretical framework
for the cooperation of algebraic constraint domains with
their respective solvers in higher-order functional and logic
programming using instances CFLP(C).

A coordination domain C is a kind of hybrid constraint
domain built from various component domains (as, e.g.,
H,h,R,FD, . . .) intended to cooperate. The construction

of coordination domains involves a so-called mediatorial
domain M, whose purpose is to supply mechanisms for
communication among the component domains via bridges,
projections, functional variable applications, interpolations,
and some more ad hoc operations. In this work, the com-
ponent domains will be chosen as the pure domains h,
R, and FD, equipped with constraint solvers, in such a
way that the communication provided by the mediatorial
domain will also benefit the solvers. In the remain of this
section we briefly explain the construction of this higher-
order coordination domain C, mathematically represented as
the sum C=M⊕h⊕FD⊕ R.

The construction of the coordination domain C relies on
a combined algebraic constraint domain FD ⊕ R, which
represents the amalgamated sum of the two joinable alge-
braic domains FD and R. In this case, the joinability condi-
tion asserts that the only primitive function symbol allowed
to belong to FD and R is the strict equality ==, where
the interpretation of this operator will behave as defined for
the higher-order constraint domain h. As a consequence, the
amalgamated sum h⊕FD⊕R is always possible, and give
rise to compound a higher-order algebraic domain that can
profit from the higher-order h-constraint solver. However,
in order to construct a more interesting sum for higher-
order algebraic cooperation tailored to the communication
among pure domains h, R, and FD, mediatorial domains
are needed.

The higher-order mediatorial domainM serves as a basis
for useful cooperation facilities among h, FD, and R,
including the projection of R-constraints to the FD-solver
(and vice versa) using bridges (see [1] for more details),
the specialization of h-constraints to become R- or FD-
constraints, the definition of algebraic constraints in R and
FD from the application of higher-order functional variables
in the domain h, the gathering of numeric data values to
construct a λ-abstraction in h which closely fits the data
points by means of interpolation techniques, and some other
special mechanisms designed for processing the mediatorial
constraints occurring in functional and logic computations.

4. Higher-Order Cooperative Program-
ming in CFLP(C)
We are now ready to present our computation framework
for higher-order functional and logic programming with
cooperation of algebraic constraint domains within the
CFLP(C) instance of the CFLP scheme. Building
upon the notion of higher-order coordination domain C
described in the previous section, we have designed a
formal operational semantics by means of a higher-order
cooperative constraint lazy narrowing calculus provided
by CFLP(C) which is sound and complete, extending
the formal properties presented in Section 3 for the
h-constraint solver. The calculus embodies computation
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rules for creating bridges, invoking constraint solvers, and
performing constraint projections as well as other more ad
hoc operations for communications among the higher-order
domain h and the algebraic constraint domains FD and
R. Moreover, the calculus uses higher-order demand-driven
narrowing with definitional trees for processing calls to
program defined functions, ensuring that function calls are
evaluated only as far as demanded by the resolution of the
C-constraints involved in the current computation. After
introducing CFLP(C)-programs and goals, we present the
goal-solving rules of the calculus and results concerning
the formal properties of our higher-order cooperative
computation model.

Definition 5 (CFLP(C)-Programs): A Constrained Pat-
tern Rewrite System over the higher-order coordination
domain C = M ⊕ h ⊕ FD ⊕ R (CPRS (C) for short)
is a finite set of C-constrained rewrite rules of the form
f(ln) = r ⇐ C, where

(a) f(ln) and r are total λ-terms of the same base type.
(b) f(ln) is a fully extended linear pattern.
(c) C is a (possibly empty) finite sequence of C-constraints.

More precisely, each C-constraints is exactly of one of
the following cases:

• h-constraint (Ch): equations s == t, with s, t ∈
T (F ,V).

• M-constraint (CM): bridge constraints X 
 Y ,
with X :: int and Y :: real .

• R-constraint (CR): arithmetic constraints over real
numbers.

• FD-constraint (CFD): arithmetic and finite do-
main constraints over integers.

A goal C for a given CPRS (C) is a set of C-constraints.
Each CPRS (C) R induces a partition of the underlying
signature F into Fd (defined function symbols) and Fc (data
constructors): Fd = {f ∈ F | ∃(f(ln) = r ⇐ C) ∈ R}
and Fc = F \ Fd. We say that R is a constructor-
based CPRS (C) if each conditional pattern rewrite
rule f(ln) = r ⇐ C satisfies the condition that
l1, . . . , ln ∈ T (Fc,V).

Our higher-order cooperative computation model works
by transforming initial goals C0 into final goals C, which
serve as computed answers from a set of values K.
We represent the computation as a CFLP(C)-derivation
〈C0 | ∅〉 ⇒∗σ 〈C | K〉, extending the notation previously
introduced by the h-constraint solver in Section 3. The
core of the computational model in CFLP(C) consists of
the Higher-Order Lazy Narrowing calculus with Definitional
Trees presented in [14] for higher-order (unconstrained)
functional logic programming. We can use this calculus
in a modular way, ignoring at this moment algebraic

domain cooperation and solver invocation, in order to deal
with calls to defined functions and to apply a program
rule. More precisely, if the goal includes a constraint Ch
(analogously, CR or CFD) of the form λxk.f(sn) == t
with f ∈ Fd, we can apply the rules of the calculus
to perform a demand-driven evaluation of the function
call, represented by λxk.〈f(sn), Tf 〉 � R (see [14] for
more details). Then, higher-order narrowing is applied in
an optimized way by using an associated higher-order
definitional tree Tf to ensure an optimal choice of needed
narrowing steps by means of the selection of a suitable
(possibly non-deterministic) conditional pattern rewrite
rule {π = ri ⇐ Ci}1≤i≤m of the CFLP(C)-program R.
Therefore, we transform Ch into a flattened form R == t.
The following three rules formalize these transformations.

(on) rigid narrowing
〈{{λxk.f(sn) == t, C}} | K〉 ⇒{}
〈{{λxk.〈f(sn), Tf 〉� R,R == t, C}} | K〉
where f ∈ Fd.

(ov) flex narrowing
〈{{λxk.X(sm) == t, C}} | K〉 ⇒σ

〈{{λxk.〈X(sm), Tf 〉� R,R == t, C}}σ | (K ∪ {X})σ〉
where σ = {X 7→ λym.f(Xn(ym))} with f ∈ Fd.

(ev) evaluation
〈{{λxk.〈π′, rule(π, {ri ⇐ Ci}1≤i≤m)〉� R,C}} | K〉 ⇒{}
〈{{λykq .sq == Rq, Ci, λxk.ri == R,C}} | K ∪ {Rq}〉
if 1 ≤ i ≤ m, matcher(λxk.π

′, λxk.π) = {Rq 7→ λykq .sq},
and {Rq} = FV(λxk.π).

The following two rules describe the possible transformation
in a goal of a finite subset CD of D-constraints (where
D is the pure domain h, M, FD or R) by a D-solver’s
invocation, including the detection of failure by the
corresponding solver.

(cs) constraint solving
〈{{CD, C}} | K〉 ⇒σ 〈{{C′D, C}}σ | K

′〉
if the D-constraint solver SolverD performs a successful D-derivation
〈CD | K〉 ⇒∗σ 〈C

′
D | K

′〉.

(sf ) solving failure
〈{{CD, C}} | K〉 ⇒σ fail

if the D-constraint solver SolverD performs a failure D-derivation
〈CD | K〉 ⇒∗σ fail.

The availability of the M-solver means that solving
mediatorial constraints contributes to the cooperative goal-
solving process, in addition to the role of bridges for guiding
projections. Projected constraints improve the performance
of the corresponding solver, enabling certain solvers to profit
from (the projected forms) of constraints originally intended
for other solvers. The last two rules take care of this idea of
domain cooperation, and are used to generate new bridges
and to compute projected constraints to be added to the goal.

(sb) set bridges
〈{{CD, CM, C}} | K〉 ⇒{} 〈{{CD, CM, C′M, C}} | K〉
where D is the algebraic constraint domain R (resp. FD) and D′ the
domain FD (resp. R), and bridgesD→D

′
(CD, CM) = C′M.
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(pp) propagate projections
〈{{CD, CM, C}} | K〉 ⇒{} 〈{{CD, C′D′ , CM, C}} | K〉
where D is the algebraic constraint domain R (resp. FD) and D′ the
domain FD (resp. R), and projD→D

′
(CD, CM) = C′D′ .

The concrete example given in Section 2 illustrate the
behavior of this goal-solving calculus in CFLP(C). We
conclude this section with theoretical results now ensuring
soundness and completeness for CFLP(C)-derivations. Both
properties are presented w.r.t. the declarative semantics of
the instance CFLP(C), provided by the generic CFLP(D)
scheme [7] and the semantic framework for higher-order
functional logic programs on λ-abstractions [14], [15]. For
instance, the set of solutions Soln(C) of a goal C and the
meaning [[P ]] of a state P now refer to the existence of
logical proofs in the corresponding D-instance of a generic
Constrained ReWriting Logic, whose inference rules can be
found in [7], [15] for each D-constraint CD in C, where D
is R, FD, M, or h.

Theorem 2 (Properties of the calculus):
(1) Soundness: Let 〈C | ∅〉 ⇒∗σ P be a CFLP(C)-

derivation. Then, σγ ∈ Soln(C) whenever γ ∈ [[P ]].

(2) Completeness: Let C be an initial goal given
by a finite set of C-constraints, and A(C)
= {σγ�FV(C) | 〈C | ∅〉 ⇒∗σ P is a finite
CFLP(C)-derivation with γ ∈ [[P ]]}. Then,
A(C) = {γ�FV(C) | γ ∈ Soln(C)}.

Thanks to the soundness and completeness results modularly
presented in Section 3 for the new constraint domain h and
the higher-order narrowing calculus in [14] for declarative
programming in CFLP(h), THEOREM 2 can be proved in
the cooperative setting of CFLP(C).

5. Conclusions
In this work we have presented a suitable use of co-
operative algebraic constraint domains and solvers in a
higher-order functional and logic programming framework
on λ-abstractions. We have investigated foundational issues
concerning a sound and complete computational framework
for the cooperation of algebraic constraint domains. For
this purpose, we have designed an improved higher-order
instance CFLP(C) of an already existing generic scheme
[7] for constraint functional logic programming, now over a
higher-order coordination domain C.

In addition to already mentioned works, an important
related work in this area is the CFLP scheme developed by
Mircea Marin in his PhD Thesis [8]. This work introduces
CFLP(D,S,L), a family of languages parameterized by
a constraint domain D, a strategy S which defines the
cooperation of several constraint solvers over D, and a
constraint lazy narrowing calculus L for solving constraints
involving functions defined by user given constrained rewrite

rules. The main difference with respect to our approach is the
lack of declarative (model-theoretic and fixpoint) semantics
provided by the rewriting logic underlying our CFLP(C)
instance (see [15] for more details). Another difference is
the intended application domain. The instance of CFLP
developed by Marin combines four solvers over a constraint
domain for algebraic symbolic computation.

In the future, we would like to improve some of the
limitations of our current approach to higher-order algebraic
domain cooperation, concerning both the formal foundations
and the implemented system. For instance, the computational
model should be generalized to allow for an arbitrary higher-
order coordination domain C in place of the concrete choice
M⊕ h ⊕ R ⊕ FD, and the implemented prototype should
be properly developed, maintained and improved in various
ways. In particular, the experimentation with benchmarks
and application cases should be further developed.
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Abstract— This paper discusses the expressive power of a
graph rewriting model of concurrent processes with higher-
order communication. As we reported before, it is difficult to
represent the scopes of names using models based on process
algebra. Then we presented a model of concurrent systems
based on graph rewriting. The model makes it possible to
represent the scopes of names precisely. We defined an equiv-
alence relation called scope equivalence. Two systems are
scope equivalent not only in their behavior but in extrusion of
scopes of names also. This paper presents a result that there
is no compilation mapping from the higher-order model into
the first-order model that is homomorphic wrt input context
and full abstract wrt the scope equivalence. As reported,
it is possible to compile LHOπ processes into first-order
π-calculus processes preserving a behavioral equivalence.
In that sense, the first-order calculus is as expressive as
the higher-order calculus when we focus on the behavioral
equivalence. On the other hand, this paper shows that the
higher-order model is strictly more expressive than the first-
order model if we focus on scope equivalence.

Keywords: concurrency, graph rewriting, higher-order communi-
cation

1. Introduction
LHOπ (Local Higher-Order π-calculus) [11] is a formal

model of concurrent systems with higher-order communica-
tion. It is a subcalculus of higher-order π-calculus[10] with
asynchronous communication capability. The calculus has the
expressive power to represent practically and/or theoretically
interesting examples that include program code transfer.

On the other hand, as we reported in [4], [5], [6], it is
difficult to represent the scopes of names of communication
channels precisely using models based on process algebra
such as LHOπ . We presented a model that is based on graph
rewriting instead of process algebra as a solution for the
problem on representation of scopes of names [4].

Our model of concurrent systems is based on graph
rewriting system such as [1], [2], [3], [12]. We represent
a concurrent program consists of a number of processes
(and messages on the way) using a bipartite directed
acyclic graph. A bipartite graph is a graph whose nodes are

decomposed into two disjoint sets: source nodes and sink
nodes such that no two graph nodes within the same set
are adjacent. Every edge is directed from a source node to
a sink node. The system three processes b1, b2 and b3 and
two names ai(i = 1, 2) shared by bi and bi+1 is represented
with a graph as Fig.1.

Fig. 1. A Bipartite Directed Acyclic Graph

Processes and messages on the way are represented with
source nodes. We call source nodes as behaviors. In Fig. 1.,
b1, b2 and b3 are behaviors.

We define the operational semantics of the model as a set
of rules to rewrite graphs. The intuitive description of the
rewriting rules is presented in [5], [7], [8].

We defined an equivalence relation of processes called
“scope equivalence” on the model. Intuitively, two systems
are scope equivalent not only in their behavior but in
extrusions of scopes of names. We showed the congruence
results of the scope equivalence for the first-order case[6].
We extended the the model for systems with higher-order
communication[5].

This paper discusses the expressive power of the higher-
order model. As [11] showed, it is possible to compile LHOπ

processes into first-order processes preserving a behavioral
equivalence. Namely there exists a compilation mapping
from LHOπ processes into first-order processes that is full
abstract wrt a behavioral equivalence and homomorphic
wrt first-order context. Namely there exists a compilation
mapping [[_]] such that for any higher-order processes P and
Q, P ≈ Q iff [[P ]] ≈ [[Q]] and for any process P and any
first order context R[_], [[R[P ]]] = [[R]][[[P ]]]. In that sense,
the first-order calculus is as expressive as the higher-order
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calculus when we focus on a behavioral equivalence.

This paper presents a result that there is no compilation
mapping that is full abstract wrt the scope equivalence and
homomorphic wrt input context. Namely, there exist two
programs P and Q which are scope equivalent and for any
mapping [[_]] that is homomorphic wrt input-context, their
images [[P ]] are [[Q]] not scope equivalent or for some context
R[_], R[P ] and R[Q] are not scope equivalent but [[R[P ]]] and
[[R[Q]]] are scope equivalent. Thus the higher-order model is
strictly more expressive than the first-order model if we focus
on scope equivalence.

2. Formal Definitions
2.1 Programs

First, a countably-infinite set of names is presupposed.

Definition 1 (program, behavior) Programs and behaviors
are defined recursively as follows.
(i) Let a1, . . . , ak are distinct names. A program is a bipartite
directed acyclic graph with source nodes b1, . . . , bm and sink
nodes a1, . . . , ak such that

² Each source node bi(1 ≤ i ≤ m) is a behavior. Dupli-
cated occurrences of the same behavior are possible.

² Each sink node is a name aj(1 ≤ j ≤ k). All aj’s are
distinct.

² Each edge is directed from a source node to a sink node.
Namely, an edge is an ordered pair (bi, aj) of a source
node and a name. For any source node bi and a name
aj there is at most one edge from bi to ai.

For a program P , we denote the multiset of all source
nodes of P as src(P ), the set of all sink nodes as snk(P )
and the set of all edges as edge(P ). Note that the empty
graph 0 such that src(0) = snk(0) = edge(0) = ∅ is a
program.

(ii) A behavior is an application, a message or a node consists
of the epidermis and the content defined as follows. In the
following of this definition, we assume that any element of
snk(P ) nor x does not occur in anywhere else in the program.

1) A node labeled with a tuple of a name n (called the
subject of the message) and an object o is a message
and denoted as n〈o〉.

2) A tuple of a variable x and a program P is an
abstraction and denoted as (x)P . An object is a name
or an abstraction.

3) A node labeled with a tuple of an abstraction and an
object is an application. We denote an application as
A〈o〉 where A is an abstraction and o is an object.

4) A node whose epidermis is labeled with “!” and the
content is a program P is a replication, and denoted
as !P .

5) An input prefix is a node (denoted as a(x).P ) that the
epidermis is labeled with a tuple of a name a and a
variable x and the content is a program P .

6) A τ -prefix is a node (denoted as τ.P ) that the epidermis
is labeled with a silent action τ and the content is a
program P .

A program P is first-order if any abstraction never occurs
anywhere in P .

Definition 2 (local program) A program P is local if for
any input prefix c(x).Q and any abstraction (x)Q occurring
in P , x does not occur in the epidermis of any input prefix
in Q. An abstraction (x)P is local if P is local. A local
object is a local abstraction or a name.

Though the locality condition affects the expressive
power of the model, we do not consider that this restriction
significantly damages the expressive power. For the detail,
see [6], [7].

Definition 3 (free/bound name)
1) For a behavior or an object p, the set of free names

of p : fn(p) is defined as : fn(0) = ∅, fn(a) = {a}
for a name a, fn(a〈o〉) = fn(o) ∪ {a}, fn((x)P ) =
fn(P ) \ {x}, fn(!P ) = fn(P ), fn(τ.P ) = fn(P ), m
fn(a(x).P ) = (fn(P ) \ {x}) ∪ {a} and

2) fn(o1〈o2〉) = fn(o1) ∪ fn(o2).
3) For a program P where src(P ) = {b1, . . . , bm},

fn(P ) =
∪

i fn(bi) \ snk(P ).
The set of bound names of P (denoted as bn(P )) is the

set of all names that occur in P but not in fn(P ) (including
elements of snk(P ) even if they do not occur in any element
of src(P )).

The notion of free name in our model is a little bit
different from that of process algebras such as π-calculus.
For example, a free name x occurs in Q is used as a
variable in (x)Q or a(x).Q. A channel name that is used
for communication with the environments is an element of
snk, so it is not a free name.

Definition 4 (normal program) A program P is normal
if for any b ∈ src(P ) and for any n ∈ fn(b) ∩ snk(P ),
(b, n) ∈ edge(P ) and any program occurs in b is normal.

In the rest of this paper we consider normal programs only.

Definition 5 (composition) Let P and Q be
programs such that src(P ) ∩ src(Q) = ∅ and
fn(P ) ∩ snk(Q) = fn(Q) ∩ snk(P ) = ∅. The
composition P‖Q of P and Q is the program such that
src(P‖Q) = src(P )∪ src(Q), snk(P‖Q) = snk(P )∪ snk(Q)
and edge(P‖Q) = edge(P ) ∪ edge(Q).
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Intuitively, P‖Q is the parallel composition of P and Q.
Note that we do not assume snk(P )∩snk(Q) = ∅. Obviously
P‖Q = Q‖P and ((P‖Q)‖R) = (P‖(Q‖R)) for any P,Q
and R from the definition. The empty graph 0 is the unit
of “‖”. Note that src(P ) ∪ src(Q) and edge(P ) ∪ edge(Q)
denote the multiset unions while snk(P ) ∪ snk(Q) denotes
the set union. It is easy to show that for normal and local
programs P and Q, P‖Q is normal and local.

Definition 6 (N -closure) For a normal program P
and a set of names N such that N ∩ bn(P ) = ∅,
the N -closure νN(P ) is the program such that
src(νN(P )) = src(P ), snk(νN(P )) = snk(P ) ∪ N
and edge(νN(P )) = edge(P ) ∪ {(b, n)|b ∈ src(P ), n ∈ N}.

We denote νN1(νN2(P ))) as νN1νN2(P ) for a program
P and sets of names N1 and N2.

Definition 7 (deleting a behavior) For a normal program
P and b ∈ src(P ), P \ b is a program that is obtained by
deleting a node b and edges that are connected with b from
P . Namely, src(P \ b) = src(P ) \ {b}, snk(P \ b) = snk(P )
and edge(P \ b) = edge(P ) \ {(b, n)|(b, n) ∈ edge(P )}.

Note that src(P ) \ {b} and edge(P ) \ {(b, n)|(b, n) ∈
edge(P )} mean the multiset subtractions.

Definition 8 (context) Let P be a program and b ∈ src(P )
where b is an input prefix, a τ -prefix or a replication and the
content of b is 0. A simple first-order context is the graph P [ ]
such that the contents 0 of b is replaced with a hole “[ ]”.
We call a simple context as a τ -context, an input context or
a replication context if the hole is the contents of a τ -prefix,
of an input prefix or of a replication respectively.

Let P be a program such that b ∈ src(P ) and b is
an application (x)0〈Q〉. An application context P [ ] is the
graph obtained by replacing the behavior b with (x)[ ]〈Q〉. A
simple context is a simple first-order context or an application
context.

A context is a simple context or the graph P [Q[_]] that is
obtained by replacing the hole of P [ ] with Q[ ] for a simple
context P [ ] and a context Q[ ] (with some renaming of the
names occur in Q if necessary).

For a context P [ ] and a program Q, P [Q] is the program
obtained by replacing the hole in P [ ] by Q (with some
renaming of the names occur in Q if necessary).

2.2 Operational Semantics
Definition 9 (substitution) Let p be a behavior, an object
or a program and o be an object. For a name a, we assume
that a ∈ fn(p). The mapping [o/a] defined as follows is a
substitution.

² for a name c, c[o/a] =
{

o if c = a
c otherwise

² for behaviors,
– ((x)P )[o/a] = (x)(P [o/a]),
– (o1〈o2〉)[o/a] = o1[o/a]〈o2[o/a]〉,
– (!P )[o/a] =!(P [o/a]),
– (c(x).P )[o/a] = c(x).(P [o/a]) and
– (τ.P )[o/a] = τ.(P [o/a])

² and for a program P and a ∈ fn(P ), P [o/a] = P ′

where P ′ is a program such that
– src(P ′) = {b[o/a]|b ∈ src(P )},
– snk(P ′) = snk(P ) and
– edge(P ′) = {(b[o/a], n)|(b, n) ∈ edge(P )}.

For the cases of abstraction and input prefix, note that we
can assume x 6= a because a ∈ fn((x)P ) or ∈ fn(c(x).P )
without losing generality. (We can rename x if necessary.)

Definition 10 Let p be a local program or a local object. A
substitution [a/x] is acceptable for p if for any input prefix
c(y).Q occurring in p, x 6= c.

In the rest of this paper, we consider acceptable
substitutions only for a program or an abstraction. For the
detail, see [7].

Definition 11 (action) For a name a and an object o, an input
action is a tuple a(o) and an output action is a tuple a〈o〉. An
action is a silent action τ , an output action or an input action.

Definition 12 (labeled transition) For an action α, α→ is the
least binary relation on normal programs that satisfies the
following rules.

input
If b ∈ src(P ) and b = a(x).Q, then

P
a(o)→ (P \ b)‖

ν{n|(b, n) ∈ edge(P )}νM(Q[o/x])

for an object o and a set of names M such that
fn(o) ∩ snk(P ) ⊂ M ⊂ fn(o) \ fn(P ).

β-conversion
If b ∈ src(P ) and b = (y)Q〈o〉, then

P
τ→(P \ b)‖

ν{n|(b, n) ∈ edge(P )}(Q[o/y]).

τ -action
If b ∈ src(P ) and b = τ.Q, then

P
τ→ (P \ b)‖ν{n|(b, n) ∈ edge(P )}(Q).

replication 1
P

α→ P ′ if !Q = b ∈ src(P ), and P‖ν{n|(b, n) ∈
edge(P )}Q′ α→ P ′, where Q′ is a program obtained
from Q by renaming all names in snk(R) to distinct
fresh names that do not occur elsewhere in P
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nor programs executed in parallel with P , for all
R’s where each R is a program that occur in Q
(including Q itself).

replication 2
P

τ→ P ′ if !Q = b ∈ src(P ) and
P‖ν{n|(b, n) ∈ edge(P )}(Q′

1‖Q′
2)

τ→ P ′, where
each Q′

i(i = 1, 2) is a program obtained from
Q by renaming all names in snk(R) to distinct
fresh names that do not occur elsewhere in P
nor programs executed in parallel with P , for all
R’s where each R is a program that occur in Q
(including Q itself).

output
If b ∈ src(P ), b = a〈v〉 then, P

a〈v〉→ P \ b.
communication

If b1, b2 ∈ src(P ), b1 = a〈o〉, b2 = a(x).Q then,

P
τ→ ((P \ b1) \ b2)‖ν{n|(b2, n) ∈ edge(P )}

ν(fn(o) ∩ snk(P ))(Q[o/x]).

The set of rules for a first-order program P is defined
as the subset of the above rules that the object that occurs
in input, output or communication rule is a name and
β-conversion rule is eliminated.

We can show that for any programs P, P ′ and any action
α such that P

α→ P ′, if P is local then P ′ is local and if P
is normal then P ′ is normal.

Weak bisimulation equivalence is defined as usual also.
We denote Q

α̂⇒ Q′ if and only if Q
τ→ ¢ ¢ ¢ τ→ α→ τ→ ¢ ¢ ¢ τ→ Q′

or α = τ and Q = Q′.

Definition 13 (weak bisimulation equivalence) A binary
relation R on normal programs is a weak bisimulation
if: for any (P,Q) ∈ R (or (Q,P ) ∈ R), for any α and
P ′ if P

α→ P ′ then there exists Q′ such that Q
α̂⇒ Q′

and (P ′, Q′) ∈ R ((Q′, P ′) ∈ R respectively). Weak
bisimulation equivalence ≈ is defined as follows: P ≈ Q iff
(P,Q) ∈ R for some weak bisimulation R.

The following proposition is straightforward from the
definition.

Proposition 1 If src(P1) = src(P2) then P1 ≈ P2.

3. Scope Equivalence
Definition 14 For a program P and a name n such that n,
P/n is the program defined as follows:

src(P/n) = {b|b ∈ src(P ), (b, n) ∈ edge(P )},

snk(P/n) = snk(P ) \ {n}

and

edge(P/n) = {(b, a)|b ∈ src(P/n), a ∈ snk(P/n),
(b, a) ∈ edge(P )}.

Intuitively P/n is the subsystem of P that consists of
behaviors which are in the scope of n. Let P be an example
of Fig. 1, P/a1 is the subgraph of Fig. 1. obtained by
removing the node of b3 (and the edge from b3 to a2) and
a1 (and the edges to a1) as shown in Fig. 2.

Fig 2. The graph P/a1

Definition 15 (scope bisimulation) A binary relation R on
programs is scope bisimulation if for any (P,Q) ∈ R,

1) P = 0 iff Q = 0,
2) P/n is an empty graph iff Q/n is an empty for any

n ∈ snk(P ) ∩ snk(Q),
3) P/n ≈ Q/n for any n ∈ snk(P ) ∩ snk(Q) and
4) R is a weak bisimulation.
It is easy to show that the union of all scope bisimulations

is a scope bisimulation and it is the unique largest scope
bisimulation.

Definition 16 (scope equivalence) The largest scope
bisimulation is scope equivalence and denoted as ...∼.

It is easy to show from the definition that ...∼ is an
equivalence relation. The motivation and the background of
the definition of ...∼ is reported in [4], [6], [7]. The following
results for first-order programs can be shown as [6].

Proposition 2 If P and Q are first-order and P
...∼ Q then

1) P‖R ...∼ Q‖R for any first-order program R,
2) R[P ] ...∼ R[Q] for any first-order τ -context R[ ],
3) R[P ] ...∼ R[Q] for any first-order replication context

R[ ] and
4) R[P ] ...∼ R[Q] for any first-order input context R[ ].
From Proposition 2, we have the following result.

Theorem 1 For any P and Q such that P
...∼ Q and for any

first-order context R[ ], R[P ] ...∼ R[Q].

4. The Higher-Order Model and The
First-Order Model

We can show that both of strong bisimulation equivalence
and weak bisimulation equivalence are congruent wrt
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input prefix context and application context also[8], [9].
Unfortunately, it is not the case for strong scope equivalence
for higher-order programs[7]. We can also show that
“...∼” is not congruent wrt input context nor application
context. The essential problem is that “...∼” is not congruent
wrt substitutions of abstractions as the following counter
example shows.

Example 1 (i) Let P be a graph such that
src(P ) = {b1, b2}, edge(P ) = {(b1, n1), (b2, n2)}
and snk(P ) = {n1, n2} and Q be a graph such
that src(Q) = {b}, edge(Q) = {(b, n1), (b, n2)} and
snk(Q) = {n1, n2} where both of b and bi(i = 1, 2) are
!x〈a〉 as Fig. 3. Note that nj(j = 1, 2) does not occur in b
nor bi(i = 1, 2).

Lemma 1 Let P and Q be as Example 1 (i). Then we have
P

...∼ Q.
proof: (outline) Definition 15, 1 is obvious as neither P nor
Q is an empty graph. For nj(j = 1, 2), both of P/nj and
Q/nj are not ∅, so Definition 15, 2. holds. For 3. P/nj is
the graph such that src(P/nj) = {bj} and Q/nj is the graph
such that src(Q/nj) = {b}. As bi = b =!x〈a〉, src(P/nj) =
src(Q/nj). From Proposition 1, P/nj ≈ Q/nj . For 3., it
is easy to show that the relation {(P,Q)} is a bisimulation

because P
x〈a〉→ P is the only transition for P and Q

x〈a〉→ Q
is the only transition for Q respectively.

Fig. 3. Graph P and Q

Example 1 (ii) Let P and Q be as Example
1(i). Now, let o be an abstraction : (y)c(u).d(v).R
where R is a program. P [o/x] is the graph such
that src(P ) = {b1[o/x], b2[o/x]}, snk(P ) = {n1, n2}
and edge(P ) = {(b1[o/x], n1), (b2[o/x], n2)} as the
top of Fig. 4 and Q[o/x] (Fig. 5. top) is a graph
such that src(Q) = {b[o/x]}, snk(Q) = {n1, n2} and
edge(Q) = {(b[o/x], n1), (b[o/x], n2)} where b[o/x] and
bi[o/x](i = 1, 2) are !(y)c(u).d(v).R〈a〉.

Note that the object o in the counter example is an
abstraction. This happens only in the case of higher-order
substitution. In fact, scope equivalence is congruent wrt
substitution for the first-order case[6].

Fig. 4. Transition of P [o/x]

Fig. 5. Transition of Q[o/x]

Lemma 2 Let P [o/x] and Q[o/x] be as Example 1 (ii).
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Then, P [o/x] 6...∼ Q[o/x].
proof: See Appendix.

From Lemma 1 and 2, we have the following proposition.

Proposition 3 There exist P and Q such that P
...∼ Q and

P [o/x] 6...∼ Q[o/x] for some object o.

Proposition 4 There exist P and Q such that P
...∼ Q but

I[P ] 6...∼ I[Q] for some input context I[ ].
proof: (outline) Let P and Q be as Example 1 (i) and I[_]
be a input context with a behavior m(x).[_]. Consider the

case of I[P ]
m(o)→ and I[Q]

m(o)→ for o of Example 1 (ii).

Proposition 5 There exist P and Q such that P
...∼ Q but

A[P ] 6...∼ A[Q] for some application context A[ ].
proof: (outline) Let P,Q and o be as Example 1 (ii)
and A[_] be an application context with a behavior (x)[_]〈o〉.

We denote a mapping from higher-order graphs into
first-order graphs as [[_]].

Definition 17 (full abstractness) Let R be a binary relation
on the set of programs. A mapping [[_]] from higher-order
programs into first-order programs is full abstract wrt R
if for any higher-order programs P and Q, [[P ]] R [[Q]] iff
P R Q.

Definition 18 (homomorphism) A mapping [[_]] is
homomorphic wrt input context if for any input-context R[_]
and for any higher-order program P , [[R[P ]]] = [[R]][[[P ]]].

Theorem 2 There is no mapping from higher-order programs
into first-order programs which is full abstract wrt ...∼ and
homomorphic wrt input context.
proof(outline) Assume that there exists a mapping [[_]] that is
homomorphic wrt input context. Let P and Q be programs
as Example 1. From lemma 1, P

...∼ Q. Now we assume
[[P ]] ...∼ [[Q]] otherwise [[_]] is not full abstract.

Let R[_] be an input context m(x).[_] as in the proof of
Proposition 4. Then [[R[P ]]] = [[R]][[[P ]]] and [[R[Q]]] =
[[R]][[[Q]]] because [[_]] is homomorphic wrt input context.
Now [[R]][_] is a first-order context and [[P ]] and both of
[[Q]] are first-order programs. As ...∼ is a congruent relation
wrt for any first-order context from Theorem 1 and we
assumed [[P ]] ...∼ [[Q]], then [[R]][[[P ]]] ...∼ [[R]][[[Q]]]. Namely
[[R[P ]]] ...∼ [[R[Q]]].

On the other hand, from the proof of Proposition 4,
R[P ] 6...∼ R[Q]. Thus [[_]] is not full abstract wrt ...∼.

We can define the notion of homomorphism wrt
application context similarly. Then we can also show that
there is no compilation mapping that is full abstract wrt ...∼
and homomorphic wrt application context by the similar

argument with Proposition 5.

5. Conclusion
This paper presented the result that any compilation map-

ping from the higher-order model into the first-order model
that is homomorphic wrt input context and full abstract wrt
scope equivalence does not exist. We will study about this
problem from the following approaches as future work.

The first approach is revision of the definition of scope
equivalence. The definition of “...∼” is based on the idea that
two process are equivalent if the components that know the
name are equivalent for each name. This idea is implemented
as the Definition 15, 3. One alternative idea for the third
condition is P/N ≈ Q/N for each subset N of common
private names instead of P/n ≈ Q/n. P and Q in Example 1
are not equivalent based on this definition. We should study if
this alternative definition works well or not as an equivalence
of programs.

The second one is reconsideration of modeling of higher-
order communication. In our model, a tuple of a process
variable that receive higher-order and an argument term has
the same form as an output message. This idea is from
LHOπ[11]. One of the main reason why LHOπ adopts this
approach is type theoretical convenience. As we saw in
Lemma 2, this identification of output messages and process
variables arises the problem on the congruence of the scope
equivalence. We should reconsider about the modeling of
higher-order communication.
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[12] V. Sassone and P. Sobociński, Reactive systems over cospans, Proc. of
LICS ’05 IEEE, pp. 311-320, (2005)

Appendix: Proof of lemma 2 (outline)
We show that for any relation R, if (P [o/x], Q[o/x]) ∈

R, then it is not a scope bisimulation. If R is a scope
bisimulation, R is a weak bisimulation from Definition
15. Then for any P [o/x]′ such that P [o/x] α→ P [o/x]′,
there exists Q[o/x]′ such that Q[o/x] α̂⇒ Q[o/x]′ and
(P [o/x]′, Q[o/x]′) ∈ R.

From replication 1 and β-conversion, we have P [o/x]′

for α = τ such that: src(P [o/x]′) = {b′} ∪ src(P [o/x])
where b′ = c(u).d(v).R, snk(P [o/x]′) = snk(P [o/x]) and
edge(P [o/x]′) = edge(P [o/x] ∪ {(b′, n1)} (Fig. 4. middle).

On the other hand, any Q[o/x]′ such that Q[o/x] τ̂⇒
Q[o/x]′ has a form such that src(Q[o/x]′) = {b′1, . . . b′h} ∪
src(Q[o/x]) for some h(0 ≤ h) , b′k = c(u).d(v).R for 1 ≤
k ≤ h, snk(Q[o/x]′) = snk(Q[o/x]) and edge(Q[o/x]′) =
edge(Q[o/x])∪

∪
1≤k≤h{(b′k, n1), (b′k, n2)} by h applications

of replication 1 and β-conversion. As the following discus-
sion is similar for any h, we consider the case of h = 1 (Fig.
5. middle).

If R is a scope bisimulation, there exists Q[o/x]” such

that Q[o/x]′
ĉ(m)⇒ Q[o/x]” and (P [o/x]”, Q[o/x]”) ∈ R

for any P [o/x]′
c(m)→ P [o/x]”. Let P [o/x]” be a graph

such that: src(P [o/x]”) = {b”} ∪ src(P [o/x]′) where
b” = d(v).R[m/u], snk(P [o/x]”) = snk(P [o/x]′) and
edge(P [o/x]”) = edge(P [o/x]) ∪ {(b”, n1)} obtained by
applying input rule (Fig. 4. bottom).

The only transition of Q[o/x]′ that has the form of

Q[o/x]′
ĉ(m)⇒ Q[o/x]” makes src(Q[o/x]”) = {b”} ∪

src(Q[o/x]′) where b” = d(v).R[m/u], snk(Q[o/x]”) =
snk(Q[o/x]) and edge(Q[o/x]”) = edge(Q[o/x]′) ∪
{(b”, n1), (b”, n2)} (Fig. 5. bottom. It denotes the case of
c(m)→ without any τ -transitions.).

Then (P [o/x]”, Q[o/x]”) is in R if R is a bisimulation.
However, (P [o/x]”, Q[o/x]”) does not satisfy the condition
3. of Definition 15 because P [o/x]”/n2 6≈ Q[o/x]”/n2

(Fig. 6). Even if Q[o/x]′ makes any number of τ -transitions,
it does not make difference. Thus R cannot be a scope
bisimulation.

Fig. 6 P [o/x]”/n2 and Q[o/x]”/n2
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Abstract - Real world objects can be classified into two kinds 

according to their behavior (1)autonomous objects  

(2)dependent objects.  An object can behave both ways as 

well. Dependent objects are those objects which are of no use 

unless exploited by an external entity. Once they are created 

or instantiated, they keep waiting for the driver class to invoke 

theirs functions for their utilization. Example of dependent 

objects include a car, a calculator, a word processing 

application etc. Autonomous Objects are those objects which 

when created or instantiate, then they know by their self what 

they are supposed to do and then they readily start performing 

their task (set of methods) with possibly no external 

interaction or invocation. We emphasize that autonomy of 

object intuitively needs to have these two properties (1)Object 

runs its method(s) itself as soon as it is created. (2)More than 

one copy of object can be running simultaneously. Example of 

autonomous objects include a clock, a car set at cruise 

control, an Operating system kernel that always keeps active, 

a virus scan utility that always keeps active, Graphical  

Actors(simulation of humans) in game programming, an 

automatic robot, etc. We have established object calculus of 

autonomous object definition & object creation which 

incorporates the intuitive properties of autonomous objects as 

well. Our proposed calculus is based on the same structures 

as that of Abadi & Cardelli [1]. 

Keywords: Object Oriented Programming, Autonomy, 

Concurrency, Multithreading, Object Calculus. 

 

1 Introduction 

  Contemporary object oriented programming languages 

do not yet explicitly provide any feature of “autonomy” for 

objects. We propose that an object in Object Oriented 

Programming can be defined as autonomous object. Adding 

the feature of autonomy to object has its own intuitive effects 

and introduces new abstraction to some programming 

languages contemporary features, while reducing the 

complexity of those features. Autonomous objects provide 

much more intuitive mechanism of programming for any 

autonomous computing e.g autonomous vehicles and robots, 

Graphical Actors(simulation of humans) in game 

programming, a virus scan utility that remains active all the 

time etc. In order to mechanize autonomous behavior as 

natural and intuitive, we introduce two components: (1) A 

compulsory run() method that will get invoked by default to 

start the function of autonomous object as soon as object is 

created. (2)When an autonomous object is created, it is by 

default created in its own separate and new thread. All our 

code examples in Figures are analogous to „java‟ syntax. 

Autonomy of objects also provide an abstraction to an 

important contemporary programming language feature, 

making Object oriented programming closer to natural way of 

programming and hiding much of the complexities of that 

language features. We propose that following feature gets 

new abstraction by virtue of the notion of “autonomy”. 

 Concurrency (Multithreading) 

 As we argue that Autonomous object provide 

concurrency which is more intuitive and close to the 

concurrency of real world objects because with autonomous 

object we do not need to explicitly care about threads just like 

real world objects. 

1.1 Autonomous Object Definition 

 We introduce a special method “run()” as a mandatory 

method of object definition for the object which is supposed 

to behave like autonomous object. This method is supposed to 

be invoked by constructor method of autonomous object by 

default. The purpose of “run()” method is to define in its body 

that what operations this autonomous object must start 

performing right after its creation. We give structure of 

autonomous object definition code below. 

 

 

 

 

 

 

 

 

Fig. (A) 

1.2 Autonomous Object Creation 

 We introduce the keyword “auto” to be used in 

conjunction with autonomous object creation. This “auto” 

keyword will force the object created as autonomous objects. 

Whenever an object is created with “auto” keyword, the 

compiler expects that the object must have special method 

“run()” defined in its definition. An attempt to create 

autonomous object using “auto” keyword will generate 

compile time error if the object definition doesn‟t have 

“run()” method defined. We give autonomous object creation 

code below. 

 This research is supported by Higher Education Commission, Pakistan 
(www.hec.gov.pk) and NSERC (Natural Science and Engineering Research 

Council of Canada) grant number 41630. 

Class auto_class{ 

….. 

Public void run() 

{….. } 

….. 

public   auto_class ()  

{…..}//constructor is optional as 

usual 

….. 

} 
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Fig (B) 

 

 If the object definition have “run()” method defined 

but the object is not created with “auto” keyword then there 

will be no compiler error. Object creation without “auto” 

keyword will lead to usual object i.e non-autonomous or 

dependent object creation. The object created without “auto” 

keyword will not invoke the “run()” method, if there is any. 

 

2 Concurrency by Virtue of Autonomy 

 Although the feature of concurrency is already 

provided by contemporary programming languages but this 

feature is provided by introducing additional and distinct 

entity rather than a built-in feature of object which makes it 

language based feature rather than a built counterpart of 

object. Those distinct entity (e.g thread) are then applied on 

objects and this is how objects can exploit the feature of 

concurrency so far. Although concurrency with the help of 

distinct entity like thread also gives a certain level of 

autonomy to Objects but as we propose autonomy as a built in 

feature of objects which cause concurrency to be a rather 

naturally associated and inherent to autonomous objects. 

Consequently the concurrency feature of programming 

languages will be under the hood of autonomous objects. 

Once we have autonomous objects, these independent 

autonomous objects will be well suited to inherently have 

concurrency capabilities.  

Hence , notion of autonomous object provide new 

abstraction to thread such that each new instance of 

autonomous object will be created in its new and separate 

thread. This notion helps us to get rid of explicitly thinking in 

terms of thread and creating threads on our own. All we need 

to think about is Autonomous object. We won‟t need to know 

new language based ways (e.g thread libraries) and constructs 

or syntax for implementing and exploiting concurrency as we 

do by now in contemporary programming languages. With 

autonomous object, creating new thread and its handling 

won‟t be the responsibility of programmer any more. 

This new abstraction will also be conducive in hiding 

many contemporary issues of multithreading (explicitly 

creating and destroying thread, races between the threads, 

deadlocks etc). It means multithreading will then become an 

inherent part of autonomous objects. All the principles and 

practices of concurrent programming (such as races between 

the threads, locks, deadlocks etc) will remain intact. The only 

differences will come up is that the thread management will 

be taken care of by autonomous object. Hence, the difference 

will appear in the view point by achieving higher abstraction 

to concurrent programming. 

When an autonomous object is created, it is by default created 

in its own separate and new thread.  The keyword “auto” 

instructs the compiler that the objects created will run in 

separate thread. Hence, this reserve word causes the compiler 

to create a new thread by default so that this object is run on 

top of that thread.  

