
SESSION

WORLDCOMP + ERSA KEYNOTE

Chair(s)

TBA

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 1

2 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

How Engineering Mathematics can Improve Software
David Lorge Parnas1,

1Middle Road Software, Ottawa, Ontario, Canada

Abstract - For many decades computer science researchers
have promised that the "Formal Methods" developed by
computer scientists would bring about a drastic improvement
in the quality and cost of software. That improvement has not
materialized. We review the reasons for this failure. We then
explain the difference between the notations that are used in
formal methods and the mathematics that is essential in other
areas of Engineering. Finally, we illustrate the ways that
Engineering Mathematics can be useful in software projects

Keywords: Software design, mathematics, formal methods

1 Introduction
There are two basic differences between the field

known (euphemistically) as Software Engineering and
the traditional Engineering fields such as Electrical,
Mechanical and Civil Engineering.

• In Software Engineering, physical science is not as
important as it is in other Engineering areas. Knowledge
of physical science may be important for specific
applications but it is not in the core body of knowledge
for software development.

• Mathematics is not used by software developers in
the way that it is used in the traditional Engineering
disciplines.

The first of these differences is not surprising.
Unlike radios, cars, and bridges, software is not a
physical product. The second difference, is very
surprising. In software, the laws of physics must be
replaced by mathematical laws that determine the
behaviour of programs [15]. When an Electrical Engineer
constructs a device from resistors, inductors, and
capacitors, it is routine to calculate the behaviour of the
assembled circuit mathematically. Laws describing
program composition could be used by software
developers in the same way that Kirchoff’s laws are
used by Electrical Engineers but, they are not; most
software developers rely on intuition and trials to
determine the behaviour of the constructed program.

2 Roles of mathematics in Engineering
In Engineering, documentation is the design

medium [9] and mathematics is used in that
documentation. There are two distinct roles for
documents, description and specification.

• Documents can be used to describe properties of a
product that exists (or previously existed).

• Documents can be used as specifications to state
properties that are required of a product. The product
specified might not exist.

The difference between a specification and other
descriptions is one of intent, not form. Every
specification that a product satisfies is a description of
that product. The only way to tell if a description is
intended to be interpreted as a specification is what is
said about the document, not its contents or notation. I
consider the phrase “specification language” to be
nonsense. Any notation that can be used to produce
specifications can also be used to produce
descriptions.

Because documents contain mathematical
expressions, they can be used to verify the correctness
of designs or compute properties of a product.

3 Early approaches to using mathematics in
software development

Many computer scientists have proposed ways to
use mathematics or mathematical notation to help in
program development. It is more than 40 years since
the late Robert Floyd [6] showed us how to “assign
meaning to programs” and how we could verify that
programs will do what they are intended to do. It is at
least 35 years since I first heard Jean-Raymond Abrial
present the ideas that were the basis of Z and its many
dialects. The VDM community began its work about the
same time. Dijkstra [4] showed how to use predicate
transformation rules shortly after that. Mills (and others)
showed us how the classical mathematical concepts of
a relation could be used to do the same things [15].

None of these approaches has had the effect on
software development practice that was sought. Since
1967, there have been numerous “revolutions” on the
hardware side and amazing improvements in man-
machine interfaces. The computer systems on my desk
today were unimaginable when Bob Floyd wrote his
1967 article. Unfortunately, there hasn’t been
comparable progress in formal methods. There have
been new languages and new logics, but the program
design errors we saw in 1967 can still be found in
today’s software. Paradoxically, successful applications
of formal methods to industrial practice remain such
exceptions that people write papers about them,
thereby confirming that the use of the method is not
common.

4 Claims of progress and adoption
The CS research literature reveals that ‘formal

methods for software development’ are a very popular

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 3

research area. Variants of the most popular approaches
are frequently discussed at conferences and in journals.

Research funding agencies often require larger
projects to involve cooperation with industrial
organizations and to demonstrate the practicality of an
approach on “real” examples. When such efforts are
reported in papers, they are almost invariably presented
as successful. Paradoxically, these success stories
reveal the failure of industry to adopt formal methods as
standard procedures; if use of these methods were
routine, papers describing successful use could not be
published. Industry is so plagued by errors and high
maintenance costs that they would be eager to use any
method they thought would help; it says something that
the “successes” have not been followed up by requiring
that the methods be routinely used.

Often, reports of successful industrial adoption do
not stand up to scrutiny. Sometimes, the authors are
just playing with words. For example, the technique of
placing debugging statements in code, which was
taught to me in 1959, has recently been trumpeted as
“industrial use of assertions”.

Close scrutiny of an effort to demonstrate the utility
of formal methods often reveals truly heroic efforts to
develop and verify complex formal models but little
evidence that the actual code is correct. These efforts
rarely lead to repeat use or broader adoption of the
method.

Some of the reported successful trials may be
attributed to the simple method of having two people
solving a problem and critiquing each other’s code.
Thirty years ago, in a paper that is still worth reading
today, Elovitz [5] described an experiment in which a
program in a programming language was used in the
way that formal method advocates suggest that their
notations be used. One programming language was
dubbed the specification language; the other identified
as an implementation language. A program was written
by one programmer in the specification language and
given to another as a “specification” for a program to be
written in the implementation language. The translator
often found, and corrected, errors. The “implementation
was reviewed by the programmer who had written the
specification. The error rate was measurably reduced;
the technique (an early version of pair programming)
was considered successful. This “dual scrutiny” effect,
could explain many of the reported successful
applications of formal methods.

Reports that formal methods are ready for industrial
use must be taken with a huge grain of salt. The need
for effective methods is so great that, if the well-known
methods were ready, their use would be widespread.

5 F o r m a l m e t h o d s a n d e n g i n e e r i n g
mathematics - contrasts

Noting the widespread use of mathematics in
traditional Engineering, and the failure of software
developers to use the “formal methods” that were
developed to help them, we discuss the differences
between formal methods and applied mathematics.

On many occasions, when I have remarked that I
advocate the use of mathematics in software
development, but oppose “formal methods”, I have
sensed reactions ranging from puzzlement to
amusement or annoyance. The distinction is not
obvious to many in the field.

This section presents some differences between
mathematics and formal methods and explains their
importance.

5.1 Mathematics
Standard dictionary definitions of mathematics

such as, “the abstract science of number, quantity, and
space” tell us more about the origin of mathematics
than about mathematics as it is understood today.
Mathematics is no longer restricted to “number,
quantity, and space”;it has been extended to include
strings, physical structures, and many other types of
objects in our world. Abstract structures defined long
ago have proven to be useful in understanding things
that were devised quite recently.

Mathematicians work by defining abstract
structures and then studying their properties. The
structures may be very basic and general such as sets,
and relations or more complex, algebraic structures
comprising several sets and functions mapping
between them. A structure is defined by describing
properties of the set members and the functions.
Mathematicians may derive further properties from the
properties given in the definitions.

Broad classes of structures may be divided into
smaller classes by stating additional properties. For
example, we may define the broad class relations and
then define the additional properties of functions and
various narrower classes such as functions that can be
represented by polynomial expressions, boolean
functions, or trigonometric functions.

Mathematical structures are:
• Abstract: Mathematical definitions do not refer to

the real-world objects or structures that inspired them.
The properties are all formally stated without any
mention of observed behaviour in the real world.

• Static: Mathematical structures do not change with
time. Some statements may appear to be describing
change. For example, we may illustrate set union with
examples like {2,3} ∪ {3,4} = {2,3,4}. This is sometimes
be paraphrased as “if you add the set {3,4} to the set
{2,3} the result is the set {2,3,4}.” Such a sentence

4 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

sounds as if it is describing an event or action but the
sets are all static; the equation states a permanent
property of set union.

• Precisely defined: Classical mathematical
definitions are mature (well structured, well understood,
widely accepted). All conclusions about the structures
have been derived from the definitions.

We shall refer to these three properties as the ASP
properties. These three properties are very important.

• Abstract definition makes it possible to apply
research results to many different types of systems. For
example results from research motivated by the study
of systems of springs and weights, may be applied to
electrical circuits or control systems without any
change to the mathematics. The same equations arise;
the same solution techniques work.

• Static structures are easier to study. The idea of
time in a dynamic system is often confusing in a way
that static structures are not. The fact that the
structures are static does not mean that we cannot use
mathematics to analyze and design dynamic systems.
Many of the most useful mathematical results are about
dynamic systems. These results treat time in the same
way that they treat other variables.

• Precise Definitions are essential for productive
discussions of complex products. Without them
discussions will be full of misunderstandings and the
meaning of agreements will be disputed.

5.2 Formal Methods
The phrase “formal methods” was introduced by

computer science researchers to describe a class of
approaches to studying the properties of computer
programs. The two best known are Z and VDM, but
there are many variations of these as well as many other
methods that come under this rubric. Among these are
B (developed by the originator of Z), SOFL, LOTOS,
Larch, SDL, TLA, CCS, SDL, …, . Some would include
UML as a formal method but many note that it is not
formally defined. A list of all the, notations, the
variations and their associated methods is beyond the
scope of this paper.

Formal methods comprise (1) a notation (often
called a language) for describing or specifying
computer systems and (2) procedures for using the
language to study a computer system.

Another set of methods introduced for analyzing
software introduce little or no new notation. Instead,
they show how to convert hypotheses about computer
system to theorems which can then be proven using
standard mathematical techniques. Paradigmatic of this
class of approaches was the pioneering work of Robert

Floyd [6] and his students. Other such approaches will
be discussed below.

In this paper, I use the term “formal methods” for
methods that are associated with a language or special
notation for software. The others will be called
“mathematical methods”.

5.3 Are “formal methods” and mathematics the
same?
The languages used in formal methods resemble

mathematics. Many of the symbols used are symbols
used in classical mathematics and the formulae have
similar interpretations.

The similarities between formal methods and
classical mathematics are clear when one reads
tutorials or books explaining those languages. The
introductions almost invariably begin by presenting
basic ideas about set theory and logic (often, as if they
were new) and introduce notation that is a syntactic
variation of the notations used in mathematics.
Concepts like set union, conjunction, implication, etc.
are explained using the notation of the method’s
language.

However, the well-known formal methods do not
have the ASP properties.

• Formal Method notations were developed for the
specific purpose of describing the behaviour of
computer programs. In many of the published
examples there is a frequent domain change between
the physical situation (the program) and mathematical
symbol manipulat ion. The not ions of state,
programming language variables 1, and actions (state
changes) are basic concepts in the formal method
languages. The notations are chosen to make the
description of programs more direct. Many of the
“specifications” are actually descriptions of abstract
state machines whose behaviour mimics that of a
program that would satisfy the specification.

• The notion of time as “something special” is built
into these languages and methods as they talk about
values before and after operations (which change
states). In some cases, the languages incorporate
specialized logics known as temporal logics. The
structures described are not static.

• Many of the languages were introduced without a
full formal definition; in some cases there have been
efforts to correct the lack of a precise abstract
definition long after the language was introduced.
Variant definitions are frequently introduced in the
literature.

The developers of these methods deviated from
classical mathematics in this way because they

1 These are different from mathematical variables - see below.

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 5

believed that this was necessary to make their ideas
practical.

5.4 Modeling
Recent years have seen a renewed interest in the

use of models and the coining of the phrase, “model-
driven engineering.”

A model of a product is a simplified version of that
product. There are two kinds of models: physical and
abstract.

Although, the popular formal methods are often
described as specification languages, it would be more
accurate to call them modelling languages. Many of the
published examples are neither specifications nor
descriptions but models.

The properties of a model are never the same as
the properties of the actual system. Consequently,
models must be prepared and used with great care.
Decisions based on models can be wrong if they are
derived from properties of the model that are not
properties of the actual product.

6 Abstractions and their representation
Mathematics is the study of abstract structures.

The characteristics of these structures are described by
axioms or equations. The structure cannot be seen; we
can only see examples.

To be useful, a structure (e.g. a function) must be
described. A mathematical expression (classically, a
string) that that describes the structure is called a
representation of the object. Thus, when we write

“f(x)= x+1”,

the string in quotes is not the function called f but a
representation of that function. A given abstract object
can have many possible representations. For example,

“f(x) = 1+x”, and

“f(z) = 2×z -z +1”

are different representations of the same function. Much
of mathematics deals finding simpler representation of
functions or determining whether two expressions
represent the same function.

In natural language discussions of mathematics
and its applications, there is an unfortunate tendency to
confuse the abstraction with one of its representations.
For example, we often see “predicate” referring to an
expression that describes a predicate.

Some classes of abstract objects are defined by
whether or not they can be represented in a certain
form. For example, both the class of expressions of the
form:

f(z) = a0 + a1 × z + a2 × z2 + … an × zn

and the class of functions that can be represented
(exactly) by expressions in that form are sometimes
called polynomials. The function represented by

f(z) = (z+1) × z

is a polynomial function even though the expression is
not a polynomial, because that function can also be
represented by the expression

f(z) = z2 + z,

which is a polynomial expression.
Finding the best representation for performing a

mathematical task is an essential step in applying
mathematical results. For example, finding the roots of
the function described above is (slightly) easier using
the first representation than using the polynomial
expression.

The issue of representations becomes important to
mathematics researchers whenever new applications
require them to work with a new class of structures. The
use of mathematics to describe the behaviour of
software requires us to represent functions with many
points of discontinuity. Classical engineering deals
primarily with continuous functions or piecewise-
continuous functions with a small number of
discontinuities. Section 10 discusses the representation
of software with many discontinuities.

7 How mathematics is applied to physical
systems

To apply mathematical results we have to find a
way to connect the abstraction to the physical system
that we want to study. This is usually done by using
variables. The word “variable” is used in both
mathematics and physics, but the meaning is different.

7.1 Variables in physics
In physics, “variable” refers to a measurable

characteristic of a system whose value changes with
time. To define a variable one must describe a way that
it can be measured and the units that will be used. This
allows a scientist to make statements about the value of
this variable. Usually a variable is identified by a short
character string such as “h” or “height”. Often the name
used to identify the variable is not distinguished from
the variable itself.

7.2 Variables in mathematics
In pure mathematics, variables are place holders

used in the definition of relations. When used for this
purpose, they do not have values. The variables have
no meaning outside of the definition. For example, we
can write

“doublesum(x,y) = x+y+ x+y” .

If we write,

“doublesum (w,z) = w+z+ w+z” ,

we have defined exactly the same function. The
variables are just a convenient way of saying, “the first

6 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

argument”, “the second argument”, etc. As in physics, a
variable is usually represented by a short string.

Mathematical variables are used again when the
function is applied. If we want to apply the function to
specific values, we may write

doublesum(x,z) for x=2 and z = 3, or
doublesum(2,3).

A list of specific values for the arguments such as (2,3)
is often called an assignment of values for (x,z) but
mathematical variables do not have values outside of
the expression, i.e. the “assignment” has no lasting
effect on the .variable.

In informal discussions, there is a natural tendency
to confuse the variable with the set of values that we
intend to assign to it. For example, taken literally, the
statement, “x is an integer”, where x is a variable is
actually nonsense. A constant such as “2” is an integer
but x is a variable not a number. Usually such a
statement is intended say that the variable will only be
assigned integer values or as a part of an informal
conditional statement.

7.3 Associating physical variables with
mathematical variables
When mathematics is used to study or describe of

physical systems, relations are applied by associating
the mathematical variables with physical variables.
Usually this is done by a kind of pun, i.e by giving the
mathematical variable and the associated physical
variable the same name. For example we may write

doublesum(length, width)

where length and width are the names of defined
physical variables.

When this punning is used, it may convey the
(false) impression that the mathematical variables are
the same as the physical variables and some
practitioners ignore the distinction. In mathematical
reasoning any association between the physical
variable and the mathematical variable is irrelevant and
should not be used.

7.1 Time as a variable
Time receives no special treatment in classical

applied mathematics. In Physics, and all branches of
Engineering that deal with dynamic systems, time is
treated in the same way as other physical variables.2
This allows us to predict the behaviour of moving
objects, electrical circuits, control systems, etc. In
Engineering and Physics there is no need for temporal

logic to describe and analyze the dynamic systems that
are ubiquitous in these fields.

7.2 Transfer functions
In traditional Engineering, a device’s behaviour is

characterized by a function with a domain containing
the possible histories of the observable behaviour
(usually, the input history suffices) and a range that
contains the value of the device’s outputs. The history
contains information assumed to be known or
controllable and the range represents the information
we want to know. Transfer functions can describe the
behaviour of the device without providing any
information about its construction.

Given a network of devices, each described by its
transfer function, it is possible to derive the transfer
function for the network. This supports a hierarchical
documentation and analysis process in which networks
can be encapsulated and their transfer function (which
is usually simpler than the full network description) used
in analysis of the networks of which it is a part. [14]

Analysis allows the detection of anomalous
behaviour, such as resonant frequencies or other types
of behaviour, that might not be revealed by testing.

8 Mathematical reasoning:
Three distinct forms of reasoning can be observed

in the development and application of mathematics.
• function evaluation
• predicate satisfaction
• Inference or deduction

8.1 Function evaluation
Function evaluation begins with an expression that

represents a function whose domain is the set of
possible values of the variables appearing in the
expression and range is the set of possible values of the
function. Evaluation proceeds by substituting assigned
values for the variables, and evaluating functions when
the value of all of its arguments have been computed.
The order of evaluation is not fully determined but,
when there is a choice, the result is not affected by the
order chosen.3

8.2 Predicate satisfaction
Predicate satisfaction begins with an expression

that represents a function with range {true, false}.
However, no values are assigned to the variables.
Instead, there is a search for an assignment that the
function maps to true. Theoretically, the process could
be a random search but research has found faster
methods. There may be many assignments that would

2 One can consider time to be he fourth dimension of a 4 dimensional space with the first three coordinates taken
from a conventional spacial coordinate system.
3 Readers are reminded that we are discussing mathematical expressions, not programs. There are no side-effects.

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 7

map to true; the order in which assignments are tried
can affect the result. In traditional engineering the most
common form of the predicates is a set of equations.
Predicate satisfaction is then called solving equations.

8.3 Inference or deduction
Logic provides a sound basis for mathematics. A

particular logic comprises a set of axioms (predicates
assumed to be true) and rules of inference (rules that
can be used to transform a predicate expression to
another expression). Anything inferred in this way from
the axioms is considered to be true. If an expression is
hypothesized to be a true, proof procedures search for
a sequence of inferences that will demonstrate its truth.

8.4 Mathematical reasoning in Engineering.
Of the three forms of mathematical reasoning

outlined above, Engineers prefer the first. If they are
given equations, they will try to “solve” the equations to
produce what is often called a “closed form solution”,
which is a function that maps from a domain consisting
of the possible values of the known (independent)
variables, to a range comprising the values of the
variables that are not known but needed.

The reason for preferring function evaluation is that
inference and predicate satisfaction generally involve a
search. In the case of inference it is a search for the
right sequence of inference applications. In the case of
predicate satisfaction it is a search for the right
assignment. In function evaluation there is no need for a
search. One is given the values of the independent
variables and evaluates functions in an obvious order.

Many Engineering mathematics programmes
include little or no discussion of inference. Much of the
mathematics curriculum is devoted to solving equations
to find expressions that can be evaluated. Previously
found solutions are taught in the engineering courses.

Function evaluation is the primary way that
mathematics is used in practical engineering
applications. Mathematicians use inference or
deduction to develop new mathematical results and
proof techniques. Predicate satisfaction is used for
problems where no “closed form” solution is known.

9 Applying mathematics to software systems
This section discusses applying the methods used

in older areas of Engineering in software development.

9.1 Variables and identifiers in programs
Above, I have pointed out that the meaning of

“variable” in mathematics is different from its meaning
in physics. In discussing programs, the word has yet
another meaning.

Variables in programs are discrete state machines
that serve as memory. They are generally finite state
machines; the upper bound to the number of states
may be very large and, for some implementations, hard
to characterize. Unlike variables in mathematics,
program variables have a value, their state, which can
persist over time. They are not placeholders used for
definition and application of functions. They are closer
to physics variables than the mathematical ones
because they correspond to a physical device and the
values are observable characteristics of that device 4.

Because of the nature of many programming
languages, it is important to distinguish between a
variable and a string that is used to identify it (an
identifier). In modern programming languages, it is
possible for a variable to have several identifiers
(aliasing) or for one identifier to be used to identify
different variables in different parts of a program.

Because the relation between identifiers and
variables is not 1:1, the “punning” method of
associating mathematical variables with the program
variables can cause difficulties. It is easy to replace
identifiers that have been used more than once with
unique names for the variables, but aliasing is not as
easily avoided. The methods available to deal with
aliasing depend on the design of the language.
Argument passing in procedures is the main source of
the aliasing problem as one can use one variable as an
actual parameter corresponding to several distinct
formal parameters. Unless one consistently deals with
an array as a single variable, array indexing is also a
source of aliasing. Another form of aliasing is caused by
the use of pointer variables.

The sequel assumes that this problem has been
solved in some way.

9.2 Assertion based methods
The best known, and most widely taught, methods

of relating software to mathematics is the approach
introduced by Robert Floyd, [6]]. Predicates are
associated with points in the program text; predicate
transformation rules are given for each type of
statement in the language. Starting with a predicate that
is assumed to be true before the program is executed,
and following each path, one assumes that the
assertion before a statement holds and must prove that
the assertion after that statement will hold after
execution. Demonstrating the correctness of a program
is, thereby, reduced to proving a set of mathematical
theorems.

Looking at proofs using this basic method one can
make the following observations:

4 Algol 60 introduced the distinction between variables (which were declared) and formal parameters (which were
specified). Formal parameters were similar to the variables used in mathematics.

8 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

• In the proof examples, it is common to move back
and forth between the program domain (where one
exams the paths in an intuitive way) and a
mathematical domain (where theorems are proven). It is
possible to separate the two types of work by
generating all proof obligations from the program text
before moving into the mathematics domain. This may
require backtracking if one did not introduce assertions
that are strong enough.

• Abstraction is not supported. As one moves
through the program text, one carries all state variables
in the expressions so that some are mentioned in
expressions even where they are not relevant.

• If code is reused, proofs may be repeated.
• Although it is natural to go forward, there is no

requirement to do so and one could also go backward.
• Although it is common to regard the precondition

and postcondition as separate, it was often necessary
to add variables that had no other purpose than to
support the proof.

• The process neither assumes nor exploits any
hierarchical structure in the text.

Floyd did not introduce a new notation for his
method; none was needed. In a slightly later paper,
Hoare introduced what has become known as the
“Hoare triple”, that comprised a precondition pattern, a
statement pattern, and a postcondition pattern. The
triple was a “schema” describing the way that a
predicate expression describing the precondition would
be transformed to a predicate expression describing the
postcondition. The rules given are valid only if certain
assumptions about the variables hold. In particular, the
relation between variables and identifiers must be 1:1
and that program variable identifiers cannot appear as
bound variables in the predicate expressions.

9.3 Predicate transformer methods
Dijkstra [4] replaced the Hoare triple with a function

from predicate expressions to predicate expressions,
which he called a predicate transformer. In addition, he
decided to reverse the direction, i.e. his predicate
transformers transformed a postcondition to a
precondition. He also took the problems of non-
determinism into account and identified two distinct
predicate transformers, known as the weakest
precondition and weakest liberal precondition. For a
deterministic program, these would be the same but for
a non-deterministic program they could differ. Predicate
transformers, like the earlier methods, did not abstract
from the representation of the state. They were always
expressed in terms of a specific form of predicate
expressions; Dijkstra also assumes a 1:1 mapping
between program variables and mathematical variables.

9.4 Abstract relational/functional methods
Many mathematicians, among the best known were

Mills [15] and de Bruijn [2], pointed out that new
concepts were not needed because the classical
mathematical concept of relation5 could be used A
deterministic program computes a function from
starting state to stopping state. For non-deterministic
programs, the mapping may be a relation that is not a
function. In the non-deterministic case, it is either
necessary to introduce a way to denote non-termination
or use the approach like that in [16].

Expressing the mathematical properties of
programs with functions on states has a number of
advantages:

• There is no need for new notation. This is not new
mathematics; it is simply a new application for old
mathematics.

• The definitions given in papers like [15,16] are
independent of the way that the states and functions
are represented.

• The definitions are simpler and, as a consequence,
easier to understand. The simplicity is the result of
abstracting from representation details.

• There is no need for a special treatment of time.
Time is part of the state information and the passage of
time during the execution can be treated in exactly the
same way as changes of other variables. If the
execution time is difficult to predict, time consumption
can be considered part of the non-determinism.

• The definitions given in papers like [15] are not tied
to a specific set of statement types. They distinguish
two components of a programming language, primitive
(built in “statements” or programs) and constructors
(such as “;” “if then else”, and “while”) which are used
to construct bigger programs from primitive programs
and previously constructed programs. This eases their
application to new programming languages.

• The absence of assumptions about the primitive
programs supports hierarchical application of the laws.
Any constructed program can be treated as a primitive
program when constructing larger ones.

Relational methods are the closest of the software
methods to the methods used in classical Engineering.
In the author’s opinion, they have many advantages. For
example, no changes are required to use the tabular
notations defined in [13]. The mathematics is applicable
to a wide variety of programming languages including
those with unusual data types. Using this approach
facilitates a smooth integration of Software Engineering
and traditional Engineering.

5 Mills work [15] was restricted to deterministic programs and relations that were functions.

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 9

http://www.ul.ie/
http://www.ul.ie/

9.5 Additional views of software
Early work on the application of mathematics to

programs only considered individual sequential
deterministic, terminating programs. This was adequate
for the programs of concern in the 1960s but it is not
adequate for the type of software we build today. For
today’s systems, we need to view software from many
“orthogonal” viewpoints. Each view can be described in
a separate document as summarized in Figure 1.

Figure 1: Software Design Views

9.6 Applying mathematics for the other views
None of the well-known formal methods was

designed with views other than individual terminating
programs in mind. Because each method was primarily
a language there have been a few attempts to apply the
notations to other views but the result is not convincing.
In fact, the communities behind these methods do not
seem to understand the need for separation of
concerns and a multi-view approach.

The relational approach, can be used for each of
the views. Each of the views can be documented using
mathematical relations but the range and the domain of
the relations varies with the view. The contents of each
document other than the module guide, which is the
only informal document, will be a representation of a
relation. [17]. Figure 2 summarizes the relations to be
represented in each of the documents.

Figure 2: Relational Content of Primary Software
Design Documents

With a multiple view approach to software, it
becomes extremely important to have clear statements

Document Content

Software Requirements
Document

Black Box specification, identifies all outputs and inputs and describes
relation between output values and input history.

Module Guide Informal description showing the hierarchical decomposition of the
system into modules and the secret of each module.

Module Interface
Specifications

Black Box specification, identifies all outputs and inputs and describes
relation between output values and input history.” Usually shows
externally invokable programs.

Module Implementation
Design Document

Documents complete data structure, effects of all externally visible
programs on data, abstraction function or relation (data interpretation) -
design can be verified before coding begins.

Program Uses Structure Description of permitted usage of one access-program by another.
Determines the usable subsets of product.

Display Method
Program Documentation

Hierarchical decomposition of program into “small programs” with
specification of subject program and programs used.

Document Domain Range Relations

Software Requirements
Document

Histories of I/O Output values One per output variable:
possible value after history

Module Interface
Specifications

I/O traces (sequences) Output values One per output variable
possible value after trace

Module Implementation
Design Document Domain

Declaration of complete data structureDeclaration of complete data structureDeclaration of complete data structure

Module Implementation
Design Document part 2

Data Structure States set of traces Abstraction Relation: Trace
could lead to state

Module Implementation
Design Document 3

Access Program Function Data Structure States Data Structure States

Program Uses Structure Access Programs Access Programs Allowed to Use

Display Method
Program Documentation

program start states program end states. program functions
(with text)

of the contents of each document. Many developers
have witnessed destructive arguments about whether
some detail should be included in a given document or
b e l o n g s e l s e w h e re . M o re h a v e w i t n e s s e d
misunderstandings because the information was
discussed in more than one document and the
documents were not consistent. Mathematics gives us
a way to say precisely what belongs in each document
without specifying format or notation [16].

It is also possible to use mathematics to verify key
design decisions before spending time and money on
implementation of faulty interfaces. Methods used in
other areas of Engineering can be used to check higher-
level documents before investing in code. [14]

10 Representing Software Relations
The mathematical methods that have been used in

traditional Engineering fields have not been easy to
apply to software because the classical representations
are not suitable for the functions that must be
described. While the functions that arise when working
with physical products are usually either continuous or
have a small number of discontinuities, the functions
that describe software have many discontinuities, both
because we are dealing with digital systems and
because the power of software lies partly in its ability to
implement behaviour that has many special cases.

Mathematical expressions that describe computer
systems can become very complex, hard to write and
hard to read. When software functions are described by
expressions in conventional format, the depth of
nesting of subexpressions gets to high. As first
demonstrated more than 30 years ago in [8, 7], the use
of a tabular format for mathematical expressions can
turn an unreadable string of symbols into an easy to
access, complete and unambiguous document.

Figure 3 6 is an expression that describes the
behaviour of a keyboard checking program that was
developed by Dell in Limerick, Ireland [1, 18]. Even
those who are mathematically inclined find such
expressions hard to read and write.

Figure 3: Characteristic Predicate of Keyboard
Checker Program

Keyboard Checker: Conventional Expression

(N(T)=2∧keyOK∧(¬(T=_)∧N(p(T))=1))∨(N(T)=1∧(T=_∨(¬(T=_)∧N(p(T))=1))∧
(¬keyOK∧¬prevkeyOK∧¬prevkeyesc))∨((¬(T=_)∧N(p(T))=1)∧
((¬keyOK∧keyesc∧¬prevkeyesc)∨(¬keyOK∧keyesc∧prevkeyesc∧
prevexpkeyesc))∨((N(T)=N(p(T))+1)∧(¬(T=_)∧(1<N(p(T))<L))∧(keyOK))∨
((N(T)=N(p(T))-1))∧(¬keyOK∧¬keyesc∧(¬prevkeyOK∧prevkeyesc∧
preprevkeyOK)∨prevkeyOK)∧((¬(T=_)∧(1<N(p(T))<L))∨(¬(T=_)∧N(p(T))=L)))∨
((N(T)=N(p(T)))∧(¬(T=_)∧(1<N(p(T))!L))∧((¬keyOK∧¬keyesc∧(¬prevkeyOK∧
prevkeyesc∧¬preprevkeyOK))∨(¬keyOK ∧¬prevkeyOK∧ ¬prevkeyesc)∨
(¬keyOK∧keyesc∧¬prevkeyesc)∨(¬keyOK∧keyesc∧prevkeyesc∧
prevexpkeyesc))∨((N(P(T)=Fail)∧(¬keyOK∧keyesc∧prevkeyesc∧
¬prevexpkeyesc)∧(1!N(p(T))!L))∨((N(P(T)=Pass)∧(¬(T= _)∧N(p(T))=L)∧(keyOK))

Software Quality Research Laboratory - University of Limerick - Ireland

42/56
David Parnas! ! ! ! ! ! ! ! ! 2010 October 26 21:50 ENASE/ICSOFT slides

6 Auxiliary predicates such as keyesc, keyOK, etc. are defined separately. Each is simply defined.

10 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

Figure 4 is a tabular mathematical expression
describing the same function. It comprises 3 elements
called grids. Each grid contains a number of cells. For
this type of expression, the top grid and the left grid are
called “headers”. The lower right grid is the “main grid”.

To use this type of tabular expression, one
evaluates the cells the headers to find the ones that
evaluate to true. If the table has been properly
constructed, exactly one of the column header cells and
one of the row header cells will evaluate to true for any
assignment of values to the variables. The indices of
those cells identify a row and column. Together they
identify one cell in the main grid. Evaluating the
expression in that cell will yield the value of the function.

A tabular expression parses the conventional
expression for the user. Instead of trying to parse,
evaluate or understand the complex expression in figure
3, one looks at the simpler expressions that appear in
the tabular expression. Generally, one will only need to
evaluate a few of the expressions that appear in the
cells to compute an answer. Note that although the
tables use predicate expressions, the user is evaluation
functions, not using predicate satisfaction or inference.

There are many forms of tabular expressions. The
grids need not be rectangular. The format is not limited
to two-dimensional grids or tables. Any expression in
any cell can itself be a tabular expression. A variety of
types of tabular expressions are defined in [13].

Figure 4: Tabular Expression for Figure 1

Although tabular expressions were successfully
used without proper definition for many years, precise
semantics are needed for tools and full analysis. There
have been four basic approaches to defining the
meaning of these expressions. Janicki and his co-
authors developed an approach based on information
flow graphs that can be used to define a number of
expressions.[11]. Zucker based his definition on
predicate logic.[19] . Khédri and his colleagues based
their approach on relational algebra [3]. All three of
these approaches were limited to basic forms of tables
[12]. The most recent approach, [13], is less restricted; it
defines the meaning of these expressions by means of
translation schema that can be used convert any

Keyboard Checker: Tabular ExpressionKeyboard Checker: Tabular ExpressionKeyboard Checker: Tabular ExpressionKeyboard Checker: Tabular ExpressionKeyboard Checker: Tabular ExpressionKeyboard Checker: Tabular ExpressionKeyboard Checker: Tabular ExpressionKeyboard Checker: Tabular ExpressionKeyboard Checker: Tabular ExpressionKeyboard Checker: Tabular Expression
N(T) =N(T) =N(T) =N(T) =

T=_
¬ (T= _) !¬ (T= _) !¬ (T= _) !

T=_
¬ (T= _) !¬ (T= _) !¬ (T= _) !

T=_
N(p(T))=1 1<N(p(T))< L N(p(T))= L

keyOKkeyOKkeyOKkeyOKkeyOK 2 N(p(T))+ 1 Pass

¬keyOK ∧

¬keyesc
∧

(¬prevkeyOK ! prevkeyesc !
preprevkeyOK) " prevkeyOK
(¬prevkeyOK ! prevkeyesc !
preprevkeyOK) " prevkeyOK
(¬prevkeyOK ! prevkeyesc !
preprevkeyOK) " prevkeyOK N(p(T)) - 1 N(p(T)) - 1

¬keyOK ∧

¬keyesc
∧

¬prevkeyOK ! prevkeyesc !
¬preprevkeyOK

¬prevkeyOK ! prevkeyesc !
¬preprevkeyOK

¬prevkeyOK ! prevkeyesc !
¬preprevkeyOK N(p(T)) N(p(T))

¬keyOK ∧

¬keyesc
∧

¬prevkeyOK ! ¬ prevkeyesc¬prevkeyOK ! ¬ prevkeyesc¬prevkeyOK ! ¬ prevkeyesc 1 1 N(p(T)) N(p(T)) ¬keyOK ∧

keyesc
∧

¬ prevkeyesc¬ prevkeyesc¬ prevkeyesc 1 N(p(T)) N(p(T))
¬keyOK ∧

keyesc
∧

prevkeyesc ! ¬prevexpkeyescprevkeyesc ! ¬prevexpkeyescprevkeyesc ! ¬prevexpkeyesc Fail Fail Fail

¬keyOK ∧

keyesc
∧

prevkeyesc ! prevexpkeyescprevkeyesc ! prevexpkeyescprevkeyesc ! prevexpkeyesc 1 N(p(T)) N(p(T))

tabular expression of a known type to an equivalent
conventional expression. This is the most general
approach and provides a good basis for tools. The
appropr ia te tab le form wi l l depend on the
characteristics of the function being described. Jin
shows a broad variety of useful table types and which
provides a general approach to defining the meaning of
any new type of table [13].

This newer approach to tabular expressions makes
it possible to chose a function representation that is
intuitive and easy for its intended audience to use
without losing the precision of mathematics. Both
commercial and academic prototype tools have
demonstrated the ability to use this type of
representation to check information for completeness
and consistency as well as to check correctness by
automatic construction of a prototype that can be used
in testing.

Perhaps the most important thing to note about
tabular methods in software development is that tabular
expressions are “closed form” expressions and can be
used for function evaluation; this is easier than using
the inference approach, which is the most common
approach used in formal methods.

11 Conclusions
Software developers and educators must ask a

simple question, “Why is mathematics, which has often
been shown to be an essential tool in traditional
engineering, so seldom used in software development?
Computer Scientists have made three basic mistakes.

• They based their “formal methods” on the way that
mathematicians and philosophers develop new
mathematics, rather than the way that Engineers have
applied mathematics to design products.

• They failed to recognize that mathematicians
always have developed new forms for expressions
whenever they study a new class of functions. The
functions that describe software behaviour are quite
different from those encountered when describing
physical products; new notation was needed.

• They failed to think deeply about the roles that
mathematics could play in software development, i.e in
specifications, in descriptions, and in verification. For
the most part, they thought only about verification and
failed to distinguish between, modelling, description
and specification.

We now have a clearer picture of the ways that
mathematics can and should be used, and a much
better notation for describing functions and relations. It
is time for software developers to act more like
traditional Engineers and make use of the powerful
mathematical tools available to them.

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 11

12 References
[1] Baber, R., Parnas, D.L., Vilkomir, S., Harrison, P.,

O'Connor, T., “Disciplined Methods of Software
Specifications: A Case Study”, Proceedings of the
International Conference on Information Technology
Coding and Computing (ITCC 2005), April 4-6, 2005,
Las Vegas, NV, USA, IEEE Computer Society.

[2] de Bruijn, N. G., “The Mathematical Language
AUTOMATH – Its Usage And Some Of Its Extensions” In
Symposium on Automatic Demonstration, volume 125
of Lecture Notes in Mathematics, pages 29–61.
Springer-Verlag, 1970.

[3] Desharnais, Jules, Khédri, Ridha; Mili Ali, “Towards a
Uniform Relational Semantics for Tabular Expressions”
Proceedings of RelMiCS 1998, pp. 53-57

[4] Dijkstra, E.W., “A Discipline of Programming”, Prentice
Hall, Englewood Cliffs, NJ, 1976

[5] Elovitz, H. S., “An experiment in software
engineering: The Architecture Research Facility as a
case study”, Proceedings of the 4th International
Conference on Software engineering Munich,
Germany, Pages: 145 - 152, 1979

[6] Floyd, R.W., “Assigning Meanings to Programs”,
Proceedings of the Symposium of Appl ied
Mathematics, Vol.19, 1968. Also in: Schwartz, J.T.
(editor), Mathematical Aspects of Computer Science,
American Mathematical Society, pp. 19-32, 1967.

[7] Heninger, K., Kallander, J., Parnas, D.L., Shore, J.,
“Software Requirements for the A-7E Aircraft”, Naval
Research Laboratory Report 3876,Nov. 1978, 523 pgs.

[8] Heninger, K.L., “Specifying Software Requirements for
Complex Systems: New Techniques and their
Application”, IEEE Transactions Software Engineering,
Vol. SE-6, pp. 2-13, January 1980.

• Reprinted as chapter 6 in [10]
[9] Hester, S.D., Parnas, D.L., Utter, D.F., “Using

Documentation as a Software Design Medium”, Bell
System Technical Journal,60,8, pp.1941-1977,
October 1981

[10] Hoffman,D.M.,Weiss, D.M. (eds.), “Software
Fundamentals: Collected Papers by David L. Parnas”,
Addison-Wesley, 664 pgs., ISBN 0-201-70369-6,

[11] Janicki, R. ”Towards a Formal Semantics of Parnas
Tables”, Proc. of 17th International Conference on
Software Engineering, (ICSE), pp. 231-240 1995,.

[12] Janicki, R., Parnas, D.L., Zucker, J., “Tabular
Representations in Relational Documents”, in “Relational
Methods in Computer Science”, Chapter 12, Ed. C.
Brink and G. Schmidt. Springer Verlag, pp. 184 - 196,
1997, ISBN 3-211-82971-7.

• Reprinted as Chapter 4 in item [10].

[13] Jin, Ying, Parnas, D.L., “Defining The Meaning Of
Tabular Mathematical Expressions”, Science of
Computer Programming (Elsevier), Vol. 75, Issue 11, 1,
Pp. 980-1000, doi:10.1016/j.scico.2009.12.009,
November 2010

[14] Liu, Zhiying , Parnas, D, L, Trancón y Widemann,
B., “Documenting and Verifying Systems Assembled
from Components, Frontiers of Computer Science in
China”, Higher Education Press, co-published with
Springer-Verlag GmbH ISSN1673-7350 (Print)
1673-7466 (Online), 2010.

[15] Mills, Harlan D.: “The New Math of Computer
Programming”. Comm. ACM 18,1): 43-48 (1975)

[16] Parnas, D.L., “A Generalized Control Structure and
its Formal Definition”, Comm. ACM, 26, 8, pp. 572-581,
Aug. 1983

[17] Parnas, D.L.,Madey, J., “Functional Documentation
for Computer Systems Engineering”, Science of
Computer Programming (Elsevier) vol. 25, no. 1, pp
41-61, Oct. 1995

[18] Parnas, D.L., Vilkomir, S.A,. “Precise Documentation
of Critical Software”, Proc. of the Tenth IEEE
Symposium on High Assurance Systems Engineering
(HASE), 14-16 pp. 237-244, Nov. 2007

[19] Zucker, J.I. “Transformations of Normal and Inverted
Function Tables”, Formal Aspects of Computing 8, pp.
679-705,1996.

12 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V17-4Y65S8C-1&_user=10&_coverDate=01%252F18%252F2010&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=c0cf9a3b21ff04b293edda9fac076a8a
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V17-4Y65S8C-1&_user=10&_coverDate=01%252F18%252F2010&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=c0cf9a3b21ff04b293edda9fac076a8a

SESSION

ERSA/WORLDCOMP TUTORIAL

Chair(s)

TBA

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 13

14 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

A Run-Time Evolvable Hardware Tutorial

 Jim Torresen
Department of Informatics, University of Oslo, Oslo, Norway

E-mail: jimtoer@ifi.uio.no

Abstract – Below follows a short intro to a tutorial about
evolutionary computation applied to hardware – called
evolvable hardware. This allows for run-time adaptable
hardware systems which would be outlined as a part of the
presentation. A short CV of the presenter is also included
below.

Keywords: Evolvable hardware, FPGA, evolutionary
computation

1 Introduction
 Traditional hardware design aims at creating circuits which,
once fabricated, remain static during run-time. This changed
with the introduction of reconfigurable technology and
devices (typically FPGAs) which opened up the possibility of
dynamic hardware. However, the potential of dynamic
hardware for the construction of self-adaptive, self-optimizing
and self-healing systems can only be realized if automatic
design schemes are available.

One such method for automatic design is evolvable hardware.
Evolvable hardware was introduced more than ten years ago
as a new way of designing electronic circuits. Only
input/output relations of the desired function need to be
specified, the design process is then left to an adaptive
algorithm inspired from natural evolution. The design is based
on incremental improvement of a population of initially
randomly generated circuits. Circuits among the best ones
have the highest probability of being combined to generate
new and possibly better circuits. Combination is by crossover
and mutation operation of the circuit description.

In this tutorial, an introduction to evolutionary computation
and how it can be applied to hardware evolution would be
given. That is, an overview of how evolvable hardware can be
applied to provide run time adaptivity for systems within e.g.
classification applied to real-world applications will be the
main content of the tutorial.

2 A Short CV for Jim Torresen
 Professor Jim Torresen received his M.Sc. and Dr.ing.
(Ph.D) degrees in computer architecture and design from the
Norwegian University of Science and Technology, University
of Trondheim in 1991 and 1996, respectively. He has been

employed as a senior hardware
designer at NERA
Telecommunications (1996-
1998) and at Navia Aviation
(1998-1999). Since 1999, he has
been a professor at the
Department of Informatics at the
University of Oslo (associate
professor 1999-2005). Jim
Torresen has been a visiting
researcher at Kyoto University,
Japan for one year (1993-1994), four months at
Electrotechnical laboratory, Tsukuba, Japan (1997 and 2000)
and is now a visiting professor at Cornell University.

His research interests at the moment include bio-inspired
computing, machine learning, reconfigurable hardware,
robotics and applying this to complex real-world applications.
Several novel methods have been proposed. He has published
a number of scientific papers in international journals, books
and conference proceedings. 10 tutorials and several invited
talks have been given at international conferences. He is in
the program committee of more than ten different
international conferences as well as a regular reviewer of a
number of international journals. He has also acted as an
evaluator for proposals and projects in EU FP7.

A list and collection of publications can be found at the
following web page:
http://www.ifi.uio.no/~jimtoer/papers.html

More information on the web: http://www.ifi.uio.no/~jimtoer

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 15

http://www.ifi.uio.no/~jimtoer/papers.html�
http://www.ifi.uio.no/~jimtoer�

16 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

SESSION

INVITED SESSION - CREATING THE SCIENCE +
ENGINEERING FOR CYBER-SECURITY

Chair(s)

PROF. SHIU-KAI CHIN
PROF. WILLIAM L. HARRISON

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 17

18 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

Logic Design for Access Control, Security, Trust,
and Assurance

Shiu-Kai Chin
Department of Electrical Engineering and Computer Science

Syracuse University, Syracuse, New York
Senior Scientist, Serco-NA, Inc., Rome, New York

http://www.ecs.syr.edu/faculty/chin

Abstract— Designs created by hardware and software engi-
neers are often part of larger systems where confidentiality,
integrity, and availability of information and other resources
is a primary concern. Whether the system is a military one
where assurance of mission-critical capabilities is paramount,
or the system delivers financial services where assurances of
integrity of financial data and transactions are crucial, the
concerns are still the same. What are the access control and
security policies and mechanisms that permit or deny the use
of a resource or capability? Trust—who or what is believed
and under what circumstances? Assurance—how do we know
that what is proposed or implemented makes sense and is
justifiable? This paper describes a logic and tools for access
control, security, and trust. Over two hundred students from over
40 US universities have learned and applied this logic to reason
about access control, security, and trust. As credible assurance
requires certification and verification by independent evaluators,
the logic and its applications are implemented as conservative
extensions of the Higher-Order Logic (HOL) theorem prover.
The HOL implementation is a means for rigorous and reusable
descriptions and verifications of the access-control logic and its
application.

Index Terms— Security, access control, trust, formal verifica-
tion, assurance

I. INTRODUCTION

Security experts have long said security must be designed
into systems from the very beginning. The principles of
building trusted systems remain the same [1][2]:
• complete mediation: all access to objects must be checked

to ensure they are allowed,
• least privilege: grant only the capabilities necessary to

compete the specified task, and
• economy of mechanism: security mechanisms should be

as simple as possible.
However, the methods by which design and verification en-
gineers assess whether any given access request is allowed,
falls well short of the logic-based methods and computer-aided
design tools routinely used by hardware engineers.

For understandable economic reasons, most systems are
designed and implemented by junior engineering staff. Secure
system design within this context means that system security
will remain poor unless newly-graduated engineers and engi-
neers actually doing design and verification are able to design
and reason about security in ways that are similar to the ways
engineers use logic to design and verify hardware.

This paper describes an access-control logic created to help
engineers design with security in mind at abstraction levels
spanning hardware to concepts of operations and policies.
We have taught these methods to over to 226 junior and
senior ROTC cadets from over forty US universities with the
Air Force Research Laboratory Information Directorate. From
2003–2010, we have taught what amounts to logic design
for access control in the Air Force Research Laboratory’s
Advanced Course in Engineering (ACE) Cyber Security Boot
Camp [3], [4]. We have also taught these methods to over 25
active-duty lieutenants, captains, and civilian contractors. We
routinely teach these methods at Syracuse University to our
undergraduate and graduate students.

Computer-aided design tools are necessary for indepen-
dently verifying and reusing hardware designs. Systems with
security concerns are no different in their need for independent
verification and reuse. To help meet these needs we have im-
plemented the access-control logic as a conservative extension
to the Higher Order Logic (HOL) theorem prover [5].

The rest of this paper is organized as follows. In Sec-
tion II we review the role logic plays in hardware design and
draw some analogies for security. The syntax, semantics, and
inference rules of the access-control logic are described in
Section III. Section IV provides some illustrative examples
applying the access-control logic to hardware and policies.
We give an overview of the implementation of the logic as
a conservative extension to the HOL theorem prover in Sec-
tion V. Section VI shows how the examples in Section IV are
verified in HOL. We close with related work and conclusions
in Sections VII and VIII.

II. LOGIC DESIGN FOR HARDWARE AND LOGIC DESIGN
FOR SECURITY

It is nearly impossible to separate hardware design from
logic design. Propositional logic describes the behavior of
components; it informs the design process; it is used to ver-
ify implementations satisfy their specifications. Propositional
logic makes hardware design and verification rigorous.

Hardware engineers derive or prove what their designs
do using propositional logic. During preliminary and critical
design reviews, if a designer is given: (1) all the primary input
values, and (2) the values stored in memory, then he or she is
expected to derive whether the value of any particular gate or

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 19

Fig. 1: Expectation of engineers: rigorous derivation of be-
havior

flip-flop output is a 1 or a 0. Inability to do so is regarded as
incompetence.

Figure 1 illustrates our view that similar expectations
should hold for engineers designing systems with security
requirements. When given: (1) a request to access a protected
resource, (2) statements of policies, recognized authorities,
jurisdiction of authority, certified statements, and (3) trust as-
sumptions, engineers should be able to derive mathematically
if the request should be honored or not. Anything less should
be regarded as incompetence.

Educating and equipping engineers with the logical concepts
and tools to meet the expectations illustrated in Figure 1 is a
critical requirement. To meet this requirement, there are two
lessons the security community can learn from the hardware
community.

A. Keep the logic simple so it is widely used

Logic design for hardware still relies on propositional logic
and finite-state machines. First courses in digital design rely
on both as a means of describing concepts, component be-
havior, specifications, implementations, and design procedures.
Propositional logic has no notion of time. Yet, it is still the
logical system of choice of engineers because of its simplicity.
Every hardware engineer can explain design concepts and
implementations using propositional logic.

While temporal logics, e.g., computation tree logic (CTL)
[6] are used for model checking and design verification, these
richer and more complex systems are harder to learn and
require more time and effort to master. As a profession, hard-
ware engineers have decided pragmatically that the simpler
propositional logic gives superior descriptive and analytical
value for the investment in time and effort when compared to
more complicated temporal logics. For forty years, computer
hardware design courses have taught introductory hardware
design in much the same way—relying on propositional logic
as the means for explaining concepts and designs.

Propositional logic is equivalent to the architect’s ruler and
the contractor’s tape measure. While it is simple and does not
solve every problem, it is essential, used constantly, and no
one can conceive of doing their job without it.

Keeping this lesson on simplicity in mind, our goal to help
engineers design for security requires us to keep the access-
control logic as simple as possible so it can be mastered by
undergraduates and widely used in many contexts.

B. Remember how VLSI design became mainstream

In the 1970s, VLSI (very large scale integrated) circuit
design was thought to be too exotic and complex to be taught
at the undergraduate level. Engineers of the time routinely
spoke of the need for “tall thin men,” i.e., engineers who
could translate algorithms into working silicon by relating
algorithmic specifications to register-transfer level designs
implemented as custom VLSI circuits. People of the time
lamented the lack of VLSI designers in professional practice.
Comments such as, “there are fewer VLSI designers than there
are NFL (National Football League) players” were common.

The situation for security and trustworthiness is not unlike
the state of VLSI in the 1970s.

1) Few engineers can do secure system design.
2) US interests depend on system security.
3) The US government is attempting to address its needs

by offering scholarships to students to study security.
What made VLSI circuit design feasible to teach at the

undergraduate level in the 1980s?
1) Carver Mead’s landmark textbook Introduction to VLSI

Systems [7], which made VLSI accessible to electrical
and computer engineering faculty and practitioners,

2) free computer-aided design (CAD) tools such as
Magic—a circuit layout tool with a design-rule checker
[8]—and simulators like SPICE (Simulation Program
with Integrated Circuit Emphasis) [9], which made elec-
trically correct integrated circuit design possible,

3) MOSIS (Metal Oxide Semiconductor Implementation
Service) [10], an inexpensive (free) semiconductor fab-
rication service subsidized by the US government avail-
able to US universities that enabled students and faculty
to make VLSI circuits, and

4) government-sponsored programs to produce a critical
mass of faculty to teach VLSI to undergraduates.

Today, VLSI is part of the undergraduate curriculum. We
can learn from the example of VLSI to move security and
trustworthiness into mainstream engineering.

III. SYNTAX, SEMANTICS, AND INFERENCE RULES

This section defines the access-control logic. It requires
only a sophomore level understanding of discrete mathematics.
However, this is enough for a full accounting of the logic and
its use across a wide spectrum of applications.

A. Syntax and Semantics

Syntax of Principal Expressions: Principals are the actors
in a system, such as people, processes, cryptographic keys,
personal identification numbers (PINs), userid–password pairs,
and so on. Principals are either simple or compound. PName is
the collection of all simple principal names, which can be used
to refer to any simple principal. For example, the following
are all allowable principal names: Alice, Bob, the key KAlice .

Compound principals are abstract entities that connote a
combination of principals: for example, “the President in
conjunction with Congress” connotes an abstract principal
comprising both the President and Congress. Intuitively, such a

20 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

principal makes exactly those statements that are made by both
the President and Congress. Similarly, “the reporter quoting
her source” connotes an abstract principal that comprises both
the reporter and her source. Intuitively, a statement made by
such a principal represents a statement that the reporter is
(rightly or wrongly) attributing to his source.

The set Princ of all principal expressions is given by the
following BNF specification:

Princ ::= PName / Princ & Princ / Princ | Princ

That is, a principal expression is either a simple name, an
expression of form P & Q (where P and Q are both principal
expressions), or an expression of form P | Q (where, again,
P and Q are both principal expressions).

Syntax of Logical Formulas: The abstract syntax of log-
ical formulas Form are constructed from the set of principal
names and a countable set of propositional variables PropVar:

Form ::= PropVar / ¬ Form /

(Form ∨ Form) / (Form ∧ Form) /

(Form ⊃ Form) / (Form ≡ Form) /

(Princ⇒ Princ) / (Princ says Form) /

(Princ controls Form) / Princ reps Princ on Form

The first six cases deal with standard propositional logic:
propositional variables, negation, conjunction, disjunction, im-
plication, and equivalence. The remaining four cases are
specific to access control.

1) P says ϕ asserts that principal P made the statement ϕ.
2) P ⇒ Q (pronounced “P speaks for Q”) indicates that

every statement made by P can also be viewed as a
statement from Q.

3) P controls ϕ represents authority or trust. It is an abbrevi-
ation for the implication (P says ϕ) ⊃ ϕ. P is a trusted
authority with respect to the statement ϕ.

4) P reps Q on ϕ represents delegation. It is an abbreviation
for (P | Q says ϕ) ⊃ (Q says ϕ). P is a trusted authority
on what Q says regarding ϕ.

Semantics: The semantics of formulas is given via Kripke
structures, as follows.

Definition: A Kripke structureM is a three-tuple 〈W, I, J〉,
where:
• W is a nonempty set, whose elements are called worlds.
• I : PropVar → P(W) is an interpretation function that

maps each propositional variable p to a set of worlds.
• J : PName→ P(W ×W) is a function that maps each

principal name A into a relation on worlds (i.e., a subset
of W ×W).

Given the above, we define the extended function Ĵ : Princ→
P(W ×W) inductively on the structure of principal expres-
sions, where A ∈ PName.

Ĵ(A) = J(A)

Ĵ(P & Q) = Ĵ(P) ∪ Ĵ(Q)

Ĵ(P | Q) = Ĵ(P) ◦ Ĵ(Q).

Note: R1 ◦R2 = {(x, z) | ∃y.(x, y) ∈ R1 and (y, z) ∈ R2}. �

Definition: Each Kripke structure M = 〈W, I, J〉 gives rise
to a semantic function

EM[[−]] : Form→ P(W),

where EM[[ϕ]] is the set of worlds in which ϕ is considered
true. EM[[ϕ]] is defined inductively on the structure of ϕ, as
follows:

EM[[p]] = I(p)

EM[[¬ϕ]] = W − EM[[ϕ]]

EM[[ϕ1 ∧ ϕ2]] = EM[[ϕ1]] ∩ EM[[ϕ2]]

EM[[ϕ1 ∨ ϕ2]] = EM[[ϕ1]] ∪ EM[[ϕ2]]

EM[[ϕ1 ⊃ ϕ2]] = (W − EM[[ϕ1]]) ∪ EM[[ϕ2]]

EM[[ϕ1 ≡ ϕ2]] = EM[[ϕ1 ⊃ ϕ2]] ∩ EM[[ϕ2 ⊃ ϕ1]]

EM[[P ⇒ Q]] =

{
W, if Ĵ(Q) ⊆ Ĵ(P)

∅, otherwise

EM[[P says ϕ]] = {w|Ĵ(P)(w) ⊆ EM[[ϕ]]}
EM[[P controls ϕ]] = EM[[(P says ϕ) ⊃ ϕ]]

EM[[P reps Q on ϕ]] = EM[[(P | Q says ϕ) ⊃ Q says ϕ]]

Note that, in the definition of EM[[P says ϕ]], Ĵ(P)(w) is
simply the image of world w under the relation Ĵ(P). �

The semantic functions EM provide a fully defined and fully
disclosed interpretation for the formulas of the logic. These
functions precisely define the meaning of statements and what
is described in the logic.

Definition: We say a Kripke structure M satisfies a formula
ϕ when EM[[ϕ]] = W , i.e., ϕ is true in all worlds W of M.
We denote M satisfies ϕ by M |= ϕ. �

In practice, reasoning at the level of Kripke structures is
cumbersome. Instead, we use logical rules to reason about
access control.

B. Logical Rules

Logical rules in our access-control logic have the form
H1 · · · Hk

C,

where H1 · · ·Hk and C are formulas in the logic. H1 · · ·Hk

are the hypotheses or premises and C is the consequence or
conclusion. Informally, we read logical rules as “if all the
hypotheses above the line are true, then the conclusion below
the line is also true.” If there are no hypotheses, then the logical
rule is an axiom.

Logical rules are used to manipulate well-formed formulas
of the logic. If all the hypotheses of a rule are written
down (derived) then the conclusion of the rule also can be
written down (derived). All logical rules must maintain logical
consistency. If all logical rules are sound, as defined below,
then logical consistency is assured.

Definition: A logical rule
H1 · · · Hk

C,

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 21

Taut
ϕ

if ϕ is an instance of a prop-
logic tautology Modus Ponens

ϕ ϕ ⊃ ϕ′

ϕ′ Says
ϕ

P says ϕ

MP Says
(P says (ϕ ⊃ ϕ′)) ⊃ (P says ϕ ⊃ P says ϕ′)

Speaks For
P ⇒ Q ⊃ (P says ϕ ⊃ Q says ϕ)

& Says
(P & Q says ϕ) ≡ ((P says ϕ) ∧ (Q says ϕ))

Quoting
(P | Q says ϕ) ≡ (P says Q says ϕ)

Idempotency of ⇒
P ⇒ P

Transitivity
of ⇒

P ⇒ Q Q⇒ R

P ⇒ R

Monotonicity
of ⇒

P ⇒ P ′ Q⇒ Q′

P | Q⇒ P ′ | Q′

Equivalence
ϕ1 ≡ ϕ2 ψ[ϕ1/q]

ψ[ϕ2/q]
P controls ϕ

def
= (P says ϕ) ⊃ ϕ P reps Q on ϕ

def
= (P | Q says ϕ) ⊃ Q says ϕ

Fig. 2: Core logical rules for the access-control logic

Controls
P controls ϕ P says ϕ

ϕ

Derived
Speaks For

P ⇒ Q P says ϕ

Q says ϕ
Derived
Controls

P ⇒ Q Q controls ϕ

P controls ϕ

Fig. 3: Some Useful Derived rules

l1 =s l2
def
= (l1 ≤s l2) ∧ (l2 ≤s l1)

Reflexivity of ≤s
l ≤s l

Transitivity of ≤s
l1 ≤s l2 l2 ≤s l2

l1 ≤s l3

≤s Subst
sl(P) =s l1 sl(Q) =s l2 l1 ≤s l2

sl(P) ≤s sl(Q)

Fig. 4: Rules on Security Levels

is sound if, for all Kripke structuresM, wheneverM satisfies
all the hypotheses H1 · · ·Hk, then M also satisfies C, i.e., if
for all M: M |= Hi for 1 ≤ i ≤ k, then it must be the case
that M |= C. �

Figure 2 shows the core logical rules for the logic. All the
rules are proved sound with respect to the Kripke semantics.
Figure 3 shows three useful derived rules, which are proved
using the core rules.

C. Security and Integrity Levels

Confidentiality and integrity policies such as Bell-LaPadula
[11] and Biba’s Strict Integrity policy [12], depend on classi-
fying (i.e., assigning confidentiality or integrity levels to) in-
formation, subjects, and objects. It is straightforward to extend
the access-control logic to include confidentiality, integrity, or
availability levels as needed. In what follows, we show how
the syntax and semantics of confidentiality levels are added
to the core access-control logic. The same process is used for
other classification schemes, e.g., integrity and availability.

a) Syntax: The first step is to introduce syntax for
describing and comparing security levels. SecLabel is the

collection of simple security labels, which are used as names
for the confidentiality levels (e.g., HI and LO).

Often, we refer abstractly to a principal P ’s integrity level.
We define the larger set SecLevel of all possible security-level
expressions:

SecLevel ::= SecLabel / sl(PName).

A security-level expression is either a simple security label
or an expression of the form sl(A), where A is a simple
principal name. Informally, sl(A) refers to the security level
of principal A.

Finally, we extend our definition of well-formed formulas
to support comparisons of security levels:

Form ::= SecLevel ≤s SecLevel / SecLevel =s SecLevel

Informally, a formula such as LO ≤s sl(Kate) states that
Kate’s security level is greater than or equal to, i.e., dom-
inates the security level LO. Similarly, a formula such as
sl(Barry) =s sl(Joe) states that Barry and Joe have the same

security level.
b) Semantics: Providing formal and precise meanings

for the newly added syntax requires us to first extend our
Kripke structures with additional components that describe se-
curity classification levels. Specifically, we introduce extended
Kripke structures of the form

M = 〈W, I, J,K,L,�〉,

where:
• W , I , and J are as defined earlier.
• K is a non-empty set, which serves as the universe of

security levels.
• L : (SecLabel ∪ PName) → K is a function that maps

each security label and each simple principal name to
a security level. L is extended to work over arbitrary
security-level expressions, as follows:

L(sl(A)) = L(A),

for every simple principal name A.
• �⊆ K×K is a partial order on K: that is, � is reflexive

(for all k ∈ K, k � k), transitive (for all k1, k2, k3 ∈

22 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

K, if k1 � k2 and k2 � k3, then k1 � k3), and anti-
symmetric (for all k1, k2 ∈ K, if k1 � k2 and k2 � k1,
then k1 = k2).

Using these extended Kripke structures, we extend the
semantics for our new well-formed expressions as follows:

EM[[`1 ≤s `2]] =

{
W, if L(`1) � L(`2)

∅, otherwise

EM[[`1 =s `2]] = EM[[`1 ≤s `2]] ∩ EM[[`2 ≤s `1]].

As these definitions suggest, the expression `1 =s `2 is simply
an abbreviation for (`1 ≤s `2) ∧ (`2 ≤s `1).

Logical Rules: Based on the extended Kripke semantics
we introduce logical rules that support the use of integrity lev-
els to reason about access requests. Specifically, the definition,
reflexivity, and transitivity rules in Figure 4 reflect that ≤s is
a partial order. The fourth rule is derived and useful to have.

IV. EXAMPLES

A. Physical Memory Security and Virtualization

Figure 5 is a block diagram of a simple virtual machine
(VM) with an instruction register IR and an accumulator ACC.
Instructions from VM are monitored by the virtual machine
monitor (VMM). VMM has a memory access register (MAR)
pointing to a real address in physical memory and a relocation
register (RR) specifying the base address of the memory
segment being accessed in physical memory and the segment’s
bound (number of memory locations). The physical memory
shown has q memory locations (0 through q−1). The memory
has three segments, corresponding to Alice, Bob, and Carol.
Alice’s segment starts at physical address baseAlice and ends
at baseAlice + boundAlice − 1.

Values in registers are described in the logic as statements
made by registers. For example, suppose the value loaded in
IR is the instruction LDA @A (i.e., load ACC with the value
in virtual address A in physical memory). From an access-
control perspective, the question is whether this instruction
should be executed or trapped by VMM, which mediates all
access requests to physical memory.

VMM grants access if (1) the virtual address A is less than
or equal to bound and, (2) base + A < q (i.e., the physical
address corresponding to A is within the physical memory
address limit). Otherwise, the instruction is trapped by VMM
and control is turned over to the supervisor.

The decision to grant or deny (trap) request LDA @A
depends on the state of VM and VMM and the mandatory
access control (MAC) policy governing access to physical
memory. The state of the machine (VM and VMM) is given
by the register values. The registers used to decide access are
IR and RR; ACC and MAR are not used. The states of IR and
RR are given by:

IR says 〈LDA @A〉 and RR says 〈(baseAlice, boundAlice)〉,

where 〈LDA @A〉 and 〈(baseAlice, boundAlice)〉 denote “it is
a good idea to execute LDA @A” and “the value is in fact
(baseAlice, boundAlice).”

The request to execute LDA @A is trapped when either the
real address baseAlice+A is greater or equal to q (i.e., exceeds

Fig. 5: Virtual Machine and Virtual Machine Monitor

the size of physical memory), or the virtual address A exceeds
the segment bound boundAlice. This policy is expressed as
follows:

IR says 〈LDA @A〉 ⊃ (RR says 〈(baseAlice, boundAlice)〉 ⊃
(((baseAlice + A ≥ q) ∨ (A ≥ boundAlice)) ⊃ 〈trap〉)),

where 〈trap〉 denotes “it is a good idea to trap.”
The request to execute LDA @A is granted, i.e., IR has

discretionary access, if virtual address A falls within the
bounds of real memory and the segment. This is expressed
as follows:

(RR says 〈(baseAlice, boundAlice)〉 ⊃ ((baseAlice + A < q) ⊃
((A < boundAlice) ⊃ IR controls 〈LDA @A〉))).

Figure 6 gives a simple proof justifying granting execution
for the instruction LDA @A (loading the accumulator with the
contents of address A in the active segment), where the base
address of the segment is base, the segment bound is bound,
and the size of physical memory is q. Lines 1–5 above the line
are the starting assumptions: the instruction request, the state
of the relocation register RR, and the mandatory access control
policy for the specific memory segment, physical memory, the
physical address is within memory, and the virtual address
is within the segment. The remaining lines are derived by
applying the Modus Ponens inference rule in Figure 2. The
proof justifies the following derived inference rule:

IR says 〈LDA @A〉 RR says 〈(base, bound)〉
RR says 〈(base, bound)〉 ⊃ (base+A < q) ⊃

(A < bound) ⊃ IR controls 〈LDA @A〉
base+A < q A < bound

〈LDA @A〉.

B. Confidentiality
We now give an example of the Bell-LaPadula multi-level

security policy [11] governing read and write access to files.
The policy has two conditions:

1) Simple security condition: A principal P can read
object O if and only if P ’s security level dominates (at
least as high as) O’s and P has discretionary read access
to O. The policy implemented by reference monitors is

(sl(O) ≤s sl(P)) ⊃ (P controls 〈read,O〉).

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 23

1. IR says 〈LDA @A〉 Access request
2. RR says 〈(base, bound)〉 Segment

location
3. RR says 〈(base, bound)〉 ⊃ (base+A < q) ⊃

(A < bound) ⊃ IR controls 〈LDA @A〉
Access policy

4. base+A < q Physical address
OK

5. A < bound Virtual address
OK

6. (base + A < q) ⊃ (A < bound) ⊃
IR controls 〈LDA @A〉

2, 3 Modus Po-
nens

7. (A < bound) ⊃ IR controls 〈LDA @A〉 4, 6 Modus Po-
nens

8. IR controls 〈LDA @A〉 5, 7 Modus Po-
nens

9. 〈LDA @A〉 1, 8 Controls

Fig. 6: LDA @A Access Proof

(Hi,{Bin
1
, Bin

2
})

(Hi,{Bin
1
}) (Hi,{Bin

2
})

(Hi,{})

(Lo,{Bin
1
, Bin

2
})

(Lo,{Bin
1
}) (Lo,{Bin

2
})

(Lo,{})

Fig. 7: Partially Ordered Security Levels

2) *-property: A principal P can write to object O if
and only if O’s security level dominates P ’s and P has
discretionary write access to O. The policy implemented
by reference monitors is

(sl(P) ≤s sl(O)) ⊃ (P controls 〈write,O〉).

The converse of the above, i.e., (P controls 〈read,O〉) ⊃
(sl(O) ≤s sl(P)) and (P controls 〈write,O〉) ⊃ (sl(P) ≤s

sl(O)) correspond to verification conditions that must be
proved about the implementation. Specifically, we must verify
there is no way to bypass the reference monitor to access O.

As a concrete example, consider security levels that are
pairs (L,C), where L ∈ {HI, LO} and C ⊆ {Bin1, Bin2}. L
is a level and C is a (possibly empty) set of compartments.
The partial ordering ≤ on L is

≤def
= {(HI,HI), (LO,HI), (LO,LO)}.

We define a partial ordering on (L,C) as follows:

(L2, C2) dom (L1, C1) if and only if L1 ≤ L2 and C1 ⊆ C2.

Figure 7 is a Hasse diagram (arcs corresponding to reflexivity
and transitivity are omitted) of the partial ordering.

Suppose Carol’s security level is (HI, {Bin1, Bin2}) and
she has discretionary read access on O3, whose security
level is (LO, {Bin1}). The following derived inference rule
states that given the above security level assignments, Carol’s
request to read O3 would be granted under the simple security

1. Carol says 〈read,O3〉 Access request
2. sl(O2) =s (LO, {Bin1}) O3’s security level
3. sl(Carol) =s (HI, {Bin1, Bin2}) Carol’s security level
4. sl(Carol) dom sl(O3) ⊃

(Carol controls 〈read,O3〉)
Simple security condition

5. (HI, {Bin1, Bin2}) dom (LO, {Bin1}) Ordering
6. sl(Carol) dom sl(O3) 2, 3 ≤s Subst
7. Carol controls 〈read,O3〉 6, 4 Modus Ponens
8. 〈read,O3〉 7, 1 Controls

Fig. 8: Proof of Derived Read Access Rule

condition of Bell-LaPadula. Figure 8 is the proof.

Carol says 〈read,O3〉 sl(O2) =s (LO, {Bin1})
sl(Carol) =s (HI, {Bin1, Bin2})

sl(Carol) dom sl(O3) ⊃ (Carol controls 〈read,O3〉)
(HI, {Bin1, Bin2}) dom (LO, {Bin1})

〈read,O3〉

V. IMPLEMENTATION IN HOL

We now focus on the computer-assisted reasoning tools that
provide the capability to reuse and verify designs and theories
with assurance.

A. Introduction to the HOL Theorem Prover

The HOL (higher-order logic) system is a collection of func-
tional programs written in the functional programming lan-
guage ML (meta-language) and executed by ML interpreters
such as Moscow ML and PolyML. While it is infeasible to
give a complete description of how to use HOL and implement
the access-control logic within HOL, we give enough detail to
give a qualitative understanding of what HOL does, how the
logic is implemented as a conservative extension of the logic,
and some examples.

HOL is used in two modes: compiled or interactive. HOL is
used in a batch mode to compile pre-existing and previously
verified theories efficiently and quickly. Users do not interact
with HOL in this mode. Typically, all that is done is to execute
Holmake on a command line in the appropriate subdirectory.

HOL is used interactively to explore existing theories and
to build new theories. In interactive mode users work with the
HOL interpreter using ML. An example appears below.

- BOOL_CASES_AX;
> val it = |- !t. (t <=> T) \/ (t <=> F) : thm

The user prompt is “-”. The user input is “BOOL_CASES_-
AX” terminated by “;”. HOL’s response is after “>”.
BOOL_CASES_AX is the name of a theorem in HOL. The

value associated with BOOL_CASES_AX is a theorem, i.e., a
value of type “thm”). The theorem itself, using Table I (taken
from [5]) to translate HOL notation into standard notation, is

` ∀ t .(t ⇐⇒ T) ∨ (t ⇐⇒ F).

We recognize this theorem as stating that for all Boolean terms
t, t is either true or false.

Theorems in HOL are sequents, i.e., expressions of the
form Γ ` Σ. A theorem consists of a (possibly empty) set of

24 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

Terms of the HOL Logic

Kind of term HOL notation Standard notation Description

Truth T > true
Falsity F ⊥ false
Negation ˜t ¬t not t
Disjunction t1\/t2 t1 ∨ t2 t1 or t2
Conjunction t1/\t2 t1 ∧ t2 t1 and t2
Implication t1==>t2 t1 ⊃ t2 t1 implies t2
Equality t1=t2 t1 = t2 t1 equals t2
∀-quantification !x.t ∀x. t for all x : t
∃-quantification ?x.t ∃x. t for some x : t
ε-term @x.t εx. t an x such that: t
Conditional if t then t1 else t2 (t→ t1, t2) if t then t1 else t2

TABLE I
NOTATION IN HOL PROOF CHECKER

ASSUME t
t ` t

MP
A1 ` t1 ⊃ t2 A2 ` t1

A1 ∪A2 ` t2

DISCH ALL
{H1, · · · , Hn} ` t

` H1 ⊃ · · · ⊃ Hn ⊃ t

Fig. 9: Example HOL Inference Rules

assumptions Γ separated by the turnstile symbol ` from the
conclusion Σ. A theorem asserts that whenever all the terms
in set Γ are true, then the conclusion Σ is guaranteed to be
true as well.

Inference rules in HOL are functions that return values of
type thm when applied to their arguments. Figure 9 describes
three HOL inference rules, ASSUME t, MP, and DISCH_-
ALL. The rule ASSUME t says that if you assume Boolean
term t, then you may conclude it as well. MP corresponds
to Modus Ponens: if p then q, p, therefore q. The rule
DISCH_ALL moves all of the assumptions of a theorem into
an implication ending in the conclusion.

The example shown below in HOL shows the application of
ASSUME twice followed by MP to conclude q given p ⊃ q and
p. Note that terms in the HOL logic (as opposed to ML values
and ML functions) are within backwards quotes ‘‘-‘‘. ML
functions and values are meta-logical; terms within backwards
quotes are HOL objects.

- val th1 = ASSUME ‘‘p ==> q‘‘;
> val th1 = [.] |- p ==> q : thm
- val th2 = ASSUME ‘‘p:bool‘‘;
> val th2 = [.] |- p : thm
- val th3 = MP th1 th2;
> val th3 = [..] |- q : thm
- DISCH_ALL th3;
> val it = |- (p ==> q) ==> p ==> q : thm

The inference rules in Figure 9 are low-level forward
inference rules. They are known as such because they take
relatively small proof steps. HOL also has high-level decision
procedures that take large steps. For example, the function
PROVE takes a list of theorems and attempts to prove the
term to which it is applied. In the example below, PROVE is
used to show that x+ 0 + y + z = y + (z + x) given a list of

theorems on addition (associativity, symmetry, and identity).

- ADD_ASSOC;
> val it =

|- !m n p. m + (n + p) = m + n + p : thm
- ADD_SYM;
> val it = |- !m n. m + n = n + m : thm
- ADD_CLAUSES;
> val it =

|- (0 + m = m) /\ (m + 0 = m) /\
(SUC m + n = SUC (m + n)) /\
(m + SUC n = SUC (m + n)) : thm

- PROVE
[ADD_ASSOC, ADD_SYM, ADD_CLAUSES]
‘‘x+0+y+z = y+(z+x)‘‘;

> val it = |- x + 0 + y + z = y + (z + x) : thm

HOL is a rich system with many capabilities, particularly in
the areas of defining new recursive types and structural induc-
tion. There are numerous theories ranging from mathematics
(e.g., sets, relations, and real numbers) to applications such as
the operational semantics of popular microprocessors such as
the x-86 and ARM.

With the above as introduction, what follows is an overview
of our implementation of the access-control logic in HOL. We
first define the syntax of the logic followed by its semantics
and inference rules.

B. Syntax

The syntactic definitions of principals (Princ), integrity
levels, security levels, and formulas (Form) as shown in
Section III-A is mirrored in HOL. The definitions (what is
supplied to HOL as inputs) are shown in Figure 10.

HOL supports polymorphism, which allows the same def-
inition to be used over many different types. For example,
in Figure 10(a) the type Princ of principals is recursively
defined in terms of three cases: (1) Name applied to a term of
type ’apn, (2) meet applied to two terms of type Princ, and
(3) quoting applied to two terms of type Princ. The HOL
type ’apn is a type variable, i.e., ’apn can be instantiated
with specific types such as numbers, strings, sets of Booleans,
etc. (Note, in HOL all type variable names start with ’).

For example, the HOL term ‘‘Name
(Alice:string)‘‘ has type string Princ, whereas

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 25

‘‘Name (Alice:num)‘‘ has type num Princ and
‘‘Name (Alice:’pName)‘‘ has type ’pName Princ.
Compound principals arise from the use of meet (called
with in the logic) and quoting. Of course, the types of the
terms to which meet and quoting are applied must match,
e.g., ‘‘(Name (Bob:’pName)) quoting (Name
(Alice:’pName))‘‘.

Figure 10(a) also describes the syntax of integrity and se-
curity levels IntLevel and SecLevel, respectively. Note,
that in both cases the datatypes are parametrized by type
variables ’apn for principal names, ’il for integrity clas-
sification, and ’sl for security classification.

As an example, consider the standard military security
classification given by SClass below.

val _ = Hol_datatype
‘SClass = Unclassified | Confidential |

Secret | TopSecret‘;

We see from Figure 10(a) that the type SecLevel is
parametrized by the type variables ’sl for the security
classification type and ’apn for a simple principal name
type. For example, ‘‘sLab Secret :(’pName,
SClass) SecLevel‘‘ states that the security level
sLab Secret is of type (’pName,SClass)SecLevel.
Similarly, ‘‘(sl (Alice :’pName) :(’pName,
SClass) SecLevel)‘‘ states that Alice’s
security level sl (Alice:’pName) is of type
(’pName,SClass)SecLevel.

Figure 10(b) corresponds to the definition of Form in
Section III-A. One feature of the HOL definition is that
primitive propositions are parametrized by the type variable
’aavar. This feature provides a way for operations on objects
to be represented as primitive propositions in access-control
formulas.

For example, say we represent subjects and objects as
principals in the access-control logic, that we have read and
write operations on objects, and we define actions to be
operations on objects. We define datatypes Op and Action
in HOL by:

val _ = Hol_datatype ‘Op = rd | wrt‘;

val _ =
Hol_datatype ‘Action = Act of (Op # ’apn Princ)‘;

With the above definition, we can represent Alice’s request to
read the object File by the following in HOL:

- ‘‘(Alice:’pName Princ) says
(prop (Act (rd,(File:’pName Princ))))‘‘;

<<HOL message:
inventing new type variable names: ’a, ’b>>

> val it =
‘‘(Alice :’pName Princ) says
(prop (Act (rd,(File :’pName Princ))) :
(’pName Action, ’pName, ’a, ’b) Form)‘‘ : term

The subject Alice and object File are both principals of
type ’pName Princ. Actions are parametrized by ’pName
(the type of simple principal names), primitive propositions are
based on terms of type ’pName Action, and type variables
’a and ’b created by HOL correspond to the types of integrity
and security levels, respectively.

The remaining portions of Figure 10(b) correspond directly
to the definition of well-formed formulas in Section III-A.
As necessary, operators are defined to be infix operators with
appropriate precedence. For space reasons we do not show
how this is done here. However, it is a simple declaration that
includes specifying operator precedence.

In Section III-A the basic Kripke structure defined is a three-
tuple 〈W, I, J〉, where W is a non-empty set of worlds, I
is an interpretation function mapping primitive propositions
to sets of worlds in which the given primitive proposition is
true, and J a mapping function from principals to a relation
relating each world to a (possibly empty) set of worlds. In
HOL, we define a data type Kripke out of components
that include I and J . The specification of set of worlds W
is done by parameterizing I and J in terms of the type
variable ’aaworld. Thus, I will be a mapping of primitive
propositions to terms of type ’aaworld set. Since all types
in HOL are non-empty, we are guaranteed that ’aaworld
set is non-empty.

Figure 10(c) shows the definition of the Kripke data type
in HOL. KS is the constructor function and it is applied to the
following four terms in order:

1) An interpretation function of type ’aavar ->
(’aaworld set). This corresponds to interpretation
function I mapping primitive terms of type ’aavar to
sets of worlds of type ’aaworld set where the terms
are true.

2) A relation of type ’aaworld -> (’aaworld
set) indexed by simple principal names (parametrized
by type variable ’apn). This corresponds to the relation
on worlds J , whose type is ’apn -> (’aaworld
-> (’aaworld set)).

3) A mapping of simple principals of type ’apn to in-
tegrity levels of type ’il.

4) A mapping of simple principals of type ’apn to security
levels of type ’sl.

The last two parameters map simple principal names to in-
tegrity or security labels. For example, il (Alice:’apn)
eqi iLab (Silver:’il) says that Alice’s integrity
level is Silver and sl (File:’apn) eqs sLab
(TopSecret:’sl) says that File’s security label is
TopSecret.

Figure 10(d) defines accessor functions intpKS, jKS,
imapKS, and smapKS to extract the interpretation function
I , the relation on worlds indexed by simple principals J , and
the mappings of simple principals to integrity and security
labels imapKS and smapKS, respectively. These accessor
functions return the underlying components of terms of type
(’world,’propVar,’pName,’Int,’Sec)Kripke,
i.e., Kripke structures parametrized by type variables
for worlds (’world), propositions (’propVar), simple
principals (’pName), integrity labels (’Int), and security
labels (’Sec).

C. Semantics
Using the definitions of principal expressions, integrity and

security levels, access-control logic formulas, Kripke struc-
tures, and access functions for Kripke structures, we define the

26 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

val _ = Hol_datatype
‘Princ = Name of ’apn

| meet of Princ => Princ
| quoting of Princ => Princ;

IntLevel = iLab of ’il | il of ’apn;

SecLevel = sLab of ’sl | sl of ’apn‘;

(a) Syntax of Principal Expressions, Integrity Levels, and
Security Levels

val _ = Hol_datatype
‘Form =

TT
| FF
| prop of ’aavar
| notf of Form
| andf of Form => Form
| orf of Form => Form
| impf of Form => Form
| eqf of Form => Form
| says of ’apn Princ => Form
| speaks_for of ’apn Princ => ’apn Princ
| controls of ’apn Princ => Form
| reps of ’apn Princ => ’apn Princ => Form
| domi of (’apn, ’il) IntLevel => (’apn, ’il) IntLevel
| eqi of (’apn, ’il) IntLevel => (’apn, ’il) IntLevel
| doms of (’apn, ’sl) SecLevel => (’apn, ’sl) SecLevel
| eqs of (’apn, ’sl) SecLevel => (’apn, ’sl) SecLevel
| eqn of num => num
| lte of num => num
| lt of num => num‘;

(b) Syntax of Formulas

val _ = Hol_datatype
‘Kripke =
KS of (’aavar -> (’aaworld set)) =>

(’apn -> (’aaworld -> (’aaworld set))) =>
(’apn -> ’il) => (’apn -> ’sl)‘;

(c) Definition of Kripke Structures
val intpKS_def =

Define
‘intpKS(KS Intp Jfn ilmap slmap) = Intp‘;

val jKS_def =
Define
‘jKS(KS Intp Jfn ilmap slmap) = Jfn‘;

val imapKS_def =
Define
‘imapKS(KS Intp Jfn ilmap slmap) = ilmap‘;

val smapKS_def =
Define
‘smapKS(KS Intp Jfn ilmap slmap) = slmap‘;

(d) Accessor Functions for Kripke Structures

Fig. 10: Syntax Definitions in HOL

val Jext_def =
Define ‘(Jext (J:’pn -> ’w ->’w set) (Name s) = J s) /\

(Jext J (P1 meet P2) = ((Jext J P1) RUNION (Jext J P2))) /\
(Jext J (P1 quoting P2) = (Jext J P2) O (Jext J P1))‘;

val Lifn_def =
Define ‘(Lifn M (iLab l) = l) /\ (Lifn M (il name) = imapKS M name)‘;

val Lsfn_def =
Define ‘(Lsfn M (sLab l) = l) /\ (Lsfn M (sl name) = smapKS M name)‘;

(a) Definition of Extended Relation on Worlds and Mappings of Names to Integrity and Security Labels
val Efn_def =

Define
‘(Efn (Oi:’il po) (Os:’is po) (M:(’w,’v,’pn,’il,’is) Kripke) TT = UNIV) /\
(Efn Oi Os M FF = {}) /\
(Efn Oi Os M (prop p) = ((intpKS M) p)) /\
(Efn Oi Os M (notf f) = (UNIV DIFF (Efn Oi Os M f))) /\
(Efn Oi Os M (f1 andf f2) = ((Efn Oi Os M f1) INTER (Efn Oi Os M f2))) /\
(Efn Oi Os M (f1 orf f2) = ((Efn Oi Os M f1) UNION (Efn Oi Os M f2))) /\

....
(Efn Oi Os M(P says f) = {w | Jext (jKS M) P w SUBSET (Efn Oi Os M f)}) /\

....
(Efn Oi Os M (secl1 doms secl2) = (if repPO Os (Lsfn M secl2) (Lsfn M secl1) then UNIV else {})) /\
(Efn Oi Os M (secl2 eqs secl1) = (if repPO Os (Lsfn M secl2) (Lsfn M secl1) then UNIV else {}) INTER

(if repPO Os (Lsfn M secl1) (Lsfn M secl2) then UNIV else {})) /\
....

(b) Definition of Kripke Semantics
Fig. 11: Semantics in HOL

semantics of the logic as shown in Figure 11. The definition
of Jext in Figure 11(a) corresponds to the definition of Ĵ in
Section III-A. Simple principals in HOL have the form Name
s; P1 & P2 in HOL is P1 meet P2; P1 | P2 in HOL is

P1 quoting P2. Union (∪) and relational composition (◦)
are RUNION and O in HOL.

The mapping of labels and names to integrity and security
levels is defined by Lifn and Lsfn in Figure 11(a). The

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 27

integrity level of an integrity label iLab l is l. The integrity
level of a simple principal il name is imapKS M name,
where M is a Kripke structure. The corresponding function
Lsfn for security levels is similarly defined.

With all of the above, we define the Kripke semantics as
shown in Figure 11(b). The HOL definition of Efn corre-
sponds precisely to the definition of EM[[−]] in Section III-A.

D. Partial Orders

How partial orders are incorporated into our HOL imple-
mentation of the access-control logic is the last remaining
detail to disclose. In HOL, we can introduce a new type from
elements of an existing type. The elements of an existing
type are representations of new type. This capability coupled
with HOL’s support for polymorphism enables us to devise
inference rules for every partial ordering of integrity and
security levels. Our implementation of the logic introduces a
new type (’a) po, i.e., a type consisting of partial orderings
of terms of type ’a. The steps to introduce a new type ’a
po in this fashion are as follows.

1) Use the HOL predicate WeakOrder to select partial
orderings from relations of type ’a -> ’a -> bool.
The definition of WeakOrder is:
` ∀Z . WeakOrder Z ⇐⇒

reflexive Z ∧ antisymmetric Z ∧ transitive Z

2) Prove that ’a po is non-empty. We prove this by show-
ing that ‘‘=‘‘ satisfies the properties of WeakOrder.
The theorem is named WeakOrder_Exists. For
space reasons we omit its proof here.

3) Define the new type ’a po by executing the ML
function
val po_type_definition =
new_type_definition ("po",WeakOrder_Exists);

which returns the value
val po_type_definition =
|- ?(rep :’a po -> ’a -> ’a -> bool).

TYPE_DEFINITION
(WeakOrder :(’a -> ’a -> bool) -> bool) rep

4) Prove that ’a po is isomorphic to the set of par-
tial orderings using the ML function define_new_-
type_bijections. The mapping functions to and
from ’a po to ’a are the abstraction (constructor) and
representation (destructor) functions PO and repPO.
Executing the following
val po_bij = save_thm ("po_bij",
(define_new_type_bijections
{name="po_tybij", ABS="PO", REP="repPO",
tyax=po_type_definition}));

yields:
|- (!a. PO (repPO a) = a) /\

!r. WeakOrder r <=> (repPO (PO r) = r : thm

As the members of type ’a po include only relations Z:
’a -> ’a -> bool that satisfy WeakOrder, all members
of type ’a po must be partial orders, too.

E. Inference Rules

We create inference rules in HOL corresponding to the
access-control logic rules as shown in Figures 2, 3, and 4.

MATCH MP
A1 ` ∀x1..xn.t1 ⊃ t2 A2 ` t′1

A1 ∪A2 ` ∀xa..xk.t
′
2

SPEC ALL
A ` ∀x1 . . . xn.t

A ` t[x′
1/x1] . . . [x′

n/xn]

Fig. 13: HOL Inference Rules

These rules are typically are created using a combination
of built-in HOL inference rules, such as MATCH_MP and
SPEC_ALL shown in Figure 13, and theorems proved about
the access-control logic, such as Modus_Ponens shown
below. MATCH_MP pattern matches the antecedent t1 with t′1
by instantiating variables x1 . . . xn appropriately. SPEC_ALL
specializes all the universally quantified variables of a theorem.
val Modus_Ponens =

|- !M Oi Os f1 f2.
(M,Oi,Os) sat f1 ==>
(M,Oi,Os) sat f1 impf f2 ==>
(M,Oi,Os) sat f2 : thm

The function ACL_MP is the implementation of Modus
Ponens in HOL. The implementation depends on the theorem
Modus_Ponens above, which is specialized using SPEC_-
ALL and matched to theorem th1 using MATCH_MP. The
result is matched to theorem th2 to by a second application
of MATCH_MP.
fun ACL_MP th1 th2 =
MATCH_MP(MATCH_MP (SPEC_ALL Modus_Ponens) th1) th2;

VI. EXAMPLES IN HOL
We now show how the virtualization and confidentiality

examples in Section IV are implemented and verified in HOL.

A. Virtual Machine

In Section IV-A we postulated and proved a derived infer-
ence rule justifying access to virtual address A in a segment
addressed by (base, bound) within a physical memory with
q addresses. From this description we see that there are
three kinds of addresses: (1) a virtual address, (2) a physical
address in real memory, and (3) a segment address given by
(base, bound). For reasons of type consistency in HOL, we
introduce a new type Addr that is made from these three
address types.
val _ =
Hol_datatype
‘Addr = VA of num | PA of num | SA of num#num‘;

The particular example had three operations: (1) LDA @A—
loading the accumulator ACC with the contents of virtual ad-
dress A, (2) STO @A—storing the contents of ACC into virtual
address A, and (3) trapping the execution of an operation.
These three operations constitute the Op datatype in HOL.
val _ =
Hol_datatype‘Op = LDA of Addr | STO of Addr | trap‘;

Registers such as the instruction register and memory ad-
dress register can hold values corresponding to operations of
type Op and addresses of type Addr. These values are of type
RVal defined below.

28 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

ACL ASSUM f
(M,Oi, Os) sat f ` (M,Oi, Os) sat f

ACL ASSUM2 f O′
i O′

s (M,O′
i, O

′
s) sat f ` (M,O′

i, O
′
s) sat f

ACL MP
A1 ` (M,Oi, Os) sat f1 A2 ` (M,Oi, Os) sat f1 impf f2

A1 ∪A2 ` (M,Oi, Os) sat f2

CONTROLS
A1 ` (M,Oi, Os) sat P controls f A2 ` (M,Oi, Os) sat P says f

A1 ∪A2 ` (M,Oi, Os) sat f

SL DOMS
A1 ` (M,Oi, Os) sat (sl P) eqs l1 A2 ` (M,Oi, Os) sat (sl Q) eqs l2 A3 ` (M,Oi, Os) sat l2 doms l1

A1 ∪A2 ∪A3 ` (M,Oi, Os) sat (sl Q) doms (sl P)

Fig. 12: Example Access-Control Inference Rules in HOL

val _ =
Hol_datatype ‘RVal = Opval of Op | Adval of Addr‘;

In Figure 6 the request from instruction register IR is:

IR says 〈LDA @A〉.

In HOL, the request is:

(Name IR) says (prop (Opval (LDA (VA vaddr)))).

Recall that HOL inference rules produce theorems in the form
of sequents. Our HOL inference rules for the access-control
logic produce terms of the form Γ ` (M |= ϕ), which have
the form Γ ` (M,Oi, Os) sat f in HOL. Figure 14 is the
proof of LDA @A gaining access to virtual address A. The
proof corresponds exactly to the manual proof in Figure 6.
Looking at the first assumption a1, which is the theorem
produced by ACL_ASSUM, the result below corresponds to
the first assumption in Figure 6.

[.] |- (M,Oi,Os) sat
Name IR says prop (Opval (LDA (VA vaddr)))

The values a1 through a5 in the HOL proof in Figure 14
correspond to the first five assumptions of the proof in Fig-
ure 6. Values th6 through th9 correspond to lines 6 through
9 in Figure 6. Finally, the last value th10 of the HOL proof
is the theorem that supports an inference rule of the form
a1 a2 a3 a4 a5

th10
corresponding to the derived inference rule

IR says 〈LDA @A〉 RR says 〈(base, bound)〉
RR says 〈(base, bound)〉 ⊃ (base+A < q) ⊃

(A < bound) ⊃ IR controls 〈LDA @A〉
base+A < q A < bound

〈LDA @A〉.

B. Confidentiality

Section IV-B gives an example partial ordering of confi-
dentiality levels and a proof justifying approving Carol’s read
request on object O. In this section we show the proof in HOL.
The HOL proof in Figure 15 closely follows the proof shown
in Figure 8.

In HOL we define a new datatype Op corresponding to the
read and write operations requested by subjects on objects.

val _ = Hol_datatype ‘Op = rd | wrt‘.

Actions are operations Op on principals. The new datatype
Action is defined below.

val _ = Hol_datatype
‘Action = Act of (Op # ’apn Princ)‘.

This example uses a specific ordering OSec on a specified
set of security levels. The definition of OSec is based on the
combination of two partial orderings: SCOrder and Subset.
SCOrder is an ordering on security labels SClass defined
as:
val _ = Hol_datatype ‘SClass = Lo | Hi‘;

The ordering SCOrder has Hi dominating Lo:
val SCOrder_def =
Define ‘SCOrder y x =
if x = Hi then T else if y = Hi then F else T‘;

Subset is used to order the power set of Categories
defined as:
val _ = Hol_datatype‘Categories = Bin1 | Bin2‘;

The remaining steps to defining OSec are as follows:
1) Prove both SCOrder and Subset are partial orderings,

i.e., that both satisfy WeakOrder. This is straightfor-
ward and we skip their proofs for space reasons.

2) With SCOrder and Subset as partial orderings, we
know they are members of ’a po. Thus, we define
|- SCOrder_PO = PO SCOrder

|- Subset_PO = PO $SUBSET

(Note: $SUBSET is the prefix version of the infix
operator SUBSET).

3) We define OSec as the composition of SCOrder_PO
and Subset_PO:
|- OSec = prod_PO SCOrder_PO Subset_PO,

where prod_PO is defined as
|- !PO1 PO2.

prod_PO PO1 PO2 =
PO (RPROD (repPO PO1) (repPO PO2))

4) Finally, we can prove that OSec is a partial ordering as
shown in Figure 7.

Our HOL proof corresponding to Figure 8 is shown in
Figure 15. The HOL proof introduces four the five assumptions
using ACL_ASSUM2. We use this instead of ACL_ASSUM
because we wish to explicitly specify the security partial order
OSec corresponding to Figure 7. As we have a specific set
of labels and a specified ordering, we can prove the following
theorem corresponding to the fifth assumption in Figure 8:
l2_doms_l1 =
|- (M,Oi,OSec) sat

sLab (Hi,{Bin1; Bin2}) doms sLab (Lo,{Bin1}) : thm

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 29

- val a1 =
ACL_ASSUM
‘‘((Name IR) says (prop (Opval (LDA (VA vaddr))))):(RVal, ’pName,’Int,’Sec)Form‘‘;

> val a1 = [.] |- (M,Oi,Os) sat Name IR says prop (Opval (LDA (VA vaddr))) :
thm

- val a2 =
ACL_ASSUM
‘‘((Name RR) says (prop (Adval (SA (base,bound))))):(RVal, ’pName,’Int,’Sec)Form‘‘;

> val a2 = [.] |- (M,Oi,Os) sat Name RR says prop (Adval (SA (base,bound))) :
thm

- val a3 =
ACL_ASSUM
‘‘(((Name RR) says (prop (Adval (SA (base,bound))))) impf

((base + vaddr) lt q) impf (vaddr lt bound) impf
((Name IR) controls (prop (Opval (LDA (VA vaddr)))))):(RVal, ’pName,’Int,’Sec)Form‘‘;

> val a3 =
[.]
|- (M,Oi,Os) sat

Name RR says prop (Adval (SA (base,bound))) impf
(base + vaddr) lt q impf vaddr lt bound impf
Name IR controls prop (Opval (LDA (VA vaddr))) : thm

- val a4 =
ACL_ASSUM
‘‘((base + vaddr) lt q):(RVal, ’pName,’Int,’Sec)Form‘‘;

> val a4 = [.] |- (M,Oi,Os) sat (base + vaddr) lt q : thm
- val a5 =

ACL_ASSUM
‘‘(vaddr lt bound):(RVal, ’pName,’Int,’Sec)Form‘‘;

> val a5 = [.] |- (M,Oi,Os) sat vaddr lt bound : thm
- val th6 = ACL_MP a2 a3;
> val th6 =

[..]
|- (M,Oi,Os) sat

(base + vaddr) lt q impf vaddr lt bound impf
Name IR controls prop (Opval (LDA (VA vaddr))) : thm

- val th7 = ACL_MP a4 th6;
> val th7 =

[...]
|- (M,Oi,Os) sat

vaddr lt bound impf Name IR controls prop (Opval (LDA (VA vaddr))) : thm
- val th8 = ACL_MP a5 th7;
> val th8 =

[....] |- (M,Oi,Os) sat Name IR controls prop (Opval (LDA (VA vaddr))) :
thm

- val th9 = CONTROLS th8 a1;
> val th9 = [.....] |- (M,Oi,Os) sat prop (Opval (LDA (VA vaddr))) : thm
- val th10 = DISCH_ALL th9;
> val th10 =

|- (M,Oi,Os) sat Name RR says prop (Adval (SA (base,bound))) ==>
(M,Oi,Os) sat Name IR says prop (Opval (LDA (VA vaddr))) ==>
(M,Oi,Os) sat (base + vaddr) lt q ==>
(M,Oi,Os) sat vaddr lt bound ==>
(M,Oi,Os) sat
Name RR says prop (Adval (SA (base,bound))) impf
(base + vaddr) lt q impf vaddr lt bound impf
Name IR controls prop (Opval (LDA (VA vaddr))) ==>
(M,Oi,Os) sat prop (Opval (LDA (VA vaddr))) : thm

Fig. 14: HOL Proof of LDA @A Access Request

The values a1 through a4 in the HOL proof in Figure 15
correspond to the first five assumptions of the proof in
Figure 8. The theorem l2_doms_l1 corresponds to line 5
in Figure 8. Values th5 through th7 correspond to lines 6
through 8 in Figure 8. Finally, the last value th8 of the HOL
proof is the theorem that supports an inference rule of the form
a1 a2 a3 a4

th7
corresponding to the derived inference rule

Carol says 〈read,O3〉 sl(O2) =s (LO, {Bin1})
sl(Carol) =s (HI, {Bin1, Bin2})

sl(Carol) dom sl(O3) ⊃ (Carol controls 〈read,O3〉)
(HI, {Bin1, Bin2}) dom (LO, {Bin1})

〈read,O3〉.

VII. RELATED WORK

We are indebted to the work of Abadi, et. al. for their
original formulation of an access-control logic, [13]. Our
modifications to their formulation of the logic include:

30 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

- val a1 =
ACL_ASSUM2
‘‘((Name Carol) says (prop (Act (rd, Name O3))))

:(’pName Action, ’pName,’Int,SClass#(Categories set))Form‘‘ ‘‘Oi:(’Int po)‘‘ ‘‘OSec‘‘;
> val a1 = [.] |- (M,Oi,OSec) sat Name Carol says prop (Act (rd,Name O3)) : thm
- val a2 =

ACL_ASSUM2
‘‘((sl (O3:’pName)) eqs (sLab (Lo,{Bin1}))) :(’pName Action, ’pName,’Int,SClass#(Categories set))Form‘‘
‘‘Oi:(’Int po)‘‘ ‘‘OSec‘‘;

> val a2 = [.] |- (M,Oi,OSec) sat sl O3 eqs sLab (Lo,{Bin1}) : thm
- val a3 =

ACL_ASSUM2
‘‘((sl Carol) eqs (sLab (Hi,{Bin1;Bin2}))) :(’pName Action, ’pName,’Int,SClass#(Categories set))Form‘‘
‘‘Oi:(’Int po)‘‘ ‘‘OSec‘‘;

> val a3 = [.] |- (M,Oi,OSec) sat sl Carol eqs sLab (Hi,{Bin1; Bin2}) : thm
- val a4 =

ACL_ASSUM2
‘‘(((sl Carol) doms (sl O3)) impf ((Name Carol) controls (prop (Act (rd,(Name O3))))))

:(’pName Action, ’pName,’Int,SClass#(Categories set))Form‘‘ ‘‘Oi:(’Int po)‘‘ ‘‘OSec‘‘;
> val a4 =

[.] |- (M,Oi,OSec) sat sl Carol doms sl O3 impf Name Carol controls prop (Act (rd,Name O3)) : thm
- val th5 = SL_DOMS a2 a3 l2_doms_l1;
> val th5 = [..] |- (M,Oi,OSec) sat sl Carol doms sl O3 : thm
- val th6 = ACL_MP th5 a4;
> val th6 = [...] |- (M,Oi,OSec) sat Name Carol controls prop (Act (rd,Name O3)) : thm
- val th7 = CONTROLS th6 a1;
> val th7 = [....] |- (M,Oi,OSec) sat prop (Act (rd,Name O3)) : thm
- val th8 = DISCH_ALL th7;
> val th8 =

|- (M,Oi,OSec) sat Name Carol says prop (Act (rd,Name O3)) ==>
(M,Oi,OSec) sat sl Carol doms sl O3 impf Name Carol controls prop (Act (rd,Name O3)) ==>
(M,Oi,OSec) sat sl O3 eqs sLab (Lo,{Bin1}) ==>
(M,Oi,OSec) sat sl Carol eqs sLab (Hi,{Bin1; Bin2}) ==>
(M,Oi,OSec) sat prop (Act (rd,Name O3)) : thm

Fig. 15: Read Access Proof in HOL

1) adding inference rules as described in this paper,
2) adding delegation in the form of P reps Q on ϕ as de-

fined here,
3) the elimination of their notion of roles and in its place

showing how roles consistent with role-based access
control [14] can be described using speaks for and
delegation, and

4) the addition of integrity and confidentiality partial or-
derings as described here.

The logic and examples described here, plus many more
examples, appear in our textbook Access Control, Security,
and Trust: A Logical Approach [15]. This book is a result
of our research and teaching efforts for the Air Force Re-
search Laboratory Information Directorate’s Advanced Course
in Engineering (ACE) Cyber Security Boot Camp [3][4].
Earlier versions of [15] were developed and tested on ACE
students. Their facility with Kripke structures and access-
control concepts is reported in [16].

We have applied our logic to the analysis of interoperable
credentials for JP Morgan Chase [17][18]. This work analyzes
the trust relationships in high-value commercial transactions.

For the Air Force Research Laboratory, we have used the
methods described here to specify and verify concepts of
operations [19]. This work involves trust establishment and
preserving integrity of command and control of Air Force
systems.

The HOL implementation described here has not been
previously disclosed. A much earlier version, which does
not use type variables nor partial orders for integrity and

confidentiality levels, is described in [20].

VIII. CONCLUSION

Our overall objective is to provide a logic, method, and tools
that are accessible by undergraduate students and practicing
engineers to enable them to reason precisely about access con-
trol, security, and trust. To date, over 226 ROTC cadets from
over 40 universities, over 25 active-duty officers and civilian
contractors, and many more Syracuse University students have
learned and applied the logic described here and [15] to reason
about security. Based on this experience, we conclude that
it is reasonable to expect newly-graduated engineers to use
mathematics and logic to reason about security. The benefits
to students and practitioners include the benefits of logic in
general: clear and precise definitions and statements with a
system of inference rules to verify conclusions.

The adoption of computer-assisted reasoning tools such as
HOL [5] has been slow in part due to the lack of famil-
iarity with functional programming languages and predicate
calculus. Our recent experience shows that students who
have a rudimentary capability in functional programming can
accomplish a significant amount of verification in HOL with
just a few weeks of class time. What is even more surprising
is that students do not need a specialized course in logic to do
credible HOL proofs. We are now incorporating the logic and
tools described here into a larger pilot educational program
at Syracuse University focusing on the engineering of secure
systems.

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 31

ACKNOWLEDGMENTS

The work reported here is a result of joint work with
Professors Susan Older and Lockwood Morris, Department
of Electrical Engineering and Computer Science, Syracuse
University. The author gratefully acknowledges their help and
contributions. This work was partially supported by the Air
Force Research Laboratory and Serco-NA.

REFERENCES

[1] Jerome Saltzer and Michael Schroeder, “The Protection of Information
in Computer Systems,” Proceedings IEEE, 1975.

[2] Matt Bishop, Computer Security: Art and Science, Addison Wesley
Professional, 2003.

[3] Dan Carnevale, “Basic training for anti-hackers: An intensive summer
program drills students on cybersecurity skills,” The Chronicle of Higher
Education, September 23 2005.

[4] Kamal Jabbour and Susan Older, “The advanced course in engineering
on cyber security: A learning community for developing cyber-security
leaders,” in Proceedings of the Sixth Workshop on Education in
Computer Security, July 2004.

[5] M.J.C. Gordon and T.F. Melham, Introduction to HOL: A Theorem
Proving Environment for Higher Order Logic, Cambridge University
Press, New York, 1993.

[6] E.M. Clarke, E.A. Emerson, and A.P. Sistla, “Automatic verification of
concurrent systems using temporal logic specifications,” ACM Trans. on
Programming Languages and Systems, vol. 8, no. 2, 1986.

[7] Carver Mead and Lynn Conway, Introduction to VLSI Systems, Addison
Wesley, 1980.

[8] Robert N. Mayo, Michael H. Arnold, Walter S. Scott, Don
Starrk, and Gordon T. Hamachi, 1990 DECWRL/Livermore
Magic Release, Digital Western Research Laboratory, 100 Hamil-
ton Avenue, Palo Alto, CA, September 1990, available at
http://www.hpl.hp.com/techreports/Compaq-DEC/WRL-90-7.html.

[9] W. Banzhaf, Computer-Aided Circuit Analysis Using PSpice, Prentice-
Hall, 1992, 2nd edition, 1992.

[10] “Mosis,” Available at http://www.mosis.com/.
[11] D. E. Bell and L. J. La Padula, “Secure computer systems: Mathematical

foundations,” Tech. Rep. Technical Report MTR-2547, Vol. I, MITRE
Corporation, Bedford, MA, March 1973.

[12] K. Biba, “Integrity considerations for secure computer systems,” Tech.
Rep. MTR-3153, MITRE Corporation, Bedford, MA, June 1975.

[13] Butler Lampson, Martin Abadi, Michael Burrows, and Edward Wobber,
“Authentication in distributed systems: Theory and practice,” ACM
Transactions on Computer Systems, vol. 10, no. 4, pp. 265–310, Novem-
ber 1992.

[14] David F. Ferraiolo, Ravi S. Sandhu, Serban I. Gavrila, D. Richard Kuhn,
and Ramaswamy Chandramouli, “Proposed NIST Standard for Role-
Based Access Control,” ACM Transaction on Information and System
Security, vol. 4, no. 3, pp. 224–274, August 2001.

[15] Shiu-Kai Chin and Susan Older, Access Control, Security, and Trust: A
Logical Approach, CRC Press, 2011.

[16] Shiu-Kai Chin and Susan Older, “A rigorous approach to teaching access
control,” in Proceedings of the First Annual Conference on Education
in Information Security. 2006, ACM.

[17] Glenn Benson, Shiu-Kai Chin, Sean Croston, Karthick Jayaraman, and
Susan Older, “Interoperable credentials management for wholesale
banking,” Tech. Rep. Technical Report 171, Department of Elec-
trical Engineering and Computer Science, Syracuse University, 2011,
http://surface.syr.edu/eecs/171/.

[18] Glenn S. Benson, Shiu-Kai Chin, Sean Croston, Karthick Jayaraman, and
Susan Older, “Credentials management for high-value transactions,” In
Kotenko and Skormin [21], pp. 169–182.

[19] Shiu-Kai Chin, Sarah Muccio, Susan Older, and Thomas N. J. Vestal,
“Policy-based design and verification for mission assurance,” In Kotenko
and Skormin [21], pp. 125–138.

[20] Thumrongsak Kosiyatrakul, Susan Older, Polar Humenn, and Shiu-
Kai Chin, “Implementing a calculus for distributed access control
in higher order logic and HOL,” in Second International Workshop
on Mathematical Methods, Models, and Architectures for Computer
Network Security, Vladimir Gorodetsky, Leonard Popyack, and Victor
Skormin, Eds., 2003, vol. 2776.

[21] Igor V. Kotenko and Victor A. Skormin, Eds., Computer Network Se-
curity, 5th International Conference on Mathematical Methods, Models
and Architectures for Computer Network Security, MMM-ACNS 2010,
St. Petersburg, Russia, September 8-10, 2010. Proceedings, vol. 6258 of
Lecture Notes in Computer Science. Springer, 2010.

32 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

Science of Mission Assurance
Sarah L. Muccio and Thomas N.J. Vestal

Air Force Research Laboratory

Information Directorate

Rome, NY

Abstract – We present a scientific framework for

assuring mission essential functions in a contested

cyber environment.

1 Introduction

We plan to present a scientific framework for assuring

mission essential functions in a contested cyber

environment. Mission assurance resides in the avoid,

survive and recover stages of the defense cycle.

Performing the vulnerability assessment and mitigation

steps of the mission assurance process allows us to

avoid many threats that adversaries could exercise.

Mission assurance is also vital in the survive stage of

defense. We must insure our mission will succeed by

fighting through attacks and we define this as mission

survival. Mission assurance also lives in the recovery

phase of the cycle. If you ever make it to the survive

stage of an attack, the mission assurance process did not

mitigate all of the vulnerabilities. There are now

lessons learned and more information on what system

vulnerability the attacker exploited; which means you

must repeat the cycle all over again to mitigate these

newly discovered vulnerabilities. We describe this as

the mission recovery phase.

For each stage of the mission apply the following steps.

Prioritization: The first step is to create a detailed

outline of the mission essential functions. Subject matter

experts (SME) prioritize the mission essential functions

according to their effect on the outcome on the mission.

The outline must include the level of granularity with

which this mission requires visibility into its

components. Each mission essential function breaks

down into smaller cyber elements. However, depending

on their importance in the overall mission prioritization,

they may require more or less decomposition. The

mission sets of our collaboration partners provide an

opportunity to efficiently prioritize realistic mission

scenarios.

Mission Mapping: During this next step a mission

separates into lower level mission essential functions.

The mission essential functions break down further into

basic components. The cyber components includes Air

Force owned assets, other DoD owned assets and

commercial assets used during the mission. A mission

essential function rises in importance during the phase

of the mission that utilizes it. However, that importance

is relative to the mission and the current phase.

Additionally, the SMEs narrow the focus to those assets

that are most critical for the success of the mission.

Essential to understanding and striving toward mission

assurance is defining the connection between cyber

components in relation to the mission.

Vulnerability Assessment: Throughout the stages of the

mission, cyber assets have varying impact of the overall

measure of mission assurance. The impact ranges from

no effect, mission degradation requiring fight through

capabilities, to mission failure. A formal examination of

the cyber assets previously mapped out allow for a

complete vulnerability assessment.

Mitigation: After identification of the potential

vulnerabilities, current research, tools, techniques and

mitigation strategies reduce the exposure of the mission.

The challenges not solved pave the way for future

research and breakthroughs.

2 Acknowledgement

Any opinions, findings, and conclusions or

recommendations expressed in this publication are those

of the authors and do not necessarily reflect the views of

the U.S. Air Force Research Laboratory, United States

Air Force, Department of Defense, or the United States

Government. This material is based upon work

supported by the Air Force Office of Scientific Research

under the Laboratory Research Independent Research

Program under grant number FA8750-10-C-0116.

3 Author Information

Sarah L. Muccio is a Mathematician in the Cyber

Science branch of the Air Force Research Laboratory's

Information Directorate. She received her Ph.D in

Applied Mathematics from North Carolina State

University in 2007.

Thomas N.J. Vestal is a Computer Engineer in the

Cyber Science branch of the Air Force Research

Laboratory’s Information Directorate. He is a Computer

Engineering Ph.D candidate at Syracuse University and

a Member of the IEEE.

 Distribution Statement A - Approved for Public Release - Distribution
Unlimited Document #88ABW-2011-2500, dated 3 May 2011

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 33

A Channel-theoretic Account of Separation Security

Gerard Allwein1 and William L. Harrison2

1Code 5540, Naval Research Laboratory, Washington, D.C. 20375, USA
2Department of Computer Science, University of Missouri, Columbia, MO 65211, USA

Abstract— It has long been held that information flow
security models should be organized with respect to a
theory of information, but typically they are not. The ap-
peal of a information-theoretic foundation for information
flow security seems natural, compelling and, indeed, almost
tautological. This article illustrates how channel theory—a
theory of information based in logic—can provide a basis for
noninterference style security models. The evidence presented
here suggests that channel theory is a useful organizing
principle for information flow security.

1. Introduction
It has long been believed that information flow security

should be characterized in terms of a theory of Shannon-
style [20] information flow. The problem with this is that
the quantity “mutual information” is measured; there is no
direction. Channel theory [3] is a logical or qualitative theory
of information flow; direction is represented explicitly and
it is capable of supporting a Shannon-theoretic analysis [2]
(although we do not do so here). We submit that channel
theory is a natural setting for characterizing information
flow security policies and mechanisms, and we support it
through the specification of a classic model of information
flow security within channel theory in an elegant manner.

Most information flow security models are based either on
the noninterference model of Goguen and Meseguer [7] or
on variants of it [21]. Such security models specify end-to-
end system security policies in terms of the “views” of the
system as a whole by groups of users/processes. Views are
typically characterized by partitioning global system inputs
and outputs and associating groups of users/processes with
these partitions. These input and output partitions determine
the view of its associated group. Noninterference-based se-
curity policies will require that, for example, changes in a
high level security input partition will result in no change to
a low level output partition.

Channel theory is also known as the “logic of distributed
systems”, where “distributed systems” is interpreted in a very
broad sense. In channel theory, each subsystem is formulated
as a local logic which may be intuitively understood as
characterizing the subsystem’s view of the distributed system
as a whole. Connecting these subsystems is a channel that
governs how theorems in one local logic may be trans-
ferred to another local logic. The intuitive parallel with
noninterference-based security is explicated here and made

formal. The view according to security level is determined
here by a local logic and a channel that governs information
flow between levels.

By combining several formalisms from logic and seman-
tics, this paper admittedly places demands on the reader
beyond what is perhaps usually expected. Channel theory,
in particular, is not broadly known and consequently the
presentation here must introduce a number of its key concepts
before proceeding. The security property we consider—
separation—is simple, but as this is the first application of
Channel theory to information security, simplicity is a virtue.
But more importantly, this paper elaborates the necessary
channel theoretic underpinnings (especially co-channels) and
sets the stage for further applications of Channel Theory to
information security.

Channel theory combines syntax and semantics and hence,
the proofs are necessarily semantic in content. This has the
sense of soundness from logic, i.e., one shows a particular
(Gentzen) sequent holds semantically. The sequents are in a
second order logic which quantifies (semantically) over all
actions in a program. The combination of the use of co-
channels to distribute an invariant and the invariant being a
sequent in a simple second order logic is what allows the
statement and proof of separation to be so clean.

This article proceeds from research characterizing the clas-
sic, noninterference-style security design of Rushby (known
as a separation kernel [18]) in terms of monadic language
semantics [11], [10]. A separation kernel, K (pictured in
Figure 1), mediates communication between the high and low
level domains, H and L, respectively. Domains H and L may
only communicate with the kernel via the channels f and g,
respectively. The security policy boils down to demonstrating
that inputs to H have no impact on the outputs of L. The
security property associated with the separation kernel in
Figure 1 is based on the notion that any operation executing
in the high security domain H should have no effect whatso-
ever on the threads executing in the low security domain L.

L HK
f g

Fig. 1: Sep. Kernel as a Channel
Theory Flow Diagram.

In terms of individual
atomic operations, this
can be further specified
as follows. Note that any
system execution con-
sists of a sequence of H
and L operations deter-
mined by some scheduling strategy. The security specification
requires that any system execution, h0 ; l0 ; · · · ; hn ; ln, has

34 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

precisely the same effect on the L domain as this same
execution stripped of H operations, l0 ; · · · ; ln . This security
regime is not, in general, process isolation. Operations in
H may not affect those in L, but operations in L are free
to influence those in H. Separation requires the converse as
well.

The Contributions of This Paper.
Monadic transformers [13], [12] are shown to provide

a layering as a scaffold for channel theoretic objects and
the relationships among the layers are represented using
the morphisms of channel theory (the double-pairs of maps
f and g from Figure 1). Through channel theory, by a
judicious use of limits, colimits, and a free-variable second-
order logic, separation kernels [11], [10] are show to validate
the necessary logical statements that express separation. The
resulting distributed logical apparatus of channel theory can
then be seen to provide an straightforward proof of separation
without collapsing the information in the monadic layers into
a single but hard to manipulate formal apparatus. The burden
of verification is thus made easier.

a) Related Work.: Channel theory is not a logic but,
rather, it is a logical framework that allows separation of
concerns (in the sense of Dijkstra [5]) at the level of
logical specification. It is similar to institutions [6] in that
both have similar objects and morphisms. In contrast to
institutions, channels are the central organizing principle of
channel theory, where channels and co-channels are used
for the transfer of theorems between local logics. Separation
logic [17] introduces separation of concerns at the level of
logical connectives. The channel theoretic characterization
of a monadic separation kernel presented here is factored
according to the monadic layers underlying the kernel’s con-
struction, although channel theory does not focus on monadic
specifications exclusively (in contrast to evaluation logic [16],
HasCasl [19], or observational program specification [9]).
Abadi, et al., [1] formulate notions of dependency (including
noninterference) in terms of the dependency core calculus.
Crary et al. [4] consider a logical characterization of informa-
tion flow security that, like DCC, has Moggi’s computational
lambda calculus [14] at its core. The second author’s monadic
encapsulation of separation [11], [10] is more semantic and
model-theoretic than either of these more logical and type-
theoretic approaches. The present article answers an open
question by making the relationship between such semantic
and logical views apparent and precise. Channel theory has
not, to the authors’ best knowledge, ever been applied to
information flow security.

2. Background
This article makes a connection between a number of

different formalisms across logic, denotational semantics and

StateT Σ M X = Σ→M(X×Σ)
ηS v = λσ. ηM (v , σ)
x ?S f = λσ0. (x σ0) ?M λ(v , σ1). f v σ1

g : S Σ = λσ. ηM (σ, σ)
u : (Σ→Σ)→S()
u f = λσ. ηM((), f σ)
lift ϕ = λσ. ϕ ?M (ηM ◦ (λv . (v , σ)))

x » y = x ? λd . y — “null” bind

ResT M X = fix ξ.X + M ξ
ηR v = δ v
(δ x) ?R f = f x
(ρ ϕ) ?R f = ρ (ϕ ?M λκ. ηM (κ ?R f))
step ϕ = ρ (ϕ ?M (ηM ◦ ηR))
run (δ v) = ηM v
run (ρ ϕ) = ϕ ?M run

Fig. 2: Monad Transformers

information security and, to make it as self-contained as
possible, overviews of the necessary background material is
presented here. First, noninterference security and separation
are discussed and then it is summarized how separation may
be realized via monadic language semantics [13], [12]. A
brief overview of modular monadic semantics is presented as
well. It is assumed of necessity that the reader is familiar with
monadic semantics, and, for those wishing more background
on monadic semantics, please consult the references. In
particular, for an overview of monads for concurrency (i.e.,
resumption monads), please consult Harrison [8].

Separation Security & Noninterference.

This security regime, which we will refer to as separation,
is an instance of Goguen and Meseguer noninterference.
Separation considers the “static case” where there is no
passing of capabilities. Such policies formulate information
security in terms of “views” or perspectives with respect
to processes or users at the low security level. We as-
sume, without loss of generality that there are precisely
two such levels, high and low). If two system inputs, i
and i ′, are the same from the low view (sometimes written
i ≈L i′), then, for any system execution consisting of
a sequence of high and low operations, h0; l0; · · · ; hn ; ln ,
the following system outputs are the same from the low
view: out (h0; l0; · · · ; hn ; ln)≈L out (l0; · · · ; ln). Noninter-
ference specifications are typically formulated in terms of
abstract state machines.

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 35

3. Definition of Channel Theory
The basic structures of channel theory are deceptively

simple. The things that are distributed in a distributed system
are contexts called classifications. The classifications are
connected by infomorphisms. The relevant definitions follow.

A classification contains two distinct collections of objects,
tokens and types. They could be anything that makes sense in
using a classification as a model. However, most of modern
language theory tends to use the term types in a different
sense. In this paper, channel theory’s types are always termed
propositions. The tokens are analogous to states or program
actions. Bold slanted typeface is always used to denote
classifications.

Definition 3.0.1 A classification, X , is a pair of sets,
Tok(X), and Prop(X), and a relation, |=X ⊆ Tok(X) ×
Prop(X) written in infix, e.g., x |=X A. x |=X A is the
qualitative unit of information that flows in channel theory.

Classifications occur wherever models of formal systems
are found. Channel theory has its own notion of morphism,
called an infomorphism. It is similar to a pair of adjoint
functors in that it is a pair of opposing arrows with a
condition similar to the adjoint’s bijection.

Definition 3.0.2 An infomorphism h : X → Y of classifi-
cations is a pair of contravariant maps, −→h and ←−h such that−→
h : Prop(X) → Prop(Y) and ←−h : Tok(Y) → Tok(X),
and for all x and A, the following condition is satisfied,
xh |=X A iff x |=Y Ah,. For ease of presentation, ←−h (x)
is displayed as xh and −→h (A) as Ah.

A commuting finite cocone consists of a graph ho-
momorphism G from a finite graph to the category of
classifications, a vertex classification C, and a collection

C

G(1) · · · G(i) G(j) · · · G(n)

g1
gi gj

G(f)

gn

of arrows gi :
G(i) → C. It is
required that for
all f : i → j,
gi = gj ◦ G(f).
The base of the
cocone is the ob-
jects and arrows
identified by G. There will also be a need for cones: a finite
cone consists of a graph homomorphism G from a finite
graph to the category of classifications, a vertex classification
C, and a collection of arrows gi : G(i)→ C. It is required
that for all f : j → i, gi = G(f) ◦ gj . Just reverse all the
arrows in the preceding diagram.

Definition 3.0.3 An information channel is a co-cone in the
category of classifications and infomorphisms. An informa-
tion co-channel is a cone in the category of classifications
and infomorphisms. C in the diagram is call the core of the
(co)channel.

The smallest channel over a base is a colimit. Frequently,
the smallest channel is not the most useful because a channel
is used as a model. The smallest channel would simply
connect the base with no additional modeling apparatus.
A colimit in the category of classifications is a colimit on
propositions and a limit on tokens.

Assuming a fixed classification C, a Gentzen sequent,
Γ C ∆ is two sets of propositions connected by a relation
. A valid sequent has the force of a meta-level implication
of form: for all tokens x, if x |=C A for all of the propositions
A in Γ, then at x |=C B for at least proposition in ∆. In
this paper, all our sequents will be rather simple and of the
form A B. Sequents are used to represent constraints for a
classification. In the core of a channel, sequents underwrite
information flow in the core.

Definition 3.0.4 A local logic L = 〈C,L, NL〉 consists of
a classification C, a set L of sequents involving the types
of C, and a subset NL ⊆ Tok(C) called the normal tokens
of L, which satisfy all the constraints L. A local logic L

is sound if every token is normal; it is complete if every
sequent that holds of all normal tokens is in the consequence
relation L.

Each classification supports a local logic, including cores
of channels. A non-normal token represents a counter-
example to the theory. In this paper, only normal tokens are
used. Non-normal tokens can be used to introduce conditional

Γ X ∆

Γf Y ∆f
(f−Intro)

Γ Y ∆

Γ−f X ∆−f
(f−Elim)

probabilities associated with the
sequents. Typically, the sequents
are required to follow certain
structural rules but these will not
concern us in this paper. These
non-structural rules allow for the
movement of logics forward along
an infomorphism f : X → Y , where Γ−f is an abbreviation
for −→f

−1
(Γ), i.e., the inverse image of Γ under f and ∆f

is the direct image of ∆ under f . There are two equivalent
forms for each; f -Intro preserves validity and f -Elim pre-
serves non-validity.

Channels and co-channels are used to hold channel logics.
In the core of a channel, a logic can be used to underwrite or
authorize information transfer among the side classifications.
Co-channels, as they are used in this paper, are used to dis-
tribute a common logic in the core to the side classifications.

4. A Channel Account of Separation
The channel theory diagram System Classification (see

Figure 3) will be annotated with theorems where Tok(Hi)
and Tok(Lo) are the set of program states for Hi and
Lo respectively, Hik represents the k-th operation of
Hi, CH is a co-channel which is used for distribut-
ing a constraint (expressed as a sequent), H is con-
structed using the monad H = StateT Hi Id , K is con-

36 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

structed using the monad K = StateT Hi (StateT Lo) Id ,
R is constructed using the resumption monad. There
is a similar diagram below L (using the Lo versions

R

K . . . K . . . K

CH H L

Hi1 . . . Hik . . .

Hi Hi

π

H

π

L

π

1

π

2

Fig. 3: Sys. Class./Monadic Layers

of CH , etc.) as
below H . Let
two program
statements be
D := D + 1 and
D := D − 1.
The first is the
Hi operation and
the second is the
Lo operation.
These statements
are the actions
D 7→ D + 1 and
D 7→ D − 1. The
other computations needed are D 7→ D denoted 1Hi and
1Lo for the respective sides; these are needed for internal
housekeeping in the sequel. There are only two Hik’s in
the sample system, namely Hi1 for 1Hi and Hi2 for the
computational interpretation of D := D + 1.

Notice that the fragment of the diagram containg
CH ,Hi1, Hi2, . . . has its arrows pointing downward in
contradistinction to the rest of the arrows pointing upward.
This is an instance of a cone whereas the other fragments,
all of whose arrows have a common target, are cocones.
CH ,Hi1,Hi2, . . . is an example of a co-channel. The lone
sequent that will be in CH will be distributed to the Hik.

Let a2 = λv.v + 1, the sequent for Hi2, π

1(D =
V) Hi2

π

2(D = a2V) will be denoted as: D = V Hi2

a2(D = V), eliding the π

i and making the a appear as modal
operator. Now for the cone with vertex CH and base the

Prop(CH) Prop(Hik)

Tok(CH) Tok(Hik)

φk

ψk

|= |=

Fig. 4: CH to Hik Infomorphism

Hik. There is an
infomorphism
(Figure 4)
where φk is
the identity map
and Prop(CH) =
Prop(Hik)
for all k. The
state pairs 〈s, s′〉
in Tok(Hik)

are just those state pairs that satisfy s
ak−−→ s′, where

ak−−→ symbol means s goes to s′ under the action ak.
Let ψk(〈s, s′〉) = 〈ak.〈s, s′〉〉 ∈ Tok(CH). We define
〈ak, 〈s, s′〉〉 |=CH

Q iff 〈s, s′〉 |=Hik Q for any proposition
Q. This is a “safe” definition since it will lead to no new
sequents holding as constraints in CH that do not already
hold in each of the Hik; the proposition sets are all
identical. This defines 〈ϕk, ψk〉 as an infomorphism.

To pull the sequent back along φ might, given the rules
for sequents, result in an invalid sequent in CH . However,
notice that this sequent holds for all k under the condition

that each Hik interprets a to the operation ak. In this way,
the sequent, D = V CH

a(D = V), becomes a sequent of
second-order free-variable logic. However, the sequent still
retains its modal character, just as in Hik. The job of φk is
to distribute this sequent to each Hik.

Consider each channel (Hik,Hi) to be a model for a
modal logic with the operator ak defining the modality. Each
HiK contains all pairs of states 〈s, s′〉 relating s to s′ under
the action ak. Each s and s′ must provide a value for D and
V . Some values are such D 6= V in which case the antecedent
of the sequent is false and hence the sequent evaluates as true;
the sequent is then satisfied spuriously. In the cases where
D = V , the consequent follows because Hik is the core
of the channel for ak. Hence the sequent is valid. So Hik
contains all the models for the logic and the action.

The arrow ψk is constructing part of a (flattened) second
order model structure in Tok(CH). It is easier to think of
there being a single token in Tok(CH) for each Hik. This
token needs to pull out a pair from its modal relation to
evaluate a proposition, i.e.,

〈ak, 〈s, s′〉〉 |=CH

π

1(D = V)

iff ψk(〈s, s′〉) |=CH

π

1(D = V) def. of ψk
iff 〈s, s′〉 |=Hik φk(π

1(D = V)) infomorphism
iff 〈s, s′〉 |=Hik

π

1(D = V) def. of φk
iff π1(〈s, s′〉) |=Hi D = V infomorphism
iff s |=Hi D = V def. of π1

In this way, the work load of evaluating propositions, and
hence sequents, is distributed via channel theory.

In the sequel, op(class) will yield the set of op-
erations of the classification class. Hence op(CH) =
{ak | 〈ak, 〈s, s′〉〉 ∈ Tok(CH)}. Similarly, op(token) will
yield the operation hiding in a single token.

The token set Tok(CH) is then a disjoint union of interpre-
tations, each partition contains an entire second-order logic
model. The second-order logic used is tightly constrained for
the application in this paper. There is no explicit quantifying
over function variables (or predicates), hence the moniker
free-variable. The implicit universal quantification over free
function variables is bounded by the classifications needed
to evaluate the propositions, it is bounded by the structure of
the system being considered.

4.1 The Classifications H and L

We carry out the definitions for the H side, the L side
is analogous. The H has the same proposition set as CH

and as tokens pairs of the form 〈uH ak, 〈s, 〈(), s′〉〉〉. The
computation uHak is a computation in S . The definitions

uH 〈ak, 〈s, s′〉〉
def
= 〈uH ak, 〈s, s′〉〉, deHf

def
= λv.π2(f v)

(where π2 projects the second element of a pair) are used
to construct the infomorphism from CH to H which is

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 37

the identity on the propositions and is a projection πCH
:

Tok(H)→ Tok(CH) on the tokens with the definition

πCH
〈uH ak, 〈s, 〈(), s′〉〉〉

def
= 〈deH (uH ak), 〈s, s′〉〉,

where s ak−−→ s′. It is easily seen that πCH
◦ uH = 1Tok(CH)

and uH ◦ πCH
= 1Tok(H). That this is an infomorphism

is by stipulation. The proposition sets are the same and
the token sets are isomorphic. No new constraints will
hence be generated and the old one is preserved (see the
H = StateT Hi Id rule below).

In the sequel, op(H) = {f | 〈f, 〈s, 〈(), s′〉〉〉 ∈
Tok(H)} ⊆ S (). Computations used in op(H) and op(L)
are of type a→ t× a. The two statements D := D + 1 and
D := D − 1 are compiled into

inc = [[D + 1]] ?S λv.uH(D 7→ v),

dec = [[D − 1]] ?S λv.uL(D 7→ v)

and hence op(H) = {inc, ηS} and op(L) = {dec, ηS}.
One might consider treating the construction of H to be
analogous to the monad transformer StateT . The Hik is a
construction diagram where the projections deconstruct the
channel. Thought of in this way, then

D = V CH
a(D = V)

StateT Hi Id
D = V H a(D = V)

becomes simply the sequent in CH moved forward (the
sound direction) along an infomorphism.

4.2 The Classification K

Let X ∈ {H,L}, and for all tokens β in X , let β |=X

ΦX . The sequents

ΦX ∧H(D = V) ∧ L(D = U) K

H(a(D = V)) ∧ L(b(D = U))

will be evaluated using the monad K where
K = StateT Hi (StateT Lo) Id . The tags H and L
indicate from which classification the propositions came and
are the result of the infomorphisms from H and L being
injections on propositions. We let the ΦX be unaltered by
the injections from H and L and note that

ΦX ∧ D = V X x(D = V)

holds in X where x = a if X = H , and x = b if X = L. The
operations in K will be restricted to the operations injected
by outer ◦ uH and inner ◦ uL.

The construction for the channel K acts like the monad K .
Specifically, the sequents of H are operated on by “wrapping
them” with L sequents. In our simple case, the sequent
transformation can be constructed with the rule:

ΦH ∧ D = V H a(D = V) or
ΦL ∧ D = U L b(D = U)

K
ΦX ∧H(D = V) ∧ L(D = U) K

H(a(D = V)) ∧ L(b(D = U))

This is two rules with ΦX being appropriately ΦH or ΦL.
The computations necessary for separation are those injected
into the monad K using outer(uH a) and inner(uL b).
These computations are of type a→ b→ t× a× b. Tokens
in K are of the form 〈f, 〈s, q, 〈〈(), s′〉, q′〉〉〉. In our sample
system, f ∈ {outer inc, outer ηS, inner dec, inner ηS}.
More generally,

op(K) = {outer f | f ∈ op(H)} ∪
{inner f | f ∈ op(L)}.

The infomorphism π

H : H →K has a token morphism πH .

Definition 4.2.1 Let prjH(t, a, b) = (t, a) and prj(t, a, b) =
(t, b) and

deKHf
def
= λv.prjH(f v undefined),

deKLf
def
= λv.prjL(f v undefined),

then πH : Tok(K) → Tok(H) and πL : Tok(K) →
Tok(L) are defined as

πH〈f, 〈s, q, 〈〈(), s′〉, q′〉〉〉
def
= 〈deKH f, 〈s, 〈(), s′〉〉〉,

πL〈f, 〈s, q, 〈〈(), s′〉, q′〉〉〉
def
= 〈deKL f, 〈q, 〈(), q′〉〉〉.

These definitions reveal the objects K () and Tok(K)
act like products. Since op(K) ⊆ K , these projections
may be restricted to op(K). The classification K ′ where
Prop(K ′) = Prop(K), Tok(K ′) = Tok(H)× Tok(L) is
the co-limit of H and L (recall colimits in the category of
classifications entails being a limit on tokens). Hence there is
a pair of infomorphisms k : H →K ′ and k′ : L→K ′. It is
an easy observation that the restriction of an infomorphism
from restricting the domain of the token map is still an
infomorphism. Since Tok(K) ' Tok(H) + Tok(L), the
restriction of k and k′ to Tok(K) yields infomorphisms
connecting H with K and L with K.

Theorem 4.2.2 For all β ∈ Tok(K), β satisfies

ΦX ∧H(D = V) ∧ L(D = U) K

H(a(D = V)) ∧ L(b(D = U))

From the fact that the morphisms from H and L to K
are infomorphisms, the two sequents

ΦH ∧H(D = V) KH(a(D = V)),

ΦL ∧ L(D = U) KL(b(D = U))

are constraints holding in K. The usual rules of classical
logic then underwrite the theorem.

38 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

Theorem 4.2.3
deKH ◦ outer = 1op(H);

deKL ◦ inner = 1op(L).

This theorem says that outer and inner are reversible
using the projections from op(K). A consequence of this is
that op(K) act like a disjoint sum with outer and inner
being the injections:

Corollary 4.2.4 Let g : op(H) → D and g′ : op(L) → D,
then there is a unique k : op(K) → D such that g factors
into k ◦ outer and g′ into k ◦ inner.

Theorem 4.2.5
(deKH ◦ inner ◦ uL)f = ηS();

(deKL ◦ outer ◦ uH)f = ηS().

This says that injecting a computation from op(L) into
op(K) results in a computation whose H component is the
identity computation in op(H), i.e., ηS() = uH 1Tok(Hi1).
A similar statement holds for H . Notice that 1op(H) :
op(H)→ op(H) while ηS() ∈ op(H).

Theorem 4.2.6

β ∈K implies

(op ◦ πH(β) 6= ηS () and op ◦ πL(β) = ηS ()) or

(op ◦ πH(β) = ηS () and op ◦ πL(β) 6= ηS ())

This theorem is an easy consequence of outer and inner act-
ing like injections to the parameterized disjoint sum op(K)
and the projections πH and πL revealing the components of
the elements injected.

Corollary 4.2.7 For all tokens β ∈K, β satisfying

ΦX ∧H(D = V) ∧ L(D = U) K

H(a(D = V)) ∧ L(b(D = U))

implies either X = H and b = 1Lo, or X = L and a =
1Hi.

Incidentally, the sequents in the conclusion of the theorem
can be seen in model theoretic form in [18] although they
were developed independently from the structure of the
classifications involved.

4.3 The Classification R

The computations R() are on a bijective correspondence
with lists of operations from K (). The injection step : K →
R with the definition:

step x
def
= ρ(x ?K (ηK ◦ δ))

is not fundamentally changing the computation x but merely
adding some bookkeeping. The following theorem shows that
step is reversible:

Theorem 4.3.1 run ◦ step = 1S().

Let the infomorphism from K to R be the identity on
types. Tokens of R are of the finite and infinite sequences
〈σ0, . . . σn−1〉, 0 ≤ n ≤ ∞ such that each σi has the
form 〈step f, 〈s, q, 〈〈(), s′〉, q′〉〉〉 for 〈f, 〈s, q, 〈〈(), s′〉, q′〉〉〉
a token K. Also, it is required for

σi = 〈f, 〈s, q, 〈〈(), s′〉, q′〉〉〉, and

σi+1 = 〈f ′, 〈ŝ, q̂, 〈〈(), ŝ′〉, q̂′〉〉〉,
that

(i) s′ = ŝ and q′ = q̂ and
(ii) s(D) = s(V) and q(D) = q(U).

(i) allows for only valid computation sequences to appear
in Tok(R). (ii) allows us to disregard states for which any
other values will cause the sequents

ΦX ∧H(D = V) ∧ L(D = U) K

H(a(D = V)) ∧ L(b(D = U))

to hold spuriously by making the antecedent false.
The function step can be extended to work on Tok(K)

by

step〈f, 〈s, q, 〈〈(), s′〉, q′〉〉〉 def
= 〈step f, 〈s, q, 〈〈(), s′〉, q′〉〉〉

For any tokens γ ∈ Tok(R) such that step β = γ, we let
γ |=R Q iff β |=K Q. This will not cause any new proposi-
tions to hold in R. Now let σ |=R Q iff for all i, σi |=R Q.
run can be extended and the function runi defined thusly:

run〈step f, 〈s, q, 〈〈(), s′〉, q′〉〉〉 def
= 〈f, 〈s, q, 〈〈(), s′〉, q′〉〉〉,

runi〈σ0, . . . σn−1〉 = run σi, i < n.

Theorem 4.3.2 〈step, runi〉 is an infomorphism for all i.

The following Lemma says that for any token σ ∈ R is
composed of a sequence of actions from the High or Low
side and that each High action is paired with the identity for
the Low side and visa versa:

Theorem 4.3.3 For all tokens σ ∈ R, for all i, σi satisfies
either op ◦ πH ◦ run(σi) 6= ηS, op ◦ πL ◦ run(σi) = ηS, or
op ◦ πL ◦ run(σi) 6= ηS, op ◦ πH ◦ run(σi) = ηS.

The following theorem is valid by pushing the analogous
sequent in K forward along the infomorphism from K to R
and the previous Lemma.

Corollary 4.3.4 (Separation) For all tokens σ ∈ R, for all
i, σi satisfies

ΦX ∧H(D = V) ∧ L(D = U) R

H(a(D = V)) ∧ L(b(D = U))

and either X = H and b = 1Lo, or X = L and a = 1Hi.

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 39

All that is left to to define that the sequents in the theorem
hold of all tokens σ ∈ R just when it holds for all σi. These
sequents are a second-order invariants over all tokens of R;
the tokens represent all valid computation sequences aug-
mented with some valuation information for logic formulas.
It is by accident that these sequents are satisfied by all the
σ ∈ Tok(R) as opposed to the individual σi. This happened
by forcing the condition (ii) in the specification of Tok(R).
(ii) is necessary to define the infomorphism from K to R.

Generalizing from Isolation to Noninterference.

Separation in this paper might more accurately be termed
“isolation” where High and Low have no interference with
each other. It is easy to change this for High having complete
access to its D and low’s D and Low having only access to
its D. Put quickly, one half of the logical work disappears as
there would then be counter-examples to theorems implying
High has no access to low’s D.

The relation ≈L of Background can be defined on Tok(R)
by using the projections taking Tok(R) to Tok(K) to
Tok(L) and then projecting out the operation using op . The
fact that the high and low variables D are used in this paper
is immaterial; they could be replaced by streams of values
read from an outside environment. Allowing the k index of
Hik and Lok to be larger provides for more operations than
the simple increment and decrement.

5. Conclusion
The channel theory used in the proof of separation was

able to track the monadic construction of the system. We
feel this is an important organizing principle akin to a natural
deduction system. This allows channel theory to distribute the
workload of the proof over its classification structure much
like a natural deduction system allows one to distribute the
workload into subproofs. Each classification was relatively
simple. The token sets from H,L and above were extracted
from the monad applications. The token sets for Hik,Lok
and below were taken from some pre-monadic and standard
Floyd-Hoare soundness conditions. The central driving force
for the simple logic statement came from CH and the
recognition that the statement of separation could use a
second-order free-variable logic sequent. This sequent arose
by using a co-channel to represent the common abstraction
leading to the second order sequent.

The choice of second-order free-variable logic simplifies
the exposition of separation as a meta-statement about the
system. The implicit quantification inherent in any free-
variable formal system becomes tamed by the use of channel
theory to bound the quantification to operations used in the
system.

The system analyzed could have been made more complex
without substantial changes to either the overall proof or
the way the information flows in the System Classification

diagram. There are two flows of interest here, or rather one
flow and a lack of flow. Information flows from bottom to
top in that diagram. It is a logical flow about the system. The
lack of flow between H and L is really the meta-statement
about the system that is the essence of separation. This was
a lack a flow of information in the system. Complicating the
system with shared kernel variables (or processor registers)
would be confined to K. Once the basic separation properties
could be proven there, they would immediately flow to R.

A planned extension is probability analysis. The kernel
computations in K might include “leakage”. This will be
modeled in K using sequents that are not entirely valid,
but only partially valid. The required change for channel
theory is to include this notion via non-normal tokens in
Tok(K) which are counter-examples to the theorem express-
ing non-information flow from H to L. Probabilities come
either defined mathematically or empirically via tests. If K
can be entirely mathematically defined, the probabilities are
computed ahead of time. This would allow different design
decisions to be made. If the probabilities are empirically
determined, say if the system must perform a lot of action
with an environment giving rise to the leakage, then steps
can be taken for redesign of the system.

Another area of extension is in hardware-software code-
sign. With a mathematically powerful tool such as monads,
the interaction between hardware and software can be ab-
stracted. Channel theory will provide the logical layer for
formally proving security properties about such designs. The
goal is modular designs where proofs of system properties
are similarly modularized by following the monadic structure
of the system.

References
[1] M. Abadi, A. Banerjee, N. Heintze, and J. Riecke. A core calculus of

dependency. In Proceedings of the Twenty-sixth ACM Symposium on
Principles of Programming Languages, pages 147–160, January 1999.

[2] G. Allwein A Qualitative Framework for Shannon Information Theo-
ries. In Proceedings of the New Security Paradigms Workshop, 2004,
ACM Press, 2005.

[3] J. Barwise and J. Seligman. Information Flow: The Logic of Dis-
tributed Systems. Cambridge University Press, 1997. Cambridge Tracts
in Theor. Comp. Sci. 44.

[4] K. Crary, A. Kliger, and F. Pfenning. A monadic analysis of
information flow security with mutable state. Journal of Functional
Programming, 15(2), Mar. 2005.

[5] E. W. Dijkstra. My recollections of operating system design. SIGOPS
Oper. Syst. Rev., 39(2):4–40, 2005.

[6] J. A. Goguen. Institutions: Abstract model theory for specification and
programming. CLSI Research Reports, 85-30:1–73, 1985.

[7] J. A. Goguen and J. Meseguer. Security policies and security models.
In Proceedings of the 1982 Symposium on Security and Privacy (SSP
’82), pages 11–20. IEEE Computer Society Press, Apr. 1990.

[8] W. Harrison. The essence of multitasking. In 11th International Con-
ference on Algebraic Methodology and Software Technology (AMAST
2006), pages 158–172, July 2006.

[9] W. Harrison. Proof abstraction for imperative languages. In Proceed-
ings of the 4th Asian Symposium on Programming Languages and
Systems (APLAS06), pages 97–113, 2006.

40 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

[10] W. Harrison and J. Hook. Achieving information flow security through
precise control of effects. In 18th IEEE Computer Security Foundations
Workshop (CSFW05), pages 16–30, Aix-en-Provence, France, June
2005.

[11] W. Harrison and J. Hook. Achieving information flow security through
monadic control of effects. Invited submission to: Journal of Computer
Security, 2008. 46 pages. Accepted for Publication.

[12] S. Liang. Modular Monadic Semantics and Compilation. PhD thesis,
Yale University, 1998.

[13] E. Moggi. An abstract view of programming languages. Technical
Report ECS-LFCS-90-113, Dept. of Computer Science, Edinburgh
Univ., 1990.

[14] E. Moggi. Notions of computation and monads. Information and
Computation, 93(1):55–92, 1991.

[15] S. Peyton Jones, editor. Haskell 98 Language and Libraries, Revised
Report. Cambridge Univ. Press, Apr. 2003.

[16] A. M. Pitts. Evaluation logic. In Proc. of the IVth Higher Order
Workshop, pages 162–189, 1990.

[17] J. Reynolds. Separation logic: a logic for shared mutable data
structures. In Proceedings of the 17th Annual IEEE Symposium on
Logic in Computer Science (LICS’02), 2002.

[18] J. Rushby. Proof of separability: A verification technique for a class of
security kernels. In Proceedings of the 5th International Symposium
on Programming, pages 352–362, Berlin, 1982. Springer-Verlag.

[19] L. Schäder and T. Mossakowski. Monad-independent Hoare Logic in
HasCasl, volume Fundamental Approaches to Software Engineering,
LNCS 2621, pages 261–277. Springer–Verlag, 2003.

[20] C. E. Shannon. A mathematical theory of communication. Bell System
Technical Journal, 27:379–423, 1948.

[21] S. Zdancewic. Challenges for information-flow security. In Proceed-
ings of the First International Workshop on Programming Language
Interference and Dependence (PLID’04), 2004.

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 41

"It Takes a Village" (to create a science): From crypto
science to security science

S. A. Borbash, W. B. Martin, R. V. Meushaw
Information Assurance Research, National Security Agency

Fort Meade, MD, USA

Abstract - Government funding for the solutions to security-
related problems has increased significantly in the last
decade, along with interest in these problems from researchers
from many fields. Much of the funding has been in near-term
applications to specific systems (health care records;
automotive security; remote controls; military applications,
etc.), while there has not been enough in support of more
general solutions. Many people have agreed recently that it
would be useful to incentivize more theory or "basic science"
to support security. This presentation will review current
government efforts to build stronger scientific foundations for
cyber security.

Keywords: security, science, theory

1 Introduction
 U. S. Government funding for the solutions to security-
related problems has increased significantly in the last
decade, along with interest in these problems from
researchers from many fields. Much of the funding has been
in near-term applications to specific systems (health care
records; automotive security; remote controls; military
applications; etc.), while there has not been enough in support
of more general solutions. Many people have agreed recently
that it would be useful to incentivize more theory or "basic
science" to support security. This presentation will review
current government efforts to build stronger scientific
foundations for cyber security.

The “science of security” may be defined in different
ways, and certainly there are subtopics of security that have
scientific foundations, such as cryptography. However,
cryptography is inadequate to address all the current security
problems. Many have argued that a science of security, since
it is concerned ultimately with people, will have to address
economic and usability issues. Therefore some effort has been
needed to assemble the research community to better define
what to pursue to improve security science. These have
included both an NSA, NSF and IARPA sponsored workshop
in 2008 in Berkeley to bring together researchers from a
broad array of fields to catalyze new thinking on security at a
more fundamental level, and “Science of Cyber-Security,” an
overview report on the problem of undergirding current

practice with science, produced by the JASON group of the
Defense Department in November 2010.

There are also funds available to seed promising
research. For example, “Science of Cyber Security” is a new
Air Force Office of Scientific Research MURI, and NSA has
provided funding to the NSF TRUST program to emphasize
security science. In the longer term the federal
Comprehensive National Cybersecurity Initiative is expected
to be a source of more funds.

NSA is working to help coordinate these research
efforts. One effort is to provide a collaboration environment
where people can participate remotely in program review
meetings, view current problem descriptions, and find
relevant research publications. This “virtual organization” of
security science researchers is currently being created as a
website with the NSF Cyber Physical Systems program. Part
of the goal of this site will be to connect many of the science-
of-security-related research programs run within the federal
government at this time. This should make it easier for all
researchers, and all program managers, to see what the others
are doing.

2 References
[1] NSF/IARPA/NSA Workshop on the Science of Security,
Berkeley CA Nov. 2008. Retrieve from sos.cs.virginia.edu

[2] “Science of Cyber-Security,” JASON report JSR-10-102.
Retrieve from www.fas.org/irp/agency/dod/jason/cyber.pdf.
Nov. 2010.

[3] NSF TRUST Science and Technology Center. Visit
www.truststc.org

[4] Science of Cyber Security, AFOSR FY2011 MURI Topic
#16. ONR Broad Agency Announcement 10-026, p.51

[5] Comprehensive National Cybersecurity Initiative. Visit
www.whitehouse.gov/cybersecurity/comprehensive-national-
cybersecurity-initiative

42 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

SESSION

INVITED SESSION - RC + LBS: THE
CONFLUENCE OF SECURE HARDWARE AND

PROGRAMMING LANGUAGES

Chair(s)

PROF. WILLIAM L. HARRISON

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 43

44 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

3-D Extensions for Trustworthy Systems
(Invited Paper)

Ted Huffmire∗, Timothy Levin∗, Cynthia Irvine∗, Ryan Kastner† and Timothy Sherwood‡
∗Department of Computer Science

Naval Postgraduate School, Monterey, CA 93943
Email: {tdhuffmi,levin,irvine}@nps.edu

†Department of Computer Science and Engineering
University of California, San Diego, La Jolla, CA 92903

Email: kastner@cs.ucsd.edu
‡Department of Computer Science

University of California, Santa Barbara, Santa Barbara, CA 93106
Email: sherwood@cs.ucsb.edu

Abstract
Trustworthy system development entails a high non-

recurring engineering (NRE) cost together with a low volume
of units over which to amortize that cost. For example, the
potential for developmental and operational attacks against
hardware requires countermeasures that make it very expen-
sive to design and manufacture custom hardware used to
build high assurance systems. To address these problems, we
propose an approach to trustworthy system development based
on 3-D integration, an emerging chip fabrication technique
in which two or more integrated circuit dies are fabricated
individually and then combined into a single stack using
vertical conductive posts. With 3-D integration, a general-
purpose die, or computation plane, can be combined with a
special-purpose die, or control plane. We discuss the security
advantages of using 3-D integrated hardware in sensitive
applications, where security is of the utmost importance, and
we outline problems, challenges, attacks, solutions, and topics
for future research.

I. INTRODUCTION

Hardware-oriented security is growing in importance as
attackers increasingly target the lowest level of system abstrac-
tion. 3-D integration is an emerging technology for designing
efficient chips by stacking two or more integrated circuit (IC)
dies and connecting them with conductive posts. Unlike tradi-
tional coprocessors, a 3-D integration design approach offers
the ability to monitor and even override internal structures of a
processor. For example, on-chip bus traffic can be monitored,
and bus connections can be disabled. With these capabilities,
3-D integration can be used to provide secure alternate services
(e.g., cryptographic processing at much higher bandwidth than
a coprocessor), isolation, and passive monitoring for mass-
produced processors.
In our basic paradigm, a 3-D chip consists of one die

that is a commodity microprocessor and another die that
contains application-specific security functionality; we refer to
the commodity die as the computation plane and the custom

Routers

CoresTS CS U (U-TS)

Isolated

Fig. 1. Isolated cores, surrounded by 2-D moats, and network-on-chip routers.
Here, using two IC planes, the routers help to enforce a Multilevel Security
(MLS) policy on information flow in the lower plane. In this example, each
core has been assigned a label of either TOP SECRET (TS), SECRET (S),
CONFIDENTIAL (C), or UNCLASSIFIED (U).

die as the control plane (or resource1 plane in situations
where resources are simply made available). Figure 1 shows
an example system in which multiple CPU cores reside in
the computation plane, and routers reside in the control plane.
The control plane and computation plane can be fabricated
at separate foundries and conjoined in a third facility. When
the control plane contains mechanisms that enforce a policy on
the computation plane, to achieve a requisite level of trust, the
fabrication of the control plane and the conjoining operation
can take place in a trusted foundry.
Developing high assurance systems is costly. Our approach

has the potential to reduce the cost of developing hardware
for high assurance systems by joining a mass-produced com-
putation plane with a custom control plane. Our approach
provides several advantages, including (1) dual use of the
computation plane, which can be optionally combined with a
control plane housing application-specific security functions;
(2) physical isolation and logical disentanglement of security
functions in the control plane from the non-security circuitry
in the computation plane; (3) controlled lineage (e.g., use
of a trusted foundry to manufacture the control plane); (4)

1Resources are the totality of all active and passive entities on a chip, across
a wide range of abstractions. For example, a storage buffer, an accumulator,
and a bus are resources.

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 45

Native Disabling

Transistor
(Connection)

Resistor-
Transistor
(Severing)

Tapping Rerouting Inserting Overriding

Post to the 3-D control plane Signal flow

Fig. 2. Circuit-level primitives for trustworthy 3-D design [28]. The disabling circuit can stop a signal in the computation plane from flowing, based on the
control plane’s command, which is sent through a dedicated post. The tapping circuit copies a signal from the computation plane to the control plane. Two
posts are needed: one to carry the signal to the control plane and another for the command to connect the signal. The rerouting circuit combines tapping and
disabling so that the original signal only goes to the control plane. The inserting circuit carries a signal from the control plane to a circuit on the computation
plane. The overriding circuit combines inserting and disabling, first disabling the original signal in the computation plane and then introducing a new signal
from the control plane.

high bandwidth communication and low latency between the
computation plane and components in the control plane such
as coprocessors, memory, or other devices; and (5) direct,
granular access by the control plane to internal structures in
the computation plane.
The threat model we address is that of malicious hardware

and software in the computation plane, although for this work
we assume that the primitives we introduce on the computation
plane remain intact, e.g., in the face of various malicious
inclusions and probing of the computation plane.
In this paper, we present concepts and ideas for 3-D design

based on a system security architecture that supports a variety
of policies including those that specify legal communication
between policy equivalence classes2. We explore minor mod-
ifications to the 3-D design flow to support these methods.
We also describe new circuit-level primitives to support this
technique and introduce the use of distinct layers available in
a 3-D IC as a primitive for the physical isolation of hardware
components. Specifically, the contributions of this paper are:

• The application to 3-D IC design of a proven design
practice based on a system security architecture.

• A general-purpose circuit-level primitive to support this
design approach by allowing different control planes to
be conjoined with the same computation plane (or vice-
versa).

• A diode circuit-level primitive to support this approach
by enforcing the one-way flow of information in a 3-D
IC.

• A design approach that uses distinct IC layers, with

2The system resources are partitioned into separate classes, where each
member of a class is treated equivalently with respect to the security policy.
Technically, an equivalence class is formed by a set and binary relation. Here,
the set is all system resources, and the relation is “has the same policy as.”

separate lineage and developmental assurance, to achieve
physical separation of hardware components, providing
secure application capabilities even in the presence of an
untrusted processor and OS software.

• Requirements for automated 3-D IC design tools for the
physical layout of components. Since fully automated
Electronic Design Automation (EDA) for 3-D circuit
design and layout are still evolving, this paper provides
high-level requirements analysis aimed at influencing
their development so that security is adopted as a princi-
pal constraint in the practice of 3-D IC design.

• Offloading of testing circuitry to removable test planes to
reduce the cost of design for test.

II. STANDARDIZATION OF INTERFACES

The ability to conjoin different control planes with the same
computation plane allows a variety of application-specific
security enhancements (e.g., policy enforcement mechanisms)
while reusing a mass-produced computation plane. To ac-
complish this, however, requires a standard interface to the
computation plane. A standardized interface also enables a
mass-produced control plane (e.g., a 3-D crypto coprocessor)
to be conjoined to a variety of computation planes. Achieving
standardization requires overcoming several challenges:

• Standard placement of posts
• Diverse manufacturing processes (e.g., face-to-face vs.
face-to-back bonding)

• Diverse electrical and timing properties of dies
• Diverse sizes and form factors of dies
• Diverse packaging options for 3D-ICs
• Standardization places constraints on 3-D floor planning
and layout of TSVs

46 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

Tapping
Assured

Transistor
(Connection)

Resistor-Transistor
(Severing)

Inserting

Post to the 3-D control plane

Tapping Assured
Inserting

Signal Flow

Fig. 3. Primitive TSV functions and corresponding selectively refined functions. The diode is placed between the native (computation plane) circuit and the
TSV receptacle, such that the diode controls the flow regardless of how the TSV receptacle is used by the control plane.

The basic idea is the identification of a standard set of logical
TSV receptacles on the computation plane, each related to
a basic function (e.g., tapping the internal bus, tapping the
instruction pipeline, etc.). As long as the basic set of TSV
receptacles is present, then variance in their physical layout
from processor type to processor type can be accommodated
in simple realignment (e.g., with a hardware adaption layer)
of the control plane. Furthermore, reusing the precise physical
layout of either a control plane or a computation plane is both
more challenging and less interesting than reusing the higher-
level design of a custom plane.

A. Standard Primitives

In this section we introduce two novel circuit-level prim-
itives, a diode and a general-purpose TSV receptacle, that
support our design approach. Previous work introduced five
primitive functions for controlling information flow between
planes: disabling, tapping, rerouting, inserting, and overriding,
as shown in Figure 2. First, we introduce the diode and two
assured functions that result from its application.
1) Diode: A diode, as shown in Figure 3, allows informa-

tion to flow in only one direction from one component to an-
other3. Such an arrangement can enforce a policy requiring that
information can flow from a low confidentiality component to
a high confidentiality component4 but not vice-versa. In other
words, in a system whose resources have been partitioned
into policy equivalence classes, a diode can be applied to a
primitive to enforce the one-way flow of information between
these classes. Diodes provide a granularity of enforcement
related to the granularity of components that they connect.
Diodes can be static or programmable, and they can ensure
that vertical posts do not violate the inter-plane policy, e.g.,
by placing diodes between a post and the circuitry of a plane.

3Note that one-way communication can be enforced using other electrical
techniques besides a diode
4Given a lattice of confidentiality markings, “high” markings are those that

are closer to the top (the universal upper bound), and “low” markings are
those that are closer to the bottom (the universal lower bound).

We expect, however, that this hard-wired enforcement can
have unforeseen effects, e.g., on the performance of bidi-
rectional communication protocols, and that programmable
diodes would provide flexibility in the designs supported.

The primitives each provide an environment for receiving
one or two posts. We refer to this computation plane environ-
ment as a TSV receptacle/socket.

2) Generic TSV Receptacle: A general-purpose TSV recep-
tacle can be used to support multiple control plane applications
with the same computation plane, e.g., when different control
planes are used or when the applications on a given control
plane are reconfigured. These generic TSV receptacles are
used to anchor posts on the computation plane to minimize
the number of TSV receptacle types that the processor manu-
facturer must produce and allows a given TSV receptacle to be
used for different purposes from application to appplication.
Supporting these features requires identifying standard loca-
tions for posts on the computation plane such that generality is
balanced against the hardware resources (e.g., posts) required
(see future work).

Figure 4 shows a general-purpose TSV receptacle that
supports any of the five basic circuit-level primitives. To make
use of a TSV receptacle, signals on the control plane determine
which primitive is active at a given point in time. Thus,
different 3-D applications can use the same TSV receptacle
in a different way. Only one configuration of the Generic
TSV Receptacle is required even though, for example, one
application might read from a TSV receptacle, and another
might override circuits with it.
A generic TSV receptacle provides design flexibility at

the cost of additional circuitry and posts. The Generic TSV
Receptacle accepts four posts (three control and one data)
implementing four primitive features internally: one tapping
or insertion feature and two disabling features. These are
combined to implement disabling (i), tapping (ii and iii),
rerouting (ii, iii, and iv), inserting (ii and iii), overriding (i, ii,
and iii), and native (none of the posts), which has no effect.

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 47

i

ii

iii

iv

Fig. 4. Generic TSV Receptacle. A general-purpose TSV receptacle
supports any of the basic circuit-level primitives (disabling, tapping, rerouting,
inserting, and overriding). Signals from the control plane determine which
primitive is active at a given point in time. Thus, the application on each
different control plane could use a given TSV receptacle in a different way:
one application might tap a TSV receptacle, and another might override it.
The control posts are i and ii, and the data posts are iii and iv.

The Generic TSV Receptacle could include diodes to assure
that the information flows of each post are precisely controlled,
in which case the diode for post iii could be programmable to
support reading or writing.
3) Application Classes: This section describes several cat-

egories of 3-D applications that can be built using our frame-
work [28], [8]:

• Secure Alternate Service. This category provides a trust-
worthy enhancement to the service provided by the com-
putation plane. Examples include ciphers, key storage,
compression, and network-on-chip (NoC) routers.

• Isolation and Protection. This category actively overrides
the computation plane to enforce access control, eliminate
points of interference, or disable communication. Exam-
ples include the 3-D cache eviction monitor described
in [28] and enforcing a policy on buses or NoC routers
in the computation plane, as shown in Figure 6.

• Passive Monitoring. This category passively monitors the
computation plane. Examples include audit, information

flow tracking, and runtime checks.

III. ISOLATION OF HARDWARE EQUIVALENCE CLASSES

Arranging system components to structurally support a
security policy results in a security architecture [14]. Re-
alization of a multi-level security (MLS) policy in a 3-D
system requires establishing (1) policy equivalence classes;
(2) isolation of components according to those classes; and (3)
controlled interaction between classes according to an inter-
class communication policy.
4) Policy Equivalence Classes: Grouping similar entities

into a domain or equivalence class helps simplify the design
of secure systems.

CPU - U

CPU - SCPU - S

CPU - C

CPU - TS

TSV

TSV

Drawbridge

Drawbridge

Plane 3

Plane 2

Plane 1

Fig. 5. A hypothetical layout of CPUs on several computation planes, where
each CPU is a point in the lattice. This system consists of three layers: the
lower layer contains a CPU with an UNCLASSIFIED (U) label and a CPU
with a CONFIDENTIAL (C) label; the middle layer contains two CPUs with a
SECRET (S) label; and the upper layer contains a CPU with a TOP SECRET
(TS) label.

Consider a system security policy for a 3-D IC in which the
computation plane contains several cores: a given application
workload may require that two cores devoted to a sensitive
application be isolated from the rest. To achieve isolation,
computational components belonging to the same equivalence
class can be placed on the same layer (die). On the other
hand, multiple equivalence classes may reside on a layer (see
the lower plane in Figure 5) if they are spatially or otherwise
separated. Thus, the dies and cores can be partially ordered
with strong separation, as shown in Figure 5. To achieve
controlled sharing, only specified inter-die posts are permitted,
and the 3-D design is statically checked to ensure that posts do
not violate the policy. In other words, the physical separation
between layers and between cores on a layer result in a
conceptual moat, and connections that cross moat boundaries
(viz., drawbridges), must conform to the policy, as was shown
to be effective in [7]. For generality, the diodes and junctions
in Figure 5 would be programmable, to support a wide range
of policies.
3-D integration offers the unique capability to physically

isolate hardware components by arranging circuitry into dis-
tinct layers. We extend the idea of a 2-D moat into 3-D,

48 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

C
on

tr
ol

Pl
an

e
C

om
pu

ta
tio

n
Pl

an
e

 Reference Monitor LogicTSV

Sleep Transistors
Bus is Diabled by

Buffer

busMetal
Layers

Silicon Substrate

vias

Buffer CMOS
Logic

TSV

TSV

TSV

Contact Points

Metal
Layers

CMOS
Logic

Posts Carry Rerouted Signal

Fig. 6. Example of rerouting bus signals in the computation plane through the control plane [28].

in which physical isolation possible with separate layers is
similar to a 2-D moat.

We can use a combination of moats and 3D planes to isolate
the equivalence classes. Moats separate CPUs on a given
plane, and each plane is physically isolated from other planes.
Drawbridges connect different moats on the same plane.

The isolation need not be complete. The standard MLS
policy for information flow allows a “downward” flow in the
lattice. Diodes and other electrical mechanisms can enforce
such a one-way flow and we can use automated analysis
techniques such as information flow tracking [27], [25] to
verify that the flows conform to the policy.

To facilitate the controlled interaction of isolated layers, it
is necessary to ensure that only specified vertical connections
exist between these layers, where the specification includes
directionality of information allowed between layers consistent
with the MLS sensitivity of the layers. We also extend the
idea of a 2-D drawbridge into 3-D, in which the architectural
integrity of vertical connections between layers must be stat-
ically checked, similar to a 2-D drawbridge.

Furthermore, it is possible to use 2-D moats and draw-
bridges within an individual layer, when design requirements
(e.g., cost limitations) dictate that more than one equivalence
class must reside on a layer. In order to separate the cores
residing on a given chip, various structures must be partitioned
and/or virtualized, including on-chip memory and compu-
tational components. Other points of interference between
cores that must be constrained include interconnect (e.g., on-
chip bus or on-chip network), I/O devices, and dependencies

(e.g., power, I/O, privilege, etc.). Other structures (e.g., micro-
connections not visible at a high level of system abstraction)
may also need to be partitioned.

5) Core Isolation: Isolation is a foundational concept in
computer security [24]. At the hardware level, it is possible
to isolate circuitry spatially. Hardware functionality can be
physically isolated by using air gaps or other techniques
described as moats and drawbridges [7], [9]. To facilitate the
controlled interaction between isolated equivalence classes, it
is necessary to ensure that only specified connections exist
between these domains. In the case where system components
communicate over a shared bus (or on-chip network), the
interconnect must be designed to prevent illegal information
flow between equivalence classes, e.g., using diodes or similar
arrangement to control the direction of flow.

6) Inter-Class Communication Policy: At the highest level
of abstraction, an inter-class communication policy for a 3-D
system must first specify what the equivalence classes are and
what information flows are permissible between the classes.
Then, the system resources should be partitioned with respect
to the equivalence classes. Figure 5 shows an example of a
lattice policy. Barring the use of a time sharing approach,
the policy should also specify which equivalence class each
core is assigned. A given equivalence class may span multiple
dies and even off-chip I/O and memory traffic. This high-level
policy must be mapped to enforcement mechanisms at a lower
level of abstraction, either by a talented human designer or
by automated tools that assist the designer in visualizing the
3-D security architecture and exploring the design space of

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 49

3-D mechanisms. Finally, the flows allowed between classes
are chosen, providing a partial order relation required of the
lattice. For example, in an MLS policy, we order the classes
(TS ≥ S ≥ C ≥ U) and allow a flow from class A to class B
only if B ≥ A [3].

TS

C

S

U

Fig. 7. Top view of a hypothetical multi-core integrated circuit. Four
regions of the chip correspond to the hierarchical General Service (GENSER)
equivalence classes of TOP SECRET (TS), SECRET (S), CONFIDENTIAL
(C), and UNCLASSIFIED (U).

Figures 7 and 8 show examples of more complex 3-D secu-
rity architectures. The system shown in Figure 8 obeys an MLS
policy, as described above. Diodes enforce the one-way flow
of information. Junctions, which are two-way connections,
connect memory and cores with equal labels. Programmable
junctions can be set to act as a diode for which the layer
reads the TSV, a diode for which the TSV reads the layer, or
a two-way connection.
To avoid the security issues of sharing a CPU between

equivalence classes (e.g., side channels and other covert
channels) we dedicate each CPU to an equivalence class
in our lattice-based policy, and then ensure that unwanted
interference between CPUs is impossible.
Included in the equivalence class of a given CPU are its ded-

icated memory (L1) and any dedicated board-resident devices.
L2 memory may be shared with another CPU only if cache
side channel interference has been eliminated, effectively
virtualizing the L2 cache [29], as shown in Figures 9 and 10.
7) 3-D Design Flow: As the standards for 3-D Electronic

Design Automation (EDA) tools are still emerging, a com-
plete standard design flow is not yet available, as described
in [1], [21], and [15]. Existing design flows are limited to
a specific 3-D fabrication technology and a fixed number
of planes, and there is no standard fabrication technology.
Therefore, talented human designers must balance multiple
constraints simultaneously to achieve the desired design prop-
erties. In a 3-D design flow, the positioning of components
on different layers may perturb the properties achieved on the
individual layers, e.g., vertical proximity may increase thermal
factors.
3-D design is very challenging because the large number of

interacting constraints result in a complex optimization prob-
lem. Specifically, the designer must balance several factors in
achieving overall properties such as performance, bandwidth,
yield, cost, and testability:

• thermal limits, power density, and electrical interference

TS US
Memory
(U-TS)

Memory
(S)

Memory
(TS)

Cores
(U)

Cores
(S)

Cores
(TS)

Diode (Layer Reads TSV)

Diode (TSV Reads Layer)

Junction

CoresTS US (U-TS)

Isolated

(Two-Way Connection)

Fig. 8. Side view of a hypothetical 3-D integrated circuit with seven layers.

• power distribution (current delivery) [11] and power
limits

• clock delivery, timing analysis, and dissimilar clock rates
• packaging, handling, wafer alignment, and bonding
• mechanical stress [2] and metal resistivity/expansion
• via density, via size, via count, and via location
• the number of vertical connections required and the
length of the posts

• variation across planes: dissimilar via resistance and pitch
• I/O, die-to-die signaling, bus fan-in, and bus fan-out

Despite these daunting challenges, numerous 3-D systems
have been built (see Section VII: Related Work), including a
complex processor with stacked memory fabricated at Georgia
Tech [17], [16].

50 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

Cache Manager

L2 $

µP1 µP2

Control Plane

Computation Plane

Post

Fig. 9. System-level view of a two-tier 3-D IC. The computation plane contains a dual-core chip multi-processor and shared L2 cache, all connected to a
shared bus. The control plane contains a cache manager that partitions the shared L2 cache.

Bus

µP 2µP 1

L2

Fig. 10. System-level view of the computation plane of the two-tier 3-D IC
shown in Figure 9.

8) Design Flow Modifications: Our technique involves
making minor modifications to the 3-D IC design flow,
specifically the stage referred to as floor planning, which
is performed after logic synthesis and the validation of the
functional correctness of the circuitry. In other words, the de-
sign is initially agnostic about floor planning, yet partitioning
of certain resources among layers (to respect a policy-based
partial ordering of resources) may be a first-order constraint.
To most effectively use 3-D technology, the designer must

consider the ordering and connections of the 3-D security ar-
chitecture as constraints when performing floor planning. Prior

to floor planning, the designer must already have a coarse-
grained understanding of (1) what computational resources
will reside on which layers; (2) the vertical connections
permitted between layers; (3) the transitive closure of flows
induced by posts; (4) the horizontal connections permitted
between components within a layer; and (5) constraints on 2-
D and 3-D interconnect (e.g., bus or router), such as enforcing
a Time Division Multiple Access (TDMA) scheme.

Arriving at this coarse-grained picture requires the designer
to refine the security architecture. Automated tools can assist
the designer in exploring the design space of 3-D security
architectures and to validate that the security architecture
correctly supports the policy.

A multistep floor planning approach is described in [21],
which involves first assigning blocks to planes (i.e., parti-
tioning) and then allowing blocks to be rearranged within a
plane (i.e., intra-plane moves). Allowing simultaneous inter-
and intra-plane moves results in an unmanageable optimization
problem size. Working within this multistep paradigm, security
constrains the first step when, for example, blocks are assigned
to planes according to the functional relationship between
planes and blocks. Security also constrains the second step
when blocks are rearranged within a plane to achieve the
specified security properties. For example, intra-plane rear-
rangement of blocks results in the positioning of a TS memory
region in one plane directly above a TS core in another plane
and may require the arrangement of air gaps between blocks
within a plane. To decrease the complexity of the optimization
problem, the design tools could be instructed to only allow the

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 51

partial ordering of components rather than the more stringent
requirement of assigning components to specific planes.
Floor planning establishes the precise geometric boundaries

of (1) the computational cores on the layers; (2) the vertical
connections between layers; and (3) the horizontal connections
within a layer. At this stage, it is necessary to statically check
that horizontal connections that cross 2-D moat boundaries
and vertical connections that cross layers (both extended
with transitive relations) do not violate the system security
policy (e.g., checking for extraneous connections between
equivalence classes). If these geometric boundaries of elements
determined during the layout process are specified in the GDS
II database file format, a static analysis program can check the
design for policy conformance by analyzing the GDS II file.

A. Other Uses besides MLS

1) Interconnect Built to Support MLS Policy: As discussed
earlier, an MLS security policy is based on a lattice of
sensitivity labels, e.g., TOP SECRET (TS), SECRET (S),
CONFIDENTIAL (C), UNCLASSIFIED (U). Each resource
controlled by the policy is assigned a label, such that the labels
partition the resources. All of the resources with the same label
are said to be in the same equivalence class.
Lattice-based policies can be generalized beyond those

with national security labels, as long as there is a means of
determining in which equivalence class a resource resides, and
the equivalence classes form a lattice.
2) Self-Protection and Dependency Layering: A secure

application must be protected from attack and must not depend
on any components that are less trustworthy. In a 3-D system,
self-protection requires that the computation plane cannot
short-circuit or surge the power of the control plane, make
requests to the control plane that cause buffers to overflow,
or modify the control plane. Dependency layering requires
that the control plane not request service from or wait on the
computation plane.
This paper does not address package-level concerns related

to I/O and power other than the isolation provided by separate
layers within the enclosure of the package. A more thorough
discussion of the axioms of self-protection and dependency
layering is applied to 3-D IC design in [8].

B. Topology Considerations

The form factor of the dies is a security architecture design
consideration. For example, a small memory tile could be
stacked on top of one moated region belonging to an equiva-
lence class. Provided that its form factor allows it to remain
within the bounds of the moated region on which it is placed,
it should be separate from another memory die stacked on top
(but within the bounds of) another moated region belonging to
a different equivalence class. A wide variety of 3-D structures
are possible in this manner.

IV. POWER AND I/O INDEPENDENCE

A variety of methods for achieving I/O independence for
the control plane are possible [8]. First, the control plane can

be located closest to the I/O and power pins, such that it
provides these services to the computation plane. Otherwise,
wireless methods include capacitive/inductive coupling, short-
range RF, short-range optical, and simply attaching EEPROM.
Wired options include JTAG interface, serial cable, dedicated
pins, TDMA over HyperTransport, and dedicated memory
ranges. Providing an independent source of power to the
control plane can be achieved using the same circuit-level
primitives described above for computation signals. Wireless
power transmission technology is another option.

V. OFFLOADING OF TESTING CIRCUITRY

Design for test circuitry consumes significant die area and
therefore plays a major role in the cost of mass-produced
processors[5], [26]. DFT must not impact performance; must
have a small area cost; allow multiple uses when possible; and
be integrated into the design from the beginning [5].
While 3D-ICs have their own set of daunting test chal-

lenges [13], [30], [19], we argue that significant parts of the
DFT circuitry can be offloaded from the computation plane to
the control plane to reduce area impact. Furthermore, a 3-D
approach can mitigate some security concerns associated with
DFT circuitry. For example, Yang et al. showed that crypto
processors are vulnerable to attacks that use scan-based design
for test to steal crypto secrets [31]. With a 3-D approach, the
test interface does not have to ship with production systems;
instead, only a select number of computation planes are joined
with testing planes to support factory testing.

VI. EXPERIMENTAL FRAMEWORK

We are in the process of preparing a test bench for experi-
mentally validating and demonstrating the effectiveness of our
circuit-level primitives to determine how well they work when
fabricated. The 3-D chip will include a test harness which
will manage the invocation of and vary the inputs to each
circuit-level primitive and will read the outputs to verify that
the expected behavior occurs. The experiment will build the
primitives in different configurations. The frequency at which
a circuit can operate without modification will be compared
against: (1) the frequency at which it can operate with the
circuit-level modifications; and (2) the frequency at which it
an operate with both the circuit-level modifications and the
addition of a control plane.

VII. RELATED WORK

While 3-D integration is an emerging technology, a vari-
ety of 3-D applications have been realized, including imag-
ing [32], medicine [10], particle physics [6], reconfigurable
hardware [23], as well as high-performance microprocessors,
as described in [4], [22], [17], [16], and [12],
A 3-D cache monitor designed to mitigate access-driven

cache side channel attacks in a simultaneous multithreading
processor’s shared memory [29] has negligible computation
plane overhead in terms of area, delay, and performance [28].
The control plane maintains a data structure that records
whether cache lines are protected and for what process. Cache

52 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

evictions of a protected line are denied based on the security
policy. Experiments used an FPGA synthesis tool to collect
area and timing information, comparing the case involving
just the computation plane, the case involving just the control
plane, and the case involving the combined computation and
control plane. Evaluation of the impact of the delay of the
posts was based on data from Loi et al. [18], which found
that the worst-case delay between opposite corners of a chip
to be approximately .29ns, which is too small to affect the
performance of the critical path of the 3-D cache eviction
monitor. Analysis by Mysore et al. showed that the additional
area required for vias is small for 3-D applications that perform
introspection and profiling of the computation plane [20].
This paper builds on earlier work presented in [28] and [8]

that applied 3-D integration to the problem of hardware-
oriented security and trust as well as on the moats and
drawbridges technique developed for Field Programmable
Gate Arrays (FPGAs) presented in [7] and [9]. In addition
to the 3-D circuit-level primitives presented in [28] and [8], in
this paper we discuss an additional circuit-level primitive, the
diode, and we build upon this diode primitive to support policy
enforcement in a 3-D IC. We also introduce a general-purpose
TSV receptacle that can implement any of the primitives
described in earlier work, supported as necessary by the diode
primitive introduced in this paper.

VIII. FUTURE WORK

The use of disabling posts to selectively disable (by re-
moving power) wires in the computation plane that violate
the isolation of components could break some designs, in
which case the circuitry could remain unchanged but its use
audited by other posts. Determining which connections to
disable could utilize analytical tools from graph theory, e.g.,
determination of cut points. 3-D posts connected to these cut
points could be used to selectively disable the connections
without affecting other portions of the circuit. Ideally, the
native computation plane designer eliminates all points of
interference between the cores of a multi-core processor.
However, some connections are needed by some applications
but not others. It is possible that these connections could be
selectively disabled according to the policy. We also leave the
following to future work:

• The use of a reference monitor for providing fine-grained
policy enforcement in 3-D chips.

• The use of disabling posts in the context of dynamic
runtime policy changes, e.g., to allow moats that are
configurable at runtime, i.e., movable moats.

• The use of configurable diodes in the context of recon-
figurable policy changes.

• The use of disabling and inserting posts to modify the
behavior of interconnect in the computation plane.

• The use of rerouting and overriding posts to force bus
traffic in the computation plane to take a detour to an
alternate bus in the control plane where various policies
can be enforced.

• Using disabling posts to partition a computation plane
consisting of entwined cores that are not already spatially
isolated.

• The use of a module in the control plane to erase
architectural state in the computation plane in order to
address data remanence.

• Identification of standard locations for TSV receptacles
on general-purpose processors.

IX. CONCLUSION

Security must become a first-order design constraint in the
engineering of 3-D systems. We have described a design
approach based on a 3-D system security architecture. To
support this approach, we have described two novel circuit-
level primitives: (1) a general-purpose TSV receptacle that
allows the same posts to be reused in different ways by
different applications and (2) a diode that restricts the vertical
flow of information to one direction. Our design approach also
takes advantage of the physical isolation provided by distinct
layers. Finally, we describe modifications to the floor planning
stage of the 3-D design flow that are necessary to support our
design approach. We strongly recommend that the 3-D EDA
community incorporate features in commercial design tools
for the hardware-oriented security and trust community to
constrain the floor planning of components in a 3-D IC. Design
flows should provide researchers and practitioners the flexibil-
ity to, for example, achieve isolation of and programmable
partial ordering of selected components.

X. ACKNOWLEDGMENTS

This research was funded by National Science Foundation
Grants CNS-0910734, CNS-0910389, and CNS-0910581.

REFERENCES

[1] Global Semiconductor Alliance. Tour guide to 3D-IC design tools
and services. In Presentation at the 3D/TSV Technology Reception:
Education, Benefits, and Solutions at the Design Automation Conference
(DAC), Anaheim, CA, June 2010.