The object created without auto keyword will not invoke the 

“run()” method and a separate thread will not be created. 

 

3 Architecture of Autonomous Object  

and Concurrency 

 We propose architecture of Autonomous object and 

its concurrency in Fig (C). We introduce a new built in class 

of object oriented system in the compiler called 

“Autonomous” class. “Autonomous” class works in 

collaboration with built in “thread” class. Whenever an object 

is created with “auto” keyword, it gets inherited by the built in 

“Autonomous” class by default.  The “auto” keyword invokes 

its “run()” method from within its constructor. It also enforces 

to inherit the autonomous object from a special class 

“Autonomous”. This “Autonomous” class in turn create a new 

thread object within it, using “Has a” inheritance,  on top of 

which a newly created autonomous object will run. The 

“run()” method of autonomous object will by default invoke 

the “super.run()” instruction to override the “run()” method of 

“Autonomous” class. 

Each autonomous object, when created, by default 

creates a “thread” object internally and hides thread level 

details inside it, thus providing a single and higher abstract 

level of concurrency. In other words we can say each 

autonomous object is created on top of a thread object to 

ensure autonomy. This thread is called primary thread of the 

object. Figure (C ) gives our porposed architecture for any 

object definition say “auto_class” when an object of this class 

is created as an autonomous object. 

To exploit autonomous object we show a driver class 

with “main()” function in which we can create one or more 

object as autonomous object. Each of those objects when 

created will get functional in separate threads synchronously. 

Compiler will take care of thread creation responsibility. The 

“driver” class and “auto_class” are user defined whereas the 

“autonomous” class and “thread” class are built in class which 

gets associated with the “auto_class” by the compiler.  

By virtue of autonomy we have introduced a new abstraction  

for multithreading. Now we can exploit more than one 

autonomous objects to perform their operation concurrently. 

When two instances of same autonomous object are created, it 

is equivalent to two threads performing an operation 

concurrently. 

 In section 6 we show examples of contemporary code of 

multithreading (Example2-code#1) and equivalent code 

proposed by us (Example2-code#2) according to the notion of 

concurrency by autonomous objects. 

Class Driver 

{ 

  main(){ 

  …..     

auto_class   auto   objA =new  auto_class ();    

…..        } 

} 
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Fig (C) 

4 Motivation of Concurrency by 

Autonomous Objects 

 Autonomous Objects will be the primary and base 

entity for concurrency instead of thread. Autonomous object 

notion provides higher abstraction to the widely varying 

language constructs and libraries of thread. Since concurrency 

is now represented by Objects at the higher abstract level, it 

will be very intuitive to define the soundness of Object calculi 

for autonomous object with built in concurrency feature. We 

won‟t need to introduce a separate entity, within the calculus,  

to represent threads unlike most of the alternate object 

calculus which introduces new constructs within calculus to 

incorporate thread and concurrency as in [3] , [4]. 

 Objects, as an abstract entity for concurrency, 

represent more natural point of view for multithreading much 

closer to the concurrency point of view of real world objects 

as illustrated ahead by some multithreading scenario. 

 

5 Single Threaded Autonomous Object 

 Example 1 illustrates a single threaded autonomous 

object. Main thread of driver class creates only one object 

with “auto” keyword to get only one new thread for 

autonomous object. 

5.1 Example 1 

 In this example we have given object definition of an 

Autonomous “AutoPrinter” object. As soon as an autonomous 

object is created, the autonomous printer object is supposed to 

start printing autonomously without any external request. 

Within run() method we have defined the startprinting() 

method. When object is created using “auto” keyword then 

AutoPrinter object gets implicitly inherited by built in class 

“Autonomous”,  a new thread is created on top of which this 

object gets functional and “run()” method is invoked, by 

default, implicitly and synchronously from within the  

constructor of AutoPrinter. The implicit call to run() is taken 

care of by the compiler. 

 
Example 1 

class AutoPrinter{ 

  String name;   

  int i=0; 

  AutoPrinter () {              

         System.out.println("Auto. Thread started ");  

   } 

   public void run() { 

             StartPrinting(); 

   } 

   Public StartPrinting(){ 

       While(i<100){ 

         System.out.println("Print in progress");     

        } 

   } 

} 

class Driver{ 

   public static void main (String args[]){ 

      System.out.println("Main thread started");  

      AutoPrinter auto objA =new AutoPrinter (); 

      System.out.println("Main thread terminated"); 

   } 

} 

Fig (D) 

6 Synchronization 

    While exploiting multithreading, there are times, when 

more than one thread share the same resource. More than one 

thread can invoke the same method of that resource at the 

same time. Obviously only one of them should be allowed to 

Class Thread 

{ …. 

run(){….} 

Synchronized(Object obj){….}       //this 

//method will lock the object‟s methods to 

//be called by two threads at the same time  

isAlive(){….} //determines whether a 

//thread is still running 

Join(){….}//causes the main thread //(from 

where it is invoked) to  wait until //the child 

thread terminates  and “joins”  main thread. 

…. 

} 

Class Autonomous 

{     … 

Public Thread  thread; 

Autonomous() 

{   thread=new Thread(); } 

… 

run() 

{    thread.run();         ….   } 

… 

} 

Class auto_class  

{   … 

run()  // super.run() is invoked by default 

{ ….}   

auto_class () // constructor 

{ …..    } 

… 

} 

Class driver 

{  …  

auto_class    auto   objA=new auto_class ();    

//creating objA with “auto” keyword will 

//force “auto_class” to get implicitly 

//inherited from “Autonomous” class. 

…. 

 } 
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access the resource/method at one time. In this case we need 

to synchronize the threads.  

 Example2, code#2 illustrates a multithreaded 

autonomous object as two object are created with “auto” 

keyword. In this Example, we show by comparison that how 

autonomous object serves perfectly well in code#2 as an 

alternate of contemporary multithreading technique in code#1. 

Code#2 hides all thread level management code so that we 

can best appreciate the simplicity of code#2 and realize the 

abstraction of “concurrency by virtue of Autonomy”. 

 

6.1 Example 2 

 

Fig (E) 

Fig (E) gives a scenario using contemporary techniques of 

concurrency in java. The method “Printlist” of printer is 

shared by two computer threads. We have explicitly 

synchronized the call to this method so that both threads do 

not intermingle their execution of this method. 

Synchronization statement clocks the invocation of this 

method by other thread as long as the execution of this 

method by first thread is under process. 

Fig (F) gives alternate solution of this problem by 

exploiting the inherent power of autonomous object of our 

proposal. In code#1 we have to explicitly care about creating 

threads and using shared resource within the threads and then 

synchronizing. Where as in code #2 we can simply define the 

shared printer as an autonomous object and every time a new 

autonomous object is created, compiler will itself take care of 

the new thread creation issues.  

This example best realizes the significance of 

abstraction provided by the notion of Autonomy. We can see 

that we gain same multithreading in code#2 as in code#1 but 

we don‟t even need to explicitly think about thread creation in 

code#2. All thread creation, for the sake of implementation, is 

done internally under the abstraction of autonomous object. 

 

Fig (F) 

 

 

Example 2—Code#1 

class Printer  { 

   void Printlist (String s) { 

     System.out.print ("printing long list for”+s); 

   try { 

      Thread.sleep (1000); 

   } catch (InterruptedException e) { 

        System.out.println ("Interrupted"); 

   } 

     System.out.print ("printing long list Ends for”+s); 

  } 

} 

class CompThread implements Runnable { 

   String s1; 

   Printer p1; 

   Thread t; 

   public CompThread (Printer p2, String s2) { 

      p1= p2; 

      s1= s2; 

      t = new Thread(this); 

      t.start(); 

   } 

   public void run() { 

       synchronized(p1){ 

          p1.Printlist(s1); 

       } 

   } 

} 

class Driver{ 

   public static void main (String args[]) { 

     Printer p3 = new Printer(); 

     CompThread name1 = new CompThread (p3, "Bob"); 

     CompThread name2 = new CompThread (p3,"Mary"); 

     try { 

        name1.t.join(); 

        name2.t.join(); 

     } catch (InterruptedException e ) { 

          System.out.println( "Interrupted"); 

     } 

  } 

} 

Example 2—Code#2 

class AutoPrinter  { 

              public string pname; 

public void run() { 

          thread.synchronized(){ 

          this.Printlist(pname); 

       } 

   } 

public AutoPrinter (string nm){    pname=nm;      } 

public void Printlist (String s) { 

     system.out.print ("printing long list”+s); 

     try { 

        Thread.sleep (1000); 

     } catch (InterruptedException e) { 

        System.out.println ("Interrupted"); 

   } 

     System.out.print ("printing long list Ends”); 

} 

} 

class Demo{ 

 public static void main (String args[]) {     

   try { 

   AutoPrinter auto p1 =new AutoPrinter("Bob"); 

   AutoPrinter auto p2 =new AutoPrinter("Mary"); 

   }   catch (InterruptedException e ) { 

   System.out.println( "Interrupted"); 

           } 

  } 

} 
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7 Calculus 

 A class is an object definition used to generate object. 

Pre-methods are the method definitions which becomes 

methods once embedded into objects as mentioned in [1]. A 

class is a collection of pre-methods together with a method 

called “new” for generating new objects. Class in the 

terminology of calculus is written as below: 

c  ∆  [new  = б(z)[li = б(s)z. li(s) 
iє 1…n

 ],   

                li= λ(s)bi 
iє 1…n

 ] 

 

The method new  = б(z)[li = б(s)z. li(s) iє 1…n ] , 

applies the pre-methods of class to the self of the object, 

thereby converting the pre-methods into methods. 

 

 

Given any class “c”, the invocation  c.new  produces 

an object  “o” as below and given in [1]. 

 

o  ∆  c.new = [li = б(xi)bi 
iє 1…n

] 

 

7.1 Calculus for Autonomous Object 

In our setting, as we have defined in section 3, in order 

to make a class behave as autonomous, it must be inherit from 

a parent “Autonomous” class. In our calculus we call it 

“c_super_auto” class and formally given as below 

c_super_auto  ∆  [new  = б(z)[li = б(s)z.li(s) 
iє 1…n

 ,  

                                 б(s)z.run(s)], thread=b,   

                                  run=λ(s)(s.thread:=s.thread.new), 

                     li = λ(s)bi 
iє 1…n 

] 
 thread=b  stands  for  thread= б(s)b, for an unused s 

because thread=b is a field.  

 run=λ(s)(s.thread:=s.thread.new), A new instance of 

thread is created, so that each autonomous object 

can run in this new and separate thread. 

 (s.thread:=s.thread.new) is the body of run method.  

 new method not only applies the pre-methods of 

class to the self of the object but also invoke the run 

method.  

 run is also a special method similar to new method.  

A new thread instance is created within run method. 

Hence a new thread instance is created before new 

method is returned. 

 li= λ(s)bi 
iє 1…n

 represents all pre-methods of 

“c_super_auto” class. 

 

  
In order to make a class behave as autonomous, it 

must be inherit from a parent “c_super_auto” class. 

As soon as object of a class is created with “auto” keyword, 

the class by default gets inherited from “c_super_auto” class. 

Compiler is supposed to enforce this by default inheritance.  

In our calculus, we call the inherited class “c_auto” and 

formally given as below: 

 

c_ auto  ∆  [new  = б(z)[li = б(s)z. li(s) 
iє 1…n+m

 , 

                       б(s)z .run(s)],   

                       run= λ(s)c_super_auto.run(br)(s), 

                        li =c_super_auto.lj 
jє 1…n

, 

                        lk= λ(s)bk 
kє n+1…n+m

 ] 

 

 “c_auto” as an inherited class can reuse all the pre-

methods of “c_super_auto”.  

 (c_super_auto.lj 
jє 1…n 

) are the pre-methods of 

“c_super_auto” inherited into “c_auto”. 

 lk= λ(s)bk 
kє n+1…n+m

 are more pre-methods peculiar to 

“c_auto”.  

 run= λ(s) c_super_auto.run(br) (s) shows that run is 

the inherited but over ridden pre-method which also 

invoke its parent‟s run pre-method. 

 c_super_auto.run(br) (s) is the body of run pre-method 

of “c_auto”. 

 c_super_auto.run  is the part of run pre-method body 

which is invoking the run method of parent. 

 (br) is the remaining body of run pre-method which 

represent any custom user defined code. 

 (s) is the self parameter of  “c_auto” also passed on to 

c_super_auto.run 

 

 

In our calculus an autonomous object “ao” is created from 

“c_auto” class is formally given as below: 

 

ao  ∆  c_auto.new = [br {{x<-ao}}, li = б(xi)bi 
iє 1…n+m

] 

 br {{x<-ao}} shows that run method is invoked from 

within the c_auto.new i.e as soon as “ao” is created. 

 li = б(xi)bi 
iє 1…n+m

  shows the methods embedded 

into “ao” corresponds to the pre-methods of 

“c_auto” class. These methods include the „m‟ pre-

methods of c_ auto  as well as „n‟ pre-methods of 

c_super_auto. 

 
 

8 Conclusion 

Our proposed autonomous object notion is compatible 

with all contemporary Object Oriented Programming 

techniques. It is not new programming paradigm. According 

to our proposed syntax when an Autonomous object is 

defined, its object can still be created as a usual, as a non-
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autonomous object, without any extra care. Autonomous 

object provides better abstraction over thread and concurrency 

and is also sound in Object calculus as we have shown. 
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Abstract - This paper presents portions of the LED type 

system.  LED types include integer, boolean, variable, set, 

tuple, function, and union types as well as user-defined 

recursive types.  To accommodate overloading of function 

symbols in LED program, while ensuring deterministic 

evaluation of LED expressions, definitions of functions 

symbols must not be ambiguous. The concept of type 

disjointness is utilized to determine if the declared domains of 

LED definitions are disjoint.  An algorithm is presented for 

determining if two types are disjoint, that is, have any 

inhabitants in common. The algorithm is shown to be sound 

and complete a restricted form of the LED type system. 

Keywords: functional programming, type safety 

 

1 Introduction 

 The Language of Effective Definitions (LED) is a formal 

language for defining computable functions. It allows 

recursive definitions employing rational arithmetic, finite sets 

and tuples, and quantification and set comprehension 

restricted to finite sets. Since these are well known operations 

and their LED syntax is visually similar to their traditional 

informal syntax, we will not define the language formally 

here. For current purposes, an informal reading of function 

definitions is identical to its formal reading. For complete 

semantics see (Rushton and Blount 2011).   

 In this paper, the goal is to develop an algorithm that will be 

used to allow function symbols to be overloaded for 

arguments of different types, while guaranteeing at compile 

time that definitions are not ambiguous. For expressivity, we 

include variable (unknown or undetermined), set, tuple, 

function, and union types as well as user defined recursive 

types. The restrictions we are assuming at this time are that 

recursive type are explicitly defined by type rules, and hence 

are regular. We also prohibit mutually recursive types. This 

paper only introduces an overview of planned type system 

and one statically checkable type relationship, disjointness. 

 Related worked includes many systems that include one 

some of the features our system, and exclude others. Union 

types in programming languages, while having long been 

played a  role in program analysis (Palsberg and Pavlopoulou, 

1999), have been featured in few programming languages 

(notably algol 68; cf. van Wijngaarden et al., 1978). More 

recently, they have being applied in the context of type 

systems for “semi-structured” database formats such as XML 

(Buneman and Pierce, 1998; Hosoya,Vouillon,and 

Pierce,1991). Tuple and function types have long been 

featured in the simply typed lambda calculus. Basic properties 

of recursive types are were established in (MacQueen, 

Plotkin, and Sethi, 1986).  

 This paper is organized as follows, section 2 introduces the 

LED types along with some example LED expressions of 

each type, then more presented in detail in section 3. Section 

4 presents the semantics of the LED type system. Section 5 

presents the algorithm for determining type disjointness, and 

its proof of correctness wrt to a restricted form of the LED 

type system.  

 

 

2 Simple Examples  

  The simplest of LED expression are the atomic 

expressions symbols, strings of digits, and decimal fractions. 

For example, the LED symbols true, and false are of type 

boolean. The LED numerals 0 and 256 are of type 

integer, and the LED decimal fractions 3.14 and 1.23 

are  scalar. 

 Second, are the literals for sets and tuple, following the 

normal conventions, {1,2,3,52} and is a set of integers 

denoted by {integer}, and {} is of type {X}, meaning the 

empty set is an object or inhabitant of any set type. The tuple 

(1,2) is a 2-tuple of integers denoted by 

integer×integer, and the tuple 

(1.2,2.3,3,true) is a 4-tuple denoted by (scalar, 

scalar, integer, boolean). 

    The built-in function symbol, +  is a function from a 2-

tuple, or pair, of integer to an integer denoted by  

integer×integer->integer, but is also overloaded in 

that + is also a function from a 2-tuple of scalar to a 

scalar denoted by  scalar×scalar->scalar. 

  User defined types can given by type rules. For example a 

user defined type number, could be defined by a type rule 

number::=integer|scalar,  intuitively meaning that 

any object of type number is exactly those objects that are 

either integer or scalar. Lists of integer can be 

described using the LED tuple operator. For example, 

142 Int'l Conf. Foundations of Computer Science |  FCS'11  |



(1,(2.3,(5,emptyl))) is a valid LED tuple 

expression, and is an intlist  using the type rules 

intlist ::= emptyl|integer×intlist , and built-

in type emptyl. 

  

 

3 Definitions and Syntax 

 A type lexicon is a 4-tuple (B,D,V,<,disj) where B, D, V are 

disjoint finite sets of symbols, and < and disj are binary 

relations on B for subtype and disjoint. B, D, and V are the 

built-in, defined, and variable type symbols, respectively, of 

(B,D,V,<,disj).  The operators „{}‟,‟×‟,‟->‟, and ‟|‟ are called 

the set, tuple, function and union type constructors 

respectively. For any positive integer i, Ti is a meta-variable 

for any type, ti is a meta-variable for any type symbol, and L 

is a meta-variable for a type lexicon. When no ambiguity will 

be introduced “over type lexicon L” will be omitted from 

subsequent occurrences of a definition. 

 

A type over a type lexicon L is one of the following: 

 T1   where T1 is a type symbol of L 

 {T1}  where T1 is a type          

 T1× … ×Tn   where n>2  

 T1| … |Tn    where n>2  

 

 Several later definitions will make use of view that types 

are abstract syntax trees. In this view, leaf nodes are be 

labeled by type symbols, and non-leaf nodes will be labeled 

by type constructors or type symbols. If the root node of, (the 

abstract tree representation), of type T, is R, then T is called a 

R type.  Likewise, if the root node of, (the abstract tree 

representation), of type T, is not R, then T is called a non-R 

type For example, the types int, int|bool, {int}, 

int×int are a built-in type, set type, union type, tuple type 

respectively. If the root is labeled by a type constructor, the 

type is a constructed type.   

 A type rule over L is an expression of the form T1::=T2, 

where T1 is a defined type symbol, and T2 is either a type or 

LED symbol. T1 and T2 are called the head and body of 

T1::=T2 respectively.  A type rule is T1::=T2  well-founded  

if  

(1) T2  is a union type, and 

(2) There is at least one child of T2 containing only built-in 

type symbols, non-union type constructors, and 

(3) Each occurrence of  T1 in T2 occurs within a set or tuple 

type constructor. 

 

 For example, the type rules p::={}|{p}, and 

pp::={{}}|{{pp}} are well-founded. Examples of non 

simply well-founded type rules include q::={q}, which 

violates condition (1), q::={q}|q×int, which violates 

condition (2), and q::=q|q×int which violates condition 

(3).   A grammar over L is a finite set G of type rules over L, 

such that each defined symbol of L occurs as the left side of 

one rule in G.  We consider grammars containing only well-

founded rules. 

;) 

  

4 Semantics  

 A literal is one of the following: 

(1)  a symbol (string or non-white-space characters not 

beginning with a digit and containing no left or right 

parenthesis),   

(2)  a numeral,  

(3)  a decimal fraction, 

(4)  (l1,…,ln) where n>1 and each li is a literal, or 

(5)  {l1,…,ln} where n>1 and each li is a literal, or 

 

 Cases (1), (2), and (3) are called atomic literals. Cases (4) 

and (5) are set and tuple literals respectively, and are 

compound literals collectively. For any positive integer j, lj is 

a meta-variable for an arbitrary literal. Equality is defined in 

the obvious way for all literals. 

 

 Given a type lexicon L=(B,D,<,disj), a model of L maps 

each built-in type symbol T1 of L to a set of atomic literals 

M(T1) such that for any type T2 of L:   

1.  M(T1) is a subset of M(T2) whenever T1< T2, and 

2.  M(T1) is disjoint from M(T2) whenever disj(T1,T2). 

 

 Given a lexicon L, a model M of L, and a grammar G over 

L. inhab(L,M,G) is the smallest set S of type judgments l:T, 

(where l is a literal and T is a type over L)  such that:  

1.  If l ∈ M(T) then l:T ∈ S  

2.  If li:T ∈ S for all 1≤i≤n, then {l1,…,ln}:T ∈ S 

3.  If li:Ti ∈ S for all 1≤i≤n, then (l1,…,ln):T1×…×Tn ∈ S 

4.  If l:Ti ∈ S for some 1≤i≤n then l:T1|… |Tn ∈ S 

5.  If T1::=T2 is a rule in G, and l:T2 ∈ S  then l:T1 ∈ S. 

 

Definition 1. Disjoint types 

Given a type lexicon L, grammar G over L, and model M of L, 

types T1 and T2 over L are disjoint if ∀ x,y . if x:T1 ∈ 
inhab(L,M,G) and y:T2 ∈ inhab(L,M,G) then x ≠ y. 

   

 

5 Type Disjointness algorithm 

 Given a type theory L with lexicon(B,D,<,disj) grammar 

G over L, we give an algorithm by defining an piecewise 

effective binary predicate D over types of L.  

Definition 2. Algorithm D  

D(T1,T2) if any of the following: 

When either T1 or T2 is a built-in type 

(1) disj(T1,T2), or 

(2) T1 is a built-in type, and T2 is a set or tuple, or 

(3) T2 is a built-in type, and T1 is a set or tuple, 
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When either T1 or T2 is a union type 

(4) T1 is a union type, and for each child of Ti of T1  

D(T1,T2), or 

(5) T2 is a union type, and for each child of Ti of T2 

D(Ti,T1), or 

 

When both T1 and T2 are set or tuple types 

(6)  If both T1 and T2 are tuple types, and every pair of 

corresponding children , D(T1i,T2i), or  

(7) If both T1 and T2 are set types with children Ti and Tj, 

respectively, and D(Ti,Tj),   

(8) If T1 is a set type and T2 is a tuple type. 

(9) If T2 is a set type and T1 is a tuple type. 

 

When either T1 or T2 are defined types 

(10)   If T1 is defined by T1::=T3, and D(T3,T2), or 

(11)    If T2 is defined by T2::=T3,and D(T1,T3), or 

(12)   If T1 and T2 are distinct defined type symbols defined   

by  T1::=T3 and T2::=T4 and  D(T3,T4), 

 

 The following theorem is the main result of this paper, 

and says that types T1 and T2 are disjoint if and only if C(T1, 

T2).  

Theorem 1.   Given a type lexicon L, with no defined type 

symbols, an empty grammar G over L, a model M of L, and 

types T1 and T2 over L, D(T1,T2) if and only if T1 and T2 are 

disjoint. 

Proof of Theorem 1 (only if)  

 Suppose D(T1,T2), the proof proceeds by strong induction 

over the sum of the heights of the (syntax tree representation 

of) T1 and T2.  Both the base case and induction step will then 

proceed by cases, having one case for each branch of the 

algorithm. The cases for branches (10), (11), (12) are 

vacuously true, ie. they never apply, because the grammar G 

is empty.  

 In the base case T1 and T2  are built-in type symbols, hence 

only branch (1) of the disjoint algorithm need be examined. 

From the definition of the algorithm D follows disj(T1,T2), it 

follows from the definition of model, that M(T1) and M(T2)  

are pair-wise disjoint sets. Consequently, T1 and T2 are 

disjoint. 

 The induction step will proceed by cases, one case for each 

branch of the definition of the disjoint algorithm. Notice that 

in the cases for branches (2), (3), (7), and (9) that no recursive 

call is made. We appeal directly to the definition of LED 

equality and definition of literal.  

 Suppose that case (2) applies, it can be shown that no 

atomic literal is equal to any tuple literal or set literal. A 

similarly argument will be used in case (3). In the cases (7) 

and (9), it can be shown that that no set literal is equal to any 

tuple literal, and so T1 and T2 are disjoint.  

 The cases for the remaining branches (4), (5), (6), (7), will 

require the induction hypothesis. In each of these branches D 

is applied to a single child, or children of either T1 and T2,  so 

T1 and T2 are disjoint by the induction hypothesis and 

definition of disjoint. 

 

Proof of Theorem 1 (if) 

 Suppose T1 and T2 are disjoint. The proof proceeds by 

strong induction over the sum of the heights of the (syntax 

tree representation of) T1 and T2. Both the base case and 

induction step will then proceed by cases of possible 

combinations of labels of the root of T1 and T2. While there 

are at least 16 cases, |{built-in, set, tuple, union}|
2.  All  built-

in type symbols can be handled by a single meta-variable for 

an arbitrary built-in type symbol.  

 

 For the base case, the roots of T1 and T2 are labeled by 

built-in type symbols, and so disj(T1,T2)  is true by definition 

of a model. Hence D(T1,T2) by branch (1) of the definition of 

D.  

 For the induction step, the proof will proceed with the 

following cases. 

 Suppose the root of T1 is labeled by a built-in type symbol 

and T2 is labeled by set or tuple, then D(T1,T2) is true by 

branch (3) of the definition of D.  

 Suppose the root of T2 is labeled by a built-in type symbol 

and T1 is labeled by set or tuple, then D(T1,T2) is true by 

branch (2) of the definition of D.  

 Suppose the root of T1 is labeled by set and T2 is labeled by 

tuple, then D(T1,T2) is true by branch (8) of the definition of 

D.  

 Suppose the root of T2 is labeled by set and T1 is labeled by 

tuple, then D(T1,T2) is true by branch (9) of the definition of 

D.  

 Suppose that both T1 or T2 are labeled with set, and the 

child of T1 is T1c and child of T2 is T2c. It can be shown that 

T1c  and T2c  are disjoint by the definition of LED equality 

between sets and the definition of disjoint types. D(T1c,T2c) 

follows using the induction hypothesis. A similar argument is 

used if both T1 and T2 are labeled with tuple. 

 Suppose that T1 are labeled by union. For every child  T1c 

of  T1, T1c and T2 are disjoint by the definition of disjoint 

types.  D(T1c,T2c) follows using the induction hypothesis. A 

similar argument is used if T2 is labeled with union.  

 

Definition 2. Given a type lexicon L, and a grammar G over 

L, G is stratified  if there exists a function f from type 

symbols of L to non-negative integers such that: 

1. f (T) = 0 if T is a built-in type symbol, and 

2. f (T1)  >  f (T2) if T1::=T3 ∈ G, T2 is a leaf of T3.  
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Conjecture 1.   Given a type lexicon L, with stratified 

grammar G over L, a model M of L, and types T1 and T2 over 

L, D(T1,T2) if and only if T1 and T2 are disjoint. 

 

6 Conclusion and future work 

 The main theorem is critical to planned future work, in 

particular a proof of conjecture 1, that is, to extend algorithm 

D to user defined recursive types, and then incorporate 

function types, extend LED type system semantics to include 

function types, show LED to be type-safe. Well-typed LED 

will contain unambiguous function definitions that are correct 

wrt their declared signatures.  Finally, we work to include 

type inference (and not require explicit type signatures), and 

parameterized user defined types such as list(int), lists 

of integers. 
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Abstract— Base on several definition of File System, File 

System is a system which is responsible to handle files and 

managing data in any operating system [1]. According to 

these definitions, choose a File System to managing data on 

your system, is one of the consideration for anybody who use 

a computer. Anybody can fill this problem when you have a 

lot of files with a large portion. File System types can be 

classified into disk File Systems, network File Systems and 

special purpose File Systems[2][3][4.] The purpose of this 

Paper is “comparison Performance evaluation among four 

File Systems”. According to above goals, there are several 

file systems on Linux operation system. These file system are 

EXT2, EXT3, EXT4, ReiserFS, JFS, and etc. In this paper, we 

are neither define several file systems on Linux nor compare 

them and tested by IOzone and Postmark benchmark tools 

[5][6]. The performance result has shown base on read, re-

read, write and re-write of file for IOzone benchmark tool 

and create, read, append, delete for Postmark benchmark 

tool. We have chosen IOzone bench mark for our experiments 

as it is preferred for operating system evaluation [7].  

Keywords- Performance Evaluation, File System, EXT4, 

EXT3, ReiserFS 

 

1 Introduction 

  Base on several definition of file system, File system is a 

system which is responsible to handle files and managing data 

in any operating system [1]. According to these definitions, 

choose a good file system with the best performance is one of 

the considerations [1]. 

 File system types can be classified into disk, network 

and special purpose. A disk file system designed for the file 

storage on a data storage device. Normally disk drive, directly 

or indirectly connected to the computer or any computer 

device.  

 The principal aims of file system are to address 

scalability, performance, reliability, capabilities and 

robustness. On the other hand, the most popular Linux file 

system due to its reliability, rich feature set, relatively good 

performance, and strong compatibility between versions of 

file system.  

According to above goals, there is several file system on 

Linux operating system. These file system are EXT2, EXT3, 

EXT4, ReiserFS, JFS, and etc [7][8][9][10][11][12].   

In this paper, we are neither define several operating 

systems on Linux nor compare them and tested by IOzone 

and Postmark benchmark tools. We will be showing 

performance of them based on read, re-read, write and re-

write of file.  

We have chosen IOzone and Postmark benchmark tools for 

our experiments as it is preferred for operating system 

evaluation [13][14].  

1.1 Instructions for authors 

 This paper, compares and evaluates EXT4 against EXT3 

and ReiserFS, JFS file systems on Linux. The paper studies on 

these four file system in section 2, 3, 4. Related work in 

section 5. Then, it focuses on performance evaluation tools in 

section 6. Implementation of benchmark tools in section 7. 

Results and discussion in section 8, and finally, conclusion 

and future work in section 9. 

2 Extent file systems 

 Extent file system was earlier file system that developed 

on Linux by Rmy Card, Laboratoire. Until now Extended has 

four generations and implement on several version of Linux 

[10]. 

 EXT2 designed by Wayne Davidson and Stephen 

Tweedie and Theodore. They extended from EXT file system 

which designed byRemy Card and implement on the standard 

Linux file system [15][16].  

 EXT3 is one of the traditional Unix-derived file systems. 

it used a indirect block mapping scheme to keep track of each 

block. It the same data structures and supports journaling. 

EXT3, which just added some features to EXT2 while 

keeping the on-line format and approach of EXT2 [9]. 

 EXT4 was developed by Theodore Ts’o, who was, at the 

time In 2006. The uber Linux developer, which developed the 

EXT3 maintainer, began work on EXT4., EXT4 changed a 

deep code change and the data structures. These changes used 
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to make a better file system, faster, reliable, more features, 

and better code. The most important and hard working on 

EXT4, added new features such as, Extents, journaling check 

summing, block allocation, delayed allocation, faster fsck, on-

line defragmentation, and larger directory sizes (up to 64,000 

files) [12]. 

3 ReiserFS 

 ReiserFS was developed as a part of the standard Linux 

kernel by Hans Reiser. [2] It is available on the most version 

of Linux operating system. ReiserFS supports metadata 

journaling. The ReiserFS has excellent performance for small-

files. ReiserFS Developed based on B* Balanced Trees to 

organize directories, files, and data. B* provides fast directory 

lookups and fast deletes operations. Other performance 

features include support for sparse files and dynamic disk 

inode allocation [2]. 

4 Journalin File Systems (JFS) 

JFS introduced by IBM as UNIX file system with the initial 

release of AIX Version 3.1. It has now introduced a second 

file system that is to run on AIX systems called Enhanced 

Journal File System (JFS2). JFS2 is available in AIX Version 

5.0. The JFS Open Source code on originated [17].  

JFS is modified primarily for the high throughput and 

reliability requirements of servers. JFS uses extent-based 

addressing structures, along with clustered block allocation 

policies. It is make compact, efficient, and scalable structures 

for mapping logical offsets within files to physical addresses 

on disk. An extent is a sequence of contiguous blocks 

allocated to a file as a unit. The addressing structure is a 

B+Tree populated with extent descriptors, rooted in I-node 

and keyed by logical offset within the file [17]. 

JFS supports block sizes of 512, 1024, 2048, and 4096 

bytes on a per-file system basis. Smaller block sizes reduce the 

amount of internal fragmentation. However, small blocks can 

increase path length since block allocation activities may 

occur more often than if a large block size was used. The 

default block size is 4096 bytes [18]. 

JFS supports both sparse (which allow data to be written to 

random locations within a file without instantiating others 

unwritten file blocks.) and dense files, on a per-file system 

basis.  [18] 

 

5 Related Work 

Some researcher studied on Extents file 

systems.[12][13][14] Avantika Mathur have worked on EXT3. 

The purpose of their research was to provide branch of EXT4 

from EXT3.[4] They compared EXT3, EXT4; XFS file 

systems with three tools as FFSB, IOzone and Postmark. With 

FFSB tool they test these file systems base on throughput 

(MB/Sec) and CPU percent usage. [13] [14] 

This test has shown that XFS has higher throughput 

(MB/Sec) than EXT3 and EXT4, but it has lower CPU percent 

usage than EXT3 and EXT4. EXT4 has higher throughput 

(MB/Sec) performance than EXT3, but it has lower CPU 

percent usage than EXT3 [9].  By IOzone tool they test these 

file systems base of six operations as write, re-write, read, re-

read, random write and random read [11]. In this test shows 

that in Write, re-write, random write and random read, EXT4 

has higher throughput (KB/Sec) performance than XFS and in 

general EXT4 has higher throughput (KB/Sec) performance in 

all six operations than EXT3[9].  

The test also shows that in read and re-read operations XFS 

has higher throughput (KB/Sec) performance than EXT3 and 

EXT4. Also observe that in re-write, random write, random 

read, XFS has higher throughput (KB/Sec) performance than 

EXT3.  In write operation EXT3 has higher throughput 

(KB/Sec) performance than XFS. With Postmark tool they test 

these file systems based on two operations as read and write. 

The test result not only shows that EXT4 has higher 

throughput (MB/Sec) performance than EXT3 and XFS, but 

also EXT3 has higher throughput (MB/Sec) performance than 

XFS. In their comparison they find that EXT4 has a good 

improvement of EXT3 and has become an enterprise-ready 

solution, with a good balance of scalability, reliability, 

performance and stability. [2] 

Other researcher named, Ricardo Galli works on journal file 

systems available for Linux as EXT3, ReiserFS, XFS and JFS 

and they introduce to the basic concepts of file systems, 

buffer-cache, and page-cache carried out in the Linux kernel. 

[17]Their performance result shows that XFS, ReiserFS and 

EXT3 have demonstrated that they are excellent and reliable 

file systems. In this research, they achieved (i) EXT3 is going 

to be the standard file system for Linux operating system, 

specially Red Hat, (ii) JFS is a valid alternative for migrating 

AIX and OS/2 installation to Linux.  

(iii) In all journal file systems, ReiserFS is the only file 

system which has standard Linux tree since 2.4.1 which SuSE 

supports it. (iv) XFS is being used in large servers (especially 

in the Hollywood industry). It is due mainly to the influence of 

SGI market. (v) JFS has gotten the worst results (when tested 

by any benchmarks) not only on performance, but also for 

stability issue in the Linux port.  

Dr. Oliver Diedrich has a well done study on EXT3 and 

EXT4 file systems. He compares the structure of EXT3 and 

EXT4 file systems base on large volumes, huge files and 

extent trees. He evaluates a performance of these two file 

systems based on creation (based on time and write speed) and 

deletion (based on time) of eight 1 GB files and 10000 

random read and write operations in 8 GB. He did not mention 

what tools he used in his test, the performance with large files 

between EXT3 and EXT4. The tests shows that in creation of 

eight 1 GB files, time in EXT4 improved 6.9% and write 

speed also improved 7.0% than EXT3. In deletion of eight 1 

GB files, time improved 97.2% than EXT3. And among 

10000 random read and write operations in 8 GB, EXT4 

improved 10.9% than EXT3[11]. 
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6 Performance Evaluation Tools 

Benchmark is a tool for performance evaluation. There are 

several benchmarks for file system available [13] 

IOzone is one of the famous benchmark tools on file 

system to generate and measures a selection of file operations. 

It has been runs for test many operating systems. The IOzone 

tests file I/O performance. I/O performance tests based on 

Read, re-read, read backwards, read strided, write, re-write, 

fread, fwrite, random read/write, pread/pwrite variants, 

aio_read, aio_write, mmap.It is useful for file system analysis 

of a vendor’s computer platform. [13] 

Another famous benchmark is The Postmark. It is 

responsible to creating a massive bulk of alternatively 

modifying files and calculating the transaction rates for a 

workload approximating a large Internet electronic mail server 

[14]. Postmark operation, produces random text files. The text 

files size categorizes from low bound to high bound. The size 

is configurable between low and high bound The text file pool 

is of configurable size and can be located on any accessible 

file system.[14] Once the bulk has been created consists of a 

pair of smaller transactions (i) Create file or Delete file and 

(ii) Read file or Append file operation. 

According to comparison of these benchmark tools, the 

achievement the IOzone performance shows that, this tool is 

more suitable for experimental result due to the performance 

of IOzone is higher than Postmark tool. 

 

7 Implementation 

File system benchmarking requires careful setup. An issue 

one must often contend with is how to defeat the effects of the 

file system buffer cache. Without careful experimental design, 

all of the file system requests could be satisfied in the cache 

and no disk activity would occur. A usual way to avoid this 

problem is to use a total file size that exceeds the amount of 

main memory available on the system. 

Another approach is to use a file-access mode that bypasses 

the file system buffer cache, such as O_DIRECT. We chose to 

not use O_DIRECT for this paper  

The second issue that one must address is estimating the 

accuracy of the results of the test. In our experience, file 

system benchmarks are notorious for being non repeatable, 

bimodal, and full of hysteresis effects, making it a challenge to 

get consistent results. 

In this paper we have IOzone and Postmark benchmarks 

using below system: 

 The small system that is Intel(R) processor Core(TM) 

Duo 2.20 GHz with 4GB of memory and a 320 GB SATA 

disk. For the experiments of this paper, this machine was 

booted with 4 GB of RAM. 

 Nowadays, mentioned machine provides a sampling used 

to run Linux.   

 For using IOzone and Postmark benchmarks firstly we 

should install them in the system.  

 Now searching is in process and gives the latest model of 

the searched benchmark.  

 

8 Results and Discussion 

This section is a description of test result. Each graph defines 

system’s structure. 

8.1 IOzone result  

Read graph shows that EXT4 has not good performance in 

those file size less that 100 MB. EXT4 is Extent base 

allocation. It is block allocation and it use contiguous 

allocation to allocate the file in blocks of disk. Because of this 

type of allocation, EXT4 has overhead and performance is not 

good on small file. In other hand, small file size because it is 

contiguous when file finish there are some space in the 

contiguous file that still empty. The other reason is the 

overhead for read the file system should refer to directory that 

has file name. Address of file and length of the file and if the 

file be small, this cause overhead happened. [13] 

Allocation features use for large file size. Figure 4 shows 

that the performance of EXT4 is higher than other file 

systems. For the large file, EXT4’s performance is higher than 

other file systems because of block allocation that fill the 

contiguous block in disk.  

EXT3 allocates blocks for a file one at a time (typically 

using 4KB blocks). For very large files, the associated 

function that doses the allocation will have to be called 

thousands of times. EXT4 uses ―multi-block allocation‖. It 

allows multiple blocks (hence the name) to be allocated during 

one function call. This can greatly improve the performance of 

EXT4 relative to EXT3, particularly for large files. [12] 

JFS dynamically allocate space for disk I-nodes as 

required, freeing the space when it is no longer needed. Two 

different directory organizations are provided. (i) The first 

organization is used for small directories and stores the 

directory contents within the directory’s I-node. This 

eliminates need for separate directory block I/O as well as 

need to allocate separate storage. [18] By using directory’s I-

node can eliminate separate directory block I/O and allocate 

separate storage. (ii) Organization is used for larger directories 

and represents each directory as a B+Tree keyed on name. It 

provides faster directory lookup, insertion, and deletion 

capabilities. 

Because of these reasons JFS in small file has better 

performance than EXT4 but for file size from 100MB and 

above JFS has lower performance than EXT4. [12] 

ReiserFS uses B* Balanced Trees to organize directories, 

files, and data. This provides fast directory lookups. [2] So it 

has better performance on read operation in small file size 

generally less and equal than 20MB file size. 

First graph shows result base on read feature. Figure1 

shows that experience by IOzone benchmark.    
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Figure 1: IOzone test for Read feature 
 

According to above explanation, Figure1 shows that EXT4 

has weakness in small file. Also this graph shows that 

ReiserFS and EXT3 have a good performance with small file. 

But with increasing file size, EXT4 performance increase as 

well. Also this graph shows that JFS more stable than other 

file system.  

 
Figure 2: IOzone test for Re-Read feature 

 

Figure2 shows that EXT3, ReiserFS, and JFS has a good 

performance when file size is small. But with increasing file 

size, JFS and EXT3 performance decrease slowly and EXT4 

performance increase. Figure2 Shows with large file size JFS 

has higher performance. 

 

 
Figure3: IOzone test for Write feature 

 

Figure3 shows write performance in these four file 

system. Figure3 shows that EXT4 and JFS has a good 

performance with small file size. ReiserFS has the lowest 

performance. But with increasing file size the EXT4 

performance is not change too much, but JFS performance 

decreasing too much. In large file size JSF has the worst 

performance.  

 

 
Figure 4: IOzone test for Re-Write feature 

 

Figure4 shows Re-write feature that tested by four file 

system. For this feature, JFS has the best performance base on 

small file size and large file size. This graph shows that EXT4 

performance slowly increase and JFS performance deeply 

decrease.  
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Figure5: All feature performance for small file size (1MB). 

 

 
Figure6: All feature performance for large file size (100MB). 

 

Figure 5 and Figure 6 shows other perspective of 

performance of these four file system. With comparison four 

feature performance in small file size; JFS has a good 

performance in Re-Write, and Re-Read. Also the worth 

performance in small file size belong to EXT4. Comparison 

between EXT3 and EXT4 which are using extent, EXT3 is 

much better than EXT4. 

Also according to large file size, EXT4 mostly has a better 

performance than others.  Specially, on their write file. JFS 

also has a good performance on read file.  

Postmark result  

According to postmark description, run postmark on four 

file systems. (EXT4, JFS, EXT3, and ReiserFS) Postmark 

used maximum create, read, append, and delete files base on 

Table 1.  

 

Table1: Four file systems comparison table with postmark. 

 
 

Figure7 shows result of postmark testing. This graph shows 

that EXT4 is the fastest file system in all of the execution part. 

Also ReiserFS are in the second level. 

 
Figure7: Postmark test result base on creation, append, 

deletion, and read. 

 

1. CONCLUSION AND FUTURE WORK 

Choose a file system to managing data on your system, is 

one of the consideration for anybody who use a computer. 

Anybody can fill this problem when you have a lot of files 

with a large portion [20]. 

This project define base on famous file system comparison 

on Linux. Project starts which a research on file system on 

Linux and then find some research on these file systems.   

There is some evaluator tools look like FFSB, IOzone, and 

Postmark. Benchmark which using IOZONE and 

POSTMORK which is more famous. These tools are choosing 

to check which one is more reliable for evaluation for my 

project. Some of the Research objectives in this project are 

carrying out as follow (i) Assess different type of FS on Linux 

Assess different type of file system performance evaluator 

tools (ii) Categorizes file system base in performance. 