[2] Krit Athikulwongse, Ashutosh Chakraborty, Jae-Seok Yang, David Z.
Pan, and Sung Kyu Lim. Stress-driven 3D-IC placement with TSV
keep-out zone and regularity study. In Proceedings of the International
Conference on Computer-Aided Design (ICCAD), San Jose, CA, Novem-
ber 2010.

[3] D.E. Bell and L.J. La Padula. Secure computer system: Unified
exposition and Multics interpretation. Technical Report ESD-TR-75-
306, The MITRE Corporation, Hanscom Air Force Base, Bedford, MA,
USA, March 1976.

[4] Bryan Black, Murali Annavaram, Ned Brekelbaum, John DeVale, Lei
Jiang, Gabriel H. Loh, Don McCaule, Pat Morrow, Donald W. Nelson,
Daniel Pantuso, Paul Reed, Jeff Rupley, Sadasivan Shankar, John Shen,
and Clair Webb. Die stacking (3D) microarchitecture. In Proceedings
of the 39th Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO), Orlando, FL, December 2006.

[5] Adrian Carbine and Derek Feltham. Pentium pro processor design for
test and debug. IEEE Design and Test of Computers, 15(3), July–
September 1998.

[6] Marcel Demarteau, Yasuo Arai, Hans-Gunther Moser, and Valero Re.
Developments of novel vertically integrated pixel sensors in the high
energy physics community. In IEEE International Conference on 3D
System Integration, San Francisco, CA, September 2009.

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 53

[7] Ted Huffmire, Brett Brotherton, Gang Wang, Tim Sherwood, Ryan
Kastner, Timothy Levin, Thuy Nguyen, and Cynthia Irvine. Moats and
drawbridges: An isolation primitive for reconfigurable hardware based
systems. In Proceedings of the 2007 IEEE Symposium on Security and
Privacy, Oakland, CA, USA, May 2007.

[8] Ted Huffmire, Timothy Levin, Michael Bilzor, Cynthia E. Irvine,
Jonathan Valamehr, Mohit Tiwari, Timothy Sherwood, and Ryan Kast-
ner. Hardware trust implications of 3-D integration. In Proceedings of
the 5th Workshop on Embedded Systems Security (WESS), Scottsdale,
AZ, October 2010.

[9] Ted Huffmire, Timothy Levin, Thuy Nguyen, Cynthia Irvine, Brett
Brotherton, Gang Wang, Timothy Sherwood, and Ryan Kastner. Security
primitives for reconfigurable hardware-based systems. ACM Transac-
tions on Reconfigurable Technology and Systems (TRETS), 3(2), May
2010.

[10] Y. Kaiho, Y. Ohara, H. Takeshita, K. Kiyoyama, K-W Lee, T. Tanaka,
and M. Koyanagi. 3D integration technology for 3D stacked retinal
chip. In IEEE International Conference on 3D System Integration, San
Francisco, CA, September 2009.

[11] Nauman H. Khan, Syed M. Alam, and Soha Hassoun. System-level
comparison of power delivery design for 2D and 3D ICs. In Proceedings
of the IEEE International Conference on 3D System Integration (3DIC),
San Francisco, CA, September 2009.

[12] Jongman Kim, Chrysostomos Nicopoulos, Dongkook Park, Reetuparna
Das, Yuan Xie, N. Vijaykrishnan, Mazin S. Yousif, and Chita R. Das. A
novel dimensionally-decomposed router for on-chip communication in
3D architectures. In Proceedings of the 34th International Symposium
on Computer Architecture, San Diego, CA, June 2007.

[13] Hsien-Hsin S. Lee and Krishnendu Chakrabarty. Test challenges for
3d integrated circuits. IEEE Design and Test of Computers, 26(5),
September/October 2009.

[14] Timothy E. Levin, Cynthia E. Irvine, Clark Weissman, and Thuy D.
Nguyen. Analysis of three multilevel security architectures. In Pro-
ceedings of the ACM Computer Security Architecture Workshop (CSAW),
Fairfax, VA, November 2007.

[15] Zhouyuan Li, Xianlong Hong, Qiang Zhou, Shan Zeng, Jinian Bian,
Hannah Yang, Vijay Pitchumani, and Cheng-Kuan Cheng. Integrating
dynamic thermal via planning with 3D floorplanning algorithm. In
Proceedings of the International Symposium on Physical Design (ISPD),
San Jose, CA, April 2006.

[16] Gabriel H. Loh. 3-D stacked memory architectures for multi-core
processors. In International Symposium on Computer Architecture
(ISCA), Beijing, China, June 2008.

[17] Gabriel H. Loh, Yuan Xie, and Bryan Black. Processor design in 3D
die-stacking technologies. IEEE Micro, 27(3), May-June 2007.

[18] Gian Luca Loi, Banit Agrawal, Navin Srivastava, Sheng-Chih Lin, Tim-
othy Sherwood, and Kaustav Banerjee. A thermally-aware performance
analysis of vertically integrated (3-D) processor-memory hierarchy. In
Proceedings of the 43rd Design Automation Conference (DAC), San
Francisco, CA, July 2006.

[19] Erik Jan Marinissen. Testing tsv-based three-dimensional stacked ics.
In Proceedings of the Conference on Design, Automation, and Test in
Europe (DATE), Dresden, Germany, March 2010.

[20] S. Mysore, B. Agrawal, S.C. Lin, N. Srivastava, K. Banerjee, and
T. Sherwood. Introspective 3-D chips. In Proceedings of the 12th
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), San Jose, CA, October
2006.

[21] Vasilis F. Pavlidis and Eby G. Friedman. Three-Dimensional Integrated
Circuit Design. Morgan Kaufmann, Boston, MA, 2009.

[22] K. Puttaswamy and G.H. Loh. Thermal analysis of a 3D die-stacked
high-performance microprocessor. In Proceedings of the 16th ACM
Great Lakes Symposium on VLSI (GLSVLSI’06), Philadelphia, PA, May
2006.

[23] Seyyed Ahmad Razavi, Morteza Saheb Zamani, and Kia Bazargan.
A tileable switch module architecture for homogeneous 3D FPGAs.
In Proceedings of the IEEE International Conference on 3D System
Integration, San Francisco, CA, September 2009.

[24] Jerome H. Saltzer and Michael D. Schroeder. The protection of
information in computer systems. Communications of the ACM, 17(7),
July 1974.

[25] G. Edward Suh, Jae W. Lee, David Zhang, and Srinivas Devadas. Secure
program execution via dynamic information flow tracking. In Proceed-
ings of the 11th international conference on Architectural support for
programming languages and operating systems (ASPLOS), Boston, MA,
October 2004.

[26] Kenneth M. Thompson. Intel and the myths of test. IEEE Design and
Test of Computers, 13(1), Spring 1996.

[27] Mohit Tiwari, Hassan Wassel, Bita Mazloom, Shashidhar Mysore, Fred-
eric Chong, and Timothy Sherwood. Complete information flow tracking
from the gates up. In Proceedings of the International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), Washington, DC, March 2009.

[28] Jonathan Valamehr, Mohit Tiwari, Timothy Sherwood, Arash Arfaee,
Ryan Kastner, Ted Huffmire, Cynthia Irvine, and Timothy Levin.
Hardware assistance for trustworthy systems through 3-D integration. In
Proceedings of the Annual Computer Security Applications Conference
(ACSAC), Austin, TX, December 2010.

[29] Z. Wang and R. Lee. New cache designs for thwarting cache-based side
channel attacks. In Proceedings of the 34th International Symposium
on Computer Architecture, San Diego, CA, June 2007.

[30] Xiaoxia Wu, Paul Falkenstern, Krishnendu Chakrabarty, and Yuan Xie.
Scan-chain design and optimization for three-dimensional integrated
circuits. ACM Journal on Emerging Technologies in Computing Systems,
5(2), July 2009.

[31] Bo Yang, Kaijie Wu, and Ramesh Karri. Secure scan: A design-for-test
architecture for crypto chips. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 25(10), October 2006.

[32] Hiroshi Yoshikawa, Atsuko Kawasaki, Tomoaki Iiduka, Yasushi
Nishimura, Kazumasa Tanida, Kazutaka Akiyama, Masahiro Sekiguchi,
Mie Matsuo, Satoru Fukuchi, and Katsutomo Takahashi. Chip scale
camera module (CSCM) using through-silicon via (TSV). In IEEE
International Solid-State Circuits Conference (ISSCC), San Francisco,
CA, February 2009.

54 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

Declarative FPGA Circuit Synthesis
using Kansas Lava

Andy Gill
Information Technology and Telecommunication Center

Department of Electrical Engineering and Computer Science
The University of Kansas

Email: andygill@ittc.ku.edu

Abstract— Designing and debugging hardware components
is challenging, especially when performance requirements
demands a complex orchestra of cooperating and highly
synchronized computation engines. New language-based so-
lutions to this problem have the potential to revolutionize
how we think about and build circuits. In this paper, we
describe our language-based approach to semi-formal co-
design. Using examples, we will show how generative tech-
niques, high-level interfaces, and refinement techniques like
the worker/wrapper transformation can be used to take de-
scriptions of specialized computation, and generate efficient
circuits. Kansas Lava, our high-level hardware description
language built on top of the functional language Haskell,
acts as a bridge between these computational descriptions
and synthesizable VHDL. Central to the whole approach
is the use of Haskell types to express communication and
timing choices between computational components. Design
choices and engineering compromises during co-design be-
come type-centric refinements, encouraging architectural
exploration.

Keywords: Hardware, Synthesis, Functional Programming

1. Introduction
Generated VHDL offers many advantages over hand-

written VHDL. Kansas Lava is a framework for express-
ing synthesizable hardware and generating VHDL, with
the express purpose of exploring computational models for
describing hardware level concerns. In this paper, we will
describe the benefits of generated code, supported models
of computation, and a look at a number of applications we
have constructed using Kansas Lava.

Reconfigurable computing and co-design provides the
opportunity to be flexible about how and where something
is computed. The larger fabrics provided by modern FPGAs
open the option of non-specialists writing VHDL programs,
much in the same way early microprocessors allowed as-
sembly language programming for efficient numerical com-
putation. For highly customized parallel computations, well
designed FPGA fabrics can perform at breathtaking scale,
unmatched even by modern multi-cores. Yet tool support for
migrating highly-computational tasks to IP cores on FPGAs

is rudimentary, at best, and from a tool perspective, certainly
comparable with early microprocessor development tools.

When considering generating circuit descriptions, VHDL
and Verilog are sibling languages, at least from a language
semantic point of view, and many FPGA tools support both
as input to be compiled for FPGA fabrics. In this paper,
we will examine a VHDL generator, and use VHDL as our
language in examples. The same ideas could be retargeted
to use Verilog with only nominal engineering effort.

VHDL provides both a way of expressing structure, or
connections between existing components, as well a Register
Transfer Level (RTL) style of expressing how a component
acts based on register contents and a state machine. Both
are used in practice by engineers programming FPGAs.
There are other, more-advanced computational programming
models, for example the atomic transaction model used by
BlueSpec [1]. Kansas Lava provides a straightforward way
of expressing the basic model of connected components, and
a highly customizable methodology for providing RTL and
other models on top of the connectivity. In this way, Kansas
Lava becomes as test bed of ways of customizing models for
expressing solutions to hardware-level problems. Ultimately,
the vision is having custom languages, tailored to specific
problem classes, that allow experts in the problem classes to
program FPGAs effectively.

Hardware components communicate using buses and
wires. VHDL uses a signal abstraction to represent almost
all such communications. As such, a VHDL signal is fun-
damentally physical. Using Kansas Lava, we can explicitly
represent higher-level communication abstractions, including
partial values, bus protocols, and wiring inside multi-clock
or hyper-clocked environment. This richness and depth of
communication options brings opportunities that would be
completely unreasonable to expect an engineer to directly
manage; the Kansas Lava abstractions build on top of
primitives provided in VHDL instead.

The analogy of VHDL being an assembly language for
FPGAs is an timely one. As a community, we are provid-
ing new computational and communication abstractions for
FPGA programmers, and hope it will lead to a critical mass
of useful applications and happy users. In this paper, we will
overview our specific system, Kansas Lava, and explain how

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 55

it both helps users and provides abstraction opportunities. We
will not go into details about the internals of Kansas Lava;
we refer interested readers to our earlier explanations [2],
[3] for specifics. Instead, we focus on using Kansas Lava.
To do so, some knowledge of functional programming and
Haskell [4] is needed, because this is the language-based
foundation on which we build our tools.

2. Haskell
Haskell is the premier pure functional programming lan-

guage. Haskell supports many forms of abstraction, and
provides a robust foundation for building Domain Specific
Languages (DSLs). In this section, we give a terse introduc-
tion to Haskell, sufficient to make this paper self-contained.

Haskell is all about types. Types in Haskell, like types
in other languages, are constraining summaries of structural
values. For example, in Haskell Bool is the type of the
values True and False, Int is the type of machine-sized
words, Double is the type of double precision floating point
values; and this list goes on in the same manner as C, C++,
Java and other traditional languages. All these type names
in Haskell start with an upper-case letter.

On top of these basic types, Haskell has two syntactical
forms for expressing compound types. First, pairs, triples and
larger structures can be written using tuple syntax, comma
separated types inside parenthesis. So (Int,Bool) is
structure with both an Int and a Bool component. Second,
lists have a syntactical shortcut, using square brackets. So
[Int] is a list of Int.

Haskell also has other container types. A container that
may contain one Int has the type Maybe Int which is
read Maybe of Int. These container names also start with
upper-case letters. Types can be nested to any depth. For
example, we can have a [(Maybe (Int,Bool))], read
as list of Maybe of (Int and Bool).

Polymorphic values, which are analogous to the type
Object in Java, or void* pointers in C, are expressed
using lower-case letters. These polymorphic values can have
constraints expressed over them, using the Haskell equivalent
of an object hierarchy. Finally, a Haskell function that takes
a list, and returns a list is written as using an arrow:
[a] -> [a].

We can now give an example of a Haskell function.

sort :: (Ord a) => [a] -> [a]
sort [] = []
sort (x:xs) = sort before ++ [x] ++ sort after
where

before = filter (<= x) xs
after = filter (> x) xs

This function sorted a list, using a variant of quicksort in
which the pivot is the front of the list.
• The first line is the type for sort. This is ∀a, such

that a can be Ordered (admits comparisons like <=),
the function takes and return a list of such a’s.

• The second line says that an empty list is already sorted.
• The remaining lines state that a (non-empty) list can

be sorted by taking the first and rest of the list (called
x and xs, respectively), and sorting the values before
this pivot and after this pivot, and concatenating theses
intermediate values together.

• Finally, intermediate values can be named using the
where syntax; in this case the values of before and
after.

Haskell is a concise and direct language. Structures in
Haskell are described using types, constructed and decon-
structed, but never updated. The entire language functions
by chaining together these structural processors, which ul-
timately take input, and produce output. Side-effects are
described using a do-notation, for example:

main :: IO ()
main = do
putStrLn "Hello"
xs <- getLine
print xs

In this example a value called main uses the do-notation
to describe an interaction with a user. Actually, the do-
notation captures this as a structure called a Monad; purity is
not compromised. For more details about how do-notation
and Monads can provide an effectful interface inside a pure
language like Haskell, see [5]. For the purposes of Kansas
Lava, do-notation is a way of providing syntax and structure
that looks like interaction.

3. Kansas Lava Primer
Kansas Lava is a Haskell library that models circuits as

well as generating VHDL. In this section, we introduce the
two main value descriptor types, and system modeling capa-
bilities of Kansas Lava, returning to to the actual generation
VHDL in section 6.

3.1 Combinational Values
Operations on combinational values are the basis of hard-

ware computations. Examples include an addition function
operating over numerical values, or a nand gate operating
over boolean values. To take an example, and code it in
Kansas Lava, consider a half adder.

halfAdder :: Comb Bool
-> Comb Bool
-> (Comb Bool,Comb Bool)

halfAdder a b = (carry,sum)
where carry = and2 a b

sum = xor2 a b

The type indicates that this function, halfAdder operates
over two arguments, both Comb Bool, or combinational
booleans. The result, the carry and sum, are return as
a 2-tuple of Comb Bool. (The type would typically be
written on a single line after the function name, but is

56 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

Reg
Mux

inc

restart

Mux0
+1

output

Fig. 1: counter schematic

folded over two lines to fit into a single column.) Inside
the function definition, the intermediate values carry and
sum are declared using the Haskell where keyword. This
definition of a half adder is simple, direct, declarative and
clear.
Comb is an active container for representing combina-

tional values, where the type argument of Comb is the value
being represented. Comb Bool is the type of a combi-
natorial boolean, in VHDL this would be a std_logic.
Comb Word8, a combinatorial 8-bit value could be repre-
sented in VHDL using a std_logic_vector, or even an
IEEE signed.

Executing our half adder example (as a simulation) is
as simple as calling the halfAdder function. (The user
interaction is notated starting with the GHCi> prompt.)

GHCi> halfAdder high low
(low,high)
GHCi> halfAdder high high
(high,low)

In summary, Comb x represents a single value x, com-
puted using a combinatorial circuit.

3.2 Sequential Values and Clocks
Combinatorial logic by itself is completely uninteresting,

and needs multiple invocations on different values, construct-
ing sequential circuits, to do useful computations. Kansas
Lava has a type CSeq, a mnemonic for Clocked Sequence,
for representing a stream of values created over time, using
sequential logic. A specific clock is used to interpret when
to sample the values communicated over a sequence. We do
not assume any global clock, rather we use types to attempt
to contain their interpretive utility.

There are two Kansas Lava functions that are the primitive
sequential circuit builders, register, and delay.

register :: (Clock c, sig ~ CSeq c)
=> a -> sig a -> sig a

delay :: (Clock c, sig ~ CSeq a)
=> sig a -> sig a

register is a classical “D” edge-triggered flip-flop, where
the clock is implicit. register takes two arguments, the

initial value (at startup and after a reset), and the input
sequence. delay is a version of register where the
initial value is intentionally undefined. The syntax for the
constraint on the type of both register and delay states
there is a clock called c, and there is a signal called sig,
which is interpreted using this clock. In this way, the types
state that the input and output of both functions are in the
same clock domain.

As an example of using register, consider:

counter :: (Rep a, Num a, Clock clk, CSeq clk ~ sig)
=> sig Bool -> sig Bool -> sig a

counter restart inc = loop
where reg = register 0 loop

reg’ = mux2 restart (0,reg)
loop = mux2 inc (reg’ + 1, reg’)

This circuit connects two multiplexers, an adder, and a
register to give a circuit that counts the number of
clocked pulses on a the signal inc. The circuit takes two
clocked signals, and returns a clocked signal that explicitly
operates using same clock, because they share the same type.
Figure 1 gives the circuit intended for this description.

We can execute sequential circuits with the same direct-
ness that combinational functions we invoked.

GHCi> toSeq (cycle [True,False,False])
T : F : F : T : F : F : T : F : F : ...
GHCi> counter low (toSeq (cycle [True,False,False]))
1 : 1 : 1 : 2 : 2 : 2 : 3 : 3 : 3 : ...

Both Comb and CSeq provide a direct representation of
signals in VHDL, or more precisely, a meaning allowing
interpreting a VHDL signal. Both Comb and CSeq also
provide lifting, allowing the representation of unknown (in
VHDL, X) values. On this basis, we build Kansas Lava.

3.3 Signals
In VHDL, signals are a generalization of Comb and CSeq.

In Kansas Lava we allow a third class of value, a Signal,
which is a Haskell class admitting both Comb and CSeq.
The type for and2 actually is:

and2 :: (Signal sig)
=> sig Bool -> sig Bool -> sig Bool

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 57

This use of Signal literally means either a Comb or a
CSeq with a Clock can be used as a signal. In this
way, Signal brings together combinational and sequential
values, allowing overloaded primitives to be either.

Circuits are composed of sequential and combinational
components, but values generated by sequential and com-
binational circuits have different types. We allow combina-
tional circuits (which can only be run once) to be prompted,
or lifted, into circuits that can be run sequentially many
times. So we have have primitive combinational operators,
sequential operators like register, and a way of lifting
combinator functions into either combinatorial or sequential
functions.

4. ROMs and Lifted Functions
As well as this trio of basic signal types, we can build

circuits that operate on Haskell functions directly, provided
the domain of the function is finite. We use the Rep
constraint to signify that we can enumerate all possible
representable values in a type, giving the funMap function.

funMap :: (Rep a, Rep b, Signal sig)
=> (a -> Maybe b)
-> sig a -> sig b

The generated circuit is implemented using a ROM, and
we can generate control logic directly in terms of Haskell
functions and data-structures. As a example, consider a small
ROM that stores the square of a value.
squareROM :: (Num a, Rep a, Signal sig)

=> sig a -> sig a
squareROM = funMap (\ x -> return (x * x))

In this way, direct Haskell functions can be lifted into
Signal world. Notice how squareROM function is not
specific about size, but is completely generic, as long as the
argument stream, of type “a”, is representable as a number.
funMap used directly behaves as an asynchronous ROM.

A synchronous ROM can be constructed out of a funMap
followed by a register or delay. The specific decision
how to represent a ROM is postponed to VHDL generation
time. The simulator simply stores and looks up values using
the function directly.

5. Structures and Types
Kansas Lava has some general purpose types that turn

out to be especially useful with constructing descrip-
tions of hardware. Specifically Kansas Lava has sup-
port for generically sized fixed-width signed and unsigned
numbers, and generically sized fixed-width matrixes. We
use a sized type [6], notated as Xn, to annotate sizes
onto types. Examples include Unsigned X4, a 4-bit un-
signed number, Signed X8, a 8-bit signed number, and
Matrix X6 Bool, a (one-dimensional) matrix with 6
elements that are of type Bool. Use of irregular-sized values

Haskell Language

Kansas Lava Language

Signals

KLEG

VHDL

KLEG
Optimizer

Debugging
output

ModelSim

XST

Optional
Haskell
Model

Kansas Lava
ImplementationSignals

Data
Generator

Testbench
Generation

VCD
(etc)

Result
Verifier

Graph
Capture

Fig. 2: Kansas Lava Architecture

is common in Hardware, while having a 14-bit adder is
unheard-of in software. We also provide type shortcuts for
common sizes, giving U4 for the 4-bit unsigned number, and
using Sn and Mn as names for signed numbers and matrixes,
respectively.

On top of our signal types (Comb, CSeq and Signal)
Kansas Lava builds a number of useful type-oriented utili-
ties. The major one is the pack and unpack combinators.
pack provides a way of taking a bundle of signals, and
packing them into a single signal. unpack does the reverse
operation, unpacking a single signal into a bundle of signals.

As a concrete example, consider a pairing of a Boolean
signal, and an 8-bit unsigned signal (U8), with the names a
and b:

(a,b) :: (Signal sig) => (sig Bool, sig (U8))

We can use pack to pack this pairing into a single signal

pack (a,b) :: (Signal sig) => sig (Bool,U8)

As an example, we can define (a,b), then pack the result
inside the Kansas Lava simulation mode.

GHCi> let a = toSeq (cycle [True,False])
GHCi> a
T : F : T : F : T : F : T : F : ...
GHCi> let b = toSeq [1..]
GHCi> b
1 : 2 : 3 : 4 : 5 : 6 : 7 : 8 : ...
GHCi> pack (a,b)
(T,1) : (F,2) : (T,3) : (F,4) : (T,5) : ...

pack and unpack turn out to be extremely useful in
practice, and support the objective of allowing highly flexible
type representation for data flowing inside an implemented
program.

58 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

Finally, there are structural types for expressing com-
mon protocols used in hardware. For example Enabled a
means a value a that has an extra Boolean value signifying
validity. Another example is Write addr val, which
may contain a write request sent to a memory.

Overall, the type system and structures of the core Kansas
Lava system described here provide a useful replacement for
describing and simulating circuits, comparable to VHDL and
ModelSim, but with richer and more descriptive types. Our
earlier paper [2] gives detailed justification for each feature
in this core from a language point of view. The interesting
work is what can be built on top of this foundation.

6. Generating VHDL

The main purpose of Kansas Lava is to generate useful
VHDL. As the earlier examples illustrated, the Haskell
system can be used to directly simulate circuit behavior.
Taking this behavior, and correctly mapping it to efficient
VHDL is done using a technique called reification.

Figure 2 gives an overview of the the major components
of a successful invocation of Kansas Lava. A Kansas Lava
program is executed in terms of generated test vectors,
or signals, and these signals can be optionally compared
with output generated by a high-level model. The same
program can be extracted [7], without needing the specific
signal context, and captured as a KLEG (Kansas Lava Entity
Graph), which is for all intents and purposes a simple net-
list.

If we take our counter example from above, the ques-
tion is how to turn this into a VHDL architecture (from
the body of the function), and VHDL entity (from the type
of the function). In VHDL, all arguments in an entity are
named and unordered, in Haskell and Kansas Lava, they are
unnamed and order matters. Rather than just inventing names
(which turns out to be brittle to even minor changes) we
explicitly name arguments use a mathematical construction
called a monad.

A monad is a way of expressing computation. For the
purposes of the discussion of this specific monad, we can
think of Fabric, the monad in question, as an abstract data
structure. The interface for specifying inputs and output in
VHDL is concise, and summarized in figure 3.

In figure 3 inStdLogic names an input, giving a
Fabric that returns Seq Bool. outStdLogic names an
output, and provides a Seq Bool, and returns a Fabric.
inStdLogicVector and outStdLogicVector are
versions of inStdLogic and outStdLogic respectively,
that operate on a vector rather than an individual bit.

inStdLogic :: (sig ~ CSeq ())
-> String
-> Fabric (sig Bool)

inStdLogicVector :: (Rep a, sig ~ CSeq ())
=> String
-> Fabric (sig a)

outStdLogic :: (sig ~ CSeq ())
-> String
-> sig Bool
-> Fabric ()

outStdLogicVector :: (Rep a, sig ~ CSeq ())
=> String
-> sig a
-> Fabric ()

Fig. 3: Fabric API

We can build a fabric around our counter, using the
following fabric-building code.

counterFabric :: Fabric ()
counterFabric = do

restart <- inStdLogic "restart"
inc <- inStdLogic "inc"
let res :: (Clock clk) => CSeq clk U4

res = counter restart inc
outStdLogicVector "output" res

This use of fabric must clarify the specific types being
operated on; in this case we are returning a signal of U4.

As well as building a Fabric, this is the Kansas Lava
method for specifying port names. We can reify (capture)
this Fabric, and the call to counter inside it, using a
function called fabricReify.

fabricReify :: Fabric () -> IO KLEG

KLEG is an abstract representation of our net-list, and can
be printed, optimized, or written into VHDL. This program
is all the code needed to generate valid VHDL.

main = do
k <- fabricReify counterFabric
writeVHDL "counter" "counter.vhd" k

The contents of "counter.vhd" are shown in Figure 4.

The summary regarding VHDL generation is a simple
narrative. We build a thin veneer around our circuit functions
called a Fabric, which specifies how our circuits are
invoked, and what to name our ports. These declarations, and
the behavior of the underlying circuit, is realized in the form
of a VHDL entity and architecture. As already stated, there is
no reason that Verilog could not be generated instead; indeed
we use a generic netlist rendering tool that can already target
VHDL or Verilog.

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 59

entity counter is
port(rst : in std_logic;

clk : in std_logic;
clk_en : in std_logic;
restart : in std_logic;
inc : in std_logic;
output : out std_logic_vector(3 downto 0));

end entity counter;
architecture str of counter is
signal sig_2_o0 : std_logic_vector(3 downto 0);
...

begin
sig_2_o0 <= sig_5_o0 when (inc = ’1’)

else sig_6_o0;
sig_5_o0 <= std_logic_vector(...);
sig_6_o0 <= "0000" when (restart = ’1’)

else sig_10_o0;
sig_10_o0_next <= sig_2_o0;
proc14 : process(rst,clk) is
begin

if rst = ’1’ then
sig_10_o0 <= "0000";

elsif rising_edge(clk) then
if (clk_en = ’1’) then

sig_10_o0 <= sig_10_o0_next;
....

end architecture;

Fig. 4: Fragments of VHDL Generated for counter

7. Example: parity checking
To take a front to back example, consider a block of

logic that listens on a channel for parity errors, counting
them. We want to know if there were any parity error, but
for debugging and error reporting, we report a parity error
count. There is a control signal, typed sig DecodeCntl,
which encodes when to start and stop counting parity counts.
Figure 5 gives an example implementation, taken from an
implementation of a LDPC forward error corrector [8].

There are a number of typical illustrative aspects to this
example.
• The use of pack and unpack is an integral part of

the description.
• The call to counter, our earlier example, can be seen

as a simple function invocation on the final line.
• liftPred uses a Haskell-level equality test, checking

to see if the control signal is at the minimum (start) or
maximum (termination) delimiter.

• The output is only valid on the stop cycle, with
validity communicated using a packed boolean value.

• Finally, the type is a detailed description of what this
component requires. In this case, a control signal and
a set of write “packets”, giving a 16-bit result signal,
with a validity bit attached.

We can now simulate and independently test this cir-
cuit, by creating two input streams. For this test, we con-
struct a smaller control data-structure, where the minimum
DecodeShare value and the maximum DecodeShare
value is 3. We can now execute our example.

parityCount :: (Clock clk, sig ~ CSeq clk)
=> sig DecodeCntl
-> sig (Write SZ Bool)
-> sig (Enabled U16)

parityCount control parityWrite = pack (stop,res)
where (en,datam) = unpack parityWrite

(addr,val) = unpack datam
start = liftPred (== DecodeShare minBound)

(delay control)
stop = liftPred (== DecodeShare maxBound)

(delay control)
res = counter start (en ‘and2‘ val)

Fig. 5: Parity Counting in LDPC

GHCi> let control = ...
++ [DecodeShare n | n <- [0..3]]
++ ...

GHCi> let writes = ...
++ [Write (0,m)

| m <- [True,False,True,False]
]

++ ...
GHCi> parityCount control writes
... : Nothing : Nothing : Nothing : Just 2 : ...

Once we are happy with this component, we can plug
it into a larger Kansas Lava circuit, or render VHDL as a
stand-alone VHDL component, by creating a Fabric round
a call to parityCount.

8. Discussion
The core Kansas Lava system is an academic project, but

mature and complete enough to engineer large examples.
There are three principal things you can do with (a system
like) Kansas Lava, beyond simply write code in Kansas
Lava. You can (1) solve problems and express solutions
using generative techniques; (2) build new models of compu-
tation and other abstractions on top of the existing interface;
and (3) use the language as a target of refinements from a
yet-higher level of specification of abstract behavior.

Generative Programming [9] is an idiomatic name for the
general case of programs generating programs. In Kansas
Lava, any circuit generator shares aspects of this powerful
idiom. For example, a recursive divide and conquer algo-
rithm can be used to generate a circuit, when the base-
case generates small, hand crafted solutions, and the divi-
sion invocations connect sub-circuits together. We discuss a
specific example of using recursion for circuit generation in
section 10.

A generalization of these ideas is build new abstractions
on top of the the basic syntax. When constructing circuits in
VHDL, often a Register Transfer Level (RTL) idiom is used,
where hardware behavior is expressed as clocked transitions
between states with additional memory. In section 9 we
present an extension on top of Kansas Lava that provides
an RTL interface abstraction, building on the Haskell do-
notation.

60 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

rate :: forall x clk . (Clock clk, Size x) => Witness x -> Rational -> CSeq clk Bool
rate Witness n
| step * 2 > 2^sz = error $ "bit-size " ++ show sz ++" too small for punctuate Witness " ++ show n
| n <= 0 = error $ "can not have rate less than or equal zero"
| n > 1 = error $ "can not have rate greater than 1, requesting " ++ show n
| otherwise = runRTL $ do

count <- newReg (0 :: (Unsigned x))
cut <- newReg (0 :: (Unsigned x))
err <- newReg (0 :: (Signed x))
CASE [IF (reg count .<. (step + reg cut - 1)) $

count := reg count + 1
, OTHERWISE $ do

count := 0
CASE [IF (reg err .>=. 0) $ do

cut := 1
err := reg err + nerr

, OTHERWISE $ do
cut := 0
err := reg err + perr

]
]

return (reg count .==. 0)
where sz = fromIntegral (size (error "witness" :: x)) :: Integer

num = numerator n
dom = denominator n
step = fromIntegral $ floor (1 / n)
perr = fromIntegral $ dom - step * num
nerr = fromIntegral $ dom - (step + 1) * num

Fig. 6: RTL-based sample pulse builder

Finally, Kansas Lava, with or without the generative
programming extensions, can be a target language of a
refinement methodology. A clear short description of an
algorithm can be connected to a real implementation of
a circuit, using a set of formal or semi-formal refinement
steps. In section 11 we discuss a larger example of showing
a relationship between a specification and implementation
discussed in section 10.

9. Example: Register Transfer Language
API

Sometimes state-based thinking leads to clear descriptions
of behavior. The core Kansas Lava system is stream based,
with conditionals handled by mux2 and related combinators.
It is possible to build a state-based API that models RTL on
top of core Kansas Lava.

Consider the problem of generating a fractionally rated
boolean signal. This may be used, for example to trigger a
sampling of an input port. When sampling higher-rate data
transfers, the ratio of clock cycles to sample rate within
acceptable tolerance might not have an integral reciprocal
of a fraction. For example, when using a 50MHz clock,
sampling a signal at 6MHz requires waiting 8 1

3 clock cycles
between samples; clearly not possible. Instead, a sample rate
of 6MHz overall can be achieved by waiting 8 or 9 cycles
between samples, and averaging the gap to 8 1

3 clock cycles.
This can be solved with Bresenham’s Line Algorithm, which
has to approximate a fractional rate of a line using whole
pixels.

Figure 6 gives a complete implementation of such a func-
tion, using the RTL extension. As can be seen, the example
reflects the RTL style of VHDL state-based programming,
but keeps the type-based approach of Kansas Lava intact. To
explain the example, rate takes a witness (approximately
the analog of a generic argument in VHDL) and a fractional
argument, to return a clocked Bool that will be punctuated
at the given rate. Again, the generative motive appears; this
function takes runtime arguments, to generate a circuit.

After checking for various pre-conditions, rate allocates
three registers, and conditionally either increments a counter,
or resets it and records an error from ideal. The key function
is runRTL, which has type:

runRTL :: (Clock c)
=> (forall s . RTL s c a) -> a

runRTL takes a structure, called a RTL, that looks like
a list of assignments using do-notation, and converts this
list guarded assignments into regular Kansas Lava signal-
based code. runRTL, in a real sense, provided the semantics
and implementation of the RTL abstraction. In this case,
a straightforward clocked atomic transfer semantics have
been encoded, but there is no reason why a more powerful
semantics, like the semantics of the high-level modeling
language BlueSpec [1] could be coded. Indeed, this frame-
work allows the exploration of new RTL-based abstraction
models with extremely low cost of development, because so
much of the existing infrastructure is reused. For comparison
purposes, the entire RTL abstraction, including runRTL, is
implemented in around 150 lines of commented Haskell.

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 61

operateOnMatrix :: (Clock clk, sig ~ CSeq clk)
=> Options
-> A (Int,Int)
-> sig DecodeCntl
-> [sig (Write SZ FLOAT)]
-> [Maybe (Int,sig (Write SZ FLOAT))]

-> ([Maybe (Int,sig (Write SZ FLOAT))],
[Maybe (sig (Write SZ FLOAT))],
[Maybe (sig (Write SZ Bool))]

)

Fig. 7: Type of the Recursive LDPC Fabric Generator

10. Example: Recursion and Circuit
Generation

In a recent project, we needed to generate a computational
fabric to perform Low Density Parity Check (LDPC) forward
error correcting [10], based on operations to a large sparse
matrix. Specifically, using the notation from the standard
reference on error correcting codes [11], the LDPC fabric
needed to compute three things as quickly as possible:

For each (m,n) where A(m,n) = 1:

η
[l]
m,n = − 3

4

(
Lmin†Mj∈Nm,n

(η
[l−1]
m,j − λ

[l−1]
j)

)
where

min†(x, y) = sign(x) ∗ sign(y) ∗min(|x|, |y|)

For each n:
λ
[l]
n = λ

[0]
n +

∑
m∈Mn

η
[l]
m,n

For each n:
ĉ
[l]
n = 1, ifλ[l]n > 0, otherwise = 0.

The input, λ[0] is a soft input, being a representation of
likelihood of a symbol, with zero representing unknown.
Mn represents {m : Am,n = 1}, and Nm,n represents
{n : Am,n = 1} \ n.
A is a sparse matrix, approximately 7K by 3K, with

a density of around 6 non-zero elements per row. After
analyzing the problem domain and the (fixed) matrix, we
decided to generate a two dimensional fabric of small unit
blocks, that would be controlled by a central controller.
These smaller blocks would communicate with each other
in a serial manner, cutting down internal wiring overhead.

Figure 7 gives the type of our recursive implementa-
tion. Though involved, the type spells out exactly what
gets passed to, and returned from, operateOnMatrix.
Specifically, operateOnMatrix is a recursive function.
operateOnMatrix checks to see if A is at a threshold. If
the threshold is satisfied, operateOnMatrix generates a
small circuit we call a cell, otherwise two recursive calls
are made to operateOnMatrix, to generate two sub-
circuits, and they are combined to return a larger circuit.
The technical details of this implementation can be found
in [8].

11. Example: Derivation of a Forward
Error Corrector

As a final example, we connect together the LDPC exam-
ple from section 10 to a specification of LDPC, also written
in Haskell. Consider again the main equation in the LDPC
algorithm.

For each (m,n) where A(m,n) = 1:

η
[l]
m,n = − 3

4

(
Lmin†Mj∈Nm,n

(η
[l−1]
m,j − λ

[l−1]
j)

)
In Haskell, a transliteration of the same operation is a

semi-formal and executable specification, and was suffi-
ciently fast to generate the required test vectors.

eta’ = [((m,n)
, -0.75 * (fold minDagger

[eta ! (m,j) - lam ! j
| j <- toList (rows a ! m)
, j /= n
]))

| (m,n) <- toList a
]

This is a classic example of Haskell being used as a
specification, with the whole decoder being specified in
around 20 lines of Haskell. The motivation for starting at this
specification was one of cautiousness, because implementing
LDPC is notoriously tricky. So a refinement exercise was
undertaken, inside our text editor.
• The original Haskell-based specification was refined

so that the computations were performed in specific
computation cells, and cells were connected by streams
of values.

• The individual sub-components of these cells were
replaced systematically with Kansas Lava primitives,
in a correctness preserving manner.

• Further refinements were done, to push out from these
sub-components, until the whole original model was
a large (around 800 line) Kansas Lava program, as
previous discussed. At this point, the Kansas Lava
program can be executed to generate the circuit.

In all, 17 distinct versions of the LDPC were devel-
oped, including the semi-formal model, each of which was
executable. The final version, when executed, generated
VHDL which was efficiently realizable in hardware. Every
refined version was a cut-and-pasted version of its pre-
decessor, applying by hand the refinements provided by
worker/wrapper [12] and other fusion transformations. The
whole exercise was time consuming, and did not allow for
easy backtracking (any design change in an earlier version
needed changed by hand in all subsequent programs). The
only bugs found were missteps in our refinements, the final
version was not compromised in terms of performance, with
the hardware implementation of LDPC performing within
10% of the estimated clock-rate/performance.

62 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

Version 9 Version 10
(...) => A (x,y) (...) => A (x,y)

-> [Stream (Matrix SZ FLOAT)] -> [Stream (Matrix SZ FLOAT)]
-> [Stream (Matrix SZ (Maybe FLOAT))] -> [Maybe (Stream (Matrix SZ FLOAT))]
-> ([Stream (Matrix SZ (Maybe FLOAT))] -> ([Maybe (Stream (Matrix SZ FLOAT))]

, [Stream (Matrix SZ (Maybe FLOAT))]) , [Maybe (Stream (Matrix SZ FLOAT))])

Fig. 8: Refinement Source and Target Types

Critical to this whole refinement was the hand-use at every
step of the worker/wrapper transformation, a mechanism
for refining types based on an algebra of type coercing
function. The path through the LDPC refinement chain was
planned by deciding the specific types of communicating
sub-components at each step. From these, type coercion
functions are constructed, and simple fusion properties of
the coercions were used to allow the new implementations
to be derived. Most of the process was mundane, after the
key type-based planning had been done.

To ground this refinement description, figure 8 gives an
example of a refinement step on our key implementation
function. This function takes the sparse matrix A, which
represents the specific parity code, and generates a program
that takes and returns data. At this point in the refine-
ment (version 9 to version 10), we have two inputs and
two outputs. To break down our type, reading from out
to in, [Stream (Matrix SZ (Maybe FLOAT))] has
the meaning

[...] List representing the connection to a
specific number of computational
“cells”;

Stream ... of a stream of unclocked sequential
values, one per iteration of LDPC;

Matrix SZ ... of a matrix, size SZ;
Maybe ... and an optional value;
FLOAT of a custom sized, quantized, real

number.

In this step, we want to move (or more specifically,
commute) the Maybe, to between the list and the Stream.
This step enables a key optimization of the implementation,
specifically the ability to eliminate the circuitry of parity
sub-maxtrixes that are encoded using the zero matrix. In
the block-circuit versions of the LDPC, over half the cell-
sized blocks are, by design, zeros. The preconditions for per-
forming this specific type refinement using worker/wrapper
hinges on making sure that a specific sub-block always
generates the optional FLOAT value, or never generates an
optional FLOAT. The step-specific coercions, as required by
worker/wrapper, are straightforward to write, and using this
pre-condition, also straightforward to validate for use. The
worker/wrapper transformation can then be applied, and any
sub-coercions can be pushed inside the definition of the
implementation of version 9, deriving version 10 through
equational reasoning and fusion laws.

A detailed description of this refinement can be found
in [13]. The overarching narrative is that using the same
underlying language for the specification (straight Haskell)
and the implementation (Kansas Lava) has the benefit of
allowing Haskell refinement techniques to use to connect, at
least semi-formally, the implementation and specification.

12. Related Work
The original ideas for Lava can be traced back to the

Ruby hardware description language [14] and prior to that,
µFP [15]. A good summary of the principles behind Lava
can be found in [16]. JHDL [17] is a hardware description
language, embedded in Java, which shares many of the same
ideas found in Lava.

The overarching use of refinement is inspired by the out-
standing research undertaken by the Computing Laboratory
at the University of Oxford. Specifically, the methodologies
promoted by Bird, et. al. [18], [19] call for a brighter future
for robust software and hardware development.

Kansas Lava is a modeling language as well a synthesis
tool. It models communicating processes, via synchronous
signals. There are several other modeling languages that
share a similar basic computational basis, for example Es-
terel [20].

13. Summary and Conclusions
Kansas Lava is two years old. It has been used an

number of projects, generating Forward Error Correctors,
building communication bridges between UNIX hosts and
FPGA computational engines, and other smaller compo-
nents, including a double-buffered FIFO/interleaver VHDL
component.

The core Kansas Lava implementation is mostly complete,
and will be released as an open-source product in the near
future. Experimentation with idioms, advanced APIs, and
refinement engines continues. The long term goal of clear
specifications, connected (via refinement or compilation) to
implementation descriptions in being actively explored by
the Kansas Lava project. The ideas here are general; there
is no reason why there could not be a Kansas Lava analog
for generating C or C++, for example, as is done in the
CoPilot project [21]. Building descriptions of programs in
languages like Haskell, and building further infrastructure on
top of this has potential for a long-term impact to the way
we build software, and design hardware.

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 63

References
[1] Arvind, R. Nikhil, D. Rosenband, and N. Dave, “High-level synthesis:

an essential ingredient for designing complex asics,” in Computer
Aided Design, 2004. ICCAD-2004. IEEE/ACM International Confer-
ence on, nov. 2004, pp. 775 – 782.

[2] A. Gill, T. Bull, A. Farmer, G. Kimmell, and E. Komp, “Types and
type families for hardware simulation and synthesis: The internals and
externals of Kansas Lava,” in Proceedings of Trends in Functional
Programming, May 2010.

[3] A. Farmer, G. Kimmell, and A. Gill, “What’s the matter with Kansas
Lava?” in Proceedings of Trends in Functional Programming, May
2010.

[4] S. Peyton Jones, Ed., Haskell 98 Language and Libraries – The
Revised Report. Cambridge, England: Cambridge University Press,
2003.

[5] S. L. Peyton Jones and P. Wadler, “Imperative functional program-
ming,” in POPL ’93: Proceedings of the 20th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages. New York, NY,
USA: ACM, 1993, pp. 71–84.

[6] A. Gill, T. Bull, G. Kimmell, E. Perrins, E. Komp, and B. Werling,
“Introducing Kansas Lava,” in Proceedings of the Symposium on
Implementation and Application of Functional Languages, Sep 2009.

[7] A. Gill, “Type-safe observable sharing in Haskell,” in Proceedings of
the 2009 ACM SIGPLAN Haskell Symposium, Sep 2009.

[8] A. Gill, T. Bull, D. DePardo, A. Farmer, E. Komp, and E. Perrins,
“Using functional programming to generate an LDPC forward error
corrector,” in IEEE Symposium on Field-Programmable Custom Com-
puting Machines, May 2011.

[9] K. Czarnecki and U. W. Eisenecker, Generative programming:
methods, tools, and applications. New York, NY, USA: ACM
Press/Addison-Wesley Publishing Co., 2000.

[10] K. S. Andrews, D. Divsalar, S. Dolinar, J. Hamkins, C. R. Jones, and
F. Pollara, “The development of turbo and LDPC codes for deep-space
applications,” Proc. IEEE, vol. 95, no. 11, pp. 2142–2156, Nov. 2007.

[11] T. K. Moon, Error correction coding : mathematical methods
and algorithms. Hoboken, N.J.: Wiley-Interscience, 2005. [Online].
Available: http://www.loc.gov/catdir/toc/ecip055/2004031019.html

[12] A. Gill and G. Hutton, “The worker/wrapper transformation,” Journal
of Functional Programming, vol. 19, no. 2, pp. 227–251, March 2009.

[13] A. Gill and A. Farmer, “Deriving an efficient FPGA implementation
of a low density parity check forward error corrector,” submitted
to the 16th ACM SIGPLAN International Conference on Functional
Programming.

[14] G. Jones and M. Sheeran, “Circuit design in ruby,” in Formal Methods
for VLSI Design, Staunstrup, Ed. Elsevier Science Publications, 1990.

[15] M. Sheeran, “mufp, a language for vlsi design,” in LFP ’84: Pro-
ceedings of the 1984 ACM Symposium on LISP and functional
programming. New York, NY, USA: ACM, 1984, pp. 104–112.

[16] P. Bjesse, K. Claessen, M. Sheeran, and S. Singh, “Lava:
Hardware design in Haskell,” in International Conference on
Functional Programming, 1998, pp. 174–184. [Online]. Available:
citeseer.nj.nec.com/bjesse98lava.html

[17] P. Bellows and B. Hutchings, “JHDL - an HDL for reconfigurable
systems,” Field-Programmable Custom Computing Machines, Annual
IEEE Symposium on, p. 175, 1998.

[18] R. S. Bird and O. De Moor, Algebra of Programming, ser. Interna-
tional Series in Computing Science. Prentice Hall, 1997, vol. 100.

[19] R. Bird, Pearls of Functional Algorithm Design.
Cambridge University Press, 2010. [Online]. Available:
http://www.cambridge.org/gb/knowledge/isbn/item5600469

[20] G. Berry, “The constructive semantics of pure Esterel,” 1999,
http://www-sop.inria.fr/esterel.org/files/.

[21] L. Pike, A. Goodloe, R. Morisset, and S. Niller, “Copilot: A hard
real-time runtime monitor,” in RV, ser. Lecture Notes in Computer
Science, H. Barringer, Y. Falcone, B. Finkbeiner, K. Havelund, I. Lee,
G. J. Pace, G. Rosu, O. Sokolsky, and N. Tillmann, Eds., vol. 6418.
Springer, 2010, pp. 345–359.

64 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

Towards Semantics-directed System Design and Synthesis

William L. Harrison1, Benjamin Schulz1, Adam Procter1, Andrew Lukefahr2 and Gerard Allwein3

1Department of Computer Science, University of Missouri, Columbia, MO, USA.
2Department of Electrical Engineering and Computer Science, University of Michigan-Ann Arbor, MI, USA.

3US Naval Research Laboratory, Code 5543, Washington, DC, USA.

Abstract— High assurance systems have been defined as
systems “you would bet your life on.” This article discusses
the application of a form of functional programming—
what we call “monadic programming”—to the generation of
high assurance and secure systems. Monadic programming
languages leverage algebraic structures from denotational
semantics and functional programming—monads—as a flex-
ible, modular organizing principle for secure system design
and implementation. Monadic programming languages are
domain-specific functional languages that are both suffi-
ciently expressive to express essential system behaviors and
semantically straightforward to support formal verification.

Keywords: Formal Methods, Computer Security, Programming
Languages

1. Introduction
System software is notoriously difficult to reason about

either formally or informally and this, in turn, greatly com-
plicates the construction of high-assurance, secure systems.
In our view, the difficulty stems from the conceptual distance
between abstract models of secure systems and their concrete
implementations. System models are formulated in terms of
high-level abstractions while system implementations reflect
the low-level and concrete details of hardware, machine
languages and C. Typically, there is no apparent relationship
between the system model and implementation to exploit
in verifying critical system properties, and this disconnect
impedes the construction of computer systems with verified
security policies.

This paper describes ongoing research that pursues a novel
approach towards bridging this conceptual gap: synthesizing
implementations of systems directly from formal models of
security in a manner verified to preserve the system security
property. The particular systems we focus on are Rushby’s
classic security kernel design: separation kernels [1]. Sep-
aration kernels partition processes by security level into
distinct “domains” (where all interdomain communication is
mediated by the kernel) and enforce a non-interference-style
security discipline called domain separation (see Figure 1).
In a separation kernel, processes on different domains behave
as if they are on distinct nodes in a networked distributed
system while they, in fact, execute on shared hardware.

Fig. 1: A separation kernel mediates all inter-domain com-
munication, thereby enforcing its security policy. The dotted
arrow designates permitted information flows.

The methodology being explored is a calculational ap-
proach seeking the development, implementation and verifi-
cation of compilation strategies that preserve domain sepa-
ration. The main vehicle for our methodology is a domain-
specific language, called HASK (for High-Assurance Secu-
rity Kernel), and the aim of this approach is not to develop
a single, specific security kernel, but rather a class of such
kernels embodied as HASK programs.

This paper presents an overview of the design, imple-
mentation and verification of HASK programs. It does not
report new technical innovations or scientific discoveries, but
rather it presents an overview of the research, as well as the
philosophy underlying the research, that is currently being
pursued by the authors. Furthermore, an overview of both
the philosophy that motivates our approach to high assurance
and secure systems. The remainder of this section discusses
and motivates the design of the HASK language. Section 2
places this research in the context of efforts to discover a
science of cybersecurity. Section 3 describes two formalisms
that provide a foundation for our work, monadic semantics
[2] and channel theory [3].

1.1 Motivating the HASK Design
The “bread and butter” activities for any kernel include

concurrency (e.g., task scheduling, synchronization, etc.),
managing IO, and handling asynchronous exceptions and
system calls. Implementing a kernel means supporting these
functionalities among others.

If high assurance is a goal for the kernel, then the choice of
implementation language is critical. Verifying formally that

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 65

the kernel possesses certain properties (e.g., that it obeys
an information security discipline) means proving mathe-
matically that the kernel code itself possesses the desired
properties. This, in turn, requires that the implementation
language must possess a rigorous semantics. For higher
assurance, the kernel language compiler and possibly other
links in the toolchain must also be verified to preserve the
desired properties.

Formal verification of code? This is frequently the point
at which functional languages are mentioned, because sev-
eral such languages (e.g., Haskell and ML) have rigorous
semantic specifications [4], [5], [6], [7], [8] for large parts
of the language.

The choice of a functional language for implementing the
kernel is complicated by several unpleasant facts: “bread and
butter” kernel behaviors (e.g., file handling, concurrency,
exceptions, destructive update, etc.) are called the “Awk-
ward Squad” in the functional programming community [9]
precisely because they are difficult to handle in functional
languages.

For the sake of discussion, let us consider the Haskell
functional language [10] as an implementation language.
Systems-level programming in Haskell inevitably involves
the “IO monad”. And what is the IO monad? In the memo-
rably colorful words of Simon Peyton Jones (the principal ar-
chitect of the Glasgow Haskell Compiler and a leading light
in the Haskell community), the IO monad is a giant “sin-
bin” [9] into which all real world impurities are swept. These
impurities (e.g., file handling, concurrency, exceptions, de-
structive update, etc.) are called the “Awkward Squad” in
the functional programming community precisely because
they are difficult to handle in functional languages. Yet, the
Awkward Squad is essential to kernel programming—after
all, if a kernel isn’t about handling concurrency, exceptions,
etc., what is it about?

1.2 Making the Awkward Squad Less Awk-
ward

HASK handles the Awkward Squad in two ways. HASK
is a standalone domain-specific language (DSL) with its own
compiler. HASK looks like Haskell [10], and, in fact, HASK
programs can be executed by Haskell implementations with
only some trivial syntactic changes. But, HASK’s expres-
siveness is intentionally reduced to simplify its semantics,
implementation and verification.

The other way that the Awkward Squad is made less
awkward is with the “monadic programming” model of
HASK. This distinguishes this research from that of others
applying functional languages to system software [11], [12].
Historically, monads are used in two contexts: denotational
semantics and functional programming. In denotational se-
mantics, monads are algebraic structures representing com-
putational effects, while within functional programming,
monads are a programming abstraction for modularity akin

to object orientation. Programming in HASK differs from
ordinary functional programming practice in at least one key
respect: monads are first-class language constructs.

Now is as good a time as any to explain a confusing
misnomer in the Haskell world: the aforementioned IO
monad in the Haskell language is a monad in name only. A
monad [2], [13] is an algebraic structure is the same sense
that a group, a ring or a vector space is an algebra; that is, it
has operations defined on it of a certain type that obey certain
defining equations. The Haskell IO monad has operations of
the right type defined on it, but they are not guaranteed to
obey the defining equations of a monad. Further muddying
this already muddy water, Haskell also has a built type class
called Monad and members of that type class, like the IO
monad, are not necessarily monads in the algebraic sense.
A Haskell programmer, having defined a Monad, would
have to prove that his Monad is really a monad. In this
paper, when we write “monad”, we really mean monad in
the rigorous, mathematical sense of the word. Monads are
explained further in Section 3.

At this point, one might reasonably ask whether a whole
new language is even necessary? Can’t an existing language
suffice—why a standalone language and not just a new
library? High assurance is one of our main desiderata, and,
if we are to have a chance of verifying our designs and tools,
then we must program them in a language with a rigorous
semantics. There are simply no general purpose languages
with such a semantics. Such languages have so much “stuff”
in them that establishing a humanly tractable language
semantics would seem to be difficult, if not impossible.

HASK is a standalone language and requires its own
compiler. While implementing HASK via existing Haskell
compilers is possible, this style of implementation leaves
much to be desired, both from the points of view of effi-
ciency and high assurance. From an efficiency perspective,
the kernel implementation produced by the GHC compiler
is large and retains artifacts from the Haskell run-time sys-
tem ill-suited to an operating system kernel (e.g., garbage-
collection and closures). Neither GHC nor its runtime system
were designed for formal verification.

2. What is a Science of Security?
There has been a lot of interest recently among various

funding agencies in the US federal government in research
seeking to uncover the “science of security.” This interest
stems, no doubt, from our increasing reliance on computa-
tional systems for everything from national defense to com-
merce to medicine. Computing is becoming ubiquitous and,
in order to have any confidence that all this computational
infrastructure is really worthy of trust, we really need to
understand security from first principles. If we do not possess
a science of security, then how do we distinguish trustworthy
systems from untrustworthy ones?

66 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

The remainder of this section considers issues presented
by a science of security and, in particular, what the term
“science” might entail when combined with “security.” The
presentation is admittedly high level and conversational in
tone. It is the authors’ intention to ask questions rather
than provide answers. In fact, the authors hasten to add that
they have no pretensions to possessing the answers to these
questions. This section contains several digressions into the
history of mature scientific and engineering disciplines—
chemistry and civil engineering—with the purpose of indi-
cating what “maturity” entails for security. The authors are
neither chemists, civil engineers, nor historians of science.
Our purpose is to present an overview of the philosophy that
motivates our research in high assurance computing.

2.1 Is a “Science” of Security really necessary?
Think about it this way. If you worked for a company

that manufactured dynamite and none of the company’s
chemists had ever heard of Mendeleev’s periodic table of
elements, would you continue to work for that company? If
the chemists merely worked from a recipe for dynamite, but
did not understand the underlying principles of chemistry,
they would not be able to distinguish safe synthesis of
dynamite from unsafe synthesis. The probable results would
be quite dramatic and unpleasant for all concerned.

Security as a discipline is now a collection of ideas and
techniques. A popular textbook on security by Matt Bishop
[14] contains thirty-five chapters on subjects ranging from
access control, cryptography, security models, etc. What
unites these seemingly disparate subjects? One frequently
has the feeling when reading the literature of computer
security that these areas are somehow connected to one
another on some deep level, but the precise nature of those
connections is not clear now, nor will they become so, until
security is understood from first principles.

Security has been studied since the early 1970’s [15], mak-
ing it a decade or two younger than computing science as a
whole (the umbrella term “computing science” includes all
computational disciplines; e.g., computer science, computer
engineering, etc.). That it has not yet evolved into a mature
discipline should not be surprising when one bears in mind
that older, more mature scientific and engineering disciplines
(e.g., chemistry and civil engineering) became so over the
course of centuries.

A historical digression provides a useful perspective and
sense of proportion on the prospects for security science.
Consider civil engineering, which can be said, with some
justice, to be the most mature engineering discipline, having
roots at least as far back as ancient Egypt. How quickly
did scientific theory have an impact on civil engineering
practice?

Consider the (admittedly anecdotal) example of the ap-
plication of the differential and integral calculus to civil
engineering. Both Newton and Leibniz published their re-

spective versions of the calculus by 1675. Charles Augustin
de Coulomb’s paper Essai sur une application des maximis
règles et de minimis à quelques problèmes de statique
relatifs à l’architecture, first published in 1776, was the
first publication to apply differential and integral calculus to
civil engineering problems and, even then, calculus did not
penetrate the civil engineering practice until the early to mid-
19th century [16]. Thomas Tredgold’s classic treatise [17],
published in 1820, formulates construction techniques in
terms of trigonometry alone and does not mention erstwhile
advanced ideas from physics and mathematics (e.g., statics
and calculus).

Coulomb and Tredgold illustrate a parallel between the
civil engineering of the early 19th century and computing
science as we know it today. Coulomb was a theorist who
focused mainly on what we might now call mathemat-
ical physics. His approach was formal and grounded in
mathematics. Tredgold was a self-taught engineer and his
aforementioned treatise provides a collection of techniques
for building structures (e.g., bridges, buildings, etc.) along
with practical advice on the kinds of materials to be used.
Tredgold wanted to know how to construct a thing and
Coulomb wanted to understand why that thing’s construction
worked.

2.2 Foundations for the Science of Security
Tredgold and Coulomb are the perfect “poster children”

for two respective and (alas) currently distinct camps within
computing science: practical computer engineers and formal
methods scientists. Formal methods is the application of
mathematics to the design and construction of hardware and
software systems. By combining design and development
with rigorous mathematical analysis, formal methods seeks
to construct systems that provably possess particular prop-
erties (e.g., are secure, fault-tolerant, safe, correct, etc.).

According to Parnas [18], formal methods was founded in
1967 by Robert Floyd with his paper Assigning Meanings to
Programs [19]. Why assign meaning to a program? Because
if you want to prove that a program has a particular property,
you must first possess a rigorous—i.e., mathematical—
definition of that program: no mathematical meaning, no
mathematical proof. Similarly, if you want to know why a
system S is secure, you must first possess a mathematical
definition, in some form, of S. Here, “system” is interpreted
very broadly; S may be a program, operating system, circuit,
or, perhaps, some combination of heterogenous systems each
possessing an individual mathematical definition. Having
a controlled vocabulary for computational systems is a
principal motivation for our use of monadic semantics [2].

Any science of security worth its salt must provide
the rigorous definition of “secure” for the context of S,
irrespective of the form S may take. To be worthy of the
title “science”, notions of security must be independent of
particular, concrete instances of secure systems. This is not

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 67

an exotic requirement in any sense. Arithmetic, for example,
does not provide individual notions of natural numbers for
each kind of object that one would count—there is one
notion of natural number rather than “natural numbers for
oranges” and “natural numbers for apples,” etc. Having a
logical framework for specifying information flow between
heterogenous subsystems motivates our interest in channel
theory[3].

2.3 Challenges to a Science of Security
Formal methods has acquired a reputation in some quar-

ters as a purely academic endeavor, where “purely academic”
is generally taken to mean “unpractical.” This is not entirely
fair as formal methods have made inroads into industrial
practise [20], [21], [22], [23], [24], [25], but it must be
recognized that formal methods are the exception and not
the rule in industry [18].

David Parnas, one of the leaders in formal methods
research since its inception, recently published a thought-
provoking, critical assessment of the current state of the art
in formal methods research [18]. While Parnas’ essay was
concerned with formal methods for software, his observa-
tions are relevant to formal methods generally. Parnas iden-
tifies three negative developments in software engineering,
two of which are especially relevant to the development of a
science of security: the gaps between research and practice
and between computing science and classical mathematics.
Each gap presents challenges to be overcome in the pursuit
of a science of security and below we discuss these chal-
lenges, as well as several others, in the context of a science
of security.

2.3.1 Gap between Computing Science & Mathematics

Parnas observes that mathematics and theoretical comput-
ing science are separate to a surprising degree. Mathematics
possesses a vast, deep body of concepts, structures and
techniques that it has developed over the course of millenia.
Theoretical computing science has only partaken of a tiny
sampling of what mathematics has to offer. Formal methods
is now at an early stage in its development where a variety of
formalisms from mathematics are being investigated for their
relevance to a science of computation. Formal methods may
appear sometimes to produce “toys.” But the experimentation
underlying formal methods research is the early part of
an important intellectual exploration that must be made if
computing science is to really become a science. Mathe-
matics does not apply itself. It is hard work. Understanding
Newton’s presentation of differential and integral calculus in
terms of “fluxions” does not immediately suggest Coulomb’s
application of calculus to calculating the strength of retaining
walls. The mathematical raw material may be present in
current mathematics, but fashioning that raw material into
constructive engineering can take significant effort.

2.3.2 Gap between Computing Science Research & Prac-
tice

Parnas observes another gap between the Coulombs and
Tredgolds in current computing science research. Formal
methods research produces results that are not connected
to engineering reality. Practical engineers sometimes rely on
toolchains that are known to be deeply flawed, but continue
to rely on them for lack of any better alternative.

This is the problem of “legacy software” writ large. An
investment in some form of intellectual capital is unlikely to
be abandoned by the investor. A formal methods researcher
may have invested significant time in the development of
an idea or technique and will not readily abandon these
cherished results even if they have not yet born fruit. A
practical engineer wants to produce artifacts in the here and
now and will continue to apply flawed technology to “get
the job done.”

Neither the Coulombs nor the Tredgolds are being unrea-
sonable. The formal methods researcher knows that, histori-
cally, every powerful and revolutionary idea started weak and
had to be developed before its power could be recognized.
Demands that the acorn become a might oak overnight
are themselves unreasonable. Practical engineers cannot be
expected to abandon proven, yet flawed, technology to start
from scratch with each project. Nothing would ever get done.

Yet both the Coulombs and the Tredgolds must recognize
that their ideas, tools and technologies may have a shorter
lifespan than they imagine. And that, in the history of
computing science, the short lifespan of particular ideas may
ultimately be judged to be a good thing.

2.3.3 The Tower of Babel

One of the things that makes chemistry a mature science
is that it has a controlled vocabulary. Chemists do not argue
over how to express the molecule for water; it is simply
H2O. Neither do chemists argue over the meaning of “dou-
ble bond,” “alkane” or “aromatic compound.” Chemistry’s
maturity is made manifest in Mendeleev’s periodic table of
elements:

The periodic table obviously does not capture all of
chemical knowledge, but it does provide a foundation with
which chemists can develop and communicate ideas to other
chemists. Computing science in general and computer secu-

68 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

rity in particular have no such organizing principles. There is
a “Tower of Babel” problem in today’s computing disciplines
consisting a variety of ideas and techniques that, although
they may seem somehow interdependent, the precise nature
of their relationships is not clear. Indeed, exploring their
connections does not appear to excite much interest.

The authors interest in channel theory (described below
in Section 2.5) is motivated by its capability of expressing
the relationships between subsystems characterized within
different formalisms.

2.4 Security Theory in the Present
This section presents an example of a theory of security,

Goguen and Meseguer’s classic noninterference model [26],
to illustrate the state of the art in security models. Noninter-
ference may seem to be an odd choice to illustrate the state
of the art since Goguen and Meseguer first published the
model in 1982, but noninterference was and is enormously
influential (e.g., as of this writing, it has 1145 distinct
citations according to Google Scholar) and continues to
inspire refinements and extensions. A manifestly incomplete
list of noninterference descendants includes: Rushby [27],
McCullough [28], McLean [29], Zakathinos & Lee [30]).

Noninterference is a formal model of security based on
abstract state machines. It requires that, roughly speaking,
low-security outputs are unaffected by high-security inputs
to an abstract state representing the system. To understand
noninterference, consider a system S with exactly two
threads, A and B, and a trace t of a particular system
execution. Trace t is a sequence of A and B operations
reflecting the scheduling of the threads by S. There are three
operations on S. For state σ, run(t, σ) executes trace t and
output(σ,B) is the system output according to B. The trace
purge(t ,A) is the subtrace of t with all of A’s operations
removed. For a given execution sequence and input state, t
and σ, thread A does not interfere with B if, and only if,

output(run(t , σ),B) = output(run(purge(t ,A), σ),B)

Most information flow security models are based either
on the noninterference model of Goguen and Meseguer or
on variants of it [31]. Such security models specify end-to-
end system security policies in terms of the “views” of the
system as a whole by groups of users/processes. Views are
typically characterized by partitioning global system inputs
and outputs and associating groups of users/processes with
these partitions. These input and output partitions determine
the view of its associated group. Noninterference-based
security policies will require that, for example, changes in
a high level security input partition will result in no change
to a low level output partition.

2.5 Channel Theory and Information Security
It has long been held that information flow security models

should be organized with respect to a theory of information,

C

Hi Lo

h l

Fig. 2: Channel Diagram relates component-level views (Lo
and Hi) to a global view (C).
2

but typically they are not. What, for example, is the unit
of information transferred in the noninterference model de-
scribed above? The appeal of a information-theoretic founda-
tion for information flow security seems natural, compelling
and, indeed, almost tautological. Channel theory—a theory
of information based in logic—can provide a foundation
for security models based in noninterference. The first and
last authors’ recent publication [32] demonstrates how a
McLean’s hierarchy of information security policies [29] can
be neatly captured in channel theory. This result suggests
that channel theory is a useful organizing principle for
information flow security.

The partitioning associated with noninterference security
specifications implicitly divides a system into subsystems
or components and defines permissible information flow in
terms of the inputs and outputs resulting from component
interaction. The main constructions of channel theory—
classifications, infomorphisms, and channels—can be used
to formulate an information-theoretic characterization of
information flow security that is, in contrast to the traditional
approach, explicitly component-based.

Figure 2 presents a channel diagram in which information
flow between local components, Lo and Hi, is mediated by a
global component, C. Individual components are called clas-
sifications. Classifications are local logical characterizations
of components and their views and each view corresponds to
an individual classification in channel-theoretic information
security. In a channel diagram, information flow between
component classifications occurs along infomorphisms (h
and l) and is controlled by the channel core (C).

Mathematical logic, as most of us learn it [33], is not
modular: there is no structural notion of logic “compo-
nents” and “composition” akin to modules or classes in
programming languages. The standard approach presents a
logic as a monolith containing a single logical language, a
single set of inference rules and a single class of structures
or interpretations for the language. Channel theory [3] is
a framework for formulating logical specifications in a
modular (i.e., “distributed”) manner.

The authors view channel theory as playing a similar
role in mathematical logic as computational monads play
in the semantics of programming languages with effects.
Both are frameworks that support structuring specifications
in a modular manner and neither is, strictly speaking,

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 69

essential to their respective disciplines. That is, one can
formulate language semantics without monads, just as one
can formulate logical specifications without channel theory.
The level of abstraction supported by monads have made
monadic structuring one of the most important developments
in language semantics since the late 1980’s [2].

3. Monadic Programming for Secure
Systems

This overview of monads and their security properties is,
of necessity, extremely brief and high-level. It is presented
with as few technical details as is possible so that the reader
can quickly understand can quickly comprehend the gist of
the approach. The risk of such a high-level presentation is
that it may seem like we are describing nothing at all. The
interested reader can find a thorough technical presentation
in the references (especially, Harrison and Hook [34]).

3.1 Take Separation.
Goguen-Meseguer noninterference defines an abstract se-

curity model that does not include or imply any implemen-
tation strategy. We use an alternative to Goguen-Meseguer
noninterference called take separation [34] that includes
sufficient operational content to drive an implementation.
Take separation is an algebraic security specification, for-
mulated in terms of interactions of system operations or
commands, and is provably equivalent to Goguen-Meseguer
noninterference. Monadic information security possesses an
advantage over traditional Goguen-Meseguer state machine
security disciplines in that the approach relates to programs
through language semantics, thus removing the need to
rely upon external formalisms for program verification. One
can always construct executable models obeying a take
separation policy using monadic semantics [34].

Take separation is defined as follows for two processes,
each of which are sequences of operations: A = (a0; a1; · · ·)
and B = (b0; b1; · · ·). A system execution, ω, consists
of any order-respecting interleaving of A and B’s
commands; a round-robin execution, for example, would be
ω = (a0; b0; a1; b1; · · ·). To define B | :A, we assume the
existence of function that purges B operations from a system
execution, called takeA, and an B operation that masks out
B’s outputs, called maskB . The function takeA purges B
operations, leaving only A operations, and the operation
maskB scrubs all of B’s outputs. Equations defining takeA
and maskB are: takeA n ω = (a1 ; · · · ; an), for all
n ≥ 0, and (b ; maskB) = maskB for any operation b on
B. Process B is take separate from A in ω if, and only if,
(a1 ; b1 ; · · · ; an ; bn) ; maskB = (takeA n ω) ; maskB
for all n ∈ {0, 1, · · · }. This statement requires that A’s
outputs are invariant with respect to the actions of B in ω.
That B’s outputs are masked on both sides of the equation
is important because B’s outputs must be the same on both
sides of the equation.

Fig. 3: The periodic table of programming languages. Each
element in the table encapsulates a language constructor and
molecules (i.e., individual languages) are combinations of el-
ements. In the denotational semantics literature, “molecules”
are also known as monads and elements are also known as
“monad transformers” or “monad constructors.”

3.2 Monadic Separation Kernels from 10,000
Feet

The best way to think of a monad is as a DSL. That is, it’s
just a small programming language. Monad DSLs are also
modular. Bigger DSLs can be made by combining individual
language building blocks together. Following MonadLab
[35], an additive notation is used for composing building
blocks; e.g., for blocks, b1 and b2, their composition is
b1 ⊕ b2. In the literature, DSL building blocks are usually
called either monad transformers [36] or monad constructors
[13]. Here’s an important fact: any command from any
programming language is expressible as a DSL constructor
[13]. Just as Mendeleev’s periodic table is a controlled
vocabulary for chemistry, DSL constructors are a controlled
vocabulary for defining programming languages (see Fig. 3).

The monad DSL for a Rushby-style separation kernel
combines concurrency operations with one monad DSL
for stateful effects per separated security domain. These
“Rushby monad” DSLs come with properties by construction
that are useful for verifying non-interference-based security
properties. A monadic separation kernel with two domains,
Hi and Lo, is defined in terms of five monad DSLs:

monad H = ReactT Req Rsp ⊕ (StateT HA)
monad L = ReactT Req Rsp ⊕ (StateT LA)
monad K = (StateT HA) ⊕ (StateT LA)
monad R = ResT ⊕ K
monad Re = ReactT Req Rsp ⊕ K

The building blocks, (StateT HA) and (StateT
LA), add commands for reading and writing from address
spaces HA and LA, respectively. Note that this means that
commands defined by these building blocks write to different
address spaces by construction. The building block, ReactT
Req Rsp, adds commands for interacting with the kernel.
User processes running on either Hi and Lo can send a
trap to the kernel of type Req. The kernel may then signal

70 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

a response of type Rsp. The building block ResT allows
threads to be separated into time slices and executed by the
kernel.

The monad DSLs H and L define the languages of user
processes on Hi and Lo. This means that Hi (Lo) code can
access the HA (LA) address space as well as signal the kernel.
By construction, Hi and Lo processes can only interact, if
permitted, via the kernel, because their commands cannot
access each other’s address spaces. The monad DSL for the
separation kernel is defined by the three monads DSLs K,
Re and R. The kernel has access to all of HA and LA via
K. The kernel is a tail-recursive function that takes a user
program (i.e., from either an H or L), services any request
it may have signaled, and dispatches a time slice of the use
r process (an R object). Each monad DSL has a sequencing
operation, », that corresponds to “;” in languages like C or
Java.

By construction, we know a number of properties about
programs in the monad DSLs H and L. Each has a special
operator, zeroH and zeroL, that initializes the address
spaces HA and LA, respectively. For any commands hi and
lo, from (StateT HA) and (StateT LA), respectively,
we know that a number of equations hold when executed by
the kernel, including:

1. hi >> lo = lo >> hi
2. lo >> zeroH = zeroH >> lo
3. hi >> zeroH = zeroH

The most important of these properties from the point of
view of security is 1. (called atomic noninterference [34]).
Because any such hi and lo commute, they are independent
of one another. Property 2. says that lo and zeroL are also
independent. But property 3. shows that zeroH cancels hi.
We also know that » is associative.

A trace of a system execution is expressed in the R DSL,
meaning that the signals have already been serviced. The
result of the kernel servicing a process request is reflected by
an operation on that process’s address space (e.g., copying
the content from a return register into a local address). A
prefix of a trace will contain interleaved operations from
each domain; e.g., a prefix might have the form: lo0 »
hi0 » lo1. For such a trace prefix, cancel out all of the
Hi operations with zeroH:

(lo0 >> hi0 >> lo1) >> zeroH
= lo0 >> hi0 >> lo1 >> zeroH { assoc. }
= lo0 >> hi0 >> zeroH >> lo1 { 2. }
= lo0 >> zeroH >> lo1 { 3. }
= lo0 >> lo1 >> zeroH { 2. }
= (lo0 >> lo1) >> zeroH { assoc. }

One will observe that this is precisely what is required
by take separation. The zero operations defined by the
StateT building blocks play the same role as purge does

for the Goguen-Meseguer model.
The proof above shows that, as long as the kernel does not

allow an illegal information flow, then the whole system has
take separation. This follows immediately by the construc-
tion of the monadic DSLs above. The kernel must still be
verified. Because it can communicates with each domain, a
kernel could break the security policy. The good news is that
the kernel description is short; for an example, see Fig. 5,
which is explained below in Section 4.1.

3.3 The State Monad

This section presents the definition of a monad in Haskell
for the sake of completeness. This section is not required to
understand the rest of the paper.

Monads are typically represented in functional program-
ming languages like Haskell [10]. The representation of
S in a Haskell-like notation consists of the function and
type declarations in Figure 4. The monadic type S a is
a function type taking an input state of type Store to a
product of outputs of type (a×Store) representing the
output value and state respectively. Lambda notation is used
to express functions in functional languages; e.g., λx.x+ 1

is a function that takes an integer x as input and returns
its increment as output. In x»y, the null bind operator (»)
threads an input state s through x, producing output state
s’, that is then threaded through y.

The DSL for the state monad S is displayed in Fig-
ure 4 for some given some type Store. The command,
(return 99) : S Int, is a trivial computation that
returns the value 99. The command, get : S Store,
reads and returns the current Store. Neither return nor
get change the current Store state. Given a function f
: Store→Store, (update f) transforms the current
state by applying f to it; it produces a nil value of type ().
The bind commands, »= and », sequence S-computations
together analogously to “;” in C or Java; we will only use
the so-called null bind (») in this paper.

return : a → S a
(>>=) : (S a) → (a → S b) → S b
(>>) : S a → S b → S b
update : (Store→Store) → S ()
get : S Store

S a = Store→(a×Store)
x >> y = λs.let (d,s’) = x s in y s’
update f = λs.((),f s)
return v = λs.(v,s)

Fig. 4: The State Monad S (top) and its representation in a
functional programming language (bottom).

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 71

-- DSL Construction:
type Hi = Addr -> Int
type Lo = Addr -> Int
data Req = Cont | Bcst Int | Rcv
data Rsp = Ack | Rcvd Int
monad K = (StateT Hi) ⊕ (StateT Lo)
monad R = ResT ⊕ K
monad Re = (ReactT Req Rsp) ⊕ K

-- Kernel-level Data
type Sys = (Q(Re()),Q Int,Q Int)
data HdlrOp a = Halt | ServH a | ServL a
type Handshake = (Req,Rsp -> K (Re ()))

resched :: Sys -> Re () -> R ()
resched (ts,l,h) t = kl (ts << t,l,h)

kl :: Sys -> R ()
kl (∅,_,_) = return ()
kl (t �ts,l,h) = disp (onsig t)
where
disp :: HdlrOp Handshake -> R ()
disp Halt = kl (ts,l,h)
disp (ServH (Cont,k)) = stepH (k Ack) >>= resched (ts,l,h)
disp (ServL (Cont,k)) = stepL (k Ack) >>= resched (ts,l,h)
disp (ServH (Bcst m,k)) = kl (ts << rspdH k Ack,l,h << m)
disp (ServL (Bcst m,k)) = kl (ts << rspdL k Ack,l<<m,h<<m)
disp (ServH (Rcv,k)) = case h of

∅ -> kl (ts << t,l,∅)
(m �hs) -> kl (ts << rspdH k (Rcvd m),l,hs)

disp (ServL (Rcv,k)) = case l of
∅ -> kl (ts << t,∅,h)
(m �ls) -> kl (ts << rspdL k (Rcvd m),ls,h)

Fig. 5: A separation kernel with two domains, H and L, written in HASK. Threads communicate via asynchronous broadcast
& receive system calls. Note that messages broadcasted on L reach H but not vice versa. The unit and bind operations,
return and »=, are overloaded for monads K, R, and Re. The thread operators (onsig, step, rspd) are discussed in
Section 4.1.

4. HASK Language Design & Implemen-
tation

There were a number of issues we confronted and design
decisions we made in the design of HASK. HASK is a
pure functional language like the Haskell language, albeit
with a number of strong constraints. The original experi-
ments with monad-based security kernels were rendered in
the Haskell functional programming language, but, for a
number of reasons relating to its complicated semantics and
implementation, Haskell was determined to be an unsuitable
source language. HASK has been made essentially simpler
than Haskell by introducing and enforcing a number of
restrictions on its expressiveness.

HASK is a first-order language, meaning that functions are
never proper values as they are in a higher-order language
like Haskell. The rationale behind this somewhat unusual
choice (unusual, but not unprecedented [37]) is that we did
not want to include language constructs that would necessi-
tate complex implementation strategies. As the resumption
monadic paradigm developed in previous publications are all
essentially first-order, HASK’s economy of expressiveness is
not a shortcoming and ultimately facilitates our implemen-
tation and verification efforts. Implementations of HASK
programs are kernels and require the same basic runtime
structures and characteristics; these are bounded usage of
memory, loop-structured control flow and asynchronous in-
terrupt handling. HASK disallows general recursion in favor
of tail recursion.

Monads are first-class in HASK by which it is that there
is a declaration form “monadM = L1 ⊕ · · · ⊕ Ln” in
HASK for defining the monad DSL, M. The monad layer
(transformer) expressions, Li , determine which commands
are present in M. Monad declarations of this form are
an integral part of HASK syntax in that they define the

operations of the Rushby monad in which a kernel may the
be specified. This part of the language design is discussed
in detail in a recent publication [35].

4.1 HASK by Example
This section gives an introduction to the HASK language

via an a small kernel (see Fig. 5). The monad DSL for this
kernel is constructed along the same lines as the monad
DSLs from Section 3 in the upper left column. The address
spaces, Hi and Lo, are maps from addresses to Int. The
request type, Req, has requests for a broadcast message
service as well as a request to receive a message. System
responses, Rsp, has responses of the form (Rcvd i)
which send the data i back to a process. The Cont and
Ack request and response are NOPs. The languages of user
processes (not shown) are defined as they are in Section 3.

HASK has a built-in queues captured as the type construc-
tor, Q. Type of queues holding values of type a are written,
Q a. The queue Q a has constructors for the empty queue
and item insertion; these are ∅ :: Q a and («) :: Q a ->

a -> Q a, resp. The head and tail of a queue q are accessed
via pattern-matching within a case expression:

case q of
∅ -> e1
(h �hs) -> e2

Expression e1 is only evaluated when q is empty. The head
(h) and tail (hs) of q may be accessed within e2.

Using the queue abstraction, we define the kernel-level
data, Sys (line 6 of Fig. 5). A Sys value is a tuple,
(ts,l,h), consisting of a ready thread queue (ts), a
Lo-domain message queue (l), and a Hi-domain message
queue, (h). The handling of these message queues is critical
to the kernel maintaining the domain separation policy.

72 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

The kernel itself is encapsulated by the mutually tail-
recursive functions, kl :: Sys -> R () and disp ::
HdlrOp HandShake -> R (). The kl picks a process
t from the queue, if it exists, and runs it by passing it to
disp. The dispatch function, disp, processes any request
signal, executes the slice, and passes control back to kl.
The security of the kernel is maintained by disp. If a
high process broadcasts a message, it only affects the high
security message queue. If a low security process requests
a message, then it only receives those from the low security
queue. The kernel is the only place where insecure flows
could arise in this HASK kernel, so this kernel is secure.
Verification of similar kernels is found in the references [34].

4.2 HASK Language Implementation
There are two implementation strategies for monadic mod-

els of take separation [38]. The first compiles models into
three address code using a traditional compiler approach.
The second automatically transforms models into abstract
state machines via a program transformation known as
defunctionalization [39].

The high-level architecture of a monad compiler is con-
ventional, consisting of an intermediate code generation
phase translating the source program (i.e., a program writ-
ten in monadic style) to an appropriate intermediate rep-
resentation (IR) and a phase translating the IR into an
appropriate instruction set. Traditional language compilers
also include considerable analysis and optimization in the
compiler “back-end”, which our monad compiler prototype
currently does not perform.

Aside from the source language, the novelty in monadic
compilers lies both in the process by which code generation
is performed and in the form of the IR itself. This process
of code generation involves the application of a classic
semantics-preserving program transformation called defunc-
tionalization [39] to ICG. This transformation provides a
means by which to compile higher order functions to state
machines which, in turn, are readily compiled to hardware.
These abstract state machines may then be translated into
VHDL using FSMLang [40].

4.3 Extended Typed Interrupt Calculus
The techniques described in the preceding sections

achieve security by construction: the resumption-monad
kernel model inherently excludes storage channels between
processes, except when such channels are actively mediated
by the kernel. Stock hardware typically does not provide
such strong guarantees. While a typical CPU architecture
provides mechanisms to enforce information flow policies
(in the form of an MMU), these mechanisms do not provide
inherent guarantees of security: the operating system still
may grant low-security processes access to high-security
data, in violation of the security policy. We address this
discrepancy by introducing an intermediate language called

1 var channel : int := 0
2
3 handler 1 {
4 if pid==0
5 then switch(1)
6 else switch(0)
7 fi
8 }
9

10 handler trap {
11 channel := R[5] ; switch(pid)
12 }

Fig. 6: A Simple ETIC Kernel

the Enhanced Typed Interrupt Calculus (ETIC), patterned
after the Typed Interrupt Calculus developed by Palsberg
and Ma [41], [42]. ETIC may be viewed as a domain-specific
language for OS kernels. It is a simple imperative language,
enriched with primitives for interfacing with interrupts and
hardware-enforced memory protection. It has a precise se-
mantics, suitable for reasoning about security properties, yet
may also be compiled to kernel-level code running on real
hardware in a straightforward way.

4.3.1 Overview of ETIC
Figure 6 is a simple example of an ETIC kernel. Consider

a machine consisting of one processor with a single interrupt
request line (numbered 1), connected to a periodic timer. A
pre-emptive multitasking kernel for such a machine may be
implemented in ETIC simply by declaring a single interrupt
handler for the timer, which invokes a scheduler terminating
in a switch statement, and a trap handler for system calls.
The kernel in Figure 6 assumes there are only two processes,
numbered 0 and 1, and a single system call that allows a
process to write a value (stored in register 5) to a single
shared storage location.

A partial grammar for core ETIC is given in Figure 7.
An ETIC kernel consists of a set of handler declarations,
one for each interrupt request line and one for software
traps. The language of commands consists of conditional
statements, loops, assignment, sequencing, and three special
primitives for manipulating the page table and executing a
context switch to a user process.

4.3.2 Semantics
The semantics of ETIC is defined in a standard operational

style in Figure 8; i.e. as a set of state transition rules. Figure 8
gives the most important rules. We assume that a semantics
for single processes, whose state consists of registers R and
memory M , is defined by a transition relation U−→. On top
of this we define a “machine-level” semantics, representing
a machine with multiple user process and a kernel. Machine
state is represented by a tuple consisting of an execution
mode m (which is either U for user mode or K for kernel

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 73

Prog ::= Handler∗

Handler ::= handler IRQ { Cmd }
IRQ ::= 1 | 2 | · · · | n | trap
Cmd ::= if Expr then Cmd else Cmd

| Lhs := Expr

| Cmd ; Cmd

| map(Expr,Expr,Expr)

| unmap(Expr,Expr)

| switch(Expr)

Expr ::= Literal | Expr Binop Expr | Variable | Ri

Lhs ::= Variable | Ri

Fig. 7: Grammar for Core ETIC

mode), the kernel command stream C, internal kernel state
S, saved process registers R, user-process heap M , saved
process identifier P , page table T , and finally the code for
the interrupt handlers H (the interrupt handler for IRQ i is
denoted by Hi).

Each rule in Figure 8 consists of a (possibly vacuous)
assumption above the horizontal line, and a conclusion
below it. We “lift” the single-process semantics into the
machine semantics via rule LIFT: essentially, the single-
process semantics determines what the system will do when
it is in user mode. Assume that R is the user process
registers, M̂ is process P ’s view of the machine memory
in page table T , and applying the single-process transition
relation to 〈R, M̂〉 results in registers R′ and memory M̂ ′.
Then when process P is running the system may transition
to a new state with registers R′ and memory M ′, where
M ′ results from “merging” the changes from M̂ to M̂ ′

into M according to process P ’s view of the memory. Rule
INTR expresses the semantics for interrupts: whenever a
user process is running, the system may transition to kernel
mode and begin executing the code for an interrupt handler.
Note that more than one transition rule may apply to any
given machine state; in particular, both INTR and LIFT
apply anytime a user process is running. This possibilistic
nondeterminism reflects the assumption that interrupts may
occur (or not occur!) at any time.

The transition rules also determine the behavior of the
commands defined in Figure 7. The rule SWITCH says that
executing the switch command overwrites the value in the
system process ID register, and returns to user mode. The
map command allows the kernel to update the page table
by adding a mapping of PID-page pairs to physical memory
addresses. Note that the rules for these commands only apply
when the system is in kernel mode. The rules for the other
kernel commands are similar and so are omitted here.

5. Related Work
A calculational approach to program construction [43]

starts from a high-level specification and produces an im-
plementation through a series of verifiable transformations.
The motivation behind the calculational approach is that the
formal connections between source specifications and their
implementations support formal verification. The calcula-
tional approach to compiler construction [44], [45], [46],
[47] follows this paradigm by transforming a high-level
language semantics into compiler implementation.

Monadic semantics have played a role in other recent
high assurance systems research as well. State-monadic
semantics have been used recently for specifying ARM and
x86 instruction sets [48], [49]. The design, construction
and verification of a secure microkernel is described by
Klein et al. [50], [51], [52]. This kernel—called seL4—is a
version of the L4 microkernel [53] with security guarantees.
Monads are used in the modeling phase and are implemented
by hand translation into C. Monads have also play a role
in recent information security models [54], [55]. Monads
can be used as a scoping mechanism for side effects and
this is central to the authors’ approach to secure system
construction. The security model advocated by the authors
uses structural (i.e., “by construction”) properties of monads
as a central organizing principle of their approach, whereas
the aforementioned models use monads more as a security
level tag.

Monadic programs are typically implemented in higher
order functional languages although, in certain cases, the
notion of computation encapsulated by a monad could be
more efficiently implemented directly. Monads of resump-
tions and state can be implemented efficiently via trans-
lation into simple imperative loop code [38]. The present
approach relies on monad compilation to produce code rather
than partial evaluation (as does pass separation). Monad
compilation treats terms typed in a particular monad as a
programming language unto itself. The syntactic monad-as-
language treatment is not new: Hughes applied it in the
development of a pretty-printing library [56] as did Hinze
[57] in the derivation of backtracking monad transformers.
Direct compilation of monads has also been explored by
Danvy et al. [58] and Filinski [59].

Model-driven development (MDD) [60], [61] is a software
engineering paradigm that has sparked considerable interest
of late. Semantics-directed compilation is a form of MDD
that has a long history within programming languages re-
search. In the present work, the “models” are constructed
with monad transformers. Such models have a dual nature:
they are both denotational models (supporting formal rea-
soning) and operational models that may be executed.

Channel theory is closely related to Chu spaces, infor-
mation systems and institutions. In the categorical view of
channel theory, the objects are the same as those in Chu
spaces [62], but the arrows are different. In Chu spaces, no

74 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

〈R, M̂〉 U−→ 〈R′, M̂ ′〉 M̂ = πP,T (M) M ′ = ιP,T (M, M̂, M̂ ′)

〈U,C, S,R,M,P, T,H〉 → 〈U,C, S,R′,M ′, P, T,H〉
(LIFT)

〈U,C, S,R,M,P, T,H〉 → 〈K,Hi, S,R,M,P, T,H〉
(INTR)

〈K, switch(e) :: C, S,R,M,P, T,H〉 → 〈U,C, S,R,M, JeKS , T,H〉
(SWITCH)

〈K,map(e1, e2, e3) :: C, S,R,M,P, T,H〉 → 〈K,C, S,R,M,P, T [〈Je1KS , Je2KS〉 7→ Je3KS], H〉
(MAP)

Fig. 8: Core ETIC Semantics

mention is made of the theory of a classification and most
of the research appears to be directed at their categorical
structure. By comparison, the categorical structure in channel
theory, while useful, is not of primary importance. Scott’s
information systems [63] use similar structures specialized
to computational domains. There is an extensive literature
on institutions [64]. The aforementioned reference combines
institutions with the work of Barwise and Seligman. An
institution is a functor from an abstract category to the
category of classifications.