The result shows that EXT4 which is using extend have a 

performance on large file size but it is not suitable for small 

file size. In other word, with increase file size, the EXT4 

performance increase. Other file systems (which is JFS and 

using journaling) also has a good performance (especially in 

write and Re-write file). But JFS is not update any more 

during 2 years. EXT3 also has a reliable performance on small 

file size. 
 

9 Reference 

[1] Bryant, R., Forester, R., & Hawkes, J. (n.d.). File system 

Performance and Scalability in Linux 2.4.17. Proceedings of 

the FREENIX Track:2002 USENIX Annual Technical 

Conference. USENIX. 

[2] Sun Microsystems (2004). File System Performance: 

The Solaris™ OS, UFS, Linux EXT3, and ReiserFS. Aug. 

[3] How to Find the Block Size. (2005, Aug 18). Retrieved 

Oct 17, 2009, from LINFO: 

http://www.linfo.org/get_block_size.html 

150 Int'l Conf. Foundations of Computer Science |  FCS'11  |

http://www.zdnetasia.com/whitepaper/sun-microsystems_org-20022744.htm


[4] Terminal Window Definition. (2005, May 1). Retrieved 

Nov 9, 2009, from The Linux Information Project: 

http://www.linfo.org/terminal_window.html 

[5] Inode Definition. (2006, Sep 15). Retrieved Jan 5, 2010, 

from The Linux Information Project: 

http://www.linfo.org/inode.html 

[6] Boyne, J. (2005). Disc and Volume Size Limits. 

[7] Diedrich, O. (2009, May 29). The Ext4 Linux File 

System. Retrieved Dec20,2009,from the Open:http://www.h-

online.com/open/features/The-Ext4-Linux-file-system-

746579.html 

[8] Henson, V., Brown, Z., Ts’o, T., & van de Ven, A. 

(2006). Reducing fsck time for EXT2 file systems. Linux 

Symposium, p. 395. 

[9] Ts'o, T. (2002). Planned extensions to the Linux 

EXT2/EXT3 File system. USENIX 2002 Annual Technical 

Conference, Freenix Track , pp. 235–244 . 

[10] Tweedie, S. (98). Journaling the Linux EXT2fs File 

system. LinuxExpo. 

[11] Y. Ts'o , T., & Stephen, T. (2002, June 10). Planned 

extensions to the Linux EXT2/EXT3 File system . USENIX 

Association. 

[12] Layton, J. (2009, March 28). EXT4 File System: 

Introduction and Benchmarks. Retrieved Dec 29, 2009, from 

Linux mag: http://www.linux-mag.com/id/7271/1 

[13] Norcott., W. (98). IOzone File system Benchmark. 

Retrieved Sep 15, 2009,from IOzone: 

ttp://www.IOzone.org/docs/IOzone_msword_98.pdf 

[14] Katcher, J. (97, 10 8). Postmark: A New File System 

Benchmark. Retrieved Dec 1, 2009, from 

http://www.netapp.com/technology/level3/3022.html: 

http://communities.netapp.com/servlet/JiveServlet/download/

2609-1551/Katcher97-postmark-netapp- 

[15] Y. Ts'o , T., & Stephen, T. (2002, June 10). Planned 

Extensions to the Linux Ext2/Ext3 Filesystem . USENIX 

Association. 

[16] Tweedie, S. (98). Journaling the Linux ext2fs 

Filesystem. LinuxExpo. 

[17] Galli Granada, P. (2002, Jan 1). Journal File Systems in 

Linux. p. 6. 

[18] Steve. (2000, Jan 1). JFS overview . Best works in the 

Software Solutions & Strategy Division of IBM in Austin. 

[19] Norcott., W. (98). Iozone Filesystem Benchmark. 

Retrieved Sep 15, 2009, from iozone: 

http://www.iozone.org/docs/IOzone_msword_98.pdf 

[20] Stepohen, S. (2010). Novell makes file storage software 

shift. Retrieved Dec 23, 2009, from  

 

  

Int'l Conf. Foundations of Computer Science |  FCS'11  | 151



152 Int'l Conf. Foundations of Computer Science |  FCS'11  |



SESSION

QUANTUM COMPUTING + AUTOMATA

Chair(s)

TBA

Int'l Conf. Foundations of Computer Science |  FCS'11  | 153



 

154 Int'l Conf. Foundations of Computer Science |  FCS'11  |



On The Power Of Distributed Bottom-up Tree Automata

Kamala Krithivasan 1 and Ajeesh Ramanujan1
1Department of Computer Science and Engineering
Indian Institute of Technology Madras, Chennai - 36

kamala@iitm.ac.in, ajeeshramanujan@yahoo.com

Abstract— Tree automata have been defined to accept trees.
Different types of acceptance like bottom-up, top-down, tree
walking have been considered in the literature. In this
paper, we consider bottom-up tree automata and discuss
the sequential distributed version of this model. Generally,
this type of distribution is called cooperative distributed
automata or the blackboard model. We define the traditional
five modes of cooperation, viz.∗-mode,t-mode,= k, ≥ k,
≤ k (k ≥ 1) modes on bottom-up tree automata. We discuss
the accepting power of cooperative distributed tree automata
under these modes of cooperation. We find that the∗-
mode does not increase the power, whereas the other modes
increase the power. We discuss a few results comparing the
acceptance power under different modes of cooperation.
Keywords:Tree Automata, ranked alphabet, distributed nondeter-
ministic tree automata, modes of cooperation

1. Introduction
Finite tree automata are generalizations of word automata.

While a word automaton accepts a word, a tree automa-
ton accepts a tree . The theory of tree automata arises
as a straight forward extension of the theory of finite
automata [6]. Tree automata were introduced in [4], [5]
and [12] to solve certain decision problems in logic. Since
then they were successfully applied to many other decision
problems in logic and term rewriting, see e.g. [1]. Even
though the two models are used in different settings they
are closely related to each other since a finite automaton
can be seen as a special case of a finite tree automaton.
Trees appear in many areas of computer science and engi-
neering and tree automata are used in applications such as
XML manipulation, natural language processing, and formal
verification and logic design.

According to the manner in which the automaton runs on
the input tree, finite tree automata can be either bottom-up or
top-down. A top-down tree automaton starts its computation
at the root of the tree and then simultaneously works down
the paths of the tree level by level. The tree automaton
accepts the tree if such a run can be defined. A bottom-
up tree automaton starts its computation in the leaves of the
input tree and works its way up towards the root.

A finite tree automaton can be either deterministic or non-
deterministic. This is an important issue since deterministic
top-down automata are strictly less expressive than non-
deterministic top-down automata. For the bottom-up case,

deterministic bottom-up tree automata are just as powerful,
from the point of view of language equivalence, as non-
deterministic bottom-up tree automata. Non-deterministic
top-down tree automata are equivalent to non-deterministic
bottom-up tree automata [1].

In the last few years distributed and parallel comput-
ing has played an important role in Computer Science.
Modelling these concepts using formal models has given
rise to the concept of grammar systems and distributed
automata. Grammar systems can be sequential or parallel. A
co-operating distributed (CD) grammar system is sequential.
Here, all grammars work on one sentential form. At any in-
stant only one grammar is active. This is called a blackboard
model. Suppose a problem is to be solved in a class. The
teacher asks one student to start working on the problem on
the blackboard. The student writes a few steps, then goes
back. Another student comes and continues working on the
problem. On his return, a third student comes and continues.
The process continues till the problem is solved. Now, the
question arises: at what time does one student return and
the next one starts? There may be several ways for defining
this. Correspondingly, in the CD grammar system, there are
different modes of co-operation. The student may return
when he is not able to proceed further (terminating mode);
he may return at any time (∗-mode); he may return after
doing k-steps (=k-mode); he may return after doingk or
less steps (≤-mode); he may return after doingk or more
steps (≥-mode).

In this paper, we consider bottom-up tree automata and
discuss the sequential distributed version of this model.
We define the traditional five modes of cooperation, viz.
∗-mode, t-mode, = k, ≥ k, ≤ k (k ≥ 1) modes on
bottom-up tree automata. We discuss the accepting power
of cooperative distributed tree automata under these modes
of cooperation. We find that the∗-mode does not increase
the power, whereas the other modes increase the power. We
discuss a few results comparing the acceptance power under
different modes of cooperation.

In the next section we give basic definitions needed for the
paper. Section3 contains the definition of cooperative dis-
tributed tree automata and some results about their accepting
power. The paper concludes with a note in section4.
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2. Basic Definitions
Let N be the set of positive integers. Then the set of

finite strings overN is denoted byN∗. The empty string is
denoted byǫ. A ranked alphabetΣ is a finite set of symbols
together with a functionRank : Σ → N . For f ∈ Σ, the
valueRank(f) is called the rank off . For anyn ≥ 0, we
denote byΣn the set of all symbols of rankn. Elements
of rank 0, 1, · · · , n are respectively called constants, unary,
· · · , n-ary symbols.

A tree t over an alphabetΣ is a partial mapping
t : N∗ → Σ that satisfies the following conditions:

• dom(t) is a finite, prefix-closed subset ofN∗, and
• for eachp ∈ dom(t), if Rank(t(p)) = n > 0, then

{i|pi ∈ dom(t)} = {1, 2, · · · , n}.

Each p ∈ dom(t) is called a node of t. The node
with domain elementǫ is the root. For a nodep , we
define the i th child of p to be the nodepi, and we
define the i th subtree of p to be the treet

′

such that
t
′

(p
′

) = t(pip
′

) for all p
′

∈ dom(t
′

). A leaf of t is a
nodep which does not have any children, i.e. there is no
i ∈ N with pi ∈ dom(t). We denote byT (Σ) the set of
all trees over the alphabetΣ. The size of a tree t is the
number of elements indom(t). The height of a tree t is
max{|w| : w ∈ dom(t)}. Given a finite treet, the frontier
of t is the set{p ∈ dom(t)| for all n ∈ N,pn 6∈ dom(t)}.
A tree with roota and subtreest1, t2, · · · , tr is represented
by a(t1, t2, · · · , tr).

Example 1:Let Σ = {a, b, c, g, f},f ∈ Σ2,g ∈ Σ1,

a, b ∈ Σ0. A tree overΣ and its diagrammatic representation
is shown in Figure 1

Let t be the treef(g(a)f(bc)).
dom(t) = {ǫ, 1, 11, 2, 21, 22}.
size(t) = 6.
height(t) = 2.
frontier(t) = {11, 21, 22}.

fǫ

g1

a11

f 2

b21 c 22

Fig. 1: A tree and its diagrammatic representation

A nondeterministic finite tree automata(NFTA) over an
alphabetΣ is a tupleA = (Q,Σ, Qf ,∆) where,

• Q is a finite set of states,
• Σ is a ranked input alphabet,
• Qf ⊆ Q is a set of final states,
• ∆ is a finite set of transition rules.

Each transition rule is a triple of the form
((q1, q2, · · · , qn), f, q) whereq1, q2, · · · , qn, q ∈ Q, f ∈ Σn,

i.e. Rank(f) = n. We usef(q1, q2, · · · , qn) → q to denote
that ((q1, q2, · · · , qn), f, q) ∈ ∆. If Rank(f) = 0, i.e.
f is a constant, then we use rules of the formf → q.
The epsilon rules are denoted by rules of the form
qi → qj . A run of A over a treet ∈ T (Σ) is a mapping
r : dom(t) → Q such that for each nodep ∈ dom(t)
whereq = r(p), we have that ifqi = r(pi) for 1 ≤ i ≤ n

then ∆ has the rulet(p)(q1, q2, · · · , qn) → q. A set
B = {q1, q2, · · · , qn} ⊆ Q,n ≥ 1 with respect to a tree
t
′

∈ T (Σ ∪ Q) is said to be an active state set if every
qi = r(pi), i ≥ 0 for somep ∈ dom(t) and t(p) ∈ Σ.

An instantaneous description(ID)of a NFTA is a pair
(B, t), wheret ∈ T (Σ ∪ Q) andB is a set of active state
set with respect tot.

For two ID’s (B, t), (B
′

, t
′

) we write (B, t) ⊢ (B
′

, t
′

)
if there is a rule of the forma(q1, q2, · · · , qn) → q

′

∈ ∆
such thatt

′

is obtained fromt by replacing a subtree oft
of the form a(t1, t2, · · · , tn) by q

′

(t1, t2, · · · , tn), where
a ∈ Σn, n ≥ 0, t1, t2, · · · , tn ∈ T (Q),r(root(t1)) = q1,

r(root(t2)) = q2, · · · , r(root(tn)) = qn, q1, q2, · · · , qn ∈ B

and B
′

is the set of active state set after performing the
transition.

The initial ID is (φ, t), t ∈ T (Σ) and the final ID is
({qf}, t

′

) for someqf ∈ Qf , t
′

∈ T (Q).The reflexive and
transitive closure of⊢ is denoted by⊢∗.

A run represents the effect of a sequence of ID’s from the
initial ID to a final ID.

For a NFTA A, L(A) = {t ∈ T (Σ)|(φ, t) ⊢∗ ({qf}, t
′

),
qf ∈ Qf , t

′

∈ T (Q)}.
A set L of tree languages overΣ is recognizable if

L = L(A) for some NFTAA. Two NFTA are said to be
equivalentif they recognize the same tree language.

We give an example to show that certain tree languages
are not recognizable.

Example 2:Let Σ = {f, g, a}, whereRank(f) = 2,
Rank(g) = 1, Rank(a) = 0. Consider the tree language
L = {f(gi(a), gi(a))|i > 0}. Let us suppose thatL is
recognizable by an automatonA having k states. Consider
the treet = f(gk(a), gk(a)). t belongs toL, therefore there
is a successful run ofA on t. As k is the cardinality of
the state set, there are two distinct positions along the first
branch of the tree labeled with the same state. Therefore,
one could cut the first branch between these two positions
leading to a termt′ = f(gj(a), gk(a)) with j < k such that
a successful run ofA can be defined ont′ . This leads to a
contradiction withL(A) = L.

The proof can be generalized into a theorem, similar
to pumping lemma for recognizable string languages, to
recognizable tree languages [1].

3. Distributed Nondeterministic Tree Automata
(DNTA)

In this section we define distributed nondeterministic
tree automata(DNTA), the different modes of acceptance
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of DNTA and discuss the power of different modes of
acceptance.

Definition 1: A DNTA is a 4-tuple D = (K,Σ, F,∆)
where,

• K is ann-tuple (K1,K2, · · · ,Kn) where eachKi is a
set of states of theith component;

• Σ is a finite set of ranked alphabet;
• F ⊆

⋃
i Ki is the set of final states;

• ∆ is a n-tuple (δ1, δ2, · · · , δn) of state transistion
function where eachδi is a set of transition rules of the
ith component having the formf(q1, q2, · · · , qn) → q,

f ∈ Σn, q1, q2, · · · , qn ∈ Ki, q ∈
⋃

i Ki or qi → qj .

In the case of DNTA, we can consider many modes of
acceptance depending upon the number of steps the system
has to go through in each of then components. The different
modes of acceptance are∗-mode, t-mode,≤ k-mode,≥
k-mode, and= k-mode, wherek is a positive integer.
Description of each of the above modes of acceptance is
as follows:
t-mode acceptance :An automaton that has a leaf transition
rule begins processing the input tree. Suppose that the system
starts from the componenti. The control stays in component
i as long as it can follow the transition rules in componenti.
Otherwise, it transfers the control to some other component
j, j 6= i which has the transition function to proceed. If
more than one component succeeds, then the selection of
j is done nondeterministically. The process is repeated and
we accept the tree if the system reaches any one of the final
states. It does not matter which component the system is in
while accepting.

Definition 2: The instantaneous description(ID) of a
DNTA D = (K,Σ, F,∆) working in t-mode is given by a
triple (B, t, i) whereB ⊆

⋃
i Ki and it denotes the current

active state set of the whole system,t ∈ T (Σ ∪
⋃

i Ki) and
i, 1 ≤ i ≤ n the index of the component in which the system
is currently in.

The transition between the ID’s is defined as follows:

i) (B, t, i) ⊢t (B
′

, t
′

, i) if there is a rule of the
form a(q1, q2, · · · , qn) → q

′

∈ δi such thatt
′

is
obtained from t by replacing a subtree oft of
the form a(t1, t2, · · · , tn) by q

′

(t1, t2, · · · , tn),
where a ∈ Σn, n ≥ 0, t1, t2, · · · , tn ∈ T (

⋃
i Ki),

r(root(t1)) = q1, r(root(t2)) = q2, · · · ,
r(root(tn)) = qn, q1, q2, · · · , qn ∈ B and B

′

is the set of active state set after performing the
transition.

ii) (B, t, i) ⊢t (B, t, j) iff componenti does not have a
transition to proceed and componentj has a transition
to proceed.

The reflexive and transitive closure of⊢t is denoted by
⊢∗
t .
Definition 3: The language accepted by a DNTA

D = (K,Σ, F,∆) working in t-mode is defined as follows:

Lt(D) = {t ∈ T (Σ)|(φ, t, i) ⊢∗
t ({qf}, t

′

, j),
t
′

∈ T (
⋃

i Ki), for someqf ∈ F, 1 ≤ i, j ≤ n}.
We now give an example of a distributed bottom up tree

automata working int-mode.
Example 3:Consider the language

L1 = {a(bd(gjd)i(f), ce(hke)l(f)), i, j, k, l ≥ 1,
|i− l| ≤ 1} overΣ = {a, b, c, d, e, f, g, h}, a ∈ Σ2,b, c, d, e,

g, h ∈ Σ1,f ∈ Σ0.

We define a distributed tree automaton
D1 = (K,Σ, {qa},∆) working in t-mode as follows.

The components are defined as follows
• Component1

– K1 = {qf , qg, q1, q2},
– δ1 = {d(qf ) → qg, g(qg) → q1, g(q1) → q1,

q2 → qf}

• Component2
– K2 = {qf , qe, q1, q2},
– δ2 = {e(qf ) → qe, h(qe) → q2, h(q2) → q2,

q1 → qf}

• Component3
– K3 = {qf , qa, qb, qc, qd, qe, q1, q2},
– δ3 = {f → qf , b(qg) → qb, c(qe) → qc,

a(qb, qc) → qa}
The processing starts in component 3 , with the two leaves

using the rulef → qf . As further processing is not possible
in component3, processing continues with2 or 1. Then it
alternates between1 and2 processingd’s, g’s, e’s andf ’s.
Finally when the labels areb andc, processing takes the tree
to qb andqc and in component3 stateqa is reached by the
root.

Theorem 1:There exists a language accepted by a DNTA
working in t-mode which is not recognizable.

Proof: Consider the tree languageL1. Let us suppose
thatL1 is recognizable by an automatonA havingk states.
Consider the treet = a(bd(gd)k(f), ce(he)k(f)), k > 0.
t belongs toL1, therefore there is a successful run ofA

on t. As k is the cardinality of the state set, there are
two distinct positions along the first branch of the tree
labeled with the same state. Therefore, one could cut the
first branch between these two positions leading to a term
t′ = a(bd(gd)j(f), ce(he)k(f)) with j < k such that a
successful run ofA can be defined ont′ . This leads to
a contradiction withL(A) = L1. SoL1 is not recognizable.

∗-mode acceptance :An automaton that has a leaf transi-
tion rule begins processing the input tree. Suppose that the
system starts from the componenti. Unlike the termination
mode, the automaton can transfer the control to any of the
components at any time i.e., if there is somej, j 6= i such
that the next move is possible then the system can transfer
the control to the componentj. The selection ofj is done
nondeterministically if there is more than onej.
The ID and the language accepted by the system in∗ mode,
L∗(D) is defined as follows.
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Definition 4: The instantaneous description(ID) of a
DNTA D = (K,Σ, F,∆) working in ∗-mode is given by a
triple (B, t, i) whereB ⊆

⋃
i Ki and it denotes the current

active state set of the whole system,t ∈ T (Σ ∪
⋃

i Ki) and
i, 1 ≤ i ≤ n the index of the component in which the system
is currently in.
The transition between the ID’s is defined as follows:

i) (B, t, i) ⊢∗ (B
′

, t
′

, i) if there is a rule of the
form a(q1, q2, · · · , qn) → q

′

∈ δi such thatt
′

is
obtained from t by replacing a subtree oft of
the form a(t1, t2, · · · , tn) by q

′

(t1, t2, · · · , tn),
where a ∈ Σn, n ≥ 0, t1, t2, · · · , tn ∈ T (

⋃
i Ki),

r(root(t1)) = q1, r(root(t2)) = q2, · · · ,
r(root(tn)) = qn, q1, q2, · · · , qn ∈ B and B

′

is
the set of active state set after performing the
transition.

ii) (B, t, i) ⊢∗ (B, t, j) iff componentj has a transition
to proceed.

The reflexive and transitive closure of⊢∗ is denoted by
⊢∗
∗.
Definition 5: The language accepted by a DNTA

D = (K,Σ, F,∆) working in ∗-mode is defined as follows:
L∗(D) = {t ∈ T (Σ)|(φ, t, i) ⊢∗

∗ ({qf}, t
′

, j),
t
′

∈ T (
⋃

i Ki), for someqf ∈ F, 1 ≤ i, j ≤ n}
We give an example of a distributed bottom up tree

automata working in∗-mode.
Example 4:Consider the language

L2 = {a(bi(d), cj(d)), i, j ≥ 1} overΣ = {a, b, c, d},
a ∈ Σ2, b, c ∈ Σ1,d ∈ Σ0. We define a distributed tree
automatonD2 = (K,Σ, {qf},∆) as follows.

The components are defined as follows
• Component1

– K1 = {qb, qd}
– δ1 = {b(qd) → qb, b(qb) → qb}

• Component2
– K2 = {qd, qc}
– δ2 = {c(qd) → qc, c(qc) → qc}

• Component3
– K3 = {qf , qb, qc, qd}
– δ3 = {d → qd, a(qb, qc) → qf}

Processing starts in component 3, with the two leaves using
the rule d → qd. As further processing is not possible in
component 3, processing continues with components 1 or 2.
Then it alternates between components 1 and 2 processing
b’s and c’s. When all theb’s and c’s are exhausted the
automaton moves to component 3 and reaches the final state
by using rulea(qb, qc) → qf . The processing of any tree
in L2 uses component 3 two times, in the first and the last
step.

Theorem 2:For any DNTAD working in∗-mode,L∗(D)
is recognizable.

Proof: Let D = (K,Σ, F,∆) be a DNTA work-
ing in ∗-mode where,∆ = (δ1, δ2, · · · , δn) and the

components have statesK1,K2, · · · ,Kn. Define a NFTA
N = (K

′

,Σ, F
′

, δ) where,

K
′

= {[q, i]|q ∈
⋃

i

Ki, 1 ≤ i ≤ n}

F
′

= {[qf , i]|qf ∈ F, 1 ≤ i ≤ n}

δ contains the following transitions
for eacha(q1, q2, · · · , qr) → q ∈ δi, r ≥ 0, q1, q2, · · · ,
qr ∈ Ki, 1 ≤ i ≤ n, a ∈ Σ,
{a([q1, i1], [q2, i2], · · · , [qr, ir]) → [q, j]} ∈ δ,

1 ≤ j ≤ n, q ∈ Kj , 1 ≤ i1, i2, · · · , ir ≤ n.
If qs → qt is a rule in theith component andqt ∈ Ki, then
add [qs, i] → [qt, j], 1 ≤ j ≤ n to δ.
If a tree t is accepted by a DNTA, then there is a sequence
of ID’s (φ, t) ⊢ (B1, t1) ⊢ · · · ⊢ ({qf}, tr) leading to accep-
tance. The corresponding sequence of ID’s for the NFTA is
as follows:(φ, t, i0) ⊢ (B1, t1, i1) ⊢ · · · ⊢ ({qf}, tr, ir),
1 ≤ ij ≤ n. Similarly, if there is a sequence of ID’s
leading to acceptance in NFTA, then there is a corresponding
sequence of ID’s leading to acceptance in the DNTA. This
construction of NFTA shows thatL∗(D) = L(N) and so
L∗(D) is recognizable.

= k-mode (≤ k-mode,≥ k-mode )acceptance :An
automaton that has a leaf transition rule begins processing
the input tree. Suppose that the system starts from the
componenti. The automaton transfers the control to another
componentj, j 6= i only after the completion of exactly
k(k

′

(k
′

≤ k), (k
′

≥ k)) number of steps in the component
i. The selection ofj is done nondeterministically if there is
more than onej.

Definition 6: The instantaneous description(ID) of a
DNTA D = (K,Σ, F,∆) working in = k-mode, ≤ k-
mode,≥ k-mode is given by a4-tuple (B, t, i, j) where
B ⊆

⋃
i Ki and it denotes the current active state set of

the whole system,t ∈ T (Σ ∪
⋃

i Ki), i the index of the
component in which the system is currently in,1 ≤ i ≤ n,
j ≥ 0 denotes the number of steps for which the system has
been in theith component.
The system accepts the tree only if the DNTA is in the
final state in some componenti after processing the tree
and provided it has completedk-steps in the componenti in
the case of= k-mode of acceptance (it has completed some
k

′

(k
′

≤ k) steps in the componenti in the case of≤ k-
mode acceptance or it has completed somek

′

(k
′

≥ k) steps
in the componenti in the case of≥ k-mode of acceptance.
The language accepted by the respective modes are denoted
asL=k, L≤k, L≥k.

We give an example of a distributed bottom-up tree
automata working in= 2-mode.

Example 5:Consider the language
L4 = {b(a(b2i(d), c2j(d)), i, j ≥ 1, i = j or i = j + 1 or
j = i+ 1} overΣ = {a, b, c, d}, a ∈ Σ2, b, c ∈ Σ1, d ∈ Σ0.
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We define a distributed tree automaton
D4 = (K,Σ, {qf},∆) working in = 2-mode as follows.

The components are defined as follows

• Component1

– K1 = {qb, qd},
– δ1 = {b(qd) → qb, b(qb) → qb}

• Component2

– K2 = {qd, qc},
– δ2 = {c(qd) → qc, c(qc) → qc}

• Component3

– K3 = {qf , qa, qb, qc, qd},
– δ3 = {d → qd, a(qb, qc) → qa, b(qa) → qf}

Component 3 starts the processing, active for the first two
steps, then the system switches between component 1 and
2 and ends the processing with component 3 for the last 2
steps. Using the technique used in example 2 we can show
thatL4 is not recognizable.

Similarly we can find languages for= k-mode fork ≥ 3.
Theorem 3:There exists a language accepted by a DNTA

working in = k-mode,k ≥ 1 which is not recognizable.
Proof: For k = 2, example 5 prove the result. For

k > 2 consider the language
L5 = {ak−1ak−2 · · · a1a0(b

ki(ek−2(d)), ckj(g)),i, j ≥ 1,
k > 2, i = j or i = j + 1 or j = i+ 1} over
Σ = {b, c, d, e, g, a0, a1, a1, a2, · · · , ak−1}, a0 ∈ Σ2, b, c, e,

a1, · · · , ak−1 ∈ Σ1, d, g ∈ Σ0.
Constructing a DNTA forL5 is similar to the construction in
example 5. It is not difficult to see thatL5 can be accepted
by a DNTA working in = k-mode with 3 components.
Using the technique used in example 2 we can show that
L5 is not recognizable.

Theorem 4:Thereexists a language accepted by a DNTA
working in ≥ k-mode,k ≥ 1 which is not recognizable.

Proof: Consider the language
L6 = {fnak−1ak−2 · · · a1a0(b

ki(ek−2(d)), ckj(g)), i, j,
n ≥ 1, k > 2, i = j or i = j + 1 or j = i + 1} over
Σ = {b, c, d, e, f, g, a0, a1, a2, · · · , ak−1}, a0 ∈ Σ2, b, c, e,

f, a1, · · · , ak−1 ∈ Σ1, d, g ∈ Σ0.
Constructing a DNTA forL6 is similar to the construction

in example 5. It is not difficult to see thatL6 can be accepted
by a DNTA working in≥ k-mode with3 components. Using
the technique used in example 2 we can show thatL6 is
not recognizable. Fork = 2, example similar to 5 can be
provided.

Theorem 5:Thereexists a language accepted by a DNTA
working in ≤ k-mode, which is not recognizable.

Proof: Consider the language
L7 = {g(am(e), bn(e)),m ≥ 3, m+5

8
≤ n ≤ m+3

2
} over

Σ = {g, a, b, e}, g ∈ Σ2, a, b ∈ Σ1, e ∈ Σ0.
We define a distributed tree automaton
D7 = (K,Σ, {qf},∆) working in ≤ 2-mode as follows.

The components are defined as follows

• Component1

– K1 = {q11, q12, q21, q22, q23},
– δ1 = {a(q11) → q12, a(q12) → q12, e → q11,

g(q12, q21) → qf , g(q12, q22) → qf ,

g(q12, q23) → qf}

• Component2

– K2 = {q11, q21, q22, q23, },
– δ2 = {e → q11, b(q11) → q21, q21 → q22,

q22 → q23, q23 → q11}

Using the technique used in example 2 we can show that
L7 is not recognizable.

Theorem 6:For any recognizable languageL, there is a
DNTA D working in = 1-mode with two components.

Proof: Let A = (Q,Σ, Qf ,∆) be a NFTA rec-
ognizing L. We construct a distributed tree automaton
D = (K,Σ, Qf ,∆

′

) working in = 1-mode as follows.
The components are defined as follows

• Component1

– K1 = Q,
– δ1 = ∆

• Component2

– K2 = Q,
– δ2 = ∆

The construction shows that any recognizable language
can recognized by by a DNTA working in= 1-mode with
two components.

Theorem 7:For any recognizable languageL, there is a
DNTA D working in t-mode with two components.

Proof: Let A = (Q,Σ, Qf ,∆) be a NFTA rec-
ognizing L. We construct a distributed tree automaton
D = (K,Σ, Qf ,∆

′

) working in t-mode as follows.
The components are defined as follows

• Component1

– K1 = Q ∪ {q
′

|q ∈ Q}
– δ1 contains the following transitions

for eacha(q1, q2, · · · , qn) → q ∈ ∆, n ≥ 0,
q1, q2, · · · , qn ∈ K1, a ∈ Σ ∪ {ǫ}
a(q1, q2, · · · , qn) → q

′

∈ δ1, q
′

∈ K1.

• Component2

– K2 = Q ∪ {q
′

|q ∈ Q}
– δ2 contains the following transitions

∀q
′

∈ K2, q
′

→ q ∈ δ2, q ∈ K2.

The construction shows that any recognizable language can
recognized by by a DNTA working int-mode with two
components.

Theorem 8:For any DNTA working in ∗-mode, there is
a DNTA working in= 1-mode with two components.

Proof: From theorem 2 we know that any DNTA
working in ∗-mode is recognizable. The theorem follows
from the result of theorem 6.
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We conjecture the following.
Conjecture 1: Any DNTA D working in = k mode with

2 components is recognizable.
Conjecture 2:For any DNTA working in = k-mode,

there is a DNTA working in= 1-mode.

4. Conclusion
In this paper we have defined cooperative dis-

tributed tree automata and the languages accepted under
∗, t,= k,≤ k,≥ k (wherek is an integer≥ 1) modes. We
showed that the power of tree automata is not increased
by the ∗ mode of cooperation, whereas under the other
modes, the power is increased. We have proved some results
comparing their acceptance power. Other comparisons and
decidability issues are being pursued. We are also looking
into other application areas like representation of XML
schemas and in syntactic pattern recognition.

The application of variable arity trees in representing
XML schemas is considered in Murata [9]. The inference
of such tree grammars is considered in [10]. Whether
distributed tree automata (may be for variable arity trees)
will be a better model for representing of XML schemas in
an application which can be explored. Distributed version
of automata for variable arity trees and other models of
tree automata like top-down acceptance and tree walking
automata may be more helpful in the above process.
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Quantum Algorithm for Decomposing Black-Box Finite Abelian
Groups

Yong Zhang
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Abstract— Cheung and Mosca [1] gave an efficient quan-
tum algorithm for decomposing finite abelian groups in a
unique-encoding group model. We present another efficient
quantum algorithm for this problem in a more general model,
the black-box group model, where each group element is not
necessarily uniquely encoded.

Keywords: quantum computation, black-box group model

1. Introduction

Any finite abelian group G can be decomposed into
the direct sum of cyclic subgroups of prime power order.
However, given a set of generators for G, no efficient
classical algorithm is known to find the decomposition of
G, i.e., find generators for the cyclic subgroups of G. This
problem is at least as hard as INTEGER FACTORIZATION –
finding nontrivial factors of a given integer N is equivalent
to finding the decomposition of the (finite abelian) group
Z∗
N , the multiplicative group of integers modulo N .

Decomposing finite abelian groups plays an important
role in quantum computation, the study of the information
processing tasks that can be accomplished using quantum
mechanical systems. We call an algorithm that is defined
over a traditional computational model a classical algorithm
and an algorithm that is defined over a quantum computa-
tional model a quantum algorithm.

In 1994 Shor [2] presented polynomial-time quantum
algorithms for two important problems INTEGER FACTOR-
IZATION and DISCRETE LOGARITHM. No efficient classical
algorithms are known for these two problems. These two
problems are widely believed to be hard on classical com-
puters; their hardness are the basic assumptions for several
cryptosystems including the widely used RSA public-key
cryptosystem. Shor’s paper is the first illustration of the
practical importance of quantum computation. A key com-
ponent in Shor’s algorithms is the efficient implementation
of the Quantum Fourier Transform (QFT), which explores
the underlying algebraic structure of the problems. From
this perspective, Shor’s quantum algorithms, together with
several other quantum algorithms, can be further generalized

to a quantum algorithm for the HIDDEN SUBGROUP problem
where the given group G is abelian. In the case when G is
non-abelian, the HIDDEN SUBGROUP problem generalizes
other well-known problems such as GRAPH ISOMORPHISM.
However, the non-abelian case is much harder to solve and
remains a major challenge in quantum computation.

Before one can efficiently implement QFT to solve the
abelian HIDDEN SUBGROUP problem, the decomposition of
the given abelian group G must be known. Cheung and
Mosca [1] first studied the problem of decomposing finite
abelian groups. They gave an efficient quantum algorithm
for this problem. However, one of their assumptions is that
each element of the input group G is uniquely represented
by a binary string. In another word, their quantum algorithm
only works for a unique-encoding group model.

In this paper we study the problem of decomposing finite
abelian groups in a more general group model — the black-
box group model. In the black-box group model elements
of the input group G are not necessarily uniquely encoded.
The black-box group model was first introduced by Babai
and Szemerédi [3] as a general framework for studying algo-
rithmic problems for finite groups. It is a widely used model
in computational group theory and quantum computation
[4], [5], [6], [7], [8], [9]. This non-unique encoding feature
enables this model to handle factor groups [3]. A factor
group (also known as quotient group) is a group obtained
by identifying together elements of a larger group using
an equivalence relation. In this paper we give an efficient
quantum algorithm for decomposing finite abelian groups in
the black-box group model.

2. Perliminaries

In this section we give a brief introduction of the fun-
damental results in group theory. We refer the readers to a
classic book on group theory [10] for more details.

A set G is called a group if there is a binary operation ·
defined on G such that:

1) for any x, y ∈ G, x · y ∈ G.
2) for any x, y, z ∈ G, (x · y) · z = x · (y · z).
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3) there is an identity element e ∈ G such that for any
x ∈ G, x · e = e · x = x.

4) for any x ∈ G, there is a unique x−1 ∈ G such that
x · x−1 = x−1 · x = e.

The set of integers Z together with the “+” operation is
an example of a group. Usually if the binary operation · is
obvious from the context, we will just write xy instead of
x · y.

A group G is abelian if and only if for any x, y ∈ G,
xy = yx. Otherwise, G is nonabelian. A group G is cyclic
if there exist a ∈ G such that G = {an|n ∈ Z}. Then we
say a is a generator of G. A subgroup H of a group G is a
subset which is also a group under the same operation in G.
If H is a subgroup of a group G, then a right coset of H is a
subset S of G such that ∃x ∈ G for which S = Hx = {yx :
y ∈ H}. A left coset of H is defined similarly. The order of
a group G, denoted by |G|, is the cardinality of the set G.
The order of the element a is the smallest number n such
that an = e, denoted by ord(a). If such n ∈ Z exists, we
say a has finite order. In fact, the subset {e, a, a2, . . . , an−1}
forms a subgroup. We call this subgroup the cyclic subgroup
generated by a and denote it by 〈a〉.

Lagrange’s Theorem states that if H is a subgroup of a
group G, then |H| divides |G|. We say [G : H] = |G|/|H| is
the index of H in G. Let G be a group, p be a prime number,
and P be a subgroup of G. If |P | = pr for some r ∈ Z, we
say P is a p-subgroup of G. If furthermore pr divides |G|
but pr+1 does not, then we say P is a Sylow p-subgroup
of G. Let G1, G2 be groups such that G1 ∩G2 = {e}. The
set {(a1, a2) | a1 ∈ G1, a2 ∈ G2}, denoted by G1 ⊕ G2,
is called the direct sum of G1 and G2. G1 ⊕G2 is a group
under the binary operation · such that (a1, b1) · (a2, b2) =
(a1a2, b1b2).

The fundamental theorem of finite abelian groups states
the following.

Theorem 2.1: Given a set {g1, . . . , gn} of generators
of the finite abelian group G, find a set of elements
h1, . . . , hk ∈ G such that G = 〈h1〉 ⊕ · · · ⊕ 〈hk〉 and 〈hi〉
is a cyclic group of prime power order for all 1 ≤ i ≤ k.

Next we introduce the black-box group model. We fix the
alphabet Σ = {0, 1}. A group family is a countable sequence
B = {Bm}m≥1 of finite groups Bm, such that there exist
polynomials p and q satisfying the following conditions. For
each m ≥ 1, elements of Bm are encoded as strings (not
necessarily unique) in Σp(m). The group operations (inverse,
product and identity testing) of Bm are performed at unit
cost by black-boxes (or group oracles). The order of Bm is
computable in time bounded by q(m), for each m. We refer

to the groups Bm of a group family and their subgroups
(presented by generator sets) as black-box groups. Common
examples of black-box groups are {Sn}n≥1 where Sn is the
permutation group on n elements, and {GLn(q)}n≥1 where
GLn(q) is the group of n × n invertible matrices over the
finite field Fq. Depending on whether the group elements are
uniquely encoded, we have the unique encoding model and
non-unique encoding model, the latter of which enables us
to deal with factor groups [3]. In the non-unique encoding
model an additional group oracle has to be provided to test
if two strings represent the same group element.

3. The Algorithm

Our algorithm uses a divide-and-conquer approach. The
algorithm first finds the Sylow p-subgroups of the given
input group and then decomposes each Sylow p-subgroup.
We start with two technical Lemmas. The first Lemma shows
how to find a p-Sylow subgroup in quantum polynomial
time.

Lemma 3.1: Let B = {Bm}m>0 be a group family. Let
G < Bm be an abelian black-box group given by generating
sets S = {g1, . . . , gs}. For any prime number p, the gener-
ating sets for the p-Sylow subgroup of G can be computed
in quantum polynomial time.

Proof: Since G is abelian, for any prime p, there
is an unique p-Sylow subgroup of G. Let n be the the
order of Bm. By our assumption for black-box model, we
can efficiently compute n. Furthermore, we can use Shor’s
algorithm to compute the prime factorization pe11 · · · perr of n.
If p is not a factor of n, then clearly the p-Sylow subgroup of
G is trivial. If p is equal to pk for some 1 ≤ k ≤ r, then we
compute the set Sk = {g′1, . . . , g′s} where g′i = g

n/p
ek
k

i . Note
that this can be done efficiently using modular exponetiation.
We claim that Sk is the generating set for the p-Sylow
subgroup. Clearly the order of g′i is power of p for all i,
so 〈Sk〉 is a p-subgroup of G. To show that 〈Sk〉 is indeed
the p-Sylow subgroup it suffices to show that any gi ∈ S
can be written as products of elements in 〈S1〉, . . . , 〈Sr〉, i.e.,
G = 〈S1〉 ⊕ · · · ⊕ 〈Sr〉. Since Σr

l=1n/p
el
l is coprime with n

and thus the order of any elements in G, for any gi ∈ G,
g
Σr

l=1n/p
el
l

i , which is a product of elements in 〈S1〉, . . . , 〈Sr〉,
generates the same cyclic subgroup that gi generates.

Any finite abelian p-group can be expressed as a direct
sum of m cyclic groups with order pe1 , . . . , pem and e1 ≤
· · · ≤ em. We say that (e1, . . . , em) is the type of the
p-group. In the second lemma we describe a method to
decompose a finite abelian p-group.

Lemma 3.2: Let G be a finite abelian p-group of type
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(m1,m2, . . . ,ms). Let g1, . . . , gi be elements of G of or-
ders pm1 , . . . , pmi and for any j 6= k and 1 ≤ j, k ≤
i the cyclic groups 〈gj〉, 〈gk〉 have trivial intersection.
Given a〈g1, . . . , gi〉 as an element in the factor group
G/〈g1, . . . , gi〉 of order pmi+1 with ap

mi+1
= gx1

1 · · · gxi
i ,

we can efficiently find another element gi+1 of order pmi+1

where 〈gi+1〉 and is 〈g1, . . . , gi〉 have trivial intersection.

Proof: First we show that xj is a multiple of pmi+1

for all 1 ≤ j ≤ i.

ap
mi

= (ap
mi+1

)p
mi−mi+1

= (gx1
1 · · · gxi

i )p
mi−mi+1

= gx1p
mi−mi+1

1 · · · gxip
mi−mi+1

i .

But ap
mi is clearly in 〈g1, . . . , gi−1〉, so gxip

mi−mi+1

i is
also in 〈g1, . . . , gi−1〉, therefore xi is a multiple of pmi+1 .
Similarly we have

ap
mi−1

= (ap
mi+1

)p
mi−1−mi+1

= gx1p
mi−1−mi+1

1 · · · gxip
mi−1−mi+1

i

= gx1p
mi−1−mi+1

1 · · · gxi−1p
mi−1−mi+1

i−1 .

By the same reasoning xi−1 is also a multiple of pmi+1 .
Clearly this inductive procedure can go down to i = 1. Thus
xj is a multiple of pmi+1 for all 1 ≤ j ≤ i. Let yj =
xj/p

mi+1 for 1 ≤ j ≤ i and gi+1 = ag−y1

1 · · · g−yi

i . Then

gp
mi+1

i+1 = (ag−y1

1 · · · g−yi

i )p
mi+1

= ag−x1
1 · · · g−xi

i

= e

It is also easy to verify that 〈gi+1〉 and 〈g1, . . . , gi〉 have
trivial intersection.

Now we describe the whole algorithm. Given a generating
set {g1, . . . , gs} of a finite abelian group G ⊆ Bm, we
want to output a set of elements {d1, . . . , dl} such that
G = 〈d1〉 ⊕ · · · ⊕ 〈dl〉. The algorithm uses a divide-and-
conquer approach. It first computes the generating set of each
p-Sylow subgroup, and then convert each generating set into
an “indepedent generating set”. We say a generating set S
of a group is indepedent if for any two element si, sj ∈ S,
〈si〉 and 〈sj〉 has trivial intersection. Note that in a p-group
an independent generating set is exactly the decomposition
of the p-group.

We first compute |Bm|. Recall that in the black-box
model, |Bm| is computable in time bounded by q(m), for
each m. In some cases, we will also obtain the prime
factorization of |Bm|. If not, we can always use Shor’s
quantum algorithm for INTEGER FACTORIZATION to get the
prime factorization pe11 · · · perr . For 1 ≤ i ≤ s, compute
the order of gi. This can be done using Watrous’s quantum

procedure for computing order of an group element in any
solvable group [4]. Then, by Lemma 3.1 we can compute
the generating set of each pi-Sylow subgroup, 1 ≤ i ≤ r.