6. Conclusion
To construct an embedded kernel using current technolo-

gies, how would you proceed? You would choose a target
architecture for which one would presumably also have a
C compiler and an assembler. Assume that the functionality
that the kernel is to support is also known and has been
provided to you. Let us say further that the kernel is to
enforce some security policy like domain separation. With
enough effort, you produce a kernel implementation in C
with some additional assembly language routines. Now, the
kernel is stress tested enough that you have become fairly
confident that it works as intended. Now, you present this
kernel to your boss, who demands that you justify your
confidence that the kernel is indeed secure.

Your boss asks, “how do you know that high security
information doesn’t leak?” You answer, “Here are the lines
of C in the kernel that enforce security.” Puzzled and mildly
irritated to have to look at code, your boss continues, “OK,
all that gobble-de-gook code seems reasonable, but how
do you know that the C compiler doesn’t mess it all up
somehow?” He never brought this up before, you think
to yourself. The C compiler you used has over 5 million
lines of code, so trying to validate that it doesn’t somehow
undermine your security mechanisms is not tractable. “Also,”
your boss continues, “there are all of these insidious code
injection attacks with the architecture you chose, how does
your kernel cope with them?” Come to think of it, precisely
what did you need from the underlying hardware to build a
secure system?

Like it or not, your boss’s questions raise important issues.
What sort of support do you need from hardware to build a

secure system? Even if a software system is deemed secure,
what are the underlying assumptions about the hardware that
support this claim?

Security is an end-to-end concern. Even if we verify that
a program obeys a security policy, there are still parts of
the underlying system—e.g., the compiler, operating system
and hardware—that could undermine our program’s security
when executed and this underlying system is almost certainly
not built with your security policy in mind. Security must be
taken into account through all phases of the system design
and implementation—especially when the system security
is to be formally verified. But, current toolchains are not
designed with this end-to-end flow in mind, and no amount
of pounding will drive the security square peg into the round
hole of current methodologies. A true science of security
will require radical intellectual retooling of how we design,
construct and verify systems.

Functional languages are often heralded as a good foun-
dation for high assurance computation, and we agree with
this—as far as it goes. Languages like ML and Haskell
do contain core languages that have been given rigorous
semantics and this is critical to high assurance and formal
verification. For certain applications and certain required
levels of assurance, these languages may indeed provide suf-
ficient frameworks for designing, verifying and construction
of high assurance systems. However, there are applications—
security microkernels in particular—where off-the-shelf gen-
eral purpose functional languages do not suffice. For one
thing, their semantically specified core languages do not
tackle the Awkward Squad and this, in itself, makes high
assurance development of system-level code problematic at
best. For another, their compilers and run-time systems were
not designed to be verified and, as a result, are every bit as
difficult to verify as any other large compiler. Finally, their
implementations have behaviors and functionalities that can
also be problematic for system programming; for example,
their executables may be too large for embedded systems and
garbage collection can create space leaks and unpredictable
timing behavior.

HASK retains only the parts of Haskell that we need
while jettisoning the rest. Strong typing, pattern-matching,
and functions are all beneficial. The Haskell type system

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 75

can be extended or refined with security types [65] and
this approach can serve to simplify the verification pro-
cess. We have specified much of the HASK language and
its infrastructure in the Coq theorem proving system [66]
and are currently investigating machine-checked verification
of HASK. Following the domain-specific language design
approach with HASK is key to making HASK verification
tractable.

What most distinguishes this research from that of others
applying functional languages [11], [12] is our programming
model. While the HASK language is, in fact, functional, the
design of the language follows from a consideration of the
features strictly necessary to express essential computational
effects that are otherwise typically considered the domain of
low-level imperative languages such as C. Because monads
provide a precise semantic basis for the “Awkward Squad”,
we choose them as the basis of our approach.

Acknowledgment
This research was supported by NSF CAREER Award

00017806, US Naval Research Laboratory Contract 1302-
08-015S, and the Gilliom Cyber Security Gift Fund.

References
[1] J. Rushby, “Design and verification of secure systems,” in Proceedings

of the ACM Symposium on Operating System Principles, vol. 15, 1981,
pp. 12–21.

[2] E. Moggi, “Notions of computation and monads,” Inf. Comput.,
vol. 93, no. 1, pp. 55–92, 1991.

[3] J. Barwise and J. Seligman, Information Flow: The Logic of Dis-
tributed Systems. Cambridge University Press, 1997, cambridge
Tracts in Theoretical Computer Science 44.

[4] R. Milner, M. Tofte, R. Harper, and D. MacQueen, The Definition of
Standard ML (revised). Cambridge, MA: MIT Press, 1997.

[5] J. C. Mitchell and R. Harper, “The essence of ML,” in Proceedings
of the 15th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, ser. POPL ’88, 1988, pp. 28–46.

[6] W. L. Harrison and R. B. Kieburtz, “The logic of demand in haskell,”
Journal of Functional Programming, vol. 15, no. 5, pp. 837–891,
2005.

[7] W. Harrison, “A simple semantics for polymorphic recursion,” in
Proceedings of the 3rd Asian Symposium on Programming Languages
and Systems (APLAS05), 2005, pp. 37–51.

[8] W. Harrison, T. Sheard, and J. Hook, “Fine control of demand in
Haskell,” in 6th International Conference on the Mathematics of
Program Construction, Dagstuhl, Germany, ser. Lecture Notes in
Computer Science, vol. 2386. Springer-Verlag, 2002, pp. 68–93.

[9] S. Peyton Jones, “Tackling the Awkward Squad: Monadic Input/Out-
put, Concurrency, Exceptions, and Foreign-language Calls in Haskell,”
in Engineering Theories of Software Construction, ser. NATO Science
Series. IOS Press, 2000, vol. III 180, pp. 47–96.

[10] S. Peyton Jones, Ed., Haskell 98 Language and Libraries, the Revised
Report. Cambridge University Press, 2003.

[11] T. Hallgren, M. P. Jones, R. Leslie, and A. Tolmach, “A principled
approach to operating system construction in Haskell,” in Proceedings
of the Tenth ACM SIGPLAN International Conference on Functional
Programming (ICFP05). New York, NY, USA: ACM Press, 2005,
pp. 116–128.

[12] P. Li and S. Zdancewic, “Combining events and threads for scal-
able network services implementation and evaluation of monadic,
application-level concurrency primitives,” in PLDI ’07: Proceedings
of the 2007 ACM SIGPLAN conference on Programming language
design and implementation. New York, NY, USA: ACM Press, 2007,
pp. 189–199.

[13] E. Moggi, “An Abstract View of Programming Languages,” Depart-
ment of Computer Science, Edinburgh University, Tech. Rep. ECS-
LFCS-90-113, 1990.

[14] M. Bishop, Computer Security: Art and Science. Addison-Wesley
Professional, 2002.

[15] ——. (2011, Apr.) Computer security archives project. [Online].
Available: http://seclab.cs.ucdavis.edu/projects/history/

[16] Karl-Eugen Kurrer, The History of the Theory of Structures: From
Arch Analysis to Computational Mechanics. John Wiley & Sons,
2008.

[17] T. Tredgold, Elementary Principles of Carpentry; A Treatise on the
Pressure and Equilibrium of Timber Framing; The Resistance of
Timber; and the Construction of Floors, Roofs, Centres, Bridges, etc.,
1820.

[18] D. L. Parnas, “Really rethinking ‘formal methods’,” IEEE Computer,
vol. 43, pp. 28–34, 2010.

[19] R. W. Floyd, “Assigning Meanings to Programs,” in Proceedings of
a Symposium on Applied Mathematics, ser. Mathematical Aspects
of Computer Science, J. T. Schwartz, Ed., vol. 19. American
Mathematical Society, 1967, pp. 19–31.

[20] Software Assurance. IEEE Computer, September 2010.
[21] A. Hall, “Seven myths of formal methods,” IEEE Software, vol. 7,

pp. 11–19, September 1990.
[22] W. Gibbs, “Software’s chronic crisis,” Scientific American, pp. 86–95,

Sep. 1994.
[23] J. P. Bowen and M. G. Hinchey, “Seven more myths of formal

methods,” IEEE Software, vol. 12, pp. 34–41, July 1995.
[24] G. J. Holzmann, “Proving the value of formal methods,” in Pro-

ceedings of the 7th IFIP WG6.1 International Conference on Formal
Description Techniques VII, 1995, pp. 385–396.

[25] M. Hinchey, M. Jackson, P. Cousot, B. Cook, J. P. Bowen, and T. Mar-
garia, “Software engineering and formal methods,” Communications
of the ACM, vol. 51, pp. 54–59, September 2008.

[26] J. A. Goguen and J. Meseguer, “Security policies and security
models,” in Proceedings of the 1982 IEEE Symposium on Security
and Privacy. IEEE Press, 1982, pp. 11–20.

[27] J. Rushby, “Noninterference, transitivity, and channel-control security
policies,” SRI International, Tech. Rep. CSL-92-02, December 1992.

[28] D. McCullough, “A hookup theorem for multilevel security,” IEEE
Trans. Softw. Eng., vol. 16, no. 6, pp. 563–568, 1990.

[29] J. McLean, “A general theory of composition for a class of “possibilis-
tic” properties,” IEEE Transactions on Software Engineering, vol. 22,
no. 1, pp. 53–67, 1996.

[30] A. Zakinthinos and E. Lee, “A general theory of security properties,”
in Proceedings of the 1997 IEEE Symposium on Security and Privacy.
IEEE Computer Society, 1997, pp. 94–102.

[31] S. Zdancewic, “Challenges for information-flow security,” in Proceed-
ings of the First International Workshop on Programming Language
Interference and Dependence (PLID’04), 2004.

[32] G. Allwein and W. L. Harrison, “Partially-ordered modalities,” in
Advances in Modal Logic, vol. 8, 2010, pp. 1–21.

[33] E. Mendelson, Introduction to Mathematical Logic. Van Nostrand
Reinhold Company, 1997.

[34] W. L. Harrison and J. Hook, “Achieving information flow security
through monadic control of effects,” J. Comput. Secur., vol. 17, pp.
599–653, October 2009.

[35] P. Kariotis, A. Procter, and W. Harrison, “Making monads first-class
with Template Haskell,” in Proceedings of the 1st ACM SIGPLAN
Symposium on Haskell (Haskell08), 2008, pp. 99–110.

[36] S. Liang, P. Hudak, and M. Jones, “Monad transformers and modular
interpreters,” in Proceedings of the 22nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL). ACM
Press, 1995, pp. 333–343.

[37] J. Goguen, “Higher-order functions considered unnecessary for
higher-order programming,” pp. 309–351, 1990.

[38] W. Harrison, A. Procter, J. Agron, G. Kimmel, and G. Allwein,
“Model-driven engineering from modular monadic semantics: Imple-
mentation techniques targeting hardware and software,” in Proceed-
ings of the IFIP Working Conference on Domain Specific Languages
(DSL09). Berlin, Heidelberg: Springer-Verlag, July 2009, pp. 20–44.

76 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

[39] M. S. Ager, O. Danvy, and J. Midtgaard, “A functional correspondence
between monadic evaluators and abstract machines for languages with
computational effects.” Theor. Comput. Sci., vol. 342, no. 1, pp. 149–
172, 2005.

[40] J. Agron, “Domain-specific language for hw/sw co-design for FP-
GAs,” in Proceedings of the IFIP Working Conference on Domain
Specific Languages (DSL09). Berlin, Heidelberg: Springer-Verlag,
2009, pp. 262–284.

[41] J. Palsberg and D. Ma, “A typed interrupt calculus,” in FTRTFT ’02:
Proceedings of the 7th International Symposium on Formal Techniques
in Real-Time and Fault-Tolerant Systems. London, UK: Springer-
Verlag, 2002, pp. 291–310.

[42] K. Chatterjee, D. Ma, R. Majumdar, T. Zhao, T. A. Henzinger, and
J. Palsberg, “Stack size analysis for interrupt-driven programs,” Inf.
Comput., vol. 194, no. 2, pp. 144–174, 2004.

[43] R. Backhouse, Program Construction: Calculating Implementations
from Specifications. New York, NY, USA: John Wiley & Sons, Inc.,
2003.

[44] A. Igarashi and M. Iwaki, “Deriving compilers and virtual machines
for a multi-level language,” in Proc. of the 5th Asian conference on
Programming languages and Systems, 2007, pp. 206–221.

[45] E. Meijer, “Calculating compilers,” Ph.D. dissertation, University of
Nijmegen, 1992.

[46] G. Hutton and J. Wright, “Calculating an exceptional machine,” in
Trends in Functional Programming, H.-W. Loidl, Ed., Feb. 2006,
vol. 5.

[47] O. Danvy, “A journey from interpreters to compilers and virtual
machines,” in Proc. of the 2nd Intl. Conf. on Gener. Prog. and Comp.
Eng., 2003, pp. 117–117.

[48] S. Sarkar, P. Sewell, F. Z. Nardelli, S. Owens, T. Ridge, T. Braibant,
M. O. Myreen, and J. Alglave, “The semantics of x86-cc multiproces-
sor machine code,” in Proceedings of the 36th annual ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, ser.
POPL ’09. New York, NY, USA: ACM, 2009, pp. 379–391.

[49] A. C. J. Fox and M. O. Myreen, “A trustworthy monadic formalization
of the armv7 instruction set architecture,” in Interactive Theorem
Proving (ITP), 2010, pp. 243–258.

[50] G. Klein, J. Andronick, K. Elphinstone, G. Heiser, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell,
H. Tuch, and S. Winwood, “sel4: formal verification of an operating-
system kernel,” Commun. ACM, vol. 53, pp. 107–115, June 2010.

[51] D. Cock, G. Klein, and T. Sewell, “Secure microkernels, state
monads and scalable refinement,” in Proceedings of the 21st Inter-
national Conference on Theorem Proving in Higher Order Logics
(TPHOLs’08), ser. Lecture Notes in Computer Science, O. A. Mo-
hamed, C. M. noz, and S. Tahar, Eds., vol. 5170. Springer-Verlag,
2008, pp. 167–182.

[52] K. Elphinstone, G. Klein, and R. Kolanski, “Formalising a high-
performance microkernel,” in Workshop on Verified Software: The-
ories, Tools, and Experiments (VSTTE 06), Microsoft Research Tech-
nical Report MSR-TR2006-117, 2006, pp. 1–7.

[53] J. Liedtke, “On micro-kernel construction,” in Symposium on Operat-
ing System Principles. ACM, 1995.

[54] M. Abadi, A. Banerjee, N. Heintze, and J. Riecke, “A core calculus of
dependency,” in Proceedings of the Twenty-sixth ACM Symposium on
Principles of Programming Languages, San Antonio, Texas, January
1999, pp. 147–160.

[55] K. Crary, A. Kliger, and F. Pfenning, “A monadic analysis of in-
formation flow security with mutable state,” Journal of Functional
Programming, vol. 15, no. 2, Mar. 2005.

[56] J. Hughes, “The Design of a Pretty-printing Library,” in Advanced
Functional Programming, ser. LNCS, vol. 925, 1995, pp. 53–96.

[57] R. Hinze, “Deriving backtracking monad transformers,” in
International Conference on Functional Programming, 2000, pp. 186–
197. [Online]. Available: citeseer.nj.nec.com/hinze00deriving.html

[58] O. Danvy, J. Koslowski, and K. Malmkjaer, “Compiling
monads,” Kansas State University, Manhattan, Kansas,
Tech. Rep. CIS-92-3, Dec. 91. [Online]. Available:
ftp://ftp.diku.dk/pub/diku/semantics/papers/D-154.dvi.Z

[59] A. Filinski, “Representing layered monads,” in Proceedings of the 26st

ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL ’99). ACM Press, 1999, pp. 175–188.

[60] D. Batory, “Program refactoring, program synthesis, and model-driven
development.” in ETAPS Conference on Compiler Construction, ser.
LNCS, vol. 4420, April 2007, pp. 156–171.

[61] D. C. Schmidt, “Guest editor’s introduction: Model-driven engineer-
ing,” Computer, vol. 39, no. 2, p. 25, 2006.

[62] M. Barr, “∗-autonomous categories and linear logic,” Mathematical
Structures Computer Science, vol. 1, pp. 159–178, 1991.

[63] D. S. Scott, “Domains for denotational semantics,” in An extended
version of the paper prepared for ICALP ’82. Springer–Verlag, 1982.

[64] J. Goguen, “Information integration in institutions,” in Thinking Log-
ically: a Memorial Volume for Jon Barwise, L. Moss, Ed. Indiana
University Press, 200x.

[65] A. Sabelfeld and A. Myers, “Language-based information-flow secu-
rity,” IEEE Journal on Selected Areas in Communications, vol. 21,
no. 1, Jan. 2003.

[66] Y. Bertot and P. Castéran, Interactive Theorem Proving and Program
Development. Coq’Art: The Calculus of Inductive Constructions, ser.
Texts in Theoretical Computer Science. Springer Verlag, 2004.

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 77

78 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

SESSION

REGULAR SESSION - SECURITY: THREATS AND
SOLUTIONS

Chair(s)

PROF. RYAN KASTNER

INVITED TALKS

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 79

80 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

Enforcing Information Flow Guarantees in
Reconfigurable Systems with Mix-trusted IP

Ryan Kastner‡, Jason Oberg‡, Wei Hu†,‡, Ali Irturk‡
‡Computer Science and Engineering, University of California, San Diego

†Automation, Northwestern Polytechnical University, Xi’an, China
{kastner,jkoberg,w3hu,airturk}@cs.ucsd.edu

Abstract—Trusted systems fundamentally rely on the ability to
tightly control the flow of information both in-to and out-of the
device. Due to their inherent programmability, reconfigurable
systems are riddled with security holes (timing channels, un-
defined behaviors, storage channels, backdoors) which can be
used as a foothold for attackers to strike. System designers
are constantly forced to respond to these attacks, often only
after significant damage has been inflicted. We propose to use
the reconfigurable nature of the system to our advantage by
taking a bottom-up, hardware based approach to security. Using
an information flow secure hardware foundation, which can
precisely verify all information flows from Boolean gates, security
can be verified all the way up the system stack. This can be used
to ensure private keys are never leaked (for secrecy), and that
untrusted information will not be used in the making of critical
decisions (for safety and fault tolerance).

I. INTRODUCTION

Reconfigurable hardware frequently finds itself in charge of
high-assurance applications such as flight control and medical
systems. As these reconfigurable systems increase in design
complexity, commercial off the shelf (COTS) intellectual prop-
erty (IP) cores are becoming a commodity in these systems.
Ensuring that the mix-trust in these systems does not violate
the integrity or confidentiality of the system as a whole is
required for its trusted operation. Such assurance often requires
detailed verification including strict theorem proving and third
party analysis [1]. This complicated process not only takes a
tremendous amount of time estimated at 10 years [3] but also
costs on the order of $10,000 per line of code [2]. Reducing
this overhead is needed to keep these operation critical systems
up-to-date with current technology at a reasonable cost.

An example of a system in which mix-trusted components
interact can be found in a modern aircraft where a shared
physical bus multiplexes between mix-trusted subsystems [8].
For example, if a bus arbitrates between user and flight control
systems, unintended information flowing from the user to flight
control system could have catastrophic consequences. It is
absolutely required that untrusted information never corrupts
trusted flight control components. If such connectivity is to
be allowed, strict guarantees of information flow control are
necessary to the correct and reliable operation of the aircraft.

To guarantee mix-trusted information flows only to where
the system designer intends, information flow tracking (IFT)
has been introduced. IFT works by monitoring the movement
of data as it propagates through the system. Information flow

tracking can be used to ensure that a secret key does not
leak, in the context of Bell & LaPadula confidentiality [7] or
to guarantee the integrity of trusted components, in the case
of non-interference [6]. In general, there are two classes of
information flows: explicit and implicit. Explicit information
flows result from direct communication. For example, an
explicit flow would occur between a host and device on a bus
that were directly exchanging data or between processes over
an inter-processes communication (IPC) mechanism. Implicit
information flows are much more subtle and generally leak
information through behavior. A common implicit information
flow that occurs in hardware is a timing channel where
information can be extracted from the latency of operations.

To account for these difficult to detect security holes, current
methods are lacking in that they either perform physical
isolation or “clock fuzzing” [14], [25]. Physical isolation
works by separating trusted/untrusted or classified/unclassified
subsystems from one another and allowing interconnect only
at statically defined locations. This method is often effective
although it tends to result in large area overheads since
typical implementations require the replication of hardware.
“Clock fuzzing” makes attempts to avoid physical isolation
by presenting untrusted subsystems with a “fuzzed” clock that
produces artificial errors in timing information. This tries to
reduce the ability to gain information from timing channels
but in reality only decreases the bandwidth of the channel. A
more robust solution is to eliminate all such information flows
and verify their absence; this can currently be done using a
technique called gate level information flow tracking.

Gate Level Information Flow Tracking (GLIFT) [26] pro-
vides a solution for tracking information flows in hardware.
Since GLIFT tracks information at the granularity of Boolean
gates, it can be used on any digital hardware. Furthermore, it
is capable of detecting logical flows including those through
timing channels because all information becomes explicit in
hardware. This does, however, focus only on logical flows and
excludes physical phenomena such as power channels and EM
radiation. This bottom-up approach to security can be seen
in Figure 1 where a secure hardware foundation is created to
ensure information flow security at the lowest abstraction level.
With this secure hardware base, microarchitectural designs can
be implemented with strict information flow guarantees.

This paper discusses the concerns with using mix-trusted
IP in reconfigurable high-assurance systems and an overview

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 81

of current techniques for information flow control in them. It
addresses how mix-trusted components can be interconnected
with confidence that they will adhere to the defined infor-
mation flow policy. It specifically focuses on this bottom-
up approach to security by providing a secure computing
base to build up from. It also discusses several areas of
future research in the security in reconfigurable systems. This
includes providing better use of untrusted IP and how to
provide the greatest reconfigurability while maintaining strict
security.

Programming Language

Logic Gates

Functional Units

Microarchitecture

Compiler/OS

Bottom-up Approach

Our Method

Previous
Techniques

Instruction Set

Sections III and V

Section V

Sections III and IV

Sections III and IV

Section III

Section III

Fig. 1. Our bottom-up approach to security in high-assurance systems.
Building a secure information flow secure hardware skeleton allows for strict
control of all information flows all the way up the system hierarchy.

The remainder of this paper is organized as follows. In
Section II we motivate the need for information flow security
in mix-trusted reconfigurable systems. Section III presents
the previous work in hardware information flow tracking
techniques, specifically gate level information flow tracking
(GLIFT). It also illustrates techniques applied to all layers in
the system design stack as shown in Figure 1. Section IV
discusses how a secure reconfigurable system can be designed
based on findings in our previous work. It elaborates on a pro-
totype system we developed using the mentioned bottom-up
design methodology. Section V provides some fundamentals
of gate level information flow tracking. This section focuses on
how the Logic Gate level of the system stack can be developed
with confidence. Section VI concludes the paper and presents
some future research directions.

II. RECONFIGURABLE SECURITY AND MOTIVATION

Modern reconfigurable systems are typically designed with
a number of mature building blocks known as soft-cores
which generally come from vendors of varying trust. Some
examples of these cores include AES encryption units, digital
signal processors (DSP), memories, and Xilinx’s MicroBlaze
Processor [20]. The information flowing between these cores
needs to occur only where the designer intends. For instance,

trust needs to be upheld in a network interface core to ensure
proper routing of information and data encryption cores must
be proven to not leak the secret key through security holes
including those from timing. From the designer’s perspective,
building a system with existing building blocks is tremen-
dously easier than designing the system from scratch. As a
result, these different cores should be placed into a system
with confidence that they will not have any malicious effects
on its operation.

Some potential threats that come up when using mix-trusted
IP cores stem from the fact that their overall behavior is
completely untrusted. Untrusted cores might be filled with
malicious inclusions such as hardware trojans [4], [5] which
can spawn unknown and harmful behavior that can cripple
the integrity of other trusted portions of the system. Further,
third-party cores can potentially learn secret information about
classified components in the system if they all share a common
bus. Providing strict information flow control in these recon-
figurable systems is required if confidentiality and integrity of
the systems is to be upheld.

Currently, it is difficult to ensure that an untrusted core is
in fact behaving as expected. Some methods have focused on
physically isolating cores and providing methods for routing
over only statically defined channels. Our previous work [9]
addresses this notion by using “moats” to isolate cores while
allowing interconnect between cores only through pre-defined
“drawbridges”. In doing so, cores are expected not to leak se-
cret keys (in the case of confidentiality) or be contaminated by
untrusted data (in the case of integrity). However, even though
cores are only understood to explicitly communicate through
predefined channels, there is no guarantee about whether or
not policy-violating information flows occur through implicit
channels.

Previous work has shown that timing side channel attacks
can be used to extract secret encryption keys from the latencies
of caches [10] and branch predictors [13]. Cache timing
attacks can obtain the secret key by observing the time for
hit and miss penalties of the cache. Branch predictor timing
channels are exploited in a similar manner where information
is leaked through the latency of predicted and mis-predicted
branches. Another exploit can be seen in a common bus where
devices communicate implicitly through traffic (or lack of
it) on the bus [14]. In order to have complete confidence
that information is only flowing through the statically defined
channels, strict information flow control needs to be guaran-
teed. The next section discusses some common techniques,
specifically Gate Level Information Flow Tracking (GLIFT)
which can be used to monitor the movement of all information
in a system even those through timing channels.

III. INFORMATION FLOW TRACKING AND GLIFT

A large amount of previous work has been done in the area
of information flow security for complete systems. Numerous
works have been done on information flow tracking specif-
ically in hardware because monitoring information flows at
this level allows for unintended flows to be identified without

82 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

significantly affecting system performance. This section dis-
cusses the previous research in information flow security for
complete sytems and specifically focuses on GLIFT since it
is the primary technique we used in previous and continuing
analyses.

Information flow security focuses on monitoring the move-
ment of data among different trust levels. Traditionally in-
formation flow security is guaranteed by ensuring that a
particular information flow policy, such as integrity or con-
fidentiality, is upheld. These policies can be modeled using a
lattice (L, v) [19], where L is the set of security labels and v
is a partial order between these security labels that specifies
the permittable information flows. For example, consider the
example lattices shown in Figure 2. Figure 2 (a) and (b) show
two common binary lattices. For binary security lattices, the
term taint is often used for the higher label on the lattice.
For integrity, untrusted information is considered tainted in
order to monitor if this taint violates a trusted (untainted)
location. For confidentiality, taint is defined differently. The
policy taints secret information to verify whether this leaks to
an unclassified domain. Figure 2 (c) shows a confidentiality
security lattice with multiple trust levels. Here confidentiality
specifies that information may flow upward on this lattice but
not downward. For simplicity, our analysis focuses on the
binary lattices trusted @ untrusted (a) for integrity and
unclassified @ secret (b) for confidentiality. For the
two policies, this relation shows that information is allowed
to flow from trusted to untrusted or from unclassified to secret
respectively.

untrusted

trusted

secret

unclassified

TS

UC

S1 S2

(a) (b) (c)

Fig. 2. Examples of different security lattices. (a) is a typical binary security
lattice for integrity. (b) is a binary security lattice for confidentiality. (c) is
a more complicated confidentiality lattice with multiple labels. Here TS is
top-secret, S1 and S2 are two security levels which are less secure than TS
but more private than UC (unclassified).

To be concrete, consider the code snippet shown in Figure 3.
First, to understand explicit information flows and how they
can be tracked, consider the assignment shown y = z. For
integrity, using the lattice trusted @ untrusted, this
code is secure if L(z) v L(y). In other words, this code
is information flow secure only if the label assigned to z
allows for information to flow into y without violating the
integrity of y. Integrity in this situation is not violated as
long as both y and z have the same label or y is untrusted
and z is trusted. Confidentiality follows a similar procedure
but using the lattice unclassified @ secret. Using this
lattice, the assignment is information flow secure if L(z) v
L(y). Meaning that information can only flow into y from z

if y is at higher or equal security level to that of z. Implicit
flows in this example follow a similar strategy except that
they flow information indirectly to the variable. This particular
code shows an implicit channel in the form of a branch. Here
x leaks information to y because, depending on x, y will be
assigned the value of z. For both confidentiality and integrity,
implicit flows need to also be eliminated. In this particular
example, to enforce integrity or confidentiality, the labels must
adhere to L(x) v L(y) in a similar manner as the explicit flow.
Note that if integrity or confidentiality is to hold for the entire
code, both the information flow constraints for the explicit and
implicit flows must be enforced. Using this common model of
information flow security, many implementations have been
made to enforce this at all layers of the system design.

if (x)
y = z
explicit

implicit

Fig. 3. Simple code snippet showing explicit information flow from z to y
and implicit information flow from x to y.

The most common techniques for information flow security
are implemented in programming languages using type based
systems and in operating systems. Sabelfield and Myers [16]
present a survey on the different programming language based
techniques. Most work has been done in static compile based
techniques which build off of the typing system of a language
in order to enforce information flow security. These methods
have shown to be effective and can even eliminate implicit
channels due to conditional branches in execution. Jif [15]
is a good example of such a type based system. Flume [17]
has been shown to enforce information flow security using
abstractions for operating system primitives such as processes,
pipes, and the file system. Using theorem proving techniques,
sel4 [18] has been shown to be fully verified for correctness.
These schemes are often effective but are forced to abstract
away the potential implicit flows that occur in hardware.
Further, these schemes force the designer to comply with a
new typing system (in programming language techniques) or
reduce the overall system performance (in operating system
abstractions).

To maintain system performance, information flow tracking
has been proposed in hardware. The most common hardware
information flow tracking strategies focus on the Instruc-
tion Set Architecture (ISA) and microarchitecture. One such
technique called Dynamic information flow tracking (DIFT),
proposed by Suh et al. [22], tags information from untrusted
channels such as network interfaces and tracks it throughout
a processor. They label certain inputs to the processor as
“spurious” (tainted) and check whether or not this input causes
a branch to potentially untrusted code. This technique has been
shown to successfully prevent buffer-overflow [35] and format
string attacks [36]. Raksha [23] is a DIFT style processor that
allows the security policies to be reconfigured. Minos [24]

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 83

uses information flow tracking to dynamically monitor the
propagation of integrity bits to ensure that potentially harmful
branches in execution are prevented in a manner similar to
[22].

These previous techniques are effective at ensuring that
potentially harmful branches in control flow are prevented or
guaranteeing the integrity of critical memory regions. How-
ever, these methods target a higher level of abstraction (from
the microarchitecture up as shown in Figure 1) and cannot
be used to monitor the information flows in general digital
hardware. For this reason, these methods also fail to detect
hardware specific side channels in the form of timing. GLIFT
provides a solution for tracking information flows, including
those through timing channels, in general digital hardware.
GLIFT works by tracking each individual bit in a system as
they propagate through Boolean gates. This is done using an
additional tag bit commonly referred to as taint and tracking
logic which specifies how taint propagates. Information is said
to flow through a logic gate if particular tainted inputs have
a chance to affect the output.

Taint is a label associated with each data bit in the system
which indicates whether or not this particular data bit should
be tracked. If integrity is a concern, untrusted information is
tainted to ensure that this tainted information does not flow
to a trusted location. In the case of confidentiality, secret
information is tainted to monitor whether it leaks to a public
domain. Taint is propagated whenever a particular tainted data
bit can affect the output. In other words, if the output of a
function is dependent on changes to tainted inputs, then the
output is marked as tainted.

a b

o

a b at bt ot

0 0 0 1 0
0 1 0 1 0
1 0 0 1 1
1 1 0 1 1

(a) (c)(b)

Partial Truth Table

b aba

o

tt

t

Fig. 4. (a) A two-input NAND gate. (b) Truth table of two-input NAND
gate with taint information (not all the combinations are shown). (c) The
corresponding tracking logic of two-input NAND gate is abt + bat + atbt.
Every change at the input of the gate is precisely tracked at the output.

For example, consider a simple 2-input NAND gate as seen
in Figure 4 (a) and its corresponding tracking logic as shown in
Figure 4 (c). For a NAND gate, only particular input changes
will result in a change at the output. Specifically, consider
the case in which a = 0 and b = 1. Here changing the
value of b will cause no change at o since a = 0, meaning
that there is no information flowing from b to o. If b were
to be tainted (bt = 1) and a untainted (at = 0) in this
case, o would be untainted (ot = 0) since the tainted input
does not affect the output. A subset of all such combinations
can be seen in Figure 4 (b). Using the full truth table, a

function can be derived for all similar input combinations
into a tracking logic function as shown in Figure 4 (c). Since
NAND is functionally complete, the tracking logic for any
digital circuit can be derived by constructively generating the
tracking logic for each gate. In other words, given a circuit
represented as NAND gates, the circuit can have complete
information flow tracking by interconnecting the tracking logic
for each individual NAND gate. This results in a design that
precisely tracks the information flow of each individual bit. As
mentioned, GLIFT is a useful tool for analyzing any digital
hardware because it exposes all information flows explicitly.
The next section will discuss how we used GLIFT and related
techniques to develop a prototype system that was verified to
be information flow secure.

IV. INFORMATION FLOW SECURE SYSTEM DESIGN

As reconfigurable systems become more complex, it is very
common to have multiple mix-trusted IP cores existing in the
same design. Previous work makes efforts to ensure physical
isolation between different IP cores and have interconnect only
through known channels [9]. However, since information can
often flow through difficult to detect timing channels, deeper
analysis is required in order to guarantee complete information
flow isolation between mix-trusted IP cores in these systems.
This section discusses how a secure reconfigurable system can
be designed from the bottom-up (Figure 1) using GLIFT and
related techniques.

Soft-core
CPU

Separation
Kernel

DSP

AES

Co-
Processor

Local
Memory

A/D

Sensor

Global
Memory

FIFO

FIFO

FIFO

System-on-Chip
Bus

Local
Memory

Fig. 5. A common reconfigurable system which consists of a soft-core proces-
sor, a global system-on-chip bus, and various peripherals. Interaction between
each of these components must be regulated to ensure that information is
flowing only to where the designer intends it.

Typical embedded reconfigurable systems consist of a soft-
processor core running a microkernel or more robust operating
system. Interacting with this processor is typically a wide
range of peripherals from digital signal processors (DSP), AES
encryption cores, memories, and even other processor cores. A
common reconfigurable based system can be found in Figure
5. Here a soft-core processor exists with several different
peripherals all interacting over a common bus. There are also
components interacting with their own memories (AES core)
or with external sensors (DSP core). Common bus protocols in
such systems include ARM’s AMBA, Inter-integrated circuit

84 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

protocol (I2C), and the universal serial bus (USB). The soft-
core processor is typically the “heart” of the system and
manages most of the interaction and runs application software.
Typical embedded systems consist of a small microkernel
which manages the execution of mix-trusted applications. As
a result, it is essential to provide information flow guarantees
in the processor core, its interaction with various peripherals
over commodity buses, and in the microkernel itself since
it arbitrates between mix-trusted executions. The following
subsections introduce these different components and discuss
our general testing flow.

A. GLIFT Test Method

The typical GLIFT based testing method can be seen in
Figure 6. Here a design is modeled in a hardware description
language (HDL) such as Verilog or VHDL. This testing flow
is general enough to target any model in Verilog or VHDL,
however finite state machine (FSM) representations are much
easier to analyze for implicit timing channels since state
transitions commonly occur every cycle.

HDL
Model

. . .

. . .

. . .

Gate-level Netlist

Functional
Verification

Netlist with
GLIFT Logic

. . .

. . .
GLIFT-
AND

GLIFT-
AND

GLIFT-
OR

Information
Flow

Testing

HDL
Modification

Synthesis

GLIFT logic mapping

Run test Scenarios

Information Flow
Policy Violated

Re-verify
Functionality

module m(…);
. . .

always@(...) begin
. . .

<behavior>
. . .

end
endmodule

module m(…);
. . .

always@(...) begin
. . .

<new_behavior>
. . .

end
endmodule

Fig. 6. Information flow test method for general digital hardware. Designs
are represented as a finite state machine in Verilog or VHDL and processed
through the testing flow.

As Figure 6 shows, the design enters the analysis flow
as Verilog or VHDL. At this stage, the hardware model
undergoes typical functional verification to ensure that the
design conforms to the correctness of its specification. Note
that at this stage, information flow guarantees are not yet being
tested.

After synthesis, the design is equipped with GLIFT logic,
which allows all of its information flows to be analyzed. There
are many methods for generating this tracking logic for a
given circuit, but this particular analysis uses a constructive
approach. In other words, every gate in the system has logic
attached to it individually in a linear fashion. This design

equipped with GLIFT logic is now capable of being analyzed
for unintended information flows. At this stage, test vectors are
run on the hardware to see if it violates the information flow
policy. If the policy is violated, the description of the hardware
is modified and once again undergoes functional verification
and proceeds through the testing flow again.

Making modifications to the hardware model is not obvious
and generally requires a form of time-multiplexing to prove
the absence of timing channels from the design. This has
shown to be effective when analyzing processor cores and bus
controllers as subsequent sections discuss in more detail.

B. Processor Core

The processor core is required to handle majority of the
application execution in the system. Since the processor core
acts as the central unit of the system, it requires very strong
information flow guarantees. It needs to be able to support
mix-trusted program execution and ensure that its state is
recovered or purged such that it does not leak any information.

An execution lease architecture, as proposed by Tiwari et
al. [30], provides an effective method for guaranteeing the in-
tegrity and confidentiality of the system following mix-trusted
context switches. As shown in Figure 7, this architecture works
by leasing out the hardware for an untrusted application to
execute for a fixed amount of time and with restricted memory
bounds. In other words, the processor restricts lower trust
programs to a space-time sandbox. This allows the leasee to
execute any code it desires during this fixed time slot. Once
the time slot expires, the leaser restores the program counter
back to a known value and the system state is restored.

DECODE
LEASE
UNIT

0

1 INST.
MEM

PC

+4

Timer Expire?

Restore PC

EXEC MEM
WRITE-
BACK

0

1

Branch
Target

Fig. 7. The execution lease architecture fits directly into the typical 5-stage
pipeline. Here the lease-unit restores the program counter upon the expiration
of a lease. During a lease, the processor operates as normal. Restoring the
system after a lease allows the architecture to execute untrusted code without
leaking information.

Additionally, the execution lease architecture uses a stack
of nested leases to allow for a larger granularity of trust. This
stack of leases is managed in the execution lease unit. This
unit keeps track of the current memory and time bounds. If the
currently executing program wishes to execute untrusted code,
it stores its current program counter in the lease unit, sets the
memory and time bounds in the lease unit, then jumps to the
untrusted code. Since there is a stack of nested leases, multiple

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 85

programs can lease out the architecture to other less trusted
ones. It should be noted that untrusted code cannot lease out
to trusted code since the untrusted application can potentially
observe the state once they lease expires, thus violating the
information flow policies.

Specifically, this architecture implements these leases
using two instructions known as set_timer and
set_membounds which set the amount of time on the
lease and the memory bounds respectively. The architecture
first begins in a trusted state and this trusted state can be
leased out to execution contexts which are at a lower trust
level (in the case of integrity). Using the stack of leases,
each subsequent lease can be further leased out to lower trust
levels using the mentioned instructions.

The execution lease processor provides information flow
guarantees by dynamically tracking information flows using
GLIFT but lacks much of the performance optimizations of a
modern processor including caches and pipelining. Our Star-
CPU [31] builds off of the execution lease processor with a few
additional features including caches and pipelining. Caches,
pipelines, branch predictors and other stateful elements in a
processor open the doors for potential timing attacks. Such
attacks on caches have been shown to leak secret keys [10],
[11] through the latency of caching operations. The attack
works by an untrusted process first filling the contents of
the cache. Subsequently a trusted process runs and upon a
context switch back to the untrusted process, the untrusted
process is able to observe which of its cache lines were evicted
and extract the secret key as a result. The issue results from
the mix-trust sharing of data in the cache and some current
methods have made attempts at solving this problem [11]
but some have found these new designs to still be partially
vulnerable [12]. Our Star-CPU solves this issue by requiring
that contents of the cache be strictly controlled by a trusted
entity (separation kernel) and that strict partition in the cache is
enforced. By having a trusted kernel controlling the contents of
the cache, clearing and strict partitioning is enforced between
context switches. This ensures that mix-trusted processes never
learn information about one another through caching behavior.

Our Star-CPU provides further optimization over the exe-
cution lease CPU by providing pipelining. In a secure system,
pipelines can leak information through timing channels due to
non-deterministic behavior caused by branches and memory
stalls. To ensure that such information does not leak between
two processes of different trust, our CPU ensures that the
pipeline is appropriately flushed between context switches.
This ensures that such dynamic behavior does not cause
information flows between programs of varying trust through
implicit timing channels.

With any processor, it is desirable to communicate with
various peripherals to gather data from sensors, read memo-
ries, or interact with DSPs. These peripherals all come from
different trust levels and ensuring that data flows only to
where the designer intends is required. The next subsection
discusses these details further by analyzing the information
flow characteristics of I2C and USB.

C. Secure Input-Output for System Interaction

As mentioned, it is very common for reconfigurable systems
to offer the flexibility for system designer to use many IP
cores from many different vendors all with varying trust. Aside
from the central processor core, many of these mix-trusted
cores integrate directly into the system bus architecture and
are frequently swapped out for either updated or completely
different cores. For high-assurance systems, it is required that
the communication between these various cores is information
flow compliant. This section discusses our test methodology
when analyzing information flow properties of bus protocols
using GLIFT and briefly discusses our analysis of two com-
mon protocols: I2C and USB.

1) Information Flows in I2C: The inter-integrated circuit
(I2C) protocol was first developed by Philips. The protocol
consists of a simple two wire bus with a serial data line
(SDL) and serial clock line (SCL). In I2C, devices all sit on
a global bus with the master so explicit information clearly
flows between all devices, since they can explicitly snoop the
communication on the bus. However, as some of our previous
work has shown [28], information can leak through difficult
to detect timing channels.

To observe these timing channels, we processed our I2C
controller FSM through the testing flow shown in Figure 6.
Our test consisted of a scenario in which master performs
a write transaction with an untrusted slave and subsequently
a write transaction with an trusted slave. This particular
testing scenario is concerned with non-interference [6] (data
integrity), but the analysis certainly works for confidentiality.
As mentioned, I2C operates on a global bus, so information
clearly flows explicitly between devices on the bus since they
are capable of openly snooping. However, even if devices are
assumed to not snoop the bus, the state at which the master is
left in leaks information from the untrusted slave to the trusted
slave. This implicit information leak is in the form of a timing
channel.

Following the communication with the untrusted slave, the
master changes state and ultimately ends up in an untrusted
state due to its interaction with an untrusted device. Sub-
sequent communication with a trusted devices causes this
untrusted information to flow into the trusted device. Since we
are concerned about guaranteeing non-interference, we need to
ensure that no information flows from the untrusted device to
the trusted one through any channel. To eliminate all channels,
we need to first bound the amount of time in which devices can
communicate with the master. Secondly, we need to enforce
that the master is returned back to a “known” state prior to
communication with other devices. This solution can be seen
in Figure 8 where an adapter is placed in between each device
and the global bus. This adapter allows for a device to be
connected to the bus only in a specific time slot. Once this
time slot expires, the execution lease unit shown restores the
master back to a known state to eliminate any possibility of an
implicit flow. It should be noted that such an adapter can serve
two purposes: 1) for information flow control and 2) for fault

86 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

tolerance via a fault control unit (FCU) as discussed by [33].
Such dual usage justifies the hardware overhead and extends
the confidence in the bus system to not only be fault tolerant
but also information flow secure.

Master Slave 0
(U)

Slave 1
(T)

Slave N
(T)

SDA(data)

SCL(clock)

. . . .

Adapter Adapter AdapterAdapter Clock

Trusted
Reset

. . . .

Execution
Lease
Unit

Fig. 8. I2C bus system with an adapter which restricts information flows
between devices. (U) represents an untrusted device and (T) a trusted one.
After a time slot expires, the master is restored back to a known state prior
to communicating with other devices.

2) Information Flows in USB: We chose to also analyze
USB because of its different bus topology. USB operates as
a star-tiered topology and does not operate on a global bus
like I2C. Since the bus is not global, there are no explicit
information flows between devices because the architecture
does not allow them to communicate with one another. How-
ever, as we will discuss, similar implicit information flows leak
information between devices as seen in I2C.

To identify the timing flows in USB, we modeled a USB
system in Verilog and processed it using the flow shown in
Figure 6. Our testing scenario consists of a USB host and
two USB devices; one untrusted and the other trusted. The
host performs a write transaction to an untrusted device and
then subsequently a write to the trusted device. As in I2C,
this particular scenario focuses on non-interference to monitor
the integrity of the trusted device. Since the devices on a
USB bus have no way to interact with one another, there
are no explicit flows. However, in a similar manner as I2C,
information implicitly flows between devices in the form of
timing.

In this scenario, since the host first communicates with an
untrusted device, the state in which it is left in unavoidably
becomes untrusted. Subsequent communication with a trusted
device causes this untrusted information to flow into the
trusted device. Although this timing channel occurs in a nearly
identical way to that of I2C, to guarantee the absence of
information flows requires a slightly different approach since
USB is a much different bus architecture. In this case, the host
operates using two different states, one which is untrusted and
the other trusted. If the master is doing trusted communication
it uses the trusted state and the untrusted state for untrusted
communication. Swapping between the states is done in a
similar manner as a context switch where the state is replaced
yet none of the hardware is required to be replicated.

Having strict information flow isolation on a bus is only as
good as the software which manages it. The next subsection
discusses how a separation kernel can be used to allow for
secure software executions and have secure management of
both the processor and I/O.

D. Separation Kernel

Separation kernels are essential when managing many multi-
process environments of varying trust. Separation kernels were
first introduced by J. Rushby [29] as a way to show provable
isolation between “partitions” and allowing communication
through only predefined channels. Such a model is required
when managing mix-trusted applications in a highly reconfig-
urable system. Reconfigurable systems will often continuously
evolve their application source code, so it is essential that
a managing mechanism can ensure information flow security
between these applications.

Tr
us

te
d

Cl
as

si
fie

d

U
nc

la
ss

ifi
ed

U
nt

ru
st

ed

SEPARATION KERNEL

Fig. 9. A common separation kernel structure. A separation kernel manages
the execution of different partitions of varying trust. Partitions are allowed to
communicate over only predefined channels. For example, a trusted partition
can write to an untrusted one and a classified partition can read from an
unclassified one.

A high level overview of the organization of a separation
kernel can be seen in Figure 9. As shown, there are different
partitions which have varying trust. The separation kernel by
definition should allow explicit communication only through
defined communication channels. For example, communica-
tion between two processes should only exist through an IPC
mechanism defined a priori. The separation kernel is required
to manage all leasing parameters as enforced by the previously
mentioned information flow secure CPU in Section IV-B.

Our implementation of such a microkernel in our informa-
tion flow secure prototype system [31] requires that infor-
mation flow security is preserved between context switches.
Our separation kernel operates at the highest level of trust
and is in charge of initially leasing out the architecture to
less trusted execution contexts using the set_timer and
set_membounds instructions. Since the kernel is at the
highest level of trust, it is essential that while managing
context switches it does not leak information between par-
titions. To enforce this, our separation kernel must not only
have complete control over the microarchitectural state, but
must also avoid pipeline stalls and cache misses since such
non-determinism can leak information between partitions of
varying trust upon a context switch.

Upon a context switch from an expired lease, the separation
kernel follows a deterministic procedure. After a delay to flush
the pipeline of the CPU, it commits the set_partitionID
instruction for itself which allows it to access the memory of
all partitions to store their state. This instruction activates the

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 87

portions of the cache that are reserved for the currently execut-
ing partition. Once activated, the kernel obtains the current PC
of the expired partition and stores it in the memory location
reserved for this specific partition. Once the previous partitions
state is saved, the kernel sets up the new context using the
set_partitionID, set_timer, and set_membounds
which set up the cache bound, lease duration, and new partition
memory bounds respectively. Once the context for this new
partition is set, the kernel loads the partitions PC and jumps
to it.

Since the separation kernel operates in its own reserved
cache partition, it never misses the cache. It also contains
no branches that introduce non-deterministic pipeline delays.
Such deterministic operation allows the kernel to perform a
context switch between any two partitions without leaking
any information about the preempted partition. Further, the
behavior of the kernel must be strictly independent from any
partition since it operates at the highest level of trust. To
understand the importance of having deterministic context
switches, suppose that the kernel did not operate in its own
cache partition. If this was the case, the time in which a context
switch occurred is directly dependent on what occurred in the
old partition. Not only does information leak from the old
partition to the new partition through this timing channel, but
information also leaks from the less trusted partition into the
kernel itself since it indirectly influenced its behavior. Since we
are interested in adhering to information flow security through
all channels, such timing channels need to be eliminated.

The kernel operates at the highest level of trust in the system
and builds directly off of our secure hardware skeleton, thus its
information flow security is also statically verified. All levels
of our system are verified to be information flow secure using
our ∗-logic technique, which is discussed in the next section.

E. Static Verification of Information Flow Security in Hard-
ware

To statically verify that our complete system adheres to our
information flow policy. We also developed a tool, known as
∗-logic (star-logic) [31], which is used to statically verify our
policy.

This tool works by first building an abstract representation
of the original design which gives the flexibility to specify any
part of the system as unknown or ∗. This is required because
in most reconfigurable systems the specific applications or
operations of the system are not necessary known a priori.
Once in this abstracted state, information flow tracking labels
(such as trusted and untrusted) are assigned to the individual
bits of the system. This abstracted system equipped with
information flow tracking logic is simulated for all possible
combinations. Since the only known part of the system at
this stage is the separation kernel itself, all states can be
exhaustively enumerated to ensure complete information flow
security. As a result of this, this abstraction allows for the
processor and system to be statically verified even if much of
it is left unspecified at design time. Using our tool, we showed
that this complete system is verifiably information flow secure

given that the software base (separation kernel) was written by
a trusted source.

Another static technique that works well for this verification
is our tool Caisson [32]. Caisson is an HDL that uses static
type checking to ensure information flow security. This static
type checking is very similar to the previous IFT techniques in
programming languages [16] as discussed in Section III. The
key difference is that this language is intended for designing
hardware, so the static type checking translates to secure
hardware upon compilation. In other words, once hardware is
designed in Caisson and passes the security type checker, our
compiler generates information flow secure and synthesizable
Verilog HDL. In our previous work [32], we have shown that
a complete information flow secure processor can be designed
using Caisson’s static guarantees.

In both cases, this static verification requires some assump-
tions. First, the designer needs understand what resulted in
an information flow or caused an error in the type checker
and have the ability to make modifications to the system so
that it is information flow compliant. When analyzing flows in
hardware, using GLIFT or ∗-logic, designers should also be
confident that the observed information flows are in fact not
false positives. The next section discusses these issues to give
the hardware designers better confidence in the information
flow characteristics of the hardware.

F. Future Research in Information Flow Secure Systems

There is much room for improvement for the development
and testing of information flow secure systems at every level
of the design phase. In these systems, it is often desirable
to re-use existing processor cores such as MicroBlaze [20]
or Nios II [21] rather than designing one for security. In fact,
most reconfigurable systems use these soft-core processors for
applications which do not require a large software base and
are mostly dataflow intensive. In this case, information flow
control through the processor and between peripherals should
be guaranteed. Future research directions should work towards
monitoring the movement of information both intra- and inter-
IP cores even if the RTL is not released. A question we are
working to answer is: How do we leverage both software
(for monitoring the movement of information through the
embedded code) and hardware (for monitoring the movement
of information between peripherals) techniques to build secure
systems with exisisting procesors?

More research should also be taken in the security of the
bus system. The bus system is the central location for all
communication between the various cores involved in the sys-
tem. Since many reconfigurable systems frequently interconect
different components in the bus architecture generally from
varying trust levels, having an information flow secure bus
architecture is required if the overall system is concluded
to be secure. Our previous work has shown a couple of
promising methods for designing a secure bus architecture
with timing enforcement in adapters for I2C and root hubs
in the host for USB. However, more research needs to be
taken into using existing system-on-chip protocols with only

88 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

minimal modification. Future research should be tagetted at
the complicated and robust bus architectures used in modern
systems, such as ARM’s AMBA. Some common questions
are: What sort of performance trade off do our methods have?
How hard is it to prove the information flow properties for
complex bus systems? What knowledge do we need to design
provably information flow secure protocols? It should also be
mentioned that our previous analyses of I2C and USB involved
specific testing scenarios. Meaning, we were only able to
show information flow security for specific bus transactions.
Future research directions are targeted at using our most recent
technique, ∗-logic as discussed in Section IV-E, to statically
verify the absence of information flow for any bus transaction.

The separation kernel also has future research for informa-
tion flow security. In a reconfigurable environment it would
be desirable to have the flexibility to modify or configure
the properties associated with partitions or even the number
of partitions in the kernel. Currently, making these changes
requires that the system be completely re-verified for informa-
tion flow security. Future research should be put into providing
abstractions such that more reconfigurability is allowed in
the system kernel to avoid re-verification. Is it possible to
allow dynamic reconfigurability of portions of the kernel? How
restrictive do we need to be without violating its integrity?

V. GLIFT GENERATION IN RECONFIGURABLE SYSTEMS

Up to this point, we have discussed how an information
flow secure reconfigurable system can be designed with the
help of GLIFT. However, much of the details of GLIFT and
the details of its functionality have been left out. This section
first discusses two GLIFT logic generation methods, namely
the brute force and constructive methods. It also focuses on
a preciseness problem that arises when using the constructive
method.

A. The Brute Force Method

The brute force method for generating GLIFT logic follows
straight from the definition of information flows and, as the
name suggests, is a “brute force” approach with its complexity
being exponential. This method works by changing an input to
a function and observing whether or not this caused a changed
at the output. If a change occurred, information is said to flow
from the input to the output by definition of an information
flow. For each such case we add a logic term to the GLIFT
logic function. Once all input combinations are checked, we
will have generated complete GLIFT logic which precisely
tracks information flows through the original function.

The complexity of this algorithm is O(22n) where n is
the number of inputs in the original function under test. The
interested reader should refer to some of our previous work
[34] to find more details of this proof and analysis. Although
the brute force method does in fact generate a precise GLIFT
function, (i.e. it indicates the presence of an information
flow iff one actually occurred), its computational complexity
makes it impractical for any reasonably large designs. Another

method, known as the constructive method, operates in linear
time but with a slight trade-off in precision.

B. The Constructive Method

The constructive method is a much less complex approach
than the brute force method. It works by generating GLIFT
logic for each primitive in the system compositionally. This
is done by creating a library for each primitive in the design
and mapping this primitive to its corresponding GLIFT logic
in a similar manner as technology mapping. For example,
GLIFT logic primitives for AND, OR, and NOT can be built
into a library. As the circuit is being processed, each gate
has its corresponding GLIFT logic replaced using the GLIFT
primitives from the aforementioned library.

Figure 10 shows the constructive method when used on a
2-input Multiplexer. First, the logic equation represented as
a network of NOT, AND and OR gates. Then, these logic
primitives are replaced using the GLIFT primitives in the
library as previously mentioned. Finally, proper connections
are made to complete the shadow logic circuit.

BA

O

S

to

C D
C D

A Satts B Sbtts

(a) (b)

Fig. 10. (a) A 2-to-1 multiplexer. (b) GLIFT logic of 2-to-1 multiplexer
generated using the constructive method.

However, generating GLIFT logic using the constructive
method is not always guaranteed to be precise. Meaning, a
GLIFT logic function generated with this method will often
indicate that a flow of tainted information propagated from
the input to the output when it in fact no such flow occurred.
In other words, the GLIFT logic will have false positives
indicating the false presence of information flows.

For example, Table I shows the number of “1’s” (minterms)
in the GLIFT logic truth tables for a 4-bit adder generated by
the two discussed methods. We can see that the number of
minterms for the brute force method is less than or equal
to that of the constructive method. This means that the
constructive method more frequently indicates that information
flowed from the input to the output of the logic function.
Since the brute force method generates precise GLIFT logic
by its definition, the constructive method is actually overly
conservative because it contains false positives.

Such additional minterms are false positives that indicate
that a flow of information has occurred when in fact it has
not. Taint can quickly propagate throughout the system, e.g.,

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 89

TABLE I
MINTERM COUNTS OF SHADOW LOGIC FUNCTIONS OF A 4-BIT ADDER

GENERATED BY THE BRUTE FORCE AND CONSTRUCTIVE METHODS.

Method sum[0] sum[1] sum[2] sum[3] cout
Brute Force 229376 241664 246272 248000 208160
Constructive 229376 245760 251648 250656 227864

a tainted state machine can taint the whole design in just a few
clock cycles or a tainted PC (Program Counter) will quickly
cause every bit of information in the processor to become
tainted. When a conservative shadow logic function is used for
taint propagation, the entire system can get into a tainted state
when in fact it is not tainted. At this point, a declassification
such as what is presented in [30], from a separation kernel with
the highest security level is required to recover the system to a
usable state. Generally speaking, being conservative is safe but
frequent declassification will make a system unusable since
an overbearing number of false-positives will continuously
indicate that the system is untrusted (non-interference) or
leaking confidential information (confidentiality). Section V-C
discusses the imprecision problem and overviews solutions to
it.

C. Imprecision Problem

As mentioned, the constructive method tends to report
false positives in information flows for certain functions.
The precision problem is important to understand especially
when information flows are to be understood with high con-
fidence. In a reconfigurable system, if the information flow
tracking logic used frequently indicates that the system is
in an untrusted state, then proving safe interaction between
mix-trusted subsystems will essentially become impossible.
Understanding how to reduce the amount of false positives
in the analysis logic is essential to building an information
flow secure system.

The constructive method in general produces more false
positives than the brute force method making it overly conser-
vative. A good example of these false positives can be seen in a
2-input multiplexer if GLIFT logic for this circuit is generated
using the constructive method as shown in Figure 10.

The overly conservative result occurs when the select line
of the multiplexer is tainted. In this case, the GLIFT logic
indicates that the result is tainted regardless of what the inputs
are. This is certainly the case if the inputs to the multiplexer
are different since changes at the tainted select line will cause
a change at the output of the function. However, if both inputs
are the same, then the select line does not actually affect the
output since the output will remain the same regardless of
what the select line’s value is.

To build a better intuition, consider the Karnugh Map in
Figure 11 when S is tainted with A and B both untainted
and logical 1. If the GLIFT logic is generated constructively
for this circuit the two terms shown in black boxes will have
GLIFT logic generated in addition to the OR gate that takes
the disjunction of the two terms. Independently, the GLIFT
logic for each of these terms is required to assume that the

output of the function changed whenever the value of one of
these terms changes in order to ensure “correctness”. However,
it can be seen that if the select line (S) changes and the values
of A and B are both 1, the output value does not change (i.e.
f remains 1), so there is in fact no tainted information flowing
from the select line to the output.

0 1 1 0

0 0 1 1

S
AB

0

1

00 01 11 10
S

A B

f

1 0

(a) (b)

Fig. 11. Karnaugh map of a 2-input multiplexer. The initial function f =
SA + SB, when shadowed constructively, is not precise. The dotted box
indicates the additional term AB that must be added to the original logic
function to insure its constructively derived shadow function is precise.

The root of this problem stems back to logic hazards in
digital circuits and requires that the circuit have all prime
implicants before having its GLIFT logic generated using
the constructive method. The extra prime implicant in this
example is indicated by the checkered box in the Karnaugh
Map. The interested reader should refer to our previous work
on this topic [34] for a formal proof of how this imprecision
problem can be solved and how it requires a trade off between
area and delay. The key detail from this precision problem
is that some circuits (e.g. a 2-input multiplexer) require a
careful information flow analysis in order to create a system
which will be information flow secure with the best flexiblity.
Since multiplexers are essential building blocks for any digital
system, poor management of this precision problem easily
results in an explosion of false positives which makes creates
tremendous burdens during information flow verification when
trying to understand the cause of the information flows.

D. Future Research in GLIFT Generation

Continuing research in GLIFT logic generation should fo-
cus on methods for better optimization for area, delay, and
simulation time. It should also concentrate on methods for
better understanding the precision problem. Optimizing for
area, delay, and simulation time can be done using different
encodings techniques for the GLIFT logic. This will produce
state reductions resulting in smaller and more efficient tracking
logic. How can we reduce the overhead of the tracking logic
so that it is suitable to be deployed dynamically? Can we
overload the logic such that it serves more than one purpose?

Another research area should focus on the precision problem
in more detail. Being completely conserative is ineffective
since the solution ends up being similar to physical isolation.
Full precision is likely excessive since it results in tremen-
dously large overheads in area and delay. Specifically, how
much precision does a given application need to adequately
track its information flows? Can this amount be determined
and possibly quantified for a given system? Answers to these

90 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

questions will allow more effecient use of GLIFT logic and
will help designers better understand the security holes in their
designs.

VI. CONCLUSIONS AND FUTURE RESEARCH

As the number of reconfigurable systems increases, the
designs they implement are becoming even more complex.
As these systems continue to benefit from COTS IP cores
from vendors of varying trust bases, the need to ensure safe
interaction between different components is critical. Informa-
tion flow control is essential in these systems to guarantee the
integrity of trusted components and confidentiality of secret
data. GLIFT is a useful technique for monitoring informa-
tion flows even those through implicit timing channels. This
bottom-up approach to secure reconfigurable system design
allows for strong information flow guarantees through all
channels including timing. We have shown how this bottom-up
approach can be used to build a verifiably information flow
secure system with the help of gate level information flow
tracking and related techniques.

Future research should focus on allowing more flexibility
in the reconfigurability of the system. We have shown that
current methods allow for a good starting point, where a
secure hardware foundation can be multiplexed with mix-
trusted cores and software and still be information flow secure.
Strong information flow guarantees should be allowed for
reconfigurable systems which use existing IP cores. New
research needs to leverage both IFT in software and hardware
to monitor the information inter- and intra-processor to allow
the reuse of existing processor cores. In addition, our current
methods have shown that mix-trusted cores can exist on
the same bus without violating information flow security.
However, more intricate bus protocols and architectures should
be tested to show that this scales to modern systems. Lastly,
kernels in such systems should have the flexibility to be
reconfigured without complete system re-verification. Further
abstractions are necessary to allow enough flexibility in the
kernel design to accommodate more configurable and robust
applications.

REFERENCES

[1] Common criteria for information technology security evaluation.
http://www.commoncriteriaportal.org/cc/

[2] What does cc eal6+ mean? http://www.ok-labs.com/blog/entry/what-
does-cc-eal6-mean/

[3] The integrity real-time operating system. http://www.ghs.com/products/
rtos/integrity.html

[4] Y. Jin and Y. Makris. Hardware Trojan detection using path delay
fingerprint. IEEE International Workshop on Hardware-Oriented
Security and Trust, Anaheim CA, 2008.

[5] M. Potkonjak, A. Nahapetian, M. Nelson, and T. Massey. Hardware
Trojan horse detection using gate-level characterization. Proceedings of
the Design Automation Conference, 2009. vol., no., pp.688-693, 26-31
July 2009

[6] J. A. Goguen, J. Meseguer, Security Policies and Security Models. pp.11,
IEEE Symposium on Security and Privacy, 1982

[7] D. Bell and L. LaPadula. Secure computer systems: Mathematical
foundations. Technical report, Technical Report MTR-2547, 1973

[8] D. Federal Aviation Administration (FAA). Boeing model 787-
8 airplane; systems and data networks securityisolation or
protection from unauthorized passenger domain systems access.
http://cryptome.info/faa010208.htm

[9] T. Huffmire, B. Brotherton, G. Wang, T. Sherwood, R. Kastner, T.
Levin, T. Nguyen, and C. Irvine. Moats and Drawbridges: An Isolation
Primitive for Recongurable Hardware Based Systems. In Proceedings of
the Symposium on Research in Security and Privacy, Oakland, May 2007

[10] D. J. Bernstein. Cache-timing attacks on AES. Technical Report, 2005.

[11] Z. Wang and R. Lee. New cache designs for thwarting cache-based side
channel attacks. In Proceedings of the 34th International Symposium on
Computer Architecture, San Diego, CA, June 2007

[12] J. Kong, O. Aciicmez, J.-P. Seifert, and H. Zhou. Deconstructing
new cache designs for thwarting software cache-based side channel
attacks. In Proceedings of the 2nd ACM workshop on Computer security
architectures, CSAW 08, pages 2534, New York, NY, USA, 2008. ACM

[13] O. Accigmez, J. pierre Seifert, and C. K. Koc. Predicting Secret Keys
via Branch Prediction. In Cryptology, The Cryptographers Track at
RSA, pages 225-242. Springer-Verlag, 2007.

[14] W. M. Hu. Reducing Timing Channels by Fuzzy Time. In Proceedings of
the Symposium on Research in Security and Privacy, Oakland, May 1991.

[15] A. C. Myers, N. Nystrom, L. Zheng, and S. Zdancewic.
Jif: Java information flow. Software release. Located at
http://www.cs.cornell.edu/jif, July 2001.

[16] A. Sabelfeld and A. C. Myers. Language-based information-ow
security. IEEE Journal on Selected Areas in Communications, 21:2003,
2003

[17] M. Krohn and E. Tromer. Noninterference for a practical difc-based
operating system. In Proceedings of the 2009 IEEE Symposium on
Security and Privacy, 200

[18] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H.
Tuch, and S. Winwood. sel4: formal verication of an os kernel. In SOSP
09: 22nd Symposium on Operating Systems Principles, pages 207220,
NY, USA, 200

[19] D.E. Denning. A lattice model of secure information flow. Comm.
ACM 19, 5 (May 1976), 236-243.

[20] Xilinx Microblaze Soft-core Processor. Available Online: http://www.xil
inx.com/tools/microblaze.htm

[21] Nios II Embedded Processor. Available Online: http://www.altera.com/pr
oducts/ip/processors/nios2/ni2-index.html

[22] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas. Secure Program
Execution via Dynamic Information Flow Tracking. In ASPLOS-XI:
Proceedings of the 11th international conference on Architectural support
for programming languages and operating systems, pages 85-96, New
York, NY, USA, 2004. ACM Press.

[23] M. Dalton, H. Kannan, and C. Kozyrakis. Raksha: A Flexible
Information Flow Architecture for Software Security. In 34th Intl.
Symposium on Computer Architecture (ISCA), June 2007.

[24] J. R. Crandall and F. T. Chong. Minos: Control Data Attack Prevention
Orthogonal to Memory Model. In Proceedings of the International

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 91

Symposium on Microarchitecture (MICRO), 2004

[25] P. A. Karger, M. E. Zurko, D. W. Bonin, A. H. Mason, and C. E. Kahn.
A Retrospective on the VAX VMM Security Kernel. IEEE Transactions
on Software Engineering, 17(11):11471165, 1991.

[26] M. Tiwari, H. Wassel, B. Mazloom, S. Mysore, F. Chong, and T.
Sherwood, Complete information flow tracking from the gates up.
In Proceedings of the 14th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
2009.

[27] J. Oberg, W. Hu, A. Irturk, M. Tiwari, T. Sherwood and R. Kastner,
Theoretical Analysis of Gate Level Information Flow Tracking, In
proceedings of the 47th Design Automation Conference (DAC’10), June
2010.

[28] J. Oberg, W. Hu, A. Irturk, M. Tiwari, T. Sherwood, and R. Kastner,
Provable Information Flow Isolation in I2C and USB, In proceedings of
the 48th Design Automation Conference (DAC’11), June 2011.

[29] J. Rushby, Proof of Separability, In Proceedings of the 5th International
Symposium on Programming, Springer Verlag LNCS Vol. 137, pp.
352–367, Turin, Italy, 1982

[30] M. Tiwari, X. Li, H. M. G. Wassel, F. T. Chong, and T. Sherwood.
Execution Leases: A Hardware-Supported Mechanism for Enforcing
Strong Non-Interference, Proceedings of the International Symposium
on Microarchitecture (Micro), December 2009. New York, NY

[31] M. Tiwari, J. Oberg, X. Li, J. K. Valamehr, T. Levin, B. Hardekopf, R.
Kastner, F. T. Chong, and T. Sherwood. Crafting a Usable Microkernel,
Processor and I/O System with Strict and Provable Information Flow
Security, Proceedings of the International Symposium of Computer
Architecture. (ISCA) June 2011. San Jose, California

[32] X. Li, M. Tiwari, J. Oberg, F. T. Chong, T. Sherwood, and B.
Hardekopf. Caisson: A Hardware Description Language for Secure
Information Flow. In Proceedings of Programming Language Design
and Implementation (PLDI 2011)

[33] J. Rushby, Bus Architectures For Safety-Critical Embedded Systems,
Proceedings of the First Workshop on Embedded Software (EMSOFT),
2001, Lake Tahoe, CA.

[34] W. Hu, J. Oberg, A. Irturk, M. Tiwari, T. Sherwood, and R. Kastner.
Theoretical Fundamentals of Gate Level Information Flow Tracking,
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems (TCAD).

[35] C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole, P. Bakke, S.
Beattie, A. Grier, P. Wagle, Q. Zhang, StackGuard: automatic adaptive
detection and prevention of buffer-overflow attacks. Proceedings of the
7th conference on USENIX Security Symposium, p.5-5, January 26-29,
1998, San Antonio, Texas

[36] T. Newsham. Format String Attacks. Guardent, Inc. September 2000.
http://hackerproof.org/technotes/format/formatstring.pdf

92 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

Verifying the Authorship of Embedded IP Cores: Watermarking
and Core Identification Techniques

Jürgen Teich and Daniel Ziener
Hardware/Software Co-Design, Department of Computer Science

University of Erlangen-Nuremberg, Germany
email: {juergen.teich, daniel.ziener}@cs.fau.de

Abstract— In this paper, we present an overview of existing
watermarking techniques for FPGA and ASIC designs as
well as our new watermarking and identification techniques
for FPGA IP cores. Unlike most existing watermarking
techniques, the focus of our new techniques lies on ease
of verification, even if the protected cores are embedded
into a product. Moreover, we have concentrated on higher
abstraction levels for embedding the watermark, particularly
at the logic level, where IP cores are distributed as netlist
cores. With the presented watermarking methods, it is pos-
sible to watermark IP cores at the logic level and identify
them with a high likelihood and in a reproducible way in a
purchased product from a company that is suspected to have
committed IP fraud. The investigated techniques establish
the authorship by verification of either an FPGA bitfile or
the power consumption of a given FPGA.

1. Introduction
The ongoing miniaturization of on-chip structures allows

us to implement very complex designs which require very
careful engineering and an enormous effort for debugging
and verification. Indeed, complexity has risen to such enor-
mous measures that it is no longer possible to keep up
with productivity demands if all parts of a design must be
developed from scratch. A popular solution to close this so
called productivity gap is to reuse design components that
are available in-house or that have been acquired from other
companies. The constantly growing demand for ready to use
design components, also known as IP cores, has created a
very lucrative and flourishing market which is very likely to
continue its current path not only into the near future. Today,
there is a huge market and repertoire of IP cores which can
be seen in special aggregation web sites, for example [1]
and [2], which administrate IP core catalogs.

One problem of IP cores is the lack of protection mech-
anisms against unlicensed usage. A possible solution is
to hide a unique signature (watermark) inside the core.
However, there also exist techniques where an IP core can
be identified without an additional signature. Identification
methods are based on the extraction of unique characteristics
of the IP core, e.g., lookup table contents for FPGA IP
cores. With these techniques, the author of the core can be
identified and an unlicensed usage can be proven. In this

paper, watermarking as well as identification techniques for
IP cores will be presented.

Our vision is that unlicensed IP cores, embedded in a
complete SoC design which could be further embedded into
a product, can be detected solely by using the given product
and information from the IP core developer. Information of
the accused SoC developer or product manufacturer should
not be necessary and no extra information should be required
from the accused company. Obviously, such concepts need
advanced verification techniques to detect a signature or
certain IP core characteristics, present in one of many IP
cores inside a system. Furthermore, the embedded author
identification should be preserved even when the IP cores
pass through different design flow steps. It is of utmost
importance that a watermark is transparent towards design
and synthesis tools, that is, the embedded identification must
be preserved in all possible scenarios. Whilst on the one
hand, we must deal with the problem that automated design
tools might remove an embedded signature all by them-
selves, a totally different aspect is that embedded signatures
must also be protected against the removal by illegitimate
parties whose intention is to keep the IP core from being
identifiable. The latter is not to be taken lightly because if a
sufficiently funded company decides to use unlicensed cores
to, for example, lower design costs, there are usually very
high skilled employees assigned with the task to remove or
bypass the embedded watermark.

In Figure 1, a possible watermarking flow is depicted.
An IP core developer embeds a signature inside his core
using a watermark embedder and sells the protected IP core.
A third-party company may obtain an unlicensed copy of
the protected IP core and use it in one of their products.
If the IP core developer becomes suspicious that his core
might have been used in a certain product without proper
licensing, he can simply acquire the product and check for
the presence of his signature. If this attempt is successful and
his signature presents a strong enough proof of authorship,
the original core developer may decide to accuse the product
manufacturer of IP fraud and press legal charges.

IP cores exist for all design flow levels, from plain text
HDL cores on the register-transfer level (RTL) to bitfile cores
for FPGAs or layout cores for ASIC designs on the device
level. In the future, IP core companies will concentrate more
and more on the versatile HDL and netlist cores due to

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 93

Signature

IP Core developer

=

IP Core

A

Watermark
Embedder

Watermarked
IP Core A Product developer

Watermarked
IP Core

Product
Implementation

Watermarked
IP Core A

IP Core

Product

Product

Watermark
Extractor

Signature

A
Signature

B

? Buy Product

e.g.,
Copy
Attack

B

Sell IP
Cores

Obtain
unlicensed Core

Fig. 1: This figure shows a typical watermarking flow: An IP core developer embeds a watermark A inside his core. If a
product developer obtains an unlicensed core and embeds this core in his product, the IP core developer can buy this product
and extract the watermarks of all used IP cores. Now, he is able to compare his signature with the extracted signatures.

their flexibility. One reason for this development is that
these cores can be easily adapted to new technologies and
different FPGA devices. This work focuses on watermarking
methods for IP cores implemented for FPGAs. These have
a huge market segment and the inhibition threshold for
using unlicensed cores is lower than in the ASIC market
where products are produced in high volumes and vast
amounts of funds are spent for mask production. Moreover,
we concentrate on flexible IP cores which are delivered on
the logic level in a netlist format. The advantage of this form
of distribution is that these cores can be used for different
families FPGA devices and can be combined with other
cores to obtain a complete SoC solution. Our methods differ
from most other existing watermarking techniques, which do
not cover the area of netlist cores, or are not able to easily
extract an embedded watermark from a heterogeneous SoC
implemented in a given product.

The remaining work is organized as follows: In Section
2, an overview of related work for IP watermarking is
provided. Section 3 deals with different strategies to extract
a watermark from an FPGA embedded into a product. We
proceed by describing two ways for extracting a watermark.
The first way explains the identification of an IP core from an
FPGA bitfile in Section 4. Analyzing the power consumption
of the FPGA in order to verify the presence of a watermark
is the second method and will be discussed in Section 5. In
conclusion, the contributions will be summarized.

2. Related Work
In general, hiding a signature into data, such as a mul-

timedia file, some text, program code, or even an IP core
by steganographic methods is called watermarking. For

multimedia data, it is possible to exploit the imperfection
of human eyes or ears to enforce variations on the data that
represent a certain signature, but for which the difference
between the original and the watermarked work cannot be
recognized. Images, for example, can be watermarked by
changing the least significant bit positions of the pixel tonal
values to match the bit sequence of the original authors
signature. For music, it is a common practice to watermark
the data by altering certain frequencies, the ear cannot
perceive and thus not interfering with the quality of the work
[3].

In contrast, watermarking IP cores is entirely different
from multimedia watermarking, because the user data, which
represents the circuit, must not be altered since functional
correctness must be preserved. A fingerprint denotes a wa-
termark which is varied for individual copies of a core. This
technique can be used to identify individual authorized users.
In case of an unauthorized copy, the user, the copied source
belongs to, can be detected and the copyright infringement
may be reconstructed. Watermarking procedures can be
categorized into two groups of methods: additive methods
and constraint-based methods.

A survey and analysis of watermarking techniques in the
context of IP cores is provided by Abdel-Hamid and others
[4]. Further, we refer to our own survey of watermarking
techniques for FPGA designs [5]. Moreover, a general survey
of security topics for FPGAs is given by Drimer [6].

2.1 Additive Watermarking of IP Cores
Additive methods are watermarking procedures, where a

signature is added to the core. This means that the watermark
is not embedded into the function of the core. Nevertheless,
the watermark can be masked, so it appears to be part of the

94 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

functional part. Additive watermarks can be embedded into
HDL, bitfile or layout cores.

2.1.1 HDL Cores

Additive watermarking for HDL cores seems to be very
complicated, because of the human-readable structure of
the HDL code. Hiding a watermark there is very difficult,
because on the one hand, an attacker may easily detect
the watermark, and on the other hand, subsequently used
design tools might remove the watermark during circuit
optimization. However, it is not impossible to include an
additive HDL component into the core, which may not
removed by the design tools.

Castillo et al. hide a signature into unused space of
dedicated lookup table based memory [7]. To extract the
signature, an additional logic monitors the input stream for
a special signature extraction sequence. If this sequence is
detected, the signature is sent to the outputs of the core. This
approach was later generalized for other memory structures
in [8].

Oliveira presents a general method for watermarking finite
state machines (FSMs) in a way that on occurrence of a
certain input sequence, a specific property exhibits [9]. The
certain input sequence corresponds to the signature which is
previously processed by cryptographic functions. A similar
approach is presented by Torunoglu and others in [10] which
explores unused transitions.

The disadvantage of these approaches is the usage of ports
for signature verification. This works only if the ports are
reachable. If the core is embedded into other cores, the ports
of the watermarked core can be altered which falsifies or
prevents the detection of the signature in the output stream.
This applies also to the signature extraction sequence in the
input stream.

2.1.2 Bitfile Cores

The approach of Lach and others watermarks bitfile cores
by encoding the signature into unused lookup tables [11].
At first, the signature will be hashed and coded with an
error correction code (ECC) to be able to reconstruct the
signature even if some lookup tables are lost, e.g., during
tampering. After the initial place and route pass, the number
of unused lookup tables will be determined. The signature
is split into the size of the lookup tables and additional
LUTs are added to the design. Then, the place and route
process will be started again with the watermarked design.
Later, the approach was improved by using many small
watermarks instead of a single large one [12]. The size of the
watermarks should be limited by the size of a lookup table.
The advantage is that small watermarks are easier to search
for, and for verification, only a part of all of watermark
positions must be published. With the knowledge of the
published position, the watermark can be easily removed by
an attacker. At the verification process, only a few positions

of the watermark need to be used to establish the ownership.
A second improvement is that a fingerprinting technology is
added to the approach that enables the owner to see which
customer has given the core away [13]. The fingerprinting
technology is achieved by dividing the FPGA into tiles. In
each tile, one lookup table is reserved for the watermark.
The position of the mark in the tile encodes the fingerprint.
For verification, it is possible to read out the content of the
lookup table from a bitfile. So, these methods are easy to
verify. It’s more difficult to determine the position of the
watermark in a tile, but it’s still generally possible. However,
if an attacker knows the position of the watermark, it is easy
to overwrite it.

Saha and others present a watermarking strategy for FPGA
bitfiles by subdividing the lookup table locations into sets
of 2 × 2 tiles [14]. The number of used lookup tables in
a set is used as signature. From an initial level, additional
lookup tables are added to achieve the fill level according
to the signature. The input and output are connected to the
don’t care inputs of the neighboring cells. Kahng and others
show in [15] that the configuration of the multiplexer of
unused CLB outputs in FPGA bitfiles can carry a signature.
The signature is embedded after the bitfile creation and by
knowing the encoding of the bitfile. These configuration bits
can be later extracted to verify the signature.

Van Le and Desmedt show that these additional watermark
schemes for bitfile cores can be easily attacked by reverse
engineering, watermark localization, and subsequent water-
mark removal [16]. A simple algorithm is introduced which
identifies lookup tables or multiplexers whose outputs are
not connected to any output pins. However, these attacks
are only successful if reverse engineering of the bitfile is
possible and the costs of reverse engineering are not too
high.

Finally, Kean and others present a watermarking strategy
where a signature is embedded into an FPGA bitfile core
or design [17]. The read out of the signature is done by
measuring the temperature of the FPGA. This approach
is commercially available as the product DesignTag from
Algotronix.

2.2 Constraint-Based Watermarking of IP
Cores

All optimization problems have constraints which must
be satisfied to achieve a valid solution. Solutions which
satisfy this constraints are the solution space. Constraint-
based watermarking techniques represent a signature as a set
of additional constraints which are applied to the hardware
optimization and synthesis problem. These additional con-
straints reduce the solution space since the chosen solution
must also satisfy the additional constraints [18], [19].

Qu proposes a methodology to make a part of the water-
mark – for constraint-based watermarking, some additional
constraints – public which should deter attackers [20]. The
other parts, called private watermark, are only known by

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 95

the core author and are used to verify the authorship in case
that the public watermark was attacked. A similar approach
is used by Qu and others to generate different fingerprints by
dividing the additional constraints into two parts [21]: The
first part is a set of relaxed constraints which denote the
watermark. By applying distinct constraints to the second
part, different independent solutions can be generated which
may be used as diverse fingerprinted designs.

Charbon proposed a technique to embed watermarks on
different abstraction levels which he called hierarchical
watermarking [22]. The idea is, if an attacker is able to
remove a watermark, for example, embedded into the layout
of a circuit, the watermarks added at higher abstraction levels
are still present. However, Charbon focused more on layout,
nets, and latch watermarking techniques which are only
applicable for ASIC layout cores.

The verification of a constraint-based watermark is usually
done with the watermarked core as it is. This means the
watermarked core can be purchased or published and from
the distributed cores the watermark can be verified. However,
if the core is combined with other cores and traverses further
design steps, the watermark information is usually lost or it
cannot be extracted.

Van Le and Desmedt [16] present an ambiguous attack for
constraint-based watermarking techniques. The authors add
further constraints to the watermarked solution by allowing
only a minimal increase of the overhead. The result is a
slightly degenerated solution which satisfies many additional
constraints. This means that in this solution, a lot of different
signatures can be found which destroys the unique identifi-
cation of the core developer. They choose, for example, the
constraint-based watermarking approach for graph coloring.
Further, this attack might be applicable to other constraint-
based watermarking techniques.

As it was the case with additive watermarking strategies,
constraint-based watermarking strategies are applicable for
HDL, netlist, and bitfile cores.

2.2.1 HDL Cores
HDL code is usually produced by human developers or

high-level synthesis tools. Both can set additional constraints
to watermark a design. One approach is to use a water-
marked scan chain [23]. Scan chains are usually used in
ASIC designs to access the internal registers for debugging
purposes. The use of scan chains in FPGA designs is rather
unusual, but might be helpful in some cases. Depending on
the signature, we have a variation on the scan chains which
can be used to detect the watermark. This approach is easy
to verify, if the scan chains can be accessed from outside
of the chip. Problems occur, if the scan chain is only used
internally or is not connected to any device. In such a case,
there is no verification possibility.

Some work was done for watermarking digital signal
processing (DSP) functions [24], [25]. This kind of wa-
termarking has more in common with media watermarking

instead if IP watermarking. Both approaches alter the func-
tion of the core slightly by embedding a watermark. In [24],
the coefficients of finite impulse response (FIR) filters are
slightly varied according to the watermark. Additionally, the
authors use different structures to build the FIR filter which
also corresponds to the signature. In [25], these ideas are
extended and proven correct by mathematical analysis.

2.2.2 Netlist Cores

An approach to watermark netlist cores is to preserve
certain nets during synthesis and mapping [19]. Synthesis
tools merge signals or nets together and produce new nets.
Only a few nets from the synthesis input will be visible
in the synthesis result. The technology mapping tool also
eliminates nets by assembling gates together in a lookup
table. Kirovski’s approach enumerates and sorts all nets in
a design. The first nets of the input are chosen by the
synthesis tools according to a signature. These nets will be
prevented from elimination by the design tools by connecting
these nets to a temporary output of the core. The new
outputs from additional constraints for the synthesis tool,
and the corresponding result is related to the watermark. A
disadvantage is that it is easy to remove the additional logic.
If the content of the lookup table is synthesized again, the
watermark will be removed.

Meguerdichan and others presented a similar approach for
netlist cores where additional constraints are added during
the technology mapping step of the synthesis process [26]. In
this approach, critical signals are not altered which preserves
the timing and the performance of the core. The signature
is encoded into the number of allowed inputs of a certain
primitive cell, e.g., a gate or a lookup table. The primitive
cells which are not in the critical path are enumerated, and
according to the signature, the number of usable inputs are
constrained.

Khan and others watermark netlist cores by doing a
rewiring after synthesis [27]. Rewiring means that redundant
connections between primitive cells are added in the netlist
which makes other original connections redundant. These
new redundant connections are removed.

Bai and others introduce a method for watermarking tran-
sistor netlists for full custom designs [28]. The transistors are
enumerated and sorted into a list like in the approach above.
Corresponding to the pseudo random stream generated from
the signature, the width of the transistor gate is altered. If
the transistor is assigned a ’1’ from the random stream, the
transistor width is increased by a constant value.

2.2.3 Bitfile and Layout Cores

Additional placement, routing, or timing constraints can
be added to watermark bitfile cores. To embed a watermark
with placement constraints, Kahng and others place the con-
figurable logic blocks (CLBs) in even or odd rows depending
on the signature [29]. In this approach, the signature is

96 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

transformed into even/odd row placement constraints. The
placed core will be tested on preserving the constraints
and, if necessary, CLBs are swapped. The problem of
verification is to extract the CLB placement information.
Only if knowing how the CLBs correspond to the signature,
the watermark can be verified. A strategy to achieve this is
to uniquely enumerate the CLBs in an FPGA from the top
left corner.

Kahng and others [29] propose a second approach by
adding constraints to the router. The constraints achieve that
a net selected by the signature is routed with some additional,
unusual routing resources. These unusual resources can be,
for example, wrong way segments. A wrong way segment
is a segment in which the net goes to the wrong direction
and then back in the right direction to form a backstrap. The
authors claim that this is unlikely for a normal router, and
so such a net can be verified as a watermarked net.

Saha and others present a watermarking scheme by alter-
ing the size of the repeaters according to the signature [14].
In high performance ASIC designs, repeaters (a buffer for
amplification of the signal) are inserted into critical nets to
decrease the delay.

3. Watermark Verification Strategies for
Embedded FPGAs

The problem of applying watermarking techniques to
FPGA designs is not the coding and insertion of a water-
mark, rather it is the verification with an FPGA embedded in
a system that poses the real challenge. Hence, our methods
concentrate in particular on the verification of watermarks.
When considering finished products, there are five potential
sources of information that can be used for extracting a
watermark: The configuration bitfile, the ports, the power
consumption, electromagnetic (EM) radiation, and the tem-
perature.

If the developer of an FPGA design has disabled the pos-
sibility to simply read back the bitfile from the chip, it can
be extracted by wire tapping the communication between the
PROM and the FPGA. Some FPGA manufactures provide
an option to encrypt the bitstream which will be decrypted
only during configuration inside the FPGA. Monitoring the
communication between PROM and FPGA in this case is
useless, because only the encrypted file will be transmitted.
Configuration bitfiles mostly use a proprietary format which
is not documented by the FPGA manufacturers. However, it
seems to be possible to read out some parts of the bitfile,
such as information stored in RAMs or lookup tables. In
Section 4, we introduce netlist IP core identification and
watermarking methods where the verification is done by
using the extracted configuration bitstream.

Another popular approach for retrieving a signature from
an FPGA is to employ unused ports. Although this method
is applicable to top-level designs, it is impractical for IP
cores, since these are mostly used as components that will be

combined with other resources and embedded into a design
so that the ports will not be directly accessible any more.
Due to these restrictions, we do not discuss the extraction
of watermarks over output ports.

Furthermore, it is possible to force patterns on the power
consumption of an FPGA, which can be used as a covert
channel to transmit data to the outside of the FPGA. We
have shown in [30] and [31] that the clock frequency and
toggling logic can be used to control such a power spectrum
covert channel. The basic idea to use these techniques for
watermarking is to force a signature dependent toggle pattern
and extract the resulting change in power consumption as a
signature from the FPGA’s power spectrum. We refer to this
method as “Power Watermarking” in Section 5

With almost the same strategy it is also possible to extract
signatures from the electro magnetic (EM) radiation of an
FPGA. A further advantage of this technique is that a raster
scan of an FPGA surface with an EM sensor can also use
the location information to extract and verify the water-
mark. Unfortunately, more and more FPGAs are delivered
in a metal chip package which absorbs the EM radiation.
Nevertheless, this is an interesting alternative technique for
extracting watermarks and invites for future research.

Finally, a watermark might be read out by monitoring
the temperature radiation. The concept is similar to the
power and EM-field watermarking approaches, however, the
transmission speed is drastically reduced. Interestingly, this
is the only watermarking approach which is commercially
available [17]. Here, reading the watermark from an FPGA
may take up to 10 minutes. More about the different verifi-
cation strategies can be found in [32].

4. Watermark Verification using the
FPGA Bitfile

This section gives an overview of methods where the
verification is done by extracting an FPGA bitfile. The
bitfile can be analyzed to detect structures that can carry
a watermark or that can be used to identify an IP core.
Here, lookup table contents are used which are excellently
suitable for watermarking and IP core identification. We
start out by discussing how the contents of the lookup
tables may be extracted from the FPGA bitfile. Following,
methods for netlist and IP core identification are proposed
(see also [33]). Following, watermarking methods for bitfile
and netlist cores are discussed (see also [34]). The focus of
these watermarking methods lies on the usage of functional
lookup tables in order to increase the robustness against
removal attacks. The term functional lookup table refers
to lookup tables which are already used in a given (non-
watermarked) IP core and represent a part of the functional
logic of the core which may not be removed by an attacker
in order to retain the correctness of the core.

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 97

4.1 Lookup Table Content Extraction
For FPGA designs, the functional lookup tables are an

ideally suited component for carrying watermarks or using
it for IP core identification. From a finished product, it
is possible to obtain the configuration bitstream of the
FPGA. The extraction of the lookup table contents from the
configuration bitfile depends on the FPGA device and the
FPGA vendor. To read out the LUT content directly from
the bitfile, it must be known at which position in the bitfile
the lookup table content is stored and how these values must
be interpreted. In [33], for example, a standard black-box
reverse engineering procedure is applied to interpret Xilinx
Virtex-II and Virtex-II Pro bitfiles.