Let Xi be the generating set for the pi-Sylow subgroup.
For each 1 ≤ i ≤ r, we use Lemma 3.2 to compute an
independent generating set Si of the pi-Sylow subgroup.
We will construct Si in steps. Initially Si is empty. We
add one element to Si at each step. Suppose after the
(j − 1)’th step, Si = {s1, . . . , sj−1}. At the j’th step,
first compute an element h ∈ Xi such that h〈Si〉 has the
maximum possible order in the factor group 〈Xi〉/〈Si〉. This
can be done by the constructive group membership test
described in [11], i.e., we will get x1, . . . , xj−1 such that
hord(h〈Si〉) = Πj−1

k=1s
xk

k . By Lemma 3.2, we will add the
element sj = hΠj−1

k=1s
−xk/ord(h〈Si〉)
k to the set Si. We then

test if Xi is a subset of 〈Si〉. If yes, we can stop and return
Si as the independent generating set. Otherwise, we will go
to the j + 1’th step.

Once we compute the independent generating set Si for
each pi-Sylow subgroup, the decomposition of G is obtained
as ∪r

i=1Si.

4. Discussion

In this paper we present an efficient quantum algorithm
to decompose finite-abelian groups in a more general group
model — black-box group model. Comparing to Cheung
and Mosca’s algorithm [1], our algorithm is conceptually
simpler and only uses elementary results in group theory.
Components of our algorithm may be used to construct
quantum algorithms for HIDDEN SUBGROUP problem over
certain non-abelian finite groups.
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Tree Insertion Systems
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Abstract— We define tree insertion systems which generates
trees. The generative power is compared with the traditional
generating and accepting devices for trees. Methods for
conversion of tree insertion system to regular tree grammar
and finite state bottom-up tree automata to tree insertion
system are expalined with suitable examples. An outline
of proof by induction for the equivalence of tree insertion
system and regular tree grammars is given. Some extensions
of tree insertion system, where tree nodes can have variable,
but fixed arity and their powers are also discussed. Its found
that such an extended system is capable of generating parse
trees of context-fre grammars.

Keywords: Tree insertion system, Regular tree grammar, Non
deterministic finite tree automata, Extended tree insertion system

1. Introduction

Insertion-deletion systems are one of the models studied
inspired by biology [2]. The operation of insertion and
deletion on strings have some relevances to some phenomena
in human genetics [3]. A DNA strand can be inserted
into/deleted from another strand. The idea of insertion-
deletion has been extended to arrays also [5]. In this paper
we consider the insertion systems for trees. Trees are impor-
tant data structures and find use in many applications from
the description of parse trees to representation of XML and
DTD [6]. Considering insertion systems in trees can have
profound applications in such areas [1].

An insdel system [2] is a constructγ = (V, T,A,R),
whereV is an alphabet,T ⊆ V , A is a finite language over
V, and R is a finite set of triples of the form(u, α/β, v),
whereu, v ∈ V ∗, (α, β) ∈ (V + × {λ}) ∪ ({λ} × V +). The
elements ofT are terminal symbols, those ofA areaxioms,
the triples inR are insertion-deletion rules. The meaning of
(u, λ/β, v) is that β can be inserted in betweenu and v;
the meaning of(u, α/λ, v) is thatα can be deleted from the
context (u, v). Stated otherwise,(u, λ/β, v) corresponding
to the rewriting ruleuv → uβv, and(u, α/λ, v) corresponds
to the rewriting ruleuαv → uv.

Similarly a tree, sayt can be inserted as a sub-tree of
another tree, sayT based on some context. The insertion
may be fixed arity or variable arity. Here arity refers to
the arity of nodes in treeT . In this paper we consider
the insertion of trees into trees and call it astree insertion
system. The major focus in this paper is fixed arity insertion.

1.1 Basic Definitions

Let N be the set of positive integers. Then the set of
finite strings overN is denoted byN∗. The empty string is
denoted byǫ. A ranked alphabetΣ is a finite set of symbols
together with a functionRank: Σ → N . For f ∈ Σ, the
value Rank(f) is called the rank off . For everyn ≥ 0,
we denote byΣn the set of all symbols of rankn. Elements
of rank 0, 1, · · · , n are respectively called constants, unary,
· · · , n-ary symbols.

A tree t [4] over an alphabetΣ is a partial mapping
t : N∗ → Σ that satisfies the following conditions:

• dom(t) is a finite, prefix-closed subset ofN∗, and
• for eachp ∈ dom(t), if Rank(t(p)) = n > 0, then

{i|p.i ∈ dom(t)} = {1, 2, · · · , n}

Eachp ∈ dom(t) is called anodeof t. The node with domain
elementΣ is theroot. For a nodep, we define theith child

of p to be the nodep.i, and we define theith subtree

of p to be the treet′ such that t′(p) = t(p.i.p′),∀p′ ∈
dom(t). We denote byT (Σ) the set of all trees over the
alphabetΣ. The sizeof a tree is the number of elements in
dom(t). The height of a treet is max{|w| : w ∈ dom(t)}.
Given a finite tree t, the frontier of t is the set
{p ∈ dom(t)|∀n ∈ N, p.n /∈ dom(t)}. A tree with root a
and subtreest1, t2, · · · , tr is represented bya(t1, t2, · · · , tr).

Example 1:Let Σ = {a, b, c}, b ∈ Σ2, c ∈ Σ1, a ∈ Σ0.

A tree overΣ and its diagrammatic representation is shown
in Fig. 1

Let t be the treeb(b(b(a, a), a), c(a)).
dom(t) = {ǫ, 1, 1.1, 1.1.1, 1.1.2, 1.2, 2, 2.1}.
size(t) = 8.
height(t) = 3.
frontier(t) = {1.1.1, 1.1.2, 1.2, 2.1}.

bǫ

b1

b1.1

a1.1.1 a 1.1.2

a1.2

c 2

a 2.1

Fig. 1: A tree and its diagrammatic representation
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A Regular Tree Grammar(RTG) [4] is a construct
G = (N,T, S, P ) where,

• N is a finite set of non terminals,
• T is a finite set of terminals,
• S ∈ N is the start symbol,
• P is a finite set of production rules.

Each rule in P is of the form
X → x(X1, X2, · · · , Xp),p ≥ 0, where x ∈ T and
X,X1, X2, · · · , Xp ∈ N .

The language generatedby anRTG G is represented by
L(G), is defined as the set of trees generated byG using
productions rules inP , starting from S. A regular tree
languageis a language generated by a regular tree grammar.

Example 2:The language generated by the tree gram-
mar Gr2 = (N,T, S, P ) where, N = {S,B,B′, C,H},
T = {a2, b1, c1, h0} and

P = {S → a(B,C), B → b(B′), B′ → b(B)|b(H),

C → c(C)|c(H), H → h}

is L(Gr2) = {a(bi(h), cj(h)), i, j ≥ 1, i%2 = 0}.

A non deterministic botttom-up finite tree automata
(NFTA) [4] over an alphabetΣ is a tuple
D = (Q,Σ, Qf ,∆) where,

• Q is a finite set of states,
• Σ is a ranked input alphabet,
• Qf ⊆ Q is a set of final states,
• ∆ is a finite set of transition rules.

Each transition rule is a triple of the form
((q1, q2, · · · , qn), f, q) whereq1, q2, · · · , qn, q ∈ Q,f ∈ Σn,
i.e. Rank(f) = n. We usef(q1, q2, · · · , qn) → q to denote
that((q1, q2, · · · , qn), f, q) ∈ ∆. If Rank(f) = 0 ,i.e.f is a
constant, then we use rules of the formf → q. The epsilon
rules are denoted by rules of the formqi → qj . A run
of A over a treet ∈ T (Σ) is a mappingr : dom(t) → Q

such that for each nodep ∈ dom(t) where q = r(p), we
have that ifqi = r(pi) for 1 ≤ i ≤ n then ∆ has the rule
t(p)(q1, q2, · · · , qn) → q.

Example 3:The tree automata Dr4 = (Q,Σ, Qf ,∆)
accepts trees with odd number ofa′s over the alphabet
Σ = {a2, b2, c0} where Q = {e, o},Qf = {o} and ∆
contains following transitions.

c → e b(e, e) → e b(o, o) → e

a(e, o) → e a(o, e) → e b(e, o) → o

b(o, e) → o a(e, e) → o a(o, o) → o

2. Definition
The tree insertion systemis a tuple

Γ = (Σ,A,A′, R) where,

• Σ is a finite set ofranked alphabets.
• A = {A1∪A2∪ · · ·∪Am}, where eachAi, 1 ≤ i ≤ m

is a finite set of axioms.
With each setAi is associated a flagFi which is a
triple [xi, yi, zi], where xi, yi, zi ∈ {−1, 0, 1, · · · , k},
for some fixedk, are integers, which plays some role
in language generation unlessxi = yi = zi = −1. (For
each insertion fromAi, the xi value gets incremented
if xi ≤ yi and thexi value gets decremented ifxi > yi.
Thexi will be set tozi if one insertion fromAi happens
when xi = yi. The tree insertion system is said to be
stable, ifxi = yi for all flags withxi ≤ yi initially and
xi 6= yi for all flags withxi > yi initially.)

• A′ ⊆ A is a finite set ofinitial axioms.
• R = {r1, r2, · · · , rn} is a finite set ofinsertion rules

Each ri, for 1 ≤ i ≤ n is of the form
(χ,C1, C2, · · · , Cp) where,

– χ = (root, left, right) which represents a context.

∗ root is any node in the tree
∗ left is ith child of root.
∗ right is (i + 1)th child of root.

0 ≤ i ≤ arity(root) andp ≤ arity(root)
(− checks for the absence of a child).

– Ci = (X, rt′, k), 1 ≤ i ≤ p,X ∈ A

∗ rt′ is the root of the tree to be attached.
∗ k is the position at whichrt′ is to get attached.

1 ≤ k ≤ arity(root) and it is between the nodes
left andright.

As examples,χ = (a, b, c) denotes a node with label
a having a node with labelb as ith child and a node
with label c as (i+ 1)th child for 1 ≤ i < arity(a).
χ = (a,−,−) denotes a leaf node with labela.

The derivation stepis described as follows.
If r = (χ,C1, C2, . . . , Cp) is a rule withχ = (a, b, c) and

Ci = (X, d, k) whereX is an axiom with trees having root
with labeld andt is a tree with rootp(domain) having label
a. Thent ⇒ t′ by rule r wheret′(p.k) is the tree with root
labeld, t′(p.i) is tree with root labelb andt′(p.(i+ p+ 1))
is tree with root labelc.

∗
⇒ is the reflexive transitive closure of⇒.

The flag associated withX is also updated whenr
is applied. For each insertion fromX, the xi value gets
incremented ifxi ≤ yi , the xi value gets decremented if
xi > yi and thexi will be set tozi if xi = yi. We describe
the derivation informally with an example.

Suppose a
a c

is a treeA1 =

{

a

a c

, b

c c

}

be

the axiom andr1 = ((a,−,−), (A1, b, 1), (A1, a, 2)) be the
insertion rule. Then by usingr1
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a
a c

⇒ a
a

b
c c

a
a c

c

Here, at leaf nodea, a subtree with rootb is attached as
the first child and another subtree with roota is attached as
the second child.

The language generatedby a tree insertion systemΓ,
represented byL(Γ), is the set of trees, with each node
having children exactly equal to its arity, derivable inΓ,
when it is instable stae, from an initial axiom, using rules
of Γ.

L(Γ) =






t|S
∗
⇒ t, S in someAi ∈ A′. Each node oft
has children exactly as its arity and

Γ is in stable state






Example 4:Lr2 = {a(bi(h), cj(h)), i, j ≥ 1, i%2 = 0}

Γr2 = (Σ,A,A′, R) where,
Σ = {a2, b1, c1, h0}, A = {A1, A2}, A′ = {A1},
F1 = [−1,−1,−1], F2 = [−1,−1,−1], where

A1 =















a

b

b

c

, a

b

b

h

c

h















, A2 =







b

b

, c , h







R = {r1, r2, r3, r4}, where
r1 = (χ1, C1), r2 = (χ2, C2),
r3 = (χ1, C3), r4 = (χ2, C3),
χ1 = (b,−), χ2 = (c,−) ,
C1 = (A2, b, 1) , C2 = (A2, c, 1) , C3 = (A2, h, 1)

Example 5:Lr4 = {t|na(t)%2 6= 0}

Γr4 = (Σ,A,A′, R) where,
Σ = {a2, b2, c0}, A = {A1, A2},A′ = {A1, A2}
F1 = [−1,−1,−1], F2 = [0, 1, 2],

A1 =

{

b

b b

, b

b c

, b

c b

, b, c
}

A2 =



















a

c c

, a

b b

, a

b c

, a

c b

, a

a a

,

b

a c

, b

b a

, b

a b

, b

c a

, a



















R = {r1, r2}, where
r1 = (χ1, U1, U2), r2 = (χ2, U1, U2),
χ1 = (a,−,−), χ2 = (b,−,−),
U1 ∈ {C1, C3}, U2 ∈ {C2, C4},
C1 = (A1, V1, 1), C2 = (A1, V1, 2),
C3 = (A2, V2, 1), C4 = (A2, V2, 2),
V1 ∈ {c, b}, V2 ∈ {a, b}

3. Equivalence with Regular Tree Grammar
Tree grammarsare generating devices which is used for

generating trees. The language generated by regular tree
grammar is calledregular tree language.

3.1 Insertion System to Regular Tree Grammar

3.1.1 Method of conversion

For a given tree insertion systemΓ = (Σ,A,A′, R)
we can construct an equivalent regular tree grammar
G = (N,T, S, P̄ ).

First we consider the simple case where the flag
Fi = [−1,−1,−1],∀Ai ∈ A

• T = Σ
• N contains the start symbolS initially and more

symbols of the formM ′,M2
′

, · · · ,Mk′

for some fixed
k, are added toN as we proceed to define the rules.

• ∀Ai ∈ A′, if t ∈ Ai with root with label p having
arity m > 0 and children with labelp1, p2, · · · , pm,
thenS → p(P1, P2, · · · , Pm) will be a production rule
and if there is a node int with label q and ar-
ity r having children with labelsq1, q2, · · · , qr, then
Q → q(Y1, Y2, · · · , Yr) will be a production rule where
Yi = Qi, ∀qi with label not equal toq andYi = Q′

i, ∀qi
with label equal toq. Q′

i → q(Y1, Y2, · · · , Yr) with
Yi = Q2

′

i , ∀Yi = Qi.
In general Qn′

i → q(Y1, Y2, · · · , Yr) with
Yi = Q

(n+1)
′

i , ∀Yi = Qn′

i .
If m = 0, S → P is a production rule.

• ∀ri ∈ R, ri = (χ,C1, C2, · · · , Ck) where
χ = (p, left, right), Cj = (Xj , rtj , k

′), ∀j ≤ k

with rtj ∈ Σ, Xj ∈ A, Pn′

→ p(RTj), whereRTj is
the non terminal corresponding tortj , is a production
rule.

• ∀t ∈ A−A′ with root node having labelp and arity 0,
thenP → p is a production rule.

• N will includes all suchPi , Qi andQ′
i.

It can easily be proved by induction thatL(G) = L(Γ).

Example 6:Lr2 = {a(bi(h), cj(h)), i, j ≥ 1, i%2 = 0}

Γr2 = (Σ,A,A′, R) where,
Σ = {a2, b1, c1, h0}, A = {A1, A2},A′ = {A1},
F1 = [−1,−1,−1], F2 = [−1,−1,−1],

A1 =















a

b

b

c

, a

b

b

h

c

h















, A2 =







b

b

, c , h







R = {r1, r2, r3, r4}, where

r1 = (χ1, C1), r2 = (χ2, C2),
r3 = (χ1, C3), r4 = (χ2, C3),
χ1 = (b,−), χ2 = (c,−),
C1 = (A2, b, 1), C2 = (A2, c, 1), C3 = (A2, h, 1)
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The production rules are

P̄ = {S → a(B,C), B → b(B′), B′ → b(B)|b(H),

C → c(C)|c(H), H → h}

The regular tree grammar corresponding toΓr2 is
Gr2 = ({S,B,B′, C,H}, {a, b, c, h}, S, P̄ )

The above case will not take care of languages like trees
with node labelsa, b, and c where number ofa′s is odd.
For such cases we give the construction below.

• T = Σ
• N contains the start symbolS initially and more

symbols of the formM ′,M2
′

, · · · ,Mk′

for some fixed
k, are added toN as we proceed to define the rules.

• Let AJ ⊆ A′, where for each Ai ∈ AJ ,
xi = yi = zi in Fi and AI = (A′ − AJ), where
for eachAi ∈ AI,ni = |xi − yi|. (This is used to take
care of some constraint on the number of a particular
terminal symbolσk ∈ Σ).

• ∀Ai ∈ A, if there is a node with labelp arity 0 is in
Ai, thenP → p is a production rule.

• ∀Ai ∈ AJ

If ∃Al ∈ AI with (xl 6= yl) in Fl, t ∈ Ai with root
node with labelp having arity m and children with
label p1, p2, · · · , pm, where for somej ≤ m, pj is
the label of root node of somet′ ∈ Al, then from
S → p(P1, P2, · · · , Pm) write j production rules, with
Pk = S, ∀k ≤ j.
If m = 0, S → P will be a production rule.
∀A′

l ∈ AI, if (x′
l = y′l) in F ′

l then
S → p(P1, P2, · · · , Pm) will also be a production rule.
N will includes all suchPi.

• ∀Ai ∈ AI with ni = 1
If t ∈ Ai with root with label p having ar-
ity m and children with labelp1, p2, · · · , pm, then
S → p(P1, P2, · · · , Pm) will be a production rule
and if there is a node int with label q and ar-
ity r having children with labelsq1, q2, · · · , qr, then,
Q → q(Q1, Q2, · · · , Qr) will be a production rule.
If m = 0, S → P will be a production rule.

∀ri ∈ R, ri = (χ,C1, C2, · · · , Ck′) where,
χ = (p, left, right), Cj = (Xj , rtj , k

′′), ∀j ≤ k′

with rtj ∈ Σ, Xj ∈ A
If ∀j ≤ k′, Xj /∈ AI, P → p(RT1, RT2, · · · , RTk) will
be a production rule,
If ∃Xj ∈ AI, j ≤ k,

– P → p(Y1, Y2, · · · , Yk) will be a production rule
with Yj = RTj , ∀j whereXj /∈ AI andYj = RT ′

j ,
∀j whereXj ∈ AI.
If rtj = σj where Xj ∈ AI then
RT ′

σk
→ rtj(Y1, Y2, · · · , Yp′) will be a production

rule with Yp′′
= S for somep′′ ≤ p′, wherep′ is

the arity ofrtj .

If rtj 6= σk where Xj ∈ AI then
RT ′

j → rtj(Y1, Y2, · · · , Yp′) will be a production
rule Yp′′

= RT ′
σk

for somep
′′

≤ p′.

N will includes all suchPi, Qi, RT ′
i andYi.

• ∀Ai ∈ AI with ni 6= 1
If t ∈ Ai with root with label p 6= σi having arity
m and children with labelp1, p2, · · · , pm, with some
pj = σk, j ≤ m thenS → p(P1, P2, · · · , Pm) , where
both Pj = Pσk

and Pj = S are production rules.
Then Pσk

→ S and Pσk
→ pσk

(Y1, Y2, · · · , Ym′)
will be production rules wherem′ is the arity
of node with label pσk

and for somem′′ ≤ m′,
Ym′′ = P ′

σk
. P ′

σk
→ pσk

(Y1, Y2, · · · , Ym′) and
for some m′′ ≤ m′,Ym′′ = P 2

′

σk
. In general

P q′

σk
→ pσk

(Y1, Y2, · · · , Ym′) and for somem′′ ≤ m′,

Ym′′ = P
(q+1)

′

σk and P
z′

i
σk → pσk

(Y1, Y2, · · · , Ym′) and
for somem′′ ≤ m′, Ym′′ = S.
If m = 0, S → P will be a production rule.
If t ∈ Ai with root node with labelp = σk having arity
m and children with labelp1, p2, · · · , pm, with somepj
,j ≤ m is the label of root node of somet′ ∈ AI, then
S → p(P1, P2, · · · , Pm) will be a production rule with
Pj = P ′

j and P ′
j → pj(Y1, Y2, · · · , Ym′) where m′ is

the arity of node with labelpj and for somem′′ ≤ m′,
Ym′′ = P ′

σk
.

∀ri ∈ R, ri = (χ,C1, C2, · · · , C
′
k) where

χ = (p, left, right), Cj = (Xj , rtj , k
′′), ∀j ≤ k′

with rtj ∈ Σ, Xj ∈ A
If ∀j,Xj ∈ AJ , with p 6= σk then
P → p(RT1, RT2, · · · , RTm) will be a production
rule wherem is the arity of node with labelp.
If ∀j,Xj ∈ AI, if p 6= σk then
P → p(RT ′

1, RT ′
2, · · · , RT ′

m) will be a production
rule wherem is the arity of node with labelp.
If p = σk thenP → p(Y1, Y2, · · · , Yk) is a production
rule with Yj = RTj , ∀j whereXj ∈ AJ Yj = RT ′

j ,∀j
whereXj ∈ AI.
If rtj = σk where Xj ∈ AI then
RT ′

σk
→ rtj(Y1, Y2, · · · , Yp′) will be a production rule

with Yp′′
= RT 2

′

σk
for somep′′ ≤ p′, wherep′ is the

arity of rtj .
In general, for some p′′ ≤ p,
RT

(zj−1)
′

σk → rtj(Y1, Y2, · · · , Yp′), with

Yp′′
= RT

(zi)
′

σk , and RT
z′

i
σk → rtj(Y1, Y2, · · · , Yp′),

with Yp′′
= S.

If rtj 6= σk where Xj ∈ AI then
RT ′

j → rtj(Y1, Y2, · · · , Yp′) will be a production
rule Yp′′

= RT ′
σk

for somep
′′

≤ p′.
N will includes all suchP ′

is, RT ′
is andY ′

i s.
• If ∀k, Yk = RT ′

j for some rtj
in P → p(Y1, Y2, · · · , Yr), then
P → p(RT1, RT2, · · · , RTk) will be a production
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rule.
It can easily be proved by induction thatL(G) = L(Γ).

Example 7:Lr4 = {t|na(t)%2 6= 0}

Γr4 = (Σ,A,A′, R) where,
Σ = {a2, b2, c0}, A = {A1, A2}, A′ = {A1, A2}
F1 = [−1,−1,−1], F2 = [0, 1, 0],

A1 =

{

b

b b

, b

b c

, b

c b

, b, c
}

A2 =



















a

c c

, a

b b

, a

b c

, a

c b

, a

a a

,

b

a c

, b

b a

, b

a b

, b

c a

, a



















R = {r1, r2}, where
r1 = (χ1, U1, U2)), r2 = (χ2, U1, U2),
χ1 = (a,−,−), χ2 = (b,−,−),
U1 ∈ {C1, C3}, U2 ∈ {C2, C4},
C1 = (A1, V1, 1), C2 = (A1, V1, 2),
C3 = (A2, V2, 1), C4 = (A2, V2, 2)
V1 ∈ {c, b}, V2 ∈ {a, b}

The production rules are

P = {S → a(C,C)|a(B,B)|a(B,C)|a(C,B)|a(A,A)|A

b(A,C)|b(B,A)|b(A,B)|b(C,A)|

b(S,B)|b(B,S)|b(S,C)|b(C, S)

A → a(C,C)|a(C,B)|a(B,C)|a(B,B)|a(C,A′)|

a(C,B′)|a(B,A
′)|a(B,B

′)|a(A′

, C)|a(A′

, B)|

a(B′

, C)|a(B′

, B)|a(A′

, A
′)|a(A′

, B
′)|

a(B′

, A
′)|a(B′

, B
′)|a(A,A)|a(B,B)

B → b(C,C)|b(C,B)|b(B,C)|b(B,B)|b(C,A′)|

b(C,B′)|b(B,A
′)|b(B,B

′)|b(A′

, C)|b(A′

, B)|

b(B′

, C)|b(B′

, B)|b(A′

, A
′)|b(A′

, B
′)|

b(B′

, A
′)|b(B′

, B
′)|b(A,A)|b(B,B)

A
′ → a(S,C)|a(S,B)|a(C, S)|a(B,S)|

a(S,A′)|a(A′

, S)|a(S,B′)|a(B′

, S)

B
′ → b(A′

, C)|b(A′

, B)|b(C,A′)|b(B,A
′)|

b(A′

, A
′)|b(A,A)|b(B′

, A
′)|b(A′

, B
′)

C → c

}

The regular tree grammar corresponding toΓr4 is
Gr4 = ({S,A,A′, B,B′, C}, {a, b, c}, S, P )

Result 1: Given a tree insertion system, we can construct
an equivalent regular tree grammar.

3.2 Finite state Bottom-up Tree Automata to Insertion
System

Tree automataare accepting devices for trees. Finite tree
automata are generalizations of word automata. While a
word automaton accepts a word, a tree automaton accepts
a tree. Finite tree automata can be either bottom-up or top-
down [4]. A top-down tree automatonstarts its computation

at the root of the tree and then simultaneously works down
the paths of the tree level by level.

Since there exists a bottom-up finite tree automata for
accepting a regular tree language,it is enough to simulate
that automata using the tree insertion system, to show the
equivalence of tree insertion system and regular tree gram-
mars. Abottom-up tree automatonstarts its computation in
the leaves of the input tree and works its way up towards
the root.

3.2.1 Method of conversion

For a given deterministic bottom-up tree automata
D = (Σ′, Q,Qf ,∆) we can construct a tree insertion system
Γ = (Σ,A,A′, R), where

• Σ = Σ′

• If transitions are non-recursive
For each transition of the formp(q1, q2, · · · , qk) → qg,
where q1, q2, · · · , qk, qg ∈ Q, p ∈ Σ′, k is the ar-
ity of node with label p and qg ∈ Qf ,

p

q1 q2 · · · qi · · · qk

will be in A′

∀qi, 1 ≤ i ≤ k, if {c1(qi1) → qi, c2(qi2) →
qi1 · · · cn(qin) → qin−1

} ∈ ∆ where qin = qi ,
ci ∈ Σ′, 1 ≤ i ≤ n and ∀i, j, qij ∈ Q, 1 ≤ j ≤ n,

p

q1 q2 · · · c1...‘cn

· · · qk

will be in A′

If {c1(qi1) → qi, c2(qi2) → qi1 · · · cn(qin) →
qin−1

, a → qin} ∈ ∆ where a, ci ∈
Σ′, 1 ≤ i ≤ n and ∀i, j, qij ∈ Q, 1 ≤ j ≤ n,

p

q1 q2 · · · c1...
cn
‘a

· · · qk

will be in A′

For each transition of the formp(q1, q2, · · · , qk) → qg,
where q1, q2, · · · , qk, qg ∈ Q, p ∈ Σ′, k is the arity
of node with labelp and qg ∈ Qf ∀qi, 1 ≤ i ≤ p if
{c1(qi1) → qi, c2(qi2) → qi1 · · · cn(qin) → qin−1

} ∈ ∆
where qin = qi , ci ∈ Σ′, 1 ≤ i ≤ n and
∀i, j,qij ∈ Q,1 ≤ j ≤ n, c1..

cn

will be in A−A′

If {c1(qi1) → qi, c2(qi2) → qi1 · · · cn(qin) →
qin−1

, a → qin} ∈ ∆ where a, ci ∈ Σ′, 1 ≤ i ≤ n

and∀i, j, qij ∈ Q, 1 ≤ j ≤ n, c1..
cn
‘a

will be in A−A′

Set flagFi = [xi, yi, zi] associated with eachAi ∈ A
as [-1,-1,-1].
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• If transitions are recursive
Let AF andAN are two temporary axiom sets
For each transition of the formp(q1, q2, · · · , qk) → qg,
whereq1, q2, · · · , qk, qg ∈ Q, p ∈ Σ′, k is the arity of
node with labelp, p

q1 q2 · · · qk

will be in

AF if qg ∈ Qf and it will be in AN if qg /∈ Qf .

Let t = p

q1 q2 · · · qk

and

t′ = p

t1 t2 · · · tk

∀t ∈ AF , if all q1, q2, · · · , qk ∈ Qf , thenp will be in
AF .

∀t ∈ AN , if all q1, q2, · · · , qk /∈ Qf , thenp will be in
AN

∀t ∈ AF , t′ will be in AF with ti having the label of
root node of somet′′ ∈ AF , ∀qi ∈ Qf .

∀t ∈ AN , t′ will be in AN with ti having the label of
root node of somet′′ ∈ AN , ∀qi /∈ Qf .

∀t ∈ AF , t′ will be in AF with ti having the label of
root node of somet′′ ∈ AN , ∀qi /∈ Qf .

∀t ∈ AN , t′ will be in AN with ti having the label of
root node of somet′′ ∈ AF , ∀qi ∈ Qf .

Set flag FAN = [x, y, z] associated withAN as
[−1,−1,−1].

Set flagFAF = [x, y, z] associated with an axiomAF ,
which has a constraint onσi ∈ Σ, as follows.

– x = 0.
– If ∃t = p

p1 p2 · · · pk

∈ AF , k ≥ 0, if

p, p1, p2, · · · , pk 6= σi thenyi = 0.

– Else if ∃t ∈ AF , with n nodes oft have labelσi,
thenyi = zi = n.

– If t′ = q

q1 q2 · · · q′k

∈ AF , k′ ≥ 0

having m ≥ n nodes oft are with labelσi.

∗ z = (m− n)− 1, if y = 0.
∗ z = (m− 1), if y 6= 0.

Now A′ = AF andA = AF ∪AN

• For each transitions of the forma → qa ∈ ∆ where,
a ∈ Σ′, qa ∈ Q, a will be in A′, if qa ∈ Qf anda
will be in A−A′, if qa /∈ Qf

• ∀t ∈ A which is of the form p

t1 t2 · · · tk
r = (χ,C1, C2, · · · , Ck) ∈ R where,
χ = (p,−, · · · ,−) and ∀i ≤ k, Ci = (X, a, i) where,
X ∈ A, for somet′ ∈ X,t′ hasa as root.
And ∀ti, 1 ≤ i ≤ k which is of the form

p′

t1 t2 · · · tk′

r = (χ,C1, C2, · · · , Ck′) ∈ R where,
χ = (p′,−, · · · ,−) and ∀i ≤ k′, Ci = (X, a, i)
where,X ∈ A, for somet′ ∈ X, t′ hasa as root.

Example 8:Lr5 = {a(bi(h), cj(h)), i, j ≥ 1, i%3 =
0 and j%2 = 0} Consider the tree automata
Dr5 = (Q,Σ′, Qf ,∆) which accepts the language
Lr5 over the alphabetΣ′ = {a2, b1, c1, h0} where
Q = {qa, qb, qb1 , qb2 , qc, qc1 , qh}, Qf = {qa} and ∆
contains following transitions.

h → qh b(qh) → qb1 b(qb1) → qb2
b(qb2) → qb b(qb) → qb1 c(qh) → qc1
c(qc1) → qc c(qc) → qc1 a(qb, qc) → qa

A1 =























a

b

b

b

c

c

, a

b

b

b

h

c

c

h























,

A2 =















c

c

, c

c

h

, b

b

b

, b

b

b

h

, h














R = {r1, r2, r3},where
r1 = (χ1, C1, C2), r2 = (χ2, U1), r3 = (χ3, U2) ,
χ1 = (a,−,−), χ2 = (b,−), χ3 = (c,−),
U1 ∈ {C1, C4}, U2 ∈ {C3, C4}, C1 = (A2, b, 1),
C2 = (A2, c, 2), C3 = (A2, c, 1), C4 = (A2, h, 1)

So the tree insertion system equivalent toDr5 is
Γr5 = (Σ,A,A′, R) where,

Σ = {a2, b1, c1, h0}, A = {A1, A2},A′ = {A1},
F1 = [−1,−1,−1], F2 = [−1,−1,−1]

Example 9:Lr4 = {t|na(t)%2 6= 0}

Consider the tree automataDr4 = (Q,Σ′, Qf ,∆) which
accepts the languageLr4 over the alphabetΣ′ = {a2, b2, c0}
where Q = {e, o}, Qf = {o} and ∆ contains following
transitions.
c → e b(e, e) → e b(o, o) → e

a(e, o) → e a(o, e) → e b(e, o) → o

b(o, e) → o a(e, e) → o a(o, o) → o

Here the transition shows a recursive behaviour and
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so it is not possible to generate all axioms for this language.
Generatetemporary axioms:AF , from final state transitions
andAN , from non-final state transitions.

AF initially contains
{

b

e o

, b

o e

, a

e e

, a

o o

}

which leads to


















b

c a

, b

b a

, b

a c

, b

a b

, a

c c

,

a

b b

, a

c b

, a

b c

, a

a a

, a



















AN initially contains
{

c, b

e e

, b

o o

, a

e o

, a

o e

}

which leads to


















c, b, b

b b

, b

c c

, b

b c

, b

c b

,

b

a a

, a

c a

, a

b a

, a

a b

, a

a c



















The two axiom setsAF and AN differs in the number
of a′s. So AF has some constraint ona. Set the flag
associated withAF . Herex = 0. Since all axioms inAF

containsa, n = 1 and one of the axiom contains 3a′s,
m = 3. So y = 1 andz = 2
In AF , split the axioms so that each axiom contains single
a′s.

AF =



















b

c a

, b

b a

, b

a c

, b

a b

,

a

c c

, a

b b

, a

c b

, a

b c

, a



















Now let A1 = AN andA2 = AF .
As botha andb can lead to final state directly, the insertion
can be start from eitherA1 or A2. HenceA = {A1, A2},
A′ = {A1, A2}, F1 = [−1,−1,−1], F2 = [0, 1, 2].

Create rules for generating all trees both inA1 and inA2.
R = {r1, r2}, where
r1 = (χ1, U1, U2), r2 = (χ2, U1, U2),
χ1 = (a,−,−), χ2 = (b,−,−), U1 ∈ {C1, C3},
U2 ∈ {C2, C4}, C1 = (A1, V1, 1), C2 = (A1, V1, 2),
C3 = (A2, V2, 1), C4 = (A2, V2, 2), V1 ∈ {c, b}, V2 ∈ {a, b}
So the tree insertion system equivalent toDr4 is
Γr4 = (Σ,A,A′, R) where, Σ = {a2, b2, c0}, A,A′ andR
as given above.

Result 2: Given a finite bottom-up tree automata, we can
constructan equivalent tree insertion system.

Theorem 1:From Result 1 and Result 2, the generative
powers of tree insertion systems and regular tree grammars
are equal.

4. Extended Systems
An extended tree insertion systemcan be defined by defin-

ing two types of alphabetsT andN with Σ = T ∪N and
additional restriction that the symbols inT have arity0 and
each symbol fromN has a finite number of arities. With
this extended definition, the parse trees of a context-free
grammar can be generated.

As an example, consider the CFG

G = ({S}, {a, b}, {S → aSS, S → b}, S). The parse tree
of G can be generated by the extended tree insertion system
(Σ,A,A′, R) with Σ = N ∪ T , N = {S}, T = {a, b}, arity
of S is {1, 3}. Axioms are A1 = {S} and A2 = {a, S, b}

with flags F1 = [−1,−1,−1],F2 = [−1,−1,−1], where
A′ = {A1}. The rules are r1 = (χ1, C1, C2, C3) and
r2 = (χ1, C4), where χ1 = (S,−,−), C1 = (A2, a, 1),
C2 = (A1, S, 2), C3 = (A1, S, 3), C4 = (A2, b, 1).
As an example of derivation

S ⇒ S

a S S

⇒ S

a S

b

S

⇒

S

a S

b

S

a S S

⇒ S

a S

b

S

a S

b

S

⇒ S

a S

b

S

a S

b

S

b

5. Conclusion
In this paper we defined tree insertion systems and

showed that the generative power is the same as that of
non deterministic bottom-up tree automata (or equivalently
regular tree grammars). By defining an extended system, the
power slightly increases. It should be noted that the insertion
definition given here is a restricted one with the inserted tree
occupying lower levels only. It may be interesting to widen
the definition in such a way that a subtree is inserted into
a tree by cutting the tree at an internal node and inserting
the subtree with the cut subtree attaching to a leaf of the
inserted tree. Exploring the generative power of such systems
with different contraints is being explored. It would also be
interesting to considerdeletion systemalso.
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Abstract- Cellular Automata (CA) is a self organizing 
structure with complex behavior which can be used in 
pseudo-random numbers generation(PRNG). Pure CA has 
a simple structure but has no ability to produce long 
sequences of random numbers. In order to rectify this 
problem, programmable CA (PCA), using stimulating 
factor or combination of different self organizing Criticality  
phenomenon can be used. In this paper, a PCA by using 
Sandpile model is proposed. The Sandpile is a complex 
system operating at a critical state between chaos and 
order. This state is known as Self-Organized Criticality 
(SOC) and is characterized by displaying scale invariant 
behavior. In the precise case of the Sandpile Model, by 
randomly and continuously dropping “sand grains” on top 
of a two dimensional grid lattice, a power-law relationship 
between the frequency and size of sand “avalanches” is 
observed. The avalanche behavior and the pure CA 
behavior are combined in a novel method  which can be 
used as the pseudo-random number generator. 

Keywords: Random Number Generator, Self-Organizing 
Criticality, Sandpile Model, Cellular Automata. 

 

1    Introduction 

Random number generators (RNGs) play an important 
role in several computational fields, including Monte 
Carlo techniques [1], Brownian dynamics [2], stochastic 
optimization methods [2, 3] and key-based cryptography 
[4]. It is usual to use mathematical or even evolutionary 
methods to construct RNGs that yields high quality 
generators. The quality of generators that determined by 
statistical tests have a great important role; for example, 
in cryptography, low quality of RNGs causes easily 
breaking the encrypted context [4]. In solving 
optimization problems, as shown in [5], performance and 
speed of algorithms directly depend on quality of used 
RNGs. Because of simple structure of CA and its complex 
behavior and high ability to be used parallel, CA has a 
well ability in generating random numbers. But one of the 
major problems of  CA  is its bounded generated random 
number sequence because of the self-organizing ability 

and generate frequent numbers with specific rules. Hence, 
a strategy for increasing the complexity of behavior and 
the implementation of CA to present a better random 
number sequence is required. In this paper, a new method 
for stimulating CA and increasing the complexity of CA`s 
behavior based on Sandpile model has been presented. 
Sandpile model, because of existence of avalanche 
phenomenon has a non-equilibrium behavior. Hybridizing 
this model with cellular automata causes a random 
behavior that it leads to generate a qualified sequence of 
random numbers.  

Herein a two dimensional n × m CA and combination 
of 8 rules has been used. The obtained results show that 
the sequence of generated numbers by CA passed all parts 
of diehard test suite, entropy and chi-square and other  
static tests. Some of the other of advantages of this 
method are uniform distribution of generated numbers by 
CA, high ability of parallel processing and also the 
sensitivity to bit changes in particular applications such as 
cryptography. This paper is organized as following: in 
following section related works discussed. Section 3, 
contains the basic concepts of CA and Sandpile model. In 
section 4 the proposed RNG algorithm and its behavior 
are discussed. In section 5, the experimental results are 
illustrated and finally, in section 6, , the conclusion and 
future works are discussed. 
 
2    Related Works  

The first work to apply CA as RNG was done by 
Wolfram in 1986. His work shows the ability of CA to 
generate random bits [6, 7]. Basic researches on CA are 
on producing RNG by one dimensional CA with 3 
neighbors [7]. Other researches are focused on increasing 
CA's complexity with combinations of controllable cells 
[4, 8] or increasing CA`s complexity with increasing 
dimensionality. RNG are produced by using one 
dimensional CA studied in [9, 10, 11, 12, 13] and two 
dimensional CA in [14, 15, 16] and three dimensional CA 
in [17]. Hortensius proposed the first non-uniform CA or 
programmable CA (PCA) by using of the combination of 
two rules, 90 and 150 in 1989[9]. PCA is a non-uniform 
CA that allows different rules to be used at different time 
steps on the same cell. He also represented another 
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generator using the combination of rules 30 and 45 in [10] 
that its output bits have more dependencies to each other 
rather than rules 90 and 150. 

 Recently, extensive studies have been done on PCA 
for generating random numbers [11, 15, 16, 18, 19]. First 
works on two dimensional CA represented by Chaudhuri 
et al. in 1994 [14]. Their results show that produced 
generator using this CA works better rather than one 
dimensional CA with the same size. In [20, 21] all 256 
(simple) elementary cellular automata were investigated 
(including those with rules given 90 and 150). It was 
found that CA with nonlinear rules 45 (or its equivalent 
rules 75, 89 or 101) exhibit chaotic (or pseudo-random) 
behaviors similar to those obtained in LFSRs. 

3    Cellular Automata and Sandpile 
Model 

3.1    Cellular Automata  
A cellular automaton (CA), introduced by Von 

Neumann in 1940s, is a dynamic system in which its time, 
space and states are all discrete. The CA evolves 
deterministically in discrete time steps and each cell takes its 
value from a finite set S, called the State Set. A CA is named 
Boolean if S = {0,1} . The 푖 − 푡ℎ cell is denoted by ‹i› and the 
state of cell ‹i› at time t is denoted by 푎  . For each cell ‹i›, 
called central cell, a symmetric neighborhood of radius r is 
defined by (1): 

푣 = {‹푖 − 푟›, … . , ‹푖›, … . , ‹푖 + 푟›} (1) 
the value of each cell ‹i› is updated by a local transition 
function 푓 -called rule- which for a symmetric neighborhood 
with radius r is defined as follows (2): 

푎 = 푓(푎 , … , 푎 , … , 푎 ) (2) 

or equivalently by (3): 

푎 = 푓(푣 ) (3) 

Such that 푣  is as follows (4): 

푣 =  푓(푎 , … , 푎 , … , 푎 ) (4) 

To represent a symmetric rule of radius r for a Boolean CA, 
a binary string of length L is used, where 퐿 = 2  , Table 1 
Shows the rule 90 of radius one (r=1). 

Table 1. The Rule Representation Of Boolean Symmetric 
Rule 90 Of Radius One 
Neighborhood 

Number 
7 6 5 4 3 2 1 0 

풗풊
풕 111 110 101 100 011 010 001 000 

풇(풗풊
풕) 0 1 0 1 1 0 1 0 

 

 
If all CA cells obey the same rule, then the CA is said 

to be a uniform CA; otherwise, it is a non-uniform 
CA[22]; in addition, a CA is said to be a CA with periodic 
boundary condition if the extreme cells are adjacent to 

each other else it called null-boundary CA. If a CA rule 
involves only XOR logic, it is called a linear rule; rules 
involving XNOR logic are referred to complemented 
rules. A CA with all cells having linear rules is called 
linear CA, whereas a CA having a combination of linear 
and complemented rules is called an additive CA [23]. 
Nandi et al. presented a programmable CA (PCA) in 1994 
[23]. A CA is said to be a PCA if it uses a control CA to 
determine the rules of each cell. A control CA is 
essentially just another basic CA which is usually of 
uniform nature. The rule function used by each cell 
changes with time and is decided by the control CA. PCA 
is, in fact, a non-uniform CA because all its cells 
collectively use different rule functions. A PCA may use 
m-bit control CA, where m 1. For each cell, there are 2m 
rules to choose from, thereby, allowing less probability of 
correlations among the cells. Compared to uniform CA, 
PCA allows several control lines per cell. Through these 
control lines, different rules can be applied to the same 
cell at different time steps according to the rule control 
signals. Fig. 1, shows a PCA cell structure. 

 

 
Fig. 1.  A PCA cell structure  

As Illustrated in Fig. 1, control signals select cell's rule. In 
this paper a two dimensional Sandpile model and two 
dimensional PCA with non-periodic boundary condition 
is considered. Each PCA cell's state can be a number as 0, 
1, 2, 3. Herein, applied rules are the same rules that were 
used in elementary CA. 
 