4.2 Identification of Netlist Cores by Analysis
of LUT Contents

In this approach, we do not add any signature or water-
mark. The core itself remains unchanged, so the functional
correctness is given and no additional resources are used.
We compare the content of the used lookup tables from
the registered core with the used lookup tables in an FPGA
design from the product of the accused company. If a high
percentage of identical content is detected, the probability
that the registered core is used is very high.

The synthesis tool maps the combinatorial logic of an
FPGA core to lookup tables and writes these values into a
netlist. After the synthesis step, the content of the lookup
tables of a core is known, so we can protect netlist cores
which are delivered at the logic level. The protection of
bitfile cores at the device level is also possible.

After the core is purchased, the customer can combine this
core with other cores. In the following CLB mapping step,
it is possible that lookup tables are merged across the core
boundaries or are removed by an optimizing transformation.
This happens when different cores share logic or when
outputs of the core are not used. These lookup tables cannot
be found in the FPGA bitfile, but experimental results in [33]
show that the percentage of these lookup tables compared to
the number of all lookup tables in the core is typically low
for the used mapping tool (Xilinx map).

After the extraction of the content of lookup tables from
a bitfile, we can compare the obtained values with the
information in the netlist. Unfortunately, the mapping tools
do not necessarily adopt these values. The mapping tool may
merge lookup tables from different cores together, convert
one, two or three input lookup tables to four input lookup
tables and permute the inputs to achieve a better routing.

All lookup tables of an FPGA have n inputs. On most
FPGA architectures, lookup tables have n = 4 or n = 6
inputs. In a core netlist, also lookup tables with less than n
inputs may exist. These lookup tables must be mapped onto
n input lookup tables. If one input is unused, only half of the
memory is needed to store the function and the remaining
space must be filled. In the case that a function uses less

inputs than the underlying technology of the FPGA provides,
it is desirable to turn the unused inputs into don’t cares.
Intuitively, this can be achieved rather easily by replicating
the function table as it is demonstrated in Figure 2.

000
001
010
011
100
101
110
111

0
1
1
1
0
1
1
1

00
01
10
11

0
1
1
1

0
1
1
1

LUT2 LUT3

i1i0 i2i1i0 o o

Fig. 2: Converting a two input lookup table into a three input
lookup table with unused input i2.

The mapping tool can permute the inputs of the lookup
tables, for example, to achieve a better routing. In most
FPGA architectures, the routing resources for lookup table
inputs are not equal, and so a permutation of the lookup
table inputs can lower the amount of used routing resources.
Permutation of the inputs significantly alters the content of a
lookup table. For n inputs, n! permutations exist and thus up
to n! different lookup table values for one so-called unique
function. To compare the contents of the lookup table from
the netlist and the bitfile, it must be checked if one of
these possible different lookup table values for one unique
function is equal to the value of the lookup table in the bitfile.
This is done by creating a table with all possible values of
lookup tables for all unique functions (see Figure 3).

More about this method as well as experimental results

map
table

Bitfile
Design

unique
functions

map
table

Netlist
Core

Lookup table
contents

unique
functions

compare:
r is sub-
set of q?

Lookup table
contents

yes/no

q r

Fig. 3: Before the lookup table contents of the bitfile and the
netlist are compared, they are mapped into unique functions.

98 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

and a robustness analysis can be found in [33] and [32].
The experimental results show that it is possible to identify
a core in a design with a high probability.

4.3 Identification of HDL Cores by Analysis of
LUT Contents

In the last section we have shown that is possible to
identify an IP core, distributed as a netlist, in an FPGA
design by analyzing the LUT contents of the configuration
bitfile. However, many IP cores are published at the RTL
abstraction level as HDL core.

To identify HDL cores, the lookup table contents can be
used as well. However, the lookup table content is generated
by the synthesis step, which is executed after the publication
of the HDL cores. Therefore, a pirate who can obtain an
unlicensed HDL core, controls the complete design flow
from the RTL to the device level. It is up to the pirate to
decide which synthesis tool is used to synthesize the core
and therefore, create the lookup table contents. Different
synthesis tools might create different lookup table contents.
To prove or disprove this assumption, we analyzed common
synthesis tools with respect to the generation of lookup table
contents.

The first step is to analyze different netlist cores to find out
whether they were generated from the same HDL core. The
goal is to find different netlist cores which can be assigned to
a corresponding HDL source even if they were synthesized
with different tools and different synthesis parameters.

The comparision is based on the lookup table contents.
Therefore, to compare two netlist cores, the first step is to
extract the lookup table contents from the netlist cores and
map these to unique functions. The probability that both
cores were generated from the same source is high if a high
percentage of lookup tables which can be found in both
cores implement in both cores the same unique functions. A
detailed description of this method as well as experimental
results are presented in [32].

This method is the first steps towards an identification of
HDL cores in bitfiles. Here, we concentrated on the synthesis
step between the RTL and logic abstraction level. However,
to build the complete chain for identification of HDL cores
from bitfiles some links are missing. Identifying HDL cores
in netlists has an inherent uncertainness comparable to the
identification of netlist cores in bitfiles. By combining both
techniques the uncertainness can be too high to give a trustful
result. Nevertheless, this is an interesting topic for future
research.

4.4 Watermarks in LUTs for Bitfile Cores
In this section, we introduce our first watermarking tech-

nique for IP cores. The easiest way to watermark an FPGA
design is to place the watermarks into the bitfiles. Bitfiles are
very inflexible because they were specifically generated for
a certain FPGA device type, however, it makes sense to sell
bitfile IP cores for common development platforms which

carry the same FPGA type. Usually, a bitfile core is a whole
design which is completely placed and routed and therefore
ready to use. There also exist partial bitfiles which carry
only one core. These partial bitfile cores can be combined
into one FPGA which increases the flexibility of these cores
and therefore may increase the trade possibilities.

In this approach, we hide our signature inside unused
lookup tables. It is very unlikely that a design or bitfile core
uses all available lookup tables in an FPGA. Before a design
reaches this limit, the routing resources are exhausted and the
timing degenerates rapidly. Therefore, many unused lookup
tables exist in usual designs. On the other hand, lookup table
content extraction is not difficult. Using lookup tables for
hiding a watermark which are far away from the used ones,
makes it easier for an attacker to identify and remove them.
Even if an attacker is able to extract all lookup tables from
a bitfile core, the lookup tables which carry the watermark
should not be suspicious.

In Xilinx devices, lookup tables are grouped together with
flip-flops into slices. A slice usually consists more than one
lookup table, e.g., the Virtex-II and Virtex-II Pro devices
have two lookup tables in one slice. It is not unusual that
only one lookup table of a slice is used and the other remains
unused. Hiding a watermark in the unused lookup table of a
used slice is less obvious than using lookup tables in unused
slices. Even if the attacker is able to extract the lookup table
content and coordinates, the watermarks are hard to detect.

The extraction and verification of the watermark is rather
easy. First of all, the content and the coordinates of all used
lookup table of the core are extracted. For the verification
there exist two approaches: a blind approach and a non-
blind approach. In the blind approach, the watermarks are
searched in all extracted lookup table contents, whereas
in the non-blind approach the location of the watermarks
are known. Having the right coordinates, the watermarked
lookup table content can be directly compared to the water-
marks of the core developer. The locations of the watermarks
delivered from the core developer, however, should be kept
secret, because otherwise it is very easy for an attacker to
remove the marks.

More about this method as well as experimental results
and a robustness analysis can be found in [32].

4.5 Watermarks in Functional LUTs for Netlist
Cores

Since we want to keep the IP core as versatile as possible,
we watermark the design in the form of a netlist represen-
tation, which, although technology dependent to a certain
degree, can still be used for a large number of different
devices. Netlist designs will almost certainly undergo the
typical design flow for silicon implementations. This also
includes very sophisticated optimization algorithms, which
will eliminate any redundancy that can be found in the
design in order to make improvements. As a consequence
it is necessary to embed the watermarks in the netlist in

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 99

such a way, that the optimization tools will not remove the
watermarks from the design.

In Xilinx FPGAs, for example, lookup tables are essen-
tially RAM cells, with the inputs specifying which of the
stored bits to deliver to the output of the RAM. Naturally,
these cells can therefore also be used as storage, but also
as shift-register cells (see Figure 4). Interesting, however,
is the fact that if the cell is configured as a lookup table,
Xilinx optimization tools will try to optimize the contained
logic function. If the cell is in contrast configured as a shift-
register or distributed RAM, the optimization tools will leave
the contents alone, but the logic function is still carried out.
This means, that if we want to add redundancy to a netlist,
that is not removed by automized tools, all we have to do is
to take the corresponding cells out of the scope of the tools.

A1
A2
A3
A4

CK
EN

D

Q

 Q15

SRL16A1
A2
A3
A4

CK
EN

D

Q

 Q15

LUT4

Fig. 4: In the Xilinx Virtex architecture, the same standard
cell is used as a lookup table (LUT4) and also as a 16-bit
shift-register lookup table (SRL16).

FPGAs usually consist of the same type of lookup tables
with respect to the number of inputs. For example, the
Xilinx Virtex-II uses lookup tables with four inputs whereas
the Virtex-5 has lookup tables with six inputs. However,
in common netlist cores many logical lookup tables exist,
which have less inputs than the type used on the FPGA.

These lookup tables are mapped to the physical lookup
tables of the FPGA during synthesis. If the logical lookup
table of the netlist core has fewer inputs than the physical
representation, the memory space which was not present in
the logical representation remains unused. Using the unused
memory space of functional lookup tables for watermarking
without converting the lookup table either to a shift register
or distributed memory turns out to be not applicable, because
design flow tools identify the watermark as redundant and
remove the content due to optimization. Converting the
watermarked functional lookup table into a shift register or
a memory cell prevents the watermark from deletion due to
optimization.

If a product developer is accused of using an unlicensed
core, the product can be purchased and the bitfile can be read
out, e.g., by wire tapping. The lookup table content and the
content of the shift registers can be extracted from the bitfile.
Now, the extracted lookup table or shift register content can
be used for a watermark detector which can decide if the
watermark is embedded in the work or not.

A detailed description of this method as well as the
experimental verification results and the overhead analysis
are described in [34] and [32].

5. Power Watermarking
This section describes watermarking techniques intro-

duced in [30] and [31], where a signature is verified over
the power consumption pattern of an FPGA. For power
watermarking methods, the term signature refers to the part
of the watermark which can be extracted and is needed
for the detection and verification of the watermark. The
signature is usually a bit sequence which is derived from
the unique key for author and core identification.

There is no way to measure the relative power consump-
tion of an FPGA directly. Only by measuring the relative
supply voltage or current the actual power consumtion can
be inferred. We have decided to measure the voltage of the
core as close as possible to the voltage supply pins such
that the smoothing from the plane and block capacities are
minimal and no shunt is required. Most FPGAs have ball
grid array (BGA) packages and the majority of them have
vias to the back of the PCB for the supply voltage pins. So,
the voltage can be measured on the rear side of the PCB
using an oscilloscope. The voltage can be sampled using
a standard oscilloscope, and analyzed and decoded using a
program developed to run on a PC. The decoded signature
can be compared with the original signature and thus, the
watermark can be verified. This method has the advantage
of being non-destructive and requires no further information
or aids than the given product (see Figure 5).

FPGA

Signature Power
Pattern

Generator

Voltage
Supply

tr
ac

e

Detected
Signature:
1F78DB52

Signature from the
core supplier:

1F78DB52

Compare

probe

IP Core

Fig. 5: Watermark verification using power signature anal-
ysis: From a signature (watermark), a power pattern inside
the core will be generated that can be probed at the voltage
supply pins of the FPGA. From the trace, a detection
algorithm verifies the existence of the watermark.

100 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

In the power watermarking approach described in [35] and
[30], the amplitude of the interferences in the core voltage is
altered. The basic idea is to add a power pattern generator
(e.g., a set of shift registers) and clock it either with the
operational clock or an integer division thereof. This power
pattern generator is controlled according to the encoding of
the signature sequence which should be sent.

The mapping of a signature sequence s = {0, 1}n onto
a sequence of symbols {σ0, σ1}n [31] is called encoding:
{0, 1}n → Zn, n ≥ 0 with the alphabet Z = {σ0, σ1}.
Here, each signature bit {0, 1} is assigned to a symbol. Each
symbol σi is a triple (ei, δi, ωi), with the event ei ∈ {γ, γ̄},
the period length δi > 0, and the number of repetitions
ωi > 0. The event γ is power consumption through a shift
operation and the inverse event γ̄ is no power consumption.
The period length is given in terms of number of clock
cycles. For example, the encoding through 32 shifts with
the period length 1 (one shift operation per cycle) if the
data bit ’1’ should be sent, and 32 cycles without a shift
operation for the data bit ’0’ is defined by the alphabet
Z = {(γ, 1, 32), (γ̄, 1, 32)}.

Different power watermarking encoding schemes were
introduced and analyzed. The basic method with encod-
ing scheme: Z = {(γ, 1, 1), (γ̄, 1, 1)}, the enhanced ro-
bustness encoding: Z = {(γ, 1, 32), (γ̄, 1, 32)}, and the
BPSK approach: Z = {(γ, 1, ω), (γ̄, 1, ω)} are explained
in detail in [30]. The correlation method with encoding
Z = {(γ, 25, 1), (γ̄, 25, 1)} can be reviewed in [31]. To
avoid interference from the operational logic in the measured
voltage, the signature is only generated during the reset
phase of the core.

The power pattern generator consists of several shift
registers, causing a recognizable signature- and encoding-
dependent power consumption pattern. For example, the
typical swing of an FPGA core voltage signal which results
from a shift of a huge shift register is shown in Figure 6.

As mentioned before in Section 4.5, a shift register can
also be used as a lookup table and vice versa in many FPGA
architectures (see Figure 4 in Section 4.5). A conversion
of functional lookup tables into shift registers does not
affect the functionality if the new inputs are set correctly.
This allows us to use functional logic for implementing the
power pattern generator. The core operates in two modes,
the functional mode and the reset mode. In the functional
mode, the shift is disabled and the shift register operates
as a normal lookup table. In the reset mode, the content is
shifted according to the signature bits and consumes power
which can be measured outside of the FPGA. To prevent
the loss of the content of the lookup table, the output of the
shift register is fed back to the input, such that the content is
shifted circularly. When the core changes to the functional
mode, the content have to be shifted to the proper position
to get a functional lookup table for the core.

To increase the robustness against removal and ambiguity
attacks, the content of the power consumption shift register

0 500 1000 1500 2000
−3

−2

−1

0

1

2

3
x 10

−3

Time [ns]

V
o

lt
a

g
e

 [
V

]

Fig. 6: This measurement is obtained by a shift of a huge
shift register, implemented using 128 SRL16 primitive cells
in the Spartan-3 FPGA on the Digilent Spartan-3 starter
board [36]. Note that the DC component of the core voltage
signal is removed by an AC filter.

which is also part of the functional logic can be initialized
shifted. Only during the reset state, when the signature is
transmitted, the content of the functional lookup table can
be positioned correctly. So, normal core operation cannot
start before the signature was transmitted completely. The
advantage is that the core is only able to work after sending
the signature. Furthermore, to avoid a too short reset time
in which the watermark cannot be detected exactly, the right
functionality will only be established if the reset state is
longer than a predefined time. This prevents the user from
leaving out or shorten the reset state with the result that the
signature cannot be detected properly.

The signature itself can be implemented as a part of
the functional logic in the same way. Some lookup tables
are connected together and the content, the function of the
LUTs, represents the signature. Furthermore, techniques de-
scribed in Section 4.5 can be used to combine an additional
watermark and the functional part in a single lookup table
if not all lookup table inputs are used for the function. For
example, LUT2 primitives in Xilinx Virtex-II devices can
be used to carry an additional 12-bit watermark by restrict-
ing the reachability of the functional lookup table through
clamping certain signals to constant values. Therefore, the
final sending sequence consists of the functional part and
the additional watermark. This principle makes it almost
impossible for an attacker to change the content of the
signature shift register. Altering the signature would also
affect the functional core and thus result in a corrupt core.

The advantages of using the functional logic of the core

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 101

as a shift register are the reduced resource overhead for
watermarking and the robustness of this method. It is hard, if
not impossible, to remove shift registers without destroying
the functional core, because they are embedded in the
functional design.

The watermark embedder consists of two steps. First, the
core must be embedded in a wrapper which contains the
control logic for emitting the signature. This step is done at
the register-transfer level before synthesis. The second step
is at the logic level after the synthesis. A program converts
suitable lookup tables (for example LUT4 for Virtex-II
FPGAs) into shift registers for the generation of the power
pattern and attaches the corresponding control signal from
the control logic in the wrapper (see Figure 7).

�������

��	

��

��
��

��
��
���

������

���� ����

����	���

�����
����

����

��	

��

��
��

��
��
���

������

���� ����

����	���

�����
�����

�����

����	���

��������

Fig. 7: The core and the wrapper before (above) and after
(below) the netlist alternation step. The signal “wmne" is an
enable signal for shifting the power pattern generator shift
register.

The wrapper contains the control logic for emitting the
watermark and a register that contains the signature. The
ports of the wrapper are identical to the core, so we can
easily integrate this wrapper into the hierarchy. The control
logic enables the signature register while the core is in
reset state. Also, the power pattern shift registers are shifted
in correspondence to the current signature bit. If the reset
input of the wrapper is deasserted, the core function cannot
start immediately, but only as soon as the content in the
shift registers has been shifted back to the correct position.

Then the control logic deasserts the internal reset signal to
enter normal function mode. The translation of four input
lookup tables (LUT4) of the functional logic into 16 Bit
shift registers (SRL16) is done at the netlist level.

The embedding procedure for Virtex-II netlist cores is
done by a program which parses an EDIF netlist and writes
back the modified EDIF netlist. First, the program reads
all LUT4 instances. Then, the instances are converted to
a shift register (SRL16), if required, initialized with the
shifted value and connected to the clock and the watermark
enable (wmne) signal according to Figure 7. Always two
shift registers are connected together to rotate their contents.
Finally, the modified netlist is created. The watermarked core
is now ready for purchase or publication.

A company may obtain an unlicensed version of the core
and embeds this core in a product. If the core developer has
a suspicious fact, he can buy the product and verify that his
signature is inside the core using a detection function. The
detecting function depends on the encoding scheme. In [30]
and [31], the detecting functions of all introduced encoding
schemes are described in detail.

The advantage of power watermarking is that the signature
can easily be read out from a given device. Only the core
voltage of the FPGA must be measured and recorded. No bit-
file is required which needs to be reverse-engineered. Also,
these methods work for encrypted bitfiles where methods
extracting the signature from the bitfile fail. Moreover, we
are able to sign netlist cores, because our watermarking
algorithm does not need any placement information. How-
ever, many watermarked netlist cores can be integrated into
one design. The results are superpositions and interferences
which complicate or even prohibit the correct decoding
of the signatures. To achieve the correct decoding of all
signatures, we proposed multiplexing methods in [37]. In this
paper we show that the most promising techniques for use
on an FPGA are time (TDM) and code (CDM) multiplexing.

6. Summary
In this paper, we have presented an overview of existing

and new approaches for identication and watermarking of
IP cores. Our methods follow the strategy of an easy
verification of the watermark or the identification of the
core in a bought product from an accused company without
any further information. Netlist cores, which have a high
trade potential for embedded systems developers, are in
the focus of our analysis. To establish the authorship in a
bought product by watermarking or core identification, we
have discovered different new techniques, how information
can be transmitted from the embedded core to the outer
world. In this paper, we concentrated on methods using the
FPGA bitfile which can be extracted from the product and on
methods where the signature is transmitted over the power
pins of the FPGA. All methods mentioned in this overview
paper are described in detail with experimental results in
[32] and in the corresponding referenced papers.

102 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

References
[1] Design & Reuse, “Catalyst of Collaborative IP Based SoC Design,”

URL: http://www.design-reuse.com/.
[2] Chip Estimate, “ChipEstimate.com,” URL:

http://www.chipestimate.com/.
[3] L. Boney, A. H. Tewfik, and K. N. Hamdy, “Digital Watermarks

for Audio Signals,” in International Conference on Multimedia
Computing and Systems, 1996, pp. 473–480. [Online]. Available:
citeseer.ist.psu.edu/boney96digital.html

[4] A. T. Abdel-Hamid, S. Tahar, and E. M. Aboulhamid, “A Survey
on IP Watermarking Techniques,” Design Automation for Embedded
Systems, vol. 9, no. 3, pp. 211–227, 2004.

[5] D. Ziener and J. Teich, “Evaluation of Watermarking Methods for
FPGA-Based IP-cores,” University of Erlangen-Nuremberg, Depart-
ment of CS 12, Hardware-Software-Co-Design, Am Weichselgarten
3, D-91058 Erlangen, Germany, Tech. Rep. 01-2005, Mar. 2005.

[6] S. Drimer, “Security for Volatile FPGAs,” Nov. 2009.
[7] E. Castillo, L. Parrilla, A. Garcia, A. Loris, and U. Meyer-Baese, “IPP

Watermarking Technique for IP Core Protection on FPL Devices,” in
International Conference on Field Programmable Logic and Applica-
tions, 2006. FPL’06, 2006, pp. 487–492.

[8] E. Castillo, L. Parrilla, A. Garcia, U. Meyer-Baese, G. Botella, and
A. Lloris, “Automated Signature Insertion in Combinational Logic
Patterns for HDL IP Core Protection,” in 4th Southern Conference on
Programmable Logic, 2008, 2008, pp. 183–186.

[9] A. L. Oliveira, “Techniques for the Creation of Digital Watermarks in
Sequential Circuit Designs,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 20, no. 9, pp. 1101–
1117, 2001.

[10] I. Torunoglu and E. Charbon, “Watermarking-based Copyright Protec-
tion of Sequential Functions,” IEEE Journal of Solid-State Circuits,
vol. 35, no. 3, pp. 434–440, 2000.

[11] J. Lach, W. H. Mangione-Smith, and M. Potkonjak, “Signature Hiding
Techniques for FPGA Intellectual Property Protection,” in ICCAD
’98: Proceedings of the 1998 IEEE/ACM international conference on
Computer-aided design. New York, NY, USA: ACM, 1998, pp. 186–
189.

[12] J. Lach, W. H. Mangione-Smith, and Potkonjak, “Robust FPGA
Intellectual Property Protection through Multiple Small Watermarks,”
in DAC ’99: Proceedings of the 36th annual ACM/IEEE Design
Automation Conference. New York, NY, USA: ACM, 1999, pp.
831–836.

[13] J. Lach, W. H. Mangione-Smith, and M. Potkonjak, “Fingerprinting
Techniques for Field-Programmable Gate Array Intellectual Property
Protection,” IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, vol. volume 20, 2001.

[14] D. Saha and S. Sur-Kolay, “Fast Robust Intellectual Property Protec-
tion for VLSI Physical Design,” in ICIT ’07: Proceedings of the 10th
International Conference on Information Technology. Washington,
DC, USA: IEEE Computer Society, 2007, pp. 1–6.

[15] A. B. Kahng, J. Lach, W. H. Mangione-Smith, S. Mantik, I. L.
Markov, M. M. Potkonjak, P. A. Tucker, H. Wang, and G. Wolfe, “Wa-
termarking Techniques for Intellectual Property Protection,” in DAC
’98: Proceedings of the 35th annual Design Automation Conference.
New York, NY, USA: ACM, 1998, pp. 776–781.

[16] T. V. Le and Y. Desmedt, “Cryptanalysis of UCLA Watermarking
Schemes for Intellectual Property Protection,” in IH ’02: Revised
Papers from the 5th International Workshop on Information Hiding.
London, UK: Springer-Verlag, 2003, pp. 213–225.

[17] T. Kean, D. McLaren, and C. Marsh, “Verifying the Authenticity of
Chip Designs with the DesignTag System,” in HOST ’08: Proceedings
of the 2008 IEEE International Workshop on Hardware-Oriented
Security and Trust. Washington, DC, USA: IEEE Computer Society,
2008, pp. 59–64.

[18] A. B. Kahng, J. Lach, W. H. Mangione-Smith, S. Mantik, I. L.
Markov, M. M. Potkonjak, P. A. Tucker, H. Wang, and G. Wolfe,
“Constraint-Based Watermarking Techniques for Design IP Protec-
tion,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 20, no. 10, pp. 1236–1252, 2001.

[19] D. Kirovski, Y.-Y. Hwang, M. Potkonjak, and J. Cong, “Intellectual
Property Protection by Watermarking Combinational Logic Synthesis
Solutions,” in ICCAD ’98: Proceedings of the 1998 IEEE/ACM

international conference on Computer-aided design. New York, NY,
USA: ACM, 1998, pp. 194–198.

[20] G. Qu, “Publicly Detectable Watermarking for Intellectual Property
Authentication in VLSI Design,” IEEE Transactions on Computer
Aided Design of Integrated Circuits and Systems, vol. 21, no. 11,
pp. 1363–1367, 2002.

[21] G. Qu and M. Potkonjak, “Fingerprinting Intellectual Property using
Constraint-addition,” in DAC ’00: Proceedings of the 37th Annual
Design Automation Conference. New York, NY, USA: ACM, 2000,
pp. 587–592.

[22] E. Charbon, “Hierarchical Watermarking in IC Design,” in Proceed-
ings of the IEEE Custom Integrated Circuits Conference, 1998, pp.
295–298.

[23] D. Kirovski and M. Potkonjak, “Intellectual Property Protection
Using Watermarking Partial Scan Chains For Sequential Logic Test
Generation,” in ICCAD ’98: Proceedings of the 1998 IEEE/ACM
international conference on Computer-aided design, 1998. [Online].
Available: citeseer.ist.psu.edu/218548.html

[24] A. Rashid, J. Asher, W. H. Mangione-Smith, and M. Potkonj, “Hier-
archical Watermarking for Protection of DSP Filter Cores,” in Pro-
ceedings of the Custom Integrated Circuits Conference. Piscataway,
NJ. IEEE Press, 1999, pp. 39–45.

[25] R. Chapman and T. S. Durrani, “IP Protection of DSP Algorithms
for System on Chip Implementation,” IEEE Transactions on Signal
Processing, vol. 48, no. 3, pp. 854–861, 2000.

[26] S. Meguerdichian and M. Potkonjak, “Watermarking while Preserving
the Critical Path,” in DAC ’00: Proceedings of the 37th Annual Design
Automation Conference. New York, NY, USA: ACM, 2000, pp. 108–
111.

[27] M. M. Khan and S. Tragoudas, “Rewiring for Watermarking Digital
Circuit Netlists,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 24, no. 7, pp. 1132–1137, 2005.

[28] F. Bai, Z. Gao, Y. Xu, and X. Cai, “A Watermarking Technique for
Hard IP Protection in Full-custom IC Design,” in International Con-
ference on Communications, Circuits and Systems (ICCCAS 2007),
2007, pp. 1177–1180.

[29] A. B. Kahng, S. Mantik, I. L. Markov, M. M. Potkonjak, P. A. Tucker,
H. Wang, and G. Wolfe, “Robust IP Watermarking Methodologies for
Physical Design,” in DAC ’98: Proceedings of the 35th annual Design
Automation Conference. New York, NY, USA: ACM, 1998, pp. 782–
787.

[30] D. Ziener and J. Teich, “Power Signature Watermarking of IP Cores
for FPGAs,” Journal of Signal Processing Systems, vol. 51, no. 1, pp.
123–136, April 2008.

[31] D. Ziener, F. Baueregger, and J. Teich, “Using the Power Side Channel
of FPGAs for Communication,” in Proceedings of the 18th Annual
International IEEE Symposium on Field-Programmable Custom Com-
puting Machines (FCCM 2010), May 2010, pp. 237–244.

[32] D. Ziener, “Techniques for Increasing Security and Reliability of
IP Cores Embedded in FPGA and ASIC Designs,” Dissertation,
University of Erlangen-Nuremberg, Germany, July 2010, verlag Dr.
Hut, Munich, Germany.

[33] D. Ziener, S. Aßmus, and J. Teich, “Identifying FPGA IP-Cores based
on Lookup Table Content Analysis,” in Proceedings of 16th Interna-
tional Conference on Field Programmable Logic and Applications
(FPL 2006), Madrid, Spain, Aug. 2006, pp. 481–486.

[34] M. Schmid, D. Ziener, and J. Teich, “Netlist-Level IP Protection
by Watermarking for LUT-Based FPGAs,” in Proceedings of IEEE
International Conference on Field-Programmable Technology (FPT
2008), Taipei, Taiwan, Dec. 2008, pp. 209–216.

[35] D. Ziener and J. Teich, “FPGA Core Watermarking Based on Power
Signature Analysis,” in Proceedings of IEEE International Conference
on Field-Programmable Technology (FPT 2006), Bangkok, Thailand,
Dec. 2006, pp. 205–212.

[36] Digilent Inc., “Spartan-3 Starter Board,” URL:
http://www.digilentinc.com/.

[37] D. Ziener, F. Baueregger, and J. Teich, “Multiplexing Methods for
Power Watermarking,” in Proceedings of the IEEE Int. Symposium
on Hardware-Oriented Security and Trust (HOST 2010), Anaheim,
USA, June 2010.

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 103

Establishing Dedicated Functions on FPGA Devices for
High-Performance Cryptography

Tim Güneysu
Horst Görtz Institute for IT-Security, Ruhr-Universität Bochum, Germany

tim.gueneysu@rub.de

Abstract— This work presents a unique design approach to
implement standardized symmetric and asymmetric cryptosys-
tems on modern FPGA devices. While most other FPGA
implementations optimize cryptosystems on an algorithmic
level for being optimally placed in the generic logic, our
primary goal is to shift as many cryptographic operations as
possible into specific hard cores that have become available
on modern reconfigurable devices. Such dedicated functions
provide, for example, large blocks of memory or accelerated
arithmetic functions for digital signal processing applications.
Using these dedicated function, we present specific design
approaches that enable a performance for the symmetric AES
block cipher (FIPS 197) of up to 55 GBit/s and a throughput
of more than 30.000 scalar multiplications per second for
asymmetric Elliptic Curve Cryptography over NIST’s P-224
prime (FIPS 186-3).

1. Introduction
Due to their growing popularity, many cryptographic im-

plementations for FPGAs were developed in the last years,
following many different design goals, algorithmic improve-
ments and optimization strategies. However, nearly all of
the available proposals elaborate on how to implement an
optimized cryptosystem in the generic fabric of an FPGA (i.e.,
solely by using the configurable logic elements). However,
most of the modern FPGA classes provide more than just a
sea of generic logic elements – for example, FPGA devices
also include dedicated hard cores for clock (re-)generation,
I/O transfer, memory and Digital Signal Processing (DSP)
functions. In this article, we investigate on alternative ways to
implement standardized cryptosystems with FPGAs by making
extensively use of these special hard core components. In
particular, we will employ memory and DSP components
including their special arrangement on-chip to build high-
performance cryptographic systems. The following two sec-
tions explain why this approach is appealing for the design of
powerful cryptosystems.

1.1 Achieving High-Performance
It is evident that the feature of flexibility of Programmable

Logic Devices (PLD) comes at the cost of additional gate
complexity. More precisely, the FPGA manufacturer needs to
take an overhead of a factor between 20 to 40 for a recon-
figurable gate into account, compared to its static counterpart
on an ASIC. Although this seems to be primarily an issue
for the hardware manufacturer in the first place, it also comes

at the cost of reduced performance due to increased signal
propagation delays. This is the main reason that many dynamic
SRAM-based FPGAs only operate at clock frequencies up to
600 MHz while static integrated circuits (i.e., ASICs) easily
run at frequencies of 2-3 GHz. As a compensation for this
issue, the hardware manufacturers integrated dedicated hard
cores for frequently used functions. These hard cores do not
provide any reconfigurability but offer a significantly higher
performance at reduced resource costs. Thus, in general an
FPGA designer should preferably employ dedicated hard cores
(if available) instead of implementing the same function with
configurable logic. Although the use of device-specific com-
ponents might slightly reduce the ease of portability between
different FPGA devices, it will certainly lead to considerably
higher system performance.

1.2 Improving Resource Utilization
FPGAs are sold as an prefabricated circuit that provide a

specific amount of logical elements and function hard cores
for each device. As already mentioned, most applications
implement circuits using merely the configurable logic ele-
ments of an FPGA. Many dedicated hard cores of the device,
however, remain unused – although they are also part of the
FPGA package. More precisely, when a hardware designer
selects a specific FPGA device for a design, he is usually
limited in his choice to the available device configurations
dictated by FPGA manufacturer. So he usually chooses a
device which fits best the needs of the main application.
However, since FPGAs are generically designed, the chosen
device still provides many features and logical components
which are actually not required by the design. In particular
for applications, in which security functions are actually meant
to play only a subsidiary role, it can be beneficial to have a
design option forsupplementarycryptosystems at hand that
primarily makes use of the yet unused elements. This allows
for a better overall resource utilization of the available logic
functions of an FPGA and finally also reduces the costs of the
project.

1.3 Scope of this Contribution
In this article we will present implementations for the

two most commonly used symmetric and asymmetric
cryptosystems in embedded systems. In particular, we laid
special emphasis on the implementation of established and
standardized cryptosystems that can be directly employed in
products without any (known) security issues.

104 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

First, we propose an alternative design for the Advanced
Encryption Standard which is considered the most popular
block cipher nowadays due to established the NIST FIPS
197 standard [28]. The target platform for our special
design strategy will be a Xilinx Virtex-5 FPGA [37]. For
this device, we will implement AES based on the 32-bit
T-Table method [8, Section 4.2] by taking advantage of large
dual-ported memories and Digital Signal Processing (DSP)
hard cores. Unlike conventional AES design approaches for
these FPGAs (e.g., [4]), our design is therefore especially
suitable for applications where configurable logic elements
are the limiting resource, but yet not all embedded memory
and DSP blocks are used.
Note in this context that other authors already proposed the
use the T-Table method for AES also on FPGAs [6], [26],
[15], [5]. However in contrast to these designs, our approach
maps thecompleteAES data path onto embedded elements
contained in Virtex-5 FPGAs. This strategy provides most
savings in logic and routing resources and results in the
highest data throughput on FPGAs reported in open literature.

Second, we discuss the efficient implementation of asym-
metric Elliptic Curve Cryptography (ECC) over standardized
NIST primes (according to NIST FIPS 186-3 [29]) based on
the hard cores located in common Virtex-4 FPGAs. Since
asymmetric cryptographic algorithms are known to be ex-
tremely arithmetic intensive, the exclusive use of DSP blocks
for the arithmetic computations offers a significant acceleration
compared to conventional designs. In general, to achieve
real high-performance ECC (i.e., to reach less than 500µs
per point multiplication) on (affordable) embedded computing
platforms was an open challenge for quite a long time. This
holds especially for ECC over prime fields, which are often
preferred over binary fields due to standards. Due to the enor-
mous design complexity, high-performance implementations
for ECC over prime fields often require a huge number of logic
resources and were only feasible on the largest available FPGA
devices. Some implementations have already attempted to
address this problem by using available arithmetic functions in
the reconfigurable device for a few parts of the computations,
like built-in 18×18 multipliers [24]. But other components of
the circuitry for field addition, subtraction and inversion have
been still implemented in the generic logic of an FPGA. This
is different for the design approach described in this article: we
will discuss the complete relocation of the arithmetic intensive
operations for ECC into dedicated hard cores of the FPGA.

1.4 Outline
This article is structured as follows: we first review the

relevant and existing literature in Section 2, before we briefly
introduce the properties and functionality of hard cores in
modern FPGAs in Section 3. Then, in Section 4 we discuss
our alternative approach to implement the most common sym-
metric cryptosystem based on these special FPGA functions,
namely the AES block cipher. Next, we present in Section 5
how to use these functions to build an efficient design for

asymmetric Elliptic Curve Cryptosystems (ECC), before we
conclude in Section 6.

2. Related Work

Since FPGA technology has become mature to provide a
suitable platform for cryptographic systems, many designs for
AES and ECC have been proposed in the open literature. At
this point, our goal is not to review all available implemen-
tations but rather to briefly introduce general concepts that
highlight the differences in design with respect to this article.
For a more thorough discussion on cryptographic system
implementation, please refer to, for example, the discussion
on AES designs in [21], or the survey on elliptic curve
cryptosystems in [10].

2.1 Strategies to Design AES

Most AES designs are usually straightforward implemen-
tations of a single AES round or loop-unrolled, pipelined
architectures for FPGAs utilizing a vast amount of user logic
elements [14], [22], [20]. Particularly, the required8 × 8 S-
Boxes of the AES are mostly implemented in the Lookup
Tables (LUT) of the user logic usually requiring large portions
of the reconfigurable logic. For example, the authors of [35]
report 144 LUTs (4-input LUTs) to implement a single AES S-
Box what accumulates to 2304 LUTs for a single AES round.
More advanced approaches [25], [35], [6], [5] used the on-
chip memory components of FPGAs, implementing the S-Box
tables in separate RAM sections on the device. Since RAM
capacities were limited in previous generations of FPGAs, the
majority of implementations only mapped the8 × 8 S-Box
into the memory (when not directly computed on-the-fly by
extension field arithmetic) while all other AES operations like
ShiftRows, MixColumns and the AddRoundKey are realized
using traditional user logic what proved costly in terms of flip-
flops and LUTs.
We will now discuss and categorize published AES im-
plementations according to their performance and resource
consumption (and implicitly, if a small 8-bit, medium 32-bit
or wide 128-bit data-path is used).

To our knowledge, only few implementations ([15], [32],
[5]) transferred the software architecture based on the T-table
to FPGAs. Due to the large tables and the restricted memory
capacities on those devices, certain functionality must be still
encoded in user logic up to now (e.g., the multiplication
elimination required in the last AES round). The new fea-
tures of Virtex-5 devices provide wider memories and more
advanced logic resources. The concept presented here and in
our original work [11] is thus the first T-table-based AES-
implementation that efficiently uses mostly device-specific
features and minimizes the need for generic logic elements.
We will provide three individual solutions that address each
of the design categories mentioned above – minimal resource
usage, area-time efficiency and high -throughput.

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 105

2.2 Strategies to Design ECC
In the case of high speed architectures for ECC, most

implementation primarily address elliptic curves over binary
fieldsGF (2m) since the arithmetic is more hardware-friendly
due to carry-free computations [30], [12]. However, this work
focuses solely on the prime fieldFp and enables fast modular
arithmetic by use of Mersenne-like primes. First implemen-
tations for ECC over prime fieldsFp have been proposed
by [31], [33] demonstrating ECC processors built completely
in reconfigurable logic. The contribution by [24] proposes a
high-speed ECC crypto core for arbitrary moduli with up to
256-bit length designed on a large number of built-in multiplier
blocks of FPGA devices providing a significant speedup for
modular multiplications. However, other field operations have
been implemented in the FPGA fabric, resulting in a very
large design (15,755 slices and 256 multiplier blocks) on a
large Xilinx XC2VP125 device. The architecture presented
in [9] was designed to achieve a better trade-off between
performance and resource consumption. According to the
contribution, an area consumption of only 1,854 slices and
a maximum clock speed of 40 MHz can be achieved on a
Xilinx Virtex-2 XC2V2000 FPGA for a parameter bit length
of 160 bit.

Our approach to implementing an FPGA-based ECC en-
gines was to shiftall field operations into the integrated DSP
building blocks available on modern FPGAs. This strategy
frees most configurable logic elements on the FPGA for
other applications and requires less power compared to a
conventional design. In addition to that, this architecture offers
a very high performance for ECC computations over prime
fields with up to 256-bit security in reconfigurable logic (i.e.,
a single scalar multiplication takes 495µs).

The approach presented in our original work [17] and this
article has been picked up by Hamilton and Marnane in [18]
using the GLV method for point arithmetic and a modular
Hiasat multiplier for (non-standardized) Mersenne primes. In
this work, the authors present a design that requires 1439 slices
and 56 DSPs on an Xilinx Virtex-5 FPGA that computes a
point multiplication over a 256-bit elliptic curve in only 188
µs.

3. Embedded Hard Cores in Modern
FPGAs

In this section, we will introduce the functionalities of em-
bedded and dedicated hard core functions that are provided by
many modern FPGAs. Since their invention in 1985, FPGAs
merely consist of a large sea of generic, reconfigurable logic
implementing simple gate functions. Although devices became
more complex over time, there are still designs which were
preferably placed externally in separate peripheral devices
since it was too inefficient to implement them with this
generic gate logic. Examples of these functions blocks are
large memory blocks, hard microprocessors, and fast serial
transceivers. Thus, FPGA manufacturers integrate more and
more of these dedicated function blocks into modern devices

I/O

CLK

CLB

CLB

CLB

CLB

...

...

...

...

CLB

CLB

...

...

CLB

CLB

...

...

CLB

CLB

...

...

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

36K
BRAM

36K
BRAM

DSP A

DSP B

DSP A

DSP B

I/O

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

Fig. 1: Simplified structure of Xilinx Virtex-5 FPGAs.

to avoid the necessity of chip extensions on the board. Fig-
ure 1 depicts the simplified structure of recent Xilinx Virtex-5
FPGAs including separate columns of additional function hard
cores for memory (BRAM) and arithmetic DSP operations.
Note that other FPGA classes, like Spartan-3 or Virtex-4 have
a similar architecture despite variations in dimensions and
features of the embedded elements. In Virtex-4 and Virtex-
5 devices, the DSP blocks are grouped in pairs that span
the height of four or five configurable logic blocks (CLB),
respectively. The dual-ported BRAM matches the height of
the pair of DSP blocks and supports a fast data path between
memory and the DSP elements.

In particular interest is the use of these memory elements
and DSP blocks for efficient boolean and integer arithmetic
operations with low signal propagation time. Large devices
of Xilinx’s Virtex-4 and Virtex-5 class are equipped with
up to thousand individual function blocks of these dedicated
memory and arithmetic units. Originally, the integrated DSP
blocks – as indicated by their name – were designed to accel-
erate Digital Signal Processing (DSP) applications, e.g., Finite
Impulse Response (FIR) filters, etc. However, these arithmetic
units can be programmed to perform universal arithmetic
functions not limited to the scope of DSP filter applications;
they support generic multiplication, addition and subtraction of
(un)signed integers. Depending on the FPGA class, common
DSP component comprises anlM -bit signed integer multi-
plier coupled with anlA-bit signed adder where the adder
supports a larger data path to allow accumulation of multiple
subsequent products (i.e.,lM < lA). More precisely, Xilinx
Virtex-4 FPGAs support18-bit unsigned integer multiplication
(yielding 36-bit products) and three-input addition, subtraction

106 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

+/- Add/Subtract

Multiply

DSP-Block Structure Modes of Operation

A B

Pi

C

Pi+1

lM2lM1

lA

lA

DSP

lA

X

lA

x
+

Multiply & Accumulate

Exclusive OR (XOR)

X
+-lA

Pi-1

Bi-1
Bi+1

lM1lM1

Fig. 2: Generic and simplified structure of DSP-blocks of
advanced FPGA devices.

or accumulation of unsigned48-bit integers. Virtex-5 devices
offer support for even wider25×18-bit multiplications. Since
DSP blocks are designed as an embedded element in FPGAs,
there are several design constraints which need to be obeyed
for maximum performance with the remaining logic, e.g., the
multiplier and adder block should be surrounded by pipeline
registers to reduce signal propagation delays between compo-
nents. Furthermore, since they support different input paths,
DSP blocks can operate either on external inputsA,B,C or
on internal feedback values from accumulation or the result
Pj−1 from a neighboring DSP block. Figure 2 shows the
generic DSP-block and a small selection of possible modes of
operations available in recent Xilinx Virtex-4/5 FPGA devices.

When using DSP blocks to develop high-performance cryp-
tographic designs, there are several criteria which should be
obeyed to exploit their full performance for complex arith-
metic. Note that the following aspects have been designed to
target the requirements of Xilinx Virtex FPGAs:

1) Build DSP cascades:Neighboring DSP blocks can be
cascaded to widen or extend their atomic operand width
(e.g., from 18-bit to 256-bit).

2) Use DSP routing paths:DSPs have been provided with
inner routing paths connecting two adjacent blocks. It
is advantageous in terms of performance to use these
paths as frequently as possible instead of using FPGA’s
general switching matrix for connecting logic blocks.

3) Consider DSP columns:Within a Xilinx FPGA, DSPs
are aligned in columns, i.e., routing paths between DSPs
within the same column are efficient while a switch in
columns can lead to degraded performance. Hence, DSP
cascades should not exceed the column width (typically
32/48/64 DSPs per column, depending on the device).

4) Use DSP pipeline registers:DSP blocks feature pipeline
stages which should be used to achieve the maxi-
mum clock frequency supported by the device (up to
550 MHz).

5) Use different clock domains:Optimally, DSP blocks
can be operated at maximum device frequency. This is
not necessarily true for the remainder of the design so
that separate clock domains should be introduced (e.g.
by halving the clock frequency for control signals) to
address the critical paths in each domain individually.

4. Implementing the AES Block Cipher
The following AES cipher implementation is almost ex-

clusively based on embedded memory and arithmetic units
embedded of Xilinx Virtex-5 FPGAs. It is designed to match
specifically the features of this modern FPGA class – yielding
one of the smallest and fastest FPGA-based AES implemen-
tation reported up to now – with minimal requirements on the
(generic) configurable logic of the device.

4.1 Mathematical Background
Although AES is a well-established algorithm, we will

briefly review the relevant operations of the AES block cipher
to keep this contribution self-contained. AES was designed as
a Substitution-Permutation Network (SPN) and uses between
10, 12 or 14 rounds (depending on the key length with 128,
192 and 256 bits, respectively) for encryption and decryption
of one 128-bit block. In a single round, the AES operates
on all 128 input bits. Fundamental operations of the AES
are performed based on byte-level field arithmetic over the
Galois FieldGF (28) so that operands can be represented in
8-bit vectors. Processing these 8-bit vectors serially allows
implementations on very small processing units, while 128-
bit data paths allow for maximum throughput. The output of
such a round, or state, can be represented as a4× 4 matrix A
of bytesai,j wherei andj denotes the corresponding row and
column, respectively. Four basic operations process the AES
stateA in each round:

1) SubBytes: all input bytes ofA are substituted with values
from a non-linear8× 8-bit S-Box.

2) ShiftRows: the bytes of rowsRi are cyclically shifted to
the left by 0, 1, 2 or 3 positions.

3) MixColumns: columnsCj = (a0,j , a1,j , a2,j , a3,j) are
matrix-vector-multiplied by a matrix of constants in
GF (28).

4) AddRoundKey: a round keyKi is added to the input
usingGF (28) arithmetic.

The sequence of these four operations defines an AES
round, and they are iteratively applied for a full encryption
or decryption of a single 128-bit input block. Since some of
the operations above rely onGF (28) arithmetic it is possible
to combine them into a single complex operation. In addition
to the Advanced Encryption Standard, an alternative represen-
tation of the AES operation for software implementations on
32-bit processors was proposed in [8, Section 4.2] based on the
use of large lookup tables. This approach requires four lookup
tables with 8-bit input and 32-bit output for the four round
transformations, each the size of 8 Kbit. According to [8],

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 107

these transformation tablesTi with i = 0..3 can be computed
as follows:

T0[x] =

S[x]× 02

S[x]
S[x]

S[x]× 03

T1[x] =

S[x]× 03

S[x]× 02

S[x]
S[x]

T2[x] =

S[x]
S[x]× 03

S[x]× 02

S[x]

T3[x] =

S[x]
S[x]

S[x]× 03

S[x]× 02

In this notation,S[x] denotes a table lookup in the original
8× 8-bit AES S-Box (for a more detailed description of this
AES optimization see NIST’s FIPS-197 [28]). The last round,
however, is unique since it omits the MixColumns operation,
so we need to give it special consideration. There are two
ways for computing the last round, either by “reversing” the
MixColumns operation from the output of a regular round
by another multiplication inGF (28), or creating dedicated T-
tables for the last round. The latter approach will allow us to
maintain the same data path for all rounds, so – since Virtex-5
devices provide larger memory blocks than former devices –
we chose this method and denote these T-tables asT[j]′ . With
all T-tables at hand, all transformation steps of a single AES
round can be redefined as

Ej = Kr[j] ⊕ T0[a0,j]⊕ T1[a1,(j+1 mod 4)]⊕

T2[a2,(j+2 mod 4)]⊕ T3[a3,(j+3 mod 4)] (1)

whereKr[j] is a corresponding 32-bit subkey andEj denotes
one of four encrypted outputcolumnsof a full round. From
this formula it is obvious that based on only four T-table
lookups and four XOR operations, a 32-bit outputEj of the
AES round can be computed. To obtain the result of a full
round, Equation (1) must be performed four times on all 16
input bytes.

Input data to an AES encryption can be defined as four
32-bit column vectorsCj = (a0,j , a1,j , a2,j , a3,j) with the
output similarly formatted in column vectors. According to
Equation (1), these input column vectors need to be split
into individual bytes since all bytes are required for the
computation steps for differentEj . For example, for column
C0 = (a0,0, a1,0, a2,0, a3,0) the first bytea0,0 is part of the
computationof E0, the second bytea1,0 is used inE3, etc.
Since fixed (and thus simple) data paths are preferable in
hardware implementations, we have rearranged the operands of
the equation to align the bytes according to the input columns
Cj when feeding them to the T-table lookup. In this way, we
can implement a unified data path for computing all fourEj

for a full AES round. Thus, Equation (1) transforms into

E0 = Kr[0] ⊕ T0(a0,0)⊕ T1(a1,1)⊕ T2(a2,2)⊕ T3(a3,3)

= (a
′

0,0, a
′

1,0, a
′

2,0, a
′

3,0)

E1 = Kr[1] ⊕ T3(a3,0)⊕ T0(a0,1)⊕ T1(a1,2)⊕ T2(a2,3)

= (a
′

0,1, a
′

1,1, a
′

2,1, a
′

3,1)

E2 = Kr[2] ⊕ T2(a2,0)⊕ T3(a3,1)⊕ T0(a0,2)⊕ T1(a1,3)

= (a
′

0,2, a
′

1,2, a
′

2,2, a
′

3,2)

E3 = Kr[3] ⊕ T1(a1,0)⊕ T2(a2,1)⊕ T3(a3,2)⊕ T0(a0,3)

= (a
′

0,3, a
′

1,3, a
′

2,3, a
′

3,3)

whereai,j denotesan input byte, anda
′

i,j the corresponding
output byte after the round transformation. However, the
unified input data path still requires a look-up to all of the
four T-tables for the second operand of each XOR operation.
For example, the XOR component at the first position of the
sequential operationsE0 to E3 and thus requires the lookups
T0(a0,0), T3(a3,0), T2(a2,0) andT1(a1,0) (in this order) and
the corresponding round keyKr[j]. Though operations are
aligned for the same input column now, it becomes apparent
that the bytes of the input column are not processed in
canonical order, i.e., bytes need to be swapped for each column
Cj = (a0,j , a1,j , a2,j , a3,j) first before being fed as input
to the next AES round. Note that the given transpositions
are static so that they can be efficiently hardwired in our
implementation.

Finally, we need to consider the XOR operation of the input
key and the input 128-bit block which is done prior to the
round processing. Initially, we will omit this operation when
reporting our results for the round function. However, adding
the XOR to the data path is simple, either by modifying the
AES module to perform a sole XOR operation in a preceding
cycle, or – more efficiently – by just adding an appropriate
32-bit XOR which processes the input columns prior being
fed to the round function.

We now delve into the implementation details. For the
design described in the following section, we exploit some
of these features like growing capacities of integrated Block
RAMs as well as logical units of DSP hard cores.

4.2 Implementation
In Section 4.1, we have introduced the T-table method

for implementing the AES round most suitable for 32-bit
microprocessors. Now, we will demonstrate how to adapt
this technique into modern reconfigurable hardware devices
in order to achieve high throughput for modest amounts
of resources. Our architecture relies on dual ported 36 Kbit
Block RAMs (BRAM) (with independent address and data
buses for the same stored content) and DSP blocks. The
fundamental idea of this work is that the 8 to 32-bit lookup
followed by a 32-bit XOR AES operation perfectly matched
this architectural alignment of Virtex-5 FPGAs. Based on these
primitives, we developed a basic AES module that performs a
quarter (one column) of an AES round transformation given
by Equation (1).

108 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

4.2.1 Basic Module

Figure 3 shows the architecture of our basic module. The
most complex part is the alignment of the inputs: here, four
bytesai,j are selected from the current stateA at a time and
passed to the BRAMs for the T-table lookup. Since the order of
bytesai,j vary for each column computationEj , this requires
a careful design of the input logic since it need to support
selection from all four possible byte positions of each 32-
bit column input. Hence, instead of implementing a complex
input logic, we modified the order of operations according
to Equations (2) exploiting that addition inGF (2m)(i.e.,
XOR) is a commutative operation. When changing the order
of operations dynamically for each computation ofEj , this
requires that all four T-table lookups with their last-round T-
table counterparts are stored in each BRAM. However, that
would require to fit a total of eight 8 Kbit T-tables in a
single 36 Kbit dual-port RAM. As discussed in Section 4.1, for
performance and resource efficiency reasons we opted against
adding out the MixColumn operations from the stored T-tables
and preferred a solution so that all BRAM can provide all eight
required tables. Utilizing the fact that all T-tables are byte-
wise transpositions of each other, we can produce the output
of T1, T2 andT3 by cyclically byte-shifting of the BRAM’s
output for T-tableT0. Using this observation, we only store
T0 and T2 and their last-round counterpartsT0′ and T2′ in
a single BRAM. Using a single byte circular right rotation
(a, b, c, d) → (d, a, b, c), T0 becomesT1, andT2 becomesT3.
The same holds also for the last round’s T-tables. In hardware,
this only requires a 32-bit 2:1 multiplexer at the output of each
BRAM with a select signal from the control logic. For the
last round, a control bit is connected to a high order address
bit of the BRAM to switch from the regular T-table to the
last round’s T-table. A dual-port 32 Kbit BRAM with three
control bits, and a 2:1 32-bit mux allows us to output all T-
table combinations. Using two such BRAMs with identical
content, we get the necessary lookups for four columns, each
capable of performing all four T-table lookups in parallel.

Note that both the BRAMs and DSP blocks provide internal
input and output registers for pipelining along the data path so
that we include these registers without occupation of any flip-
flops in the fabric. At this point, we already had six pipeline
stages that could not have been easily removed if our goal was
high throughput. Instead of trying to reduce pipeline stages
for lower latency, we opted to add two more so that we are
able to process two input blocks at the same time, doubling
the throughput for separate input streams. One of these added
stages is the 32-bit register after the 2:1 multiplexer that shifts
the T-tables at the output of the BRAM. A full AES operation
is implemented by operating the basic construct with an added
feedback scheduling in the data path.

The first column outputE0 becomes available after the
eighth clock cycle and is fed back as input for the second
round. For the second round, the control logic switches the 2:1
input multiplexer for the feedback path rather than the external
input. In the eight pipeline stages we can process two separate

D
S

P

32

B
R

A
M

port A (out)

32 32

32

8 8 8

32

32

port A (addr)

T0 T0'
port B (out)

port B (addr)

T2 T2'
port A (out)

port A (addr)

T0 T0'
port B (out)

port B (addr)

T2 T2'

plaintext

subkey 32
ctrl

8

Fig. 3: The complete basic AES module consisting of 4 DSP
slicesand 2 dual-ported Block Memories. TablesT1 and T3

are constructed on-the-fly using byte shifting from tablesT0

andT2 in the block memory, respectively.

AES blocks, since we only need 4 stages to process the 128-bit
of one block. This allows us to feed two consecutive 128-bit
blocks one after another, in effect doubling our throughout
without any additional complexity.

Up to now we focused on the encryption process, though
decryption is quite simply achieved with minor modifications
to the circuit. As the T-tables are different for encryption and
decryption, storing them all would require double the amount
of storage what is not desirable. Recall, however, that any
Ti can be converted intoTj simply by shifting the appropriate
amount of bytes. The most straightforward modification to the
design is to replace the 32-bit 2:1 mux at the output of the
BRAM with a 4:1 mux such that all byte transpositions can be
created. Then, we load the BRAMs withTE

i , TE
i′ , TD

i andTD
i′ ,

whereTE andTD denote encryption and decryption T-tables,
respectively, with their corresponding last round counterparts.
Note, that this does not necessarily increase the data path
due to the 6-input LUTs in the CLBs of a Virtex-5 device.
Based on 6-input LUTs, a 4:1 multiplexer can be as efficiently
implemented as a 2:1 multiplexer with only a single stage
of logic. An alternative is to dynamically reconfigure the
content of the BRAMs with the decryption T-tables; this can be
done from an external source, or even from within the FPGA
using the internal configuration access port (ICAP) [37] with
a storage BRAM for reloading content through the T-table
BRAMs’ data input port.

Finally, the AES specification requires an initial key addi-
tion of the input with the main key which has not covered
by the AES module so far. Most straightforward, this can be
done by adding one to four DSP blocks (alternatively, the XOR
elements can be implemented in CLB logic) as a pre-stage to
the round operation.

4.2.2 Round and Loop-Unrolled Modules

Since the single AES round requires the computation of four
32-bit columns, we can replicate the basic construct four times

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 109

and add 8, 16, and 24-bit registers at the inputs of the columns.
All instances are connected to a 128-bit bus (32 bits per
instance) of which selected bytes are routed to corresponding
instances by fixed wires. Note that only one byte per 32-bit
column output remains within the same instance, the other
three bytes will be processed by the other instances in the
next round. The latency of this construction is still 80 clock
cycles as before, but allows us to interleave eight 128-bit inputs
instead of two. In contrast to the basic module, however, the
input byte arrangements allow that the T-tables remain static
so the 32-bit 2:1 multiplexers are no longer required. This
simplifies the data paths between the BRAMs and DSP blocks
since any byte shifting can be fixed in routing. The control
logic is simple as well, comprising of a 3-bit counter and a
1-bit control signal for choosing the last round’s T-tables.

Finally, we implemented a fully unrolled AES design for
achieving maximum throughput by connecting ten instances
of the round design presented above. We yield an architecture
with an 80-stage pipeline, producing a 128-bit output every
clock cycle at a resource consumption of 80 BRAMs and 160
DSP blocks.

4.2.3 Key Schedule Implementation

Considering the key schedule, many designers (e.g., [4])
prefer a shared S-Box and/or data path for deriving subkeys
and the AES round function. This approach needs additional
multiplexing and control signals to switch the central data
path between subkey computations and data encryption which
may lead to decreased performance in practice. Furthermore,
key precomputation is mostly preferred over on-the-fly key
expansion because the first relaxes the constraints on data
dependencies, i.e., the computation is only dependent on
the availability of the previous state and not additionally on
completion of key computations.

In case that high throughput is not required but the key
schedule needs to be precomputed on chip without adversely
increasing logic resource utilization, our basic AES module
can be modified to support key generation. Remember that
we already store T-tablesT[0..3]′ for the last round in the
BRAMs without the MixColumns operation so that the values
of these tables are basically a byte-rotated 8-bit S-Box value.
These values are perfectly suited for generating a 32-bit
round key from S-Box lookups and our data path has been
specifically designed for 32-bit XOR operations based on the
DSP unit. Hence, with additional input multiplexers, control
logic and a separate BRAM as key-store, we can integrate a
key scheduler in our existing design. However, although this is
possible, the additional overhead (i.e., additional multiplexers)
will potentially degrade the performance of the AES rounds.

The second approach for the key schedule is a dedicated
circuit to preserve the regularity of the basic module and the
option to operate the design at maximum device frequency. For
a minimal footprint, we propose to add another dual-ported
BRAM to the design used for storing the expanded 32-bit
subkeys (44 words for AES-128), the round constants (10 32-
bit values) and S-Box entries with 8-bit each. The design of

B
R

A
M

10

CMD

32

OUTOUT

ADDR IN WE ADDR IN WE

Keys/
SBox

FSM

32
8

8

Subkeys Ki

In
itial key K

0 ...K
3

Fig. 4: Block diagram of the key schedule implementation.
Complex instructions of the finite state maschine, S-boxes,
round constants and 32-bit subkeys are stored in the dual-port
BRAM.

our key schedule implementation is shown in Figure 4: port
A of the BRAM is 32-bit wide which feeds the subkeys to
the AES module, while port B is configured for 8-bit I/O
enabling a minimal data path for the key expansion function.
With an 8-bit multiplexer, register and XOR connected to port
B data output, we can construct a minimal and byte-oriented
key schedule that can compute the full key expansion.

The sequential and byte-wise nature of this approach for
loading and storing the appropriate bytes from and to the
BRAM requires a complex state machine. Recall that the
BRAM provides 36 Kbits of memory of which 1408 to 1920
bits are required for subkeys (for AES-128 and AES-256,
respectively), 2048 bits for S-Box entries and 80 bits for round
constants, so the BRAM can still be used to store further
data. Thus, we have decided that the most area economic
approach is to encode all the required memory addresses as
well as control signals for multiplexers and registers as 32-
bit instructions, and store these instruction words in the yet
unused portion of the BRAM. This method also ensures a
constant and uniform signal propagation in all control signals
since they do not need to be generated by combinatorial logic
but loaded (and hardwired) from the BRAM. In particular,
complex state machines and the latency within their combina-
torial circuitry are usually the bottleneck of high-performance
implementations since nested levels of logic to generate dozens
of control signals are likely to emerge as the critical path. By
encoding this complexity into the BRAM, we could avoid this
performance degrade. Like the AES module it can be operated
at full device frequency of 550 MHz and with the complete key
expansion function requiring 524 clock cycles for AES-128.

4.3 Results
Our designs target a Virtex-5 LX30 and SX95T devices at

their fastest speed grade (-3) using Xilinx Synthesis Technol-
ogy (XST) and the ISE 9.2 implementation flow. For simu-
lation we used Mentor’s ModelSim 6.2g for both behavioral
and post place-and-route stages. In addition, the routes to input

110 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

and output ports were ignored for timing (“TIG” constraint)
during synthesis, as we consider the cores as a stand-alone
function.

The basic AES module as shown in Figure 3 passed timing
(post place-and-route) for a frequency just over 550 MHz, the
maximum frequency rating of the device. The design requires
the following resources: 247 flip-flops, 96 (8· 3 · 4) for the
input shift registers plus 128 (4· 32) for the pipeline stages in
between the BRAMs and DSPs, with the rest used for control
logic; 275 look-up tables, mostly functioning as multiplex-
ers; and finally, two 36 Kbit dual-port BRAM (32 Kbit used
in each) and four DSP blocks. We calculate throughput as
follows: given that there are 80 processing cycles operating
at 550 MHz and we maintain state of 256 bits in the pipeline
stages, we achieve550·106 ·256/80 = 1.76Gbit/s of through-
put. This assumes that the pipeline stages are always full,
meaning that the module is processing two 128-bit inputs at
any given time; if only one input is processed, the throughput
is halved. As we have mentioned, the eight pipeline stages
were implemented for the purpose of interleaving two inputs or
using a parallel mode of operation like Counter (CTR) mode,
though the designer can remove pipeline stages to reduce
resources. Removing pipeline stages reduces latency, though it
may also reduce the maximum frequency, so there is a trade-
off that needs to be assessed according to the application.

Finally, the unrolled implementation produces 128-bits of
output every clock cycle once the initial latency is complete.
We have experimented with eliminating the pipeline stage
between the BRAM and DSP to see if it adversely affects
performance; this will save us 5,120 registers. We found that
the performance degradation is minimal, with the added benefit
of having an initial latency of only 70 clock cycles instead of
80. The resulting throughput is430·106 ·128 = 55Gbit/s. This
design operates at a maximum frequency of over 430 MHz and
uses 992 flip-flops, 672 look-up tables, 80 36 Kbit BRAMs
(only 16 Kbit in each for dec/enc or 32 Kbit for both), and
160 DSP blocks; the same balancing act of FF-LUT ratio by
the synthesizer occurs here as well. There are very few flip-
flops and LUTs compared to what is available in the large
SX95T device: 1.68% and 1.14%, respectively, though we use
32% of BRAMs and 25% of DSP blocks.

Our results are summarized in Table 1. We extended
the list of our findings with previous result available in
the literature. However, please be aware of the unfairness
of direct comparison. Due to the different architectures
of Spartan-2/3 (S2/S3) and Virtex-2/E Pro (V2/V2P/VE)
and Virtex-5 (V5) FPGAs we cannot directly compare soft
metrics like "‘slices"’. This is due to the different concepts
of contained LUTs (6-input LUTs in Virtex-5 and 4-input
LUTs in all others) as well as the different number of LUTs
and flip-flops per slice (e.g., a slice in Spartan and Virtex-2
FPGAs consists a combination of 2 LUTs/FF but 4 LUTs/FF
in Virtex-5 devices). Even the amount of memory contained
in BRAMs is different: Virtex-5 FPGAs provide block
memories capable to store 36 KBits of data, twice as much
as with Virtex-2 devices. Beside device-specific differences,

the implementations also target different applications and
requirements: some can operate in more complex modes of
operations, others include a key schedule in the data path
or support natively encryption and decryption with the same
circuit. This all leads to the conclusion that comparisons with
other publications based on different FPGAs and application
goals are mostly misleading, e.g., meaningful comparisons
are only possible when the same device/technology is used
and the compared cryptographic implementations comply to
a predefined application setup or framework.

Note that our results for the AES modules are all based
on the assumption that the set of subkeys are externally
provided. In case that all subkeys should be generated on
the same device, these modules can be augmented with the
key schedule precomputing all subkeys and storing them in a
dedicated BRAM. As shown in Section 4.2.3, our key schedule
is optimized for a minimal footprint and allows operation
at maximum device frequency of 550 MHz. The complexity
of the state machine, which is the most expensive part in
terms of logic, is mostly hidden within the encoded 32-bit
instructions stored in the BRAM. Hence, since only a small
stub of the state machine in the user logic is required to
address the individual instructions words, the overall resources
consumption of the full key schedule is only 1 BRAM, 55
LUTs and 41 flip-flops. All key schedule related data is
presented in Table 2 supporting key sizes of 128, 192 and
256 bits.

5. Implementing ECC Cryptosystems
In this section, we present a new design strategy for an

FPGA-based, high performance ECC implementation over
standardized prime fields according to NIST FIPS 186-3.
Our architecture makes intensive use of embedded arithmetic
units in FPGAs originally designed to accelerate digital signal
processing algorithms.

5.1 Mathematical Background
In this section, we will briefly introduce to the mathematical

background relevant for this work. We will start with a short
review of the Elliptic Curve Cryptosystems (ECC). Please
note that only ECC over prime fieldsFp will be subject
of this work since binary extension fieldsGF (2m) require
binary arithmetic which is not (yet) natively supported by DSP
blocks.

Let p be a prime withp > 3 andFp = GF (p) the Galois
Field over p. Given the Weierstrass equation of an elliptic
curve

E : y2 = x3 + ax+ b,

with a, b ∈ Fp and 4a3 + 27b2 6= 0, pointsPi ∈ E , we
can compute tuples(x, y) also considered as points on this
elliptic curveE . Based on a group of points defined over this
curve, ECC arithmetic defines the additionR = P + Q of
two pointsP,Q using thetangent-and-chordrule as group

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 111

Design Dec/ FPGA Resources f Perf.
Key slices LUT FF BRAM DSP MHz Gbit/s

O
u

rs Compacta
◦/◦ V5 93 274 245 2 4 550 1.76

Rounda
◦/◦ V5 277 204 601 8 16 485 6.21

Unrolled •/◦ V5 428 672 992 80 160 430 55

B
a

si
c Goodet al. •/• S2 67 n/a n/a 2 0 67 0.002

Chodowiec et al. •/• S2 222 n/a n/a 3 0 60 0.166
Rouvroy et al. •/• S3 163 293 126 3 0 71 0.208
Algotronix ◦/◦ V5 161 n/a n/a 2 0 250 0.8

R
o

u
n

d Standaertet al. ◦/• VE 2257 3846 2517 2 0 169 2.008
Helion ◦/• V5 349 n/a n/a 0 0 350 4.07
Bulenset al. ◦/• V5 400 n/a n/a 0 0 350 4.1
Chaveset al. •/◦ V2P 515 n/a n/a 12 0 182 2.33

U
n

ro
lle

d Kotturi et al. •/◦ V2P 10816 n/a n/a 400 0 126 16
Järvinen et al. ◦/• V2 10750 n/a n/a 0 0 139 17.8
Hodjat et al. ◦/◦ V2P 5177 n/a n/a 84 0 168 21.5
Chaves et al. •/◦ V2P 3513 n/a n/a 80 0 272 34.7

a For “basic” and “round” implementations, decryption can be achieved by adding 32-bit muxes in the data path between BRAM and DSP.

Table 1: Our results along with recent academic and commercial implementations. Decryption (Dec.) and Key expansion (Key)
are included when denoted by•, by ◦ otherwise. Note the structural differences between the FPGA types: Virtex-5 (V5) has
4 FF and 4 6-LUT per slice and a 36 Kbit BRAM, while Spartan-3 (S3), Virtex-E (VE), Virtex-II (PRO) (V2/V2P) has 2 FF
and 2 4-LUT per slice and an 18 Kbit BRAM. Spartan-II (S2) devices only provide 4 KBit BRAMs.

Key schedule Resources f Cycles
slices LUT FF BRAM DSPs (MHz)

AES-128
37 55 41 1 0 550

524
AES-192 628
AES-256 732

Table 2: Implementation results for the AES key schedule. Moststate machine encoding and control logic has been incorporated
into the BRAM to save on logic resources.

operation. This group operation distinguishes the case for
P = Q (point doubling) andP 6= Q (point addition).
Furthermore, formulas for these operations vary for affine and
projective coordinate representations. Since affine coordinates
require the availability of fast modular inversion, we will focus
on projective point representation to avoid the implementation
of a costly inversion circuit. Given two pointsP1,P2 with
Pi = (Xi, Yi, Zi) andP1 6= P2, the sumP3 = P1 + P2 is
defined by

A = Y2Z1 − Y1Z2 C = X2Z1 −X1Z2

B = A2Z1Z2 − C3 − 2C2X1Z2 X3 = BC

Y3 = A(C2X1Z2 −B)− C3Y1Z2 Z3 = C3Z1Z2,

whereA,B,C are auxiliary variables andP3 = (X3, Y3, Z3)
is the resulting point in projective coordinates. Similarly, for
P1 = P2 the point doublingP3 = 2P1 is defined by

A = aZ2 + 3X2 B = Y Z

C = XY B D = A2 − 8C

X3 = 2BD Y3 = A(4C −D)− 8B2Y 2

Z3 = 8B3.

Most ECC-based cryptosystems rely on the Elliptic Curve

Discrete Logarithm Problem (ECDLP) and thus employ the
technique of point multiplicationk · P as cryptographic prim-
itive, i.e., ak times repeated point addition of a base pointP.
More precisely, the ECDLP is the fundamental cryptographic
problem used in protocols and crypto schemes like the El-
liptic Curve Diffie-Hellman key exchange, the Elliptic Curve
Integrated Encryption Scheme (ECIES) and the Elliptic Curve
Digital Signature Algorithm (ECDSA) [19].

The arithmetic for ECC point multiplication is based on
modular computations over a prime fieldFp. These computa-
tions always include a subsequent step to reduce the result
to the domain of the underlying field. Since the reduction
is very costly for general primes due to the demand for a
multi-precision division, special primes have been proposed
by Solinas [34] which have been finally standardized in [27].
These primes provide efficient reduction algorithms based
on a sequence of multi-precision addition and subtractions
only and eliminate the need for the costly division. Special
primes P-lwith bit sizes l = {192, 224, 256, 384, 521} are
part of the standard. But we expect that the primes P-224 and
P-256 will become the most relevant bit sizes for practical
implementations of the next decades. Algorithm 1 presents
the modular reduction for P-256 requiring two doublings, four

112 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

256-bit subtractions and four 256-bit additions. Based on the
computationZ = z1+2z2+2z3+z4+z5−z6−z7−z8−z9,
the interval of the possible result is−4p < Z < 5p.

Algorithm 1 NIST Reduction with P-256= 2256 − 2224 +
2192 + 296 − 1

Input: Double-sized integerc = (c15, . . . , c2, c1, c0) in base
232 and0 ≤ c < P-2562

Output: Single-sized integerc mod P-256.
1: Concatenateci to following 256-bit integerszj :

z1 = (c7, c6, c5, c4, c3, c2, c1, c0),

z2 = (c15, c14, c13, c12, c11, 0, 0, 0),

z3 = (0, c15, c14, c13, c12, 0, 0, 0),

z4 = (c15, c14, 0, 0, 0, c10, c9, c8),

z5 = (c8, c13, c15, c14, c13, c11, c10, c9),

z6 = (c10, c8, 0, 0, 0, c13, c12, c11),

z7 = (c11, c9, 0, 0, c15, c14, c13, c12),

z8 = (c12, 0, c10, c9, c8, c15, c14, c13),

z9 = (c13, 0, c11, c10, c9, 0, c15, c14)

2: Computec = (z1 +2z2 +2z3 + z4 + z5 − z6 − z7 − z8 −
z9 mod P-256)

5.2 Arithmetic Units

According to the EC arithmetic introduced above, an ECC
engine overFp based on projective coordinates requires func-
tionality for modular addition, subtraction and multiplica-
tion. Since modular addition and subtraction is very similar,
both operation are combined. In the following description
we will assume a Virtex-4 FPGA as reference device and
corresponding DSP block arithmetic with word sizeslA =
32 and lM = 16 for unsigned addition and multiplication,
respectively. Recall from Section 3 that native support by the
DSP blocks on a Virtex-4 device is available for up to 48-bit
signed addition and 18-bit signed multiplication.

5.2.1 Modular Addition/Subtraction

Let A,B ∈ GF (P) be two multi-precision operands with
lengths|A|, |B| ≤ l and l = ⌊log2 P ⌋ + 1. Modular addition
C = A + B mod P and subtractionC = A− B mod P can
be efficiently computed according to Algorithm 2:

Algorithm 2 Modular addition and subtraction
Input: A,B, P with 0 ≤ A,B < P ;

Flag f ∈ {0, 1} denotes a subtraction whenf = 1 and
addition otherwise

Output: C = A±B mod P
1: (CIN0, S0) = A+ (−1)fB;
2: (CIN1, S1) = S0 + (−1)1−fP ;
3: ReturnS|f−CINf |;

+/-

D
S

P

+/-

ai
lA

lA

l A

CIN1 CIN2

SR SR

MUX

bi

c

nAlA nAl A

1

f

CARRY

CIN1

COUT2

CIN2l A

CARRY
lA+1l A+11

pi
l A

Fig. 5: Modular addition/subtraction based on DSP-blocks.

For using DSP blocks, we need to divide thel-bit operands
into multiple words each having a maximum size oflA bits
due to the limited width of the DSP input port. Thus, all
inputs A,B and P to the DSP blocks can be represented
in the form X =

∑nA−1
i=0 xi · 2

i·lA , where nA = ⌈l/lA⌉
denotes the number of words of an operand. According to
Algorithm 2, we employ two cascaded DSP blocks, one
for computing s(0,i) = ai ± (bi + CIN0) and a second for
s(1,i) = s(0,i) ∓ (pi + CIN1). The resulting valuess(0,i)
and s(1,i) each of size|s(j,i)| ≤ lA + 1 are temporarily
stored and recombined toS0 and S1 using shift registers
(SR). Finally, a 2-to-1l-bit output multiplexer selects the
appropriate valueC = Si. Figure 5 presents a schematic
overview of a combined modular addition and subtraction
based on two DSP blocks. Note that DSP blocks on Virtex-4
FPGAs provide a dedicated carry inputcIN but no carry output
cOUT. Particularly, this fact requires extra logic to compensate
for duplicate carry propagation to the second DSP which is due
to the fixed cascaded routing path between the DSP blocks.
In this architecture, each carry is considered twice, namely in
s0,i+1 ands1,i what needs to be corrected. This special carry
treatment requires a wait cycle to be introduced so that one
lA-bit word can be processed each two clock cycles. However,
this is no restriction for our architecture since we design
for parallel addition and multiplication so that the (shorter)
runtime of an addition is completely hidden in the duration of
a concurrent multiplication operation.

5.2.2 Modular Multiplication

The most straightforward multiplication algorithm to imple-
ment the multiplication with subsequent NIST prime reduction
is the schoolbook multiplication method with a time complex-
ity of O(n2) for n-bit inputs. Other methods, like the Karat-
suba algorithm [23], trade multiplications for additions using a
divide-and-conquer approach. However Karatsuba computing
the productC = A×B for A = a12

n+a0 andB = b12
n+b0

requires to store the intermediate results fora1a0 andb1b2 for
later reuse in the algorithm. Although this is certainly possible,
this requires a much more complex data and memory handling

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 113

b0 b1 b2 ... bn-2 bn-1

a0 a1 a2 ... an-2 an-1

x
+

x
+

x
+

x
+D

S
P

Registered n-to-1 multiplexer

...x
+

+

D
S

P

cDELAY

+

CARRY

ci

lACC

2lM

lM

lM

lM

lACC

lM

lMlACC-2lM

lm

P
ar

tia
l P

ro
du

ct
 U

ni
t

A
cc

um
ul

at
or

 U
ni

t

Fig. 6: An l-bit multiplication circuit employing a cascade of
parallelly operating DSP blocks.

and cannot be solely done within DSP blocks. Since many
parts of the Karatsuba multiplier would require generic logic
of CLBs, we are likely to lose the gain of performance of the
fast arithmetic in DSP blocks.
We thus use a variant of the schoolbook multiplication, known
as Comba multiplication [7] which combines carry handling
and reduces write accesses to the memory. These optimizations
result in improved performance with respect to the original
pen-and-paper method. LetA,B ∈ GF (P) be two multi-
precision integers with bit lengthl ≤ ⌊log2 P ⌋+1. According
to the limited input sizelM of DSP blocks, we split now
the valuesA,B in nM = ⌈l/lM⌉ words represented as
X =

∑nM−1
i=0 xi · 2

ilM . Straightforward multiplication com-
putesC = A · B based on accumulation of(nM)2 products
C =

∑2nM

i=0 2i·nM
∑i

j=0 ajbi−j providing a resultC of size
|C| ≤ 2nM . For parallel execution onnM DSP units, we
compacted the order of inner product computations used for
Comba’s algorithm. AllnM DSP blocks operate in a loadable
Multiply-and-Accumulatemode (MACC) so that intermediate
results remain in the corresponding DSP block until an inner
productsi =

∑i

j=0 ajbi−j is fully computed.
Figure 6 gives a schematic overview of the multiplication

circuit returning the full-size productC. This result has to be
reduced using the fast NIST prime reduction scheme discussed
in the next section.

5.2.3 Modular Reduction

At this point we will discuss the subsequent modular
reduction of the2nM -bit multiplication resultC using the
NIST reduction scheme. All fast NIST reduction algorithms
rely on a reduction step (1) defined as a series multi-precision

ci ci+1 ci+2 ... ci+k-1 ci+k

D
S

P ...+

2lM

+ + - -

0 0 0 0 0

D
S

P +/- +/-

Look
Ahead
Logic

ROM

2P

1P

...

CTL
p

rj

c
0

R
ed

uc
tio

n
C

ha
in

C
or

re
ct

io
n

2lM

2lM
2lM

Fig. 7: Modular reduction for NIST-P-224 and P-256 using
DSPblocks.

additions and subtractions followed by a correction step (2)
to achieve a final value in the interval[0, . . . , P − 1] (cf.
Algorithm 1). To implement (1), we decided to use one DSP-
block for each individual addition or subtraction, e.g., for the
P-256 reduction we reserved a cascade of 8 DSP blocks. Each
DSP performs one addition or subtraction and stores the result
in a register whose output is taken as input to the neighboring
block (pipeline).

For the correction step (2), we need to determinein advance
the possible overflow or underflow of the result returned by
(1) to avoid wait or idle cycles in the pipeline. Hence, we
introduced a Look-Ahead Logic (LAL) consisting of a separate
DSP block which exclusively computes the expected overflow
or underflow. Then, the output of the LAL is used to select
a corresponding reduction value which are stored as multiple
{0, . . . , 5P} in a ROM table. The ROM values are added or
subtracted to the result of (1) by a sequence of two DSP blocks
ensuring that the final result is always in{0, . . . , P−1}. Figure
7 depicts the general structure of the reduction circuit which
is applicable for both primes P-224 and P-256.

5.3 Core Architecture

With the basic field operations forl − bit computations at
hand supporting NIST primes P-224 and P-256, we have com-
bined a modular multiplier and a modular subtraction/addition
component with dual-port RAM modules (BRAM) and a
state machine to build an ECC core. We have implemented
an asymmetric data path supporting two different operand
lengths: the first operand provides fulll-bit of data whereas
the second operand is limited to 32-bit words so that several
words need to be transferred serially to generate the fulll-
bit input. This approach allows for direct memory accesses of
our serial-to-parallelmultiplier architecture. Note further that
we introduced different clock domains for the core arithmetic
based on the DSP blocks and the state machines for upper
layers (running at half clock frequency only). An overview of
the entire ECC core is shown in Figure 8. We implemented
ECC group operations based on projective Chudnowsky coor-

114 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

Modular
Multiplier

l

Dual Port RAM

Modular
Addition/

Subtraction

a0 ... an-1

FSM

32

OUT1 OUT2

A B

A B

CTL CTL

SUB

a0 ... an-1

MUX

OUT OUT

l

IN1

IN2

ECC Core

IN

32

OUT

32

3232

Fig. 8: Schematic overview of a single ECC core.

dinates1 sincethe implementation should support to compute
a point multiplicationk · P as well asa corresponding linear
combinationk · P + r · Q based on a fixed base pointP ∈ E
where k, r ∈ {1, . . . , ord(P) − 1} and Q ∈ 〈P〉. Both
operations can be considered as basic ECC primitives, e.g.,
used for ECDSA signature generation and verification [1].
The computation ofk · P + r · Q can make use ofShamir-
Strauss’ trick to efficiently compute several point products
simultaneously [19]. For this first implementation of the point
multiplication and the sake of simplicity, we used a standard
double-and-add (binary method) algorithm [19], but more
efficient windowing methods [2] can also be implemented
without significantly increasing the resource consumption.

5.4 Core Parallelism
Due the intensive use of DSP blocks to implement the core

functionality of ECC, the resulting implementation requires
only few reconfigurable logic elements on the FPGA. This
allows for efficient multiple-core implementations on a single
FPGA improving the overall system throughput by a linear fac-
tor n dependent on the number of cores. Note that most other
high-performance implementations occupy the full FPGA due
to their immense resource consumption so that these cannot
easily be instantiated several times.
Based on our synthesis results, the limiting factor of our
architecture is the number of available DSP blocks of a specific
FPGA device (cf. Section 5.5).

5.5 Implementation
The proposed architecture has been synthesized and im-

plemented for the smallest available Xilinx Virtex-4 de-
vice (XC4VFX12-12SF363). This FPGA offers 5,472 slices

1ECC operations for elliptic curves in Weierstrass form based on mixed
affine-Jacobian coordinates are more efficient but more complex in hardware.
This is due to the required conversion of precomputed points from Jacobian
to affine coordinates which is necessary when computingk · P + r · Q for a
ECDSA signature verification. In that case modular inversion is required.

Aspect CoreP-224 Core P-256

Slices occupied 1,580 (29%) 1,715 (31%)
4-input LUTs 1,825 2,589
Flip-flops 1,892 2,028
DSP blocks 26 32
BRAMs 11 11
Frequency (arithmetic) 486 MHz 490 MHz
Frequency (control) 243 MHz 245 MHz

Table 3: Resource requirements of a single ECC core on a
Virtex-4 FX 12 after PAR. Note the different clock domains
for arithmetic (DSP) and control logic.

(12,288 4-input LUTs and flip-flops) of reconfigurable logic,
32 DSP blocks and can be operated at a maximum clock
frequency of 500 MHz. Furthermore, to demonstrate how
many ECC computations can be performed using ECC core
parallelism, we take a second device, the large Xilinx Virtex-
4 XC4VSX55-12FF1148 providing the maximum number of
512 DSP blocks and 24,576 slices (49,152 4-input LUTs and
flip-flops) as a reference for a multi-core architecture.

5.5.1 Implementation Results

Based on the Post-Place and Route (PAR) results using
Xilinx ISE 9.1 we can present the following performance and
area details for ECC cores for primes P-224 and P-256 on the
small XC4VFX12 device as shown in Table 3.

5.5.2 Throughput of a Single ECC Core

Given an ECC core with a separate adder/subtracter and
multiplier unit, we can perform a field multiplication and field
addition simultaneously. By optimizing the execution order
of the basic field operations, it is possible to perform all
additions/subtraction required for the ECC group operation in
parallel to a multiplication. Based on the runtimes of a single
field multiplication, we can determine the number of required
clock cycles for the operationsk · P andk · P + r · Q using
the implemented Double-and-Add algorithm. Moreover, we
also give estimates concerning their performance when using
a window-based method [2] based on a window sizew = 4.

Note that the specified timing considers signal propagation
after complete PAR excluding the timing constraints from I/O
pins (“TIG” constraint) since no underlying data communi-
cation layer was implemented. Hence, when being combined
with an I/O protocol of an application, the clock frequency
can be slightly lower than specified in Table 3 and Table 5.

5.5.3 Multi-Core Architecture

Since a single ECC core has obviously moderate resource
requirements, it is possible to place multiple instances of the
core on a larger FPGA. On asingleXC4VSX55 device, we can
implement, depending on the underlying prime field, between
16 to 18 ECC cores in parallel (cf. Table 5). Due the small
amount of LUTs and flip-flops required for a single core, the
number of available DSP blocks (and routing resources) on
the FPGA is here the limiting factor.

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 115

Scheme Device Design Logic Clock Time

This work XC4VFX12-12 ECC NIST P-224 1580 LS/26 DSP 487 MHz 365µs
XC4VFX12-12 ECC NIST P-256 1715 LS/32 DSP 490 MHz 495µs
XC4VSX55-12 ECC NIST P-224 24452 LS/468 DSP 372 MHz 26.5µs
XC4VSX55-12 ECC NIST P-256 24574 LS/512 DSP 375 MHz 40.5µs

[31] XCV1000E ECC NIST P-192 5708 LS 40 MHz 3 ms
[24] XC2VP125-7 ECC P-256 all 15755 LS/256 MUL 39.5 MHz 3.84ms
[18] XC5VLX110 Mersenne 256-bit 1439 LS/56 DSP 50 MHz 188µs

[13] Intel Core2 Duo ECC NIST P-256 64-bit µP 2.13 GHz 669a µs
[16] Intel Core2 Duo ECC GF(2255 − 19) 64-bit µP 2.66 GHz 145µs

[3] XC40250XV RSA-1024 6826 CLB 45.2 MHz 3.1ms
[36] XC4VFX12-10 RSA-1024 3937 LS/17 DSP 400 MHz 1.71ms

aNote that this figure reflects a full ECDSA signature generation rather than a point multiplication.

Table 6: Selected high-performance implementations of public-key cryptosystems.

Aspect Core P-224 Core P-256

Cycles per MUL inFp 58 70
Cyclesper ADD/SUB inFp 16 18

Cycles per ECC Addition 812 980
Cyclesper ECC Doubling 580 700

CycleskP (D&A) 219,878 303,450
CycleskP (W) 178,000* 243,000*
CycleskP + rQ (D&A) 265,959 366,905
CycleskP + rQ (W) 194,000* 264,000*

Time&OP/skP (D&A) 452µs/2214 620µs/1614
Time&OP/skP (W) 365µs*/2740* 495µs*/2020*
Time&OP/skP + rQ (D&A) 546 µs/1831 749µs/1335
Time&OP/skP + rQ (W) 398µs*/2510* 540µs*/1850*

Table 4: Performance of ECC operations based on a sin-
gle ECC core using projective Chudnowsky coordinates on
a Virtex-4 XC4VFX12. Note that the figures for Window
method (W) denoted with an asterisk are estimates, results
for the Double&Add (D&A) method were implemented on
the device.

5.6 Comparison

Based on our architecture, we can estimate a throughput
of more than 37,000 point multiplications on the standardized
elliptic curve P-224 per second. A detailed comparison with
other implementations is presented in Table 6.
At this point we like to point out that the field of highly
efficient prime fieldarithmetic is believed to be predominated
by implementations on general purpose microprocessors rather
than on FPGAs. Hence, we will also compare our hardware
implementation against the performance of software solutions
on recent microprocessors. Since most performance figures
for software implementations are given in cycles rather than
absolute times, we assumed for comparing throughputs that
uninterrupted, repeated computations can be performed simul-
taneously onall available cores of a modern microprocessor
with no further cycles spent, e.g., on scheduling or other
administrative tasks. Note that this is indeed a very optimistic
assumption possibly overrating the performance of software

Aspect Core P-224 Core P-256

Number of Cores 18 16
Slicesoccupied 24,452 (99%) 24,574 (99%)
4-input LUTs 32,688 34,896
Flip-flops 34,166 32,430
DSP blocks 468 512
BRAMs 198 176
Frequency (arithmetic) 372 MHz 374 MHz
Frequency (control) 186 MHz 187 MHz

OP/skP (D&A) 30,438 19,760
OP/skP (W) 37,700* 24,700*
OP/skP + rQ (D&A) 25,164 16,352
OP/skP + rQ (W) 34,500* 22,700*

Table 5: Results of a multi-core architecture on a Virtex-4
XC4VSX55device for ECC over prime fields P-224 and P-256
(Figures with an asterisk are estimates).

implementations with respect to actual applications.
We compare our design to recent software results, e.g., ob-
tained from ECRYPT’s eBATS project. According to [13],
an Intel Core2 Duorunning at 2.13 GHz is able to generate
1868 and 1494 ECDSA signatures based on the OpenSSL im-
plementation for P-224 and P-256, respectively. Taking latest
Core i microprocessors with four or six cores into account,
these performance figures might even double or triple. We also
compare our work to the very fast software implementation
by [16] using an Intel Core2 Duo system at 2.66 GHz. How-
ever, in this contribution the special Montgomery and non-
standard curve overF2255−19 is used instead of a standardized
NIST prime. Despite of that, for the design based on this curve
the authors report the impressive throughput of 6700 point
multiplications per second.
For a fair comparison with software solutions it should be con-
sidered that a single Virtex-4 SX 55 costs about US$1,123.2

Recent microprocessors like the Intel Core2 Duo, however, are
available at less than a quarter of that price. With this in mind,
we are not able to beat all software implementation in terms
of the cost-performance ratio, but we still like to point out

2Market price for a single device in March 2011.

116 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

that our FPGA-based design - as the fastest reported hardware
implementationso far - definitely closes the performance gap
between software and hardware implementations for ECC over
prime fields.