3.2     Sandpile Model 

In 1987, Bak at al. [24] identified the SOC 
phenomenon associated with dynamical systems. The first 
system were SOC was observed was named after its 
inspiration as the Sandpile model, and consists of a 
cellular automata where at each cell of the lattice, there is 
a value which corresponds to the slope of the pile. Grains 
of sand are randomly “thrown” into the lattice where they 
pile up and increment the values of the cells. When a 
value exceeds a specific threshold, an avalanche takes 
place and four grains belonging to that cell are distributed 
by the neighboring sites (von Neumann neighborhood). If 
one of those sites also exceeds the threshold value(zc), the 
avalanche continues, and the grains are also sent to the 
adjacent cells. The procedure of the Sandpile model is 
shown in fig. 2. 

 With these settings, and depending on the state of the 
lattice and the position of the new grain, a grain may 
cause rather different responses. It may not cause any 
change in the system if it falls in a cell with its value 
bellow threshold (other than increasing the sand on the 
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cell, of course) and it may generate large avalanches of 
sand that will strongly redefine the shape of the pile. 

 

 
Fig. 2. 2D Bak-Tang-Wisenfeld Sandpile Model 

 
4 Proposed RNG Based On 

Combination of Sandpile and PCA 

4.1   Proposed RNG 
In this scheme a two dimensional 푛 × 푚 PCA with 

Null boundary condition is used to generate random 
numbers by using 8 rules: 153, 30, 90, 165, 86, 105, 110, 
150. According to [25], generated numbers by these rules 
have the best results in different tests such as entropy, chi-
square and diehard. The Boolean expression of each CA 
rule is shown in Table 2. 

 

 
In this paper, for Sandpile implementation, the 

threshold value is considered equal to 4 and each cell has 
four nearest neighbors: up, down, left and right (Von-
Neuman neighborhood). The value of each CA`s cell is an 
integer between 0 and 3. For converting these numbers to 
0 and 1(binary state), their residual over 2 is used. Hence, 
numbers 0 and 2 (even numbers) are delegated to 0 and 
numbers 1 and 3 (odd numbers) are delegated to 1. In 
order to generate random numbers,  the CA was 
initialized by random numbers between 0 and 3. At each 
time step, there are two steps that are discussed in the 
following:   

Firstly, a 푛 × 푚 CA is set to the binary state and each 
row divides into 4-cell’s parts (each part has four cells). 
In each word the first two cells show the number of time 
that Sandpile run on each cell (휑) and the second two 
cells show the cell that action should be run on it (훼). 

Each word (φ, α), is extracted from the word in the 
previous row. Because of increasing 휑 has no tangible 
effect on the quality of the generated random numbers 
and only increases processing time, 휑 is restricted to the 
maximum equal to 2.  If the first two cell of each word is 
equal to 0, 1 or 2 the Sandpile action is run once; else if it 
is equal to 3 the Sandpile action is run twice. Fig. 3, show 
the hardware schema process of way of selection for 
performing sandpile action and the number of sandpile 
actions for a 4 cell section in row i+1. 

 
Fig. 3.  Proposed CCA with selection of a cell for running 
Sandpile action. 

For example, Fig. 4(a), shows the three rows of CA; 
and Fig. 4(b), shows its binary state. These figures show 
the number of Sandpile runs and the cells that Sandpile 
applied on them.  

  

(b) binary state of three rows  (a) three rows of CA 
Fig. 4.  An example of CA and its binary state 

For determination of (φ, α), in the first word of the 
second row, the corresponding data in the previous row 
i.e. first row was used. The value of the first two bits of 
the first word of first row is (11)  that imply number 3. 
So as mentioned, the number of Sandpile run in first word 
of the second row would be equal to 3. The value of the 
second two bits of the first word of the first row is 
(10)  that shows cell 2 is selected. So Sandpile is run 
twice on cell 2 of the first word of second row i.e. the cell 
[1, 2]. Because the considered CA is periodic, previous 
row of the first row is the last row (seventh row). It is 
repeated for second word of second row similarly. The 
second word of the first row, which determine the number 
of Sandpile run is (10) = 2 and the next word which 
determine the cell that the Sandpile applied it 
was (00) = 0, Thus on the zero cell of the second word 
of the second row i.e. cell [1, 4], the Sandpile was 
performed once. For all rows, these data inferred 
synchronically.  

In the second step, the CA has been updated by the 
eight mentioned rules. This step comprised three parts. In 
the first part, a rule for each cell, according to the Table 3 

Table 2: The detail and Boolean expression of each CA Rule

Boolean Representation  Possible Input Configuration  Rule 
Name 000  001 010 011 100 101 110 111 

[xi-1  nor xi+1 ]  or  [(xi  xor 
xi+1 )  and xi-1 ] 1  0  1  0  0  1  1  0  101  
Not[xi-1  xor  xi   xor   xi+1 ]1  0  0  1  0  1  1  0  105  
[xi-1  nor xi  ] xor [not(xi+1 )]0  1  1  0  1  0  1  0  86  
[xi-1]  xnor [xi+1 ]1  0  1  0  0  1  0  1  165  
[xi-1]  xor  [xi+1]0  1  0  1  1  0  1  0  90  
[xi-1]  xor [xi  or  xi+1 ] 0  1  1  1  1  0  0  0  30  
[xi]  xnor  [xi+1]1  0  0  1  1  0  0  1  153 
[xi-1]  xor  [xi]   xor   [xi+1]0  1  1  0  1  0  0  1  150 
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synchronically determined. The number of rules which 
used in this paper is specified. To determine a rule for cell 
[i, j], the procedure is shown as following: for cells [i-1, j-
1], [i-1, j], [i-1, j+1] and [i+1, j-1], [i+1, j], [i+1, j+1], the 
XOR operator was used on them correspondingly (i.e. the 
XOR operator applied on cells [i-1,j-1] and  [i+1,j-1] and 
so forth) and generate an integer between 0 and 7. Fig. 5, 
shows the PCA Structure and hardware presentation of 
determined rules 90/ 150/ 165/ 105/ 101/ 86/ 30/153 for 
cell [i,j].   

 
Fig.  5. Proposed PCA with Determined rules for cell [i,j] 

The obtained number is the rule number that must be 
applied on the cell [i, j]. For instance, if after performing 
Sandpile action, the values of CA will be Fig. 4(b), the 
number of determined rule for cell [1, 1] is equal to 
111 ⊕ 001 = 110, i.e. which is the 6th rule. In other 
words, according to Table 3 in performing rule section on 
CA, the rule which should be applied on the cell [1, 1] is 
153. 

Table 3.  CA rules lookup Table 
7 

(111) 
6 

(110) 
5 

(101) 
4 

(100) 
3 

(011) 
2 

(010) 
1 

(001) 
0 

(000) 
150 153 30 90 165 86 105 101  

In the second part, determined rules were applied. 
Using rules also is synchronously and the rules would be 
applied with respect to the rows. For example, in Fig. 
4(b), the result after performing rule 153 on cell [1, 1] is 
equal to 푅푢푙푒 (101) = 0. In the third part, for updating 
the CA, the value of each CA cell should be added to the 
value that obtained from the used rule on that cell, which 
will be 0 or 1, and since all values must be an integer 
between 0 and 3, their integer residual of them by 4 were 
calculated. 

4.2    How Use of Sandpile Model Results in 
Random State in Cellular Automata? 

Role of sandpile model in this model is to actuate and 
produce the maximum disturbance in cellular automata 
for preventing from cycle formation and reaching the 
maximum entropy in cellular automata. As it was stated, 

The Sandpile is a complex system operating at a critical 
state between chaos and order and a power-law 
relationship between the frequency and size of sand 
“avalanches” is observed .In a system exhibiting critical 
behavior, A small perturbation in one given location of 
the system may generate a small effect on its 
neighbourhoods or a chain reaction that affects all the 
constituents of the system. The statistical distributions 

describing the response of the system exhibiting SOC are 
given by power laws in the form 

   P(s) ~ 푠  (5) 
where s is the number of constituents of the system 

affected by the perturbation, d is the duration of the chain 
reaction(lifetime), and 휏 are constants. Large avalanches 
are very rare while small ones appear very often. 
Without any fine-tuning of parameters, the system 
evolves to a non-equilibrium critical state. Fig. 6 shows a 
distribution of avalanches created by our sandpile model 
with a dimension of 12 × 12, which has been running for 
100000 steps. 

 
(a) Size of avalanches over 
time (steps); right: Log-log 

(b)  Log-log transformation of the 
size of avalanches in relation to 
their frequency of occurence 

Fig. 6. Power law number output of the sandpile model. 
 

As it is shown in figure 6, behavior of applied sandpile 
model in the proposed generator follows power law and 
the number of avalanche occurrences is inversely 
proportional with the size of avalanche. The average 
occurred state change in cellular automata was measured 
equal to %47.83 after performing sandpile on rows.  

  
Fig. 7. Percentage Changes in Cells After Applying 
Sandpile 

 
Fig. 7 shows percentage changes in cells after 1000 times 

sandpile performance. Combining this model with cellular 
automata, in addition to disturbing cells state, causes a 
severe mutation in values of cellular automata because of 
creating huge avalanches and prevents from short period 
length sequences and leads to the maximum entropy in 
cells values.  Average  of  Percentage changes after 
performing rules of cellular automata and performing 
sandpile action on cells is %50.1. 
 
5  Experimental Results 

For analyze the proposed generator, the generated bits 
sequence divided into 4-bit parts and so, different tests 
such as entropy, chi-square and the changes sensitivity 
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and other tests on the obtained numbers were assessed 
which are between 0 and 15. To perform all tests which 
will be presented in following sections, an 8 × 8 cellular 
automata is applied with random initial values. 

5.1 Several Basic Statistical Tests For PRNG 
Let s =푠 , 푠 , 푠 , … , 푠  be a binary sequence of 

length n. This subsection presents several basic statistical 
tests that are commonly used for determining whether the 
binary sequence s possesses some specific characteristics 
that a truly random sequence would be likely to exhibit. It 
is emphasized again that the outcome of each test is not 
definite, but rather probabilistic.  

5.1.1    Frequency Test (Monobit Test) 
The purpose of this test is to determine whether the 

number of 0’푠 and 1’푠 in s are approximately the same, as 
would be expected for a random sequence. Let 푛 , 푛  
denote the number of 0’푠 and 1’푠 in s, respectively. The 
statistic used is: 

푥1 =
(푛 −  푛  )

푛  (6) 

which approximately follows 푎 푥 distribution with 1 
degree of freedom if  푛 ≥ 10. For a significance level of 
α = 0.05, the threshold values for this test is 3.8415 [26]. 
 
5.1.2    Serial Test (Two-Bit Test) 

The purpose of this test is to determine whether the 
number of occurrences of 00, 01, 10, and 11 as 
subsequences of 푠 are approximately the same, as would 
be expected for a random sequence. Let 푛 , 푛  denote the 
number of 0’푠 and 1’푠 in s, respectively, and let 
푛00, 푛01, 푛10, 푛11 denote the number of occurrences of 
00, 01, 10, 11 in s, respectively. Note that 푛00 +  푛01 +
 푛10 +  푛11 =  (푛 −  1) since the subsequences are 
allowed to overlap. The statistic used is: 

4
푛 − 1

(푛00 + 푛01 + 푛10 + 푛11 ) −  
2
푛

(푛 + 푛 ) +  1 (7) 

 which approximately follows 푎 푥 distribution with 2 
degrees of freedom if 푛 ≥ 21. For a significance level of 
α = 0.05, the threshold values for this test is 5.9915 [26]. 
 
5.1.3    Poker Test 

Let 푚 be a positive integer such that ≥ 5. (2 )  

and let 푘 = . Divide the sequence s into k non-
overlapping parts each of length 푚, and let 푛  be the 
number of occurrences of the 푖  type of sequence of 
length 푚, 1 ≤  푖 ≤ 2푚. The poker test determines 
whether the sequences of length 푚 each appear 
approximately the same number of times in 푠, as would be 
expected for a random sequence. The statistic used is: 

푥3 =  
2
푘 푛 −  푘 (8) 

Which approximately follows  푎 푥  distribution with 
2 − 1degrees of freedom. Note that the poker test is a 
generalization of the frequency test: setting m = 1in the 
poker test yields the frequency test. . For a significance 

level of α = 0.05, the threshold values for this test is 
14.0671 [26]. 
 
5.1.4    Autocorrelation Test 

The purpose of this test is to check for correlations 
between the sequence 푠 and (non-cyclic) shifted versions 
of it. Let 푑 be a fixed integer,1 ≤ 푑 ≤ 푛

2 . The number 
of bits in s not equal to their d-shifts is 퐴(푑) =
 ∑ 푠 ⊕ 푠  where ⊕ denotes the XOR operator. 
The statistic used is: 

푥 = 2 퐴(푑) − 
푛 − 푑

2 /√푛 − 푑 (9) 

Which approximately follows an 푁(0;  1) distribution if 
푛 −  푑 ≥  10. Since small values of 퐴(푑) are as 
unexpected as large values of 퐴(푑), a two-sided test 
should be used. . For a significance level of α = 0.05, the 
threshold values for this test is 1.96 [26]. In Table 4, 
values of discussed tests are presented for the proposed 
generator. For this, a sequence of random numbers is 
generated with 1 million bits and discussed tests are 
implemented on it. This procedure is repeated 100 times 
and its average is given, too.. 

As it is shown in Table 4, generator  is able to pass all 
tests. 

5.2     ENT Test 
The ENT test is useful for evaluating pseudorandom 

number generators for encryption and statistical sampling 
applications, compression algorithms, and other 
applications where the information density of a file is of 
interest [27]. The ENT test is a collective term for three 
tests, known as the Entropy test, Chi-square test, and 
Serial correlation coefficient (SCC) test. Table 5 shows 
values of this test for the proposed generator. In entropy 
test, its maximum value is 4 and Chi- Square test with 
freedom degree 4 and precision of 0.1 is used. For doing 
these tests, a sequence of length 2  is used. 

Table 5. ENT Test 
TESTS 

Entropy Chi-Square SCC 
3.9999 3.0185 0.00008   

As it is represented in above table, generated sequence 
is able to pass all tests successfully and with good result. 

5.3     PRNG Quality Evaluation 
To compare how our PRNG performs against several 

different PRNGs, we use Diehard test suite [28]. For this 
reason, the proposed generator based on obtained score 
from DIEHRD test is compared with other generators. we 
used Johnson’s scoring scheme [29]: we initialized (a0, 
a1, a2, a3, a4, a5, a6, a7) with 32 different random values 
obtained from http://randomnumber.org, got 32 different 
10MB files, and then assigned scores based on the results 
of the Diehard tests. The PRNGs we have compared to 

Table 4.  Values of 4 basic statistical test 
TESTS 

Pass 
Frequency Serial Poker Autocorrelation 

0.459 2.533 8.851 0.312 4/4 
 

176 Int'l Conf. Foundations of Computer Science |  FCS'11  |



ours are of several different kinds: Linear Congruential 
Generators (rand [30], rand1k [31], pm [32]), Multiply 
with Carry Generators (mother [33]), Additive and 
Subtractive Generators (add [30], sub [32]), Compound 
Generators (shsub [30], shpm [32], shlec [32]), Feedback 
Shift Register Generators (tgfsr [34], fsr [35]), and 
Tausworthe Generators (tauss [36]).  

Each of the Diehard tests produces one or more p-
values. We categorize them as good, suspect or rejected. 
We classify a p-value as rejected if p ≥ 0.998, and as 
suspect if 0.95 ≤ p < 0.998; all other p-values are 
considered to be good. We assign two points for every 
rejection, one point for every suspect classification, and 
no points for the rest. Finally, we add up these points to 
produce a global Diehard score for each PRNG, and 
compute the average over the 32 evaluations: low scores 
indicate good PRNG quality. The information relating to 
the different PRNGs was taken from [31, 37]. The results 
are presented in Table 6. We note that our PRNG is 
outstandingly better than the rest of the analyzed PRNGs: 
the lowest scores correspond to shsub (17.125) and fsr 
(17.90625), significantly greater than our PRNG 
(12.718750). On the other hand, the average scores 
increase up to 50.59375 (pm), 66.53125 (rand), and even 
291.78125 (rand1k).  

 
Table 6. PRNG Diehard Scores 

PRNG Total Score Mean 
Rand 2129 66.531250 
rand1k 9337 291.78125 
Pm 1619 50.593750 
Mother 602 18.812500 
Add 577 18.031250 
Sub 655 20.468750 
Shsub 548 17.125000 
shpm 799 24.968750 
shlec 751 23.468750 
fsr 573 17.906250 
tgfsr 584 18.250000 
tauss 935 29.218750 
Proposed PRNG 407 12.718750 

 

 
5.4    Avalanche Effect 

Bit change sensitivity analysis is used to analyze the 
RNGs that are used in cryptography. One of the desired 
properties in each cryptography algorithm is that a small 
change in plaintext or key yields salient changes in 
ciphertext. In special case, changing one bit in key or 
plaintext should change in half of the ciphertext. This 
property is known as avalanche and represented by Fiestel 
in 1973 [16].  

As mentioned before, the proposed generator could be 
used to generate key in cryptography. To generate a 
unique key in both encoding and decoding, the initial 
values must be available. Thus, for high security in 
cryptography, generated bits stream must have too much 
dependency to this parameter. As mentioned before, a 
8 × 8 CA with an integer between 0 and 3 as the value of 
each cell was used. Then two bits are needed to determine 
the value of each cell and 128 bits could determine the 

value of cells. Two analysis of this section, 128 bits 
randomly generated to determine the initial state and the 
generated bits sequence generated from one cell. Then 
one of these 128 bits has been inverted and the sequence 
of generated bits with the new initial state of the same cell 
generated. At last, the both sequences have been 
compared with each other. Fig. 8, shows the changes 
percent of generated sequences from one specific cell 
with two initial states that differ only in the 푖푡ℎ bit 
(horizontal axis). 

 
Fig. 8.     changes percentage between generated data 
from two keys that only differ in one bit 

 
6     Conclusion  

In this paper, a new PCA for generating random 
numbers using CA and Sandpile model presented. This 
method, have the high performance in all tests and could 
be used in cryptography. Because of avalanche and self 
organizing properties of Sandpile model, it has a complex 
behavior and could be used as a convenient factor in 
stimulating of CA to generate a high quality sequence of 
random numbers. In each step, first the Sandpile process 
applied on the four neighbors of each cell of the two 
dimensional automata and then the CA has been updated 
by the synthetic of 8 rules 165, 105, 90, 150, 153, 101, 30, 
86. The results of applied tests on the generated numbers 
show that this generator has the maximum entropy and 
since passing the chi-square and diehard tests. This 
generator also has a convenient speed and holds the 
ability of parallelism of CA. 
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Abstract 
 

The optimization of quantum computing circuitry 

and compilers at some level must be expressed in 

terms of quantum-mechanical behaviors and 

operations.  In much the same way that  the 

structure of conventional propositional 

(Boolean)  logic (BL) is the logic of the 

description of  the behavior of classical physical 

systems and is isomorphic to a Boolean algebra 

(BA), so also the algebra, C(H), of closed linear 

subspaces of  (equivalently, the system of linear 

operators on (observables in))  a Hilbert space is 

a logic of  the descriptions of the behavior of 

quantum mechanical systems and  is a model of 

an ortholattice (OL).  An OL can thus be thought 

of as a kind of “quantum logic” (QL). C(H) is 

also a model of an orthomodular lattice, which is 

an OL conjoined with the orthomodularity axiom 

(OMA). Because the propositions  of a QL are 

not in general commutative,  quantum logicians 

have paid much attention  to "quasi"-

commutative theorems,  one of the better known 

of which is the Marsden-Herman theorem 

(MHT). In a QL, the non-commutativity of  

(certain) observables can be captured as the 

failure of the (Boolean) distributive law.  

Informally, the MHT states that if there is a 

cyclic chain of commuting elements in an 

orthomodular lattice, a strong version of the 

distributive law holds. Here I provide an 

automated deduction of  the MHT that uses the 

OMA and show that OMA is required by the 

MHT. 

 

Keywords:  automated deduction, quantum 

computing, orthomodular lattice, Hilbert space 

 

 

 

 

1.0  Introduction 
 

     The optimization of quantum computing 

circuitry and compilers at some level must 

be expressed in terms of the description of 

quantum-mechanical behaviors ([1], [17], 

[18], [20]).  In much the same way that 

conventional propositional (Boolean) logic 

(BL,[12]) is the logical structure of 

description of the behavior of classical 

physical systems (e.g. “the measurements of 

the position and momentum of particle P are 

commutative”) and is isomorphic to a 

Boolean lattice ([10], [11], [19]), so also the 

algebra, C(H), of the closed linear subspaces 

of  (equivalently, the system of linear 

operators on (observables in))  a Hilbert 

space H ([1], [4], [6], [9], [13]) is a logic of 

the descriptions of the behavior of quantum 

mechanical systems (e.g., “the 

measurements of the position and 

momentum of particle P are not 

commutative”) and is a model ([10]) of an 

ortholattice (OL; [8]).  An OL can thus be 

thought of as a kind of “quantum logic” 

(QL; [19]).  C(H) is also a model of (i.e., 

isomorphic to a set of sentences which hold 

in) an orthomodular lattice (OML; [7], [8]), 

which is an OL conjoined with the 

orthomodularity axiom (OMA; see Figure 

1).   The rationalization of the OMA as a 

claim proper to physics has proven 

problematic ([13], Section 5-6), motivating 

the question of whether the OMA is required 

in an adequate characterization of QL.  Thus 

formulated, the question suggests that the 

OMA is specific to an OML,  and that as a 

consequence, banning the OMA from QL 

yields a "truer" quantum  logic.  
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_______________________________________________________________________ 

 

Lattice axioms 

      x = c(c(x))                      (AxLat1)          

      x v y = y v x                    (AxLat2)           

      (x v y) v z = x v (y v z)        (AxLat3)                  

      (x ^ y) ^ z = x ^ (y ^ z)        (AxLat4) 

      x v (x ^ y) = x                  (AxLat5) 

      x ^ (x v y) = x                  (AxLat6) 

 

Ortholattice axioms 

      c(x) ^ x = 0                     (AxOL1) 

      c(x) v x = 1                     (AxOL2) 

      x ^ y = c(c(x) v c(y))           (AxOL3)  

 

Orthomodularity axiom 

      y v (c(y) ^ (x v y)) = x v y     (AxOM)  

 

where  

      x, y are variables ranging over lattice nodes 

      ^ is lattice meet  

      v is lattice join 

      c(x) is the orthocomplement of x 

      =  is equivalence ([12])  

      1 is the maximum lattice element (= x v c(x)) 

      0 is the minimum lattice element (= c(1)) 

 

       Figure 1.  Lattice, ortholattice, and  orthomodularity axioms. 

______________________________________________________________________________ 

 

 

     In QL, the non-commutativity of 

(certain) observables can be captured as the 

failure of the distributive law (x v (y ^ 

z) = (x v y) ^ (x v z)).  (This is 

a lattice-theoretic way of representing non-

commutativity; a physicist would likely say 

that non-commutativity is fundamental and 

the failure of distributivity is derivative.  

The two representations are formally 

equivalent.)  A QL (without AxOM), in fact, 

can be thought of as a BL in which the 

distribution law does not hold. Because of 

the fundamental role that non-commutativity 

plays in QL, quantum logicians have paid 

much attention  to "quasi"-commutative 

theorems, which help to ground a large class 

of equivalence representations in quantum 

logic, and are thus of potential interest in 

optimizing quantum circuit design.  Among 

the better known of the quasi-commutative 

theorems is the Marsden-Herman Theorem 

(MHT, [8]), shown is in Figure 2 

 

______________________________________________________________________________ 

 
    If u, z, w, and x are elements of an orthomodular lattice and  

 

           C(u,z) & C(z,w) & C(w,x) & C(x,u) 
 

    then 

 

       (((u  v  z) ^ (w v x))) =  

             (((u ^ w) v (u ^ x)) v ((z ^ w) v (z ^ x))). 

180 Int'l Conf. Foundations of Computer Science |  FCS'11  |



 

    where C(x,y), "x commutes with y", is defined as 

 

        C(x,y) <-> (x = ((x ^ y) v (x ^ c(y)))) 

        <-> means "if and only if"  

 

                                         Figure 2.  The Marsden-Herman Theorem. 

__________________________________________________________________________ 

 

 

     Informally stated, the MHT says that if 

there is a four-element cyclic commutative 

chain of elements in an orthomodular lattice, 

then a strong distribution law holds for those 

elements. 

 

 

2.0  Method 
 

     The OML axiomatizations of Megill, 

Pavičić, and Horner ([5], [14], [15], [16], 

[21], [22]) were implemented in a prover9 

([2]) script ([3]) configured to derive the 

MHT, and  to show that the MHT requires 

the orthomodularity axiom, (AxOM), then 

executed in that framework  on a  Dell 

Inspiron 545 with an  Intel Core2 Quad CPU 

Q8200 (clocked @ 2.33 GHz) and 8.00 GB 

RAM, running under the Windows Vista 

Home Premium (SP2)/Cygwin operating 

environment. 
 

 

3.0  Results 

 
     Figure 3 shows the proof of the MHT 

produced by [3] on the platform described in 

Section 2.0. 

 

______________________________________________________________________________ 

 

 
============================== PROOF ================================= 

 

% Proof 1 at 59.44 (+ 0.37) seconds. 

% Length of proof is 81. 

% Level of proof is 13. 

 

2 C(x,y) <-> x = (x ^ y) v (x ^ c(y)) # label("Df--commutes") # label(non_clause).  

[assumption]. 

3 C(u,z) & C(z,w) & C(w,x) & C(x,u) # label(non_clause).  [assumption]. 

4 (u v z) ^ (w v x) = ((u ^ w) v (u ^ x)) v ((z ^ w) v (z ^ x)) # label(non_clause) # 

label(goal).  [goal]. 

8 -C(x,y) | (x ^ y) v (x ^ c(y)) = x # label("Df--commutes").  [clausify(2)]. 

9 C(x,y).  [clausify(3)]. 

13 x = c(c(x)) # label("AxLat1").  [assumption]. 

14 c(c(x)) = x.  [copy(13),flip(a)]. 

15 x v y = y v x # label("AxLat2").  [assumption]. 

16 (x v y) v z = x v (y v z) # label("AxLat3").  [assumption]. 

18 x v (x ^ y) = x # label("AxLat5").  [assumption]. 

19 x ^ (x v y) = x.  [assumption]. 

20 c(x) ^ x = 0 # label("AxOL1").  [assumption]. 

21 c(x) v x = 1 # label("AxOL2").  [assumption]. 

22 x v c(x) = 1.  [copy(21),rewrite([15(2)])]. 

23 x ^ y = c(c(x) v c(y)) # label("AxOL3").  [assumption]. 

24 x v (c(x) ^ (y v x)) = y v x # label("AxOM").  [assumption]. 

25 x v c(x v c(y v x)) = y v x.  [copy(24),rewrite([23(3),14(2)])]. 

36 ((c1 ^ c3) v (c1 ^ c4)) v ((c2 ^ c3) v (c2 ^ c4)) != (c1 v c2) ^ (c3 v c4).  

[deny(4)]. 

37 c(c(c1 v c2) v c(c3 v c4)) != c(c(c1) v c(c3)) v (c(c(c1) v c(c4)) v (c(c(c2) v c(c3)) 

v c(c(c2) v c(c4)))).  

[copy(36),rewrite([23(3),23(9),23(16),23(22),16(27),23(34)]),flip(a)]. 

38 (x ^ y) v (x ^ c(y)) = x.  [resolve(9,a,8,a)]. 
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39 c(c(x) v y) v c(c(x) v c(y)) = x.  [copy(38),rewrite([23(1),23(6),14(7),15(8)])]. 

40 c(1) = 0.  [back_rewrite(20),rewrite([23(2),14(2),22(2)])]. 

41 c(c(x) v c(x v y)) = x.  [back_rewrite(19),rewrite([23(2)])]. 

42 x v c(c(x) v c(y)) = x.  [back_rewrite(18),rewrite([23(1)])]. 

45 x v (y v z) = y v (x v z).  [para(15(a,1),16(a,1,1)),rewrite([16(2)])]. 

46 c(c(c1 v c2) v c(c3 v c4)) != c(c(c1) v c(c3)) v (c(c(c2) v c(c3)) v (c(c(c1) v c(c4)) 

v c(c(c2) v c(c4)))).  [back_rewrite(37),rewrite([45(36)])]. 

51 x v (c(x v c(y v x)) v z) = y v (x v z).  

[para(25(a,1),16(a,1,1)),rewrite([16(2)]),flip(a)]. 

52 x v (y v c(x v (y v c(z v (x v y))))) = z v (x v y).  

[para(25(a,1),16(a,1)),rewrite([16(7)]),flip(a)]. 

53 x v c(x v c(y v (z v x))) = y v (z v x).  

[para(16(a,1),25(a,1,2,1,2,1)),rewrite([16(8)])]. 

56 c(x v y) v c(x v c(y)) = c(x).  [para(14(a,1),39(a,1,1,1,1)),rewrite([14(4)])]. 

60 0 v c(c(x) v c(x)) = x.  [para(22(a,1),39(a,1,1,1)),rewrite([40(2),14(4)])]. 

66 c(x) v c(x v y) = c(x).  [para(41(a,1),14(a,1,1)),flip(a)]. 

73 c(x v x) = c(x).  [para(41(a,1),41(a,1,1,2)),rewrite([14(2)])]. 

75 0 v x = x.  [back_rewrite(60),rewrite([73(5),14(3)])]. 

76 x v c(c(x) v y) = x.  [para(14(a,1),42(a,1,2,1,2))]. 

81 x v c(y v c(x)) = x.  [para(25(a,1),42(a,1,2,1))]. 

82 x v x = x.  [para(40(a,1),42(a,1,2,1,2)),rewrite([15(3),75(3),14(2)])]. 

85 x v (y v c(x v c(z v x))) = y v (z v x).  [para(25(a,1),45(a,1,2)),flip(a)]. 

93 x v (y v x) = y v x.  [para(82(a,1),16(a,2,2)),rewrite([15(2)])]. 

108 x v (c(c(x) v y) v z) = x v z.  [para(76(a,1),16(a,1,1)),flip(a)]. 

110 x v (y v c(c(x) v z)) = y v x.  [para(76(a,1),45(a,1,2)),flip(a)]. 

112 c(x) v c(y v x) = c(x).  [para(14(a,1),81(a,1,2,1,2))]. 

113 x v (c(y v c(x)) v z) = x v z.  [para(81(a,1),16(a,1,1)),flip(a)]. 

129 c(x) v (c(x v y) v z) = c(x) v z.  [para(66(a,1),16(a,1,1)),flip(a)]. 

130 c(x v y) v c(x v (y v z)) = c(x v y).  [para(16(a,1),66(a,1,2,1))]. 

174 c(c(x) v y) v (z v x) = z v x.  

[para(76(a,1),52(a,1,2,2,1,2,2,1,2)),rewrite([108(10),85(9),76(9)])]. 

185 c(x) v (c(y v x) v z) = c(x) v z.  [para(112(a,1),16(a,1,1)),flip(a)]. 

188 c(x) v (y v c(z v x)) = y v c(x).  [para(112(a,1),45(a,1,2)),flip(a)]. 

190 c(x v y) v (c(y v c(x v y)) v z) = c(y) v z.  

[para(112(a,1),51(a,1,2,1,1,2,1)),rewrite([14(6),15(5),185(13)])]. 

202 x v c(x v c(y v (z v (u v x)))) = y v (z v (u v x)).  

[para(16(a,1),53(a,1,2,1,2,1,2)),rewrite([16(9)])]. 

236 c(x v y) v c(y v c(x)) = c(y).  [para(15(a,1),56(a,1,1,1))]. 

237 c(x v y) v c(c(y) v x) = c(x).  [para(15(a,1),56(a,1,2,1))]. 

253 x v c(x v c(y)) = x v y.  

[para(56(a,1),56(a,1,1,1)),rewrite([14(2),14(6),15(5),16(5),112(4),14(7)])]. 

255 x v (y v (z v (u v x))) = y v (z v (u v x)).  [back_rewrite(202),rewrite([253(7)])]. 

257 x v c(x v y) = x v c(y).  [para(14(a,1),253(a,1,2,1,2))]. 

305 x v c(y v x) = x v c(y).  [para(15(a,1),257(a,1,2,1))]. 

306 x v (c(x v y) v z) = x v (c(y) v z).  

[para(257(a,1),16(a,1,1)),rewrite([16(3)]),flip(a)]. 

308 x v (y v c(x v z)) = y v (x v c(z)).  [para(257(a,1),45(a,1,2)),flip(a)]. 

322 c(x v y) v (c(y v c(x)) v z) = c(y) v z.  [back_rewrite(190),rewrite([305(5)])]. 

401 c(x v y) v c(c(z v c(x)) v y) = c(c(z v c(x)) v y).  

[para(113(a,1),112(a,1,2,1)),rewrite([15(8)])]. 

481 c(x v y) v c(c(x) v y) = c(y).  [para(15(a,1),236(a,1,2,1))]. 

491 c(c(x v y) v z) = c(c(x) v z) v c(x v (c(y) v z)).  

[para(129(a,1),236(a,1,1,1)),rewrite([14(8),15(7),306(7)]),flip(a)]. 

500 c(c(x) v y) v c(x v (z v y)) = c(c(x) v y) v c(z v y).  

[back_rewrite(401),rewrite([491(7),14(7),188(10),491(11),14(11)]),flip(a)]. 

507 c(c(c1) v c(c3 v c4)) v c(c(c2) v c(c3 v c4)) != c(c(c1) v c(c3)) v (c(c(c2) v c(c3)) 

v (c(c(c1) v c(c4)) v c(c(c2) v c(c4)))).  [back_rewrite(46),rewrite([491(10),500(19)])]. 

512 c(x v y) v (z v c(c(y) v x)) = z v c(x).  [para(237(a,1),45(a,1,2)),flip(a)]. 

516 c(x v c(y v z)) = c(x v (y v c(z))) v c(x v c(y)).  

[para(110(a,1),237(a,1,2,1)),rewrite([14(2),15(4),308(4),14(10)]),flip(a)]. 

525 c(c(c1) v c(c3)) v (c(c(c2) v c(c3)) v (c(c3 v (c(c1) v c(c4))) v c(c3 v (c(c2) v 

c(c4))))) != c(c(c1) v c(c3)) v (c(c(c2) v c(c3)) v (c(c(c1) v c(c4)) v c(c(c2) v 

c(c4)))).  

[back_rewrite(507),rewrite([516(8),45(7),15(15),516(23),45(22),15(30),45(31),16(30),45(31

)])]. 

542 c(x v y) v c(y v x) = c(x v y).  [para(93(a,1),130(a,1,2,1))]. 

549 c(x v c(y)) v (c(x v (z v c(y))) v c(x v c(z))) = c(x v (z v c(y))) v c(x v c(z)).  

[para(236(a,1),130(a,1,2,1,2)),rewrite([516(4),15(12),516(16)])]. 

563 c(x v y) v (c(c(x) v y) v z) = c(y) v z.  [para(481(a,1),16(a,1,1)),flip(a)]. 

656 c(x v y) v (c(x v (z v y)) v u) = c(x v y) v u.  [para(45(a,1),185(a,1,2,1,1))]. 
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664 c(x v (y v c(z))) v c(x v c(y)) = c(x v c(z)) v c(x v c(y)).  

[back_rewrite(549),rewrite([656(12)]),flip(a)]. 

677 c(x v c(y v z)) = c(x v c(z)) v c(x v c(y)).  [back_rewrite(516),rewrite([664(12)])]. 

680 c(x) v (y v (z v c(u v x))) = y v (z v c(x)).  

[para(16(a,1),188(a,1,2)),rewrite([16(9)])]. 

814 c(x v (y v z)) v c(y v x) = c(y v x).  

[para(542(a,1),174(a,1,2)),rewrite([14(3),16(2),542(11)])]. 

1741 c(x v (y v z)) v (c(y v x) v u) = c(y v x) v u.  [para(814(a,1),16(a,1,1)),flip(a)]. 

2626 c(x v c(y)) v (c(y v (x v z)) v u) = c(x v c(y)) v (c(x v z) v u).  

[para(512(a,1),322(a,1,1,1)),rewrite([14(10),15(9),16(9),110(8),677(13),14(13),16(15)])]. 

2886 c(c(x) v y) v (z v (u v c(x v y))) = z v (u v c(y)).  

[para(563(a,1),255(a,1)),rewrite([680(6)]),flip(a)]. 

26019 c(x v c(y)) v (z v c(y v (x v u))) = c(x v c(y)) v (z v c(x v u)).  

[para(2886(a,1),1741(a,1)),flip(a)]. 

26036 c(c(c1) v c(c3)) v (c(c(c2) v c(c3)) v (c(c3 v (c(c1) v c(c4))) v c(c(c2) v 

c(c4)))) != c(c(c1) v c(c3)) v (c(c(c2) v c(c3)) v (c(c(c1) v c(c4)) v c(c(c2) v 

c(c4)))).  [back_rewrite(525),rewrite([26019(30)])]. 

26094 $F.  [para(45(a,1),26036(a,1)),rewrite([2626(28),45(27)]),xx(a)]. 

 

============================== end of proof ========================== 

 

 

Figure 3.  Summary of a prover9 ([2]) proof of the Marsden-Herman Theorem ([8]).  The proof 

assumes the inference rules of prover9. The general form of a line in this proof is “line_number 

conclusion [derivation]”, where line_number is a unique identifier of a line in the proof, and 

conclusion is the result of applying the prover9 inference rules (such as paramodulation, copying, and 

rewriting), noted in square brackets (denoting the derivation), to the lines cited in those brackets.  

Note that some of “logical” proof lines in the above have been transformed to two text lines, with the 

derivation appearing on a text line following a text line containing the first part of that logical line. 

The detailed syntax and semantics of these notations can be found in [2].  All prover9 proofs are by 

default proofs by contradiction.  Note that this proof uses the orthomodularity axiom,  AxOM. 

 

____________________________________________________________________________________ 

 

 

     The total time to produce the proof in 

Figure 3 on the platform described in 

Section 2.0 was ~1 minute. 

 

     Not only does the proof in Figure 3 

use the modularity axiom AxOM, 

AxOM  is required by the MHT, as 

Figure 4  shows. 

________________________________________________________________________ 

 

 
============================== PROOF ================================= 

 

% Proof 1 at 0.08 (+ 0.03) seconds: "AxOM". 

% Length of proof is 48. 

% Level of proof is 11. 

 

 

2 C(x,y) <-> x = (x ^ y) v (x ^ c(y)) # label("Df--commutes") # label(non_clause).  

[assumption]. 

3 C(u,z) & C(z,w) & C(w,x) & C(x,u) -> (u v z) ^ (w v x) = ((u ^ w) v (u ^ x)) v ((z ^ w) 

v (z ^ x)) # label("Marsden-Herman Theorem") # label(non_clause).  [assumption]. 

4 y v (c(y) ^ (x v y)) = x v y # label("AxOM") # label(non_clause) # label(goal).  

[goal]. 

7 x = c(c(x)) # label("AxLat1").  [assumption]. 

8 c(c(x)) = x.  [copy(7),flip(a)]. 

9 x v y = y v x # label("AxLat2").  [assumption]. 

10 (x v y) v z = x v (y v z) # label("AxLat3").  [assumption]. 

12 x v (x ^ y) = x # label("AxLat5").  [assumption]. 

13 x ^ (x v y) = x.  [assumption]. 

14 c(x) ^ x = 0 # label("AxOL1").  [assumption]. 

15 c(x) v x = 1 # label("AxOL2").  [assumption]. 
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16 x v c(x) = 1.  [copy(15),rewrite([9(2)])]. 

17 x ^ y = c(c(x) v c(y)) # label("AxOL3").  [assumption]. 

28 -C(x,y) | (x ^ y) v (x ^ c(y)) = x # label("Df--commutes").  [clausify(2)]. 

29 -C(x,y) | c(c(x) v y) v c(c(x) v c(y)) = x.  

[copy(28),rewrite([17(2),17(7),8(8),9(9)])]. 

30 C(x,y) | (x ^ y) v (x ^ c(y)) != x # label("Df--commutes").  [clausify(2)]. 

31 C(x,y) | c(c(x) v y) v c(c(x) v c(y)) != x.  

[copy(30),rewrite([17(2),17(7),8(8),9(9)])]. 

32 -C(x,y) | -C(y,z) | -C(z,u) | -C(u,x) | ((x ^ z) v (x ^ u)) v ((y ^ z) v (y ^ u)) = (x 

v y) ^ (z v u) # label("Marsden-Herman Theorem").  [clausify(3)]. 

33 -C(x,y) | -C(y,z) | -C(z,u) | -C(u,x) | c(c(x v y) v c(z v u)) = c(c(x) v c(z)) v 

(c(c(x) v c(u)) v (c(c(y) v c(z)) v c(c(y) v c(u)))).  

[copy(32),rewrite([17(5),17(9),17(14),17(18),10(23),17(26)]),flip(e)]. 

34 c1 v (c(c1) ^ (c2 v c1)) != c2 v c1 # label("AxOM") # answer("AxOM").  [deny(4)]. 

35 c1 v c(c1 v c(c1 v c2)) != c1 v c2 # answer("AxOM").  

[copy(34),rewrite([9(6),17(7),8(4),9(12)])]. 

36 c(1) = 0.  [back_rewrite(14),rewrite([17(2),8(2),16(2)])]. 

37 c(c(x) v c(x v y)) = x.  [back_rewrite(13),rewrite([17(2)])]. 

38 x v c(c(x) v c(y)) = x.  [back_rewrite(12),rewrite([17(1)])]. 

40 x v (y v z) = y v (x v z).  [para(9(a,1),10(a,1,1)),rewrite([10(2)])]. 

42 x v (c(x) v y) = 1 v y.  [para(16(a,1),10(a,1,1)),flip(a)]. 

49 C(x,c(x)) | 0 v c(c(x) v c(x)) != x.  

[para(16(a,1),31(b,1,2,1)),rewrite([36(8),9(8)])]. 

50 c(0) = 1.  [para(36(a,1),8(a,1,1))]. 

53 C(x,1) | c(0 v c(x)) v c(1 v c(x)) != x.  

[para(36(a,1),31(b,1,2,1,2)),rewrite([9(5),9(9),9(11)])]. 

54 c(x) v c(x v y) = c(x).  [para(37(a,1),8(a,1,1)),flip(a)]. 

58 c(0 v c(x)) = x.  [para(16(a,1),37(a,1,1,2,1)),rewrite([36(3),9(3)])]. 

60 C(x,x v y) | c(1 v y) v x != x.  [para(37(a,1),31(b,1,2)),rewrite([40(5),42(5)])]. 

61 1 v x = 1.  [para(36(a,1),37(a,1,1,1)),rewrite([58(6)])]. 

62 c(x v x) = c(x).  [para(37(a,1),37(a,1,1,2)),rewrite([8(2)])]. 

63 C(x,1) | x v 0 != x.  [back_rewrite(53),rewrite([58(6),61(5),36(4)])]. 

65 C(x,x v y) | 0 v x != x.  [back_rewrite(60),rewrite([61(4),36(4)])]. 

68 C(x,c(x)) | 0 v x != x.  [back_rewrite(49),rewrite([62(7),8(5)])]. 

74 x v 0 = x.  [para(16(a,1),38(a,1,2,1)),rewrite([36(2)])]. 

76 x v x = x.  [para(36(a,1),38(a,1,2,1,2)),rewrite([9(3),58(4)])]. 

78 C(x,1).  [back_rewrite(63),rewrite([74(4)]),xx(b)]. 

81 0 v x = x.  [hyper(29,a,78,a),rewrite([9(3),61(3),36(2),36(4),9(4),58(5)])]. 

83 C(x,c(x)).  [back_rewrite(68),rewrite([81(4)]),xx(b)]. 

84 C(x,x v y).  [back_rewrite(65),rewrite([81(4)]),xx(b)]. 

88 C(0,x).  

[para(50(a,1),31(b,1,1,1,1)),rewrite([61(4),36(4),50(5),61(6),36(5),76(5)]),xx(b)]. 

89 C(x,0).  

[para(50(a,1),31(b,1,2,1,2)),rewrite([9(5),81(5),8(4),9(5),61(5),36(4),74(4)]),xx(b)]. 