6. Conclusions
In this work, we presented alternative design strategies for

standardized symmetric and asymmetric cryptosystems that
involve the hard cores available on modern FPGA devices.
According to our results, the AES and ECC implementations
are among the ones providing the highest performance and
throughput reported in the open literature. Note that the source
code for our AES implementations is freely available so that
our results can also be externally verified [11].

Future work encompasses the thorough analysis and in-
clusion of additional countermeasures against side-channel
attacks (SCA). Note that the implementations already provide
a basic protection against SCA by design due to the very
parallel data processing operating at high clock frequencies.3

However, although these properties of our design will have
a severe impact on the difficulty of a successful SCA, those
attacks are still not completely impossible what need to be
assessed in future work.

References
[1] ANSI X9.62-2005. American National Standard X9.62: The Elliptic

Curve Digital Signature Algorithm (ECDSA), 2005.
[2] R. M. Avanzi, H. Cohen, C. Doche, G. Frey, T. Lange, K. Nguyen,

and F. Vercauteren. Handbook of Elliptic and Hyperelliptic Curve
Cryptography. Chapman & Hall/CRC, 2005.

[3] T. Blum and C. Paar. High Radix Montgomery Modular Exponentia-
tion on Reconfigurable Hardware.IEEE Transactions on Computers,
50(7):759–764, 2001.

[4] P. Bulens, F. Standaert, J.-J. Quisquater, P. Pellegrin, and G. Rouvroy.
Implementation of the AES-128 on Virtex-5 FPGAs. In S. Vaudenay,
editor, AFRICACRYPT 2008, volume 5023 ofLNCS Series, pages 16–
26, 2008.

[5] R. Chaves, G. Kuzmanov, S. Vassiliadis, and L. Sousa. Reconfigurable
Memory-based AES Co-Processor. InWorkshop on Reconfigurable
Architectures, page 192, 2006.

[6] P. Chodowiec and K. Gaj. Very Compact FPGA Implementation of the
AES Algorithm. In C. D. Walter, Ç. K. Koç, and C. Paar, editors,CHES,
volume 2779 ofLNCS, pages 319–333, 2003.

[7] P. G. Comba. Exponentiation Cryptosystems on the IBM PC.IBM
Systems Journal, Vol. 29(4):526–538, 1990.

[8] J. Daemen and V. Rijmen.The Design of Rijndael: AES - The Advanced
Encryption Standard. Springer, 2002.

[9] A. Daly, W. Marnane, T. Kerins, and E. Popovici. An FPGA Im-
plementation of a GF(p) ALU for Encryption Processors.Elsevier -
Microprocessors and Microsystems, 28(5–6):253–260, 2004.

[10] G. M. de Dormale and J.-J. Quisquater. High-Speed Hardware Im-
plementations of Elliptic Curve Cryptography: A Survey.Journal of
Systems Architecture, 53(2-3):72–84, 2007.

[11] S. Drimer, T. Güneysu, and C. Paar. DSPs, BRAMs and a Pinch of
Logic: New Recipes for AES on FPGAs. InIEEE Symposium FCCM
2000, pages 99–108. IEEE Computer Society, April 2008. Source code
available at: http://www.cl.cam.ac.uk/~sd410/aes/.

[12] H. Eberle, N. Gura, and S. Chang-Shantz. A Cryptographic Processor for
Arbitrary Elliptic Curves over GF(2m). In Application-Specific Systems,
Architectures, and Processors (ASAP), pages 444–454, 2003.

3We here assume that driving the implementation at much lower clock
frequencies is not easily possible due to internal restrictions of the Digital
Clock Manager inside the FPGA.

[13] ECRYPT. eBATS: ECRYPT Benchmarking of Asymmetric Systems,
March 2007. Available athttp://www.ecrypt.eu.org/ebats/.

[14] A. J. Elbirt, W. Yip, B. Chetwynd, and C. Paar. An FPGA-based
Performance Evaluation of the AES Block Cipher Candidate Algorithm
Finalists. IEEE Transactions on Very Large Scale Integration Systems
(VLSI), 9(4):545–557, 2001.

[15] V. Fischer and M. Drutarovský. Two Methods of Rijndael Implemen-
tation in Reconfigurable Hardware. In Ç. K. Koç, D. Naccache, and
C. Paar, editors,CHES, volume 2162 ofLNCS, pages 77–92, 2001.

[16] P. Gaudry and E. Thomé. ThempFq Library and implementing Curve-
based Key Exchanges.Workshop on Software Performance Enhancement
for Encryption and Decryption (SPEED 2007), 2007.

[17] T. Güneysu and C. Paar. Ultra High Performance ECC over NIST Primes
on Commercial FPGAs. In E. Oswald and P. Rohatgi, editors,CHES,
volume 5154 ofLNCS, pages 62–78, 2008.

[18] M. Hamilton and W. P. Marnane. FPGA Implementation of an Elliptic
Curve Processor Using the GLV Method. InReconfigurable Computing
and FPGAs (ReConFig), pages 249–254, 2009.

[19] D. R. Hankerson, A. J. Menezes, and S. A. Vanstone.Guide to Elliptic
Curve Cryptography. Springer, New York, 2004.

[20] T. Ichikawa, T. Kasuya, and M. Matsui. Hardware Evaluation of the
AES Finalists.AES Candidate Conference, pages 13–14, 2000.

[21] K. U. Järvinen. Studies on High-Speed Hardware Implementations
of Cryptographic Algorithms. PhD thesis, Helsinki University of
Technology, 2008.

[22] K. U. Järvinen, M. T. Tommiska, and J. O. Skyttä. A Fully Pipelined
Memoryless 17.8 Gbps AES-128 Encryptor. InProceedings of the
International Symposium on Field Programmable Gate Arrays (FPGA
2003), pages 207–215, New York, NY, USA, 2003. ACM Press.

[23] A. Karatsuba and Y. Ofman. Multiplication of Multidigit Numbers on
Automata.Soviet Physics – Doklady, 7(7):595–596, 1963.

[24] C. McIvor, M. McLoone, and J. McCanny. An FPGA Elliptic Curve
Cryptographic Accelerator over GF(p). InIrish Signals and Systems
Conference (ISSC), pages 589–594, 2004.

[25] M. McLoone and J. McCanny. High Performance Single-chip FPGA
Rijndael Algorithm Implementations. In Ç. K. Koç, D. Naccache, and
C. Paar, editors,CHES, volume 2162 ofLNCS, pages 65–76, 2001.

[26] M. McLoone and J. McCanny. Rijndael FPGA Implementations Utilis-
ing Look-up Tables.The Journal of VLSI Signal Processing, 34(3):261–
275, 2003.

[27] National Institute of Standards and Technology (NIST). Recommended
Elliptic Curves for Federal Government Use, July 1999.

[28] National Institute of Standards and Technology (NIST). FIPS PUB 197:
Advanced Encryption Standard, 2001.

[29] National Institute of Standards and Technology (NIST). Digital Signa-
ture Standard (DSS) (FIPS 186-3), June 2009.

[30] G. Orlando and C. Paar. A High-Performance Reconfigurable Elliptic
Curve Processor for GF(2m). In Ç. K. Koç and C. Paar, editors,CHES,
volume 1965 ofLNCS, pages 41–56, 2000.

[31] G. Orlando and C. Paar. A ScalableGF (p) Elliptic Curve Processor
Architecture for Programmable Hardware. In Ç. K. Koç, D. Naccache,
and C. Paar, editors,CHES, volume 2162 ofLNCS, pages 356–371,
2001.

[32] G. Rouvroy, F.-X. Standaert, J.-J. Quisquater, and J.-D. Legat. Compact
and Efficient Encryption/Decryption Module for FPGA Implementation
of the AES Rijndael Very Well Suited for Small Embedded Applications.
International Conference on Information Technology, 2:583, 2004.

[33] A. Satoh and K. Takano. A Scalable Dual-Field Elliptic Curve Cryp-
tographic Processor.IEEE Transactions on Computers, 52(4):449–460,
2003.

[34] J. A. Solinas. Generalized Mersenne Numbers. Technical report,
National Security Agency (NSA), Sept. 1999.

[35] F.-X. Standaert, G. Rouvroy, J.-J. Quisquater, and J.-D. Legat. Efficient
Implementation of Rijndael Encryption in Reconfigurable Hardware:
Improvements and Design Tradeoffs. In C. D. Walter, Ç. K. Koç, and
C. Paar, editors,CHES, volume 2779 ofLNCS, pages 334–350, 2003.

[36] D. Suzuki. How to Maximize the Potential of FPGA Resources for
Modular Exponentiation. In P. Paillier and I. Verbauwhede, editors,
CHES, volume 4727 ofLNCS, pages 272–288, 2007.

[37] Xilinx Inc. UG190: Virtex-5 User Guide, 2006. Available at
http://www.xilinx.com/support/documentation/
user_guides/ug190.pdf.

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 117

Elliptic Curve Cryptography on FPGAs:
How Fast Can We Go with a Single Chip?

Kimmo Järvinen
Aalto University, School of Science

Department of Information and Computer Science
P.O. Box 15400, FI-00076 Aalto, Finland

kimmo.jarvinen@aalto.fi

Abstract— In this paper we present an extremely high
throughput implementation of an elliptic curve cryptosystem.
The work builds on the author’s previous work which has
resulted in a high throughput processor architecture for a
specific family of elliptic curves called Koblitz curves. The
architecture extensively utilizes the fact that FPGA based
designs can be carefully optimized for fixed parameters (e.g.,
for a single elliptic curve) because parameter flexibility
(e.g., support for different curves) can be achieved through
reprogrammability. In this paper the work is extended by
exploring optimal solutions in a situation where several
parallel instances of the processor architecture are placed
on a single chip. It is shown that by utilizing the sug-
gested parallel architecture a single modern FPGA chip,
Stratix IV GX EP4SGX230KF40C2, can deliver a through-
put of about 1,700,000 public-key cryptography operations
(scalar multiplications on a secure elliptic curve) per sec-
ond. This far exceeds any values thus far reported in the
literature.

Keywords: Elliptic curve cryptography, field-programmable gate
array, parallel implementation, Koblitz curve

1. Introduction
Neal Koblitz and Victor Miller independently proposed

the use of elliptic curves for public-key cryptography in
1985 [1], [2]. Since then, elliptic curve cryptography (ECC)
has been intensively studied because it offers both shorter
keys [3] and faster performance [4], [5] compared to more
traditional public-key cryptosystems, such as RSA [6]. Hard-
ware implementation of ECC has also gained considerable
interest and, as a consequence, many descriptions of hard-
ware implementations exist in the literature; see [7] for a
comprehensive review.

Field programmable gate arrays (FPGAs) have proven to
be highly feasible platforms for implementing cryptographic
algorithms because of the combination of programmability
and high speed. Several advantages of FPGAs in cryp-
tographic applications were listed in [8]. One of the ad-
vantages, “Architecture efficiency,” follows from the fact
that, in an FPGA-based design, optimizations for specific
parameters can be done without major restrictions in the

generality of the system because, if other parameters are
needed, the FPGA can be reprogrammed to support the new
parameters [8].

“Architecture efficiency” has been exploited in numerous
papers describing FPGA-based implementations of ECC [7].
However, a vast majority of papers optimize only field
arithmetic units for one specific field while the higher levels
of ECC still remain unoptimized and use more generic
architectures. This approach seems rather pointless because
fixing the underlying field already restricts the number of
usable elliptic curves to very few. For instance, fixing the
field to F2163 means that from the total of fifteen curves
recommended by U.S. National Institute of Standards and
Technology (NIST) in [9] only two curves, namely B-163
and K-163, could be used. Hence, if the field is fixed in
order to increase performance, one should optimize the
architecture also on higher levels for a specific curve. In
this paper, we describe an FPGA-based processor that is
optimized specifically for Koblitz curves [10].

1.1 Related work

The first FPGA-based implementation using Koblitz
curves was presented in [11], where one scalar multiplication
was shown to require 45.6 ms on the NIST K-163 curve with
an Altera Flex 10K FPGA. They concluded that Koblitz
curves are approximately twice as fast as general curves.
[12] presented an implementation which computes scalar
multiplication in 75µs on NIST K-163 in a Xilinx Virtex-
E FPGA. Neither of the two designs includes a circuitry
for conversions that are mandatory for Koblitz curves (see
Sec. 2.3). [13], [14] proposed a multiple-base expansion
which can be used for increasing the speed of Koblitz curve
computations and presented FPGA implementations for both
elliptic curve scalar multiplication and conversion. Scalar
multiplication was shown to require 35.75µs on NIST K-
163 with a Xilinx Virtex-II whereas the conversion requires
3.81µs in [13]. [14] presented a parallelized version of the
processor of [13] achieving computation delay of 17.15µs
on Stratix II including the conversion. [15] presented a
high-speed processor using parallel formulations of scalar
multiplication on Koblitz curves. Their processor achieves a

118 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

very fast computation delay of 7.22µs on NIST K-233 with
Virtex-II, but it also neglects the conversions.

Our recent work considering scalar multiplication on
Koblitz curves in FPGAs consists of [16], [17], [18], [19],
[20]. It was shown in [16] that up to 166,000 signature
verifications can be computed using a single Stratix II
FPGA with parallel processing. More general paralleliza-
tion studies were presented in [17] and they resulted in
an implementation that computes scalar multiplication in
25.81µs. We showed that even shorter computation delay
of only 4.91µs (without the conversion) can be achieved on
NIST K-163 with interleaved operations [18]. A complete
FPGA-based processor architecture utilizing this method
was described in [19]. This was architecture was improved
by using more efficient algorithms and by redesigning the
processor architecture in [20].

1.2 Contributions of the paper
In this article, we explore parallel implementations of

the processor architecture presented in [20]. The processor
of [20] was optimized to deliver the maximum throughput.
This optimization strategy is not necessarily optimal if we
have several parallel instances of the processor because a
higher overall throughput might be achievable with a larger
number of slower but smaller processors. Hence, the target
in this work is to maximize the throughput-area ratio of the
processor. We show that a setup similar to the one used in
[20] is the optimal one also in this case.

It was conjectured in [20] that a parallel implementation
on a modern FPGA could achieve throughputs of over
1,000,000 scalar multiplications per second. In this paper,
we show that this conjecture was correct. We demonstrate
that a single Altera Stratix IV chip is capable of delivering a
throughput of 1,700,000 scalar multiplications per second on
a standardized elliptic curve NIST K-163. Such an extremely
fast accelerator could have applications, for instance, in very
heavily loaded network servers or in cryptanalytic hardware.

1.3 Structure of the paper
The remaining of the paper is structured as follows. Sec. 2

presents the preliminaries of finite fields, elliptic curves, and
Koblitz curves. Sec. 3 introduces algorithms that are used
in the proposed implementation. The processor architecture
from [20] that we use as the base architecture is described
in Sec. 4. Sec. 5 discusses parallel implementations of the
processor architecture described in Sec. 4 and finds out
the parameters that provide the maximum throughput. The
results on an Altera Stratix IV GX FPGA are presented in
Sec. 6. Finally, we conclude the paper in Sec. 7.

2. Preliminaries
2.1 Finite fields

Elliptic curves defined over finite fieldsFq are used in
cryptography and only curves over binary fields, where

q = 2m, with polynomial basis are considered in this
paper. Polynomial bases are commonly used in elliptic
curve cryptosystems because they provide fast performance
on both software and hardware. Another commonly used
basis, normal basis, provides very efficient squaring but
multiplication is more complicated.

Elements ofF2m with polynomial basis are represented
as binary polynomials with degrees less thanm as a(x) =∑m−1

i=0 aix
i. Arithmetic operations inF2m are computed

modulo an irreducible polynomial1 with a degreem. Be-
cause sparse polynomials offer considerable computational
advantages, trinomials (three nonzero terms) or pentanomials
(five nonzero terms) are used in practice. The curve, NIST
K-163, considered in this paper is defined overF2163 with
the pentanomialp(x) = x163 + x7 + x6 + x3 + 1 [9].

Addition, a(x) + b(x), in F2m is a bitwise exclusive-or
(XOR). Multiplication, a(x)b(x), is more involved and it
consists of two steps: ordinary multiplication of polynomials
and reduction modulop(x). If both multiplicands are the
same, the operation is called squaring,a2(x). Squaring is
cheaper than multiplication because the multiplication of
polynomials is performed simply by adding zeros to the
bit vector. Reduction modulop(x) can be performed with
a small number of XORs ifp(x) is sparse and fixed, i.e. the
samep(x) is always used, which is the case in this paper.
Repeated squaring denotes several successive squarings, i.e.,
exponentiationa2e

(x). Inversion,a−1(x), is an operation
which finds b(x) such thata(x)b(x) = 1 for a given
a(x). Inversion is the most complex operation and it can
be computed either with the Extended Euclidean Algorithm
or Fermat’s Little Theorem (e.g., as suggested in [21]) that
givesa−1(x) = a2m−2(x).

Multiplication has the most crucial effect on performance
of an elliptic curve cryptosystem. A digit-serial multiplier
computesD bits of the output in one cycle resulting in a total
latency of dm/De cycles. We use hardware modifications
of the multiplier described in [22]. Instead of using pre-
computed look-up tables as in [22], our multiplier computes
everything on-the-fly similarly as in [12]. Repeated squarings
can be computed efficiently with the repeated squarers
presented in [23] which are components that computea2e

(x)
directly in one clock cycle.

2.2 Scalar multiplication
Let E be an elliptic curve defined over a finite fieldFq.

Points onE form an additive Abelian group,E(Fq), together
with a point called the point at infinity,O, acting as the zero
element. The group operation is called point addition. Let
P1 andP2 be two points inE(Fq). Point additionP1 + P2

whereP1 = P2 is called point doubling. In order to avoid

1A polynomial, f(x) ∈ F[x], with a positive degree is irreducible over
F if it cannot be presented as a product of two polynomials inF[x] with
positive degrees.

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 119

confusion, point addition henceforth refers solely to the case
P1 6= ±P2.

The principal operation of elliptic curve cryptosystems is
scalar multiplicationkP where k is an integer andP ∈
E(Fq) is called the base point. The most straightforward
practical algorithm for scalar multiplication is the double-
and-add algorithm (binary algorithm) wherek is represented
as a binary expansion

∑`−1
i=0 ki2

i with ki ∈ {0, 1}. Each
bit in the representation results in a point doubling and an
additional point addition is computed ifki = 1. Let w denote
the Hamming weight ofk, i.e., the number of nonzeros in the
expansion. Depending on whether the algorithm starts from
the most significant (k`−1) or the least significant (k0) bit
of the expansion, the algorithm is called either left-to-right
or right-to-left double-and-add algorithm. They are shown in
Alg. 1 and 2, respectively. They both have the same costs:
` − 1 point doublings andw − 1 point additions (the first
operations are simply substitutions).

Input : Integerk =
∑`−1

i=0 ki2
i, point P

Output : Point Q = kP
Q← O
for i = `− 1 to 0 do

Q← 2Q
if ki = 1 then Q← Q + P

Algorithm 1 : Left-to-right scalar multiplication

Input : Integerk =
∑`−1

i=0 ki2
i, point P

Output : Point Q = kP
Q← O
for i = 0 to `− 1 do

if ki = 1 then Q← Q + P
P ← 2P

Algorithm 2 : Right-to-left scalar multiplication

If points on E are represented traditionally with two
coordinates as(x, y), referred to as the affine coordinates,
or A for short, both point addition and point doubling
require one inversion inF2m . Inversions are expensive as
discussed in Sec. 2.1. Hence, it is often beneficial to rep-
resent points using projective coordinates,(X, Y, Z), where
point additions and point doublings can be computed without
inversions, but have an expense of a larger number of
other operations (multiplications, squarings, and additions).
In this paper, we use López-Dahab coordinates [24], orLD
for short, where the point(X, Y, Z) represents the point
(X/Z, Y/Z2) in A. TheLD coordinates offer, in particular,
very efficient point additions,P1+P2, if P1 is in LD andP2

is inA. We extensively utilize these so called point additions
with mixed coordinates [25] in our implementation.

2.3 Koblitz curves
Koblitz curves [10] are a family of elliptic curves defined

over F2m by the following equation:

EK : y2 + xy = x3 + ax2 + 1 (1)

wherea ∈ {0, 1}. Koblitz curves are appealing because they
offer considerable computational advantages over general
curves. These advantages are based on the fact that an algo-
rithm similar to the double-and-add can be devised so that
point doublings are replaced by Frobenius endomorphisms.
The Frobenius endomorphism,φ, for a pointP = (x, y) is
a map such that

φ : (x, y) 7→ (x2, y2) and O 7→ O. (2)

Obviously, Frobenius endomorphism is very cheap: only two
or three squarings depending on the coordinate system. Sev-
eral successive Frobenius maps, i.e.φe(P), can be computed
with two (or three) repeated squarings:x2e

andy2e

.
Replacing point doublings with Frobenius endomorphisms

requires manipulations onk. It stands for all points in
EK(F2m) that µφ(P) − φ2(P) = 2P whereµ = (−1)1−a.
Thus, φ can be seen as a complex number,τ , satisfying
µτ − τ2 = 2 which givesτ = (µ +

√
−7)/2. Moving from

a bit to another in a representation ofk corresponds to an
application ofφ if k is given in aτ -adic representation:

k =

`−1∑

i=0

εiτ
i. (3)

Hence in order to utilize fast Frobenius endomorphisms,k
must be given in aτ -adic representation [10].

Efficient conversion algorithms were presented by Solinas
in [26]. The basic algorithm returns the so-calledτ -adic
non-adjacent form (τNAF) wherek is represented with the
signed-binary format, i.e.,εi ∈ {0,±1}. Henceforth, we
denotē1 = −1. The average length ofτNAF is the same as
the binary length ofk, i.e., `. τNAF hasw ≈ `/3 and one
of two adjacent digits is always zero. Because` ≈ m, scalar
multiplication withk in τNAF requires on averagem/3−1
point additions or subtractions andm− 1 applications ofφ.

2.4 Width-ω τNAF
If enough storage space is available, point multiplica-

tion can be sped up with window methods which involve
precomputations withP . We consider window methods
only on Koblitz curves in order to keep the discussion
focused, although analogous algorithms exist also for general
curves. A left-to-right scalar multiplication algorithm with
precomputations on Koblitz curves is shown in Alg. 3; see
Sec. 3.1 for details about the scalar encoding.

Solinas presented an algorithm for producing width-ω
τNAF in [26]. Instead of using that algorithm, we use the
τNAF algorithm which is simpler to implement in hardware
and interpret its results as a width-ω τNAF by replacing

120 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

Input : Integerk =
∑`−1

i=0 εiτ
i, point P

Output : Point Q = kP
(k0, f0), (k1, f1), . . . , (kw−1, fw−1)←
ConvertAndEncode(k)
(P1, P2, . . . , PN)← Precompute(P)
Q← O
for i = w − 1 to 0 do

Q← Q + sign(ki)P|ki|

Q← φfi(Q)

Algorithm 3 : Left-to-right scalar multiplication on
Koblitz curves with precomputations

certain strings of0, 1, and 1̄’s with window values. The
resulting representation has a weight ofw ≈ `/(ω + 1).

3. Algorithms for the processor

3.1 Encoding for τ -adic expansions
In the implementation presented in this paper, we encodek

as follows:(k0, f0), (k1, f1), . . . , (kw−1, fw−1), whereki 6=
0 are the nonzero coefficients from (3) andfi are the number
of Frobenius maps between point additions (i.e., the number
of zeros plus one). Similar encodings have been used prior
to this work at least in [13], [14], [15], [16], [17], [19], [20].
For example, the expansion〈100003̄00001̄00000050〉 results
in (1, 5), (3̄, 5), (1̄, 7), (5, 1) for a left-to-right algorithm and
(5, 1), (1̄, 7), (3̄, 5), (1, 5) for a right-to-left algorithm; i.e.,
they are mirror-images.

3.2 Right-to-left algorithms
As shown in Alg. 2, when scalar multiplication is com-

puted from right to left, the base pointP is doubled
(Frobenius mapped) instead of the pointQ. Point additions
and point doublings (Frobenius maps) can be processed
in parallel making these algorithms feasible for implemen-
tations supporting parallel processing of point operations.
However, a right-to-left algorithm is, in general, unpractical
if it involves precomputations with the base pointP because
all precomputed points need to be doubled in each iteration.

We can overcome this disadvantage by utilizing the inex-
pensiveness of Frobenius maps. Because Frobenius maps are
cheap, we can map all precomputed points simultaneously
while processing a point addition. We attach a repeated
squarer directly to the register bank containing precomputed
points. One repeated squarer can computeφfi(x, y) in two
clock cycles if fi ≤ emax where emax is the predefined
maximum exponent [23]. Hence,N points require2N clock
cycles. If the latency of one point addition is longer than2N ,
then Frobenius maps reduce from the critical path. The right-
to-left scalar multiplication algorithm on Koblitz curves with
precomputations is shown in Alg. 4.

Input : Integerk =
∑`−1

i=0 εiτ
i, point P

Output : Point Q = kP
(k0, f0), (k1, f1), . . . , (kw−1, fw−1)←
ConvertAndEncode(k)
(P1, P2, . . . , PN)← Precompute(P)
Q← O
for i = 0 to w − 1 do

for j = 1 to N do
Pj ← φfi(Pj)

Q← Q + sign(ki)P|ki|

Algorithm 4 : Right-to-left scalar multiplication on
Koblitz curves with precomputations

4. Description of the processor
In this section we review the processor architecture origi-

nally presented in [20]. The processor implements Alg. 4. It
consists of four main components as shown in the toplevel
view of the processor given in Fig. 1, and each of them is
discussed in detail in Secs. 4.1–4.4.

The processor operates as follows. The converter (see
Sec. 4.1) converts the integerk into width-4 τNAF and
encodes it as described in Sec. 3.1. The precomputations are
performed in the preprocessor (see Sec. 4.2) simultaneously
with the conversion. When both of these computations are
ready, the main for-loop of Alg. 4 is executed in the main
processor (see Sec. 4.3). Finally, the postprocessor (see
Sec. 4.4) maps the result pointQ from LD toA and returns
Q = (x, y).

The processor comprises a three-stage pipeline and is
capable of processing three scalar multiplications simulta-
neously. The converter and the preprocessor form the first
stage, the main processor is the second stage and, finally,
the postprocessor is the last stage, as shown in Fig. 1.

4.1 τNAF converter
As noted in Sec. 2.3,k must be given in aτ -adic

representation when using Koblitz curves. We use theτNAF
converter presented in [27] for converting the integerk into
width-2 τNAF. After this, the width-2τNAF is converted
into width-4 τNAF by using a simple string replacement
circuitry.

4.2 Preprocessor
The preprocessor computes the precomputed points,

P1, . . . , PN , required by Alg. 4. In this paper,N = 5: We
need 4 precomputed points with width-4τNAF and one extra
point in order to ensure that Frobenius maps do not appear
on the critical path (i.e.,fi ≤ emax; see Sec. 3.2 and [20] for
more details). Because these precomputations do not depend
on k, the τNAF conversion and the precomputations can
be performed in parallel. The preprocessor is implemented
using the architecture described in [17].

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 121

τNAF

converter

Preprocessor

Main processor

Postprocessor

Register

bank

Control

X unit

Y unit

Z unit
k

P Pi

(ki, fi)

(X, Y, Z) Q = (x, y)

Stage 1 Stage 2 Stage 3

Fig. 1: Toplevel view of the processor

4.3 Main processor
The main processor computes the for-loop of the scalar

multiplication by computing point additions and Frobenius
maps. The way how this task is performed is based on an
idea presented in [18] (and used also in [19], [20]). An
adaptation of this idea to Alg. 4, the right-to-left algorithm
with precomputations, was introduced in [20]. The advantage
of this adaptation compared to [18], [19] is that the Frobenius
maps are computed in parallel with the point additions, as
discussed in Sec. 3.2. As a consequence, performance is
bounded only by the latency of multiplication inF2m .

First, we shall recap how point additions are computed
in [18]. The main processor computes point addition with
mixed coordinates,(X3, Y3, Z3) = (X1, Y1, Z1) + (x2, y2),
using the formulae proposed by Al-Daoud et al. [25]:

A = Y1 + y2Z
2
1 ; B = X1 + x2Z1;

C = BZ1; Z3 = C2; D = x2Z3;

X3 = A2 + C(A + B2 + aC);

Y3 = (D + X3)(AC + Z3) + (x2 + y2)Z
2
3 ;

(4)

Clearly, there are eight multiplications in the above formulae
(aC does not require multiplication becausea ∈ {0, 1}), and
they have a critical path of four multiplications with three
or more multipliers. The main observation of [18] was that
despite this critical path, it is possible to reduce the effective
critical path to only two multiplications per point addition
by interleaving the computation of successive point additions
and Frobenius maps if one uses four multipliers.

As shown in (4), computingZ3 requires two multiplica-
tions (in B and C computations). ComputingX3 requires
two additional multiplications andY3 requires the remaining
four. The second multiplication ofX3 cannot be started
beforeC is available, i.e., one must wait for the result of the

second multiplication ofZ3. All multiplications ofY3 require
that both multiplications ofZ3 are ready. The computation
can be interleaved so that one computes the multiplications
of Z3 while simultaneously still processing theY3 coordinate
of the previous point addition. TheX3 computation is started
when the first multiplication ofZ3 is ready.

The main processor includes separate processing units for
computingX , Y , andZ coordinates, henceforth referred to
as theX , Y , andZ units. TheX andZ units both contain
one multiplier whereas theY unit has two multipliers. These
units are depicted in Fig. 2. The figure also shows how to
set their inputs and outputs in order to compute (4); i.e., all
units must be applied only twice to compute a point addition.
Contrary to the main processor of [18], [19], the units do
not have squarers computing Frobenius maps. The Frobenius
maps are computed with a single repeated squarer [23]
attached to the register bank containing the precomputed
points. Fig. 3 shows the register bank.

The following procedure shows how (almost all) Frobe-
nius maps can be removed from the critical path if one uses
a right-to-left scalar multiplication algorithm:

1) All precomputed points,P1, . . . , PN , are stored in the
register bank;

2) One computes and storesφf0(P1), . . . , φ
f0(PN) with

one repeated squarer attached to the register bank
which takes2N clock cycles;

3) Immediately after this, one initializes the scalar mul-
tiplication by settingQ = sign(k0)P|k0|; that is,X =
x|k0|, Z = 1, and Y = y|k0| if sign(k0) = 1 and
Y = x|k0| + y|k0| if sign(k1) = −1;

4) One computes and storesφf1(P1), . . . , φ
f1(PN) and

when they are ready, begins computing the point
additionQ + sign(k1)P|k1|;

5) While the multipliers compute the above

122 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

mult

sqr

sqr

xor xor

x2/Z1

Z1/E

0/X1

∅/Z3

E/C

∅/F

(a)

mult

sqr

sqr

xor

xor

xor

G/0

Y1/0

F/y2

C/Z1

X3/G

(b)

mult

multsqr

xor
xor

xor

C/H

G/D

Y1/X3

Z3/Z3

x2/x2 + y2

H/∅

∅/Y3

D/∅

(c)

Fig. 2: (a)Z, (b) X , and (c)Y units

load

wr_addr

rd_addr

Control

Repeated

squarer

fi

Fig. 3: Register bank for storing the precomputed points and
a repeated squarer for computingφfi (Pj) for j = 1, . . . , N

point addition, the repeated squarer performs
φf2(P1), . . . , φ

f2(PN);
6) After this, scalar multiplication proceeds so that when

the multipliers are computing interleaved point ad-
ditions with ki and ki−1, the repeated squarer is
already updating the register bank by computing
φfi+1(P1), . . . , φ

fi+1(PN).

Obviously, the critical path consists only of the point
additions (and Frobenius maps withf0 and f1) if the
Frobenius maps are faster than the point additions, which
require only two multiplications as shown above.

Notice that because the encoding presented in Sec. 3.1
was designed so that it ensures thatfi ≤ emax for all i
and, consequently, eachφfi (Pj) has a constant latency of
two clock cycles, it is easy to design the main processor
so that the Frobenius maps are always faster than two
multiplications. In order to ensure that, the main processor
architecture must satisfy

2N + p ≤ 2M2 (5)

where M2 is the latency of multiplication andp is the
number of pipeline stages in the repeated squarer. Above we
assumed that each repeated squaring requires only one clock
cycle, i.e.,p = 0 but the repeated squarer can be pipelined.

In our implementation of the processor, the repeated
squarer attached to the register bank hasemax = 10 and
its computation was pipelined withp = 1. Therefore, it can
computeφfi (Pi), wherefi ≤ 10, for N points in 2N + 1
clock cycles. Because the width-4τNAF is used, the number
of points isN = 5 (four precomputed points and an extra
point). As a consequence, Frobenius maps require 11 clock
cycles and, in order to ensure that Frobenius maps are not on
the critical path, one must selectM2 ≥ 6 for the multipliers
in the main processor.

4.4 Postprocessor
The postprocessor maps the result pointQ = (X, Y, Z)

from the main processor to affine coordinates by computing
(x = X/Z, y = Y/Z2). It includes a multiplier and
a repeated squarer [23] for computinga2e

where e ∈
{1, 2, 4}. The postprocessor computes the inversion as pro-
posed in [21].

4.5 Latency of scalar multiplication
Let D1, D2, andD3 denote the digit sizes andM1, M2,

andM3 the latencies of the multipliers in the preprocessor,
the main processor, and the postprocessor, respectively. The
latencies of different operations in clock cycles are given
in Table 1. As shown in Table 1, the latencies of all
other operations exceptτNAF conversion can be tuned by
varying the latencies of multipliers, which are given by
Mi = dm/Die+ 1, wherei ∈ {1, 2, 3}.

Fig. 4 shows an example scalar multiplication with the
processor (shown in white). It also shows how the pipeline

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 123

Table 1: Latencies
Operation Latency (clock cycles)
Conversion, width-4τNAF 335
Precomputation 18M1 + 327
For-loop 2(w − 2)(M2 + 1) + 3(2N + p) + 18
Coordinate conversion 11M3 + 59

f0 f1 f2 f3 f4 fw−1

k0

k0
k1k1

k1

k1

k2k2

k2k2

k2k2 k3k3

k3 kw−3
kw−3kw−3

kw−2
kw−2kw−2

kw−2

kw−2kw−2

kw−1kw−1

kw−1kw−1

kw−1kw−1

τNAF converter

Preprocessor
Frobenius maps

X coordinate

Y coordinate

Z coordinate

Postprocessor

Time

Fig. 4: Example computation schedule for computing scalar multiplications with the processor. The previous and the next
scalar multiplication processed in the pipeline are shown in dark and light grey, respectively.

works by presenting the previous (shown in dark grey) and
the next (shown in light grey) scalar multiplication. The
computation proceeds so that, first, theτ -adic conversion and
the precomputation are performed concurrently. Theτ -adic
conversion could be performed concurrently also with the
main for-loop but this would not bring any benefit, because
precomputation would still be on the critical path. When both
are ready, the for-loop computation is started in the main pro-
cessor. The computation proceeds as discussed in Sec. 4.3,
and the Frobenius maps are computed simultaneously with
the point additions. It is clearly visible that theX , Y , and
Z units are processing two point additions simultaneously;
each block in Fig. 4 denotes one iteration of the units. When
the for-loop is ready, the result point(X, Y, Z) is converted
intoA in the postprocessor. This computation can be started
immediately whenZ is ready; i.e., whileX andY are still
being computed.

5. Parallelization
It was conjectured in [20] that a throughput of over

1,000,000 scalar multiplications per second can be achieved
with a single modern FPGA. In this section, we seek to
verify this conjecture by studying what is the maximum
throughput achievable with a single FPGA implementation
consisting of several parallel instances of the processor
presented above.

The target for the optimizations presented in [20] was to
maximize the throughput of a single processor. In order to
achieve this goal, the multipliers used in the main processor
used the digit size ofD2 = 17 (M2 = 11). This digit size
was the largest one that still ensured that the critical path of
computations remained in the main processor. In this paper,
however, our target is to maximize the throughput of several
parallel instances of the processor. Instead of maximizing
the throughput of the processor, we focus on maximizing
the throughput-area ratio of the processor. In that case, it

Processor 1

Processor 2

Processor 3

ProcessorTk
P

wr1

wr2

wr3

wrT

rd_addr

Q

Fig. 5: Parallel architecture

is possible that the optimum is reached with different digit
sizes. We opted to maximize the throughput-area ratio of
a single processor and then replicate several instances of
that processor although it is possible that one could be able
to achieve slightly higher throughput by aiming to fill the
entire FPGA (or some fixed percentage of it). Our approach,
however, provides more general results and, of course, a
better throughput-area ratio.

The approach of our implementation is simple: We repli-
cateT parallel instances of the processor architecture pre-
sented in Sec. 4, all with the parameters that maximize the
throughput-area ratio of a single processor, and provide a
common interface for them. This architecture is shown in
Fig. 5.

As explained above, the dominating component in our
processor architecture is the main processor. Hence, we
fit the parameters of the other components based on the

124 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

Table 2: Balanced setups
Setup D1 M1 D2 M2 D3 M3

1 2 (83) 6 (29) 1 (164)
2 3(56) 7 (25) 2 (83)
3 3 (56) 8 (22) 2 (83)
4 3 (56) 9 (20) 2 (83)
5 4 (42) 10 (18) 2 (83)
6 4 (42) 11 (16) 2 (83)
7 5 (34) 12 (15) 2 (83)
8 5 (34) 13 (14) 3 (56)
9 6 (29) 14 (13) 3 (56)
10 7 (25) 15 (12) 3 (56)
11 7 (25) 17 (11) 3 (56)

parameters of the main processor. As shown in Table 1,
the latencies are determined solely by the latencies of the
multipliers (w = 4, N = 5, andp = 1 are fixed). We choose
the digit sizes of the multipliers in the preprocessor and the
postprocessor,D1 andD3, so that they are the smallest digit
sizes that still ensure that the bottleneck (i.e., the longest
latency) is in the main processor. We call a setup (D1, D2,
D3) that satisfies this condition a balanced setup.

The (average) latency of the conversion is constant: 335
clock cycles; i.e., the latency cannot be tuned by choosing
design parameters (e.g., multiplier digit size). Moreover,
the converter uses a different clock than the rest of the
architecture. Based on the work in [20], we assume that
we can use about 2.2 times faster clock for the other parts
of the architecture (in [20], we had 85 MHz and 185 MHz
clocks). Hence, we estimate that the latency of the converter
corresponds to about2.2× 335 ≈ 740 clock cycles with the
other clock. The latency of the main processor should not get
shorter than this latency or else the converter will become
the bottleneck and all area that is used for making the main
processor faster does not improve the overall throughput of
the processor. Based on Table 1, it is clear that ifD2 > 17,
the latency of the main processor is smaller than 740. In
Sec. 4.3, we derived a lower bound ofD2 ≥ 6 for the
the same digit size that ensured that the Frobenius maps
do not appear on the critical path. Hence, only digit sizes
6 ≤ D2 ≤ 17 are viable. The balanced setups satisfying
these constraints are collected in Table 2.

Because there are no other trustworthy methods to get
exact (post-place&route) area requirements of an FPGA im-
plementation besides running synthesis and place&route for
the design, we determined throughput-area ratios by compil-
ing processors with different balanced setups for Stratix IV
GX 4SGX230NC2 with Quartus II ver. 10.1. This FPGA
is used, for instance, in Stratix IV GX FPGA Development
Board [28]. The results are collected in Table 3. We started
compilations from setup 11 downwards (see Table 2) and
it soon became apparent that the best throughput-area ratio
is achieved with setup 11, the largest balanced setup. This
means that the maximum throughput-area ratio of the main
processor is achieved withD2 ≥ 17. Unfortunately, as noted

above, we cannot utilize setups withD2 > 17 because then
the throughput will be bounded by the throughput of the
converter which roughly equals the throughput of the main
processor withD2 = 17.

As shown in Table 3, setup 11 occupies approximately
15 % of the resources (ALMs) available on the FPGA. This
implies that we could fit six such processors on a single chip
by using approximately 90 % of the resources. However,
area requirements tend to grow more than linearly when
the size of the design approaches the limits of the device
because place&route has a more difficult task to fulfill timing
constraints. Hence, we use only five parallel instances of
the processor in our implementation. That is, we prepared a
prototype implementation using the architecture depicted in
Fig. 5 with T = 5. The results for this implementation are
given in Sec. 6.

6. Results
The parallel architecture shown in Fig. 5 and described in

Sec. 4 and 5 was realized with the parameters obtained in
Sec. 5, i.e.,T = 5, D1 = 7, D2 = 17, andD3 = 3. The
implementation was described in VHDL and compiled for
an Altera Stratix IV GX EP4SGX230KF40C2 FPGA with
Quartus 10.1. We emphasize that the processor architecture
is not restricted to any specific FPGA but the optimal
parameters may vary between different FPGAs.

The area consumptions are collected in Table 4. Timing
constraints of 120 MHz and 266 MHz were set for theτ -adic
converter and the rest of the processor, respectively, and the
compiler was able to meet these constraints.

Using the clock frequencies of 120 MHz and 266 MHz
and the latencies derived in Sec. 4.5, we get the following
average timings: width-4τNAF conversion335/120 =
2.79µs, precomputations777/266 = 2.92µs (constant),
for-loop 785.4/266 = 2.95µs, and coordinate conversion
675/266 = 2.53µs (constant). The throughput of the pro-
cessor is bounded by the main processor; hence, the theoret-
ical maximum throughput is 338,680 scalar multiplications
per second for a single processor and 1,693,000 scalar
multiplications per second for the parallel implementation
of five processors. The average timing for a single scalar
multiplication is 8.3µs.

7. Conclusions
We described a parallel implementation of elliptic curve

cryptography with several parallel instances of the processor
introduced in [20]. This implementation is capable of deliv-
ering a theoretical maximum throughput of about 1,700,000
scalar multiplications per second on the standardized elliptic
curve NIST K-163 [9].

Contrary to many other published works, this study and
the earlier versions of this work presented in [19], [20]
focused on maximizing the throughput, i.e., scalar multi-
plications per second instead of minimizing the computating

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 125

Table 3: Throughput-area ratios of selected processors with balanced setups on Stratix IV GX FPGA

Setup ALUTs Regs ALMs
Memory Time Throughput Throughput/Area

M9K (µs) (1/s) (1 / s·ALM)
11 16,001 12,377 13,768 21 8.3 339,000 26.51
10 14,568 12,360 13,163 21 8.6 314,000 23.87
9 14,531 12,371 12,778 21 9.1 293,000 21.28

Table 4: Results on Stratix IV GX EP4SGX230KF40C2.
ALUTs 78,695 (43 %)
Regs 61,871 (34 %)
ALMs 74,750 (82 %)
M9K 105 (9 %)
Clock, converter 120 MHz
Clock, others 266 MHz
Time 8.3 µs
Throughput 1,693,000

time of a single scalar multiplication. The difference to [19],
[20] is that they focused on maximizing the throughput of a
single processor, whereas this paper presented a study which
aimed to maximizing the throughput of an implementation
comprising several processors. The results showed that both
the maximum throughput and the maximum throughput-area
ratio are achieved with similar setups. The main component
of the processor would be capable of producing even higher
throughput-area ratios but, in that case, another component,
namely the converter, would become the limiting factor.
Hence, there is an obvious need for even faster converter
architectures. Very recently a faster (but slightly larger)
converter was presented in [29] and it would allow using
setups with even higher throughput-area ratios.

In this paper, we focused on a single FPGA; namely,
Altera Stratix IV GX EP4SGX230KF40C2. It is possible
(and even likely) that a better performance-price ratio is
achieved with budget FPGAs, e.g., from Altera Cyclone
family. Although the balanced setup that delivers the best
performance (in this case, it was setup 11 from Table 2)
may vary between diffferent FPGAs, the implementation
architecture and the methodology are generic.

The results show that modern FPGAs are able to deliver
extremely high throughtputs for secure public-key cryptog-
raphy, reaching as high as 1,700,000 scalar multiplications
per second on a secure elliptic curve. The implementation
presented in this paper can have applications, e.g., in ac-
celerating cryptographic operations in very highly loaded
network servers. Other interesting applications could be
found in cryptanalytic hardware. For example, the FPGA-
based machine designed for cryptanalytic purposes called
COPACOBANA [30] could be programmed to implement
the proposed parallel architecture (or a modification of it)
which could have some cryptanalytic importance.

References
[1] N. Koblitz, “Elliptic curve cryptosystems,”Math. Comput., vol. 48,

pp. 203–209, 1987.
[2] V. Miller, “Use of elliptic curves in cryptography,” inAdvances in

Cryptology, CRYPTO 1985, ser. Lecture Notes in Comput. Sci., vol.
218. Springer, 1986, pp. 417–426.

[3] A. K. Lenstra and E. R. Verheul, “Selecting cryptographic key sizes,”
J. Cryptol., vol. 14, no. 4, pp. 255–293, Dec. 2001.

[4] H. Eberle, N. Gura, S. C. Shantz, V. Gupta, L. Rarick, and S. Sun-
daram, “A public-key cryptographic processor for RSA and ECC,” in
Proc. 15th IEEE Int. Conf. Application-Specific Systems, Architectures
and Processors, ASAP 2004, 2004, pp. 98–110.

[5] K. Sakiyama, N. Mentens, L. Batina, B. Preneel, and I. Ver-
bauwhede, “Reconfigurable modular arithmetic logic unit supporting
high-performance RSA and ECC overGF (p),” Int. J. Electron.,
vol. 94, no. 5, pp. 501–514, May 2007.

[6] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining
digital signatures and public-key cryptosystems,”Commun. ACM,
vol. 21, no. 2, pp. 120–126, Feb. 1978.

[7] G. Meurice de Dormale and J.-J. Quisquater, “High-speed hardware
implementations of elliptic curve cryptography: A survey,”J. Syst.
Architect., vol. 53, no. 2-3, pp. 72–84, Feb.-Mar. 2007.

[8] T. Wollinger, J. Guajardo, and C. Paar, “Security on FPGAs: State-
of-the-art implementations and attacks,”ACM Trans. Embed. Comput.
Syst., vol. 3, no. 3, pp. 534–574, Aug. 2004.

[9] National Institute of Standards and Technology (NIST), “Digital
signature standard (DSS),” Federal Information Processing Standard,
FIPS PUB 186-3, June 2009.

[10] N. Koblitz, “CM-curves with good cryptographic properties,” in
Advances in Cryptology, CRYPTO ’91, ser. Lecture Notes in Comput.
Sci., vol. 576. Springer, 1991, pp. 279–287.

[11] S. Okada, N. Torii, K. Itoh, and M. Takenaka, “Implementation of
elliptic curve cryptographic coprocessor overGF (2m) on an FPGA,”
in Cryptographic Hardware and Embedded Systems, CHES 2000, ser.
Lecture Notes in Comput. Sci., vol. 1965. Springer, 2000, pp. 25–40.

[12] J. Lutz and A. Hasan, “High performance FPGA based elliptic
curve cryptographic co-processor,” inProc. Int. Conf. Information
Technology: Coding and Computing, ITCC 2004, vol. 2, 2004, pp.
486–492.

[13] V. S. Dimitrov, K. U. Järvinen, M. J. Jacobson, W. F. Chan, and
Z. Huang, “FPGA implementation of point multiplication on Koblitz
curves using Kleinian integers,” inCryptographic Hardware and
Embedded Systems, CHES 2006, ser. Lecture Notes in Comput. Sci.,
vol. 4249. Springer, 2006, pp. 445–459.

[14] ——, “Provably sublinear point multiplication on Koblitz curves and
its hardware implementation,”IEEE Trans. Comput., vol. 57, no. 11,
pp. 1469–1481, Nov. 2008.

[15] O. Ahmadi, D. Hankerson, and F. Rodríguez-Henríquez, “Parallel
formulations of scalar multiplication on Koblitz curves,”J. Univers.
Comput. Sci., vol. 14, no. 3, pp. 481–504, 2008.

[16] K. Järvinen, J. Forsten, and J. Skyttä, “FPGA design of self-certified
signature verification on Koblitz curves,” inCryptographic Hardware
and Embedded Systems, CHES 2007, ser. Lecture Notes in Comput.
Sci., vol. 4727. Springer, 2007, pp. 256–271.

[17] K. Järvinen and J. Skyttä, “On parallelization of high-speed processors
for elliptic curve cryptography,”IEEE Trans. VLSI Syst., vol. 16, no. 9,
pp. 1162–1175, Sept. 2008.

[18] ——, “Fast point multiplication on Koblitz curves: Parallelization
method and implementations,”Microproc. Microsyst., vol. 33, no. 2,
pp. 106–116, Mar. 2009.

126 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

[19] K. U. Järvinen and J. O. Skyttä, “High-speed elliptic curve cryp-
tography accelerator for Koblitz curves,” inProc. IEEE 16th IEEE
Symp. Field-programmable Custom Computing Machines, FCCM
2008. IEEE Computer Society, 2008, pp. 109–118.

[20] K. Järvinen, “Optimized FPGA-based elliptic curve cryptography
processor for high-speed applications,”Integration—the VLSI Journal,
in press.

[21] T. Itoh and S. Tsujii, “A fast algorithm for computing multiplicative
inverses inGF (2m) using normal bases,”Inform. Comput., vol. 78,
no. 3, pp. 171–177, Sept. 1988.

[22] M. A. Hasan, “Look-up table-based large finite field multiplication in
memory constrained cryptosystems,”IEEE Trans. Comput., vol. 49,
no. 7, pp. 749–758, July 2000.

[23] K. U. Järvinen, “On repeated squarings in binary fields,” inSelected
Areas in Cryptography, SAC 2009, ser. Lecture Notes in Comput. Sci.,
vol. 5867. Springer, 2009, pp. 331–349.

[24] J. López and R. Dahab, “Improved algorithms for elliptic curve
arithmetic inGF (2n),” in Selected Areas in Cryptography, SAC’98,
ser. Lecture Notes in Computer Science, vol. 1556. Springer, 1999,

pp. 201–212.
[25] E. Al-Daoud, R. Mahmod, M. Rushdan, and A. Kilicman, “A new

addition formula for elliptic curves overGF (2n),” IEEE Trans.
Comput., vol. 51, no. 8, pp. 972–975, Aug. 2002.

[26] J. A. Solinas, “Efficient arithmetic on Koblitz curves,”Des. Codes
Cryptography, vol. 19, no. 2–3, pp. 195–249, 2000.

[27] B. B. Brumley and K. U. Järvinen, “Conversion algorithms and im-
plementations for Koblitz curve cryptography,”IEEE Trans. Comput.,
vol. 59, no. 1, pp. 81–92, 2010.

[28] Altera, “Stratix IV GX FPGA development board: Reference manual,”
Aug. 2010, http://www.altera.com/literature/manual/rm_sivgx_fpga_
dev_board.pdf.

[29] J. Adikari, V. Dimitrov, and K. Järvinen, “A fast hardware architecture
for integer to τNAF conversion for Koblitz curves,”IEEE Trans.
Comput., in press.

[30] T. Güneysu, T. Kasper, M. Novotný, C. Paar, and A. Rupp, “Crypt-
analysis with COPACOBANA,”IEEE Trans. Comput., vol. 57, no. 11,
pp. 1498–1513, Nov. 2008.

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 127

128 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

SESSION

REGULAR PAPERS

Chair(s)

PROF. RYAN KASTNER

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 129

130 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

Hardware Architecture for Simultaneous Arithmetic Coding and
Encryption

Amit Pande1, Joseph Zambreno2, and Prasant Mohapatra1
1Department of Computer Science, University of Calofirnia, Davis, CA, USA

2Electrical and Computer Engineering, Iowa State University, IA, USA
email: amit@cs.ucdavis.edu, zambreno@iastate.edu, prasant@cs.ucdavis.edu

Abstract— Arithmetic coding is increasingly being used in
upcoming image and video compression standards such as
JPEG2000, and MPEG-4/H.264 AVC and SVC standards.
It provides an efficient way of lossless compression and re-
cently, it has been used for joint compression and encryption
of video data. In this paper, we present an interpretation of
arithmetic coding using chaotic maps. This interpretation
greatly reduces the hardware complexity of decoder to use
a single multiplier by using an alternative algorithm and
enables encryption of video data at negligible computational
cost. The encoding still requires two multiplications. Next,
we present a hardware implementation using 64 bit fixed
point arithmetic on Virtex-6 FPGA (with and without using
DSP slices). The encoder resources are slightly higher than
a traditional AC encoder, but there are savings in decoder
performance. The architectures achieve clock frequency of
400-500 MHz on Virtex-6 xc6vlx75 device. We also advocate
multiple symbol AC encoder design to increase through-
put/slice of the device, obtaining a value of 4.

Keywords: arithmetic coding, hardware implementation, chaotic
maps, multimedia encryption

1. Introduction
The state-of-the-art video coding standards such as SVC

(technically Annex G of MPEG-4/H.264 AVC) [1] is been
widely adopted in current video application systems due to
its outstanding coding performance, and scalable properties
which allow deployment in fluctuating channel conditions
and to serve heterogeneous clients. There are three entropy
coding tools adopted in H.264/SVC. One is Context-based
Adaptive Binary Arithmetic Coding (CABAC), based on
arithmetic coder. The other are Context-based Adaptive
Variable Length Coding (CAVLC) and Exp-Golomb coding
(to code syntax elements). CABAC can achieve averaged
bit-rate savings of 9% to 14% at the cost of higher com-
putational complexity in comparison to CAVLC. However,
the increased computational complexity and strong data
dependencies significantly restrict the throughput of CABAC
decoder. This restriction becomes a challenge in hardware
design of CABAC coder making CAVLC more suitable for
decoding in low-power embedded systems.

Arithmetic coding is a data compression technique that
encodes data by creating a code string which represents a
fractional value on the interval [0, 1). When a string is com-
pressed using arithmetic coder, frequently-used characters
are stored with fewer bits and not-so-frequently occurring
characters are stored with more bits, resulting in fewer bits
used in total [2]

This paper discusses arithmetic coding from a slightly
different perspective. Recent work has established how arith-
metic coding can be viewed as an iteration on piece-wise
linear chaotic maps [3], [4]. Further, many researchers have
studied the use of arithmetic coding for joint encryption
and compression [5], [6], [7]. For example- In [8], a chaos-
based adaptive arithmetic coding technique was proposed.
The arithmetic coder’s statistical model is made varying in
nature according to a pseudo-random bitstream generated
by coupled chaotic systems. Many other techniques based
on varying the statistical model of entropy coders have been
proposed in literature, however these techniques suffer from
losses in compression efficiency that result from changes
in entropy model statistics and are weak against known
attacks [9]. Recently, Grangetto et al. [5] presented a Ran-
domized Arithmetic Coding (RAC) scheme which achieves
encryption by inserting some randomization in the arithmetic
coding procedure at no expense in terms of coding efficiency.
RAC needs a key of length 1-bit per encoded symbol. Kim
et al. [6] presented a generalization of this procedure, called
as Secure Arithmetic Coding (SAC). The SAC coder builds
over a Key-Splitting Arithmetic Coding where a key is used
to split the intervals of an arithmetic coder, adding input and
output permutation to increase the coder’s security.

In this paper, we extend this discussion to hardware
community - to study the hardware optimizations in design
of such schemes. Particularly, we study the implementation
of arithmetic coding using piece-wise chaotic maps [3], [4].
As we shall study, this implementation has lower decoder
requirements than the commercial implementations. Apart
from these, chaotic maps have also been used in cryptogra-
phy and for pseudo random number generation [10].

The reduced decoding efficiency of arithmetic coding al-
lows it to trend towards the low computational complexity of
Huffman coders, allowing BAC to enter embedded systems
market. The aspects of context-modeling and adaptation

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 131

Fig. 1: Block diagram of CABAC coder

and renormalization, as done in CABAC coder are beyond
the scope of this work, where we focus on architectural
optimizations on encoder and decoder processes.

Why another design?
An inquisitive question which comes to mind at this

point is the need for hardware implementation of chaotic
maps. When arithmetic coding is already been done using
traditional ways, why do we need yet another architecture?

The motivation to develop a hardware architecture for
chaotic maps iterations is summarized below:

1) Arithmetic coding done using chaotic maps is asymmet-
ric in nature, (explained in later sections) making the
decoder architecture simpler than existing framework
for AC. The reduced decoder complexity is highly
desired to reduce the power and computational require-
ments of video decoding in low power mobile devices.
Current mobile video profiles use Huffman coding
instead of Arithmetic coding to reduce the computa-
tional complexity, which leads to average compression
inefficiency of 15%, particularly poor performance in
coding events with symbol probabilities greater than
0.5, due to the fundamental lower limit of 1 bit/symbol
on Huffman coding [11].

2) Recently, arithmetic coding based encryption schemes
have been proposed in research literature for joint
compression and encryption purposes [7], [12]. It would
be interesting to integrate both coding and encryption
using chaotic maps at a computational complexity lower
than existing implementations. This motivates the need
of coding and encryption architecture using chaotic
maps.

3) Chaotic maps can be used to Pseudo-Random Number
Generation (PRNG) [10] and stream ciphers [13], apart
from arithmetic coding. These have been found to be
light weight and simple.

Contributions
The main contributions of this paper are as follows:

1) We introduce arithmetic coder architecture using
chaotic maps which has potential advantages in reduc-
ing decoder complexity and allows combined encryp-
tion.

2) We present two architectures for FPGA implementation
of the proposed scheme: one using explicit multipliers

from DSP48E1 slices on Virtex-6 FPGA, while other
using reconfigurable multipliers and mapping to hard-
ware 6-LUTs.

3) We advocate the multiple-symbol encoding which
makes sense for throughput/ area.

Scope of the work
In the regular coding mode, prior to the actual arithmetic

coding process the given binary data enters the context
modeling stage, where a probability model is selected such
that the corresponding choice may depend on previously
encoded syntax elements. Then, after the assignment of a
context model, the bin value along with its associated model
is passed to the regular coding engine, where the final stage
of arithmetic encoding together with a subsequent model
updating takes place (see Figure 1). We shall restrict the
focus of further discussions on the final arithmetic encoding
(and decoding) stages of CABAC coder.

2. Literature Review
Adaptive minimum-redundancy (Huffman) coding is ex-

pensive in both time and memory space, and is handsomely
outperformed by adaptive AC besides the advantage of AC in
compression effectiveness [14]. FenwickŠs structure requires
just n words of memory to manage an n-symbol alphabet,
whereas the various implementations of dynamic Huffman
coding [15], [16] consume more than 10 times as much
memory [17].

Hardware architectures have been proposed in research
literature for arithmetic coding using CACM model [18] or
related works [14], [19], [20]. CABAC or Context-Adaptive
Binary Arithmetic Coder is used in H.264 AVC and SVC.
The critical path of coder is the multiplier, which is removed
in CABAC and recent implementations [21], [22], [23] by
using a look-up approximation (leading to some compression
inefficiency).

There has been little work [24], [25], however, in im-
plementation of chaotic maps on hardware. However, the
recent trend toward joint compression and encryption using
chaotic maps and arithmetic coding for low power embedded
systems would be greatly complimented by an efficient
hardware architecture, as presented in this paper.

Binary Arithmetic Coding (BAC)
Binary arithmetic coding is based on the principle of re-

cursive interval subdivision. We start with an initial interval

132 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

[0,1) and keep dividing it into subintervals based on the
probability of incoming symbols. A good detailed overview
of BAC is presented in [14]

3. How do we interpret AC using Chaotic
Maps?

A description of equivalence between binary arithmetic
coding and chaotic maps is given in earlier works [4], [7].
In this section, we gave a brief overview of N-alphabet
arithmetic coding to familiarize the reader with coding using
piece-wise linear chaotic maps.

Scenario: We have a stringS = x1, x2, ...xM consisting
of M symbols (N unique symbols) to be encoded. The
probability of occurrence of a symbolsi, i ∈ 1, 2, ...n is
given bypi such thatpi = Ni/N andNi is the number of
times the symbolsi appears in the given stringS.

Description: Consider a piece-wise linear map (ρ) with
the following properties:

• It is defined on the interval[0, 1) to [0, 1) i.e.

ρ : [0, 1) −→ [0, 1)

• The map can be decomposed into N piece-wise linear
parts̺k i.e.

ρ =

N
⋃

k=1

̺k

• Each part̺ k maps the region on x axis[begk, endk) to
the interval[0, 1) i.e.

̺k : [begk, endk) −→ [0, 1]

The last two propositions lead to:

N
⋃

k=1

[begk, endk) = [0, 1)

• The map̺k is one-one and onto i.e.:

∀x ∈ [begk, endk)

∃y ∈ [0, 1) : y = ̺k(x), and

∀y ∈ [0, 1)

∃x ∈ [begk, endk) : ̺k(x) = y

• ρ is a many-one mapping from[0, 1) to [0, 1). This
implies that the decomposed linear maps (̺k) don’t
intersect each other i.e.

∀(k 6= j) : [begk, endk)
⋂

[begj , endj) = 0

• Each linear map̺ k is associated uniquely with one
symbolsi. The mapping̺ k −→ si is defined arbitrarily
but one-one relationship must hold.

• The valid-input width of each map (̺k), given by
(endk − begk) is proportional to a probability of oc-

Fig. 2: A sample piece-wise linear map for arithmetic coding
like compression (a) The entire map is shown (ρ) (b) A
single linear part of the map (̺k) is zoomed. It can have a
positive or negative slope depending on choice

currence of symbolsi.

endk − begk ∝ pi

⇒ endk − begk = C × pi

We recall that
∑N

k=1
(endk−begk) is same as the input

width of
⋃N

k=1
̺k = ρ, which is 1. Also,

∑N

i=1
pi = 1.

Thus, we get the value of constant C to be1.

⇒ endk − begk = pi

Figure 2 shows a sample map fulfilling these properties. Fig-
ure 2(a) shows the full map with different parts̺1, ̺2, ...̺N
present while Figure 2(b) zooms into individual linear part
̺k. The maps are placed adjacent to each other so that each
input point is mapped into an output point in the range[0, 1).

Encoding/ Decoding
The decoding process is quite simple. The encoded value

is considered as an initial valueIV . This value is iterated
over the piece-wise linear mapρ, M times to get M iterated
valuesIVi. Each value is mapped to piece-wise linear part
̺i and thus to correspondingsi.

The encoding process is done by reversing the input
string to xM , xM−1, ...x1. Each input character is mapped
to unique symbolssi and then to piece-wise linear maps
̺i. Thus, we get a sequence of piece-wise linear maps
corresponding to input string̺xM

, ̺xM−1
...̺x1

. We start
with the initial interval [0,1) and back-iterate this interval
over chaotic maps using the string̺xM

, ̺xM−1
...̺x1

to get a
final interval. The output codeword is chosen as the shortest
binary number from final interval.

Compression Efficiency and Equivalence
Arithmetic coding has been shown to be achieve Shan-

non’s limit on compression efficiency asymptotically. The

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 133

same result holds true for coding using piecewise linear maps
becauseof the following observations:

The width of final interval is given by⌈
∏N

i=1
fni

i ⌉, where
fi is the probability of occurance of symbolsi, and ni

is the frequency of occurance of symbolsi. This value
asymptotically approaches Shannon’s value for maximum
entropy []. It can be observed that while CAC scales the
codeword or initial value to map them to the intervals
corresponding to different symbols, the standard arithmetic
coder keeps the codeword constant and instead scales the
map in every iteration to find the symbol. It is immaterial -
whether one scales the map to suit the codeword or scales
the codeword to suit the map - the relative ratios remain the
same, hence output of both procedures is the same.

Use of Chaotic Maps in Encryption
[12], [7] present two different scenarios of using chaotic

maps for arithmetic encryption. The first case uses N-ary
arithmetic coding and has high cryptographic strength and
implementation cost, while the second case uses binary
arithmetic coding to encrypt data with low computational
resources. In both the cases, the choice of multiple piece-
wise linear maps to encode the input symbol is used for key
generation. This property is used for encryption, for without
knowledge of the correct map, an adversary cannot decode
the input stream correctly.

Applications
The CAC can be used as a joint compression-cum-

encryption technique for data encryption. It is particularly
beneficial for data-intensive tasks such as multimedia en-
cryption and compression and can be integrated into the
standard video compression algorithms such as JPEG2000,
JPEG, MPEG etc.

CAC can be used for full or selective encryption of
multimedia data. For full encryption, the entire volume of
multimedia data is passed through BCAC (Binary CAC)
encoder while in case of selective encryption only the
important parts of data are passed through BCAC encoder.
If we reveal the first K bits of the key publicly, then a part of
the bitstream can be decoded correctly while decoding the
entire bitstream will require knowledge of the entire key.
Thus, BCAC can be used to provide conditional access to
the multimedia content.

4. Hardware architecture
In this section, we discuss the hardware architecture for

arithmetic coding using chaotic maps, and N-ary chaotic
arithmetic encryption.

The chaotic encoder operation inverse inverse mapping of
interval [0,1) on the chaotic map according to input symbol.
For binary arithmetic coder, we have a fixed map to be
iterated in each cycle.

Figure 3(a) shows the basic architecture for coding using
chaotic maps. The control unit receives the input bit stream,
which is passed on to the chaotic map Iterator (CMI). The
control unit passes the bitstream, one symbol per cycle
(unless in the case of multiple symbol encoding, which will
be discussed later). For encoding, the initial interval passed
to CMI is [0,1), which is transmitted as the beginning (Bn)
and end (En) interval values. Both the intervals are then
iterated over CMI (using two instances of CMI), and then
the output is sorted so thatBn < En. If the difference
(Dn = En − Dn) is lower than a threshold, we need to
renormalize the encoder. The renormalization procedure for
arithmetic coding has been discussed in [14]. A similar
extension of renormalization procedure may be possible for
chaotic maps. But, for the evaluation designs considered in
this work, we have considered 64 bit encoder without any
renormalization procedure.

In case of decoding, Control Unit (CU) transmits the
coded symbol into CMI, which is then iterated over Piece-
wise linear map and reported back to CU. The CU makes
a comparison with chaotic map indicated by the key and
outputs a single bit output.

CMI has a multiplier and an adder to perform chaotic
iteration. The internal details of this operation are given
in Figure 3(b). The multiplication and addition coefficients
are obtained from a look-up table/ RAM collating the input
symbol, key value and probability value as the input address.
The Look-ed up value or a word is demultiplexed to obtain
the multiplication and addition coefficients. This option can
work fine for at most binary case, and for the case wherep
value is limited to fixed precision, say 8 bits. Such fixed pre-
cision approximations have been introduced in CABAC [11],
however it leads to approximation of results. Alternatively,
we can use a multiplexer which can implement look-up using
physical circuits to compute the return values. The second
approach has been implemented in this work, as it allows
more flexibility in design and accuracy in computation.

For implementation, the input and output intervals to the
Chaotic Map Iterator are represented in 64 fixed point (0 bits
integer and 64 bits fraction, shortly I.F0.64) arithmetic. The
symbol probability has been quantized to8 bits (I.F 0.8).

Binary Arithmetic Coder (BAC) architecture
To implement BAC in proposed architecture, we target a

design with processes 1 symbol (1 bit in this case) per cycle.
The CMI has 1 bit symbol input, 8 bit symbol probability
and no bits for choice of chaotic map (there is only one
map in this case). The 9 bit lookup can be implemented
using a 512 words RAM or Look-up Table. One word is 16
bits - 8 bits each for multiplication and addition coefficients.
Alternatively, this can be implemented using a multiplexer
and hardware adder/ subtracter to obtain the coefficients.
The later approach was used for BAC implementation. The
design was synthesized in Xilinx Virtex-6 XC6VLX75t

134 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

Fig. 3: Generalized Hardware Architecture for Chaotic Maps. (a)Generalized architecture and (b) Circuit details for Chaotic
map Iterator

FPGA using Xilinx ISE Design Suite 12.0 environment. The
same target FPGA, which is one of the low end Virtex-6
family member is used in all synthesis/ translate/ map/ place
and routes.

The two 64x8 bit multiplications are mapped in hardware
into 10 DSP48E slices. A slice usage of 302 was obtained
and the design achieved a clock frequency of 510 MHz, with
one symbol per clock cycle. The optimized implementation
of multiplication, using carry-chains of FPGA fabric was
synthesized to remove the use of DSP slices. This implemen-
tation requires 1585 slices and achieves a clock frequency
of 500 MHz. The throughput of this implementation is 1 bit
per cycle with a 500 MHz clock, i.e. 500 Mbps.

Binary Chaotic Arithmetic Coder and Encryp-
tion (BCAC) architecture

The architecture for BCAC differs from binary arithmetic
coder in the sense that, the choice of chaotic map is made
based on a key value, and is not precomputed. For this
implementation, the CMI has 1 bit symbol input, 8 bit
symbol probability and 3 bits for choice of chaotic map (for
binary caseN = 2, hence number of different chaotic maps
is N2N = 8. The 12 bit lookup can be implemented using
a 512 words RAM or Look-up Table, with 16 bits word.
Alternatively, we used 8-to-1 multiplexer to obtain the coeffi-
cients corresponding to a key, each cefficient being generated
based on value in Table 1 in [7]. The implementation on
target FPGA gave a clock frequency of 500 MHz, utilizing
321 slices and 10 DSP48E1 slices (which have optimized
multiplier and accumulator operation implemented in VLSI).
Mapping these multiplication to FPGA logic increased the
slice usage to 1474, without any change in achievable clock
frequency.

The BCAC decoder hardware utilization was 173 slice
LUT with 5 DSP slices (806 slice LUTs with LUT mul-
tiplier) with a clock frequency of 510 MHz (500 MHz).
The 64x8 bit multiplier is implemented by ISE into 5
DSP slices. However, the same multiplier can be optimized
and implemented without hardware multipliers using other

multiplier such as square root multiplier, reconfigurable
constant multipliers etc. The hardware requirements are ba-
sically dependent on size of Look-up logic which increases
exponentially with increase of N. The throughput of this
implementation is 1 bit per cycle with a 510 MHz clock,
i.e. 510 Mbps. To consider the area effectiveness of this
design, we consider throughput per slice, with the second
implementation where we implement multiplication in LUTs
rather than using DSP48E1 slices present in device. The
throughput/ slice for this design is obtained as 322 Kb/slice.

Cost of encryption

Comparing the BAC and BCAC architectures, we obtain
a zero latency, same throughput and little hardware overhead
(20 slice LUTs) in implementing this encryption scheme
against AES or other schemes which have significant over-
head. For instance,Chang et al. [26] reports AES implemen-
tation using 156 slices, 2 Block RAMs to obtain a lower
clock of 306 MHz.

To increase the throughput per slice for a bitstream, we
intuitively consider the dimension of increasing the number
of symbols in dictionary used in arithmetic coding. For
example - considering 3 or 4 symbols in the dictionary.

N-ary Chaotic Arithmetic Coder and Encryp-
tion (NCAC) coding

N-ary arithmetic encryption using the entire possible
key space quickly turns out-of-bounds for a FPGA device.
Moving from 2 to 3 piece-wise linear maps, we have a
tremendous increase in key-size. We implemented tri-nary
CAC coder in FPGA device to obtain a device usage of
492 slices and 10 DSP48E slices (1800 slices without
DSP slices), but the achievable clock frequency dropped
to 127 MHz. The tri-nary decoder hardware utilization was
419 slice LUT with 5 DSP slices (1052 slice LUTs with
LUT multiplier) with a clock frequency of 442 MHz (369
MHz). The hardware requirements are basically dependent
on size of Look-up logic which increases exponentially with

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 135

Fig. 4: N-ary arithmetic coding and encryption architectures:
Comparative performance. The # of slices, # of DSP slices
(x100), clock frequency (MHz) and throughput per slice
(x1000) are reported in the figure. It can be observed that
increasing the size of dictionary significantly reduces the
throughput. The figure is drawn by scaling the through-
put/slice legend to consider the fact that a 4 symbol dic-
tionary will require half the words as a 2 symbol dictionary.

increase of N (N|!2N), making it infeasible to scale-up the
throughput/slice.

A simple way to restrict this bandwidth explosion is to
used the algorithm for encryption proposed in [12]. They
restrict the keyspace and instead use only a small fragment
of keys from the entire range, for encryption. However,
the approach presented in [12] has other computationally-
inefficient parts.

The results are shown in Figure 4. The number of slice
LUTs is reported directly, number of DSP slices is scaled
directy and clock frequency is measured in MHz. The
throughput comparison is tricky because using a 4-symbol
dictionary (4-ary coding) will lead to reduced bitstream
(around 50% reduction) than the bitstream generated by
2-symbol dictionary. Thus, to compare these values on a
graph, we multiply each throughput withN value (2 for
binary) to indicate relative throughput. It can be observed
that increasing the size of dictionary significantly reduces the
throughput, even after such considerations due to exponential
increase in hardware usage for key implementation.

Although our experiment to scale to multiple-symbol
dictionary failed, the reason is not the same as for traditional
designs for arithmetic coding [11]. Rather, the key explosion
is the main reason for such limitations. We next consider in-
creasing the system throughput by encoding multiple binary
symbols in a single pass. This approach is different than
the previous approach in the sense that multiple probability
values are not involved.

Multiple symbol per cycle arithmetic coding
Let us consider the case of arithmetic coding where we

want to encode two symbols in a single iteration of chaotic
map. In this case, the chaotic map will spit into multiple
(four instead of two) piece-wise maps. Arithmetic coding
with encryption is still going to suffer with band-width
expansion, but we observe that the bandwidth expansion is
much less (or order of2N) instead ofN2N . Consider, for
example the case where we want to encode two symbols
together (‘01’ instead of ‘0’ and ‘1’ in two separate itera-
tions) using BAC. In this case, the resultant chaotic iterator
will have 4 (instead of 2) piece-wise linear maps and their
precision of implementation will be increased (16 instead of
8 bits). This analysis can be extended to three, four or more
symbols.

In this case, the increase is caused by increase in fixed
point precision of coefficients (and hence multipliers and
adders), and increase in number of piece-wise maps. How-
ever, against the case of MCAC where there was a band-
width explosion due to increase in key size, we observe a
considerable different result of implementation on Virtex-6
device. These results are reported in Figure 5. The results are
interesting to note, because contrasting with the traditional
notion of one-symbol per cycle, we show that we can scale
upto 4 symbols per cycle and achieve a higher throughput
per slice. As we go from 2 to 4 case, we observe a increase
in throughput which is then checked by the exponential
increase in hardware resources caused by multiple sym-
bols use. This value of 4 cannot be a device constraint
(restrictions due to finite area or size of device) because
the pure LUT mapping based implementation requires only
5480 slices out of 43000 slices present in target xc6vls75
device. The highest throughput achievable is 431 Kbits per
slice for 4 symbols case.

For the sake of brevity, we have restricted our discussion
in last sections to NCAC and multiple symbol BAC encoder,
but the same trend follows for the decoder also.

5. Conclusion
In this paper, we presented architecture for simultaneous

coding and encryption using chaotic maps. After presenting
the hardware requirements and computations involved in
chaotic maps, we mapped these designs into a Virtex-6
FPGA to obtain a performance analysis on real hardware.
We investigated the key-explosion problem which avoided
the implementation of simultaneous coding and encryption
using larger dictionaries. However, we found that the hard-
ware resource explosion is not much in case of multiple
character coding using BAC (indicating 5 symbols be en-
coded simultaneously). This work is one of the earliest
hardware implementation of chaotic maps, first reported
implementation of chaotic maps for simultaneous coding and
encryption. It achieves encryption at insignificant hardware

136 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

Fig. 5: Multiple symbols per cycle (BAC): Comparative
performance.The # of slices, # of DSP slices (x10), clock
frequency (MHz) and throughput per slice (x1000) are
reported in the figure. It can be observed that 4 symbols
per cycle achieve highest throughput before LUT explosion
due to increased precision and maps.

cost, against use of encryption ciphers such as AES which
require separate modules for encryption operation.

We are looking for, and encourage other readers also for
future work in two directions:

1) Looking for ways to solve key-explosion problem using
circuit level techniques.

2) Incorporating re-normalization and context to this en-
coder, so that it can be added to CABAC or other
encoders.

Acknowledgement
This research is supported by the National Science Foun-

dation under Grant #1019343 to the Computing Research
Association for the CIFellows Project.

References
[1] H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the scalable

video coding extension of the H. 264/AVC standard,”IEEE Transac-
tions on Circuits and Systems for Video Technology, vol. 17, no. 9,
pp. 1103–1120, 2007.

[2] G. Langdon and J. Rissanen, “Compression of black-white images
with arithmetic coding,”IEEE Trans. Communications, vol. 29, no. 6,
pp. 858–867, Jun 1981.

[3] M. Luca, A. Serbanescu, S. Azou, and G. Burel, “A new compression
method using a chaotic symbolic approach,” inProc. IEEE Commun.
Conf. Citeseer, 2004, pp. 3–5.

[4] N. Nagaraj, P. Vaidya, and K. Bhat, “Arithmetic coding as a non-
linear dynamical system,”Communications in Nonlinear Science and
Numerical Simulation, vol. 14, no. 4, pp. 1013–1020, 2009.

[5] M. Grangetto, E. Magli, and G. Olmo, “Multimedia selective en-
cryption by means of randomized arithmetic coding,”IEEE Trans.
Multimedia, vol. 8, no. 5, pp. 905–917, Oct. 2006.

[6] H. Kim, J. Wen, and J. Villasenor, “Secure arithmetic coding,”IEEE
Trans. Signal Processing, vol. 55, no. 5, pp. 2263–2272, May 2007.

[7] A. Pande, J. Zambreno, and P. Mohapatra, “Joint video compression
and encryption using arithmetic coding and chaos,” inIEEE Interna-
tional Conference on Internet Multimedia Systems Architecture and
Application, 2010.

[8] R. Bose and S. Pathak, “A novel compression and encryption scheme
using variable model arithmetic coding and coupled chaotic system,”
IEEE Trans. Circuits and Systems I, vol. 53, no. 4, pp. 848–857, April
2006.

[9] G. Jakimoski and K. Subbalakshmi, “Cryptanalysis of some multime-
dia encryption schemes,”IEEE Trans. Multimedia, vol. 10, no. 3, pp.
330–338, April 2008.

[10] T. Stojanovski and L. Kocarev, “Chaos-based random number
generators-part I: analysis [cryptography],”Circuits and Systems I:
Fundamental Theory and Applications, IEEE Transactions on, vol. 48,
no. 3, pp. 281–288, 2002.

[11] D. Marpe, H. Schwarz, G. Blättermann, G. Heising, and T. Wieg,
“Context-based adaptive binary arithmetic coding in the h.264/avc
video compression standard,”IEEE Trans. Circuits and Systems for
Video Technology, vol. 13, pp. 620–636, 2003.

[12] K.-W. Wong, Q. Lin, and J. Chen, “Simultaneous arithmetic coding
and encryption using chaotic maps,”IEEE Trans. Circuits and
Systems, vol. 57, pp. 146–150, February 2010. [Online]. Available:
http://dx.doi.org/10.1109/TCSII.2010.2040315

[13] S. Lian, J. Sun, J. Wang, and Z. Wang, “A chaotic stream cipher and
the usage in video protection,”Chaos, Solitons & Fractals, vol. 34,
no. 3, pp. 851–859, 2007.

[14] A. Moffat, R. Neal, and I. Witten, “Arithmetic coding revisited,”ACM
Transactions on Information Systems (TOIS), vol. 16, no. 3, pp. 256–
294, 1998.

[15] G. Cormack and R. MORSPOOL, “Algorithms for adaptive Huffman
codes,”Information Processing Letters, vol. 18, no. 3, pp. 159–165,
1984.

[16] J. Vitter, “Design and analysis of dynamic Huffman codes,”Journal
of the ACM (JACM), vol. 34, no. 4, pp. 825–845, 1987.

[17] A. Moffat, N. Sharman, I. Witten, and T. Bell, “An empirical eval-
uation of coding methods for multi-symbol alphabets,”Information
Processing & Management, vol. 30, no. 6, pp. 791–804, 1994.

[18] I. Witten, R. Neal, and J. Cleary, “Arithmetic coding for data com-
pression,”Communications of the ACM, vol. 30, no. 6, pp. 520–540,
1987.

[19] P. Howard and J. Vitter, “Analysis of arithmetic coding for data
compression,”Information Processing & Management, vol. 28, no. 6,
pp. 749–763, 1992.

[20] G. Langdon, “An introduction to arithmetic coding,”IBM Journal of
Research and Development, vol. 28, no. 2, pp. 135–149, 1984.

[21] R. Osorio and J. Bruguera, “Arithmetic coding architecture for H.
264/AVC CABAC compression system,” 2004.

[22] T. Chuang, Y. Chen, Y. Chen, S. Chien, and L. Chen, “Architecture
Design of Fine Grain Quality Scalable Encoder with CABAC for H.
264/AVC Scalable Extension,”Journal of Signal Processing Systems,
vol. 60, no. 3, pp. 363–375, 2010.

[23] C. Lo, S. Tsai, and M. Shieh, “Reconfigurable architecture for entropy
decoding and inverse transform in H. 264,”Consumer Electronics,
IEEE Transactions on, vol. 56, no. 3, pp. 1670–1676, 2010.

[24] T. Addabbo, M. Alioto, A. Fort, S. Rocchi, and V. Vignoli, “Low-
hardware complexity prbgs based on a piecewise-linear chaotic map,”
Circuits and Systems II: Express Briefs, IEEE Transactions on, vol. 53,
no. 5, pp. 329 – 333, May 2006.

[25] A. Pande and J. Zambreno, “Design and hardware implementation
of a chaotic encryption scheme for real-time embedded systems,” in
Signal Processing and Communications (SPCOM), 2010 International
Conference on. IEEE, 2010, pp. 1–5.

[26] C.-J. Chang, C.-W. Huang, K.-H. Chang, Y.-C. Chen, and C.-C. Hsieh,
“High throughput 32-bit aes implementation in fpga,” inCircuits and
Systems, 2008. APCCAS 2008. IEEE Asia Pacific Conference on, 30
2008.

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 137

138 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

SESSION

REGULAR SESSION - RECONFIGURABLE AND
EVOLVABLE HARDWARE ARCHITECTURES

Chair(s)

Dr. ERIC STAHLBERG

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 139

140 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

Heterogeneous Accelerated Bioinformatics –

Perspectives for Cancer Research

E. Stahlberg
1
, T. Steinke

2
, M. C. Smith

3
, S. Chandrasekaran

4
, B. Chapman

4

1
SAIC-Frederick, Frederick, Maryland

2
Zuse Institute Berlin, Berlin Germany

3
Holocombe Department of Electrical and Computer Engineering, Clemson University,

Clemson, South Carolina
4
Department of Computer Science, University of Houston, Houston, Texas

Abstract – The demand for even higher performance in

bioinformatics data analysis continues to grow rapidly as the

volumes of data generated by next generation sequencing

equipment soar. Traditional acceleration techniques

historically used for faster bioinformatics application will

individually be insufficient to meet the demand and increased

analysis complexity, requiring an integrated heterogeneous

accelerated computing environment. Current accelerated

computing programming environments including

reconfigurable computing technologies as well as multicore

technologies are reviewed in the context of bioinformatics

applications, highlighting opportunities and limitations of

these technologies. Requirements for successful

heterogeneous accelerated computing environments

supporting bioinformatics applications are presented.

Keywords: Bioinformatics, Accelerated Computing, Next

Generation Sequence Analysis

1 Introduction

Bioinformatics as a term continues to evolve and defy precise

definition. Very generally, bioinformatics is simply analyzing

information related to biology, typically involving data about

the genomes and proteins. More recently, as instrumentation

has enabled deeper and more precise probes of fundamental

biological processes, bioinformatics encompass not only

fundamental information about genomes and proteins, it

encompasses information about a growing list biological

intermediate (e.g. RNA, metabolites, etc.), processes and the

interactions and relationships among them. This

experimentally-enabled data revolution is only adding to the

computational challenges and opportunities as more and more

information is added to the growing global information

database.

For the purposes of this paper, a narrowed segment of the

bioinformatics spectrum receives our focus and attention. Next

Generation Sequencing (NGS), really a generalized term that

encompasses experimental approaches utilizing massively

parallel (simultaneous) sequencing, creates some very

important opportunities for accelerated computing, and

reconfigurable computing in particular. The popularity of

these experimental approaches is driven by the relatively low

cost to sequence large volumes of DNA sequences, even

including entire genomes. It is this comparatively low cost

and high coverage that makes NGS sequencing an important

step forward in the direction of personalized medicine, while

also providing a tool to probe even more deeply into

fundamental biological processes for cancer. The challenge is

that such systems generate enormous amounts of information,

with a single sequencer able to generate a terabyte or more of

data each day already in 2009 [1].

2 Next Generation Sequencing

2.1 New Demands for Sequence Analysis

Reliable analysis involving Next Generation Sequencing

(NGS) sequence data requires addressing the daunting

challenge of using very large numbers of small pieces of

variable quality data to provide supporting evidence to infer

more complex biological behavior. A very recent review of

NGS software has been prepared by Bao et al, providing an in

depth overview of the common applications, their algorithms

and relative performance [2]. With a very large number of

available applications, predominant challenges and

applications of immediate interest are discussed in this paper.

Traditional sequencing was able to deliver comparatively long

sequences in smaller volumes than NGS, albeit more

expensively. In contrast, current NGS is characterized by the

simultaneous generation of extremely large volumes of

comparatively short sequences of nucleotides, generally called

tags. The need for extremely large numbers of tags is a direct

result of the relatively short size of the tags. Tags range in size

from a few tens of nucleotides to several hundred in length. In

comparison to the size of the human genome for example

(around 4 billion nucleotides), each tag contains around only

0.00001 percent of the information in the genome. As a result,

extremely large numbers (tens of millions) of tags are required

to resolve meaningful information using this technique.

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 141

A second challenge facing NGS sequencing is a result of the

experimental technique itself. Massively parallel sequencing

involves probing the DNA material at or near the molecular

level using reliable but not absolutely reliable chemical

processes and physical probes (optical and electronic). As a

result, the quality of the information in the sequence tags can

be highly variable as small changes in preparation, processing

and probe analysis mount in different combinations. This

characteristic only serves to further increase the need for ever

larger number of tags to statistically compensate for errors in

individual tags.

2.2 Accelerated Computing in Bioinformatics

Accelerated computing in bioinformatics is not new. A

compendium of illustrative applications of parallel computing

for bioinformatics has been compiled by Zomaya in 2006[3].

Many high-performance and customized systems have been

developed over time to address the computational bottlenecks

in taking experimental data and translating it to biological

understanding. Examples include such systems from MasPar

and TimeLogic [4], each providing accelerated solutions to

sequence matching and comparison. MasPar employed large

numbers of parallel processes to achieve performance in terms

of high-throughput for sequence matching. In contrast,

TimeLogic employed FPGA technology to develop card-based

products to achieve great acceleration in sequence comparison

speed relative to standard CPU processors [5].

Among many areas, many of the accelerated solutions focused

on improving performance of sequence comparison, most

prevalently using the BLAST (Basic Local Alignment Search

Tool) algorithm [6]. Other commonly employed algorithms

include Smith-Waterman [7] for optimized local alignment,

Needleman-Wunsch [8] for optimized global alignment, and

Hidden Markov Model [9] matching. Many examples [10]

[11] can be found where accelerated computing (primarily

FPGA-based systems) has been used to provide significant

acceleration on a variety of different systems.

Multicore parallel computing has also played an important

role in providing necessary throughput for these algorithms.

Whether implemented in the form of a commodity cluster or a

multiprocessor, multicore server, multicore CPUs have

provided an affordable alternative to custom acceleration

solutions. Not surprisingly, these solutions carry the bulk of

the workload where the standard algorithms are employed.

2.3 Challenges for NGS Sequence Analysis

Unfortunately, though important in their own right, these past

success cases for accelerated and parallel computing are

inadequate for the challenges posed in NGS analysis.

Primarily driven by the limited length of the tag sequence,

sheer volume of tags and complicated by the limited reliability

of any given tag, the simple processing of each tag through

these standard algorithms is simply unable to meet the

simultaneous throughput and accuracy demands of NGS

sequence analysis. A new class of algorithms and

computationally demanding applications has emerged,

presenting tremendous opportunity for potential acceleration

across the heterogeneous acceleration landscape.

2.4 Example Applications

2.4.1 TopHat

TopHat is a popular tool for conducting analysis of sequences

of messenger RNA where splice junctions are not all

previously known. This program maps known reads to a

reference genome, while enabling mapping even if a new

splice junction may be required. A comparatively fast

application, the program maps reads at a rate of 2.2 million

per CPU hour. [12]

2.4.2 BWA

Burrows-Wheeler Alignment tool (BWA) is used to efficiently

align short sequence reads against a single reference sequence.

Using the Burrows-Wheeler transform, allowing for matches

of short sequences where gaps and mismatches can occur

between read and target sequence. The program reports

performance improvements of tenfold relative to earlier

generation hash-table based methods. [13] This application is

available as an open source application.

2.5 Accelerated Computing Options for NGS

Current systems are moving towards a heterogeneous

architecture with a combination of traditional processors and

accelerators. This paradigm shift will prove to be vital to

provide great performance improvements for bioinformatics

workload. This shift will also be essential to meet the power

demands while solving the increased data analysis

complexities, fast growth of biological databases among

several other complexities prevalent in the bioinformatics

domain. There are many popular algorithms such as

Needleman-Wunsch [8], ClustalW [14] that are

computationally intensive and it would be ideal to map them

on a platform that supports both thread-level and data-level

parallelism.

2.5.1 FPGA-based Application Environments

For the acceleration of bioinformatics applications with

reconfigurable FPGA devices, various products past and

present can be classified according their principal architecture

of integrating the reconfigurable device into the system and

the memory model presented to the application developer.

The most common hardware integration is similar to GPGPU

platforms where a FPGA-based module is connected via a

PCIe link to a host (GiDEL, Nallatech). A more advance

integration is realized through in-socket solutions where the

142 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

connection is made via a CPU socket (Convey, XtremeData,

DRC), or proprietary interconnects (SRC H Map, SGI

Numalink, Cray Rapid Array Interconnect). In the advanced

integration architectures, a memory model with a logical

common address space and subsequently a comfortable

programming environment can be implemented whereas a

similar programming environment in PCIe based accelerator

platforms is not known.

FPGA acceleration implies certain aspects that are unique for

the reconfigurable computing sector and are not represented

in manycore or GPGPU computing environments. FPGA-

based computing requires, from the beginning, a sufficient

understanding of the underlying hardware technology whereas

working on platforms with standard CPUs more ignorance can

be tolerated due to the optimization capabilities of available

compilers. Nevertheless, there is progress to make FPGAs

like software programmable devices for application

developers by using high-level languages.

Reconfigurable computing with FPGA-based platforms offer

unique features for bioinformatics applications compared to

other processing devices:

• The processing resources for logical and mathematical

operations can be adapted to accuracy requirements of

algorithms and operands. Any bit-width representation can

be used, not only the IEEE-conform set of data types

supported by high-level languages and standard CPUs (32

or 64 bit wide representations
1
). This improves resource

utilization and enables energy efficiency.

• Bandwidths to the internal memory of 1.3 TiB/s up to 2.5

TiB/s are implemented [15], .e.g. compared to 45 GiB/s to

local cache on Nehalem CPU. External theoretical

memory bandwidth to DDR3 type memory is substantially

lower whereas the total specified transceiver bandwidth is

an order of magnitude higher than for standard CPUs
2
.

• Due to the low clock rate the power consumption of a

FPGA device itself is lower compared to GPU and

standard CPU devices.

FPGA platforms become popular in bioinformatics as the

number of logical building-blocks increases to a level that

computationally demanding functional kernels could be

implemented on such a device. Probably the most famous

example is the Smith-Watermann algorithm to perform a local

sequence alignment. Recently, Convey published performance

results of their Smith-Waterman implementation on Convey

HC-1 and HC-1ex platforms. For a non-disclosed test case, a

1
 The C ISO standard 1999 supports bit-fields in structures but

is among other drawbacks that are not portable
2
 For Xilinx Virtex 5 FPGA 48 GiB/s are specified as

theoretical bandwidth to DDR3 SDRAM [1]

performance of 1603 GCUPS
3
 (HC-1ex) and 688 GCUPS

(HC-1) are reported, respectively, and this translates to a

performance improvement compared to a SSE2

implementation on 8 core Nehalem of 50x and 20x [17].

Traditionally, implementations for an FPGA are made by a

circuit design approach which is common with the design of

ASIC or micro-controllers. This approach and consequential

naming conventions and tool chains are developed for the

domain of hardware design specialists.

With the availability of increasingly larger FPGA devices, the

demand for FPGA program development tools for non-

hardware specialists becomes a strategic question. Today, a

number of so called “C-to-HDL” tools are available, both

commercially as well as non-commercially, with a different

range of supported FPGA platforms.

In this paper we take the view of an application programmer

and focus our discussion on the software approach of using

FPGAs for bioinformatics application acceleration.

Specifically, we review three approaches offered by tool and

platform vendors differing in their objectives and their

required level of expertise. The first approach involves the

“C-to-HDL” route to implement an algorithm on a FPGA

device. In the second approach, the power of reconfigurable

computing is made accessible through advanced compiler

interfaces. The third approach uses customized software

libraries to expose HDL designs developed by circuit-design

experts at the software level and to hide any hardware

dependencies from the application developer.

High-Level Language Approach

Easy programmability to achieve productivity is the key factor

to adopt any processor technology. This holds in particular for

the FPGA accelerator technology and can be accomplished by

using high-level language tools. Over the last years, progress

is made to improve robustness, performance and portability

although not unsurprisingly at the same level as expected as

known from compiler suites for standard CPUs.

There are several commercial and research based tool chains

available to ease the programming process of mapping

applications to accelerators. For example some of the

commercial solutions include Impulse-C from Impulse

Accelerated Technologies [18], C2H, from Altera [19] Forte

Cynthesizer [20], PICO Express from Synfora [21] Mitrion-C

from Mitrionics [22], AutoESL from Xilinx [23] BlueSpec

Compiler from BlueSpec [19], CARTE from SRC Computers

[25].

Some of the research-based toolsets include DEFACTO [34],

SPARK [27], ROCCC [28] and DRESC [29]. Discussing few

3
 Giga Cell Updates Per Second, performance of computing

the matrix in the dynamics programming algorithm

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 143

of these solutions, (DEFACTO) [34] combines parallelizing

technology with commercially available HDL tools. The

challenge is to understand how much and what kind of

transformations must be applied and the metrics that would be

suitable to evaluate the design. The Riverside Optimizing

Compiler for Configurable Computing (ROCCC) [28] is a C-

based compiler that generates RTL-VHDL for implementing

algorithms on FPGAs. This approach requires lot of effort to

write the code in subsets of C. Many features of C are not

supported such as pointers and conditional expressions.

Moreover ROCCC supports specific kernels. SPARK is

another C to VHDL compiler. It is particularly targeted to

multimedia and image processing applications. SPARK

requires a good hardware knowledge and considerable

designer input, and does not always generate synthesizable

VHDL. The delft workbench automated reconfigurable VHDL

(DWARV) Compiler [30] transforms C functions identified

with pragmas to VHDL designs. DWARV supports certain

subsets of C. They support for- and if- statements. But the

restrictions are not as stringent as that of SPARK and

ROCCC. The dynamically reconfigurable embedded system

compiler (DRESC) [29] is a re-targetable compiler for coarse-

grained reconfigurable architectures relying on the IMPACT

compiler framework [31] to perform other optimizations and

scheduling. Graphs from the IMPACT compiler are

complicated to analyze at the assembly level, so as to

determine the dependencies and compute intensive portions of

the code.

FPGA Acceleration through Extended Instruction Sets

With the HC-1, a hybrid-core architecture entered the market

[32]. From the application developer point of view, we see

three important features in this architecture:

I. The system provides a virtual shared, cache-coherent

address space across the x86 and the FPGA-based

accelerator subsystem,

II. The reconfigurable subsystem implements extensions of

the x86 ISA (called personalities), and the vendor

compiler suite will take advantage of it.

III. The system can be configured with a large memory

locally to the FPGA accelerator subsystem in which data

access is managed by a proprietary memory-controller

supporting parallel data paths from each of the four

FPGA-based accelerators to each of 16 memory banks.

Data placement and transfer between the host and accelerator

memory are managed by the runtime system or through

compiler directives. Convey provides a mechanism to

integrate any new customer implemented FPGA-based

instructions or functional kernels into the Convey compiler

suite and runtime API. This means, that these developed

personalities are easily accessible for application developers

by using the Convey compiler.

Domain Specific Application Libraries

Despite the progress with high-level language tool chains still

the highest performance on FPGA is achieved with circuit

designs using a hardware description language. Usually, the

required expertise for circuit design is outside the domain of

scientific application developers. Therefore, providing a

software library interface to kernel functions implemented on

FPGA enables application scientists to take advantage of

FPGA accelerators within software packages. For example,

interfaces to Smith-Waterman implementations were provided

Cray XD1, SGI RC100, and Convey HC-1. Opportunities still

exist for validated libraries using common interfaces to

contribute significantly.

Tool Chain Limitations

However there are several challenges using these toolsets.

• These toolsets appear to be not mature enough to bridge the

gap between the device computing resources and

programmer’s conceptual model.

• The toolsets are not able to recognize the needs of the

application and the capabilities of the device.

• The toolsets do not provide automatic solutions to map

applications to hardware.

• The steep learning curve necessary to be able to use the tool

chains efficiently is quite high even for the list of

solutions mentioned above.

• Most of the toolsets use subsets of C as their input. C being

an imperative/sequential language does not support the

concept of clocks that is a significant hardware feature for

devices like FPGAs.

With these drawbacks, we see that a lot of time and effort is

spent in tapping the potentials of FPGAs.

Several limitations still must be addressed to fully impact next

generation bioinformatics applications. These include:

• HLL Portability: Portability is not yet realized at different

levels of the software development.

Missing standardized high-level languages prevent

portability, market penetration and potentially feigned

bounds to vendors. Limited portability is given only if the

tool chain is neutral across different system vendor

platforms. Furthermore, there are no community standards

for library interfaces to general algorithms implemented

although such efforts were made by e.g. OpenFPGA.

• Performance: Performance-wise, native HDL designs are

more attractive compared to C-to-HDL implementations.

Further research is required to decrease this gap.

• Financial barriers: With a few exceptions, the business

models for tool chains are oriented towards the

commercial high-volume market. Compared to the license

model of the programming tools for GPU or multicore

144 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

CPU - being either free or moderately priced - this is a

serious barrier in particular in the academic environment.

2.5.2 Multicore Application Environments

Heterogeneous multicore systems are often comprised of

specialized devices that have their own functionalities and

instruction sets along with the general-purpose cores. A set of

tools and programming models is necessary in order to

efficiently use the computational capabilities of these multi-

core systems. A uniform and general-purpose programming

model that enables the user to manage the low-level interfaces

of different devices, mostly embedded, and that facilitates

application programming on several types of embedded

devices, would be ideal.

Recently many hardware and software companies formed the

Multicore Association (MCA) [33] to solve the challenges

persistent in the heterogeneous multicore environment. MCA

is providing standards/APIs for inter-process communication

(MCAPI) and resource management (MRAPI). It is also

developing an API for task management (MTAPI). Although

intended to facilitate portability, these are low-level APIs that

could be tedious for application programmers. As a result, it

would be worthwhile to consider a high-level programming

model such as OpenMP [35] that can shield the user from the

low-level complexities arising from heterogeneous systems.

The OpenMP model has been implemented in many

commercial and industrial compilers; more details can be

found in [34]. Extensions are being considered to extend

OpenMP for accelerators and there are already a few existing

solutions that demonstrate the productivity and

programmability metrics obtained by using OpenMP in this

context. A current goal is to explore the use of OpenMP as a

high-level programming model for application development

on embedded systems by:

• Proposing appropriate extensions to the OpenMP API to

support heterogeneous (accelerator) cores.

• Using the MCA libraries as an underlying API to make the

OpenMP runtime library portable across systems

supporting MCA routines.

2.5.3 GPGPU Application Environments

On General Purpose GPU platforms, algorithms designated for

the SIMD programming model can be implemented

efficiently. GPU platforms represent a co-processor

architecture. High-end GPU devices with local memory are

connected via PCIe to the host. The latest GPU divides

support both single and double precision floating-point

operations as known from multicore CPUs.

Within the co-processor model, distinct address spaces are

realized. The application programmer must deal with an

extended memory hierarchy with memory on the host side in

addition to global device memory, SMT shared memory and

thread local memory on the GPU device. Global device

memory is limited and at most hardware configurations with 6

GB are known.

After the adoption of the first version of the OpenCL [36]

standard in 2009, it is now implemented in programming

development tools for GPUs from both vendors in the HPC

market. Additionally, a large developer base evolved around

the CUDA [37] programming environment with compiler and

runtime stack specifically for Nvidia GPUs.

Data parallel algorithms are well suited for GPU

implementations. To achieve optimal performance the thread

topology and memory management must be carefully

designed, which is of limited portability across device

generations.

As reference, benchmark numbers of 17 and 30 GCUPS on

GTX 280 and GTX 295 (dual GPU card) for a Smith-

Waterman implementation are reported, respectively [37].

More recently, four-fold [39] and ten-fold [40] acceleration

was reported for BLAST acceleration using graphics

processors.

2.6 Requirements for NGS Applications

In a research environment, reproducibility of analysis results is

of paramount concern. As a result, applications used in the

research environment must be reliable and robust across

multiple platforms as well as over time. Consequently, for

heterogeneous accelerated computing to impact NGS

applications, portability and reliability must be met while still

achieving improvements in performance. This requirement is

further emphasized when one examines the fact that many of

the applications are open source, and therefore must maintain

portability not only within a given lab, but industry-wide.

Standards are an important element of portability, and

standards such as OpenMP and OpenCL provide a great

degree of support for portability when employing multicore

processors and graphics processors. Unfortunately, standards

for reconfigurable computing platforms remain elusive despite

efforts such as those of OpenFPGA [41].

Validation and verifiability of applications and central

algorithms are also important elements for applications in a

production research environment. Curated and maintained test

suites used to confirm portability of a given application and

application component are essential to assure portability is

preserved even as implementations and runtime environments

change.

Runtime environments will also be quite variable, particularly

as the sheer size of the data involved imparts evaluation of

new conditions, such as moving the application closer to the

data rather than moving the data to the application.

Optimization of data movement in the environment is an

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 145

emerging major concern in evaluating next generation

sequence data.

2.7 Accelerated Heterogeneous Computing:

Application Environment Requirements

2.7.1 FPGA Requirements

The current state-of-the-art in FPGA-based acceleration is that

the custom circuits must be carefully hand crafted, with

significant manual input to identify the parallelism and the

processing precision, in order to achieve the best speedup

possible. As discussed previously, there is still a dearth of

tools that are able to deliver VHDL/Verilog for FPGA-based

devices automatically from a high-level language without

manual intervention. Moreover, if FPGAs are being

considered as potential devices to address heterogeneity, these

devices must be adapted to a common programming model

that supports both traditional processors as well as

accelerators. This is currently one of the major requirements

that FPGAs need to attend to.

Other requirements include:

• Providing advanced compilation and optimization features

to obtain the best performance.

• Providing efficient scheduling strategies to best exploit the

fine grained parallelism of FPGAs.

• Accelerating design cycles to provide more than two orders

of magnitude.

• Providing debugging and verification tools.

• Ensuring portability of the code generated by the tools to the

platforms considered.

• Adoption of standards for HLL but keep the flexibility of bit

widths.

• Standards for runtime SW stack (device management, see

OpenCL for GPU).

• Logical cache-coherent single address space.

• Lower investment costs for hardware and tools, target metric

should reflect overall performance improvement and

power reduction.

• Robust environments for software simulation at functional

level and additionally as option at cycle level to enable

easy integration of custom designs made by experts into

programming tools, e.g. compiler.

• Faster Prototyping: Desired innovation cycle at same speed

as for standard CPU environments

2.7.2 Multicore Requirements

Software development and tools for multicore systems are still

in their infancy and need considerable work. While existing

tools may be efficient enough to exploit a small number of

cores, they are unlikely to be able to efficiently exploit large

numbers of cores. For instance, cores are likely to double

every 18 months and by 2017 embedded processors could

support 4,096 cores, server CPUs might have 512 cores and

desktop systems could have 128 cores. It is unlikely that

existing tools will be able to scale, and instead, new tools and

programming languages will need to be developed to fully

exploit the hundreds or thousands of processors. Currently,

applications are not designed to take advantage of the

multicore systems since most software is still written

sequentially, and needs to be rewritten using parallel-

programming languages in order to efficiently exploit these

new multicore systems.

Other requirements include providing:

• Effective algorithmic choices and good selection of data

structures to support multi-core systems.

• Effective higher level of abstraction while using

programming techniques.

• Effective software support to provide advanced compilation

features/techniques.

• Effective programming model to support/integrate different

accelerators on a single platform.

• Effective optimization features for good

programmability/productivity.

• Effective automatic mapping techniques to map application

to specific underlying modules (CPUs, GPUs)

• Effective performance-aware component model that will not

only include FLOPs related improvements, but also power

and memory characteristics.

• Effective scheduling mechanisms to schedule work and

provide good data management strategies on

heterogeneous architectures. These mechanisms include

effective work-stealing strategies, data-aware scheduling

techniques, and static/dynamic scheduling techniques.

• Effective feedback mechanisms to provide feedback about

the runtime environments to higher-level components.

• Effecting power modeling strategies to limit the excessive

usage of power. Since more and more cores when

fabricated on a single piece of silicon, power consumption

can eventually be a major concern.

• Effective debugging tools to be able to debug and verify the

program and reducing the time and effort spent on

producing the correct result.

2.7.3 Cross-technology Requirements

Independent of accelerator technology, several requirements

are needed in production heterogeneous computing

environments.

• Tighter integration of heterogeneous devices into system,

i.e. devices should be equally managed by OS as standard

CPU today. This allows scheduling of application tasks

on heterogeneous functional units by the (extended) OS

thread/process scheduler.

• Unified (standardized) either tool-assisted and/or automatic

software – hardware partitioning; today we have diversity

and mostly vendor-centric tools, e.g. SRC CARTE

(FPGA), CAPS hmpp (GPU), PGI Accelerator compiler

(GPU), Convey compiler (FPGA); Will OpenMP 4 solve

146 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

the missing-standard problem without substantial

performance penalties?

• Robust and user friendly software tool chains which support

parallelization / express parallel algorithms for O(1000)

cores (CPU/GPU) or functional units (FPGA) per node.

3 Future Directions

Heterogeneous computing provides a tremendous opportunity

for accelerating next generation bioinformatics data analysis

applications. Fortunately, many of the requirements outlined

in this paper are well aligned with objectives for extreme-scale

computing. Future directions to advance sustained use of

heterogeneous acceleration in bioinformatics applications will

both inform and benefit from current efforts to define

programming and run-time environments for extreme scale

computing. Efforts are underway to fully integrate the proven

strengths of each acceleration technology in bioinformatics

applications, providing a promising future for heterogeneous

accelerated computing in cancer research.

References

[1] S Tracy, “Next Generation Sequencing: Elements for Success”,

Scientific Computing, May/June 2009.

[2] S Bao, R Jiang, W Kwan, B Wang, X Ma, YQ Song, “Evaluation of

next-generation sequencing software in mapping and assembly”, J Human

Genet, Apr 28, 2011

[3] A Zomaya (editor),”Parallel Computing for Bioinformatics and

Computational Biology”, Wiley and Sons, 2006

[4] http://www.timelogic.com/decypher_intro.html

[5] http://www.timelogic.com/fpga_performance.html

[6] http://blast.ncbi.nlm.nih.gov/Blast.cgi

[7] T.F. Smith, S.M. Waterman, "Identification of Common Molecular

Subsequences". Journal of Molecular Biology 147: 195–197, 1981

[8] B.S. Needleman, D. C Wunsch, "A general method applicable to the

search for similarities in the amino acid sequence of two proteins". Journal of

Molecular Biology 48 (3): 443–53, 1970

[9] L. R. Rabiner and B. H. Juang, `An introduction to hidden Markov

models,'' IEEE ASSP Mag., pp 4--16, Jun. 1986.

[10] P. May, G. Klau, M. Bauer, and T. Steinke, "Accelerated microRNA-

Precursor Detection Using the Smith-Waterman Algorithm on FPGAs," In

Proceedings of GCCB 2006, LNBI, vol. 4360, pp. 19-32, 2007.

[11] O. Storaasli, W. Yu, D. Strenski, and J. Maltby, "Performance

Evaluation of FPGA-Based Biological Applications," Cray Users Group

Proceedings, 2007

[12] C Trapnell, L Pachter, and S Salzberg, “TopHat: discovering splice

junctions with RNA-Seq”, Bioinformatics, 2009, 25(9), 1105-1111

[13] H Li, R Durbi, “Fast and accurate short read alignment with Burrows-

Wheeler transform”, Bioinformatics, 2009, Jul 15; 25(14); 1754-60

[14] J.D. Thompson, D.G.,Higgins, T. J,, Gibson, "CLUSTAL W:

improving the sensitivity of progressive multiple sequence alignment through

sequence weighting, positions-specific gap penalties and weight matrix

choice". Nucleic Acids Res 22 (22): 4673–4680, 1994

[15] J. Williams; RC Device Characterizations & Tradeoff Analysis,

30.08.2007,

www.gstitt.ece.ufl.edu/courses/fall07/eel4930_5934/RC_lecture_F5.ppt

[16] A. Cosoroaba, F. Rivoallon; Achieving Higher System Performance

with the Virtex-5 Family of FPGAs,

www.xilinx.com/support/documentation/white_papers/wp245.pdf

[17] Smith-Waterman Performance, Convey Computer Corp.,

http://www.conveycomputers.com/performance.html (accessed 05.05.2011)

[18] Impulse Accelerated Technologies,

http://www.impulseaccelerated.com/

[19] C2H, http://www.altera.com/devices/processor/nios2/tools/c2h/ni2-

c2h.html

[20] Fort, http://www.forteds.com/products/index.asp

[21] SynF,

 http://www.synopsys.com/Community/Interoperability/SystemLevelC

atalyst/Pages/MSynfora.aspx

[22] Mitrionics, http://www.mitrionics.com/?page=algorithm-

development-for-fpgas

[23] AutoESL, http://www.xilinx.com/tools/autoesl.htm

[24] BlueSpec, http://www.bluespec.com/

[25] CARTE, http://www.srccomp.com/techpubs/carte.asp

[26] K. Bondalapati, P. Diniz, P. Duncan, J. Granacki, J. M. Hall, R. Jain,

R. H. Ziegler, “DEFACTO: A design environment for adaptive computing

technology”, Journal of Parallel and Distributed Processing, pp 570-578,

1999

[27] SPARK, A parallelizing approach to the high-level synthesis of digital

circuits. [Online]. Available: http://mesl.ucsd.edu/spark/

[28] Z. Guo, W. Najjar, “A compiler intermediate representation for

reconfigurable fabrics”, FPL 2006, pp 1-4, 2006

[29] B. Mei, S. Vernalde, D. Verkest, H. De Man, R. Lauwereins,

“DRESC: A retargetable compiler for coarse-grained reconfigurable

architectures”, FPT 2002, pp 166-173, 2002

[30] Y. Yankova, G. Kuzmanov, K. Bertels, G. Gaydadjiev, Y. Liu S.

Vassiliadis,, “DWARV: Delftworkbench automated reconfigurable VHDL

generator”, FPL 2007, pp. 697-701, 2007

[31] P. P. Chang, S . A. Mahlke, W. Y. Chen, N. J . Waner, and

W. W. Hwu. "IMPACT A n architectural framework for multiple-

instruction-issue processors," ISCA 1991, pp 266 – 275, 1991

[32] Convey Computer Corporation, http://www.conveycomputer.com/

[33] http://www.multicore-association.org/home.php

[34] OpenMP, http://openmp.org/wp/

[35] B. Chapman, G. Jost, and R. Van Der Pas. Using OpenMP: portable

shared memory parallel programming, volume 10. The MIT Press, 2007.

[36] http://www.khronos.org/opencl/

[37] http://www.nvidia.com/object/cuda_home_new.html

[38] Y. Liu, B. Schmidt, D. L Maskell, “CUDASW++2.0: enhanced

Smith-Waterman protein database search on CUDA-enabled GPUs based on

SIMT and virtualized SIMD abstractions”, BMC Research Notes 2010, 3:93,

doi:10.1186/1756-0500-3-93

[39] P. Voizis, N Sahandis, “GPU-BLAST: using graphics processors to

accelerate sequence alignment”, Bioinformatics, 2011, Jan 15; 27(2); 182-8

[40] W.Liu, B Schmidt, W. Muller-Wittig,”CUDA-BLASTP: Accelerating

BLASTP on CUDA-Enabled Graphics Hardware”, IEEE/ACM Trans

Comput Biol Bioinform, Feb 15, 2011

[41] www.openfpga.org

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 147

Abstract— Biological inspiration in the design of
computational systems has been specified in many ways, one
continent way is to broadly consider three biological models:
phylogenesis, evolution of species, ontogenesis, the development
of an individual as directed by the genetic code, and epigenesis,
the learning processes influenced both by their genetic code and
by the environment. These models can be considered to share a
common basis: the genome a one-dimensional description of the
organism. If one would like to implement some or all of these
ideas in hardware what do we need from specifically designed-
for-purpose devices? What design structures might help us
achieve our goals? This paper considers a novel device designed
and built specifically for bio-inspired work. It also considers
some of the novel mechanisms that might assist with bio-
inspired designs and finally considers a possible novel
processing medium.

I. INTRODUCTION
econfigurable and evolvable architectures are often
considered under the field of evolvable hardware. The

term Evolvable Hardware (EH) refers to hardware (usually
electronic hardware) that can change its configuration (and
thus function) using artificial evolution, that is, approaches
such as genetic algorithms, genetic programming [e.g. 1] or
evolution strategies [e.g. 2, 3]. Evolvable hardware has been
a topic of considerable academic research over the past 15 or
so years. In the mid 1990’s researchers began applying
evolutionary algorithm to dynamically alter the functionality
and physical connections of circuitry. This combination of
evolutionary algorithms with programmable electronics
devices such as field programmable gate arrays (FPGAs),
field programmable analogue arrays (FPAAs) or field
programmable transistor arrays (FPTAs) spawned evolvable
hardware a new field of evolutionary computation [e.g. 4].
Since that time the EH field has expanded beyond the use of
evolutionary algorithms on simple electronic devices to
encompass many different combinations of evolutionary
algorithms and biologically inspired algorithms with various
physical devices (or simulations of physical devices) [e.g. 2,
5]. Evolvable hardware has been used in many areas for
creative design and has proved particularly popular for the
creation of electronic circuits. While successful on the
surface, the actual designs struggle to match those produced
by more traditional methods [2]. However, in some of these
cases, where a particular feature is being considered (for
example, reducing cell susceptibility to device variability)
evolvable hardware has proven successful. Alternatively,

The author is with the Department of Electronics at the University of
York, York, UK (e-mail: amt@ohm.york.ac.uk).

one of the more interesting features of evolvable hardware is
a capability to perform online adaptation on existing systems
[2], that is, to produce adaptable systems. This feature has
shown some promising results for online fault tolerance, for
example.

When considering evolvable hardware there are a number
of fundamental questions that must be answered before
taking that particular path:

• What hardware platform will be used? Should it be

completely on the final hardware, should it be only in
simulation, should it be some combination of both of
these? Should it be on custom hardware or off the shelf
hardware? The answers to these questions will of
course depend on the application, the ultimate goals for
using evolvable hardware and sometimes just simply
the availability of resources.

• What evolutionary algorithms will be best suited for the
evolution? In addition to the “normal” considerations
related to the use of evolutionary algorithms, within
evolvable hardware one must consider resource
constraints. If executing the evolution on the hardware
there are not unlimited memory resources, sorting is
not always that straight forward, hence crossover and
large populations are rather more difficult to
implement than on a PC.

Present research in the field of evolvable hardware can be

split into the two distinct areas: original design and adaptive
hardware. In original design evolutionary algorithms and
biologically inspired algorithms are used to create physical
devices and/or designs. Some successful examples include
analogue and digital electronics, antennas [e.g. 6, 7], MEMS
chips [e.g. 8], optical systems [e.g. 9] and quantum circuits
[e.g. 10]. With adaptive hardware evolutionary algorithms
and biologically inspired algorithms are used to endow
physical systems with some adaptive characteristics. These
adaptive characteristics are required to construct more robust
components and systems to allow them to continue to
operate successfully in a changing environment. For
example, a circuit on an FPGA that ”evolves” to heal
damage resulting from faults in the system [e.g. 11].

This paper considers how such architectures, using various
metaphors from biology, can be used to help design
computational systems. The ultimate goal of much of this
research is to enhance current designs with attractive
biological characteristics, such as better reliability and
adaptability.

A number of examples will be presented, some issues

Reconfigurable and Evolvable Architectures and their role in
Designing Computational Systems

Andy M. Tyrrell

R

148 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

related to the performance of such systems will be
highlighted and some suggestions for future research given.

II. HARDWARE PLATFORMS

Much of the early work in evolvable hardware (indeed

much of the work to-date) used off-the-self hardware,
usually Field Programmable Gate Arrays (FPGA) [e.g. 12,
13, 14]. While this is a viable option and some successful
results have been achieved there are some problems with this
method, not least of which is the ability to reconfigure small
parts of the hardware fabric. One method to try and improve
the reconfigurable nature of the hardware platform is to
design dedicated hardware. A number of “low-level” devices
have been produced, most notably the JPL field
programmable transistor array [e.g. 15] and the field
programmable transistor array designed by the group in
Heildelberg [e.g. 16]. These focus on reconfiguring that
hardware, as the names suggest, at the individual transistor
level. What will be described here in more detail is a device
that has a structure somewhat similar to a traditional FPGA,
but had a number of extra features integrated into its design
to assist reconfiguration and evolution.

The RISA device is a FPGA hardware device [17, 18].
Figures 1, 2 and 3 show high-level and low-level details of
this device designed specifically for evolvable applications.

Figure 1. The RISA Architecture comprises an array of RISA Cells. Each
cell contains a microcontroller and a section of FPGA fabric. Input/Output
(IO) Blocks provide interfaces between FPGA sections at device
boundaries. Inter-cell communication is provided by dedicated links
between microcontrollers and FPGA fabrics [17].

The following features highlight the devices benefits over

commercial devices when considering reconfiguration and
particularly evolution:

• A fine-grained partial reconfiguration system. Bit-

stream loading occurs without disrupting circuit
operation and subsequent reconfiguration occurs in a
single clock pulse.

• The architecture’s multiplexer based configurable fabric
cannot be configured into a contentious state. Therefore,
it is possible to use random bit-stream without risk of

device damage.
• Each RISA cell’s microcontroller can be used to

perform intrinsic reconfiguration of the FPGA fabric.
• Each microcontroller has a dedicated full-duplex,

hardware flow controlled communication link with its
four nearest neighbours.

Figure 2. The RISA Function Unit is the lowest level of the FPGA fabric
structure [17].

Figure 3. The multiplexer based FPGA routing design can be randomly
configured without risk of forming combinatorial feedback paths or signal
contentions. Combinatorial paths may only be connected within their
assigned directions. Registered paths can connect to all signal directions
[18].

The FPGA fabric provides hardware reconfigurable
elements for the RISA architecture. The details of the
Functional Unit are shown in Figure 2. The FPGA
architecture does not attempt to compete with commercial
devices in terms of density and flexibility of circuit
implementation but aims to provide a more appropriate

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 149

configuration system for bio-inspired systems. In particular,
as mentioned earlier, by offering fine-grained partial
reconfiguration and is designed to be random bit-stream
safe, allowing unconstrained evolution to take place without
the danger of destroying the device.

The main configurable component of the gate array is the
Cluster. Each cluster contains logic circuitry and the routing
for interconnecting internal circuitry and clusters. The
Function Unit is the main configurable logic element. There
are four Function Units in each Cluster. Figure 3 illustrates a
cluster and connectivity within a cluster.

The circuitry of the Function Unit contains three core
elements, a Function Generator, a 2-1 multiplexer a single
D-type flip-flop. These may be used individually, but can be
combined to provide extra functionality such as the
following configurations:

• 4 input, 1 output Look-Up Table (LUT)
• 16x1 bit RAM
• 1 to 16 bit variable length Shift register block

(extendible via a dedicated shift chain to other clusters)
• 4-1 multiplexer
• 1 bit full adder with fast carry chains for expansion into

other clusters

Figure 3 also illustrates the connections for a Cluster’s
East Function Unit. Any input can be connected to a
registered logic function, whereas the purely combinatorial
circuitry can only accept inputs from eastbound
combinatorial signals and registered signals.

The RISA architecture offers a new reconfigurable device
for investigating bio-inspired systems. The architecture’s
design offers end-users maximum flexibility in device
operation. The configuration system is simple, quick and
provides a level of control not found in commercial FPGA
devices. The integration of a microcontroller array adds a
new dimension to reconfigurable architectures, providing a
distributed reconfigurable software element.

A variety of evolutionary design techniques can be
undertaken using the RISA architecture. Intrinsic evolution
of electronic circuits can be performed using the FPGA
fabric for implementing candidate solutions and the
microcontroller to drive the evolutionary algorithm. What is
more, the evolutionary process can be accelerated by
performing multiple evaluations of candidate solutions in
parallel. This is achieved by using the integrated
microcontroller network to transfer fitness information.

The next section considers the use of biological-inspired
developmental methods for designing complex systems.
However, when considering this the implementation onto
hardware, and specifically onto a RISA array, was always at
the forefront of decisions made.

III. ARTIFICIAL DEVELOPMENT
According to Wolpert in his book Principles of

Development [19]: “The development of multicellular
organisms from a single cell – the fertilised egg – is a
brilliant triumph of evolution”. This short phrase expresses
one of the fundamentals of natural development, namely the

fact that a single cell may arguably be the most complex part
of any organism, but a single (or few) cell organism is vastly
limited in the tasks it can achieve. The evolution from
single-celled to multi-celled organisms appears to have been
the significant step in the development of complex
structures. A question that has been asked by researchers in
the field of bio-inspired architectures is can artificial
developmental systems (ADSs) be useful in the design of
complex computational architectures [e.g. 20, 21, 22]?

Given the evidence from biological systems it would
appear that multi-cellularity is one of the identified key
features required to achieve scalability and fault tolerance in
systems, and at the same time sufficient complexity of cells
needs to be ensured in order to achieve adaptivity,
specialisation and the ability to perform all functions
required to develop and maintain an organism. Therefore,
compact cell programs are desired that achieve a high degree
of functionality while providing a small resource footprint
(that is to be implemented on a small processing architecture
– in this case RISA). A number of researchers have
considered the mapping of biological development to an
engineering context. One way this can be achieved is by
introducing a number of genetic representations to achieve
structures similar to that of Genetic Regularity Network
(GRNs) would in biological organisms. These GRNs feature
small resource footprints and can be processed quickly due
to their small size, while providing efficient encodings for
evolutionary optimisation that exhibit a high degree of
evolvability. The hypotheses of the work reported in [23]
are:

• Variable length GRN representations have no
drawbacks in terms of complexity, evolvability and
success rate when compared to fixed length ones tested
on the task presented.

• Variable length GRN representations feature increased
compactness, require less computational effort during
optimisation and running development, hence, provide
shorter time-to-solution.

• The small size makes them more viable for resource
critical applications like robotics and embedded
systems. It also allows for applications where the target
is to encode information in a compact fashion.

The artificial developmental system illustrated here is

based on a gene regulatory network and focused on an
implementation on hardware, the RISA architecture to be
exact.

The core of the proposed developmental model is
represented by a GRN, which is executed as shown in Figure
4. genomeADS is implemented as a string of characters that
represent binding sites and gene actions as well as separators
between genes and pre-/post-conditions. GenesADS consist
of pre- and post-condition, which both comprise a number of
binding sites. Each binding site has three integer parameters
attached, which represent different things in different
contexts: in the pre-conditional case they represent the
activation threshold, the binding site type (excitatory,
inhibitory) and the protein consumption rate. Note that

150 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

Figure 4. The genes in an artificial DNA sequence are activated when a sufficient amount of protein is produced by the GRN, which then causes
transcription of the respective gene. In the example shown in the figure, the activity of the GRN results in the correct transcription factors (the promoter
proteins) that bind to the sites of a gene sequence. This initiates the production of another protein, which can then affect cell functionality using further
information that is encoded in the gene. The protein produced also provides feedback to the GRN, which regulates the transcription of other genes, thus
achieving dynamic gene regulation. A gene is expressed or inhibited according to the result of the evaluation of the precondition [23].

proteins are only consumed when a binding site is activated,
i.e. the concentration of the matching chemical is above the
threshold. In the post-conditional case, the parameters
represent the production rate of the respective protein and
provide two integer parameters p1 and p2 as inputs to the
associated protein function.

Wolpert [19] describes three different types of cell
signaling (cell communication): protein diffusion, direct
contact of complementary proteins on the cell’s surface, and
gap junctions (equivalent of Plasmodesmata in plants). Two
different types of cell signaling are realised in the proposed
model. Protein diffusion has been implemented in a similar
way as it takes place in physical systems, e.g. a drop of ink
dissolving in water. The second cell signaling mechanism is
an implementation of Plasmodesmata in plants (protein
tunnels), which effectively are tunnels between cells that
allow chemical sharing. Cell growth is also based on the
Plasmodesmata mechanism; if the neighbour cell, which is
targeted by the tunnel, is an empty cell space, a new cell will
grow into that empty cell space and become alive (i.e. will
be processed by the ADS) in the next developmental step
(see Figure 5). Cell death is not implemented at the current
stage.

Protein levels are credited and debited after the GRN has
processed the next developmental step for all cells [23].
Thus, the GRN always works with the original protein levels
and the order of cell update should therefore not bias the
behaviour of development or certain regions within the
organism. Diffusion is a long range signaling mechanism
that should help to create and maintain symmetries within
the system.

Once this model was developed fully it has been used to
explore the application of an ADS to the field of
evolutionary robotics by investigating the capability of a
GRN to control an e-puck robot. A GRN controller has been
successfully evolved that exhibits a general ability to avoid
obstacles in different maps (Figure 6) as well as when
transferred to a real robot (Figure 7). It has been shown that
GRN based controllers have the potential to adapt to
different environments, due to the fact that the robot

successfully managed to navigate through previously
unknown maps and could be successfully transferred to a
real robot without further modification of the controller.
Hence, it is concluded that GRNs are a suitable approach for
real-time robot control and can cope with variations inferred
by changing environments and sensor noise of a real robot.
The results further suggest that it is possible to specify a
general purpose obstacle avoidance behaviour via a GRN.

While a relatively simple example it does show that ideas
based on developmental biology can be mapped to the field
of engineering with success. More needs to be done here, but
artificial developmental systems still appear to be a good
avenue to pursue if we are to evolve large complex
engineering systems.

Figure 5. In a multi-cellular environment using the four basic protein types
(ABCD), which are described in Table I, a cell is able to: interact with its
environment, replicate (grow), structure itself, and form a complex
multicellular organism. The basic functions of some proteins are
demonstrated in this figure. Only cell 1 is drawn completely, certain
components are omitted in other cells for clarity. In the example, cells 1 and
2 both have active Plasmodesmata proteins, which cause the formation of a
channel on both cells towards the other, creating a Plasmodesmata to allow
free movement of proteins from one cell to other. Cells 1 and 2 both also
have active Plasmodesmata proteins on their southern sides. Cell 1’s
southern neighbour is a dead cell, so the active Plasmodesmata protein
initiates a growth process in that direction. However, cell 2’s southern

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 151

neighbour is an alive cell with no Plasmodesmata protein, thus cell 2 forms
an unconnected channel on its southern wall. The direction in which the
Plasmodesmata proteins are active, is encoded in the postcondition of the
gene, hence, there is one species of Plasmodesmata protein with four
different behaviours. The four sensors drawn monitor the outside activity on
four sides of each cell and produce different messenger molecules with
changing environment. The structuring proteins are produced by the GRN
to change the physical structure of the cell, which is connected to the
physical inputs and outputs of the cell [23].

Figure 6. Comparison of the behaviour of the GRN controller in different
maps [24].

Figure 7. Results from experiments with a real e-puck [24].

IV. EVOLVING SILICON ARCHITECTURES
Fundamental to the continued growth of the

semiconductor industry is Moore’s Law, which states that
the number of transistors integrated on a chip will double
every 18 months, owing to the shrinking of devices through
advances in technology. Recently, the scale of devices has
approached the level where the precise placement of
individual dopant atoms will affect the output characteristics
of a device. As these intrinsic variations become more
abundant, higher failure rates and lower yields will be
observed from conventional designs. Coping with intrinsic
variability has been recognised as one of the major unsolved
challenges faced by the semiconductor industry [25].

The previous work reported in this paper has been focused
on implementing evolvable mechanisms on hardware. The
problem of cell design in the semi-conductor industry can
have evolutionary mechanisms applied to it, but now this
must be done using models of the devices (45nm and below)
and simulators to test the efficacy of the resulting cell
designs (circuits).

In this work the device models have been created by our
collaborators at the University of Glasgow and the device
simulator used was SPICE [25]. One of the issues that comes
into focus when simulating, rather than implementing on the
actual device, is a test bench to allow appropriate
measurements to be made and hence objective functions to
be compared. Figure 8 illustrates a typical test bench used in
this work. Note that this does not simply use a single

functional output to measure the circuit performance but a
number of parameters which allows the evolutionary process
to make a more realistic assessment of performance.

 Figure 8. Typical test bench used during evolution [26].

By using this test bench evolution was able to assess
circuits produced by evolution for important characteristics
such as power and speed. Figure 9 illustrates one such
experiment for the scaling of a XOR cell at 45nm [27].

An important part of this work was not simply to consider
“standard” cell characteristics but additionally consider the
affect of device variability on designs and to see whether
evolution could reduce the effects of single transistor
variability within a cell structure. In this case additional
objective measures were considers and a multi-objective
system was created to allow 6-12 objectives to be considered
at the same time. Figure 10 illustrates one such evolutionary
design for XOR cells [27].

Figure 9. Comparison of initial random population, final optimised
population and reference design for the XOR standard cell. Also shown is
the optimised design that was chosen [25].

From this illustration it can be observed that not only are
power and seed reduced, but the cloud of points (100,000
points) is smaller after evolution than before, illustrating that
the variability of cell designs is less than before evolutionary
mechanisms were applied.

What is clear from these early results is that evolution can
play an important role in the design and production of future
generations of silicon technology at the most fundamental
level. If accepted by the microelectronics industries this

152 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

could well represent a major (the major?) application area
for evolvable hardware.

Figure 10. Comparison between reference and optimised designs for an
XOR cell. Each scatter cloud contains 100,000 points generated from
SPICE simulations of each design, which highlights the affect of intrinsic
variability in terms of delay and power. The density plots (above and to the
right on the scatter plot) show the distribution for the 100,000 simulations in
terms of delay (x axis) and power (y axis) [27].

V. METAMORPHIC SYSTEMS
So far this paper has considered work that has been

achieved using the general theme of evolvable hardware. In
this last section it is interesting to consider some of the
issues related to evolvable hardware and some future
directions that might be taken. To date evolvable hardware
research efforts have been typified by a number of features:

• Actual hardware/simulated hardware evolution.
• A reliance on reconfigurable devices when on actual

hardware.
• A strong bias for electronic applications (almost

exclusively defined by academics).
• A blurring between design optimization and design

exploration.

Some of these have been illustrated in the earlier parts of
this paper. Despite some successes, there are some
underlying questions about the evolvable hardware field that
remain largely ignored two of the main points being:

• Why do we want to evolve/adapt hardware? Why not
just use conventional (i.e. non-evolutionary)
techniques?

• What application areas should evolvable hardware
techniques be applied to?

One line of research might be aimed at concentrating on

reconfigurable systems, in general, where evolvable
hardware is used only when it is really required (possibly
when other more traditional techniques have failed, or do not
exist) and to consider these reconfigurable systems in real-
world scenarios, typically with quite tough constraints on
systems requirements such as timing. In [28] these are called
Metamorphic Systems (MS).

Consider the following: assume we have a system that can
exist in several different variant forms SA, SB, SC and so
forth, each form exhibiting measurably different behavior.
Let SA be the current online variant. At some time later a
transformation (reconfiguration) occurs that changes the
system from SA to SB, which might be denote SA → SB.
There might be a large, albeit finite, set of systems S to
choose from. Unlike most evolvable hardware systems,
transformations in Metamorphic systems would be
reversible—i.e., SA → SB ⇒ SB → SA is always possible at
some future time, this is probably quite important in a real-
time system. More generally, if Si, Sj ∈ S then Si → Sj is a
valid transformation for all i and j (i ≠ j) and the number of
transformations between Si and Sj is not limited.

There are many reasons why such a transformational
system might be required including:

• Increased reliability and/or availability.
• To meet differing timing constraints.
• To change functionality.
• To make use of, or release, resources for higher priority

functions.

Basically all of these, and others one might consider, can
be summarized by the statement:

The performance of SA is no longer good enough.
Consequently, we need to switch to a different variant as

soon as possible.

Figure 11 shows the metamorphic system block diagram

[28]. Two main processing loops are shown: the innate loop
and the acquired loop. The innate loop incorporates a priori
knowledge about the way the system should operate;
predetermined transformations are initiated whenever
specific operational conditions are present. The acquired
loop incorporates a learning capability that can analyze long-
time trends in system behavior and can predict possible
performance degradation; transformations are then initiated
as needed to forestall any future problems.

The substrate is the actual material that constitutes the
system (e.g., silicon in electronic devices or DNA, see a
little later in this paper). Inside the substrate are pre-
designed system variants that produce different behaviours
in different operational environment changes. Each variant is
fully functional and meets all design specifications in their
respective operational environments. These variants can
have widely diverse internal structure and do not have to be
created from a common reconfigurable platform.

It is felt that such a system would allow evolvable
hardware to be applied more easily, and probably more
effectively, to real-world problems and could show its worth

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 153

where it is really required, when traditional methods have
failed. This is very new work and is currently being pursued
further.

Figure 11. This figure shows the metamorphic system architecture. The
substrate contains several system variants (labeled A, B, C and D). These
variants are brought online as determined by either the innate loop or the
acquired loop (see text). The internal architecture of the decision
mechanism and the assessment module are often identical. The decision
module is where the real intelligence resides and is expected to be
implemented by a microcontroller or similar computing platform. This
module decides when to switch to a new system variant and which variant
in the substrate that should be. The selection mechanism is responsible for
physically switching the variants [28].

One of the points highlighted here was that most of the
work on evolvable hardware has been focused on electronic-
based substrates. One recent advance is in the area of
computation is creating processing structures with DNA
strands. While this is a relatively new area of research and
while evolution is not generally applied at this point
(although you would imagine given the structure is DNA it
should be well suited to evolution), one could easily see how
it might fit into the Metamorphic system described here.

To start this process we need a set of mechanisms that will
allow computation to be achieved with DNA strands from
there we can start to consider evolving these within the
Metamorphic paradigm.

Initial work has been started along this path. Figure 12
illustrates a simply Finite State Machine (FSM) typical of
much computation, in this case with two states. Figure 13
illustrates how this simply FSM might be implemented using
designed DNA structures and a clocking mechanism.

Once this mechanism can be implemented reliably and for
larger systems, new areas of evolutionary hardware will
open up.

Figure 12. Simple two-state Finite State Machine.

VI. DISCUSSION
In this paper a novel electronic hardware system has been

described and some of the detailed architecture elements
illustrated. This architecture was specifically designed and
implemented with evolvable mechanisms in-mind. However,
one of the limiting factors in evolutionary computing
(particularly hardware implementations) is related to
scalability.

The hardware architecture described was used in
conjunction with developmental inspired set of mechanisms
to consider more closely the design of large complex
systems. While the example given in the paper is relatively
straightforward (that of robot control) it does illustrate some
progress in this direction.

There is a growth issue in the design of ever smaller
silicon devices (transistors and basic building blocks) that of
device variability. As devices sizes move towards 32nm and
below atomistic issue cause significant (and potentially
catastrophic) variability across silicon wafers. This appears
to be a perfect example of an issue where evolution can play
a significant and meaningful role in the future design of
computational devices. Not only do results show
improvements in cell power and speed but significant
reduction of functional performance variability in the
presence of device variability.

While mitigating against device variability appears to be
an excellent application for evolvable hardware, really novel
application are limited. The paper discusses a novel
paradigm that incorporates evolution, when appropriate, but
concentrates on adaptability in real-time systems:
Metamorphic systems. While still in its inception,
Metamorphic systems provide a mechanism to think about
designs in a new way, and allow the mix of traditional and
evolutional methods to be mixed. A significant difference
between Metamorphic systems and other systems involving
evolution is that different physical mediums are readily
integrated into the system. The paper finishes by giving
some early ideas of how DNA strands might provide a
computation platform within a Metamorphic system.

154 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

ACKNOWLEDGEMENTS
The author would like to thank Andrew Greensted, Martin

Trefzer, Tuze Kuyucu, James Walker, James Hilder, Cristina
Santini and Garry Greenwood for their help in much of the
work reported in this paper. Significant parts of the work
reported in this paper was supported by various project
grants funded by EPSRC (EP/E028381/1, EP/E001610/1).

REFERENCES
[1] Koza, J., Yu, J., Keane, M.A. and Mydlowec. W. ‘Use of conditional

developmental operators and free variables in automatically
synthesizing generalized circuits using genetic programming’, 2nd
NASA / DoD Workshop on Evolvable Hardware, pp 5 – 15, 2000.

[2] Greenwood, G.W. and Tyrrell, A.M. ‘Introduction to Evolvable
Hardware: A Practical Guide for Designing Self-adaptive Systems’,
John Wiley & Son, Inc., Publication, 2007.

[3] Yao, X. and Higuchi, T. ‘Promises and challenges of evolvable
hardware’, IEEE Transactions on Systems, Man & Cybernetics, Part C
29(1),pp 87-97, 1999.

[4] Sanchez, E., Mange, D., Sipper, M., Tomassini, M., Perez-Uribe, P.
and Stauffer, A. ‘Phylogeny, Ontogeny, and Epigenesis: Three
Sources of Biological Inspiration for Softening Hardware’, Evolvable
Systems: from Biology to Hardware, ICES 96, pp 35-54, 1996.

[5] Higuchi, T. et al, ‘Real-World Applications of Analog and Digital
Evolvable Hardware’, IEEE Transactions on Evolutionary
Computation, vol 3, no 3, pp 220-235, September 1999.

[6] Lohn, J., Kraus, W. and Linden, D. ‘Evolutionary optimization of a
quadrifilar helical antenna’, IEEE International Symposium of the
Antennas and Propagation Society, pp 814–817, 2002.

[7] Lohn, J.D., Hornby, G., Rodriguez-Arroyo, A., Linden, D., Kraus, W.
and Seufert, S. ‘Evolutionary Design of an X-Band Antenna for
NASA’s Space Technology 5 Mission’, 3rd NASA/DoD Conference
on Evolvable Hardware, pp 1-9, 2003.

[8] Lohn, J., Kraus, W. and Hornby, G. ‘Automated design of a MEMS
resonator’, IEEE Congress on Evolutionary Computation (CEC07), pp
3486–3491, 2007.

[9] Oltean, M. ‘Switchable glass: a possible medium for evolvable
hardware’, NASA/ESA Conference on Adaptive Hardware &
Systems, pp 81–87, 2006.

[10] Lukac, M. and Perkowski, M. ‘Evolving quantum circuits using
genetic algorithm’, NASA/DOD Conf. on Evolvable Hardware &
Systems, pp 177–185, 2002.

[11] Haddow, P.C., Hartmann, M. and Djupdal, A. ‘Addressing the Metric
Challenge: Evolved versus Traditional Fault Tolerant Circuits’, 2nd
NASA/ESA Conference on Adaptive Hardware and Systems, pp 431-
438, 2007.

[12] Spartan-3 Starter Kit Board User Guide, http://www.xilinx.com
[13] Torresen. J. ‘A scalable Approach to Evolvable Hardware’,

International Conference on Evolvable Systems: from Biology to
Hardware, (ICES98), pp 57-65, 1998.

[14] Sekanina, L. ‘Evolvable Hardware: from Applications to Implications
for the theory of Computation’, in Unconventional Computation,
LNCS, vol 5715, pp 24-36, 2009.

[15] Stoica, A., Keymeulen, D., Thakoor, A., Daud, T., Klimech, G., Jin,
Y., Tawel, R. and Duong, V. ‘Evolution of analog circuits on field
programmable transistor arrays’, NASA/DoD Workshop on Evolvable
Hardware (EH2000), pp 99-108, 2000.

[16] Langeheine, J., Becker, J., Folling, F., Meier, K. and Schemmel, J.
‘Initial studies of a new VLSI field programmable transistor array’,

4th International Conference on Evolvable Systems: From Biology to
Hardware, pp62-73, 2001.

[17] Greensted, A.J., and Tyrrell, A.M. ‘RISA: A Hardware Platform for
Evolutionary Design’, IEEE Workshop on Evolvable and Adaptive
Hardware, Hawaii, pp 1-7, April 2007.

[18] Greensted, A.J. and Tyrrell, A.M. ‘Extrinsic Evolvable Hardware on
the RISA Architecture’, 7th International Conference on Evolvable
Systems, Wuhan, China, pp 244-255, September 2007.

[19] Wolpert, L., Beddington, R., Jessell, T., Lawrence, P., Meyerowitz, E.
and Smith, J. ‘Principles of development’, Oxford University Press,
Oxford, 2002.

[20] Gordon, T. and Bentley, P.J. ‘Towards development in evolvable
hardware’, NASA/DoD Conference on Evolvable Hardware, pp 241-
250, 2002.

[21] Haddow, P.C., Tufte, G. and ven Remortel, P. ‘Shrinking the
genotype: L-systems for EHW?’, International Conference on
Evolvable Systems: from Biology to Hardware, pp128-139, 2001.

[22] Tufte, G. and Haddow, P.C. ‘Towards Development on a silicon-
based cellular computing machine’, the Journal of Natural Computing,
Vol 4, no. 4, pp 387-416, 2005.

[23] Kuyucu, T., Trefzer, M.A., Miller, J.F. and Tyrrell, A.M. ‘An
Investigation of the Importance of Mechanisms and Parameters in a
Multi-cellular Developmental System’, IEEE Transactions on
Evolutionary Computation, in press 2011.

[24] Trefzer, M.A., Kuyucu, T., Miller, J.F. and Tyrrell, A.M. ‘Evolution
and Analysis of a Robot Controller Based on a Gene Regulatory
Network’, 9th International Conference on Evolvable Systems,
Springer, York, pp 61-72, September 2010.

[25] Walker, J.A., Sinnott, R., Stewart, G., Hilder, J.A. and Tyrrell, A.M.
‘Optimising Electronic Standard Cell Libraries for Variability
Tolerance Through the Nano-CMOS Grid’, Philosophical Transaction
A of the Royal Society, Vol. 368, pp 3967-3981, August 2010.

[26] Walker, J., Hilder, J. and Tyrrell, A.M. ‘Evolving Variability-Tolerant
CMOS Designs’, 8th International Conference on Evolvable Systems,
Prague, Czech Republic, pp 308-319, September 2008.

[27] Walker, J., Hilder, J. and Tyrrell, A.M. ‘Towards Evolving Industry-
feasible Intrinsic Variability Tolerant CMOS Designs’, 11th IEEE
Congress on Evolutionary Computation, Trondheim, Norway, pp
1591-1598, May 2009.

[28] Greenwood, G. and Tyrrell, A.M. ‘Metamorphic Systems: A New
Model for Adaptive System Design’, 12th IEEE Congress on
Evolutionary Computation (CEC10), Barcelona, pp 3261-3268, July
2010.

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 155

Figure 13. DNA structures and sequence, including clocking mechanisms, to implement the simple two-state Finite State Machine shown in Figure 12.

156 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

Next Generation Sequencing Data Processing
How reconfigurable computing can help?

Prof. Dominique Lavenier
CNRS/IRISA, Rennes, France

Abstract

With the fast progress of next generation sequencing (NGS) machines, genomics research is

currently strongly shaken. These new biotechnologies generate impressive flow of raw
genomic data from which pertinent and significant information must be extracted. To
sustain this high data processing throughput, parallelism is the only way. Today, two major
challenges must be considered: (1) develop new parallel algorithms for new applications
coming from the wide possibilities open by NGS technologies; (2) develop new parallel
architectures as an alternative to huge clusters currently used in bioinformatics computing
centers. Reconfigurable computing can address these two challenges by providing dedicated
parallel algorithms tailored to ad hoc hardware. The talk will present the current NGS
technologies, the standard associated treatments and the challenges RC should be able to
bring efficient solutions.

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 157

Design-Space Exploration of Systolic Arrays for
Biosequence Algorithms

(Invited Paper)

Jeremy Buhler, Roger Chamberlain
Department of Computer Science and Engineering

Washington University
St. Louis, Missouri 63130

Email: {jbuhler,roger}@wustl.edu

Arpith Jacob
IBM T.J. Watson Research Center

Yorktown Heights, New York 10598
Email: jarpith@wustl.edu

Abstract—Next-generation sequencing techologies have dra-
matically increased the amount of new DNA and protein se-
quence being produced by biologists. These vast and growing
data volumes challenge existing computational approaches to
analyzing experimentally produced biosequences. One way to
make very large analyses practical is to design customized
computational accelerators to implement them on, e.g., FPGAs or
chip multiprocessors. However, the cognitive burden associated
with programming these devices limits their utility for bioinfor-
maticians.

In this abstract, we describe a high-level approach to the
design of accelerators for biosequence analyses based on dynamic
programming. These computations can be described at the level
of recurrences, for which we can find the best mapping to a
given hardware platform using the tools of polyhedral analysis.
We recount recent advances by our group in automated design of
efficient accelerators from recurrences and describe a vision for
an end-to-end suite of tools for bioinformatics accelerator design.

I. INTRODUCTION

The advent of next-generation sequencing technologies in
the middle of the last decade has caused a quantum leap in the
speed and affordability of DNA sequencing. Whereas capillary
instruments like the ABI 3730 delivered tens of kilobases
of sequence per hour for around $500 per megabase [1],
today’s Illumina and ABI instruments can produce data up
to 1000-fold faster, for well under a dollar per megabase [2].
Projections for upcoming single-molecule instruments suggest
that, within a few years, they might produce data up to
100-fold faster still, with correspondingly lower costs and
substantially longer read lengths than today’s instruments of
choice.

This extreme growth in the speed and cost-efficiency of
sequencing has huge implications for the practice of bioin-
formatics. While many sequence analysis problems exhibit a
high degree of parallelism, the rate at which new data is being
generated is outstripping Moore’s Law-based increases in logic
areal density, which control the rate at which we can pack
more computing cores into our clusters. We must therefore
qualitatively change our approach to computing on biological
sequence data to meet the challenge of analyzing today’s and
tomorrow’s data volumes. This abstract therefore focuses on

improving performance by adapting the architecture of our
computational engines to facilitate faster biosequence analysis.

II. ACCELERATING DYNAMIC PROGRAMMING: PROMISE
AND CHALLENGES

Many of the key algorithms used to analyze biological se-
quences use the paradigm of dynamic programming (DP) [3].
Such algorithms are used in, e.g., classical sequence compar-
ison [4], RNA structure prediction [5], [6], and alignment to
protein and RNA family models [7], [8]. These algorithms
typically have running times quadratic, cubic, or worse in the
sizes of their inputs and so can become a bottleneck when
applied to large biological data sets. However, this bottleneck
can be ameliorated if the algorithms are implemented in a
way that exposes their inherently high degree of fine-grained
parallelism. In particular, these DP recurrences can be mapped
to parallel implementations in the form of systolic arrays [9]
– collections of simple, synchronized processing elements
connected by a regularly structured network of communication
links.

A recurrence whose data dependencies are (or can be made)
uniform linear can be realized as a systolic array [10], which
in turn can be implemented as an accelerator in custom logic
(ASIC or FPGA). Within bioinformatics, there is a long history
of custom logic accelerators for pairwise DNA and protein
sequence comparison [11], [12], [13] and more ambitious
designs have recently tackled more complex recurrences such
as those for RNA folding [14]. The best accelerators for these
tasks can achieve speedups of two orders of magnitude or
more relative to general-purpose processors.

Despite the need for high performance and the great po-
tential of systolic array-based accelerators for bioinformatics,
such accelerators are still relatively uncommon “in the wild.”
One reason for accelerators’ lack of penetration in bioinfor-
matics is the difficulty of accelerator design for bioinformatics
programmers, and indeed for anyone trained primarily in
software rather than hardware design. Accelerating algorithms
on a given platform, while it has a high return in performance,
entails adjustment to an entirely new programming paradigm,
detailed knowledge of the target hardware, and adaptation to
the quirks of its design and synthesis tools. Bioinformaticians

158 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

are not willing to spend the time and effort needed to build
an accelerator, particularly if the algorithm to be accelerated
is itself still being tweaked and enhanced.

Previous work has sought to reduce the time and difficulty
of hardware design by directly building circuit descriptions
from a C-like language, such as ImpulseC or Handel-C. Such a
paradigm presents a friendlier face to the average programmer
than a hardware design language (HDL), so one might expect
that it would lower the barrier to producing high-quality
accelerators. Unfortunately, these frameworks still rely on the
programmer to map a DP recurrence to a C-level specification
(e.g. a loop nest). Choosing this mapping appropriately is far
from trivial and is critical to achieve high performance. A good
mapping balances conflicting needs for high performance,
bounded utilization of logic and memory resources, and ability
to handle problems of realistic size with a limited amount of
logic. The demands of this difficult balancing act can make
high-performance systolic array design, even with enhanced
low-level tool support, inaccessible to all but a few expert
designers.

III. A VISION OF RAPID ACCELERATOR DESIGN FOR
BIOINFORMATICS

To make accelerator design easy and fast for bioinformatics,
we propose two principles. First, the right level of abstraction
for specifying biosequence analysis algorithms is typically a
DP recurrence, or a formalism such as a hidden Markov model
whose use entails such recurrences. Second, once the user
specifies a recurrence, reducing it to an implementation for
a given target should be entirely the job of a compiler. In
particular, a compiler that produces systolic array implemen-
tations should have sufficient knowledge of the target platform
and the typical range of input sizes to find a high-performance
design automatically.

This vision has antecedents in both software and hard-
ware. Dynamite [15] and its successor C4 [16] are explic-
itly designed to produce good C/C++ code for sequence
analysis from general recurrence specifications. These tools
are, however, CPU-focused and do not concern themselves
with exploiting fine-grained parallelism. Similarly, tools such
as MMAlpha [17], [18] and Paro [19] assist programmers
in mapping arbitrary dynamic programming recurrences to
efficient parallel or nested-loop implementations. However,
these tools are not generally used for bioinformatics, are only
partly automated, and still require considerable expertise to
use.

The ideal toolkit for building bioinformatics accelerators
would combine the best features of this prior work. On the
one hand, it would limit its ambitions to the domain of biose-
quence analysis and would therefore, like Dynamite, make
strong assumptions about its inputs and provide a high degree
of automation. On the other, it would incorporates a deep
understanding of how to map recurrences to efficient parallel
systolic-array implementations. Realizing such a toolkit would
greatly enhance bioinformaticians’ ability to exploit the work
of computer scientists and computing system designers.

IV. PROGRESS AND FUTURE WORK

In our work to date, we have devised new methods to design
accelerators for throughput-oriented computations, such as are
commonly found in bioinformatics, and have demonstrated
large speedups for the RNA folding problem, which is chal-
lenging to accelerate with a systolic array. In the future, we
plan to deploy these innovations as part of a more complete
pipeline for bioinformatics accelerator design.

To achieve greater automation in searching for good accel-
erator designs, we devised a general technique for designing
throughput-optimal systolic array mappings for a uniform
recurrence [20]. Throughput measures the sustained rate at
which a stream of problem instances can be computed by an
accelerator; in contrast, latency measures the time to complete
one instance. Traditional systolic array design focuses on
minimizing latency; however, in a bioinformatics context, we
typically need to solve a large collection of problems at once,
e.g. aligning a query to a database of sequences or folding
many candidate RNAs to find those that are highly structured.
We formulated a throughput measure – the block pipelining
period, or time required between submissions of successive
problems to the array – and showed how to automatically
search the domain of possible array designs to find those that
optimize this measure subject to resource constraints.

We applied our techniques to the domain of RNA folding
to automatically derive accelerators for the Nussinov folding
algorithm [5] whose throughput is several times that of clas-
sical latency-space-optimal arrays for the problem. Moreover,
modern circuit synthesis tools can easily be made to internally
pipeline our arrays within each processing element to increase
the resulting circuits’ clock rates.

Because high-performance systolic arrays are often in-
feasible to construct for realistically-sized inputs on space-
constrained hardware platforms, we also investigated the de-
sign of low-dimensional arrays that reduce parallelism but
require substantially fewer processors for a given input size.
For a complex recurrence, choosing among space-constrained
designs can dramatically affect the resource usage of the
resulting array. As a demonstration, we accelerated the Zuker
RNA-folding algorithm [6], which uses a much more detailed,
table-driven energy function than the Nussinov algorithm. By
carefully choosing among array mappings, we ensured that
most processing elements did not need the algorithm’s space-
intensive lookup tables [21]. As a result, we were able to fold
RNAs of 273 bases on a single Xilinx Virtex 4 LX100-12
FPGA, achieving speedups of two orders of magnitude over
CPU-based implementations and an order of magnitude over
existing FPGA- and GPU-based implementations.

Our achievements to date form the core of a planned
accelerator design pipeline aimed at bioinformaticians. To
fully realize this pipeline, we will need to automate various
steps surrounding the core search over systolic array designs.
We will automate, or at least provide templates for, the
mapping of common DP-based biosequence analysis algo-
rithms to uniform linear systems of recurrences. This problem,

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 159

which we solved manually for RNA folding, is much more
tractable for the handful of common recurrence shapes in
bioinformatics than for arbitrary recurrences. We will also
focus on automating low-level HDL code generation from our
systolic array designs. Finally, we will explore the feasibility
of mapping not only onto reconfigurable logic platforms but
also onto other highly constrained parallel architectures, such
as the SIMD threaded model of a GPU.

Ultimately, our goal is to put the power to exploit massive,
fine-grained parallelism into the hands of the typical bioinfor-
matics programmer, providing a boost to bioinformaticians in
their ongoing race to keep up with advances in sequencing
technology.

ACKNOWLEDGMENT

Our work on systolic array design automation and RNA
folding acceleration has been supported by NIH award R42
HG003225 and by NSF awards ITR-427794 and CNS-
0905368.

REFERENCES

[1] J. Shendure and H. Ji, “Next-generation DNA sequencing,” Nature
Biotechnology, vol. 26, pp. 1135–45, 2008.

[2] National Human Genome Research Institute, “DNA sequencing costs,”
2011, http://www.genome.gov/sequencingcosts/.

[3] R. Bellman, “The theory of dynamic programming,” Bulletin of the
American Mathematical Society, vol. 60, pp. 503–516, 1954.

[4] T. F. Smith and M. S. Waterman, “Identification of common molecular
subsequences,” Journal of Molecular Biology, vol. 147, no. 1, pp. 195–
97, Mar. 1981.

[5] R. Nussinov, G. Pieczenik, J. R. Griggs, and D. J. Kleitman, “Algorithms
for loop matchings,” SIAM Journal of Applied Mathematics, vol. 35, pp.
68–82, 1978.

[6] M. Zuker, “Computer prediction of RNA structure,” Methods in Enzy-
mology, vol. 180, pp. 262–88, 1989.

[7] S. R. Eddy, “Profile hidden Markov models,” Bioinformatics, vol. 14,
pp. 755–63, 1998.

[8] E. P. Nawrocki, D. L. Kolbe, and S. R. Eddy, “Infernal 1.0: Inference
of RNA alignments,” Bioinformatics, vol. 25, pp. 1335–7, 2009.

[9] H. T. Kung and C. E. Leiserson, “Algorithms for vlsi processor arrays,”
in Introduction to VLSI systems, C. Mead and L. Conway, Eds. Addison-
Wesley, 1980, ch. 8.3.

[10] R. Karp, R. Miller, and S. Winograd, “The organization of computations
for uniform recurrence equations,” Journal of the ACM, vol. 14, pp. 583–
90, 1967.

[11] R. Lipton and D. Lopresti, “A systolic array for rapid string comparison,”
in Proceedings of the 1985 Chapel Hill Conference on VLSI, 1985, pp.
363–376.

[12] E. Chow, T. Hunkapillar, J. Peterson, and M. Waterman, “Biological
information signal processor,” in Proceedings of the IEEE Applications-
Specific Array Processors Conference, 1991.

[13] J. Hirschberg, R. Hughey, K. Karplus, and D. Speck, “Kestrel: a
programmable array for sequence analysis,” in Proceedings of the
International Conference on Application-Specific Systems, Architectures,
and Processors, 1996, pp. 25–34.

[14] Y. Dou, F. Xia, X. Zhou, and X. Yang, “Fine-grained parallel application
specific computing for RNA secondary structure prediction on FPGA,”
in 26th International Conference on Computer Design, 2008, pp. 240–
247.

[15] E. Birney and R. Durbin, “Dynamite: a flexible code generating lan-
guages for dynamic programming methods used in sequence compari-
son,” in Proceedings of the 5th International Conference on Intelligent
Systems in Molecular Biology, 1997, pp. 56–64.

[16] G. Slater and E. Birney, “Automated generation of heuristics for biolog-
ical sequence comparison,” BMC Bioinformatics, vol. 6, p. 31, 2005.

[17] H. Le Verge, C. Mauras, and P. Quinton, “The ALPHA language and its
use for the design of systolic arrays,” Journal of VLSI Signal Processing,
vol. 3, pp. 173–182, 1991.

[18] A. Mozipo, D. Massicote, P. Quinton, and T. Risset, “Automatic syn-
tehsis of a parallel architecture for Kalman filtering using MMAlpha,”
in Proceedings of the 1999 IEEE Canadian Conference on Electrical
and Computer Engineering, 1999.

[19] F. Hannig, H. Ruckdeschel, H. Dutta, and J. Teich, “PARO: synthesis of
hardware accelerators for multi-dimensional dataflow-intensive applica-
tions,” in Proceedings of the Fourth International Workshop on Applied
Reconfigurable Computing, 2008, pp. 287–93.

[20] A. Jacob, J. Buhler, and R. Chamberlain, “Design of throughput-
optimized arrays from recurrence abstractions,” in Proceedings of the
21st IEEE International Conference on Application-specific Systems,
Architectures and Processors (ASAP), 2010, pp. 133–40.

[21] ——, “Rapid RNA folding: Analysis and acceleration of the Zuker
recurrence,” in Proceedings of the 18th IEEE Annual International Sym-
posium on Field-Programmable Custom Computing Machines (FCCM),
2010, pp. 87–94.

160 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

SESSION

INVITED SESSION - RUNTIME ADAPTIVE
EMBEDDED SYSTEMS AND ARCHITECTURES

Chair(s)

PROF. ROMAN LYSECKY

INVITED TALKS

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 161

162 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

i-Core: A run-time adaptive processor
for embedded multi-core systems

Jörg Henkel, Lars Bauer, Michael Hübner, and Artjom Grudnitsky
Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

{henkel, lars.bauer, michael.huebner, artjom.grudnitsky} @ kit.edu
Submitted as Invited Paper to ERSA 2011

Abstract
We present the i-Core (Invasive Core), an Application Spe-
cific Instruction Set Processor (ASIP) with a run-time adap-
tive instruction set. Its adaptivity is controlled by the run-
time system with respect to application properties that may
vary during run-time. A reconfigurable fabric hosts the
adaptive part of the instruction set whereas the rest of the
instruction set is fixed. We show how the i-Core is inte-
grated into an embedded multi-core system and that it is
particularly advantageous in multi-tasking scenarios, where
it performs applications-specific as well as system-specific
tasks.

1. Introduction and Motivation
Embedded processors are the key in rapidly growing appli-
cation fields ranging from automotive to personal mobile
communication, computation, and entertainment, to name
just a few. In the early 1990s, the term ASIP has emerged
denoting processors with an application-specific instruction
set (Application Specific Instruction-set Processors). They
are more efficient in one or more design criteria like ‘per-
formance per area’ and ‘performance per power’ [1] com-
pared to mainstream processors and eventually make to-
day’s embedded devices (which are often mobile) possible.
Nowadays, the term ASIP comprises a far larger variety of
embedded processors allowing for customization in various
ways including a) instruction set extensions, b) parameteri-
zation and c) inclusion/exclusion of predefined blocks tai-
lored to specific applications (like, for example, an MPEG-
4 decoder) [1]. An overview for the benefits and challenges
of ASIPs is given in [1-3].

A generic design flow of an embedded processor can be
described as follows:
i) an application is analyzed/profiled
ii) an instruction set extension (containing so-called Spe-

cial Instructions, SIs) is defined
iii) the instruction set extension is synthesized together

with the core instruction set
iv) retargetable tools for compilation, instruction set simu-

lation, and so on, are (often automatically) created and
application characteristics are analyzed

v) the process might be iterated several times until design
constraints comply

Automatically detecting and generating SIs from the appli-
cation code (like in [4]) plays a major role for speeding-up

an application and/or for power efficiency. Profiling and
pattern matching methods [5, 6] are typically used along
with libraries of reusable functions [7] to generate SIs.

However, fixing critical design decisions during design
time may lead to embedded processors that can hardly react
to an often non-predictive behavior of today’s complex ap-
plications. This does not only result in reduced efficiency
but it also leads to an unsatisfactory behavior when it
comes to design criteria like ‘performance’ and ‘power
consumption’. A means to address this dilemma is recon-
figurable computing [8-11] since its resources may be util-
ized in a time-multiplexed manner (i.e. reconfigured over
time). A large body of research has been conducted in in-
terfacing reconfigurable computing fabrics with standard
processor cores (e.g. using an embedded FPGA [12-14]).

This paper presents the i-Core, a reconfigurable proces-
sor that provides a high degree of adaptivity at the level of
instruction set architecture (through using reconfigurable
SIs) and microarchitecture (e.g. reconfigurable caches and
branch predictions). The potential performance advantages
at both levels are exploited and combined which allows for
a high degree of adaptivity that is especially beneficial in
run-time varying multi-tasking scenarios.

Paper structure: Section 2 presents state-of-the-art related
work for reconfigurable processors. An overview of our
i-Core processor is given in Section 3 where we explain the
way it is integrated into a heterogeneous multi-core system
and the kind of adaptivity it provides with respect to SIs
and the microarchitecture. Section 4 explains how SIs are
modeled and how the programmer can express which SIs
are demanded by the application to trigger their reconfigu-
ration. Performance results of applications executing on the
i-Core are given in Section 5 and conclusions are drawn in
Section 6.

2. Related Work
Diverse approaches for reconfigurable processors were in-
vestigated particularly within the last decade [8-11]. The
Molen Processor couples a reconfigurable coprocessor to a
core processor via a dual-port register file and an arbiter for
shared memory [15]. The application binary is extended to
include instructions that trigger the reconfigurations and
control the usage of the reconfigurable coprocessor. The
OneChip project [16, 17] uses tightly-coupled Reconfigur-
able Functional Units (RFUs) to utilize reconfigurable
computing in a processor. As their speedup is mainly ob-

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 163

tained from streaming applications, they allow their RFUs
to access the main memory, while the core processor (i.e.
the non-reconfigurable part of the processor) continues
executing [18]. Both approaches target a single-tasking en-
vironment and statically predetermine which SIs shall be
reconfigured at ‘which time’ and to ‘which location’ on the
reconfigurable fabric. This will lead to conflicts if multiple
tasks compete for the reconfigurable fabric (not addresses
by these approaches).

The Warp Processor [19] automatically detects computa-
tional kernels while the application executes. Then, custom
logic for SIs is generated at run-time through on-chip mi-
cro-CAD tools and the binary of the executing program is
patched to execute them. This potentially allows adapting
to changing multi-tasking scenarios. However, the required
online synthesis may incur a non-negligible overhead and
therefore the authors concentrate on scenarios where one
application is executing for a rather long time without sig-
nificant variation of the execution pattern. In these scenar-
ios, only one online synthesis is required (i.e. when the ap-
plication starts executing) and thus the initial performance
degradation accumulates over time. Adaptation to fre-
quently changing requirements –as typically demanded in a
multi-tasking system– is not addressed by this approach.

The Proteus Reconfigurable Processor [20] extends a
core processor with a tightly-coupled reconfigurable fabric.
It concentrates on Operating System (OS) support with re-
spect to SI opcode management to allow different tasks to
share the same SI implementations. Proteus’ reconfigurable
fabric is divided into multiple Programmable Functional
Units (PFUs) where each PFU may be reconfigured to con-
tain one SI (unlike ReconOS [21], where the reconfigurable
hardware is deployed to implement entire threads). How-
ever, when multiple tasks exhibit dissimilar processing
characteristics, a task may not obtain a sufficient number of
PFUs to execute all SIs in hardware. Therefore, some SIs
will execute in software, resulting in steep performance
degradation.

The RISPP processor [22, 23] uses the reconfigurable
fabric in a more flexible way by introducing a new concept
of SIs in conjunction with a run-time system to support
them. Each SI exists in multiple implementation alterna-
tives, reaching from a pure software implementation (i.e.
without using the reconfigurable fabric) to various hard-
ware implementations (providing different trade-offs be-
tween the amount of required hardware and the achieved
performance). The main idea of this concept is to partition
SIs into elementary reconfigurable data paths that are con-
nected to implement an SI. A run-time system then dy-
namically chooses one alternative out of the provided op-
tions for SI implementations, depending on run-time appli-
cation requirements. It focuses on single-tasking scenarios
and does not aim to share the reconfigurable fabric among
multiple tasks or among user tasks and OS tasks.
KAHRISMA [24, 25] extends the concepts of RISPP by
providing a fine-grained reconfigurable fabric along with a
coarse-grained reconfigurable fabric that can then be used

to implement SIs and to realize pipeline- or VLIW proces-
sors. Therefore, KAHRISMA supports simultaneous multi-
tasking (one task per core), but it does not consider execut-
ing multiple tasks per core or adapting the microarchitec-
ture (e.g. cache- or branch-prediction) of a core.

Altogether, only Proteus explicitly targets multi-tasking
systems in the scope of reconfigurable processors that use a
fine-grained reconfigurable fabric. The concept of PFUs
does not provide the demanded flexibility to support multi-
ple tasks efficiently though. RISPP and KAHRISMA pro-
vide a flexible SI concept but the challenge of sharing the
reconfigurable fabric and the configuration of the microar-
chitecture among competing tasks is not addressed. The
Warp processor provides the potentially highest flexibility,
but it comes at the cost of online synthesis, which limits the
scenarios in which this flexibility can be efficiently used.
Hence, when studying state-of-the-art approaches, the fol-
lowing challenge remains: providing an adaptive recon-
figurable processor that can share the reconfigurable fabric
efficiently among multiple user tasks while providing an
adaptive microarchitecture that can adapt to varying task
requirements.

3. i-Core Overview
The i-Core is a reconfigurable processor that provides a
run-time reconfigurable instruction set architecture (ISA)
along with a run-time reconfigurable microarchitecture.
The ISA consists of two parts, the so-called core ISA
(cISA) and the Instruction Set Extension (ISE). The cISA is
statically available (i.e. implemented with non-
reconfigurable hardware) and the ISE represents the task-
specific components of the ISA that are realized as recon-
figurable Special Instructions (SIs). The i-Core uses a fine-
grained reconfigurable fabric (i.e. an embedded FPGA, e.g.
[12-14]) to provide
i) task-specific ISEs,
ii) OS-specific ISE, and
iii) an adaptive microarchitecture that – among others –

allows for supporting and executing both kinds of ISEs
efficiently by performing run-time reconfigurations

This approach exceeds the concept of state-of-the-art
ASIPs, as it adds flexibility and additionally enables dy-
namic run-time adaptation towards the executing applica-
tion to increase the performance.

The reconfigurable microarchitecture characterizes the
concrete processor-internal realization of the i-Core for a
given ISA. It refers to the internal process of instruction
handling and it is developed with respect to a predefined
ISA (SPARC-V8 [26] in our case). Summarizing, the ISA
specifies the instruction set that can be used to program the
processor (without specifying how the instructions are im-
plemented) and the microarchitecture specifies its imple-
mentation and further ISA-independent components (e.g.
caches and branch prediction).

Figure 1 shows how the i-Core is embedded into a het-
erogeneous loosely-coupled multi-core system which is

164 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

partitioned into tiles that consist of processor cores and lo-
cal shared memory. Each tile is connected to one router that
is part of an on-chip network to connect the tiles to each
other and to external memory. Within one tile, none, one,
or multiple i-Core instances are located and connected to
the tile-internal communication structure (similar to the
other CPUs of the tile). The CPUs within the tile access the
shared memory (an application-managed scratchpad) via
the local bus. The i-Core uses a dedicated connection to the
local memory, using two 128-bit ports to provide a high
memory bandwidth to expedite the execution of SIs. When
multiple i-Cores are situated within one tile, then the access
to the local memory and the reconfigurable fabric is shared
among them.

...

Typical instantiation of a
heterogeneous loosely-

coupled MPSoC,
showing how the i-Cores

are embedded into it
Computa-
tion Tile

i-Core

...

Mem

CPU CPU

i-Core i-Core

Mem

i-Core CPU

CPU CPU

Mem

CPU CPU

CPU CPU
Mem
Ctl

Mem

CPU i-Core

CPU i-Core

Mem

CPU CPU

CPU i-Core

Mem

Figure 1: Integration of the i-Core into a heterogeneous

multi-core system with on-chip interconnect network

Figure 2 provides an overview of the i-Core-internal adap-
tation options of the ISE and the microarchitecture. The
ISE provides task-specific and system-specific SIs.
Whereas the task-specific SIs are particularly targeted to-
wards a certain application or application domain, the sys-
tem-specific SIs support basic operating system (OS) func-
tionalities that are required to execute tasks and to manage
the multi-core system. The OS can (to some degree) be
viewed as a set of tasks (e.g. task mapping, task scheduling,
etc.) that can be accelerated by SIs. Typically, it is impos-
sible to fulfill all ISE requests due to the limited size of the
reconfigurable fabric. The SIs that are not implemented on
the reconfigurable fabric at a certain point in time can be
executed through an ‘unimplemented instruction’ trap as
presented in more detail in [27].

SIs are prepared at compile time of the tasks and the cal-
culations that are performed by an SI are fixed at run time.
Instead, the implementation of a particular SI may change
during run-time (details are explained in Section 4.1).
These adaptations correspond to ISE-specific adaptations at
the microarchitecture level. Figure 2 shows a reconfigur-
able fabric – in addition to the hardware of the processor
pipeline – that is employed to realize an ISE. Depending on
the executing tasks and their specific ISE requirements, the
reconfigurable fabric is allocated or – as we call it – in-
vaded to realize a certain subset of the requested ISEs (that
is why we call it an invasive Core, i.e. i-Core). The con-
cepts of invasive computing [28] are used to manage the
competing requests of different tasks. In the scope of recon-
figurable processors this means that each task specifies the
SIs that it uses (i.e. ‘its requests’; details are presented in

Section 4.2). Additionally, each task provides information
which performance improvement (speedup) can be ex-
pected, depending on the size of the reconfigurable fabric
that is assigned to it. A run-time system (part of the OS)
then decides for the tasks that compete for the resources,
which task obtains which share of the reconfigurable fabric
(similar to the approach presented in [29] where the fabric
of one task is partitioned among the SIs of that task).

Instruction-Set
Architecture (ISA)

Processor Pipeline

Adaptive Number of
Pipeline Stages etc.

Microarchitecture

Application-/System-
specific Instruction-Set Extension

(ISE), realized as Special
Instructions (SIs)

Cache /
Scratchpad

Reconfigurable Fabric

Adaptive Branch
Prediction etc.

i-Core

is execu-
ted byis executed by

Control-
flow

Data
Transfers

Core Instruction-Set
Architecture (cISA)

Reconfigurable Fabric may be used for:
● SIs of user tasks
• potentially multiple tasks compete for the
reconfigurable fabric

● SIs of Operating System tasks
● ISE-independent microarchitectural optimizations

Figure 2: The Instruction-Set Architecture and Mi-

croarchitecture Adaptations of our i-Core
The highly adaptive nature of modern multi-tasking em-
bedded systems intensifies the potential advantages that
come along with an adaptive microarchitecture and instruc-
tion set architecture. The adaptations of the instruction set
comprise flexible task-specific SIs that support at run-time
adaptations in terms “performance per area” (details given
in Section 4.1) depending on the number of tasks that exe-
cute on an i-Core at a specific time (and thus the amount of
reconfigurable fabric that is available per task). In addition
to the ISE, the i-Core also supports adapting its microarchi-
tecture. The microarchitecture adaptations are independent
upon the instruction set and they comprise:
 adaptive number of pipeline stages
 adaptive branch prediction
 adaptive cache/scratchpad configuration

Even though these optimizations are ISA-independent, they
may significantly increase the performance of the executing
task (or reduce the power consumption etc.). The number
of pipeline stages is altered by combining neighbored
stages and bypassing the pipeline registers between them.
This reduces the maximal frequency of the processor but it
may lead to power savings (reduced number of registers)
and may be beneficial in terms of performance for applica-
tions where a complex control flow leads to many branch
miss-predictions. Additionally, techniques like pipeline
balancing [30] or pipeline gating [31] can be applied. De-
pending on a task’s requirements, the branch prediction
scheme can also be changed dynamically, e.g. by providing

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 165

different schemes and letting the task decide which one to
use. Another example of performance-oriented adaptive de-
sign is branch history length adaptation, e.g. Juan et al.
[32] explore dynamic history-length fitting and develop a
method for dynamically selecting a history length that ac-
commodates the current workload.

In addition, the cache can be changed in various ways.
For instance, Albonesi [33] proposes to disable cache ways
dynamically to reduce dynamic energy dissipation. Kaxiras
et al. [34] reduce leakage power by invalidating and turning
off the cache lines when they hold data that is not likely to
be reused. The approaches of [35-37] use an adaptive strat-
egy to adjust the cache line size dynamically to an applica-
tion. In addition to these approaches, the microarchitecture
of the i-Core exploits the availability of the fine-grained re-
configurable fabric to extend the size and associativity of
the cache. For example, the size of the cache (e.g. number
of cache lines) can be extended (using the logic cells of the
reconfigurable fabric as fast memory), further parallel
comparators can be realized to increase the associativity of
the cache, or additional control bits can be assigned to each
cache line for protocol purpose (e.g. error detec-
tion/correction schemes). Additionally, the memory of the
cache can be reconfigured to be used as a task-managed
scratchpad memory.

In summary, instruction set and microarchitecture adap-
tations target task-specific optimizations, for example, a
particular task might benefit from a certain SI (part of the
ISA) and a certain branch prediction (part of the microar-
chitecture). Additionally, a particular task might also bene-
fit from different ISA/microarchitecture implementations at
different phases of its execution (e.g. different computa-
tional kernels), i.e. the requirements of a sole task may
change over time. Depending on the tasks that execute at a
certain time and their requirements, the adaptations focus
on:
 some selected tasks (beneficial for those tasks at the cost

of other tasks)
 operating system optimization (beneficial for all tasks)
 a trade-off between both

Determining this trade-off depends on the user-priorities of
the executing tasks. This large degree of flexibility is an
advantage in comparison to state-of-the-art adaptive proc-
essors (e.g. RISPP [22, 23] or KAHRISMA [24, 25]) as
they focus on accelerating either the tasks or the operating
systems (but not both) by improving either the instruction
set or the microarchitecture (and gain, not both).

3.1. Partitioning the Reconfigurable Fabric among
Special Instructions and Microarchitecture

The core ISA (cISA) is executed by means of a specific
hardware at the microarchitecture level. Depending on the
requirements of the executing task, the microarchitecture
implementation of the cISA can be changed during run-
time. For instance, a 5-stage pipeline implementation can

be replaced by a faster 7-stage pipeline implementation as
explained in Section 3.

Figure 3 illustrates an example for the different levels of
adaptivity, using a task execution scenario in a sequence
from a) to d). It shows how the execution pipeline, the
cache, and the reconfigurable fabric may be invaded by dif-
ferent tasks (i.e. the resources are reconfigured towards the
requirements of the task as explained in Section 3). Part a)
of Figure 3 illustrates that the reconfigurable fabric can be
used to accelerate OS functionality. This is especially bene-
ficial, as the workload of the OS heavily depends on the
behavior of the tasks, that is, ‘when’ and ‘how many’ sys-
tem calls etc. will be executed. Therefore, providing static
accelerators for the OS is not necessarily beneficial. In-
stead, the hardware may be reconfigured to accelerate other
tasks in case the OS does not benefit from it at a certain
time, as shown in part b) of the figure.

7-stage
Pipeline

Cache

5-stage
Pipeline

Cache

5-stage
Pipeline

Scratchpad

5-stage
Pipeline

Scratchpad

OS
Accelerator

Guaranteed
Appl.-spe-

cific Accele-
rator 1

Cache
Exten-
sion

Guaranteed
Appl.-spe-

cific Accele-
rator 1

Tempo-
rary

Accele-
rator 2

Guaranteed
Appl.-spe-

cific Accele-
rator 1

Guarant.
Acc. for
second

i-let

a)

b)

c)

d)

Legend:
ISA-independent
Microarchitecture

Adaptation

ISA-dependent
OS-specific
Adaptation

ISA-dependent
Appl.-specific

Adaptation

Before a task starts executing, the
Operating System needs to decide
on which core it shall execute
(task mapping and scheduling
problem). Dedicated accelerators
are loaded to support the
corresponding algorithms

The task starts execution and an
application-specific accelerator is
established. Additionally, parts of
the reconfigurable fabric are
invaded to extend the capacity/
strategy of the cache. As the main
computational load is now covered
by the accelerator, the pipeline
can be reconfigured to a 5-stage
pipeline. This slows down its
maximal frequency, but it reduces
the penalty of wrong branch
predictions.

In addition to the guaranteed acce-
lerator (reserved during invasion)
a second accelerator is esta-
blished temporary and replaces
the cache extension. Due to the
reduced cache size, a user-
managed scratchpad is more
beneficial than a transparent
cache, thus the cache logic is
reconfigured correspondingly.

A second task starts execution
and demands different
accelerators. Therefore, the
temporary established second
accelerator for the first task is
replaced to realize a new
accelerator for the second
task, i.e. it invades the available
part of the reconfigurable fabric.

Figure 3: An example to demonstrate the adaptivity of
the i-Cores, comprising ISA-independent adaptations as

well as task-specific and OS-specific adaptations

Microarchitectural components like the cache and the proc-
essor pipeline can be adapted to different task require-
ments. Depending on the demanded time for performing
these reconfigurations, the changes may be performed spe-
cific to the currently executing task or they may be per-
formed for the set of tasks that execute on the i-Core. For
instance, reconfiguring a 7-stage pipeline into a 5-stage
pipeline only demands a few cycles and thus it can be per-
formed as part of the task switch (in a preemptive multi-
tasking system) when changing from one task to another.
Instead, the reconfiguration time of the reconfigurable fab-
ric is typically larger and changing the configuration as part
of the task switch would increase the task switching time

166 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

significantly. Therefore, to share the reconfigurable fabric
among multiple tasks, it needs to be partitioned dynami-
cally as indicated in parts c) to d) of Figure 3. Therefore, at
different points in time, the temporary allocation ‘which
part’ of the reconfigurable fabric accelerates ‘which task’
changes dynamically. Parts c) and d) show that a task can
obtain a guaranteed share of the reconfigurable fabric, but it
may use a larger share of it temporarily.

4. Modeling and Using Reconfigurable Special
Instructions

4.1. Special Instruction Model
As motivated in Section 3, the reconfigurable fabric is
shared among several tasks and thus, the ISE of a particular
task has to cope with an at compile-time unknown size of
the reconfigurable fabric. The approach of so-called modu-
lar SIs allows for providing different trade-offs between the
amount of required hardware and the achieved performance
by breaking SIs into elementary reconfigurable data paths
(DPs) that are connected to implement an SI. It was origi-
nally developed in the scope of the RISPP project [22] and
is meanwhile integrated and extended in other projects as
well (e.g. KAHRIMSA [24]). The basic idea of modular
SIs is illustrated in Figure 4 (description and an example
follows) and is based on a hierarchical approach that –
among others– allows to represent that
a) an SI may be realized by multiple SI implementations,

typically differing in their hardware requirements and
their performance (and/or other metrics), and

b) a DP is not dedicated to a specific SI, but it can be used
as a part of different SIs instead.

SI A SI B SI C

A1 A2 A3 Ac I S A

1
2

2

DP 2DP 1

B1 B2 Bc I S A C1 CcISA

DP 3

1
2

C2

Special
Instructions
(SIs)

SI Imple-
mentations

Data Paths
(DPs)

2

1
1 1

1

2

DP 4 DP 6DP 5

1
2

1
22

11
2

Demanded in
different quan-
tities for SI
implemen-
tations

1

(an SI can be
realized by
any of its im-
plementations)

an implemen-
tation without

hardware
acceleration

Figure 4: Hierarchical composition of SIs: multiple im-
plementation alternatives exist per SI and demand data

paths for realization; Figure based on [22]
Modular SIs are composed of DPs, where typically multi-
ple DPs are combined to implement an SI. Figure 5 shows
the Transform DP and the SAV (Sum of Absolute Values)
DP to indicate their typical complexity. DPs are created and
synthesized during compile time and they are reconfigured
at run time. Technically, DPs are the smallest components
that are reconfigured in modular SIs. An SI is composed of
multiple DPs, as indicated in Figure 4 and illustrated with
an example in Figure 5 and an SI implementation incorpo-
rates them in different quantities.