95 C(c(x),x).  [para(8(a,1),83(a,2))]. 

112 x v c(x v c(x v y)) = x v y.  

[hyper(33,a,89,a,b,88,a,c,95,a,d,84,a),rewrite([9(3),81(3),9(4),16(4),36(4),9(4),81(4),8(

3),8(5),9(4),9(9),54(9),8(7),50(7),8(8),61(7),36(7),50(8),61(9),36(8),76(8),74(7),9(6)]),

flip(a)]. 

113 $F # answer("AxOM").  [resolve(112,a,35,a)]. 

 

============================== end of proof ========================== 

   

Figure 4.  Summary of prover9 proof showing the MHT requires the 

orthomodularity axiom, AxOM. 

 

________________________________________________________________________ 

 

 

     The total time to complete the proof shown in Figure 4 on the platform described in 

Section 2.0 was 0.11 seconds. 
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Abstract—This paper is the second in a series of papers to 

formalize the proof presented in [1] that the set difference 

between NP and P is not the empty set .  The critical 

difference between the proof presented in [1] and previous 

attempts at this problem is that the proof in [1] focuses on the 

nature of the answers to our set of problems belonging to P 

and NP instead of the set of problem directly.  In a previous 

work [2] we presented a formalization of deterministic 

automata in terms of [1].  Here, we will begin the 

formalization of nondeterministic automata in terms of the 

structures required by [1].  Specifically, we will demonstrate 

that, for nondeterministic automata, at least one of the stage 

games for our Bayesian/Markov game will need to be non-

cooperative. 

Key words: Automata and formal languages; Complexity 

Theory; Game Theory 

 

1 Introduction 

 Earlier this year our group proposed redirecting the 

question of whether or not |NP/P| > 0 from focusing on the 

problems being studied to focusing on the nature of the 

answers to said problems [1].  Specifically, and bearing in 

mind the structural constraints of deterministic automata, can 

deterministic automaton generate truly stochastic answers [1], 

[2]? 

 Many talented researchers have contributed greatly to 

our understanding of this problem [3], [4], [5], [6], [7], and 

many attempts have been made to solve this problem [8], [9], 

[10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], 

[21], [22]; most recently a proof proposed by Vinay 

Deolalikar.  The question regarding the emptiness of |NP/P| 

has been one of the most elusive questions in mathematics 

and computer science since it was first discussed in a 1965 

paper by Jack Edmonds [23]; however until recently, the 

focus has been on the problems belonging to P and NP: not 

the answers to said problems.  It is our hope that a change in 

focus will finally bring an end to this long debate. 

 In this paper we continue to formalize our high level 

proof [1].  Specifically, we will begin to formalize the 

structural properties of nondeterministic automata.  Because 

of the flexibility of nondeterministic automata, this is actually 

a much simpler task than our formalization of deterministic 

automata [2].  First we will discuss the structure of the stage 

games G

 for GB and then the structure for our component 

Markov games with respect to single automaton/algorithm 

implementations. 

 This paper is divided into six sections: Introduction, 

Definitions, Background, Research, Conclusion, and Future 

Research.  Our Definitions section covers the definitions 

specifically relevant to this paper, the Background section 

covers work done by previous researchers that is relevant to 

this paper, the Research section presents the research done by 

our group, the Conclusion section is a brief synopsis of the 

conclusions drawn by our group, and the Future Research 

section outlines the work that must still be completed. 

2 Definitions 

Definition 1 A stochastic answer Asto to a problem P is 

an answer that has both the internal quality of 

randomness and the external quality of randomness in 

occurrence such that a problem instance P cannot be 

mapped directly to a single given answer A [1]. 

Definition 2 A non-stochastic answer Anon-sto to a 

problem P is an answer that can be determined directly 

from the supplied problem instance  such that  ⊨ A [1]. 

3 Background 

 The question regarding the emptiness of |NP/P| has been 

recognized by the Clay Mathematics Institute as one of the 

top seven hardest questions in mathematics, and has been an 

open question since it was first investigated by Jack Edmonds 

[23] in 1965.  Many researchers have contributed greatly to 

our understanding of this problem [8], [9], [10], [11], [12], 

[13], [14], [15], [16], [17], [18], [19], [20], [21], [22]; 

however, our approach differs substantially from previous 

attempts to answer this question.  Specifically, most 

researchers begin their investigation by analyzing the various 

problems that belong to P and NP; whereas, we began our 

investigation by looking for methodologies to model system 

equilibria.  Secondly, after a bit of analysis we came to the 

conclusion that it would be more beneficial to investigate the 

characteristics of the answers to problems belonging to P and 

NP.  This led us to the formulation of stochastic answers their 

application to the question of whether or not |NP/P| =  [1].  

In [1], we presented a high level outline for the arguments 

that we will be utilizing in our proof.  We then began to 
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formalize this proof in [2] with respect to deterministic 

automata. 

 All of the main structural elements utilized by our proof 

are taken from temporal logic [24], [25], [26], [27], [28], [29], 

[30], [31], [32], [33], [34], [35] and extensive form games.  

The arguments presented by our proof are with respect to 

Bayes-Nash equilibria [36] over our temporal logic structures.  

For our research, we are mainly interested in the game 

theoretic formulations for the various forms of temporal logic 

[26], [32], [33], [37], [38], [39], [40], [41]. 

4 Research 

4.1 Model Structure 

 The purpose of this section is to provide an overview of 

the structure utilized by the arguments in this paper to model 

automata.  For our arguments, we are not concerned about 

specific implementations or applications of automata, but are 

concerned with the natural structure of automata in general.  

As such, we will consider an automaton M as a generic 

automaton that is capable of solving any given solvable 

problem P for an answer A. 

 Since P must be expressed in a manner that is 

understandable to M, we will consider an instance of P as an 

acceptable word : where P itself is a set of related words.  In 

this manner, the set ï of all problems P is also the complete 

set of acceptable words  for our generic automaton M: finite 

and infinite. 

 We define M formally according to the quintuple 

(Q,,, q
0
, F): where Q is a finite set of states for M,  is 

M’s input alphabet;  is a state transition function for M; q
0
 is 

the initial state, or set of initial states, for M; and F is the set 

of final, or accepting, states for M such that F  Q.  For 

nondeterministic automata M our transition function will be 

defined as :Q2
Q
 [34]. 

 Since we have not yet applied a specific problem P to M 

we are not concerned about our acceptance condition for M; 

however, we are concerned about the set ï of acceptable 

words .  From ï we construct our -tree t for M; where t is 

defined according to the pair (v, ï) such that v: ï .  We 

then say that a run r on t is performed by M if r maps ï to Q 

[25], [28]; where r is a single instance of M and the set r of 

runs r forms a Q-tree q in like manner as our -tree t
1
. 

                                                         
1 We define a Q-tree q as a pair (, r) where r is our set of runs r, :rQ, 

and r: ïQ.  We define a q-tree in this manner rather than as was done by 
Pnueli and Rosner in [28] because we find it more intuitive to our adaptation 

for a Bayesian game.  That is, a run r can now be interpreted directly as a 

sequence of state-input pairs that are easily reinterpreted as pure strategies for 

our Bayesian game.  Ultimately, defining our Q-tree this way enables us to 

define the probability distribution for our Bayesian game on top of our Q-tree 

instead of as an integral part of our Q-tree. 

 With our -tree and our Q-tree defined and 

characterized, we can now define our high level game 

structure.  We define our high level game GB as a Bayesian 

game over r, and according to the quadruple (N, G, , ); 

where N is the set of n players for GB, G is a set of component 

games for GB,  is a common prior over all component games 

that participate in GB, and  is a tuple of partitions  of GB 

for each agent iN.  We define a partitioning 

 
r

r
22: PΠ  (1) 

of GB as a Bayes-Nash equilibrium A
2
 for GB with respect to 

P, and an ordering of the pure strategies of GB into partitions 

 that define the component games for our current instance 

of GB; where each component game is defined as a Markov 

game GM over the sub-tree defined by the set of pure 

strategies r,a; and where our set of Markov games, for an 

instance of GB, exist in a one-to-one correspondence with our 

set of partitions  and are viewed as concurrent game 

structures with respect to a given problem P.  Here, we will 

view each partition  as an independent algorithm 

implementable on M. For our purposes, N will always be 

defined as the set {time, memory}, regardless of our instances 

of M.  Initially, and before we apply P to M,  will be 

defined according to the total likelihood that our players i will 

play a pure strategy ra in response to any given problem 

instance a; however, after we apply P to M, thereby 

imparting a partitioning (P, r), but before we apply a 

specific problem instance P to M we will induce a re-

evaluation of  such that  will now only provide support to 

partitions that may be used in response to P.  As such, the 

individual probabilities ci,,a associated with each individual 

pure strategy r,a will now be proportional to the likelihood 

that a given pure strategy r,a will be played in response to a 

given problem instance a with respect to P. 

4.2 Nondeterministic Games 

 

 There is a wide variety of nondeterministic behavior 

with respect to automata: some of which originating from 

within the automaton and some of which originates from 

outside the automaton.  This includes indeterminism with 

respect to environmental input [26], [32], [39], indeterminism 

with respect a guessing module [6], indeterminism with 

respect to circuit error [4], [7], and really any other source of 

indeterminacy with respect to our circuit behavior.  Our goal 

here is to construct a formalization for a model of automata 

that is capable of accurately incorporating all of these forms 

of nondeterministic behavior.  This goal is what has led us to 

the formulation of nondeterministic games. 

 By nondeterministic game we mean a Bayesian game 

that is being utilized to model a nondeterministic automaton, 

                                                         
2 The set of all Bayes-Nash equilibria for GB will be denoted as Ä. 
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or algorithm, that can be utilized to solve a nondeterministic 

problem PNP
3
.  Since we know that GB is partitioned into 

Markov subgames GM, where each subgame is defined over a 

partition  that represents an independent algorithm that can 

be implemented on M, let us first consider how we can 

implement a nondeterministic algorithm as a Markov 

subgame GM.  The implementation of a nondeterministic 

game GM is almost identical to that of deterministic games 

discussed in [2].  The main difference between our 

nondeterministic games and our deterministic games is that 

our nondeterministic games GM do not have an equality 

restriction on their mixed strategies, see [2], and therefore 

their mixed strategies are not required to be reducible to a 

single pure strategy r,a: or a

 for a stage game G


. 

 

Axiom 1: A nondeterministic stage game 
gstabilizinnonQ  that 

contains a nondeterministic state transition defined by the 

transition function :Q2
Q
 for an algorithm  defined 

over a finite, nondeterministic automaton M must contain 

at least one Nash equilibrium S

 such that there exists a 

positive probability 



 ajai cc ,,,,   that the players i,jN will 

choose disparate actions 



 ajai aa ,,,,  , for at least two 

players i and j; where 0,,,,  



 ajai cc  even after the value 

for  is known. 

Proof: 

As shown by the proof of Axiom 4 and Corollary 1 in [2], 

if after the value for  is known, 



 ajai aa ,,,,  for all 

actions a

 and all pairs of players i and j for all stage games 

G

 across all runs r,a then all transitions a


 are predictable, 

and therefore determinable based upon the input .  This 

essentially means that if only a single transition 

a can be 

performed from q

 in response to a given input , and 

therefore 






ajai aaa ,,,,  , then 


a

 
is determinable base 

upon .  However, if multiple transitions , , 
ba aa  can be 

performed in response to the input  then  will determine 

                                                         
3 We should note that we do recognize a difference between a 

nondeterministic automata and a completely stochastic game.  This difference 

is simply the understanding that the various runs r,a in an algorithm  will 
have at least a minimal, recognizable relationship between them whereas a 

completely and purely stochastic game will have no discernable means, 

throughout the entirety of the game, to determine either which action 
aa  will 

be performed or which state 1
aq  will be transitioned to at any given time 

instance .  This acknowledgement, or assumption, is important because it 

allows us to continue to sort, or partition, the pure strategies r,a in GB into 

independent algorithms  based upon the similarities, or relationships, 

between our pure strategies .  These relationships can either be established 

across observed structural relationships between our pure strategies , upon 

a desired structure for the -tree that will represent our desired algorithm , 

a desired objective A to a problem P, or any other method for establishing 

relationships between our pure strategies r,a for GB. 

the set of transitions 

a that can be performed from q


.  This 

set of transitions 

a  enables M to choose a next state during 

G

 via some other factor than our input value , such as 

random behavior.  As such, in order for G

 to be 

nondeterministic there must exist a Nash equilibrium point 

S

 for G


 such that 



ji
aa  for the actions of at least two 

players i,jN. 

Let us assume to the contrary that a) a

 is not determinable 

based upon  and that b) M can behave non-

deterministically when 


ji
aa  for all players i and j and all 

stage games G

. 

a.  If a

 is not determinable based upon  then there 

exists a transition 



a , or set a


 of transitions (




a ,…,




a

), that is independent of .  Since our transition function 

 is defined with respect to both q

 and , as (q


, ), 

the existence of 



a  or a


 is in contradiction to the 

definition of M and therefore Axiom 1 is correct. 

b.  If M can behave nondeterministically when all 

players i agree upon a pure strategy a

 then M can 

behave independently of a

.  This is in contradiction to 

the definition of M and the definition of a

.  As such, 

Axiom 1 must be correct. 

 The probability distribution for s is popularly modeled 

as an error function [26], [32], [39], [42]: which is closely in 

line with the existence of non-stabilizing circuits [34].  

However, to appreciate how this error function behaves we 

need to know more about its implementation on the Q-tree 

upon which GB is defined.  Specifically, it is a rather simple 

analogy to argue that our non-reducible mixed strategy s, 

with respect to its associated stage game G

, is representative 

of a non-stabilizing circuit in that we do not know how the 

subsequent stablizable circuitry q
 + 1

 will interpret the values 

produced by q

 until after q

 + 1
 has performed its associated 

operations on said values.  This is reflected in our model in 

that we will not be able to determine which pure strategy r,a 

will be instantiated by M until after we have reached G
 + 1

 or 

G
 + 2

: assuming that our model is capable of perfect recall
4
. 

 This source of instability within our stage games G

 

obliges us to analyze the word structure for the Q-tree 

automaton that GM, via GB, is defined over.  Primarily, unlike 

deterministic games which can be reduced to simple 

coordination games when the value for a is known, our 

sources of instability, such as non-stabilizing circuits, prevent 

us from being able to reduce the tree structure for GM to a 

single pure strategy even when the value for a is known. 

                                                         
4 In truth, even if our model does not have perfect recall, we can still 

theoretically back-compute r,a via the methods outlined in [45], [44]. 
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Corollary 1: A nondeterministic algorithm  instantiated on 

an automaton M can be defined via a Markov game GM 

such that a) the pure strategies r,a in GM represent the 

instances of M over a given input sequence a, and where at 

least one of the stage games G

 is a nondeterministic stage 

game; and b) any given possible instance of  on M can 

be defined by a pure strategy r,a. 

Proof: 

a.  We know from Axiom 1 and [2] that if all of the stage 

games in GM are deterministic then the outcome of any 

given instance r,a of GM will be completely 

determinable based upon its associated input sequence 

a.  As such, in order for GM to be nondeterministic there 

must exist at least one nondeterministic stage game 


gstabilizinnonq  in GM.  To assume the contrary of this 

would be in contradiction to the definition of a 

nondeterministic automaton. 

b.  We know that GM represents all possible ways in 

which we can instantiate an algorithm  on M over an 

input vector ï, or set of input sequences a.  As such, if 

M performs a transition a

 from our set A of actions in 

response to an input a then a

 must exist in GM; for 

all transitions a

 performed during the instantiation of 

 in response to the input sequence a.  The sequence 

of transitions a

 that are performed by M during an 

instantiation of  define a single path, or pure strategy 

r,a through the tree structure of GB.  Since all of the 

actions a

 that are performed during our instantiation of 

 must exist in GM, r,a must also exist in GM: and 

therefore r,a. 

c.  Let us assume to the contrary that there can exist an 

instance of  on M that cannot be defined by a pure 

strategy r,a.  If this were true then there must exist 

an action a

 that exist in GM but that does not exist in .  

Since GM is defined by , this would be in 

contradiction to the definition of GM. 

 It should be noted that the nondeterministic algorithm  

described in Corollary 1 is not a concurrent process and 

therefore only involves a single algorithm being performed on 

a single automaton M.  This is similar to the nondeterministic 

automaton described by Garey and Johnson in [6] that 

utilized a guessing module: where our guessing module is 

represented by a stage game G

, representative of a state 


gstabilizinnonq  , during which at least two players i and j disagree 

upon which transition 

aa should be performed.  This model 

for nondeterministic algorithms is common in modern 

interpretations of nondeterministic automata that incorporate 

an error function for our non-stabilizing circuit components 


gstabilizinnonq   [26], [32], [39], [42].  However, this does not 

exclude us from consideration of the concurrent models for 

nondeterministic automata [24], [26], [28], [35], [40], and 

[43].  In concurrent models, our nondeterministic automaton 

simultaneously runs multiple concurrent, deterministic 

algorithms not knowing which algorithm will run to 

completion first.  Similarly, we could state that we 

concurrently run multiple deterministic automata without 

knowing how each, individual automaton will contribute to 

the various parts or components of the final answer.  We can 

directly interpret this traditional model for nondeterministic 

automata as concurrently providing support to multiple 

partitions of GB.  From an implementation standpoint, we can 

consider this to represent either a single physical automaton 

M that concurrently implements multiple algorithms, each 

represented by a separate partition , or a set M of 

concurrent automatons M that are each, individually complete 

with respect to P5. 

5 Conclusion 

 In this paper we formalized the structural nature of 

nondeterministic automata, as modeled by a Bayesian game, 

with respect to our overall proof that NP/P   [1].  During 

this formalization we demonstrated that nondeterministic 

stage games requires a non-reducible mixed strategy and that 

nondeterministic Markov games require non-reducible mixed 

strategies.  The vast majority of the details presented here had 

been demonstrated previous by many very talented 

researchers [24], [25], [26], [27], [28], [29], [30], [31], [32], 

[33], [34], [35], [37], [38], [39], [40], [41] but not in the 

context of our high level proof that NP/P  .  Between [2], 

Axiom 1, and Corollary 1 it should begin to become 

somewhat evident as to why deterministic automata cannot, 

by themselves, generate stochastic answers.  That is, 

deterministic automata lack the multiplicity of runs, or 

actions, with respect to at least one input sequence that is 

inherent in nondeterministic automata. 

 That said, Axiom 1 and Corollary 1 is only half way 

through our formalization of nondeterministic automata.  That 

is, we still need to characterize the use case of an 

implementation involving multiple, concurrent deterministic 

automata running to solve the same problem.  Additionally, 

we will have to show how these two perspectives on 

nondeterministic automata are equivalent.  Both of these will 

need to be demonstrated before we can finalize the 

formalization of the high level proof presented in [1]. 

6 Future Research 

 At this point we have formalized deterministic automata 

[2] but our formulization of nondeterministic automata is still 

incomplete.  As such, we will need to complete our 

formulization of nondeterministic automata.  Once we have 

fully completed our formulization of nondeterministic 

                                                         
5 Though it is not required, we will always assume here that each MM 

is a universal automaton that is complete with respect to our Q-tree q. 
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automata in the context of [1] then we can finally pull 

everything together and present the formal concluding 

arguments for [1]. 

 For more information on the work presented here please 

see the author’s website at 

www.holcombtechnologies.com/dissertation.aspx.  
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Abstract 
 

The optimization of quantum computing circuitry 

and compilers at some level must be expressed in 

terms of quantum-mechanical behaviors and 

operations.  In much the same way that  the 

structure of conventional propositional 

(Boolean)  logic (BL) is the logic of the 

description of  the behavior of classical physical 

systems and is isomorphic to a Boolean algebra 

(BA), so also the algebra, C(H), of closed linear 

subspaces of  (equivalently, the system of linear 

operators on (observables in))  a Hilbert space is 

a logic of  the descriptions of the behavior of 

quantum mechanical systems and  is a model of 

an ortholattice (OL).  An OL can thus be thought 

of as a kind of “quantum logic” (QL). C(H) is 

also a model of an orthomodular lattice, which is 

an OL conjoined with the orthomodularity axiom 

(OMA). Because the propositions  of a QL are 

not in general commutative,  quantum logicians 

have paid much attention  to "quasi"-

commutative theorems, including the so-called 

"exchange" theorems, one of the best known of 

which is the Gudder-Schelp-Beran (GSB) 

theorem .  Here I show that, contrary to 

apparently universal practice,  the GSB can be 

proved without using the orthomodularity 

assumption, and thus holds even in ortholattices 

proper.  This result appears to be novel. 

 

Keywords:  automated deduction, quantum 

computing, orthomodular lattice, Hilbert space 

 

 

1.0  Introduction 
 

The optimization of quantum computing 

circuitry and compilers at some level must 

be expressed in terms of the description of 

quantum-mechanical behaviors ([1], [17], 

[18], [20]).  In much the same way that 

conventional propositional (Boolean) logic 

(BL,[12]) is the logical structure of 

description of the behavior of classical 

physical systems (e.g. “the measurements of 

the position and momentum of particle P are 

commutative”) and is isomorphic to a 

Boolean lattice ([10], [11], [19]), so also the 

algebra, C(H), of the closed linear subspaces 

of  (equivalently, the system of linear 

operators on (observables in))  a Hilbert 

space H ([1], [4], [6], [9], [13]) is a logic of 

the descriptions of the behavior of quantum 

mechanical systems (e.g., “the 

measurements of the position and 

momentum of particle P are not 

commutative”) and is a model ([10]) of an 

ortholattice (OL; [8]).  An OL can thus be 

thought of as a kind of “quantum logic” 

(QL; [19]).  C(H) is also a model of (i.e., 

isomorphic to a set of sentences which hold 

in) an orthomodular lattice (OML; [7], [8]), 

which is an OL conjoined with the 

orthomodularity axiom (OMA; see Figure 

1).   The rationalization of the OMA as a 

claim proper to physics has proven 

problematic ([13], Section 5-6), motivating 

the question of whether the OMA is required 

in an adequate characterization of QL.  Thus 

formulated, the question suggests that the 

OMA is specific to an OML,  and that as a 

consequence, banning the OMA from QL 

yields a "truer" quantum  logic.
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Lattice axioms 

      x = c(c(x))                      (AxLat1)          

      x v y = y v x                    (AxLat2)           

      (x v y) v z = x v (y v z)        (AxLat3)                  

      (x ^ y) ^ z = x ^ (y ^ z)        (AxLat4) 

      x v (x ^ y) = x                  (AxLat5) 

      x ^ (x v y) = x                  (AxLat6) 

 

Ortholattice axioms 

      c(x) ^ x = 0                     (AxOL1) 

      c(x) v x = 1                     (AxOL2) 

      x ^ y = c(c(x) v c(y))           (AxOL3)  

 

Orthomodularity axiom (OMA) 

      y v (c(y) ^ (x v y)) = x v y     (AxOM)  

 

where  

      x, y are variables ranging over lattice nodes 

      ^ is lattice meet  

      v is lattice join 

      c(x) is the orthocomplement of x 

      =  is equivalence ([12])  

      1 is the maximum lattice element (= x v c(x)) 

      0 is the minimum lattice element (= c(1)) 

 

       Figure 1.  Lattice, ortholattice, and  orthomodularity axioms. 

______________________________________________________________________________ 

 

     In QL, the non-commutativity of 

(certain) observables can be captured as the 

failure of the distributive law (x v (y ^ 

z) = (x v y) ^ (x v z)).  (This is 

a lattice-theoretic way of representing non-

commutativity; a physicist would likely say 

that non-commutativity is fundamental and 

the failure of distributivity is derivative.  

The two representations are formally 

equivalent.)  A QL (without AxOM), in fact, 

can be thought of as a BL in which the 

distribution law does not hold. Because of 

the fundamental role that non-commutativity 

plays in QL, quantum logicians have paid 

much attention  to "quasi"-commutative 

theorems. In this family of "almost"-

commutative theorems are the so-called 

"exchange" theorems, which help to ground 

a large class of equivalence representations 

in quantum logic, and are thus of potential 

interest in optimizing quantum circuit 

design.  Among the best known of the 

exchange theorems is the Gudder-Schelp-

Beran (GSB) theorem ([8], Theorem 4.2,  p. 

263), shown is in Figure 2 

 
_________________________________________________________________ 

 

  If x, y, and z are elements of an orthomodular lattice and   

 

        C(y,z)             (Hypothesis 1) 

  and  

        C(x, (y ^ z)),     (Hypothesis 2)  

 

  then       
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        C((x ^ y), z)      (i) 

        C((x ^ z), y)      (ii) 

        C((c(x) ^ y, z))   (iii) 

        C(c(x) ^ z, y)     (iv) 

        C(c(x) v c(y), z)  (v) 

        C(c(x) v c(z), y)  (vi) 

        C(x v c(y), z)     (vii) 

        C(x v c(z), y)     (viii) 

 

  where C(x,y), "x commutes with y", is defined as 

 

        C(x,y) <-> (x = ((x ^ y) v (x ^ c(y)))) 

        <-> means "if and only if"  

 

                    Figure 2.  The GSB theorem 

______________________________________________________________________________ 

 

 

2.0  Method 
 

     The OML axiomatizations of Megill, 

Pavičić, and Horner ([5], [14], [15], [16], 

[21], [22]) were implemented in a prover9 

([2]) script ([3]) configured to derive the 

GSB theorem and executed in that 

framework  on a  Dell Inspiron 545 with an  

Intel Core2 Quad CPU Q8200 (clocked @ 

2.33 GHz) and 8.00 GB RAM, running 

under the Windows Vista Home Premium 

(SP2)/Cygwin operating environment. 
 

 

3.0  Results 

 
     Figure 3 shows the proof of the GSB 

theorem produced by [3] on the platform 

described in Section 2.0. 

 
_______________________________________________________________________ 

 

========================= PROOF ================================= 

 

3 C(x ^ y,z) # label("Theorem 4.2(i)") # label(non_clause) # 

label(goal).  [goal]. 

23 x ^ y = c(c(x) v c(y)) # label("AxOL3").  [assumption]. 

40 C(x,y) # label("Hyp1, Beran Thm 4.2").  [assumption]. 

42 -C(c1 ^ c2,c3) # label("Theorem 4.2(i)") # answer("Theorem 4.2(i)").  

[deny(3)]. 

43 -C(c(c(c1) v c(c2)),c3) # answer("Theorem 4.2(i)").  

[copy(42),rewrite([23(3)])]. 

44 $F # answer("Theorem 4.2(i)").  [resolve(43,a,40,a)]. 

 

========================= end of proof ========================== 

 

========================= PROOF ================================= 

 

4 C(x ^ z,y) # label("Theorem 4.2(ii)") # label(non_clause) # 

label(goal).  [goal]. 

23 x ^ y = c(c(x) v c(y)) # label("AxOL3").  [assumption]. 

40 C(x,y) # label("Hyp1, Beran Thm 4.2").  [assumption]. 

45 -C(c4 ^ c5,c6) # label("Theorem 4.2(ii)") # answer("Theorem 

4.2(ii)").  [deny(4)]. 

46 -C(c(c(c4) v c(c5)),c6) # answer("Theorem 4.2(ii)").  

[copy(45),rewrite([23(3)])]. 
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47 $F # answer("Theorem 4.2(ii)").  [resolve(46,a,40,a)]. 

 

========================= end of proof ========================== 

 

========================= PROOF ================================= 

 

5 C(c(x) ^ y,z) # label("Theorem 4.2(iii)") # label(non_clause) # 

label(goal).  [goal]. 

13 x = c(c(x)) # label("AxLat1").  [assumption]. 

14 c(c(x)) = x.  [copy(13),flip(a)]. 

23 x ^ y = c(c(x) v c(y)) # label("AxOL3").  [assumption]. 

40 C(x,y) # label("Hyp1, Beran Thm 4.2").  [assumption]. 

48 -C(c(c7) ^ c8,c9) # label("Theorem 4.2(iii)") # answer("Theorem 

4.2(iii)").  [deny(5)]. 

49 -C(c(c7 v c(c8)),c9) # answer("Theorem 4.2(iii)").  

[copy(48),rewrite([23(4),14(3)])]. 

50 $F # answer("Theorem 4.2(iii)").  [resolve(49,a,40,a)]. 

 

========================= end of proof ========================== 

            

 

========================= PROOF ================================= 

 

6 C(c(x) ^ z,y) # label("Theorem 4.2(iv)") # label(non_clause) # 

label(goal).  [goal]. 

13 x = c(c(x)) # label("AxLat1").  [assumption]. 

14 c(c(x)) = x.  [copy(13),flip(a)]. 

23 x ^ y = c(c(x) v c(y)) # label("AxOL3").  [assumption]. 

40 C(x,y) # label("Hyp1, Beran Thm 4.2").  [assumption]. 

51 -C(c(c10) ^ c11,c12) # label("Theorem 4.2(iv)") # answer("Theorem 

4.2(iv)").  [deny(6)]. 

52 -C(c(c10 v c(c11)),c12) # answer("Theorem 4.2(iv)").  

[copy(51),rewrite([23(4),14(3)])]. 

53 $F # answer("Theorem 4.2(iv)").  [resolve(52,a,40,a)]. 

 

========================= end of proof ========================== 

 

========================= PROOF ================================= 

 

7 C(c(x) v c(y),z) # label("Theorem 4.2(v)") # label(non_clause) # 

label(goal).  [goal]. 

40 C(x,y) # label("Hyp1, Beran Thm 4.2").  [assumption]. 

54 -C(c(c13) v c(c14),c15) # label("Theorem 4.2(v)") # answer("Theorem 

4.2(v)").  [deny(7)]. 

55 $F # answer("Theorem 4.2(v)").  [resolve(54,a,40,a)]. 

 

========================= end of proof ========================== 

 

========================= PROOF ================================= 

 

8 C(c(x) v c(z),y) # label("Theorem 4.2(vi)") # label(non_clause) # 

label(goal).  [goal]. 

40 C(x,y) # label("Hyp1, Beran Thm 4.2").  [assumption]. 

56 -C(c(c16) v c(c17),c18) # label("Theorem 4.2(vi)") # answer("Theorem 

4.2(vi)").  [deny(8)]. 

57 $F # answer("Theorem 4.2(vi)").  [resolve(56,a,40,a)]. 
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========================= end of proof ========================== 

 

========================= PROOF ================================= 

 

9 C(x v c(y),z) # label("Theorem 4.2(vii)") # label(non_clause) # 

label(goal).  [goal]. 

40 C(x,y) # label("Hyp1, Beran Thm 4.2").  [assumption]. 

58 -C(c19 v c(c20),c21) # label("Theorem 4.2(vii)") # answer("Theorem 

4.2(vii)").  [deny(9)]. 

59 $F # answer("Theorem 4.2(vii)").  [resolve(58,a,40,a)]. 

 

========================= end of proof ========================== 

 

========================= PROOF ================================= 

 

 

10 C(x v c(z),y) # label("Theorem 4.2(viii)") # label(non_clause) # 

label(goal).  [goal]. 

40 C(x,y) # label("Hyp1, Beran Thm 4.2").  [assumption]. 

60 -C(c22 v c(c23),c24) # label("Theorem 4.2(viii)") # answer("Theorem 

4.2(viii)").  [deny(10)]. 

61 $F # answer("Theorem 4.2(viii)").  [resolve(60,a,40,a)]. 

 

========================== end of proof ========================== 

 

Figure 3.  Summary of a prover9 ([2]) proof of the Gudder-Schelp-Beran theorem ([8], p. 263).  The 

proof assumes the inference rules of prover9. The general form of a line in this proof is “line_number 

conclusion [derivation]”, where line_number is a unique identifier of a line in the proof, and 

conclusion is the result of applying the prover9 inference rules (such as hyperresolution, copying, and 

rewriting), noted in square brackets (denoting the derivation), to the lines cited in those brackets.  

Note that some of “logical” proof lines in the above have been transformed to two text lines, with the 

derivation appearing on a text line following a text line containing the first part of that logical line. 

The detailed syntax and semantics of these notations can be found in [2].  All prover9 proofs are by 

default proofs by contradiction. 

 

______________________________________________________________________________________ 

 

 

The total time to produce the proofs in Figure 3 on the platform described in Section 2.0 

was ~0.4 seconds. 

   

 

4.0 Discussion 
 
     Several features of the proofs in Section 

3.0 are worth noting: 

     1.  The proofs nowhere use the OMA, 

and thus are actually proofs that GSB holds 

without the modularity assumption (i.e., 

GSB holds for all ortholattices, not just 

orthomodular lattices. It appears that all of 

the published proofs to date of GSB use the 

OMA.)  

 

     2.  None of the proofs use Hypothesis 2 

of the GSB as formulated in Figure 2 

(Hypothesis 2 can be derived from 

Hypothesis 1 by substituting x for y, and  y ^ 

z for z,  in Hypothesis 1).  Therefore, 

Hypothesis 2 is redundant. 

     3.  The proofs of consequences (i) - (iv) 

use only ortholattice axiom 3 (AxOL3).  

This means that the GSB restricted to 

consequences (i)-(iv) holds in a subtheory of 

ortholattice theory. 
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     4.  The proofs of consequences (v) - (viii) 

use only the first hypothesis of GSB.  This 

means that the GSB restricted to 

consequences (v)-(viii) holds in a subtheory 

of lattice theory.  Note also that proof by 

contradiction in these cases results in very 

short proofs that do not need to use the 

definiens of the "commutes" relation. 

     5.  The proofs in Section 3.0 deploy 

several inference rules (rewriting, copying, 

and hyperresolution) that are on the surface 

more  powerful than the combination of 

condensed detachment and substitution per 

se, a behavior which puts the dependencies 

of the GSB consequents on its hypotheses in 

sharp relief.    Each of prover9's inference 

rules is derivable from the combination of 

condensed detachment and substitution 

alone, however, so the more inclusive set of 

inference rules used here can be invoked 

without loss of generality. 
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Abstract - In recent works for high-performance computing, 
computation with DNA molecules, i.e. DNA computing, has 
considerable attention as one of non-silicon-based computing. 
Watson–Crick complementarity and massive parallelism are 
two important features of DNA. Using the features, one can 
solve an NP-complete problem, which usually needs 
exponential time on a silicon-based computer, in a polynomial 
number of steps with DNA molecules.In this paper, we 
consider a procedure for maximum K-Facility dispersion  
problem in the Adleman–Lipton model. The procedure works 
in )( 2nO  steps for maximum K-Facility dispersion problem of 
a directed graph with n vertices. 

Keywords:maximum K-Facility dispersion problem; 
Adleman–Lipton model, NP complete; 

 

1 Introduction 
  In recent works for high-performance computing, 
computation with DNA molecules, i.e. DNA computing, has 
considerable attention as one of non-silicon-based computing. 
Watson–Crick complementarity and massive parallelism are 
two important features of DNA. Using the features, one can 
solve an NP-complete problem, which usually needs 
exponential time on a silicon-based computer, in a 
polynomial number of steps with DNA molecules. As the 
first work for DNA computing, Adleman (1994) presented an 
idea of solving the Hamiltonian path problem of size n in 

 O(n) steps using DNA molecules. Lipton (1995) 
demonstrated that Adleman’s experiment could be used to 
determine the NP-complete satisfiability (SAT) problem (the 
first NP-complete problem). Ouyang et al. (1997) presented a 
molecule biology-based experimental solution to the maximal 
clique NP-complete problem. In recent years, lots of papers 
have occurred for designing DNA procedures and algorithms 
to solve various NP-complete problems. Moreover, 
procedures for primitive operations, such as logic or 

arithmetic operations, have been also proposed so as to apply 
DNA computing on a wide range of problems (Frisco, 2002; 
Fujiwara et al., 2004; Guarnieri et al., 1996; Gupta et al., 
1997; Hug and Schuler, 2001; and Kamio et al., 2003). 

In this paper, the DNA operations proposed by Adleman 
(1994) and Lipton (1995) are used for figuring out solutions 
of maximum K-Facility dispersion problem. 

Given a complete directed graph E)(V,G =  with costs on 
edge satisfying the triangle inequality and an integer k find a 
set kFVF =⊆ ||,  so as to minimize 

)},({min 21, 21
ffdFff ∈  

The rest of this paper is organized as follows. In Section 2, 
the Adleman–Lipton model is introduced in detail. Section 3 
we present a DNA algorithm for solving the maximum K-
Facility dispersion problem and the complexity of the 
proposed algorithm is described. We give conclusions in 
Section 4. 

2 The Adleman–Lipton model 
 Bio-molecular computers work at the molecular level. 
Because biological and mathematical operations have some 
similarities, DNA, the genetic material that encodes for living 
organisms, is stable and predictable in its reactions and can be 
used to encode information for mathematical systems. 

A DNA (deoxyribonucleic acid) is a polymer which is strung 
together from monomers called deoxyribo-nucleotides (Pâun 
et al., 1998). Distinct nucleotides are detected only with their 
bases. Those bases are, respectively, abbreviated as A 
(adenine), G (guanine), C (cytosine) and T (thymine). Two 
strands of DNA can form (under appropriate conditions) a 
double strand, if the respective bases are the Watson-Crick 
complements of each other – A matches T and C matches G; 
also 3' -end matches 5' -end, e.g. the singled strands 5'-
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ACCGGATGTCA-3' and 3' –TGGCCTACAGT-5' can form 
a double strand. We also call the strand  3'-
TGGCCTACAGT-5' as the complementary strand of 5'-
ACCGGATGTCA-3' and simply denote 3'-
TGGCCTACAGT-5' by A ACCGGATGTC . The length of a 
single stranded DNA is the number of nucleotides comprising 
the single strand. Thus, if a single stranded DNA includes 20 
nucleotides, it is called a 20 mer. The length of a double 
stranded DNA (where each nucleotide is base paired) is  

  

Fig. 1. Graph G. 

counted in the number of base pairs. Thus, if we make a 
double stranded DNA from a single stranded 20 mer, then the 
length of the double stranded DNA is 20 base pairs, also 
written as 20 bp. 

The Adleman–Lipton model: A (test) tube is a set of 
molecules of DNA (i.e. a multi-set of finite strings over the 
alphabet {A, C, G, T}). Given a tube, one can perform the 
following operations: 

(1) Merge (T1, T2): for two given test tubes T1, T2 it stores the 
union 21 TT ∪  in T1 and leaves T2 empty; 

(2) Copy (T1, T2): for a given test tube T1 it produces a test 
tube T2 with the same contents as T1; 

(3) Detect (T): Given a test tube T it outputs ‘‘yes’’ if T 
contains at least one strand, otherwise, outputs ‘‘no’’; 

(4) Separation (T1, X, T2): for a given test tube T1 and a given 
set of strings X it removes all single strands containing a 
string in X from T1 , and produces a test tube T2 with the 
removed strands; 

(5) Selection (T1, L, T2): for a given test tube T1 and a given 
integer L it removes all strands with length L from T1, and 
produces a test tube T2 with the removed strands; 

(6) Cleavage (T, 10σσ ): for a given test tube T and a string of 
two (specified) symbols 10σσ  it cuts each double trend 

containing ⎥
⎦

⎤
⎢
⎣

⎡

10

10

σσ
σσ

  in T into two double strands as follows: 

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
⇒⎥

⎦

⎤
⎢
⎣

⎡

11

01

01

00

1101

0100 ,
βσ
βσ

σα
σα

βσσα
βσσα

 

(7) Annealing (T): for a given test tube T it produces all 
feasible double strands in T. The produced double strands are 
still stored in T after Annealing; 

(8) Denaturation (T): for a given test tube T it dissociates 
each double strand in T into two single strands; 

(9) Discard (T): for a given test tube T it discards the tube T; 

(10) Append (T, Z): for a given test tube T and a given short 
DNA singled strand Z it appends Z onto the end of every 
strand in the tube T; 

(11) Read (T): for a given tube T, the operation is used to 
describe a single molecule, which is contained in the tube T. 
Even if T contains many different molecules each encoding a 
different set of bases, the operation can give an explicit 
description of exactly one of them. 

Since these eleven manipulations are implemented with a 
constant number of biological steps for DNA strands (Pâun et 
al., 1998), we assume that the complexity of each 
manipulation is )1(O steps. 

3 DNA algorithm for the maximum K-
Facility dispersion problem  

 Let ),( EVG =  be a directed graph with the set of 
vertices being },,2,1|{ nkAV k K==   and the set of edges 
being },1|{ njisomeforeE ij ≤≤= . Let |E|=d. Then 

)1( −≤ nnd . Note that ije  is in E  if the vertices iA and 

jA are connected by an edge.  

In the following, the symbols ),,2,1(,,,#,1,0 nkBAX kk K=  
denote distinct DNA singled strands with same length, say 
10-mer.And ||.||  denotes the length of the DNA singled 
strand. Obviously the length of the DNA singled strands 
greatly depends on the size of the problem involved in order 
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to distinguish all above symbols and to avoid hairpin 
formation (Li et al., 2003). The DNA singled strand Yij is 
used to denote the weights on the edges Eeij ∈  with 

ijij wY =||||  if the corresponding weight equals ijw .Suppose 

that all weights in the given graph are commensurable, i.e., 
there exists a number y such that each weight is an integral 
multiple of y (here, take y = 10) in the following discussion. 

ijY  single strings represents the distance between vertices iA   

and vertices jA . Besides that, the single string ii1AB shows 

that the iA vertices exist in the set whereas ii 0AB  illustrates 
that iA  vertices does not exist in the set. 

If ji = and there is no edge between iA  and jA  then the 
length of the strings representing this edge is considered to be 
0 mer. Let 

 

n},2,3,k|BA,B#,#AX,{0,1, P 1-kkn1 …==  

n},2,3,k|0AB,1AB,#{Q kkkk …==  

j}i n,ji,1|{YH ij ≠≤≤=  

We design the following algorithm to solve the maximum K-
Facility dispersion  problem problem and give the 
corresponding DNA operations as follows: 

3.1 Produce each possible subset of the set V 
        For a graph with n vertices, each possible subset of the 
set V of vertices is represented by an n-digit binary number. 
A bit set to 1 represents a vertex in the subset, and a bit set to 
0 represents a vertex out of the subset. For example, the 
subset )A,(A 56 in Fig. 1 is represented by the binary number 
0110000. In this way, we transform all possible subsets of V 
in an n-vertex graph into an ensemble of all n-digit binary 
numbers. We call this the data pool. 

P);},B{#,(T Separation 6)-(1
(P); Discard 5)-(1

);T},#{A(P, Separation 4)-(1
(P);on Denaturati 3)-(1

(P); Annealing 2)-(1
Q);(P, Merge 1)-(1

ntmp

tmp1
 

After above six steps of manipulation, singled strands in tube 
P will encode all n2  partitions of V  in the form of n-digit 

ternary numbers. For example, for the graph in Fig. 1 with 
n=7 we have, e.g. the singled strand  

#0110010# 11223344556677 ABABABABABABAB  

which denotes the subset }A,A,{A 236  corresponding to the 
binary number 0100110. This operation can be finished in 
O(1)  steps since each manipulation above works in 
O(1) steps.  

Suppose that all edges cost of Fig.1 satisfying the triangle 
inequality. 

3.2 Counting vertices of each subset 
At first we want to counting vertices of each subset. 

If a vertex exists in the set, the following algorithm will add a 
string X  to its corresponding string. 

forEnd
)(T Discard 4-2
)T(P, Merge 3-2
X) ,(T Append 2-2

)T},1A{B (P, separation 1-2
nd  to1dFor 

1

1

1

1dd

==

 

Time analysis of the above algorithm 

Each of the above actions will conclude at O(1) . Therefore 
the algorithm will terminate at O(n) . 

3.3 Finding sets of k vertices 
Separation of all the strings representing subsets that contain 
k vertices. Therefore to find sets of k vertices, strings that 
contain }XXXX{

k times
43421 … must be found. 

)T(P, Merge 4-3

)T },XXXX{ ,(T Separation 3-3
(P) Discard 2-3

)T },XXXX{ (P, Separation 1-3

1

2
 times1k

1

1
k times

43421

43421

+

…

…

 

Instruction (3-1) will separate all the strings 
containing }XXXX{

k times
43421 … , }XXXX{

 times1k
43421

+

… , }XXXX{
 times2k
43421

+

… ,… from 

tube P and will place them in tube T1. 
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Instruction (3-3) will separate all the strings containing  
}XXXX{

 times1k
43421

+

… , }XXXX{
 times2k
43421

+

… , }XXXX{
 times3k
43421

+

… ,… from tube T1 and 

will place them in tube T2. 

Hence all the strings containing }XXXX{
k times

43421 …  will remain in 

T1 tube. 

Time analysis of the above algorithm:  

Each of the above actions will conclude at O(1) . Therefore 
the algorithm will terminate at O(n) . 

3.4 Step 4 
Let the subset F  correspond the n-digit 
binary number. 1a · · · a · · ·a · · · a j in  For each pair 

)a ,(a  ji  with  0=1=   a ,  a ji  or 1  a 0, a ji == we 

append the singled strand  ,y ji  or ijy ,  to the end 

of the singled strand which encode the n-digit 
binary number 1a · · · a · · ·a · · · a j in . For example, 

the singled strands 

 #0110110# 11223344556677 ABABABABABABAB  
(representing the binary number 0110110 for the  

graph in Fig. 1) is transformed into 

3,5,3

,65,611223344556677

yy
y y#0110110#

2

2ABABABABABABAB
 

where the singled strands 2,53,6 y,y  do not appear since there 
are 
not corresponding edges in the graph shown in 
Fig. 1 

For End
)T Merge(P, 5)-(4

For End
)T ,(T Merge 4)-(4

)y ,(T Append 3)-(4
)T },1A{B ,(T Separation 2)-(4

1  i n to  iFor 
)T },1A{B (P, Separation 1)-(4

1 k  n to k For 

1

21

ik,2

2ii1

1kk

==

==

 

Time analysis of the above algorithm 

Each of the above actions will conclude at O(1) . This 
algorithm consists of 2 for blocks, therefore the algorithm 
will terminate at )O(n2 . 

3.5 Step 5 
In the last stage, the set with the minimum distance must be 
recognized. 

To do this ji,Y  strings must be sorted based on their length.  

These strings will be indexed from 1 to 2n , in a way that the 
string with the minimum length will be indexed 1 and the 
string with the shortest length will be indexed 2n . 

n.circulatio  thecontinue elsefor  end then 
yes, is detect(T) if 2)-(5
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Time analysis of the above algorithm 

Each of the above actions will conclude at O(1) . This 
algorithm consists of 2 for blocks, therefore the algorithm 
will terminate at )O(n2 . 

3.6 Giving the exact solutions 
 Finally the Read operation is applied to giving the exact 
solutions to the maximum K-Facility dispersion.  

(T). Read)16( −  

4 Conclusion 
As the first work for DNA computing, (Adleman, 1994) 
presented an idea to demonstrate that deoxyribonucleic acid 
(DNA) strands can be applied 

to solving the Hamiltonian path NP-complete problem of size 
n in O(n)  steps using DNA molecules. Adleman’s work 
shows that one can solve an NP-complete problem, which 
usually needs exponential time on a silicon-based computer, 
in a polynomial number of steps with DNA molecules. From 
then on, Lipton (1995) demonstrated that Adleman’s 
experiment could be used to determine the NP-complete 
satisfiability (SAT) problem (the first NP-complete problem). 
Ouyang et al. (1997) showed that restriction enzymes could 
be used to solve the NP-complete clique problem. In recent 
years, lots of papers have occurred for designing DNA 
procedures and algorithms to solve various NP-complete 
problems. As Guo et al. (2005) pointed out, it is still 
important to design DNA procedures and algorithms for 
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solving various NP-complete problems since it is very 
difficult to use biological operations for replacing 
mathematical operations. 

In this paper, we propose a procedure for maximum K-
Facility dispersion NP-complete problems in the Adleman–
Lipton model. The procedure works in )( 2nO steps for 
maximum K-Facility dispersion  problem problem of a 
directed graph with n vertices. All our results in this paper are 
based on a theoretical model. However, the proposed 
procedures can be implemented practically since every DNA 
manipulation used in this model has been already realized in 
lab level. 
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An Inclusion-Exclusion Algorithm for the k-tour Problem

Haseeb Baluch and Andrzej Lingas
Department of Computer Science, Lund University, Sweden

Abstract— Consider an undirected graph G with n vertices,
among them a distinguished vertex s called the origin, and
nonnegative-integer edge weights in {1, ..., M}.

The k-tour problem for G is to cover all vertices of G with
cycles such that: each cycle passes through s and includes at
most k other vertices, each vertex different from s is visited
exactly once by the cycles, and the total weight of the cycles
is minimal. This problem is a special case of the general
vehicle routing problem and it is known to be NP-hard for
k ≥ 3.

We show that the k-tour problem for G can be solved in
time O(2nn7k2M2(n log n + log M)) and space
O(n4kM(n logn + log M)).

Keywords: k-tour problem, vehicle routing problem, time com-
plexity, space complexity

1. Introduction
The k-tour cover problem (k-TC) is a natural and well

known generalization of the traveling salesperson problem
(TSP) to include several tours [2], [3], [10], [13]. We are
given an undirected graph(V, E), a distinguished vertexs ∈
V called the origin as well as a weight function defined on
E. The weight of an edge(v, u) is interpreted as the distance
between the sites corresponding tov andu, respectively. A
k-tour is a cycle in the graph which includes the origin and
at mostk other vertices. The weight of ak-tour is the sum of
weights of the edges included in it. The objective is to find
a set ofk-tours which visits each vertex inV \ {s} exactly
once and achieves the minimum total weight.

Thek-TC problem corresponds to the so calledcapacitated
vehicle routing problem well known in Operations Research
[13]. The latter name reflects the standard application when
the vertices inV model customer locations, and the origins
models a depot. A set of vehicles deployed at the depot has to
serve all the customers under the constraint that each vehicle
can serve at mostk customers. The objective is to minimize
the total distance run by the vehicles. The capacitated vehicle
routing problem is one of the basic cases of a general vehicle
routing problem studied very extensively in the literature (cf.
[13]) since many years ago [7].

The k-TC problem fork = n − 1 is equivalent to the
TSP problem at least in the metric case and hence it isNP-
hard. In fact, thek-TC problem is known to beNP-hard
for all k ≥ 3 [2]. Both because of the hardness ofk-TC and
its applications, the mostly studied variants ofk-TC are the
metric ones, when the weight function satisfies the triangle

inequality, and in particular the two-dimensional Euclidean
one, when the vertices are points in the plane and the weight
of an edge is the Euclidean length of the straight-line segment
connecting its endpoints.

While the general metric case ofk-TC for k ≥ 3 is
known to be APX-complete [2], the approximability status
of the two-dimensional Euclideank-TC problem has not
been resolved completely yet. The latter variant is known
to admit the so called quasi-PTAS [8] and even PTAS for
k ≤ 2logo(1) n [1] (see also [3], [10]) ork = Ω(n) [3].

In this paper we focus on the exact complexity of the
general, non-necessarily metric variant ofk-TC. [1] (see
also [3], [10]) There is an extensive literature on the ex-
act complexity of the Hamiltonian cycle or path problem.
For several decades, the best known upper-time bound was
2nnO(1) [11], where n is the number of vertices of the
host graph. This upper time-bound is even achievable when
only polynomial space is used [4], [12]. Very recently,
Björklund has presented a novel Monte Carlo algorithm for
Hamiltonicity detection in an undirected graph, running in
time O(1.657n) [5]. In Operations Research, computational
results on exact algorithms for the vehicle routing problem
are also known [6].

A straightforward approach to the generalk-TC follows
from the observation thatk-tours covering all vertices can
be combined into a single tour visiting each vertex different
from the origin exactly once. By enumerating sequences of
vertices of length at most2n − 2, trying all its partitions
into fragments of length at mostk + 1, we can sieve out all
reasonable feasible sets ofk-tours covering all the vertices
and choose among them the minimum one roughly in time
2O(n log n).

A better straightforward method is to enumerate all pos-
sible partitions of the input set of vertices different from
s into two subsets whose cardinalities are different by at
most k and apply the method recursively to each of the
subsets. One returns a union of solutions to two such subsets
achieving the minimum total weight. At the bottom of the
recursion for instances on at most3k vertices one can apply
the aforementioned2O(n log n)-time algorithm. This divide-
and-conquer method takes22n+O(k log n) time.

Our contributions
Our algorithm for k-TC is based on the use of the

principle of exclusion-inclusion to count the number of
feasible solutions. This method was originally applied by
Karp in [12] (rediscovered in [4]) in order to count the
number of Hamiltonian cycles using the concept of walks
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avoiding a subset of the vertex set. We rely on and intro-
duce a generalization of the latter concept to include the
so calledk-walks avoiding a subset of the vertex set. In
consequence, we can solve thek-tour problem in a graph
with n vertices and nonnegative-integer edge weights in
{1, ..., M} in time O(2nn7kM2(n log n+log M)) and space
O(n4kM(n logn + log M)).

In the next section, we introduce the concept of subset
avoidingk-walks. In Section 3, we present our algorithm for
the k-tour problem.

2. k-walks
Let G = (V, E) be an undirected graph onn vertices

with a distinguished origin vertexs, and nonnegative integer
edge weights not exceedingM. For k ∈ {1, .., n}, define
a k-walk in G as an alternating sequence of vertices and
edges ofG x0, e1, x1, . . . , el, xl such thatx0 = s, ei =
(xi−1, xi) for i = 1, ..., l, and any maximal subsequence
of consecutive vertices different froms contains at most
k vertices. It follows in particular thatxi−1, xi cannot
be both equal tos for i = 1, ..., l. The length of k-
walk is the total number of its edges while its weight is
the total weight of its edges. Ak-walk avoids a set of
verticesS if x0, . . . , xl /∈ S. For a subsetS ⊆ V \ {s},
m ∈ {1, . . . , 2n − 2}, q ∈ {⌈n/k⌉, ⌈n/k⌉ + 1, ..., n − 1},
l ∈ {1, ..., k}, v ∈ V \ {s}, W ∈ {0, 1, ..., (2n− 2)M}, we
definek−WALKm,q,l

v (S, W ) as the set of allk-walks that
start in the origins, end in the vertexv, have lengthm, visit
the origin vertexq times, have a maximal suffix of vertices
different froms of length l ≤ k, avoid all vertices in the set
S and have total weightW .

For a given subsetS ⊆ V \ {s}, given m ∈
{1, . . . , 2n− 2}, given l ∈ {0, 1, . . . , k}, given
q ∈

{
⌈n

k ⌉, ⌈n
k ⌉+ 1, . . . , n

}
, given v ∈ V \ {s}, given

W ∈ {0, 1, . . . , (2n− 2)M}, we can compute the
cardinalities | k − WALKm,q,l

v (S, W ) | from the
cardinalities | k − WALKm−1,q′,l′

v′ (S, W ′) | by the
following recurrences, wherev′ /∈ S, q′ ∈ {q − 1, q} and
W ′ ≤W :

| k −WALKm,q,l
v (S, W ) |=∑

(v′,v)∈E | k −WALKm−1,q,l−1
v′ (S, W − weight((v′, v)))

| k −WALKm,q,0
s (S, W ) |=∑k

r=1

∑
(v′,s)∈E&v′ /∈S | k − WALKm−1,q−1,r

v′ (S, W −
weight((v′, s))) |

For convention, at the bottom of the recursion, we set

| k −WALK0,1,0
s (S, 0) |= 1

and if q > 1 or l 6= 0 or W 6= 0

| k −WALK0,q,l
s (S, W ) |= 0

The recurrences lead to the following algorithm for count-
ing the cardinalities of sets ofk-walks with different param-
eters.

Algorithm 1 Cardinalities ofk-Walks
1: Input: integer k, an edge weighted graphG = (V, E),

where for (x, y) ∈ E the weight of(x, y) is denoted
by w(x, y), a vertexs designated as the origin, a subset
S ⊆ V \ {s} andn =| V |.

2: Output: for all m ∈ {1, . . . , 2n}, q ∈{
⌈n

k ⌉, ⌈n
k ⌉+ 1, . . . , n

}
, l ∈ {0, 1, . . . , k}, v ∈ V \S,

and W ∈ {0, 1, . . . , (2n− 2M)}, the cardinalities
|k −Walkm,q,l

s (S, W )|.
3: begin
4: |k −Walk0,0,0

s (S, 0)| ← 0
5: for all m ∈ {1, . . . , 2n− 2} do
6: for all q ∈

{
⌈n

k ⌉, ⌈n
k ⌉+ 1, . . . , n

}
do

7: for all l ∈ {0, 1, . . . , k} do
8: for all v ∈ V \S do
9: for all W ∈ {0, 1, . . . , (2n− 2)M} do

10: if m = 0 then
11: if q = 1&l = 0&W = 0 then
12: |k −Walkm,q,l

s (S, 0)| ← 1
13: else
14: |k −Walkm,q,l

s (S, W )| ← 0
15: else
16: if l = 0&v = s then
17: | k − WALKm,q,l

v (S, W ) |←∑k
r=1

∑
(v′,s)∈E&v′ /∈S | k −

WALKm−1,q−1,r
v′ (S, W −

weight((v′, s))) |
18: else
19: if l 6= 0&v 6= s then
20: | k − WALKm,q,l

v (S, W ) |←∑
(v′,v)∈E&v′ /∈S | k −

WALKm−1,q,l−1
v′ (S, W −

weight((v′, v))) |
21: else
22: | k −WALKm,q,l

v (S, W ) |← 0
23: end

The cardinality of k − Walkm,q,l
s (S, W ) can be an

O(n lg n) bit number. In the computation there areO(nk)
additions of O(n lg n) bit numbers as well as subtrac-
tions of O(lg n + lg M) bit numbers. Thus, it takes time
O(kn(n lg n + lg M)) and spaceO(n lg n + lg M). Hence,
we obtain the following lemma.

Lemma 1. For a given subset S ⊆ V \ {s}, all
m ∈ {0, 1, . . . , 2n− 2}, all l ∈ {0, 1, . . . , k}, all q ∈{
⌈n

k ⌉, ⌈n
k ⌉+ 1, . . . , n

}
, all v ∈ V \ {s}, and all W ∈

{0, 1, . . . , (2n− 2)M}, one can compute the cardinalities
| k−WALKm,q,l

v (S, W ) | in time O(n5k2M(n lg n+lgM))
and space O(n4kM(n lg n + lg M)).
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By a closedk-walk, we shall mean ak-walk that starts
and ends at the origins. For short, we shall denotek −
WALKm,q,0

s (S, W ) by k − CWm,q(S, W ).

Corollary 2. For a given subset S ⊆ V \ {s}, all q ∈{
⌈n

k ⌉, ⌈n
k ⌉+ 1, . . . , n

}
, all m ∈ {0, 1, . . . , 2n− 2} and all

W ∈ {0, 1, . . . , (2n− 2)M}, we can compute the cardinali-
ties | k−CWm,q(S, W ) | in time O(n5k2M(n lg n+lgM))
and space O(n4kM(n lg n + lg M)).

3. An exact algorithm for the k-tour
problem

Our algorithm for thek-tour problem relies on the follow-
ing lemma following from the inclusion-exclusion principle.

Lemma 3. For m ∈ {0, 1, . . . , 2n− 2}, q ∈ {⌈n
k ⌉, ⌈n

k ⌉ +
1, . . . , n} and W ∈ {0, 1, . . . , (2n − 2)M}, the number of
closed k-walks that cover all the vertices in graph G =
(V, E), visit the origin q times, achieve the total length m
and the total weight W is∑

S⊆V \{s}(−1)|S| | k − CWm,q(S, W ) |.
Proof: To obtain the number ofk-walks that correspond

to the desired closedk-walks, we need to subtract from
|CWm,q(∅, W )| the number of closedk-walks of lengthm
and weightW, visiting the originq times, that avoid at least
one vertex, that is, belong to

⋃
v∈V \{s} CWm,q({v}, W ). By

the inclusion-exclusion principle

|k − CWm,q(∅, W )| − |⋃v∈V \{o} k − CWm,q({v}, W )| =∑
S⊆V \{o}(−1)|S||k − CWm,q(S, W )|.

By combing Corollary 2 and Lemma 3, we can com-
pute the number of closedk-walks covering all then
vertices in the input graph, achieving a given total length
m and a given total weightW , and visiting the originq
times, in time O(2nn5k2M(n log n + log M)) and space
O(n4kM(n logn + log M)).

By performing the counts for eachm ∈ {n, ..., (2n− 2)},
W ∈ {n, (2n − 2)M}, and q = m − (n − 1) + 1, we can
determine the minimum weight of a solution to thek-tour
problem for the input graphG in timeO(2nn7kM2(n log n+
log M)) and spaceO(n4kM(n log n + log M)). By a stan-
dard backtracking, we can also determine a solution to the
k-tour problem forG achieving the minimum weight within
the same asymptotic time. Hence, we obtain our main result.

Theorem 4. The k-tour problem for an undirected graph
with n vertices and nonnegative integer weights in {1, ..., M}
can be solved in time O(2nn7k2M2(n log n + log M)) and
space O(n4kM(n log n + log M)).

4. Final remarks
We assume a strict definition ofk-TC that requires a set of

k-tours to visit each vertex different from the origin exactly
once. In the literature [2], [3], [10], [13] which is concerned

solely with the Euclidean and metric cases it is sufficient to
require a set ofk-tours to cover all the vertices. Because
of the triangle inequality and the possibility of shortcutting,
one can always trivially transform a set ofk-tours to a not
heavier one which satisfies the strict definition. Thus, the
strict definition and the relaxed one which allows for visiting
a vertex several times are essentially equivalent in the metric
case. This is not the case in the general graph case. For
instance, it is well known that generally TSP does not admit
any reasonable approximation while the relaxed TSP can be
trivially approximated within2 by doubling the edges of a
minimum spaning tree of the input graph.

Our exact method of solvingk-TC can be easily adapted
to the relaxed variant ofk-TC, where each vertex different
from the origin may be visited several times. The adaptation
involves increasing the upper bound on the total length
of k tours up to (k + 1)(n − 1) which in turn adds an
additional polynomial factor ink to the resulting time and
space complexities.

Our method subsumes the aforementioned straightforward
permutation and divide-and-conquer methods if the max-
imum edge weighM satisfies M ≪

√
n! and M ≪

2n+O(k lg n), respectively.
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0/1 Knapsack and Bin Packing
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Abstract - This paper presents simple algorithms for 0/1 
Knapsack and Bin Packing with a fixed number of bins that  
achieve time complexity p n⋅2Ox where x is the total  
bit length of a list of sizes for n objects.  The algorithms are 
adaptations of a method that achieves a similar complexity  
for the Partition and Subset Sum problems.    The method is  
shown  to  be  general  enough  to  be  applied  to  other  
optimization or decision problem based on a list of numeric  
sizes or weights.  This establishes that  0/1 Knapsack and  
Bin  Packing  have  sub-exponential  time complexity  using 
input length as the complexity parameter.  It also supports  
the  expectation  that  all  NP-complete  problems  with  
pseudo-polynomial  time  algorithms  can  be  solved  
deterministically in sub-exponential time.

Keywords:   0/1  Knapsack,  dynamic  programming,  Bin 
Packing, sub-exponential time, NP-complete problems.

1  Introduction

The  comparative  complexity  of  problems  within  the 
class NP-Complete has been a recurring theme in computer 
science  research  since  the  problems  were  defined  and 
cataloged in the early years of the discipline [2].  In 1990, 
Stearns and Hunt [7]  classified a problem to have power 
index  i if  the  fastest  algorithm  that  solves  it  requires 

2O ni steps.   Assuming  that  Satisfiability  has  power 
index 1, they argued that the Clique and Partition problems 
have power index one-half.  Their analysis is based on two 
algorithms with time complexity p n⋅2Ox , where  x is 
the length in bits of the input representations and  p(n) is a 
polynomial  function  of  the  number  of  graph  edges  (for 
Clique)  or  the  number  of  integers  in  the  input  set  (for 
Partition).  These results were interpreted to provide strong 
evidence  that  Clique  and  Partition  were  easier  problems 
than Satisfiability and most other NP-Complete problems.

In a subsequent study, Impagliazzo, Paturi,  and Zane 
[3]  presented  another  framework  for  comparison  of  NP-
complete problems.  Instead of adopting the power index 
terminology of Stearns and Hunt, they categorized problems 
based  on  weakly  exponential  ( 2n1 

)  or  strongly 

exponential  ( 2n )  lower  bounds  (assuming  that 
Satisfiability  will  one  day  be  proven  to  be  strongly 
exponential) and sub-exponential ( 2o n  ) upper bounds. 
To avoid inconsistencies related to the characterization of 
input length, they defined a family of reductions (the Sub-
Exponential  Reduction  Family)  that  would  allow  the 
complexity measure to be parameterized.  This framework 
tolerated polynomial differences in the lengths of problem 
instances, and there was no complexity distinction among 
Clique,  Independent  Set,  Vertex  Cover  or  k-Sat.   These 
conclusions  are  not  consistent  with those  of  Stearns  and 
Hunt,  where  both  Clique  and  Partition  were  easier  than 
Satisfiability.  It is clear that representations and complexity 
measures  for  problem  instances  play  a  critical  role  in 
complexity analysis.

In classical complexity theory, the complexity measure 
is the length of the input string.  This parameter is formally 
determined, simply by counting the bits in the string.  The 
advantage of using the formal measure is that it requires no 
semantic  interpretation  of  the  input  string,  and  problems 
with vastly different semantics can by grouped together in 
formal complexity classes.  Within the class NP-complete, 
we find that for many problems, the use of simple semantic 
complexity measures will not  clash with detailed analysis 
based  on  the  formal  measure.   This  is  generally  true  of 
strong  NP-complete  problems,  where  the  objects  in  the 
input representing variables or nodes or set elements can be 
numbered (in binary).  The numbers are just labels used for 
identification of the objects.  There are other problems in 
the class, however, where the input contains a list of weights 
or values, and analysis based on semantic measures such as 
the number of objects versus the sum (or maximum) of the 
values can give radically different results: exponential time 
with one measure,  polynomial  time with the other.   This 
collection of problems includes Partition, Subset Sum, 0/1 
Knapsack, and Bin Packing, which we will refer to as the 
Subset Sum family.  The safest approach to analysis of these 
problems is to use the formal complexity measure,  which 
incorporates both relevant semantic parameters, and in this 
paper  we  show  that  the  Subset  Sum family  of  pseudo-
polynomial-time  problems  is 2O  x (which  is  sub-
exponential).
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Stearns  and  Hunt  [7]  were  apparently  the  first  to 
demonstrate  that  an  algorithm  for  the  Partition  problem 
exhibits  sub-exponential  time.   The  significance  of  this 
result was probably obscured by the claim in the same paper 
that  the Clique problem is also sub-exponential,  while its 
dual problem Independent Set remains strongly exponential. 
This  apparent  anomaly  is  a  representation-dependent 
distinction,  and  it  disappears  when  a   symmetric 
representation for  the problem instance is  used [5].   The 
complexity distinction between Partition and Satisfiability, 
however, appears to have stronger credibility.  In [6] it is 
shown that the sub-exponential upper bound for Partition is 
also valid for Subset Sum.  The algorithm for Subset Sum is 
a variant of dynamic programming that is much simpler and 
more general than the backtracking/dynamic programming 
hybrid that Stearns and Hunt designed for Partition.  In this 
paper, the sub-exponential Subset Sum algorithm is adapted 
to 0/1 Knapsack and Bin Packing with a fixed number of 
bins,  establishing  that  these  problems  are  also  sub-
exponential with respect to the formal complexity measure 
(total bit-length of input, denoted x).  We also abstract from 
the previous methods a lemma that identifies the property of 
ordered  sets  of  integers  that  is  exploited  to  achieve  sub-
exponential time.

More  recent  complexity  studies  in  the  research 
literature  for  problems in  the  Subset  Sum family do  not 
typically use the input length as the complexity parameter. 
The  current  upper  bound  for  both  Subset  Sum and  0/1 
Knapsack  is  apparently 2O n/2  when  the  number  of 
objects in the list is used as the complexity measure [8].  A 
lower bound of 2 n/2/n   for Knapsack has also been 
demonstrated  in  [1].   The  lower  bound  applies  only  to 
algorithms  within  a  model  defined  generally  enough  to 
include  most  backtracking  and  dynamic  programming 
approaches.   The  sub-exponential  bounds  derived  here 
using  the  formal  complexity  measure  complement  rather 
than  supersede  the  strongly  exponential  bounds  derived 
using the number of objects in the input list (denoted n) as 
the complexity parameter.

2 Generalized Dynamic Programming

The  Stearns  and  Hunt  algorithm  for  Partition  [7] 
combines backtracking with dynamic programming.  Such 
hybrid  approaches  had  been  previously  described  in 
operations  research  literature  (e.g.  [4]).   The  input  set  is 
ordered  and  divided  into  a  denser  and  a  sparser  subset. 
Backtracking  is  employed  on  the  sparse  subset,  while 
dynamic programming is used for the dense subset.   The 
results are combined to achieve time complexity 2O  x ,
where x is the total length in bits of the input.

In  this  paper  we  employ  a  simpler  algorithm  that 
achieves the same goal.  The approach was first developed 
for Subset Sum and Partition [6].  Similar to conventional 

dynamic  programming,  it  represents  a  breadth-first 
enumeration of partial solutions.  The problem instance is a 
list  of objects,  each of which has  a  size.   The  algorithm 
maintains a  pool  of  partial  solutions  as it  processes  each 
object.  The list of objects is ordered by size, and the largest 
objects are processed first.   In  contrast  with conventional 
dynamic programming, the pool of solutions is dynamically 
allocated (hence the acronym DDP, for dynamic dynamic 
programming).   It  first  grows  and  then  shrinks  as  more 
objects  are  processed.   The  entire  pool  of  solutions  is 
traversed  for  each  object,  updating  each  solution  by 
possibly  subtracting  the  current  object's  size  from  the 
solution's  remaining  capacity.   Each  solution  is  also 
evaluated relative to the sum of sizes of the objects yet to be 
processed.   The  sum of  remaining  sizes  can  be  used  to 
prune  the  pool  of  solutions  depending  on  problem 
semantics.  This pruning relative to the sum of sizes of the 
unprocessed objects places a sub-exponential upper bound 
on the number of partial solutions in the pool.

The time analysis of the DDP method relies on a simple 
lemma (abstracted from the analysis in [6]) that allows us to 
bound the  kth value in an ordered list as a function of its 
position in the list and the total bit-length of the entire list 
(see Lemma 1 below).  Bounding the  kth value allows us to 
bound the sum of the first  k values as well.  This, in turn, 
leads  to  a  bound  on  the  length  of  the  pool  of  partial 
solutions in DDP algorithms.

Lemma 1:  Let  L represent a list of  n positive natural 
numbers in non-decreasing order, let  L[k] represent the  kth 

number in the list, let bk be the bit length of the kth number, 
and  let  b be  total  number  of  bits  in  the  entire  list: 

b =∑
i=1

n

bi =∑
i=1

n

1⌊ lg L[ i ]⌋ . Then L[k] < 2(b−k+1)/(n−k+1)+1 .

Proof:  An upper bound on the value of L[k] for any list 
with total bit length b is obtained by reserving as few bits as 
possible for the smaller numbers in the list and as many bits 
as possible for L[k] and the numbers that follow it.  This is 
accomplished  by  setting  L[1]  through  L[k-1]  to  1  and 
distributing the remaining bits equally among the higher n─ 
k + 1 numbers.  In that case, L[k] has no more than (b−k+1)/
(n−k+1) bits, establishing L[k] < 2(b−k+1)/(n−k+1)+1 .

3  The Knapsack Problem

The 0/1 Knapsack problem is defined as follows: given 
a set of n objects S with sizes s[1..n] and values v[1..n], find 
a subset of objects with the highest value whose size is less 
than or equal to  C, the capacity of the knapsack [2].  The 
problem can also be expressed as a decision problem, where 
we  determine  the  existence  of  a  subset  whose  value  is 
greater than or equal to a target value V.
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3.1  The Knapsack algorithm

In adapting the DDP method to the Knapsack problem, 
we  can  iterate  either  the  size  or  the  value  array  as  the 
control for the outer loop.  Here we use the size array.  The 
algorithm  keeps  a  pool  of  (capacity,  value)  pairs 
representing partially filled knapsacks,  initially containing 
an empty sack represented as (C, 0), where C is the capacity 
of the empty sack.  For each object in S and for each sack 
currently in the pool, we add a new sack representing the 
current sack plus the current object.  This is accomplished 
by  subtracting  the  object  size  from the  sack's  remaining 
capacity and adding the object value to the sack's value.

Pseudo-code for  the  Knapsack algorithm is shown in 
Figure 1.  Lines 1-3 initialize the global  Pool, the  bestval 
variable, and variables representing the cumulative size and 
value of the remaining objects.  There is one iteration of the 
outer for loop (lines 4-17) for each object in the set S = {y1, 
y2,  ...,  yn}.  The size array s,  in which  s[i] is the size of 

object yi, is assumed to be in non-decreasing order, and the 
largest  numbers  are  processed  first,  so  object  yn–i+1 is 
processed  during  the  ith iteration.   The  pool  of  partially 
filled sacks is updated by the inner  for loop (lines 7-15). 
For each sack in the pool,  s[n–i+1] is subtracted from its 
capacity and v[n–i+1] is added to its value, placing the new 
(capacity,  value) on a second ordered sack list.  The pool 
and the new sack list are merged in the last step of the outer 
loop (line 17).  The best value for a filled sack is updated 
when appropriate in lines 11 and 14, whenever an updated 
sack is created.  At completion of the outer loop, the best 
value  is  returned.   The  algorithm  does  not  return  the 
contents of the sack with the best value, but this could be 
accomplished by adding a reference to a subset object to the 
(capacity,  value)  pairs  in  the  pool,  increasing  the  time 
complexity by no more than a factor of n.

The  inner  loop has  two conditions  that  moderate  the 
length of the pool.  Lines 8 and 9 skip sacks that can't hold 
the current object.  Also, in lines 10-12, sacks with enough 
capacity to hold all remaining objects are removed from the 
pool  after  updating the  bestval variable.   If  all  remaining 
objects will fit in a sack, there is no process them one-by-
one.

The outer loop also has logic to control the size of the 
pool.  The last step in the outer loop is a sequential merge 
operation that adds the new partially filled sacks to the pool. 
If two sacks with the same capacity are encountered during 
the merge, only the sack with the higher value is added to 
the pool.  Thus the capacities of all sacks in the pool are 
unique.

3.2 Time Analysis of  Knapsack

The time analysis closely follows the method used for 
the Subset Sum algorithm in [6].  Let S = {y1, y2, ..., yn} and 
assume the sizes are stored in non-decreasing order (s[i] ≤ 
s[i+1]).  The total number of steps is determined by the size 
of Pool.  With each iteration of the outer  for loop,  Pool is 
traversed and possibly extended (requiring 2 passes – one 
by the inner for loop and the other by the sequential merge 
step).  The total amount of work is closely estimated (within 
a factor of 2) by

∑
i=1

n

∣Pool i ∣ (1)

where ∣Pool i ∣ is the length of Pool at the beginning of 
outer loop iteration i.

Since  the  merge  operation  eliminates  duplication  of 
capacities,  we can  describe  length  of  Pool(i)  as  at  most 
MaxC(i),  the largest capacity of any sack on the list at the 
beginning of iteration  i.   The list is actually smaller than 
this, since all the capacities between zero and the maximum 
are not present.  We also know that the length of the list 
can, at most, double with each loop iteration, so regardless 

Figure 1.  The Knapsack  algorithm.

//* Given a set of n objects whose sizes are specified 
in an array s[1..n] in non-decreasing order and whose 
values are stored in an array v[1..n], find the highest 
valued subset whose total size is less than or equal to 
capacity C.  */

public int Knapsack()
  1)   bestval ← 0;

  2)   sizeofrest ← ∑
i=1

n

s[ i ] ;  valueofrest ← ∑
i=1

n

v[ i ] ;

  3)   Pool ← {(C, 0)}; 
  4)   for i ← 1 to n
  5)      size ← s[n – i +1];  value ← v[n – i +1];
  6)      NewList ←  { };
  7)      for each sack in  Pool
  8)         if (sack.capacity < size )
  9)            continue;
10)         else if (sack.capacity > sizeofrest)
11)            bestval ← max (bestval,
                                           sack.value + valueofrest)
12)            remove sack from Pool;
13)         else
14)            bestval ← max (bestval,
                                           sack.value + value);
15)            NewList.append ((sack.capacity – size,
                                                sack.value + value));
           end for
16)      sizeofrest ← sizeofrest – size;
           valueofrest ← valueofrest – value;
17)      Pool ← merge(Pool, NewList);
        end for
18)   return bestval;
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of the maximum value in the list, its length cannot exceed 2i. 
This gives us

∣Pool i ∣ ≤ min2i , MaxC i . (2)

The length of Pool will grow rapidly and later possibly 
shrink as  i  approaches  n.   Our  goal  is  to  find  an  upper 
bound for  MaxC(i).   Initially  MaxC(1) =  C,  which is  the 
capacity of the empty sack.  Only smaller-capacity sacks are 
added to the list,  and eventually the larger-capacity sacks 
are removed when the condition in line 10 becomes true, so

    MaxC i ≤ ∑
j=1

n−i1

s [ j ] ≤ n−i1 ⋅s[n−i1 ]. (3)

Bounding  MaxC(i)  thus  reduces  to  finding  an  upper 
bound for  s[n─ i  + 1], and Lemma 1 is invoked for this 
purpose.   To  complete  the  analysis,  we  bound  the  step 
counts as a function of  b,  the total  bit  length of the size 
array s.  We consider two cases.

Case 1.  n  ≤ b . Here we have

     ∑
i=1

n

∣Pool i ∣≤∑
i=1

n

min2i , MaxC i≤ n⋅2b . (4)

Case 2.  n  > b . In this case we split the summation at 
i = b .

    ∑
i=1

n

∣Pool i ∣≤∑
i=1

n

min2i , MaxC i (5)

≤ ∑
i=1

b−1

min2i , MaxC i ∑
i=b

n

min2i ,MaxC i  (6)

≤ b−1 ⋅2b−1  ∑
i=b

n

min2i , MaxC i (7)

≤ b−1 ⋅2b−1  n−b1⋅MaxC b  (8)

≤ b−1 ⋅2b−1  n−b1⋅ ∑
j=1

n−b1

s[ j ] . (9)

≤ b−1 ⋅2b−1  n−b12⋅s[n−b1] (10)

At this point, we employ Lemma 1 to compute the bound 
for s[k] where k=n−b1 , and we continue by 
replacing s [n−b1 ] with 2b1 :

 b−1 ⋅2b−1  n−b12⋅2b1 (11)
 bn12⋅2b1 (12)
 2n26 n2⋅2b . (13)

This establishes that the time complexity of  Knapsack 
is O  p n2b for  a  polynomial  function  p(n).   The 
argument  b is the total bit length of the list of sizes.  The 
entire input for the problem also includes the capacity C and 
a list of n values.  We can't make any specific assumptions 
about the relative magnitudes of the sizes and values, but we 
are certain that if  x is the total input length, then b will be 
smaller than  x, and the O  p n2b step count will also 
be O  p n2x.

4  The Bin Packing Problem

The Bin Packing problem is defined as follows:  given 
a set of n objects S with sizes s[1..n], determine whether the 
objects will fit into a fixed number of  k bins, each with a 
capacity of  B.   The problem can also be expressed as an 
optimization problem in which the smallest B is determined 
[2].  When B is equal to the sum of all sizes divided by k, 
the  problem  represents  a  generalization  of  the  Partition 
problem.

4.1  The BinPack Algorithm

When we adapt the DDP strategy to Bin Packing, we 
find  a  few  significant  differences  from  the  Knapsack 
version.  The BinPack algorithm is shown in Figure 2.  The 
pool of partial  solutions must be a list of  k-tuples, where 
each component of a tuple is the remaining capacity of one 
of the bins (see line 2).  Also, we are not searching for a 
subset.  All the objects in the original set S must be included 
in the solution.  This has implications for the logic in the 
nested loops of the algorithm.  Any partial solution in the 
inner loop that cannot accommodate the next object can be 

Figure 2.  The BinPack  algorithm.

/* Given a set of n objects whose sizes are specified 
in an array s[1..n] in non-decreasing order, determine 
whether all objects can be stored in k bins, each with 
capacity B.
*/

public boolean BinPack()

  1)   sizeofrest  = ∑
i=1

n

s[ i ] ;

  2)   Pool = {(B, B, …, B)}; 
  3)   for i ← 1 to n
  4)      nextsize  ← s[n – i +1];
  5)      NewList ←  { };
  6)      for each bintuple in Pool
  7)         if (bintuple.capacity[1] < nextsize )
  8) continue;
  9)         else if (bintuple.capacity[1] > sizeofrest)
10) return true;
11)         else
12)            for j ← 1 to k
13)               newtuple ← update(bintuple, j, nextsize);
14)               if (newtuple != null)
15)                  NewList.insert (newtuple);
                 end for
              end for
16)      Pool ← NewList;
17)      sizeofrest ← sizeofrest – nextsize;
        end for
18)   return false;
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discarded  (lines  7-8),  and  the  pool  of  updated  partial 
solutions created by the inner loop replaces the pool from 
the previous iteration of the outer loop (rather than merging 
with the previous pool; see line 16).   We also find that the 
test  enforcing  the  upper  limit  on  the  size  of  the  pool 
(relative to the sum of the remaining object sizes) triggers 
early termination (lines 9-10).  This version of the algorithm 
does not specify what objects are placed in what bins, but 
this  information  could  be  included  by  associating  a 
reference to a size  n object to each partial solution.  This 
would  increase  the  time  complexity  by  no  more  than  a 
factor of n.

4.2 Time Analysis of BinPack

The time analysis of BinPack  follows the same general 
logic as the analysis for Knapsack.  The major difference is 
the growth rate of the pool of partial solutions.  While the 
pool can double in length with each iteration of the inner 
loop in Knapsack, it can increase in length by a factor of k 
in  BinPack.   Another  significant  difference is  the cost  of 
suppressing duplicates in the pool of partial solutions.  We 
make the conservative assumption that the insertion of an 
updated partial solution in the pool takes linear time in the 
current length of the pool.  We demonstrate below that in 
spite of these significant differences, the time complexity of 
the algorithm remains sub-exponential.

To proceed with the analysis, let S = {y1, y2, ..., yn}, and 
assume the sizes are stored in non-decreasing order (s[i] ≤ 
s[i+1]).   As with  Knapsack,  The total number of steps is 
closely related to the size of  Pool.  With each iteration of 
the outer  for loop,  Pool is traversed and replaced with an 
updated  version  (called  NewList).   Each  insertion  into 
NewList requires linear time. The total amount of work is 
therefore estimated as

 ∑
i=1

n

∣Pool i ∣2 (14)

where ∣Pool i ∣ is the length of Pool at the beginning of 
outer loop iteration i.

Since  the  insert  operation  of  line  15  eliminates 
duplication of capacities, we can describe length of Pool(i) 
as at most  MaxC(i)k.  If  MaxC(i) is the largest capacity of 
any bin in any tuple on the list at the beginning of iteration 
i, the number of distinct tuples cannot exceed this quantity 
raised  to  the  power  k.   This  grossly  overestimates  the 
number of tuples, since the capacities within each tuple are 
in  non-increasing order  and  since  all  the tuples  have the 
same  sum.   It  is  an  interesting  counting  problem  to 
determine a tight upper bound for the number of tuples, but 
the  loose  bound  is  sufficient  to  establish  the  desired 
complexity result.  We also know that the length of the list 
can, at most, grow by a factor of k with each loop iteration, 
so regardless of the maximum value in the list,  its length 
cannot exceed ki.  This gives us

∣Pool i ∣ ≤ mink i , MaxC i k .    (15)

Lines 9 and 10 assure us that  the algorithm terminates if 
MaxC(i) exceeds the sum of the remaining object sizes, so 
we have

    MaxC i ≤ ∑
j=1

n−i1

s [ j ] ≤ n−i1 ⋅s[n−i1 ].    (16)
To complete the analysis, we bound the step counts as a 

function of  x,  the total bit length of the size array  s.   As 
before, we consider two cases.

Case 1.  n  ≤  x . Here we have    

∑
i=1

n

∣Pool i∣2 ≤∑
i=1

n

mink i ,MaxC ik2    (17)

≤ n⋅kn2 ≤ n⋅k2 x≤ n⋅22 lg k  x.    (18)

Case 2.  n  >  x . In this case we split the summation at 
i =  x .

∑
i=1

n

∣Pool i∣2 ≤∑
i=1

n

mink i ,MaxC ik2    (19)

≤∑
i=1

x−1

mink i , MaxC i k 2∑
i=x

n

mink i , MaxC i k 2 (20)

≤  x−1 ⋅kx−1 n− x1⋅MaxC  xk 2    (21)
Then by Lemma 1:
  x−1 ⋅kx−1 n− x1n− x1 2x12k  (22)

and by algebraic simplification:
 n  n2k 122k x1     (23)

Since  k is  a  constant,  this  establishes  that  the  time 
complexity  of  BinPack  is p n⋅2Ox for  a  polynomial 
function p(n).  

5  Conclusion
The  algorithms  in  the  previous  sections  demonstrate 

that dynamic programming with dynamic allocation (DDP) 
can be used to prove that 0/1 Knapsack and Bin Packing 
with  a  fixed  number  of  bins  have  time  complexity

p n⋅2Ox where  x is  the  total  bit  length  of  n input 
numbers.   This  places  these  problems with Partition  and 
Subset Sum in the subclass of NP-complete problems that 
have sub-exponential upper bounds on running time, when 
input length is used as the complexity parameter.

The  Knapsack  problem  was  formulated  as  an 
optimization  problem  above,  while  Bin  Packing  was 
presented  as  a  decision problem.   It  is  apparent  that  the 
Knapsack  algorithm can be modified to solve the decision 
version  of  the  problem  without  changing  its  time 
complexity.  It  is also possible to modify  BinPack to find 
the smallest  bin capacity needed  to store all  objects  in  k 
bins,  as  long as  k is  constant,  without  changing its  time 
complexity.  Given the simplicity and generality of Lemma 
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1, which provides the foundation for the time analyses, we 
expect  that  the  DDP method can  be  applied  to  any NP-
complete problem involving a list of weighted objects that 
has pseudo-polynomial time complexity.
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Abstract— Statecharts provide a practical and expressive
visual formalism to describe reactive systems. They have
been adopted by a number of object modeling techniques
and languages, such as the UML state machines. Although
Statecharts’ semantics has attracted much attention, the
computation power of Statecharts was seldom considered. In
this paper, we study the computation power of Statecharts
by linking them to Wegner’s Interaction Machines.
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1. Introduction
Statechart [5] was introduced by David Harel in 1987

as one of the most popular state-based visual/graphical
formalism for designing reactive systems. With the hier-
archy, concurrency and many other features, the statechart
was more practical and expressive than the classical state
diagrams [1]. They have been adopted by a number of object
modeling techniques and languages, including the Object
Modeling Technique (OMT) [17] and the Unified Modeling
Language (UML) [18]. Besides, there are many formalisms
for statecharts supported by software such as STATEMATE
[7], Rhapsody [6], etc.

An accurate and comprehensive description of statecharts
will benefit their applications greatly. However, Statecharts’
semantics was not defined precisely in Harel’s original paper
[5], as described in [19]. The study for the semantics of
statecharts has began by Harel et al. [8] right after the
publication of [5]. Since then, many related papers have been
published, e.g., [16], [11]. During the last twenty years, it has
attracted much attention to formalize Statecharts’ semantics,
especially for the UML State machines, and various kinds
of formal approaches have been introduced, e.g. Petri-net,
temporal logic, graph transformation systems, etc. In the
survey [2] by Crane and Dingel in 2005, the semantics for
the UML state machines were categorized into 26 kinds
based on the formalization approach.

We find that although so many formal models have been
applied to describe Statecharts, the computation power of
Statecharts was seldom considered. And not much research,
[3], [9], on the computation power of the models that
has been used to formalize Statecharts has been done. On

Research supported in part by the Natural Sciences and Engineering
Council of Canada Discovery Grant 41630.

the contrary, we can find descriptions like “Statecharts are
extended finite automata” in many places to equate the
computation power of statecharts to finite automata. It has
been shown in [12] clearly that they are very different.
We will show in this paper that the computation power
of statecharts is more appropriately modeled by Interaction
Machines [20].

In the next section, we will introduce the basic defini-
tions. In Section 3, we will investigate the linkage between
Statecharts and Interaction Machines. We will conclude our
study in Section 4.

2. Preliminary
In this section, we will review the basic definitions for

Statecharts and Interaction Machines.

2.1 Statecharts
There are already many models for formalizing the State-

charts’ semantics. In this paper, however, we intend to study
their computing power rather than any specific definition of
semantics. Hence we need a brief yet powerful definition for
Statecharts, which includes only the essential elements.

Definition 1 (Statecharts): A statechart is a 9-tuple,

(Q, v,E,A,C, δ, η, s, T ),

where Q is the nonempty finite set of states; v is an
unbounded variable; E is the nonempty finite set of events;
A is the finite set of actions, which is split into two subsets:
the set of external actions Aex, which is a finite set of
symbols, and the set of internal actions Ain, which is a finite
set of functions p : v → v; C is the finite set of conditions,
where each condition is a boolean-valued function of the
form q : v → {0, 1}; δ : Q× E × C∗ → Q is the transition
function; η : δ → A∗ is the action function; s is the initial
state; and T ⊆ Q is the set of terminating states.

We use only one unbounded variable v, for simplicity, to
represent all variables used in any instance of statecharts.
Each state q ∈ Q can be defined recursively as a statechart
Sq of the next level. However, a multi-level statechart can
always be transformed into an equivalent one-level statechart
although the number of states can increase significantly.

This definition is not intended to include all the features
of statecharts. For example, the “activities” [18] can be
included in the definition, which are associated with states,
the history pseudo states can be described by variables, etc.
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2.2 Interaction Machines
Interaction Machines (IMs) [20] were introduced by Peter

Wegner more than ten years ago. They were considered to be
a further development of Turing machines (TMs) model. He
claimed that TMs shut out the world during the computation
and stop their computation after generating outputs, thus they
can not model interaction behaviors [4], [20], [21].

IMs extend TMs with dynamic streams to record interac-
tion histories. The behavior of an IM will depend on both
the current input and its previous inputs. We consider that
IMs are more accurate theoretical models for statecharts than
TMs since IMs are better models for interactions.

Based on Wegner’s IMs, Sheng Yu defined Interactive
Turing Machines (ITMs) [22], which extend Multi-tape TMs
with interaction tapes. The Sequential ITMs (SITMs) [22]
provide detailed relations between TMs’ computing and
sequential interactions. In this paper, we use SITMs as the
model for Statecharts. For simplicity, we define SITMs with
only one work tape.

Definition 2 (Sequential Interactive Turing Machines):
Formally, a Sequential Interactive Turing machine (SITM)
M is an 11-tuple

(I,O,Q,Γ, γ, ω, s,#, $, B, T ),

where I is the finite input alphabet; O is the finite output
alphabet; Q is the nonempty finite set of states; #, $, B are
three special symbols, where # is the delimiter preceding
an input string and at the end of an output string, $ is the
other delimiter that is ending an input string and preceding
an output string, B is the blank symbol of the interaction
tape and k work tapes; Γ is the finite work-tape alphabet;

γ : Q× (I ∪ {#, $})× Γ → Q× {R,S} × (Γ× {L,R, S})

is the transition function of M in the reading phase (when
the SITM can only read on the interaction tape);

ω : Q×{B}×Γ → Q×(O∪{#}×{R,S})×(Γ×{L,R, S})

is the transition function of M in the writing phase, where
L (left), R (right), and S (stationary) are directions of the
movement of a head; s ∈ Q is the starting state of M ;
T ⊆ Q is the set of terminating states.

3. Linkage between Statecharts and In-
teractive Turing Machines

In this section, we will use a general notion to study
the linkage between Statecharts and Interactive Turing Ma-
chines.

3.1 Labelled Transition Systems
Basically, both Statecharts and Interactive Turing Ma-

chines satisfy the general notion, Labelled transition systems
(LTSs) [15], which is consist of only the states, transitions

and labels. Note that, in LTSs, none of the three elements
are necessarily finite.

Definition 3 (Labelled transition system): A Labelled
transition system (LTS) is a 3-tuple

(S, T, { t→ |t ∈ T}),

where S is the set of states, T is the set of labels, t→⊆ S×S,
where t ∈ T , is the set of labelled transitions.

Example 1: Let statechart S be the 9-tuple

(Qs, vs, Es, As, Cs, δs, ηs, ss, Ts).

Then S can be expressed as

((Qs, vs), Es,
Es→⊆ (Qs, vs)× (Qs, vs))

in terms of an LTS, where the set of states is the pair formed
by S’s states Qs and the variable vs (we will call this pair
S’s configuration in the following to avoid confusion with
the states of S, Qs); the labels is the set of events Es of
S; the transitions are obtained by applying S’s transition
function δs to its action functions ηs, though all external
actions are not considered here since they do not directly
affect the statechart’s state transitions.

Example 2: Let an SITM M be the tuple

(Im, Om, Qm,Γm, γm, ωm, sm,#, $, B, Tm).

We can write an LTS Lm as the following, which is exactly
M ,

((Qm,Γ∗, P ), Im ∪ {#, $, B} ∪ {ϵ},
Im∪{#,$,B}∪{ϵ}−→ ⊆ (Qm,Γ∗, P )× (Qm,Γ∗, P )).

The state set of Lm is the tuple formed by M ’s state Qm, the
set of possible strings on M ’s work tape Γ∗ and the set of all
positions of the head, P , on work tape, to avoid confusion
with M ’s states Qm, we call this tuple M ’s configuration in
the following; the labels of Lm contains all possible symbols
on M ’s interaction tape, Im ∪ {#, $, B}, and the empty
symbol ϵ, since the head on the interaction tape is allowed
to stay after each transition which means no new input will
be read at the next step; the set of transitions is isomorphic
to the set γm ∪ ωm, though we do not consider the output
that M writes on the interaction tapes for every transition.

3.2 Bisimulation and Observation Equivalence
Our method to show Statecharts are Interaction Machines

is based on bisimulation, which has been studied by David
Park [14] and Robin Milner [13].

Bisimulation is an equivalence relation describing whether
two agents behave in the same way based on observation.
The “agents" are computing systems that are identified by
their states, e.g. Statecharts and SITMs. The relation is
also known as the weak bisimulation, since agents’ internal
interactions that cannot be detected from outside are not
required to match exactly.
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To express a sequence of state transition behaviors for
agents, we need the following definition.

Definition 4: Let L = (S, T, { t−→ |t ∈ T}) be an LTS. If
{a1, . . . , an} ∈ T , {P0, . . . , Pn} ∈ S, we write

P0
a1−→ . . .

an−−→ Pn, (1)

if
P0

a1−→ P1
a2−→ . . .

an−−→ Pn.

We also write
P (

a1−→)∗P ′, (2)

if there is an arbitrary number of transitions labelled by a1
such that

P
a1−→ . . .

a1−→ P ′.
We may notice from Example 2, there can be transitions in

SITMs that are triggered by nothing (an empty input ϵ) from
outside. In [13], such input is considered as a silent action,
by which the transitions are labelled can execute without
awareness from outside.

Definition 5 (Bisimulation): A binary relation R ⊆ P×P
over agents is a (weak) bisimulation if (P,Q) ∈ R implies,
for all α ∈ Act,

1) Whenever P α−→ P ′ then, for some Q′,

Q(
ϵ−→)

∗ α̂−→ (
ϵ−→)

∗
Q′

and (P ′, Q′) ∈ R
2) Whenever Q α−→ Q′ then, for some P ′,

P (
ϵ−→)

∗ α̂−→ (
ϵ−→)

∗
P ′

and (P ′, Q′) ∈ R

Where P is the set of agents; Act is the set of labels;

α̂ =

{
α if α is non-silent, e.g. α ∈ Act\{ϵ},
ϵ if α = ϵ.

Based on the above definitions, we can claim the follow-
ing:

Theorem 1: For any Statechart S, there is a Sequential
Interactive Turing Machine M such that M and S satisfy
the bisimulation relation.

Proof: We prove this by providing a method to con-
struct an Sequential Interactive Turing Machine (SITM) M
for any given statechart S such that M bisimulates S. We
may consider the statechart S in Example 1.

Let M ’s input alphabet Im formed by the all the elements
of the events Es of S such that

Im = Es.

Since M ’s work tape and S’s variables are essentially
equivalent storage models, there exists a bijection between
the string on the work tape and the value of the variable,

f : Γ∗ → vs.

However, at each computing step, the work tape is allowed
to read/write only one symbol from a finite set, which is
different from operating a variable, M may require a finite
number of steps to modify its work tape in order to simulate
the change of value of vs in S.

Let M has the same number of states as S such that
there is a bijection between Qm and Qs. Note that Qm

will be expanded later. Let the initial configuration of M ,
(sm, ϵ, p0), simulates that of S, (ss, val0), where ϵ ∈ Γ∗

represents the value of the blank work tape and p0 is the
starting position of the work tape’s head, val0 ∈ vs is the
initial value of vs.

For every configuration (qs, val) ∈ (Qs, vs) of S, if and
only if ∃i ∈ Es such that

(qs, val)
i→ (q′s, val

′),

we construct a (finite sequence of) transition(s)

(qm, tm, p)(
ϵ−→)∗

i−→ (
ϵ−→)∗(q′m, t′m, p′),

in M such that ϵ is the “silent action" of M , (qm, tm, p)
simulates (qs, val) and (q′m, t′m, p′) simulates (q′s, val

′),
where

(qm, tm, p), (q′m, t′m, p′) ∈ (Qm,Γ∗, P )

and

(qs, val), (q
′
s, val

′) ∈ (Qs, vs).

The set of states Qm may be expanded after the construction
of transitions.

Since all the configurations of M are constructed to simu-
late that of S, it can be verified that for every configurations
of M , (qm, tm, p) ∈ (Qm,Γ∗, P ), if there exists a transition

(qm, tm, p)
i−→ (q′m, t′m, p′),

where i ∈ Im ∪ {ϵ} and (qm, tm, p) is simulating (qs, vs) ∈
(Qs, Vs), then

1) if i ̸= ϵ, S has the configuration (q′s, v
′
s) such that

(qs, vs)
i→ (q′s, v

′
s),

where es ∈ Es is identical to im, and (q′s, v
′
s) is

simulating (q′m, t′m, p′);
2) if i = ϵ, S does not have any corresponding transition

and (qs, vs) is simulating (q′m, t′m, p′).

Theorem 2: For any SITM N , there is a Statechart T such
that T and N satisfy the bisimulation relation.

The proof for Theorem 2 has been omitted since it is
similar to the proof for Theorem 1. Now we have shown
that Statecharts and SITMs are equivalent models.

Int'l Conf. Foundations of Computer Science |  FCS'11  | 217



4. Conclusions
Although much research has been done to achieve a pre-

cise semantics for Statecharts, the issues on the computation
power of statecharts have not gained much attention. In this
paper, we use an approach which is different from other
formalisms. We claim that Wegner’s Interaction Machines
are more precise models for Statecharts and we have shown
that Statecharts and Interactive Turing Machines [22] are
equivalent based on bisimulation. We believe that an accurate
and comprehensive description of statecharts will benefit the
applications of statecharts greatly, for example, providing a
more accurate description for computing objects.
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Abstract— We study an interesting 2-player game known
as the Iterated Traveler’s Dilemma, a non-zero sum game
in which there is a large number of possible actions in
each round and therefore an astronomic number of possible
strategies overall. What makes the Iterated TD particularly
interesting is that it defies the usual prescriptions of classi-
cal game theory insofar as what constitutes an “optimal”
strategy. In particular, TD has a single Nash equilibrium, yet
that equilibrium corresponds to a very low payoff, essentially
minimizing social welfare. We propose a number of possible
strategies for ITD and perform a thorough comparison via a
round-robin tournament in the spirit of Axelrod’s well-known
work on the Prisoner’s Dilemma. We motivate the choices of
“players” that comprise our tournament and then analyze
their performance with respect to several metrics. Finally, we
share some interesting conclusions and outline directions for
future work.

Keywords: game theory, two-person non-zero-sum games,
bounded rationality, decision making under uncertainty, tourna-
ments

1. Introduction
Theoretical computer science, mathematical economics

and AI research communities have extensively studied strate-
gic interactions among two or more autonomous agents
from a game-theoretic standpoint. Game theory provides
mathematical foundations for modeling interactions among,
in general, self-interested autonomous agents that may need
to combine competition and cooperation in non-trivial ways
in order to meet their objectives [1–3]. A classical example
of such interactions is the iterated prisoner’s dilemma [4, 5],
a two-person non-zero sum game that has been extensively
studied by psychologists, sociologists, economists and po-
litical scientists, as well as mathematicians and computer
scientists.

We have been studying an interesting and complex 2-
player game known as the Iterated Traveler’s Dilemma [6–
8]. The Traveler’s Dilemma (TD) is a non-zero sum game in
which each player has a large number of possible actions.
In the iterated context, this means many possible actions
in each round and therefore (for games with many rounds)
an astronomic number of possible strategies overall. What

makes Iterated TD particularly interesting, is that its struc-
ture defies the usual prescriptions of classical game theory
insofar as what constitutes an “optimal” strategy. There are
two fundamental problems to be addressed in this context.
One is finding an optimal, or close to optimal, strategy from
the standpoint of an individual intelligent agent. This is the
“default” problem in classical game theory: finding the best
“play” for each agent participating in the game. The second
core problem is identifying pairs of strategies that would
result in an overall desirable behavior, such as maximizing
a joint utility function of some sort (i.e., appropriately
defined “social welfare”). We have been investigating both
these problems in the context of the Iterated Traveler’s
Dilemma, which has thus far received only modest attention
by the computer science research communities. In this paper,
we shed some light on the first problem above using a
round-robin, many-round tournament and several different
performance metrics. We also draw several interesting (and
possibly controversial) conclusions based on our extensive
experimentation and analyses.

The rest of this paper is organized as follows. We first de-
scribe the Traveler’s Dilemma (TD) game and motivate why
we find it interesting. We also briefly survey the prior art. We
then describe the Iterated TD round-robin tournament that
we have devised, implemented and experimented with. In
that context, we focus on the actual strategies we have cho-
sen as the participants in this tournament, and on why these
strategies are good examples of the kinds of strategies one
would expect to be “reasonable”. We then describe several
metrics that we have used as yardsticks of performance of the
various strategies involved in our round-robin tournament.
Next, we summarize our tournament results and discuss our
main findings, both those that we expected and those that we
honestly find fairly surprising. Finally, we draw conclusions
based on our analytical and experimental results to date and
outline some promising directions for future research.

2. Traveler’s Dilemma (TD)
The Traveler’s Dilemma was originally introduced by K.

Basu in 1994 [9]. The motivation behind the game was
to show the limitations of classical game theory [10], and
in particular the notions of individual rationality that stem
from game theoretic notions of “solution” or ”optimal play”
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based on well-known mathematical concepts such as Nash
equilibria [3, 9, 11]. TD is defined with the following
parable:

“An airline loses two suitcases belonging to two different
travelers. Both suitcases happen to be identical and contain
identical antiques. An airline manager tasked to settle the
claims of both travelers explains that the airline is liable for
a maximum of $100 per suitcase, and in order to determine
an honest appraised value of the antiques the manager
separates both travelers so they can’t confer, and asks them
to write down the amount of their value at no less than $2
and no larger than $100. He also tells them that if both
write down the same number, he will treat that number as
the true dollar value of both suitcases and reimburse both
travelers that amount. However, if one writes down a smaller
number than the other, this smaller number will be taken as
the true dollar value, and both travelers will receive that
amount along with a bonus/malus: $2 extra will be paid
to the traveler who wrote down the lower value and a $2
deduction will be taken from the person who wrote down
the higher amount. The challenge is: what strategy should
both travelers follow to decide the value they should write
down?”

This game has several interesting properties. Perhaps the
most striking among them is that its unique Nash equilib-
rium, the action pair (p, q) = ($2, $2), is actually rather bad
for both players. This choice of actions results in:
• very low payoff to each player individually (basically,

only slightly above the absolutely worst possible, which
is $0); and, moreover,

• it minimizes social welfare, if we understand social
welfare to simply be the sum of the two players’
individual utilities.

Yet, it has been argued [7, 9, 12] that a perfectly rational
player, according to classical game theory, would “reason
through” and converge to choosing the lowest possible value,
$2. Given that the TD game is symmetric, each player would
reason along the same lines and, once selecting $2, not
deviate from it, as unilaterally deviating from a Nash equilib-
rium is presumably bad ”by definition”. However, the non-
equilibrium pair of strategies ($100, $100) results in each
player earning $100, very near the best possible individual
payoff. Hence, the early studies of TD concluded that this
game demonstrates a woeful inadequacy of classical, Nash
Equilibrium based notions of rational behavior. It has also
been shown that humans (both game theory experts and
laymen) tend to play far from the Nash equilibrium [6], and
therefore fare much better than they would if they followed
the classical approach.

In general, basing the notion of a “solution” to a game on
Nash equilibria (NE) has been known to be tricky. Among
other things, a game may fail to have any NE (in pure
strategies), or it may have multiple Nash equilibria. TD is
interesting precisely because it has a unique pure-strategy

Nash equilibrium, yet this NE results in nearly as low a
payoff as one can get. The situation is further complicated by
the fact that the game’s only “stable” strategy pair is easily
seen to be nowhere close to Pareto optimal; there are many
obvious ways of making both players much better off than
if they play the equilibrium strategies. In particular, while
neither stable nor an equilibrium, ($100, $100) is the unique
strategy pair that maximizes social welfare (understood as
the sum of individual payoffs), and is, in particular, Pareto
optimal. So, the fundamental question arises, how can agents
learn to sufficiently trust each other so that they end up
playing this optimal strategy pair in the Iterated TD or
similar scenarios?

3. The Iterated TD Tournament
Our Iterated Traveler’s Dilemma tournament is similar

to Axelrod’s Iterated Prisoner’s Dilemma tournament [13].
In particular, it is a round-robin tournament where each
agent plays N matches against each other agent and its
own “twin”. A match consists of T rounds. In order to
have statistically significant results (esp. given that many of
our strategies involve randomization in some way), we have
selected N = 100 and T = 1000. In each round, both agents
must select a valid bid within the action space, defined as
A = {2, 3, . . . , 100}.

The method in which an agent chooses its next action
for all possible histories of previous rounds is known as a
strategy. A valid strategy is a function S that maps some set
of inputs to an action: S : · → A. In general, the input
may include the entire history of prior play, or, in the case
of bounded rationality models, an appropriate summary of
the past histories.

We next define the participants in the tournament, that
is, the set of strategies that play one-against-one matches
with each other. Let C be the set of agents competing in the
tournament: C = {c : (c ∈ S) ∧ (c is in the tournament)}.

We specify a pair of agents competing in a match as
(x, y) ∈ C. While we refer to agents as opponents or
competitors, this need not necessarily imply that the agents
act as each other’s adversaries.

We define agents’ actions as follows:

xt = the bid traveler x makes on round t.
xnt = the bid traveler x makes on round t of match n.

We next define the reward function that describes agent
payoffs. Reward per round, R : A × A → Z ∈ [0, 101],
for action α against action β, where α, β ∈ A, is defined
as R(α, β) = min(α, β) + 2 · sgn(β − α), where sgn(x)
is the usual sign function. Therefore, the total reward M :
S × S → R received by agent x in a match against y is
defined as:

M(x, y) =
T∑

t=1

R(xt, yt)
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Within a sequence of matches, the reward received by
agent x in the nth match against y shall be denoted as
Mn(x, y).

4. Strategies in the Tournament
In order to make a reasonable baseline comparison, we

chose to utilize the same strategies used by [14], ranging
from rather simplistic to relatively complex. What follows
is a brief description of the 9 classes of strategies. For a
more in depth description see [14].

Randoms: The first, and simplest, class of strategies play
a random value, uniformly distributed across a given interval.
We have implemented two instances using the following
integer intervals: [2, 100] and [99, 100].

Simpletons: The second extremely simple class of strate-
gies are agents that choose the same dollar amount in every
round. The $ values we used in the tournament were xt = 2
(the lowest possible), xt = 51 (“median”), xt = 99 (one
below maximal possible, resulting in maximal payoff should
the opponent make the highest possible bid), and xt = 100
(the highest possible).

Tit-for-Tat, in spirit: The next class of strategies are
those that can be viewed as Tit-for-Tat-in-spirit, where Tit-
for-Tat is the famously simple, yet effective, strategy for the
iterated prisoner’s dilemma [4, 5, 13, 15]. The idea behind
Tit-for-Tat is simple: cooperate on the first round, then do
exactly what your opponent did on the previous round. In
the iterated TD, each agent has many actions at his disposal,
hence there are different ways of responding appropriately in
a Tit-for-Tat manner. In general, playing high values can be
considered as an approximate equivalent of “cooperating”,
whereas playing low values is an analogue of “defecting”.
Following this basic intuition, we have defined several Tit-
for-Tat-like strategies for the iterated TD. These strategies
can be roughly grouped into two categories. First, the simple
Tit-for-Tat strategies bid some value ε below the bid made by
the opponent in the last round, where ε ∈ {1, 2}. Second,
the predictive Tit-for-Tat strategies compare whether their
last bid was lower than, equal to, or higher than that of their
opponent. Then a bid is made similar to the simple TFT
strategy, i.e. some value ε below the bid made by competitor
c in the last round, where c ∈ [x, y] and ε ∈ {1, 2}. The key
distinction is that a bid can be made relative to either the
opponent’s last bid or the bid made by one’s own strategy
itself. In essence, this strategy is predicting that the opponent
may make a bid based on the agent’s own last move and,
given that prediction, it attempts to “outsmart” the opponent.

Mixed: The mixed strategies probabilistically combine
up to three strategies. For each mixed strategy, a strategy
σ is selected from one of the other strategies defined in
the competition (i.e., σ ∈ C) for each round according to
a probability mass distribution. Once a strategy has been
selected, the value that σ would bid at time step t is bid.
We chose to use only mixtures of the TFT, Simpleton, and

Random strategies. This allowed for greater transparency
when attempting to interpret and understand the causes of a
particular strategy’s performance.

Buckets – Deterministic: These strategies keep a count
of each bid by the opponent in an array of "buckets". The
bucket that is most full (i.e., the value bid most often) is
used as the predicted value, with ties being broken by one
of the following methods: the highest valued bucket wins, the
lowest valued bucket wins, a random bucket wins, and the
most recently tied-for-the-largest bucket wins. The strategy
then bids the next lowest value below the predicted value.
An instance of each tie breaking method competed in the
tournament.

Buckets – Probability Mass Function based: As above,
this strategy class counts instances of the opponent’s bids
and uses them to predict the agent’s own next bid. Rather
than picking the value most often bid, the buckets are used to
define a probability mass function from which a prediction
is randomly selected. Values in the buckets decay over time
in order to emphasize newer data over old and we have
set a retention rate (0 ≤ γ ≤ 1) to determine the rate of
decay. We have entered into our tournament several instances
of this strategy using the following rate of retention values
γ: 0.8, 0.5, and 0.2. As above, the strategy bids the next
lowest value below the predicted value. We observe that the
“bucket” strategies based on probability mass buckets are
quite similar to a learning model in [7].

Simple Trend: This strategy looks at the previous k time
steps, creates a line of best fit on the rewards earned, and
compares its slope to a threshold δ. If the trend has a positive
slope greater than δ, then the agent will continue to play the
same bid it has been as the rewards are increasing. If the
slope is negative and |slope| > δ, then the system is trending
toward the Nash equilibrium and, thus, the smaller rewards.
In this case, the agent will attempt to maximize social
welfare and play 100. Otherwise, the system of bidding
and payouts is relatively stable and the agent will play the
“one under” strategy. We have implemented instances of this
strategy with δ = 0.5 and the following values of k: 3, 10,
and 25. While our choice of δ intuitively makes sense, we
admit that picking δ “half-way” between 0.0 and 1.0 is fairly
arbitrary.

Q-learning: This strategy uses a learning rate α to em-
phasize new information and a discount rate γ to emphasize
future gains. In particular, the learners in our tournament
are simple implementations of Q-learning [16] as a way
of predicting the best action at time (t + 1) based on the
action selections and payoffs at times {1, 2, ..., t}. This is
similar to the Friend-or-Foe Q-learning method [17] without
the limitation of having to classify the allegiance of one’s
opponent.

Due to scaling issues, our implementation of Q-learning
does not capture the entire state/action space but rather
divides it into a small number of meaningful classes, namely,
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three states and three actions, as follows:
State: The opponent played higher, lower, or equal to our

last bid.
Action: Play one higher than, one lower than, or equal to

our previous bid.
Recall that actions are defined for a single round. Our

implementation treats each state as a collection of moves by
the opponent over the last k rounds. We have decided to
use 5 as an arbitrary value for k as it allows us to capture
some history without data sizes becoming unmanageable.
We have implemented this basic Q-learning algorithm with
the learning rates of 0.8, 0.5 and 0.2, and with discount
rates of 0.0 and 0.9, for a total of 6 different variations of
Q-learning.

Zeuthen Strategies: A Zeuthen Strategy [18] calculates
the level of risk of each agent, and makes concessions
accordingly. Risk is the ratio of loss from accepting the
opponent’s proposal to the loss of forcing the conflict deal
(the deal made when no acceptable proposal can be found).
While ITD is not a strict negotiation, we treat each bid as
a proposal. If xt = i, then X is proposing (i, i+ 1) be the
next action pair. For the Traveler’s Dilemma, we consider
the conflict deal to be the Nash Equilibrium at ($2, $2).

Given the proposals of each agent, a risk comparison is
done. An agent will continue to make the same proposal
while its risk is greater than or equal to its opponent’s. Other-
wise, the agent will make the minimal sufficient concession,
i.e. the agent adjusts its proposal so that (i) the agent’s risk is
higher than that of its opponent and (ii) the opponent’s utility
increases as little as possible. Due to the peculiar structure
of the Iterated TD game, it is possible for the “concession”
to actually lead to a loss of utility for the opponent. We
have therefore implemented two variations: one that allows
a negative concession and one that does not.

5. Utility metrics
In order to classify a particular strategy as better than

another, one needs to define the metric used to make this
determination. Our experimentation and subsequent analysis
were performed with respect to four distinct utility metrics.
The first, U1, treats the actual dollar amount as the direct
payoff to the agent. This is the most common metric in the
game theory literature; prior art on Iterated TD generally
considers only this metric or some variant of it. In contrast,
U2 is a “pairwise victory” metric: an agent strives to beat its
opponent, regardless of the actual dollar amount it receives.
Finally, we introduce two additional metrics, U3 and U ′3, that
attempt to capture both the payoff (dollar amount) that an
agent has achieved, and the “opportunity lost” due to not
playing differently. In a sense, both of these metrics attempt
to quantify how much an agent wins compared to how much
an omniscient agent (i.e., one that always correctly predicts
the other agent’s bid) would be able to win. To be clear, the
assumption here is one of omniscience, not omnipotence:

an “ideal” omniscient agent is still not able to actually force
what the other agent does.
Total reward: U1

This metric captures the overall utility rewarded to the
agent. It is simply a sum of all money gained, normalized
by the total number of rounds played and the maximum
allowable reward. It is defined as follows:

U1(x) =
1

|C|
∑
j∈C

[
1

max(R)NT

N∑
n=1

Mn(x, j)

]
where:
• max(R) is the maximum possible reward given in one

round;
• N is the number of matches played between each pair

of competitors;
• T is the number of rounds to be played in each match;

and
• |C| is the number of competitors in the tournament.

Pairwise Victory Count : U2

This metric captures the agent’s ability to do better than
its opponents on a match per match basis. The metric itself is
essentially the difference between matches won and matches
lost. The result is normalized and 0.5 is added in order to
bring all values inside the range [0.0, 1.0]. It is defined as
follows:

U2(x) = 0.5+
1

2|C|
∑
j∈C

[
1

N

N∑
n=1

sgn(Mn(x, j)−Mn(j, x))

]
where:
• N is the number of matches played between each pair

of competitors;
• |C| is the number of competitors in the tournament.
The intent of this metric is to capture a strategy’s ability

to “outsmart” its opponent, regardless of the possibility of a
Pyrrhic victory.
Perfect Score Proportion : U3

This metric attempts to capture the level of optimality of
an agent, where both the achieved payoff and the missed op-
portunity for yet higher payoff (based on what the opposing
agent does) are taken into account. The metric captures these
two aspects of performance by keeping a running total of
the lost reward ratio. This is the ratio of the reward received
to the best possible reward, given what the opponent has
played. The resulting sum is then normalized by the total
number of rounds played. The metric is formally defined as
follows:

U3 =
1

|C|
∑
j∈C

[
1

N

N∑
m=1

(
1

T

T∑
t=1

R(xmt, jmt)

R(max(2, (jmt − 1)), jmt)

)]
where:
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• N is the number of matches played between each pair
of competitors

• T is the number of rounds to be played in each match
• |C| is the number of competitors in the tournament

During the course of our work, it has been observed that this
metric tends to be biased in favor of strategies that overbid.
When overbidding, the difference between the reward re-
ceived and the optimal reward is at worst 4. Thus, regardless
of by how much an agent overbids, the lost reward ratio
remains relatively small.
Perfect Bid Proportion : U ′3

This metric is another attempt to capture the level of
optimality of the agent, but without the overbid bias. It does
so by keeping a running total of the bid imperfection ratio.
This is the difference between the agent’s bid and the ideal
bid, given what the opponent has played, divided by the
greatest possible difference in bids. Since we want to look
favorably upon a smaller difference, this value is subtracted
from 1. This sum is then normalized using the total number
of rounds played. The metric is defined as follows:

U ′3 =
1

|C|
∑
j∈C

[
1

N

N∑
m=1

(
1

T

T∑
t=1

[
1− |xmt − (jmt − 1)|

max(A)−min(A)

])]
where:
• N is the number of matches played between each pair

of competitors;
• T is the number of rounds to be played in each match;
• |C| is the number of competitors in the tournament.

6. Results and Analysis
The Traveler’s Dilemma Tournament that we have experi-

mented with involves a total of 38 competitors (i.e., distinct
strategies). Each competitor plays each other competitor (in-
cluding its own “twin”) 100 times. Each match is played for
1000 rounds. No meta-knowledge or knowledge of the future
is allowed: learning and adaptation of those agents whose
strategies are adaptable takes place exclusively based on the
previous rounds in a match against a given opponent without
a priori knowledge of that opponent. For definitions of the
shorthand notation used in the sequel, see [14]. Throughout
the rest of the paper, we assume the default version of ITD:
the space of allowable bids is the interval of integers [2,
100], granularity of bids is 1, and the Bonus/Malus is equal
to 2.

[Note: due to space constraints, we do not include the
tabulated tournament results with respect to metric U ′3. ]

The top three performers in our tournament, with respect
to the earned dollar amount as the bottom line (metric
U1), are three “dumb” strategies that always bid very high.
Interestingly enough, randomly alternating between the high-
est possible bid ($100) and “one under” the highest bid
($99) slightly outperforms both “always max. possible” and
“always one under max. possible” strategies. We find it

Table 1: Ranking Based on U1
0.760787 Random [99, 100]
0.758874 Always 100
0.754229 Always 99
0.754138 Zeuthen Strategy - Positive
0.744326 Mixed - L(y-g) E(x-g) H(x-g), 80%); (100, 20%)
0.703589 Simple Trend - K = 3, Eps = 0.5
0.681784 Mixed - TFT (y-1), 80%); (R[99, 100], 20%)
0.666224 Simple Trend - K = 10, Eps = 0.5
0.639572 Simple Trend - K = 25, Eps = 0.5
0.637088 Mixed - L(x) E(x) H(y-g), 80%); (100, 20%)
0.534378 Mixed - L(y-g) E(x-g) H(x-g), 80%); (100, 10%); (2, 10%)
0.498134 Q Learn - alpha= 0.2, discount= 0.0
0.497121 Q Learn - alpha= 0.5, discount= 0.0
0.496878 Q Learn - alpha= 0.5, discount= 0.9
0.495956 Q Learn - alpha= 0.2, discount= 0.9
0.493640 Q Learn - alpha= 0.8, discount= 0.0
0.493639 Buckets - (Fullest, Highest)
0.493300 Q Learn - alpha= 0.8, discount= 0.9
0.492662 TFT - Low(y-g) Equal(x-g) High(x-g)
0.452596 Zeuthen Strategy - Negative
0.413992 Buckets - PD, Retention = 0.5
0.413249 Always 51
0.412834 Buckets - PD, Retention = 0.2
0.408751 Buckets - PD, Retention = 0.8
0.406273 Buckets - (Fullest, Random)
0.390303 TFT - Simple (y-1)
0.387105 Buckets - (Fullest, Newest)
0.334967 Buckets - (Fullest, Lowest)
0.329227 TFT - Simple (y-2)
0.316201 Random [2, 100]
0.232063 Mixed - L(y-g) E(x-g) H(x-g), 80%); (2, 20%)
0.164531 Mixed - L(x) E(x) H(y-g), 80%); (100, 10%); (2, 10%)
0.136013 TFT - Low(x) Equal(x) High(y-g)
0.135321 TFT - Low(x) Equal(x-2g) High(y-g)
0.030905 TFT - Low(x-2g) Equal(x) High(y-g)
0.030182 TFT - Low(x-2g) Equal(x-2g) High(y-g)
0.026784 Mixed - L(x) E(x) H(y-g), 80%); (2, 20%)
0.024322 Always 2

somewhat surprising that the performance of Tit-for-Tat-
based strategies varies so greatly depending on the details
of bid prediction method and metric choice. So, while a
relatively complex TFT-based strategy that, in particular,
(i) makes a nontrivial model of the other agent’s behavior
and (ii) “mixes in” some randomization, is among the top
performers with respect to metric U1, other TFT-based
strategies have fairly mediocre performance with respect
to the same metric, and are, indeed, scattered all over the
tournament table. In contrast, if metric U3 is used, then the
simplest, deterministic ”one under what the opponent did on
the previous round” TFT strategy, which is a direct analog of
the famous TFT in Axelrod’s Iterated Prisoner’s Dilemma, is
the top performer among all 38 strategies in the tournament
– while more sophisticated TFT strategies, with considerably
more complex models of the opponent’s behavior and/or
randomization involved, show fairly average performance.
Moreover, if U3 is used as the yardstick, then (i) 3 out of the
top 4 performers overall are TFT-based strategies, and (ii) all
simplistic TFT strategies outperform all more sophisticated
ones.

Not very surprisingly, the top (and bottom) performers
with respect to metric U1 and those with respect to U2 are
practically inverted; so, for example, the very best performer
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Table 2: Ranking Based on U2
0.984342 Always 2
0.924474 TFT - Low(x-2g) Equal(x-2g) High(y-g)
0.915263 TFT - Low(x-2g) Equal(x) High(y-g)
0.887500 Mixed - L(x) E(x) H(y-g), 80%); (2, 20%)
0.845132 TFT - Simple (y-2)
0.839868 TFT - Low(x) Equal(x-2g) High(y-g)
0.832368 TFT - Low(x) Equal(x) High(y-g)
0.791842 TFT - Simple (y-1)
0.727105 Buckets - PD, Retention = 0.2
0.681842 Mixed - L(x) E(x) H(y-g), 80%); (100, 20%)
0.669079 Mixed - L(y-g) E(x-g) H(x-g), 80%); (2, 20%)
0.653816 Buckets - PD, Retention = 0.5
0.629605 Mixed - L(x) E(x) H(y-g), 80%); (100, 10%); (2, 10%)
0.622632 TFT - Low(y-g) Equal(x-g) High(x-g)
0.616711 Buckets - PD, Retention = 0.8
0.558158 Mixed - TFT (y-1), 80%); (R[99, 100], 20%)
0.557368 Buckets - (Fullest, Newest)
0.539342 Simple Trend - K = 25, Eps = 0.5
0.528421 Buckets - (Fullest, Lowest)
0.491842 Random [2, 100]
0.483684 Simple Trend - K = 10, Eps = 0.5
0.480789 Buckets - (Fullest, Random)
0.463816 Buckets - (Fullest, Highest)
0.455000 Mixed - L(y-g) E(x-g) H(x-g), 80%); (100, 10%); (2, 10%)
0.407500 Simple Trend - K = 3, Eps = 0.5
0.303158 Mixed - L(y-g) E(x-g) H(x-g), 80%); (100, 20%)
0.260263 Q Learn - alpha= 0.5, discount= 0.0
0.255658 Q Learn - alpha= 0.8, discount= 0.0
0.253289 Q Learn - alpha= 0.8, discount= 0.9
0.252763 Q Learn - alpha= 0.2, discount= 0.0
0.249605 Q Learn - alpha= 0.5, discount= 0.9
0.247237 Q Learn - alpha= 0.2, discount= 0.9
0.200000 Always 51
0.183289 Zeuthen Strategy - Negative
0.092368 Always 99
0.066711 Random [99, 100]
0.040789 Zeuthen Strategy - Positive
0.013289 Always 100

with respect to U2 is the strategy “always bid $2” (which
also happens to be the only non-dominated strategy in
the classical game theoretic-sense). On the other hand, the
three best performers with respect to U1 are all among
the four bottom performers with respect to U2, with the
only strategy that may maximize social welfare (bidding
$100 against a collaborative opponent) falling at the rock
bottom of the U2 ranking. The main conclusion we draw
from this performance inversion is that when a two-player
game has a structure that makes it very far from being zero-
sum, the traditional precepts from classical game theory
on what constitutes good strategies are more likely to fail.
This does not mean to suggest that classical game theory is
useless; rather, we’d argue that the appropriate quantitative,
mathematical models of rationality for zero-sum, or nearly
zero-sum, encounters aren’t necessarily the most appropriate
notions for games that are rather far from being zero-sum.

Returning to our tournament results, what we have found
very surprising is the relative mediocrity of the learning
based strategies: Q-learning based strategies did not excel
with respect to any of the four metrics we studied. On the
other hand, it should be noted that the adaptability of Q-
learning based strategies apparently ensures that they do not
do too badly overall, regardless of the choice of metric.

Table 3: Ranking Based on U3
0.973118 Buckets - PD, Retention = 0.2
0.970587 Buckets - PD, Retention = 0.5
0.970356 TFT - Simple (y-1)
0.968923 Simple Trend - K = 10, Eps = 0.5
0.967860 TFT - Low(y-g) Equal(x-g) High(x-g)
0.965654 TFT - Simple (y-2)
0.962212 Simple Trend - K = 3, Eps = 0.5
0.959252 Buckets - PD, Retention = 0.8
0.955886 Simple Trend - K = 25, Eps = 0.5
0.953725 Buckets - (Fullest, Newest)
0.945405 Buckets - (Fullest, Random)
0.945222 Buckets - (Fullest, Lowest)
0.943694 Buckets - (Fullest, Highest)
0.919699 Mixed - TFT (y-1), 80%); (R[99, 100], 20%)
0.908562 Mixed - L(y-g) E(x-g) H(x-g), 80%); (2, 20%)
0.899511 Mixed - L(x) E(x) H(y-g), 80%); (100, 20%)
0.864914 TFT - Low(x) Equal(x) High(y-g)
0.863831 TFT - Low(x) Equal(x-2g) High(y-g)
0.823397 Mixed - L(y-g) E(x-g) H(x-g), 80%); (100, 20%)
0.822670 Random [99, 100]
0.820128 Always 99
0.818674 Always 100
0.817728 Zeuthen Strategy - Positive
0.803646 Q Learn - alpha= 0.2, discount= 0.9
0.801725 Q Learn - alpha= 0.5, discount= 0.0
0.801380 Q Learn - alpha= 0.2, discount= 0.0
0.800006 Q Learn - alpha= 0.5, discount= 0.9
0.798992 TFT - Low(x-2g) Equal(x) High(y-g)
0.798681 TFT - Low(x-2g) Equal(x-2g) High(y-g)
0.798417 Always 2
0.798402 Q Learn - alpha= 0.8, discount= 0.9
0.798277 Mixed - L(x) E(x) H(y-g), 80%); (2, 20%)
0.797728 Q Learn - alpha= 0.8, discount= 0.0
0.758573 Mixed - L(x) E(x) H(y-g), 80%); (100, 10%); (2, 10%)
0.751044 Mixed - L(y-g) E(x-g) H(x-g), 80%); (100, 10%); (2, 10%)
0.741721 Always 51
0.521901 Zeuthen Strategy - Negative
0.518840 Random [2, 100]

Furthermore, the choice of the learning rate seems to make
very little difference: for each of the four metrics, all three
Q-learning based strategies show similar performance, and
hence end up ranked adjacently or almost adjacently.

Another interesting result is the performance of Zeuthen-
based strategies. ITD as a strategic encounter is not of a
negotiation nature, hence we have been criticized for even
considering Zeuthen-like strategies as legitimate contenders
in our tournament. However, excellent performance of the
Zeuthen strategy with positive concessions only (at least
w.r.t. the “bottom line” metric U1) validates our approach.
Interestingly enough, the same strategy does not perform
particularly well w.r.t. metric U3. It is worth noting, how-
ever, that the only three strategies that outperform Zeuthen-
positive with respect to U1 perform similarly to Zeuthen-
positive with respect to U3. Those strategies perform only
slightly better than Zeuthen and way below the best perform-
ers with respect to U3, namely, the bucket-based, simplistic
TFT-based, and simple-trend-based strategies.

Finally, given the performance of Zeuthen-negative (the
variant allowing negative “concessions”) with respect to all
metrics, it appears that “enticing” the opponent to behave
differently indeed does not work when the “concessions” are
not true concessions. Intuitively, this makes a perfect sense;
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our simulation results provide an experimental validation of
that common-sense intuition.

Due to space constraints, further analysis of our tourna-
ment results is left for the future work.

7. Summary and Future Work
We study the Iterated Traveler’s Dilemma two-player

game by designing, implementing and analyzing a round
robin tournament with 38 distinct participating strategies.
Our detailed analysis of the performance of various strategies
with respect to several different metrics has corroborated
that, for a game whose structure is far from zero-sum, the tra-
ditional game-theoretic notions of rationality and optimality
may turn out to be rather unsatisfactory. Our investigations
raise several interesting questions, among which we are
particularly keen to further investigate the following:

(i) To what extent simple models of reinforcement learn-
ing, such as Q-learning, can be really expected to help
performance?

(ii) To what extent complex models of the other agent
really help an agent increase its payoff in the repeated play?

(iii) Why are performances of various TFT-based strate-
gies so broadly different from each other? This opens
up interesting questions from meta-learning [19, 20] and
meta-reasoning standpoints: how can one design TFT-based
strategies that are likely to do well across tournaments (that
is, choices of opponents) and across performance metrics.

(iv) What effects on strategies and their performance
would an adjustment in the bonus/malus have? For prior
research on how human behavior changes with a change in
bonus/malus, see [7] and [12].

In our future work, in addition to more detailed analysis of
the existing strategies and study of some new ones, we plan
to pursue a systematic comparative analysis of how groups
of closely related strategies perform against each other when
viewed as teams. We also plan to further investigate other
notions of game equilibria, and try to determine which such
notions adequately capture what our intuition would tell us
constitutes good ways of playing the iterated TD and other
‘far-from-zero-sum” two-player games.
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