Figure 4 shows the hierarchy of SIs, SI Implementations,
and DPs. At each point in time, a particular SI is imple-
mented by one specific SI Implementation. It is noticeable

that DPs can be used by different implementations of the
same SIs and even by different SIs. This means that a DP
can be shared among different SIs.

Each SI has one special Implementation that does not
demand any DPs. This means that this SI implementation is
not accelerated by hardware. If the SI shall execute but an
insufficient amount of DPs needed to implement any of the
other Implementations is available (i.e. reconfigured to the
reconfigurable fabric), then the processor raises an ‘unim-
plemented instruction’ trap and the corresponding trap han-
dler is used to implement the SI’s functionality [27]. The
trap handler uses the core Instruction Set Architecture
(cISA) of the processor. Therefore, this cISA implementa-
tion allows bridging the reconfiguration time (in the range
of 1 to 10 ms), i.e. the time until the required DPs are re-
configured.

INPUT: OUTPUT:IDCT=0

QSub SAV (Sum of
Absolute Values)

+

+
+

X00

X30

X10

X20
Y20

Y00

Y10

Y30

Repack

>> 1−
>> 1

>> 1−
>> 1++

+
+

<< 1

<< 1

−

−

DCT HT

Transform

HT=0

X1 neg
≥ 0

X2 neg
≥ 0

X3 neg
≥ 0

X4 neg
≥ 0

+

+
+ Y

>> 1

IDCT

>> 1

DCT=0
IDCT=0 HT=1

DCT=0

Figure 5: Example for the modular Special Instruction

SATD (Sum of Absolute (Hadamard-) Transformed
Differences); Figure based on [22, 27]

Figure 5 shows an example for a modular SI that is com-
posed of four different types of DPs and that implements
the Sum of Absolute Hadamard-Transformed Differences
(SATD) functionality, as it is used in the Motion Estima-
tion process of an H.264 video encoder. The data-flow
graph shown in Figure 5 describes the general SI structure
and each implementation of this SI has to specify how
many DP instances of the four utilized DP types (i.e. QSub,
Repack, Transform, and SAV) shall be used for implemen-
tation. Depending on the provided amount of DPs, the SI
can execute in a more or less parallel way. When more DPs
are available, then a faster execution is possible (that corre-
sponds to a different implementation of same SI). Dynami-
cally changing between these different performance-levels
of an SI implementation allows reacting on changing appli-
cation requirements or changing availability of the recon-
figurable fabric.

4.2. Programming Interface for using the recon-
figurable fabric

A task uses DPs on the reconfigurable fabric without the
knowledge of low-level details such as partitioning the fab-

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 167

ric for different SIs, determining the sequence of ‘which’
DPs are loaded ‘where’ on the fabric, etc. These steps are
handled by the run-time system of the i-Core. Nevertheless,
the programmer needs to trigger these steps by issuing sys-
tem calls (presented in this section). The code fragment in
Figure 6 (a high-level excerpt from the main loop of a
H.264 video encoder) illustrates the programming model of
the i-Core.

Microarchitectural features are adapted using the
set_i_Core_parameter system call. It ensures that any pre-
conditions for an i-Core adaptation are met (e.g. emptying
the pipeline before changing pipeline length, invalidating
cache-lines before modifying cache-management parame-
ters, etc.) and it then performs the adaptations. For exam-
ple, in Line 3 of Figure 6, the i-Core pipeline length is set
to 5 stages and branch prediction is switched to a (2, 2) cor-
relating branch predictor.

To request a share of the reconfigurable fabric, the task
issues the invade system call (Line 5). Invade selects a
share of a resource and grants it to the task. There, the re-
source is the entire reconfigurable fabric of the i-Core, a
part of which is assigned to the task. The size of the as-
signed fabric depends on the speedup that the application is
expected to exhibit. Generally, the more fabric is available
to the task, the higher the speedup, but the expected
speedup for a given amount of fabric is task-specific. This
‘speedup per size of assigned fabric’ relationship is ex-
plored during offline profiling and passed as the
trade_off_curve parameter to the invade system call. Dur-
ing execution of invade, the run-time system will use the
trade-off curve to decide which share of the fabric will be
granted to the task. In the worst case, the application will
receive no fabric at all (due to e.g. all fabric being occupied
by higher priority tasks), then all SIs need their core ISA
implementation (see Section 4.1) for execution The share
of the fabric assigned to an application corresponds to the
my_fabric return value in Line 5. Requesting a share of the
fabric is typically done before the actual computational
kernels start.

Next, the implementations of the SIs that will be used
during the next kernel execution (the ‘while’ loop in the
code example, lines 6-15) must be determined. The applica-
tion programmer does not need to know which SI imple-
mentations are available at run time, as long as it is guaran-
teed that the SI functionality is performed (the SI imple-
mentation determines the performance of the SI, but not its
functionality). The application informs the run-time system
which SIs it will use during the next kernel execution and
the run-time system selects implementations for these SIs.
This is accomplished by means of the invade system call
again (Line 7). Here, the invaded resource is the applica-
tion’s own share of the reconfigurable fabric acquired ear-
lier, which needs to be partitioned such that SI implementa-
tions for the requested SIs (SATD and SAD in the code ex-
ample) fit onto it [29]. The programmer may also explicitly
request specific DPs that shall be loaded into the fabric and
the run-time system will consider these requests when se-

lecting SI implementations for the task. This manual inter-
vention may be used if the SI requirements of a kernel are
rather static, i.e. the run-time system does not need to pro-
vide adaptivity for its implementation. Additionally, it can
be used to limit the search for SI implementations and thus
reduce the overhead of the run-time system.

1. H264_encoder() {
2. // Set i-Core microarchitecture parameters
3. set_i_Core_parameter(pipeline_length=5,

 branch_prediction=2_2_correlation_predictor);
4. // Invade a share of the reconfigurable fabric
5. my_fabric=invade(resource=reconf_fabric,

 performance=trade_off_curve);
6. while (frame=videoInput.getNextFrame()) {
7. SI_implementations=invade(resource=my_fabric,

 SI={SAD, trade_off_curve[SAD],
 execution_prediction[SAD_ME]},
 SI={SATD, trade-off_curve[SATD],
 execution_prediction[SATD_ME]});

8. infect(resource=my_fabric, SI_implementations);
9. motion_estimation(frame, ...);
10. ...
11. SI_implementations=invade(resource=my_fabric, ...);
12. infect(resource=my_fabric, SI_implementations);
13. encoding_engine(frame, ...);
14. ...
15. }
16. }

Figure 6: Pseudo code example for invading the recon-
figurable fabric and the microarchitecture

After the run-time system has decided which SI implemen-
tations to use, the application can start loading the required
DPs by issuing the infect system call (Line 8). DPs are
loaded in parallel to the task execution, allowing the appli-
cation to continue processing without waiting for the DPs
to finish loading (which is a non-negligible amount of time;
it is in the order of milliseconds). This implies that the mo-
tion_estimation function in the code example (Line 9) will
start executing before the DPs have finished loading. Re-
configuring DPs in parallel to task execution provides a
speedup for the following reason: if an SI is executed, but
not all DPs for the desired implementation are available,
the i-Core will use a slower implementation for the same SI
that requires only the already loaded DPs (see Section 4.1).
When additional DPs are loaded then faster SI implementa-
tions become available and they are used automatically.

After completing execution of a particular kernel (e.g.
motion_estimation in Line 9), an entirely different set of
SIs may be executed on the same share of the fabric at-
tained by the task during its initial invade call. The fabric
must, however, be prepared for execution of the new SIs
(invade and infect, lines 11-13).

5. Results
In this section, a first evaluation of the i-Core is given, fo-
cusing on the application-specific ISE extensions for dif-

168 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

ferent tasks. The SIs for speeding up the tasks were devel-
oped manually to demonstrate the feasibility and the per-
formance benefits of the i-Core. Figure 7 shows the
speedup of four different tasks when accelerated by DPs on
the reconfigurable fabric in comparison to executing the
tasks without SIs. The obtained speedup depends on the
size of the reconfigurable fabric that is expressed by the
number of so-called Data Path Containers (DPCs), i.e. re-
gions of the reconfigurable fabric into which a DPs can be
reconfigured. For the results in Figure 7, each task uses the
available number of DPCs on its own, i.e. the reconfigur-
able fabric is not shared among multiple tasks. Tasks like
the CRC calculation require only few DPs for acceleration.
With just one available DPC, a speedup of 2.51x is ob-
tained for CRC. Further DPCs do not lead to further per-
formance benefits for this task. The JPEG decoder ap-
proaches its peak performance after 5 DPCs. For more than
5 DPCs (3.49x speedup) only minor additional performance
improvements are achieved (up to 3.81x). The image-
processing library SUSAN and the H.264 video encoder
achieve noticeable performance improvements of more
than 18x each. Both tasks consist of multiple kernels that
execute repeatedly after each other, i.e. the DPCs are con-
sistently reconfigured to fulfill the task’s requirements.

0
2
4
6
8

10
12
14
16
18
20
22
24

1 3 5 7 9 11 13 15 17 19 21 23 25

Ap
pl

ic
at

io
n

Sp
ee

du
p

Size of Reconfigurable Fabric [#DPCs]

CRC JPEG Decoder

SUSAN H.264 Encoder

Figure 7: Speedup of different tasks (in comparison to
execution without SIs) when executing on the i-Core in

single-tasking mode (i.e. the entire reconfigurable fabric
is available for the task)

Figure 8 shows the speedup of the same tasks as used in
Figure 7, but here all tasks are executed at the same time,
i.e. they need to share the available reconfigurable fabric
(shown as the horizontal axis). Consequently, the perform-
ance improvement for a given number of DPCs is lower
than the one shown in Figure 7, as not all available DPCs
are assigned to one task. Altogether, five tasks execute, as
two instances of the H.264 video encoder are executed at
the same time. The figure shows that the characteristics of
performance improvement is similar to the case where all
tasks execute on their own, i.e. when they can utilize the
entire reconfigurable fabric rather than sharing it. This
demonstrates that it is possible and beneficial to share the
reconfigurable fabric among the tasks.

0

2

4

6

8

10

12

14

16

18

20

1 3 5 7 9 11 13 15 17 19 21 23 25

Ap
pl

ic
at

io
n

Sp
ee

du
p

Size of Reconfigurable Fabric [#DPCs]

CRC
JPEG Decoder
SUSAN
H.264 Encoder 1
H.264 Encoder 2

Figure 8: Speedup of different tasks (in comparison to
execution without SIs) when executing on the i-Core in

multi-tasking mode (i.e. the reconfigurable fabric is
shared among all tasks)

6. Conclusion
This paper presented the i-Core concept, a reconfigurable
processor that provides a very high adaptivity by utilizing a
reconfigurable fabric (to implement Special Instruction)
and a reconfigurable microarchitecture. The combination of
an adaptive instruction set architecture and microarchitec-
ture allows optimizing performance-wise relevant charac-
teristics of the i-Core to task-specific requirements, which
makes the i-Core especially beneficial in multi-tasking sce-
narios, where different tasks compete for the available re-
sources. We evaluated the i-Core and demonstrated its con-
ceptual advantages when several of these tasks execute to-
gether in a multi-tasking environment.

7. Acknowledgement
This work was supported by the German Research Founda-
tion (DFG) as part of the Transregional Collaborative Re-
search Centre "Invasive Computing" (SFB/TR 89)

References
[1] J. Henkel, “Closing the SoC design gap”, Computer, vol. 36,

no. 9, pp. 119–121, September 2003.
[2] K. Keutzer, S. Malik, and A. R. Newton, “From ASIC to

ASIP: The next design discontinuity”, in International Con-
ference on Computer Design (ICCD). IEEE Computer Soci-
ety, September 2002, pp. 84–90.

[3] J. Henkel and S. Parameswaran, Designing Embedded Proc-
essors: A Low Power Perspective. Springer Publishing Com-
pany, Incorporated, 2007.

[4] N. Clark, H. Zhong, and S. Mahlke, “Processor acceleration
through automated instruction set customization”, in Pro-
ceedings of the International Symposium on Microarchitec-
ture (MICRO), December 2003, pp. 129–140.

[5] K. Atasu, L. Pozzi, and P. Ienne, “Automatic application-
specific instruction-set extensions under microarchitectural
constraints”, in Proceedings of the 40th annual Conference
on Design Automation (DAC), June 2003, pp. 256–261.

[6] F. Sun, S. Ravi, A. Raghunathan, and N. K. Jha, “A scalable
application-specific processor synthesis methodology”, in
Proceedings of the International Conference on Computer-
Aided Design (ICCAD), November 2003, pp. 283–290.

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 169

[7] N. Cheung, J. Henkel, and S. Parameswaran, “Rapid configu-
ration and instruction selection for an ASIP: a case study”, in
IEEE/ACM Proceedings of Design Automation and Test in
Europe (DATE), March 2003, pp. 802–807.

[8] K. Compton and S. Hauck, “Reconfigurable computing: a
survey of systems and software”, ACM Computing Surveys
(CSUR), vol. 34, no. 2, pp. 171–210, June 2002.

[9] F. Barat and R. Lauwereins, “Reconfigurable instruction set
processors: A survey”, in Proceedings of the 11th IEEE In-
ternational Workshop on Rapid System Prototyping (RSP),
June 2000, pp. 168–173.

[10] S. Vassiliadis and D. Soudris, Fine- and Coarse-Grain Re-
configurable Computing. Springer Publishing Company, In-
corporated, 2007.

[11] H. P. Huynh and T. Mitra, “Runtime adaptive extensible em-
bedded processors – a survey”, in Proceedings of the 9th In-
ternational Workshop on Embedded Computer Systems: Ar-
chitectures, Modeling, and Simulation (SAMOS), July 2009,
pp. 215–225.

[12] T. v. Sydow, B. Neumann, H. Blume, and T. G. Noll, “Quan-
titative analysis of embedded FPGA-architectures for arith-
metic”, in Proceedings of the IEEE 17th International Con-
ference on Application-specific Systems, Architectures and
Processors (ASAP), September 2006, pp. 125–131.

[13] B. Neumann, T. von Sydow, H. Blume, and T. G. Noll, “De-
sign flow for embedded FPGAs based on a flexible architec-
ture template”, in Proceedings of the conference on Design,
automation and test in Europe (DATE), 2008, pp. 56–61.

[14] M. Huebner, P. Figuli, R. Girardey et al., “A heterogeneous
multicore system on chip with run-time reconfigurable vir-
tual FPGA architecture”, in Proc. of Reconfigurable Archi-
tectures Workshop (RAW), May 2011.

[15] S. Vassiliadis, S. Wong, G. Gaydadjiev et al., “The MOLEN
polymorphic processor”, IEEE Transactions on Computers
(TC), vol. 53, no. 11, pp. 1363–1375, November 2004.

[16] R. Wittig and P. Chow, “OneChip: an FPGA processor with
reconfigurable logic”, in IEEE Symposium on FPGAs for
Custom Computing Machines, April 1996, pp. 126–135.

[17] J. A. Jacob and P. Chow, “Memory interfacing and instruc-
tion specification for reconfigurable processors”, in Proceed-
ings of the ACM/SIGDA 7th international symposium on
Field Programmable Gate Arrays (FPGA), February 1999,
pp. 145–154.

[18] J. E. Carrillo and P. Chow, “The effect of reconfigurable
units in superscalar processors”, in Proceedings of the inter-
national symposium on Field Programmable Gate Arrays
(FPGA), February 2001, pp. 141–150.

[19] R. Lysecky, G. Stitt, and F. Vahid, “Warp processors”, ACM
Transactions on Design Automation of Electronic Systems
(TODAES), vol. 11, no. 3, pp. 659–681, June 2006.

[20] M. Dales, “Managing a reconfigurable processor in a general
purpose workstation environment”, in Design, Automation
and Test in Europe Conference and Exhibition (DATE),
March 2003, pp. 980–985.

[21] E. Lübbers and M. Platzner, “ReconOS: An RTOS support-
ing hard- and software threads”, in International Conference
on Field Programmable Logic and Applications (FPL), Au-
gust 2007, pp. 441–446.

[22] L. Bauer, M. Shafique, S. Kramer, and J. Henkel, “RISPP:
Rotating Instruction Set Processing Platform”, in Proceed-
ings of the 44th annual Conference on Design Automation
(DAC), June 2007, pp. 791–796.

[23] L. Bauer, M. Shafique, and J. Henkel, “Efficient resource
utilization for an extensible processor through dynamic in-
struction set adaptation”, IEEE Transactions on Very Large
Scale Integration Systems (TVLSI), Special Section on Appli-
cation-Specific Processors, vol. 16, no. 10, pp. 1295–1308,
October 2008.

[24] R. König, L. Bauer, T. Stripf et al., “KAHRISMA: A novel
hypermorphic reconfigurable-instruction-set multi-grained-
array architecture”, in Proceedings of the 13th conference on
Design, Automation and Test in Europe (DATE), March
2010, pp. 819–824.

[25] W. Ahmed, M. Shafique, L. Bauer, and J. Henkel, “mRTS:
Run-time system for reconfigurable processors with multi-
grained instruction-set extensions”, in Proceedings of the
14th conference on Design, Automation and Test in Europe
(DATE), March 2011, pp. 1554–1559.

[26] SPARC International, Inc., “The SPARC architecture man-
ual, version 8”, http://www.sparc.org/specificationsDocu-
ments.html#V8, http://gaisler.com/doc/sparcv8.pdf.

[27] L. Bauer, M. Shafique, and J. Henkel, “A computation- and
communication- infrastructure for modular special instruc-
tions in a dynamically reconfigurable processor”, in 18th In-
ternational Conference on Field Programmable Logic and
Applications (FPL), September 2008, pp. 203–208.

[28] J. Teich, J. Henkel, A. Herkersdorf et al., “Invasive comput-
ing: An overview”, in Multiprocessor System-on-Chip –
Hardware Design and Tool Integration, M. Hübner and
J. Becker, Eds. Springer, Berlin, Heidelberg, 2011, pp. 241–
268.

[29] L. Bauer, M. Shafique, and J. Henkel, “Run-time instruction
set selection in a transmutable embedded processor”, in Pro-
ceedings of the 45th annual Conference on Design Automa-
tion (DAC), June 2008, pp. 56–61.

[30] R. I. Bahar and S. Manne, “Power and energy reduction via
pipeline balancing”, in Proceedings of the International
Symp. on Computer architecture (ISCA), 2001, pp. 218–229.

[31] S. Ghiasi, J. Casmira, and D. Grunwald, “Using IPC varia-
tion in workloads with externally specified rates to reduce
power consumption”, in Workshop on Complexity Effective
Design, 2000.

[32] T. Juan, S. Sanjeevan, and J. J. Navarro, “Dynamic history-
length fitting: a third level of adaptivity for branch predic-
tion”, in Proceedings of the international symposium on
Computer architecture (ISCA), 1998, pp. 155–166.

[33] D. H. Albonesi, “Selective cache ways: on-demand cache re-
source allocation”, in Proceedings of the 32nd annual
ACM/IEEE international symposium on Microarchitecture
(MICRO), 1999, pp. 248–259.

[34] S. Kaxiras, Z. Hu, and M. Martonosi, “Cache decay: exploit-
ing generational behavior to reduce cache leakage power”, in
Proceedings of the 28th annual international symposium on
Computer architecture (ISCA), 2001, pp. 240–251.

[35] A. V. Veidenbaum, W. Tang, R. Gupta et al., “Adapting cache
line size to application behavior”, in Proceedings of the intl.
conference on Supercomputing (ICS), 1999, pp. 145–154.

[36] F. Nowak, R. Buchty, and W. Karl, “A run-time reconfigur-
able cache architecture”, in International Conference on
Parallel Computing: Architectures, Algorithms and Applica-
tions, 2007, pp. 757–766.

[37] J. Tao, M. Kunze, F. Nowak et al., “Performance advantage
of reconfigurable cache design on multicore processor sys-
tems”, International Journal of Parallel Programming,
vol. 36, no. 3, pp. 347–360, 2008.

170 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

Advanced Profiling of Applications for Heterogeneous
Multi-Core Platforms
Koen Bertels, S. Arash Ostadzadeh, Roel Meeuws

Computer Engineering Group
Faculty of Electrical Engineering, Mathematics and Computer Science

Del University of Tenology, Del, the Netherlands
Email: {K.L.M.Bertels,S.A.Ostadzadeh,R.J.Meeuws}@tudel.nl

Abstract—e increased complexity of programming on multi-
processors platforms requires more insight into program behavior,
for whi programmers need increasingly sophisticated methods
for profiling, instrumentation, measurement, analysis, and model-
ing of applications. Particularly, tools to thoroughly investigate the
memory access behavior of applications have become crucial due
to the widening gap between the memory bandwidth/latency com-
pared to the processing performance. To address these allenges,
we developed theQ² profiling framework in the context of the Del
Workben (DWB), whi is a semi automatic tool platform for
integrated hardware/soware co-design, targeting heterogeneous
computing systems containing reconfigurable components. e
profiling framework consists of two parts, a static part whi ex-
tracts information related tomemory accesses during the execution
of an application.We present an advanced memory access profiling
toolset that provides a detailed overview of the runtime behavior
of the memory access pattern of an application. is information
can be used for partitioning andmapping purposes.e second part
involves a statistical model that allows to make predictions early in
the design phase regarding memory and hardware usage based on
soware metrics. We examine in detail a real application from the
image processing domain to validate and specify all the potentials
of the Q² profiling framework.

I. I

As computer manufacturers move increasingly beyond the
traditional single-core platforms, system developers are con-
fronted with an increasing number of complex aritectures.
ere has already been great proliferation of multi-core aritec-
tures and reconfigurable devices. Currently, the trend in resear
is to utilize an increasing number of cores (many-core) and
to mix different types of processing elements. ese elements
include GPPs, reconfigurable devices, GPUs, and ASICs, just to
name a few. Su aritectures not only require new tool-ains,
libraries, and interconnects, among others, but also demand
more insight into program behavior in order to take advantage of
the aracteristics of these heterogeneous systems. As a result, it
is increasingly important to support developers in their analysis
and understanding of different platforms and application behav-
iors. Particularly, tools to thoroughly investigate the memory ac-
cess behavior of applications become crucial due to the widening
gap between the memory bandwidth/latency and the processing
performance. Furthermore, these heterogeneous aritectures
involve development of hardware blos that can take mu
time to develop. Even in the case of automatic generation of
the hardware, the actual synthesis of the design can take a long
time. As a consequence, there is a clear need to have early and

fast predictions of the hardware cost of the different parts of an
application.

ese two allenges are the main concern of the Q² profiling
framework developed in the context of the Del Workben
(DWB) [1]. DWB is a semi-automatic tool platform for inte-
grated hardware/soware co-design, targeting heterogeneous
computing systems containing reconfigurable components. e
profiling framework consists of two parts: a static part, whi
can provide estimates of some critical metrics in a small amount
of time, and a dynamic part, whi provides accurate measure-
ments of some of those metrics.

e aim of this paper is to demonstrate the need for and the
usage of su profiling tools. is will be done using a case
study of a well known image processing application. e main
contributions of this paper are the following:

• the introduction of the Q² Profiling Framework,
• a case study of the Q² framework on the Canny Edge

Detection application.
e paper is structured as follows. First, Section II evaluates the
related resear and establishes the nie for our framework.
en, in Section III the direct resear context ofQ² is presented.
e main exposition of the Q² framework can be found in
Section IV. Subsequently, we present the case study of the Canny
Edge Detection application in Section VII. Finally, Section VIII
concludes the paper.

II. R W

As heterogeneous computing systems become increasingly
more complex and demanding, utility tools turn out to be es-
sential in assisting application developers to analyze and opti-
mize the performance of applications. Developers require these
tools to improve existing applications or drive the development
of new applications for heterogeneous reconfigurable systems.
Profiling tools focus on finding critical code regions and provide
hints for optimizations. Critical code regions are conventionally
associated with computational hot-spots or communication bot-
tlenes of an application. Potential optimizations for su code
regions include: code revisions (memory usage reduction, FPGA
area optimization, etc.), functionalmerging/spliing, or HW/SW
partitioning; whi all first need the identification of the critical
region(s).

Dynamic profilers, in contrast with static profilers, examine an
application during execution to provide information about the

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 171

run-time behavior of the application. Many dynamic profiling
tools have been developed so far. General profilers, su as
gprof [2], normally provide profiling information at function-
level granularity. Furthermore, they do not distinguish between
computation and communication times. On the other hand,
there are some profilers that focus on more detailed levels,
su as, statement-level, blo-level, or loop-level [3]. Some
profilers, su as Intel’s vTune [4] and AMD’s CodeAnalyst [5],
integrate hardware event monitoring in addition to soware-
based sampling or instrumentation teniques. ere also exist
profiling tools, whi are specific for particular aritectures. As
an example, SpixTools [6] is a collection of programs that allow
profiling of applications at different levels of granularity for the
Sun Microsystems SPARC aritectures. QPT [7], is dynamic
profiler and tracing system that rewrites the executable file of
an application by inserting extra code to record the execution
frequency or sequence of ea basic blo. e execution cost of
functions in the program can be extracted from this information.
Unlike gprof, QPT records the exact execution frequency, not
a statistical sample. When tracing a program, QPT produces a
trace regeneration program that reads the highly compressed
trace file and regenerates a full program trace.
Apart from general profilers, whi mostly aim to provide ex-

ecution time related information, there is a different class of pro-
filers that focus on resources, su as the memory system, rather
than on computation.MemSpy [8] instruments applicationswith
Tango [9], an execution-driven simulator, by puing calls to the
memory simulator for ea memory reference associated with
dynamically allocated memory or explicitly-identified address
ranges. e CPROF [10] system is a cae performance profiler
that annotates source code to identify the source lines and
data structures that cause frequent cae misses. e Memory
Trace Visualizer (MTV) [11] is a tool that provides interactive
visualization and analysis of the sequence of memory operations
performed by a program as it runs. It uses visual representations
of abstract data structures, a simulated cae, and animating
memory operations. ProfileMe [12] takes samples of instructions
as they move through an out-of-order issue pipeline and provide
some statistical reports, su as, cae miss rates. Caeprof
[13] is a memory simulator that annotates ea memory access
instruction and links a cae simulator into the resulting exe-
cutable. During the execution, all data references are intercepted
and sent to the simulator. It is able to report on the number of
memory references and the number of misses for ea line of the
source code.
When mapping candidate regions onto reconfigurable com-

ponents, detailed evaluation of the required resources, power
consumption, and speed-up are also essential. Over the years,
many hardware performance estimation semes have become
available. Part of these semes drive low-level design processes
[14], [15]; for example, in the placement and route phases [16].
However, in the early stages of design, normally, there are
no low level description available and other more high-level
estimation semes are required. erefore, others, including
our estimation seme, operate on a HLL description su as C
[17], [18], [19]. ese approaes allow for early estimation of

resources, and as su can help designers to tailor their code for
heterogeneous platforms at an early stage. However, most of the
high-level methods focus either on a specific application domain
[18] or on a specific kind of design [19], [20], while other high-
level methods are only applicable to certain types of platforms
[17], [14]. For example, [18] is tailored for the SA-C language,
whi is a restricted C-dialect for the Multimedia domain. Fur-
thermore, this approa was embedded in the SA-C compiler
and, as su, cannot be simply assumed to be valid for other
compilers or platforms. ese issues reduce the applicability of
this approa for more general use.

Most works base their claims on the quality of their models
in terms of error on validation sets containing between four [18]
to twelve [19] kernels. However, if the target is to report errors
that are not biased to a small data set, a larger set of validation
data, su as the one used in this paper, becomes vital. Let’s
suppose, for example, one validates a model using a set of only
12 kernels. It is very unlikely that these kernels can represent the
whole spectrum of possible kernels. For one, with su a limited
set of kernels the possibility of erry-piing your validation
set increases. Secondly, an anomalous kernel that is not well
modeled by a certain model can adversely affect the validation
error when one uses a small set of kernels.

III. T R C

e Q² profiling framework is developed in the context of
the Del Workben (DWB) [1]. e DWB is a semi-automatic
tool platform for integrated hardware/soware co-design, tar-
geting heterogeneous computing systems containing reconfig-
urable components. It targets the Molen maine organiza-
tion [21], an aritectural template for heterogeneous reconfig-
urable platforms developed at the Del University of Tenol-
ogy. is aritectural template adheres to the Molen program-
ming paradigm [22]. is paradigm is a sequential consistency
paradigm for programming reconfigurable maines.

e DWB addresses the entire design cycle from profiling and
partitioning to synthesis and compilation of an application and
it focuses on four main steps within the entire heterogeneous
system design, namely:

• the code profiling and the cost modeling [23], [24], [25];
• the graph transformations and optimizations [26], [27],

[28];
• the retargetable compiler [29]; and
• the VHDL generation[30].

For a given application, code profiling and cost modeling
identify whi parts of the application are good candidates for
hardware implementation.is decision takes into consideration
the available hardware resources and the speed-up provided by
the hardware implementation of the application, or parts of it,
versus a soware implementation. Graph transformations and
optimizations analyze the candidate parts of the application for
hardware implementation to find out if the code segments can
be clustered/partitioned according to various targets as, for ex-
ample, hardware resource sharing. Next, an optimization phase
is performed to spot parallelization opportunities.

172 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

Aer making the decision of whi parts of the code segments
to implement in hardware, the code is annotated. Subsequently,
the retargetable compiler generates the new object code, whi
contains the call to the reconfigurable hardware for the selected
segments of code. Finally, the identified instructions (code seg-
ments) pass through a VHDL generation phase, whi generates
hardware description of the instructions.

IV. T Q² P F

e focus of this work is on code profiling. Figure 1 depicts
in detail the Q² profiling framework, whi is part of the DWB
platform. We distinguish between static and dynamic profiling
paths. Static profiling can provide estimates in a small amount
of time, whereas dynamic profiling provides accurate measure-
ments of several aspects, su as, execution time estimates and
memory access intensity of individual functions in an applica-
tion. e static profiling path first extracts code aracteristics
from the application source code. ese aracteristics, or so-
ware complexity metrics, are then used by the ipu model
to make fast and early predictions of components with specific
implementation details like FPGA area or speed-up. Based on the
code aracteristics and ipu estimates, a conjecture is made
on whi kernels are interesting for further analysis regarding
hardware implementation. e dynamic profiling path focuses
on run-time behavior of an application and, therefore, is not as
fast as the static profiling. Furthermore, the dynamic profiling
requires the application binaries and representative input data
in order to provide relevant measurements. is, in itself, can
raise some concerns, if the application acts quite distinctively
in different circumstances. However, that rarely happens in
practice. e common gprof [2] profiler is utilized to identify
application hot-spots in terms of execution cost and to recognize
frequently executed functions. gprof also provides execution
timing estimates, whi can only be useful for applications run-
ning for relatively large period of time. On the other hand,MAIP
provides accurate measurements for the contribution percentage
of individual functions with respect to the whole execution cost
of the application. It also distinguishes between memory access
related and computation related operations. e QUAD [23]
core module provides a comprehensive quantitative analysis of
memory access behavior of an application with the primary goal
of detecting actual data dependencies at the function-level. e
tracing modules implemented in the QUAD core is utilized in
the cQUAD tool to reveal the data communication paern of a
pair of cooperating functions in an application. e xQUAD [31]
tool provides detailed, fine-grained memory access information
for ea function in the application. e information includes
runtime memory usage statistics regarding individual data ob-
jects defined in an application source code. e tQUAD [24] tool
reveals the memory bandwidth usage of ea function in terms
of relative execution timings.

V. T Q M A

e static profiling part in this paper consists of the ipu
modeling approa, whi we have developed and presented in
[32], [33], and [34]. e approa is generic and not limited to

Resource

Usage

Profiles
Annotated

Call Graph

Quantitative Data

Usage Graph

Dynamic Profiling

Static Profiling

Code Revision

Fig. 1. e Q² Profiling framework within the DWB tool platform.

any particular platform or tool-ain by allowing the generated
models to be recalibrated for different tools and platforms, con-
trary to the majority of the existing teniques. Furthermore, a
major strength ofipumodels is their linear nature. Although,
the statistical teniques to create the models may be very
time-consuming, the resulting prediction model requires only a
number of multiplications in addition to parsing of the source
code. is allows for integration of ipu models in highly
iterative design processes where estimates are recalculatedmany
times in a short time period. Additionally, as ipu models are
based on measurements from C code, very early predictions
become possible, allowing designers to take important decisions
on hardware mapping at an earlier stage.

e ipu models that we utilize in this paper are generated
for a combination of the DWARV C-to-VHDL compiler [35]
and the Xilinx ISE Synthesizer for the Virtex 5 FX 130T FPGA.
Notwithstanding, ipu can calibrate models for other combi-
nations as well, su as, an Altera Stratix IV FPGA combined
with the C-to-Verilog compiler from the Haifa University [36],
[37]. e output data of a combination of tools and platform is
used to calibrate a specific model instance. Because the set of
calibration data can vary depending on certain tool options, the
user may want to consider generating models for ea option
value. For example, area measurements will be mu lower
when optimizing for area compared to when optimizing for
speed.

In the following, we first define the models and the criteria.
Subsequently, we discuss the key components of the ipu
approa. Last but not least, the newly developed teniques that
constitute our approa are discussed in detail.

A. e Models and the Criteria
It is essential to quantify the aracteristic aspects of the

soware description at hand, when we consider the modeling of
hardware from soware descriptions. In [33] and [34], we have
introduced Soware Complexity Metrics (SCMs) as a way to
address this. SCMs are indicators of specificaracteristics of the
soware code. Examples of SCMs are the number of operators,

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 173

the number of loops, or the cyclomatic complexity, but also more
complexmetrics involving data-flow analysis and the aribution
of operations to functional units. Currently, we use a set of 58
SCMs as a base for ourmodel.We refer the reader to our previous
work, for more information on many of the implemented SCMs.
[33], [32]
To aracterize hardware performance in terms of area, inter-

connect, power, and other parameters, we measure and predict
49 different hardware performance indicators. For instance, the
number of slices, the number of wires, the number of LUTs, and
the number of clo wires. Most of these parameters are related
to interconnect and provide specific information on wires, nets,
route-throughs, or swit-boxes, further subdivided for logic,
power, or clo resources.
Given these criteria, we look for a model that describes the

relation between hardware and soware:

yHW = g(x̄SCM) + ϵ. (1)

is is the theoretical optimal model relating some hardware
metric yHW to a vector of SCMs x̄SCM with the ideal relation
g(·) and some error ϵ inherent to the problem at hand. In
practice, an ideal model cannot be found. Instead, any modeling
seme is an approximation to some level. erefore, we model
the relation g(·)with an approximated relation ĝ(·). is results
in the introduction of some estimation error ϵ̂ inherent to our
approximation seme:

ŷHW = ĝ(x̄SCM) + ϵ̂. (2)

e approximation ĝ(·) can be, for example, an ad-hoc model, a
Linear RegressionModel (LRM), or an Artificial Neural Network
(ANN). In case of LR teniques, ĝ(·) is a linear equation:

ŷHW = âx̄SCM + b̂+ ϵ̂, (3)

where â is a vector of estimated coefficients âi corresponding
to element xi of the vector of SCMs x̄SCM obtained for some
kernel that corresponds to the estimated hardware metric ŷ, and
b̂ is the offset of the linear model. Note, that these variables
are stoastic variables. is means that reporting a simple
percentage error is not enough. As a result, the aracterization
of the error distribution must be addressed as well.

B. e Tools and the Kernel Library

ipu consists of a set of tools and a kernel library, as de-
picted in Fig. 2. In the modeling flow, ipu extracts SCMs and
hardware performance indicators from a kernel library.is is a
library of 178 kernels from a wide variety of application domains,
contrary to many existing teniques, whi use libraries of
tens of kernels at most. is allows us to build models that are
generally applicable. It is also possible to build domain-specific
models by using, for example, only the 57 Cryptography-related
kernels out of the 178 kernels considered. An overview of the
kernels in this library is provided in Table I.
Regarding the tools in theipu approa, we have:

Do
ma
in

Ke
rn
els

Siz
e

Bi
t-B
as
ed

Str
ea
mi
ng

Co
nt
ro
l

Compression 12 47.6 (14-95) x x
Cryptography 57 192.2 (15-1107) x x some
DSP 12 32.3 (10-110) x x some
ECC 13 74.8 (10-496) x x x
Mathematics 29 33.9 (5-100)
Multimedia 42 81.8 (6-1107) some x x
General 13 72.9 (22-163) x

Total 178 102.6 (5-1107)

avg. size in number of statements (range).

TABLE I
O ,

 .

K
e

rn
e

l

L
ib

ra
ry

Synthesis

Toolchain

HW Measurement

Tool

Metrication

Tool

HW

Data

Metrics

XML

Modeling

Scripts

Model

XML

Application

Source

Code

Application

Binary Code

Metrics

XML

Predictions

XML

Prediction

Tool

gprof

QUAD

Toolset

Modeling Flow

Prediction Flow

Fig. 2. An overview of the ipu modeling approa, its tools (the boxes with
thi border), and the accompanying tools (the boxes with dashed borders).

1) e Metrication tool: e 58 different SCMs can be ex-
tracted using the ipu Metrication tool, whi produces an
XML file containing SCM measurements for ea kernel. is
tool is wrien as an engine in the CoSy compiler system [38]
developed by ACE Associated Compiler Experts. is compre-
hensive compiler contains a large set of optimizations and is
easily extensible by writing engines that can be plugged into the
framework. Using the existing engines of the CoSy framework,
different optimizations can be performed before measuring the
SCMs. is flexibility allows to oose specifically a set of
optimizations that fit a target tool-ain, whi in turn adds to
the generic aracter of the ipu modeling approa. Apart
from being an essential part of the ipu modeling framework,
the metrication tool can also be useful within an Soware Mea-
surement framework that helps drive management of soware
development processes.

2) e Hardware Measurement tool: e ipu hardware
Measurement tool measures 49 different hardware parameters,
su as area and interconnect, from synthesized hardware tar-
geted at Xilinx FPGAs. e tool keeps tra of all nets and com-
ponents in the design by processing the XDL file generated by
the Xilinx synthesis tool-ain. It provides detailed interconnect
measurements, su as the number of clo wires or the number
of power nets. For Altera FPGAs, su a tool is not needed, as the

174 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

report files generate detailed numbers on the interconnect usage
automatically.
3) e Modeling Scripts and the Prediction tool: e gathered

SCMs and hardware measurements are run through a set of
modeling scripts that automatically evaluate different modeling
teniques. e output model XML file can be used in the pre-
diction flow, where, based on SCM inputs, the ipu prediction
tool provides estimates of any required hardware aspects. All
intermediate files in the prediction flow are saved in XML format
for an easy integration. For example, the results of execution and
memory profiling tools might be integrated as depicted in Fig. 2.

C. Utilization of ipu models

eipu models can be used in several contexts. In the first
place, developers can use the predictions for function kernels
they are working on in order to find problems with potential
placement on hardware. If a kernel is predicted to have a large
amount of slices on a particular platform, the developer might
move to split the function in several parts, or address the root
cause for the large area (e.g. a large local array). Secondly, a
tailoredipumodel may drive the optimization pass in a hard-
ware compiler by predicting the hardware size of the contained
basic blos at different unroll factors. In this way, the hardware
compiler can automatically oose a beneficial unroll factor.
irdly, a high-level HW-SW partitioning algorithm could use
a ipu model to evaluate many different partitionings at an
early stage of the development.

VI. QUAD D M P T

Nowadays, Dynamic Binary Instrumentation (DBI) is gaining
popularity among the available methods for intercepting mem-
ory accesses. DBI can be used to develop dynamic profilers. e
dynamic part of the Q² profiling framework falls under this
category of profilers. e tools are implemented as Dynamic
Binary Analysis (DBA) tools using the Pin [39] DBI platform.
In this section, we first present a brief overview of the Pin DBI
platform and then describe the individual tools developed in
the dynamic profiling framework of the DWB and discuss their
potentials.

A. Pin Dynamic Binary Instrumentation

Run-time instrumentation is a tenique for injecting extra
user defined code into an application during its execution to
study the behavior of the application. e primary advantage
of this kind of instrumentation is that, in order to profile an
application, we only need the binary executable code of the
application. Furthermore, Pin adopts the dynamic compilation
tenique that uses a Just-In-Time (JIT) compiler to (re)compile
and instrument the application code on the fly. is capability
provides the benefits of portability, transparency and efficiency
to the end user. In summary, Pin supplies a fast instrumentation
system, whi is able to work with unmodified executables in
addition to the preservation of the application’s original un-
instrumented behavior.
Pin provides a DBI platform for building a variety of DBA

tools for multiple aritectures, namely, the IA32, 64bit x86,

Itanium®, and ARM aritectures. A primary key feature of
the Pin DBI platform is instrumentation transparency. It means
that Pin preserves the original behavior of the application. As a
result, the application uses the same addresses (both instruction
and data) and the same values (both register and memory) as
it would do in an uninstrumented execution. Furthermore, Pin
does not modify the application sta, as some applications may
deliberately reference memory addresses beyond the top of the
sta.

Generally, two types of routines are defined in Pin-based
tools, namely, instrumentation routines and analysis routines.
Instrumentation routines determine where, in the application
code, to place calls to analysis routines. Analysis routines are
customizable by the user and they are called while the pro-
gram executes. e arguments to analysis routines can be, for
example, the instruction pointer, the effective memory address
of the instruction, the memory or sta value, the address of
bran instruction, the system calls values, and others. e
actual instrumentation is performed by the JIT compiler. Pin
intercepts the very first instruction of the application and re-
compiles the executable generating basic blos code starting at
that instruction, and instrumenting the code according to the
specified instrumentation type. e generated code sequence is
almost identical to the original one, except that it runs under the
control of Pin. When a bran exits a basic blo, Pin generates
more basic blos code for the bran target and it continues the
execution. e JIT generated code and its instrumentation are
saved in a code cae for future execution of the same sequence
of instructions to improve performance.

Instrumentation with Pin can be done at different levels of
granularity. e finest level is instrumentation at the instruction
level, i.e. instrumenting the application one instruction at a time.
It is also possible to instrument code at the trace level¹, at the
procedure level, and at the entire image level.

e execution of an instrumented application usually shows
a considerable slowdown. is depends on the nature of the
instrumented application, as well as on the overhead caused by
the analysis routines in the tool. It appears that most of the
slowdown is caused by the execution of the code, rather than
on-the-fly code compilation (whi includes the insertion of the
instrumentation code). In Pin, some performance improvements
are done during the compilation phase of the application. Im-
provements are on register reallocation, inlining, liveness anal-
ysis, and instruction seduling. is results in an instrumented
code, whi run very fast compared to other DBI platforms.

B. e QUAD Tools
e QUAD toolset consists of several related tools developed

to demonstrate a comprehensive overview of the memory ac-
cess behavior of an application, as well as, to provide fine-
grained detailed memory access related statistics. e QUAD
core module has been designed and implemented as the primary
component to provide useful quantitative information about

¹A trace is defined as a straight-line sequence of instructions executed sequen-
tially. Pin guarantees that traces only enter at the top, but may have multiple
exits.

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 175

the data dependence between any pair of cooperating func-
tions in an application. Data dependence is estimated in the
sense of producer/consumer bindings. More precisely, QUAD
core reports whi function is consuming the data produced
by another function. e exact amount of data communication
and the number of Unique Memory Addresses (UnMA) used
in the communication process are also calculated. e QUAD
core contains a fast and efficient Memory Access Tracing (MAT)
module, whi detects and traces all the memory references
made during an application execution. It acts as a kind of shadow
memory for the whole memory access space. Considering the
fact that MAT structures the shadow memory in su a way to
make tracing as fast as possible, the size of the space overhead
can be very huge. e tracing meanism is also utilized by
cQUAD tool to monitor in detail ea and every data transfer
event occurring between a pair of communicating functions.
is data communication can be viewed as a dedicated virtual
annel for transferring data items from the producer side to
the consumer end. e Data Communication Channel Paern
Detector (DCCPD) module thoroughly analyzes the extracted
raw profile data to compute several critical metrics that can
classify and describe the paern of the communication between
the two functions. ese metrics include the interleaving bal-
ance factor, spatial/temporal localities and data communication
paern complexity. In general, these information is required to
reveal the coupling intensity and regularity between the com-
municating functions in an application. It can be very useful in
understanding the behavior of the functions with regard to their
data dependencies and requirements, as well as, in mapping and
seduling potential parts of the application onto reconfigurable
devices.
e xQUAD extension to the QUAD toolset augments the

memory access analysis of the application by providing a very
detailed, fine-grained intra-function information. e informa-
tion is provided based on the application source code data object
granularity. In this respect, the programmers can utilize the
information to fine-tune the application behavior regarding it
memory access references. e main motivation for this ex-
tension is that a coarse view of the intra-function data access
makes it difficult for the application developers to aribute the
extracted information to particular user-defined data objects
in an application at the source code level. Hence, fine-grained
code revision/optimization becomes a burdensome task. e Pin
DBI framework does not provide API functions for retrieving
data objects information. erefore, source-level information
about data objects should be extracted directly from the binary
file(s).eDWARF module is utilized to extract low-level source
code representations, su as, information about source code
types, function and object names, and line numbers. tQUAD is
another component in the QUAD toolset. It extracts the timing
information of the functions, as well as, their memory band-
width usages during the application execution. e information
extracted by tQUAD can lead to the recognition of the main
execution phases within the application, whi in the end can be
used to identify the related functions in ea phase. Ea execu-
tion phase ordinarily corresponds to a specific and well-defined

(sub)task within the application process, whi is based on the
high-level algorithm of the application source code. e logical
steps of the algorithm are clear for the programmers. However,
the information provided by tQUAD can help users to have a
more solid vision of what are the steps the application actually
takes to perform its task. In addition, this information can also
be regarded as valuable hints for the application developers to
understand the (re)usability scope of the functions defined in the
application, and probably serve as further optimization direc-
tives. As an example, a general function can be used in different
phases of the application, whi makes it a good candidate for
replacement with several specific-purpose tailored functions.

Figure 3 illustrates the aritectural overview of the QUAD
toolset along with the Pin DBI components. At the highest level
in the Pin soware layer, there is a Virtual Maine (VM), a
code cae, and an instrumentation API. e VM consists of
a JIT compiler, an emulator, and a dispater. Aer Pin gains
control of the application, the VM coordinates its components
to execute the application. e JIT compiles and instruments the
application code, whi is then launed by the dispater. e
compiled code is stored in the code cae. Entering (leaving) the
VM from (to) the code cae involves saving and restoring the
application register state. e emulator interprets instructions
that cannot be executed directly. It is used for system calls that
require special handling from the VM. Since Pin does not reside
in the kernel of the operating system, it can only capture user-
level code.

e main component inside the QUAD core is the MAT
module, whi is responsible for building and maintaining the
dynamic trie [40] data structure to provide relevant memory
access tracing information. As Figure 3 shows, three binary
objects are present when an instrumented application is running:
the to-be-profiled application, Pin, and the QUAD toolset. Pin is
the engine that instruments the application. e QUAD toolset
contains instrumentation and analysis routines and it is linked
with a library that allows QUAD to communicate with Pin.

To the best of our knowledge, QUAD is the first profiling
toolset that focuses on examining the run-time memory access
behavior of an application and on providing some valuable
quantitative information. Even though QUAD toolset can be
employed to spot coarse-grained parallelism opportunities
in an application, it practically provides a more general-
purpose facility that can be utilized in various heterogeneous
reconfigurable systems optimizations by estimating effective
memory access related parameters.

MAIP . e Memory Access Intensity Profiler (MAIP) is devel-
oped as a standalone Pin-based DBA profiler. MAIP aims to
provide some unprocessed basic data for ea function in an
application with the main objective of revealing the intensity
of memory access operations. Furthermore, MAIP can act as an
enhanced alternative to the traditional gprof profiler, allowing
accurate measurements for applications with a small running
time.e problemwith gprof is that the derived run-time figures
are based on a sampling process. As a result, besides being
subject to statistical inaccuracy, if a function runs for only a

176 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

Instrumentation API
JIT

Compiler

Emulation
Unit VMD

is
pa

tc
he

r

C
od

e
C

ac
he

OS

Hardware

c

Memory Address Space

Pin

M
A

T

t x

D
W
A
R
F

Q
U

A
D

 T
oolset

DCCPD

Fig. 3. Aritectural overview of the dynamic part of the Q² profiling frame-
work.

small amount of time, there is a prey good ance that the
profiler actually overlooks that function in action. Only if the
total run-time of an application is large enough, a small run-
time value for a function discloses that the function uses an
insignificant fraction of the application’s whole execution time.
Otherwise, no valuable information can be gained from the gprof
analysis at all. e extracted raw data by MAIP can be further
processed to get some valuable information, su as, the ratio of
memory access instructions to the total executed instructions in
a program.
e basic data that are measured by the profiler are classified

into three main classes: instructions, operands, and bytes. Ea
class is subsequently divided into Read/Write and Sta/Non-
sta sub categories. A variety of parameters can be computed to
measure the intensity of thememory access operations within an
application by using a precise memory access traing module,
whi intercepts and inspects every memory access instruction
for detailed information. Specifically, MAIP extracts the follow-
ing data for ea function:

• e total number of instructions executed within ea func-
tion call.
If there is more than one call instance for a particular
function, the aggregate value of this parameter is used in
subsequent processing to have a more accurate estimation.

• e total number of memory access instructions executed
within ea function call.
As before, if there is more than one call instance for a
particular function, the aggregate value of this parameter
is used in subsequent processing.

• Memory Access Ratio (MAR)
is is the percentual ratio of the total number of memory
access instructions to the total number of instructions.

• NLOC-MAR
is is similar to the previous parameter. However, here we
only consider memory access instructions within the heap
and global data regions. is parameter tends to provide
a more accurate estimation of the MAR, when the cost of
local memory access is considered to be low compared to
the expensive external memory access.

• Memory Operand Ratio (MOR)
is is the percentage ratio of the total number of memory
access operands to the total number of operands.

• NLOC MOR
is is similar to the previous parameter. However, here we
only consider the operands of the memory access instruc-
tions referencing the heap and the global data regions.

• Stk Ratio
is is the percentage ratio of the total number of memory
access instructions referencing the sta region to the total
number of memory access instructions.

• Flow Ratio
is is the total number of bytes read minus the total
number of bytes wrien divided by the total number of
bytes accessed. An extreme value of -1 means a write-only
function, +1 represents the counterpart read-only function,
and 0 represents a balanced R/W inert function.

• NLOC-Flow Ratio
is is similar to the previous parameter. However, here we
only consider memory accesses referencing the heap and
the global data regions.

• Byte-wise-Stk ratio
is is the percentage ratio of the total number of bytes
accessed by the memory access instructions referencing the
sta region to the total number of bytes accessed.

• Bytes/Acc. ratio
is indicates the average value of the number of bytes
accessed within ea memory access instruction.

In the interpretation of these parameters, it should be gener-
ally noted that in some aritectures, a single memory operand
can be both read and wrien, for instance incl (%eax) on IA-32.
In this case, we instrument it once for read and once for write.
e same holds for combined R/W instructions.

VII. C S

In this section, we present a detailed analysis of an im-
age processing application, i.e. Canny Edge Detection [41], to
demonstrate the potentials of the advanced profiling teniques
developed within the DWB platform. It serves as the direct
approa to validate the usefulness, efficiency and applicability
of the tools presented in this researwork.emain objective of
the case study is to have an early yet comprehensive and thorough
understanding of the application behavior, in particular of its
memory access behavior and requirements. Although the focus
of the analysis is on the run-time aributes, we also examine the
application source code to extract some valuable information.
e result of this detailed profiling is primarily utilized to spot
bolenes and deficiencies, particularly related to the applica-
tion memory usage. It will provide hints for application devel-
opers to revise/optimize the application source code in order to
gain beer performance when running the application on a par-
ticular heterogeneous reconfigurable aritecture. roughout
the experimental analysis, we used the same strategy and con-
ducted several phases of source code optimizations as a means of
verification of the profiling data. e extracted information can
be further utilized in critical decisions during the design space

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 177

exploration in heterogeneous multiprocessor systems, su as,
HW/SW task partitioning, mapping and seduling.
In this case study, we specifically aim to demonstrate the

following qualities of the Q² framework:

• the visualization of the data communication between dif-
ferent kernels in the application,

• the prediction of hardware resource consumption for these
kernels,

• the value of the generated data in identifying candidates
for migration to reconfigurable components.

In the following, we will first discuss the Canny Edge De-
tection method in Section VII-A. en, in Section VII-B, we
will present our experimental setup. Finally, the results of the
different steps in our case study are discussed in Section VII-C.

A. Canny Edge Detection

Canny [41] is a well-known edge detection algorithm. e
method aims to aieve three main goals:

• good detection - this translates to the detection of as many
of the real edges as possible, while also not falsely detecting
non-existing edges as mu as possible.

• good localization - this denotes the fact that the detected
edges are as close as possible to the actual edges, i.e. the
distance between the edge pixels as found by the detector
and the actual edge is to be minimal.

• unique detection of edges - thismeans that real edges should
be detected only once. is aspect of the detection method
was added because the previous criteria do not imply that
edges are only identified once.

Based on these criteria, the Canny edge detector first smoothes
the image to eliminate any noise. It then finds the image gradient
to highlight regions with high spatial derivatives. e algorithm
then tras along these regions and suppresses any pixel that is
not at the maximum (non-maximal suppression). e gradient
array is then further reduced by hysteresis, whi tras along
the remaining pixels that have not been suppressed so far.
Hysteresis uses two thresholds to accomplish this task. If the
magnitude is below the first threshold, it is set to zero (made
a non-edge). If the magnitude is above the high threshold, it
is made an edge. In case the magnitude is between the two
thresholds, then it is set to zero, unless there is a path from this
pixel to a pixel with a gradient above the second threshold.
For our experiments, we have used the implementation pro-

vided by the Computer Vision Laboratory at the University of
South Florida [42]. e application has the following steps:

• Step 1. Filtering out any noise in the original image. e
Gaussian filter is used exclusively due to its simplicity.
Once a suitable mask has been calculated, the Gaussian
smoothing can be performed using standard convolution
methods. A convolution mask is usually mu smaller than
the actual image. As a result, the mask is slid over the
image, manipulating a square of pixels at a time. lower is
the detector’s sensitivity to noise. e localization error in
the detected edges also increases slightly as the Gaussian
width is increased. e width of the Gaussian mask used

in the implementation is determined based on the standard
deviation of the Gaussian smoothing filter that should be
input by the user.

• Step 2. Finding the edge strength. is is done by taking
the gradient of the image. e Sobel operator performs a
2D spatial gradient measurement on an image. en, the
approximate absolute gradient magnitude (edge strength)
at ea point is found. e Sobel operator uses a pair of
3×3 convolution masks, one estimating the gradient in the
x-direction and the other estimating the gradient in the y-
direction.

• Step 3. Applying non-maximal suppression. Aer finding
the edge directions using the gradient values, non-maximal
suppression is used to trace along the edges and suppress
any pixel value that is not considered to be an edge. is
will result in a thin line in the output image.

• Step 4. Performing hysteresis. Hysteresis is used to elimi-
nate the breaking up of an edge contour caused by the edge
pixels fluctuating above and below a threshold. reshold-
ing with hysteresis requires a low and a high threshold.
Making the assumption that important edges should be
along continuous curves in the image allows to follow a
faint section of a given line and to discard a few noisy
pixels that do not constitute a line but have produced large
gradients. e low and high threshold values for hysteresis
should also be specified as input parameters by a user.

B. Experimental Setup

All the experiments were performed on two different plat-
forms. e general profiling of the CED application with gprof
was done on an Intel 32-bit Core2 Duo E8500 @3.16 GHz with
4GB of RAM, running Linux kernel v2.6.34.7-o.7-pae. e appli-
cation source code was compiled with gcc v4.5.0 and without
any compiler optimization. We also utilized gprof on the em-
bedded PowerPC 440 @400 MHz with 512 MB DRAM, whi
is integrated in a Xilinx ML510, Virtex 5 FX 130T with 1.3
MB BRAM FPGA board. In order to profile the application
using the QUAD toolset, Pin DBI framework is needed whi
does not support PowerPC aritecture. As a result, the QUAD
profiling information on Intel x86 can demonstrate some level
of inaccuracy for the aritecture-specific data when targeting
a different aritecture. However, the overall image of the ap-
plication should stay similar. e ipu predictions target the
Virtex 5 platform. For other FPGA devices, conversion formulas
should be used based on the authentic published data-sheets.

C. Experimental Analysis

We have investigated the Canny Edge Detector (CED)
application in several phases and report here the results of the
different analysis steps that were taken. First, we present some
conventional profiling analysis. Aerwards, we present the
results of using the Q² profiling framework. Finally, we make
some conjectures on how to adjust the program based on these
data.

178 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

TABLE II
 CED I 86

.

Kernel %time self calls self total
seconds ms/call ms/call

gaussian_smooth 70.11 0.0985 1 98.50 98.50
non_max_supp 12.46 0.0175 1 17.50 17.50
magnitude_x_y 6.41 0.0090 1 9.00 9.00
apply_hysteresis 4.63 0.0065 1 6.50 11.50
follow_edges 3.56 0.0050 1433 0.00 0.00
derrivative_x_y 2.85 0.0040 1 4.00 4.00
canny 0.00 0.0000 1 0.00 140.50
make_gaussian_kernel 0.00 0.0000 1 0.00 0.00
read_pgm_image 0.00 0.0000 1 0.00 0.00
write_pgm_image 0.00 0.0000 1 0.00 0.00

% time is the percentage of the total execution time of the program used by the
function; self seconds is the number of seconds accounted for by the function alone;
calls is the number of times a function is invoked; self ms/call is the average number
of milliseconds spent in the function per call; total ms/call is the average number of
milliseconds spent in the function and its descendants per call.

Conventional profiling. We utilized gprof in order to have
an approximate general understanding of the original CED
application. e CED implementation consists of three source
files with, in total, 15 functions. As mentioned earlier, three
input parameters are required for the application to run. For
all the experiments, we used a sample gray-scale image with a
resolution of 800×600 and 8 bits per pixel in the PGM format.e
input parameter for the standard deviation of the Gaussian blur
kernel is set to 2.0. e values of the low and the high thresholds
for performing hysteresis are both set to 0.5.
We used gprof for a typical run of the CED application with-

out any compiler optimizations. e reported numbers demon-
strate a considerable amount of error and do not reveal mu
valuable information. is is due to the fact that the application
runs for a quite short time (approximately 150 milliseconds).
Considering the sampling period whi is 10 milliseconds, func-
tions do not get muances of being examined by the profiler.
As mentioned previously, this is the main problem with gprof.
To alleviate the problem, we run the application 20 times and
recorded the average values. Table II summarizes these results.
As seen in Table II, all the functions are called once with the
exception of follow_edges, whi is a recursive function. e
number of times follow_edges is called depends on the image
itself and on the values of input parameters. e primary share
of the total execution time is aributed to gaussian_smooth. It
is also interesting to note that there is no self contribution for
canny, while the total contribution of this function and its de-
scendants is around 140 milliseconds, whi is equal to the sum
of contributions from gaussian_smooth, non_max_supp, mag-
nitude_x_y, apply_hysteresis, and derrivative_x_y. It indirectly
implies that canny is the main function doing all the processing
by just calling individual functions to carry out different phases
in the edge detection algorithm described before. e time taken
for reading the input image file and writing the output data is
negligible.
Table III presents the gprof profiling results on the embedded

PowerPC. As seen in the table, the total execution time of the ap-

TABLE III
 CED PPC.

Kernel %time self calls self total
seconds s/call s/call

gaussian_smooth 69.09 5.79 1 5.79 5.79
non_max_supp 19.81 1.66 1 1.66 1.66
magnitude_x_y 5.61 0.47 1 0.47 0.47
derrivative_x_y 3.70 0.31 1 0.31 0.31
apply_hysteresis 0.95 0.08 1 0.08 0.14
follow_edges 0.72 0.06 1433 0.00 0.00
canny 0.00 0.00 1 0.00 8.37
make_gaussian_kernel 0.00 0.00 1 0.00 0.00
read_pgm_image 0.00 0.00 1 0.00 0.00
write_pgm_image 0.00 0.00 1 0.00 0.00

plication is increased by approximately 60x due to the decrease
in the processing speed and simulated floating point arithmetic.
Hence, the length of the application execution is large enough
to get somehow accurate data with the sampling tenique.
Some anges are evident in the contribution percentages and
the ordering of the functions. follow_edges and apply_hysteresis
ea now contributes less than 1 percent of the whole execution
time.

A brief inspection of the application reveals the links between
the main conceptual steps described in the CED algorithm and
the corresponding functions defined in the source code. e top
kernel, gaussian_smooth, utilizes the Gaussian filter to blur the
input image.e filter itself is created inmake_gaussian_kernel,
whi only allocates and fills a one-dimensional floating array.
e size of the array is dependent on the input parameter sigma
(standard deviation of the filter). However, for a predefined
sigma value, there is a possibility of hard-wiring the individual
calculated values. It is clear that the first step of the algorithm
is the most time consuming task. e blurring procedure is
performed on ea pixel in the input image. derrivative_x_y
computes the first derivatives (gradient) of the image along both
the x and y directions. Subsequently, magnitude_x_y calculates
the magnitude of the gradient. ese functions together relate
to the second step of the CED algorithm. Step 3 of the algo-
rithm is implemented by non_max_supp whi applies non-
maximal suppression to the magnitude of the gradient image.
Finally, apply_hysteresis implements the last step in the CED
algorithm. Basically, the function finds edges that are above a
high threshold or connected to a high pixel by a path of pixels
greater than the low threshold. is is done by first initializing
the edge map with all the possible edges that the non-maximal
suppression suggested, except for the borders. en, when a
pixel is located above the high threshold, the function calls the
recursive function follow_edges to continue traing the edge
along all paths.

In order to have accurate contribution estimates and also an
overview of some memory access related statistics, we used
MAIP to profile the application. Table IV presents a summary
of the results. e most accurate values for the execution
contribution of ea function is calculated with MAIP , as it
accounts for ea single instruction within a function, contrary

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 179

TABLE IV
MAIP F CED .

Kernel % time MAR NLOC-MAR MOR NLOC-MOR Stk Flow NLOC-Flow Bytes/Acc.
Ratio Ratio Ratio

gaussian_smooth 69.89 29.05 11.75 9.56 3.74 61.54 0.7376 0.9213 3.3090
non_max_supp 14.22 51.89 10.36 20.58 3.84 89.79 0.3635 0.8712 3.4318
magnitude_x_y 5.62 50.00 9.37 17.98 3.37 87.51 0.4168 0.3333 3.0007
apply_hysteresis 4.97 23.21 21.71 8.26 7.54 27.10 0.3288 0.4026 1.2998
derrivative_x_y 2.99 64.74 35.22 26.70 13.32 66.79 0.5557 0.3334 3.0028
follow_edges 2.24 48.33 7.79 18.25 4.41 94.85 -0.0030 0.8225 3.4357
read_pgm_image 0.03 46.81 22.56 18.78 9.39 59.02 0.5881 0.7547 3.4548
write_pgm_image 0.00 60.61 28.72 24.32 15.41 43.57 0.1258 0.1652 3.8105
make_gaussian_kernel 0.00 45.14 10.72 15.34 5.20 80.06 0.2529 0.8504 4.7549
canny 0.00 52.26 12.22 20.23 7.34 75.84 0.1889 0.6508 3.9658

MAR is the percentage ratio of the memory access operations to the total instructions executed in the application;NLOC-MAR is the
same asMAR except that only references to the non-local region are considered;MOR is the percentage ratio of the memory access
operands to the total number of operands; NLOC-MOR is the same asMOR except that only references to the non-local region are
considered; Stk Ratio is the percentage ratio of the memory access instructions within the local region to the total memory access
instructions; Flow Ratio is an indication of a function being more memory reader or writer. -1 means that the function only writes
to the memory and +1 means that the function only read from memory; NLOC-Flow Ratio is the same as Flow Ratio except that
only references to the non-local region are considered;

to the sampling tenique used in gprof . As seen in Table IV, the
values more or less conform to the numbers that were calculated
previously. gaussian_smooth is not only the top contributor
for the CED application, but also it demonstrates a relatively
low percentage of memory access related workload compared
to the computational burden. e NLOC-MAR and Stk ratio
columns in Table IV can reveal valuable hints regarding the
tendency of the function to go for local or non-local memory
accesses. is is an important aribute if we opt to maintain
the dynamically allocated memory on external sources (off-ip
memory) in reconfigurable devices. For example, we would
rather map gaussian_smooth or non_max_supp on FPGA than
apply_hysteresis as a higher portion of memory accesses are
intended for external memory regarding the laer function. In
the case of the Molen platform, however, this is not relevant, as
Molen does not currently support off-ip memory. As su, all
the memory space required for the execution of the application
should be allocated and managed on-ip. In this respect, a
memory management module particularly takes care of all the
dynamic memory allocations in the application.

ipu Profiling. In the continuing work with the CED applica-
tion, we want to be able to map different kernels to hardware.
An important caveat for mapping kernels to hardware is that
within the DWB some restrictions apply to the kernels that will
be mapped to hardware. For this reason, we have modified the
CED application where necessary, so that the intensive kernels
could be mapped to hardware. ere were two main issues that
were solved:

• Memory allocation
eDWARV compiler currently does not support allocating
memory blos at runtime from hardware. erefore, all
memory allocations were moved from the kernels into
function stubs that allocate the required memory blos
first and then call the real kernels.

• (Recursive) function calls
Furthermore, at this time function calls are not supported
in DWARV. For most cases, manually inlining the code

Kernel Area MAIP
%time

Speed-up

Slices % of area cum. % of

area

single

kernel

cum.

hw_gaussian_smooth 2265 11.1% 11.1% 70.59% 3.40× 3.40×
hw_derrivative_x_y 2720 13.3% 24.3% 2.49% 1.03× 3.71×
hw_magnitude_x_y 1143 5.6% 29.9% 5.14% 1.05× 4.59×
non_max_supp 5599 27.3% 57.3% 14.36% 1.17× 13.48×
hw_apply_hysteresis 36617 178.8% 236.1% 2.68% 1.03× 21.10×

Area predicted by a ipu prediction model for the Virtex 5 FX 130T.
eoretical application speed-up, assuming 0s execution time for ea kernel.
cumulative

TABLE V
A CED

.

solved the problem. However, there was one instance of
recursion in the follow_edges function, whi inhibited
simple inlining in the apply_hysteresis function. erefore,
the recursive function call was moved to an appropriate
function stub.

Of course, these anges required new profiling results. In Ta-
ble V, the top 5 kernels are listed with their associated new time
contributions, as reported by MAIP.

Evidently, in order to partition the application over hardware
and soware components, the evaluation of the computational
and memory hot-spots is not sufficient. As there is only a limited
amount of reconfigurable hardware area available, an investiga-
tion of the size of potential hardware designs is warranted. For
this purpose, we used a ipu prediction model for the Virtex
5 FX 130T FPGA. e results of the area prediction of the top
5 contributing kernels are presented in Table V. e table lists
the actual number of slices, as well as the percentual area with
respect to the target FPGA. e kernels in the table are in the
order of execution in the CED application. As su, we can
evaluate subsequent merging options by providing cumulative
area figures as well. Note, that the apply_hysteresis kernel is
exceedingly resource-intensive, taking up 178.8% of the target
FPGA area. is large area requirement can be traced ba to

180 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

a local array of 32K 32-bit integers. e used ipu model tar-
gets the DWARV C2VHDL compiler, whi converts su local
arrays to registers, resulting in a large number of slices. When
considering to merge several kernels together, the predictions
suggest the first four kernels will easily fit together on the target
FPGA.
In order to find a candidate set of functions to be moved to the

FPGA hardware, we need an idea of the speed-up that might be
aieved. erefore, in addition to the area predictions, the the-
oretical application speed-ups for ea kernel are also reported
in Table V. ese speed-ups are calculated using Amdahl’s law
assuming an unlimited speed-up for the kernel(s) in question, as
follows:

lim
p→∞

p

1− f(p− 1)
=

1

f
=

1

1− s
(4)

where p stands for the speed-up factor that is aieved in the
accelerated part of the application, f stands for the percentual
contribution of the remaining sequential part of the application,
and s stands for the percentual contribution of the accelerated
part of the application before acceleration. Table V lists both
the speed-up when one kernel is accelerated and the cumulative
speed-up, where ea subsequent kernel is accelerated together
with the previously accelerated kernels. Observe that as large
parts of the application are accelerated, the contribution of
the remaining kernels becomes more significant. For example,
apply_hysteresis has a contribution of 2.68%, but with mu of
the application already accelerated, the difference in theoretical
speed-up is 56.8%.
As we have mentioned before, merging the first four kernels

in Table V would yield a hardware blo that would fit in
the target FPGA. e maximum speed-up of the application
using that blo would be 13.48×. Of course, the efficiency
of accelerating this blo will never be 100%. And the actual
speed-up will be lower. e designer would have to decide
whether to go for the larger kernel or to instantiate several
blos of smaller size in parallel. is last option can especially
be interesting when edge detection is performed on a video
stream.

QUAD profiling. In order to have a clear insight into the
CED application behavior regarding the data communication
between different functions, we utilized the QUAD core to
profile the application. e antitative Data Usage (QDU)
graph of the CED is depicted in Figure 4. e graph makes it
possible to visually follow the journey of data objects through
the sequences of function calls. In this way, we can trace what is
actually happening to the input image as it moves along different
phases of the CED algorithm.e detailed information presented
in the graph also helps to understand what are the memory
requirements of ea function to accomplish its task. Further-
more, it plainly identifies the actual data dependencies between
functions. e critical data path is highlighted in the graph to
distinguish it from all the subordinate data communications be-
tween functions. QUAD starts instrumenting the application as
soon as the main function gains control. In other words, the data
communication associated with the operating system calls and

libraries are somehow overlooked. Although this normally does
not contain mu valuable information about the critical data
path of the application, it may cause missing starting or ending
points for communication edges, i.e. the producer or consumer of
the data. Currently, for every byte with an unidentified producer
a manual investigation has to be conducted to verify the source
of data. In the CED application, the main part of the input image
file (800×600 bytes) has been traed down to be part of the
unknown producer entity. We revised the graph to replace this
with a dummy Image node. A small part of the input image (4864
bytes) is recognized to be aributed to read_pgm_image. Since
the file reading process is considered to be I/O, the operating
system will take care of it, and how the process is implemented
is completely platform dependent. Hence, slight inconsistencies
appear in numbers reported by QUAD for su cases. Nev-
ertheless, this is not affecting the overall picture of the data
communication in the CED application.

make_gaussian_kernel is responsible for creating the Gaus-
sian filter array. Based on the standard deviation used in our case
study, an array of eleven elements is allocated.is is verified by
the 44 UnMA reported on the edge from make_gaussian_kernel
to the hw_gaussian_smooth. It should be noted that the array
of eleven floating point values is accessed repeatedly through-
out the smoothing process. As a result, huge data communi-
cation is reported between the two functions (about 40MB).
hw_gaussian_smooth produces a temporary image data object
filled with calculated intermediate floating point values. is is
clearly reported by a self edge of 800×600×4 bytes UnMA in the
graph. hw_derrivative_x_y uses the smoothed image data object
as an input. e smoothed image used in hw_derrivative_x_y is
of the short integer type, whi is appearing as a corresponding
edge of 960000 UnMA between the hw_gaussian_smooth and
hw_derrivative_x_y. It can also be derived that the smoothed
image data object is accessed four times in total (3840000 bytes),
two times for calculating the derivative in the X direction and
two times for the Y direction.

e calculated derivatives are stored separately in two
arrays of the short integer type. ey serve as inputs to
hw_magnitude_x_y, whi will compute edge strength values
based on the gradient of the image. e result will be saved
in an array called magnitude. It is also clear from the graph
that the input arrays are scanned only once to compute the
magnitudes. e third step of the CED algorithm needs the com-
puted magnitude array and also the derivative arrays. is can
be verified by the graph edges connecting hw_derrivative_x_y
and hw_magnitude_x_y to the non_max_supp. For ea pixel,
the values of neighboring pixels in some directions are also
examined. is results in a large number reported for mem-
ory accesses (approximately 4.5 MB). e resulting binary im-
age, also known as thin edges, is output into an array with
the same size of the input image. Regarding the final step,
hw_apply_hysteresis (excluding the last recursive part to trace
along the identified edges) uses the magnitude array and the
output array from non-maximal suppression. As shown in the
extracted data, the usage of magnitude is conditioned to only
those pixels whi indicate a possible edge. is is dependent on

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 181

Image

hw_gaussian_smooth

7131876 bytes (475144 UnMA)

21024000 bytes (1920000 UnMA)

magnitude_x_y

4 bytes (4 UnMA)hw_derrivative_x_y

3840000 bytes (960000 UnMA)

write_pgm_image 1141 bytes (128 UnMA)

28 bytes (12 UnMA)

main 8 bytes (4 UnMA)

read_pgm_image

4 bytes (4 UnMA)

53324 bytes (4864 UnMA)

76 bytes (64 UnMA)

1215 bytes (190 UnMA)

gaussian_smooth

108 bytes (56 UnMA)make_gaussian_kernel

44 bytes (36 UnMA)

derrivative_x_y

76 bytes (36 UnMA)

156 bytes (56 UnMA) 68 bytes (32 UnMA)

45 bytes (32 UnMA)

32 bytes (12 UnMA)

42072000 bytes (44 UnMA) 60 bytes (24 UnMA)

100 bytes (60 UnMA)

12 bytes (12 UnMA)

12 bytes (4 UnMA)

10 bytes (9 UnMA)

51 bytes (29 UnMA)

94 bytes (37 UnMA)

12 bytes (12 UnMA)

184 bytes (80 UnMA)hw_magnitude_x_y

non_max_supp

4758090 bytes (956810 UnMA)

hw_apply_hysteresis

159898 bytes (159898 UnMA)

apply_hysteresis

71108 bytes (71108 UnMA)

follow_edges

94186 bytes (93922 UnMA)

478605 bytes (478605 UnMA)

480000 bytes (480000 UnMA)

867597 bytes (435605 UnMA)

302657 bytes (156225 UnMA)

1920000 bytes (1920000 UnMA)

2324712 bytes (1874256 UnMA)

4780 bytes (4780 UnMA)

1433 bytes (1433 UnMA)

2870 bytes (1319 UnMA)

84 bytes (84 UnMA)

90970 bytes (46575 UnMA)

78537 bytes (45049 UnMA)

Fig. 4. antitative Data Usage graph for the hardware version of the Canny application.

the input image. In our case, about one sixth of the total pixels
are identified as possible edge pixels. e self edge of 480000
bytes in hw_apply_hysteresis is aributed to the initialization
of the edge map array. e array is subsequently processed in
hw_apply_hysteresis for the computation of the histogram of
magnitude values. apply_hysteresis finalizes the edgemap by us-
ing the output of hw_apply_hysteresis and themagnitude array.
To accomplish this task, it in turn utilizes follow_edges. All the
corresponding data communications to perform the hysteresis
process is identified and presented in Figure 4.write_pgm_image
is responsible for writing the edge map array to the output file.
As explained before, nomajor consumer of the array is identified
by QUAD due to the I/O process.

VIII. C

e primary obstacle for improving the overall performance
of computing systems arises from the communication bolene
between processing elements and memory subsystem. is bot-
tlene is even more evident with the introduction of hetero-
geneous aritectures containing reconfigurable fabrics; where,

in addition to the memory bolenes, there are resource con-
straints that have to be taken into account. We have demon-
strated in this paper that advanced profiling tools su as present
in our Q² profiling framework can alleviate this problem. We
plan to investigate the utilization of this framework more in-
depth in the near future.

A

is resear is partially supported byArtemisia iFEST project
(grant 100203), Artemisia SMECY (grant 100230), and FP7 Reflect
(grant 248976).

R

[1] K. Bertels and et al., “Developing applications for polymorphic processors:
e del workben,” Del University of Tenology, Te. Rep., January
2006.

[2] S. L. Graham, P. B. Kessler, and M. K. Musi, “Gprof: A call graph
execution profiler,” SIGPLAN Not., vol. 17, no. 6, pp. 120–126, 1982.

[3] D. C. Suresh, W. A. Najjar, F. Vahid, J. R. Villarreal, and G. Sti, “Profiling
tools for hardware/soware partitioning of embedded applications,” in
LCTES, 2003, pp. 189–198.

[4] “Intel’s vTune,” hp://soware.intel.com/en-us/intel-vtune.
[5] “AMD CodeAnalyst,” hp://developer.amd.com/cpu/codeanalyst.

182 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

[6] R. F. Cmelik, “Spixtools: Introduction and user’s manual,” Sun Microsys-
tems Inc., Mountain View, CA, USA, Te. Rep., 1993.

[7] T. Ball and J. R. Larus, “Optimally profiling and tracing programs,” ACM
Trans. Program. Lang. Syst., vol. 16, pp. 1319–1360, July 1994.

[8] M. Martonosi, A. Gupta, and T. Anderson, “Memspy: analyzing memory
system bolenes in programs,” SIGMETRICS Perform. Eval. Rev., vol. 20,
no. 1, pp. 1–12, 1992.

[9] H. Davis and S. R. Goldsmidt, “Tango: A multiprocessor simulation and
tracing system,” Stanford University, Stanford, CA, USA, Te. Rep., 1990.

[10] A. R. Lebe and D. A. Wood, “Cae profiling and the spec benmarks:
A case study,” IEEE Computer, vol. 27, pp. 15–26, 1994.

[11] A. I. Choudhury, K. C. Poer, and S. G. Parker, “Interactive visualization
for memory reference traces,” Computer Graphics Forum, vol. 27, no. 3, pp.
815–822, May 2008.

[12] J. Dean, J. E. His, C. A. Waldspurger, W. E. Weihl, and G. Chrysos, “Pro-
fileme: hardware support for instruction-level profiling on out-of-order
processors,” in Proceedings of the 30th annual ACM/IEEE international
symposium on Microaritecture, ser. MICRO 30, 1997, pp. 292–302.

[13] “Caeprof,” hp://www.caeprof.org.
[14] P. Sumaer and P. Jha, “Fast and accurate resource estimation of rtl-

based designs targeting fpgas,” in FPL ’08: Proceedings of 18th International
Conference on, sep. 2008, pp. 59 –64.

[15] C. Brandolese, W. Fornaciari, and F. Salice, “An area estimation
methodology for fpga based designs at systemc-level,” in DAC ’04:
Proceedings of the 41st annual, New York, NY, USA, 2004, pp. 129–132.
[Online]. Available: hp://doi.acm.org/10.1145/996566.996606

[16] P. Kannan and D. Bhatia, “Interconnect estimation for FPGAs,” Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions on,
vol. 25, no. 8, pp. 1523–1534, Aug. 2006.

[17] L. M. Chuong, S.-K. Lam, and T. Srikanthan, “Area-Time Estimation of
Controller for Porting C-Based Functions onto FPGA,” in RSP ’09: Pro-
ceedings of the 2009 IEEE/IFIP International Symposium on Rapid System
Prototyping, 2009, pp. 145–151.

[18] D. Kulkarni, W. A. Najjar, R. Rinker, and F. J. Kurdahi, “Compile-time area
estimation for LUT-based FPGAs,”ACM Trans. Des. Autom. Electron. Syst.,
vol. 11, no. 1, pp. 104–122, 2006.

[19] T. Degryse, H. Devos, and D. Stroobandt, “FPGA Resource Estimation
for Loop Controllers,” in ODES’08: Proceedings of the 6th Workshop on
Optimizations for DSP and Embedded Systems, Boston, MA, USA, 2008,
pp. 9–15.

[20] L. Deng, K. Sobti, and C. Chakrabarti, “Accurate models for estimating area
and power of fpga implementations,” in ICASSP 2008: IEEE International
Conference on, 31 2008-april 4 2008, pp. 1417 –1420.

[21] S. Vassiliadis and et al., “e molen polymorphic processor,” IEEE Transac-
tions on Computers, vol. 53, no. 11, pp. 1363–1375, 2004.

[22] S. Vassiliadis, G. Gaydadjiev, K. Bertels, and E.Moscu Panainte, “emolen
programming paradigm,” in Computer Systems: Aritectures, Modeling,
and Simulation, ser. Lecture Notes in Computer Science, A. Pimentel and
S. Vassiliadis, Eds., vol. 3133. Springer Berlin / Heidelberg, 2004, pp. 1–10.

[23] S. A. Ostadzadeh, R. Meeuws, C. Galuzzi, and K. Bertels, “QUAD - a
memory access paern analyser,” in ARC 2010, 2010, pp. 269–281.

[24] S. A. Ostadzadeh, M. Corina, C. Galuzzi, and K. Bertels, “tQUAD - memory
bandwidth usage analysis,” in ICPP 2010, September 2010, pp. 217–226.

[25] R. J. Meeuws, K. Sigdel, Y. D. Yankova, and K. Bertels, “High level quanti-

tative interconnect estimation for early design space exploration,” in ICFPT
’08, December 2008, pp. 317–320.

[26] S. A. Ostadzadeh, R. J. Meeuws, K. Sigdel, and K. Bertels, “A clustering
framework for task partitioning based on function-level data usage analy-
sis,” in FPGA ’09, 2009, pp. 279–279.

[27] C. Galuzzi, “Automatically fused instructions - algorithms for the cus-
tomization of the instruction-set of a reconfigurable aritecture,” Ph.D.
dissertation, TU Del, May 2009.

[28] S. A. Ostadzadeh, R. J. Meeuws, K. Sigdel, and K. Bertels, “A multipurpose
clustering algorithm for task partitioning in multicore reconfigurable sys-
tems,” in CISIS ’09, 2009, pp. 663–668.

[29] E. M. Panainte, K. Bertels, and S. Vassiliadis, “e molen compiler for
reconfigurable processors,” ACM Trans. Embed. Comput. Syst., vol. 6, no. 1,
2007.

[30] Y. D. Yankova, G. Kuzmanov, K. Bertels, G. N. Gaydadjiev, Y. Lu, and
S. Vassiliadis, “Dwarv: Delworkben automated reconfigurable VHDL
generator,” in Proc. of FPL07, 2007, pp. 697–701.

[31] S. A. Ostadzadeh, M. Corina, C. Galuzzi, and K. Bertels, “Runtime ex-
traction of memory access information from the application source code,”

in to appear in the proceedings of the International Conference on High
Performance Computing & Simulation (HPCS), July 2011.

[32] R. J. Meeuws, “A quantitative model for hardware/soware partitioning,”
Master’s thesis, Del University of Tenology, Del, Netherlands, Del,
Netherlands, May 2007.

[33] R. J. Meeuws, Y. D. Yankova, K. Bertels, G. N. Gaydadjiev, and S. Vassiliadis,
“A quantitative prediction model for hardware/soware partitioning,” in
FPL ’07: Proceedings of 17th International Conference on, August 2007, pp.
317–320.

[34] R. Meeuws, K. Sigdel, Y. Yankova, and K. Bertels, “High level quantitative
interconnect estimation for early design space exploration,” in FPT’08.
International Conference on Field Programmable Tenology, dec 2008, pp.
317 –320.

[35] Y. Yankova, G. Kuzmanov, K. Bertels, G. Gaydadjiev, Y. Lu, and S. Vassil-
iadis, “Dwarv: Delworkben automated reconfigurable vhdl generator,”
in FPL ’07: Proceedings of 17th International Conference on, 27-29 2007, pp.
697 –701.

[36] Y. Ben-Asher and N. Rotem, “Synthesis for variable pipelined function
units,” in System-on-Chip, 2008. SOC 2008. International Symposium on,
nov. 2008, pp. 1 –4.

[37] ——, “Automatic memory partitioning: increasing memory parallelism
via data structure partitioning,” in CODES: IEEE/ACM/IFIP international
conference on, ser. CODES/ISSS ’10, New York, NY, USA, 2010, pp.
155–162. [Online]. Available: hp://doi.acm.org/10.1145/1878961.1878989

[38] A. A. C. Experts. Cosy: Compiler system. [Online]. Available:
hp://www.ace.nl/

[39] C. Luk and et al., “Pin: building customized program analysis tools with
dynamic instrumentation,” in PLDI ’05. New York, NY, USA: ACM, 2005,
pp. 190–200.

[40] E. Fredkin, “Trie memory,” Commun. ACM, vol. 3, pp. 490–499, September
1960.

[41] J. Canny, “A computational approa to edge detection,” IEEE Trans.
Paern Anal. Ma. Intell., vol. 8, pp. 679–698, November 1986.

[42] “Canny Edge Detector, Image Analysis Resear Lab., USF,”
hp://marathon.csee.usf.edu/edge/edge_detection.html.

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 183

How Parameterizable Run-time FPGA Reconfiguration
can Benefit Adaptive Embedded Systems

Dirk Stroobandt and Karel Bruneel
Ghent University, ELIS Department, Gent, Belgium, Dirk.Stroobandt@UGent.be

Abstract— Adaptive embedded systems are currently inves-
tigated as an answer to more stringent requirements on
low power, in combination with significant performance.
It is clear that runtime adaptation can offer benefits to
embedded systems over static implementations as the ar-
chitecture itself can be tuned to the problem at hand.
Such architecture specialisation should be done fast enough
so that the overhead of adapting the system does not
overshadow the benefits obtained by the adaptivity. In this
paper, we propose a methodology for FPGA design that
allows such a fast reconfiguration for dynamic datafolding
applications. Dynamic Data Folding (DDF) is a technique to
dynamically specialize an FPGA configuration according to
the values of a set of parameters. The general idea of DDF
is that each time the parameter values change, the device
is reconfigured with a configuration that is specialized for
the new parameter values. Since specialized configurations
are smaller and faster than their generic counterpart, the
hope is that their corresponding system implementation will
be more cost efficient. In this paper, we show that DDF
can be implemented on current commercial FPGAs by using
the parameterizable run-time reconfiguration methodology.
This methodology comprises a tool flow that automatically
transforms DDF applications to a runtime adaptive imple-
mentation. Experimental results with this tool flow show that
we can reap the benefits (smaller area and faster clocks)
without too much reconfiguration overhead.

Keywords: Automatic hardware synthesis, Dynamic Data Fold-
ing, FPGA, Run-time reconfiguration

1. Introduction
In order to keep up with more stringent requirements

on power usage along with performance, current embedded
systems are increasingly made adaptive. In a first step to-
wards full adaptivity, task scheduling on embedded systems
has been changed from static (off-line) to dynamic (on-line)
scheduling so as to cope with dynamism in the applications.
Generally, application scenarios are detected at run-time
and for each scenario, the proper schedule is chosen from
the set of statically derived schedules for all application
scenarios on the architecture at hand [1], [2], [3]. In more
advanced embedded systems, also the architecture itself is
made adaptive [4], [5]. In this way, not only the schedule
can change but also the resource allocation can be altered

depending on the application scenario at hand. It is clear
that such runtime architecture adaptation can offer benefits
to embedded systems over static implementations as the
architecture itself can be tuned to the problem at hand. Such
architecture specialisation should be done fast enough so that
the overhead of adapting the system does not overshadow the
benefits obtained by the adaptivity.

One hardware component that is extremely well fit for
combining performance with adaptivity is the FPGA. The
inherent reconfigurability of SRAM-based FPGAs makes it
possible to dynamically optimize the configuration of the
FPGA for the situation at hand. Since optimized configura-
tions are smaller and faster than their generic counterparts,
this may result in a more efficient use of FPGA resources
[5]. Therefore, dynamically reconfiguring FPGAs is a good
way of introducing the architecture adaptivity in the context
described above.

If the number of possible application scenarios is limited,
a dynamically reconfiguring system can easily be imple-
mented with a conventional FPGA tool flow. One simply
generates an FPGA configuration optimized for each pos-
sible situation and stores these in a configuration database.
At run-time, a configuration manager loads the appropriate
configuration from the database in the FPGA depending on
the situation at hand.

However, in most cases the number of possible configura-
tions is very large. This is especially the case for Dynamic
Data Folding (DDF). DDF is a technique to implement appli-
cations where some of the input data, called the parameters,
change only once in a while. Each time the parameters
change value, the FPGA is reconfigured with a configuration
that is specialized for the new parameter values. It’s easy
to see that the number of possible configurations grows
exponentially with the number of parameter bits. This makes
it impossible to store all possible configurations. On the
other hand, a conventional FPGA tool flow is too slow to be
executed at run-time. DDF can therefore not be implemented
with a conventional tool flow.

Our research group at Ghent University is the first to
present an automatic tool flow that builds DDF implemen-
tations, thus bringing the FPGA architecture to the level
where it could be useful in a dynamic run-time adaptive
embedded system [5]. Our methodology and tool flow starts
from parameterized HDL designs. These are RT-level HDL
designs in which a distinction is made between regular inputs

184 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

Single
application

Fixed
architecture

Application
scenarios

Fixed
architecture

Application
scenarios

Multiple
architecture
instances

Application
scenarios
Application
scenarios

Application
scenarios
Application
scenarios

Multiple
architecture
instances

Multiple
architecture
instances

Scenario‐ Scenario‐
Design‐
time DSE

Scenario‐
aware Design‐

time DSE

Scenario‐
aware Design‐

time DSE

Single Pareto front Pareto front per scenario Pareto front per scenario and per architecture

Dynamic
mapping

Dynamic
architecture andmapping

selection
architecture and
mapping selection

(a) (b) (c)

Fig. 1: Different forms of system-level DSE, with increasing dynamism from (A) to (C).

and parameter inputs. The parameter inpus will define the
reconfiguration intervals. The result of the tool flow is a
parameterizable configuration. This is an FPGA configura-
tion in which some of the configuration bits are expressed
as a closed-form Boolean expression of the parameters. At
run-time, the configuration manager does not fetch the spe-
cialized configuration from a large configuration database.
Instead, it generates the required configuration on the fly by
evaluating the closed-form Boolean expressions for the new
parameter values.

This paper starts with a brief discussion on the context
of adaptive embedded systems (Section 2), as well as a
description of DDF and an overview of related work in
Section 3. In Section 4, we give a high-level overview
of our staged mapping tool flow. The tool flow uses the
same steps as a conventional tool flow: synthesis, technology
mapping, place and route. The main difference between
our tool flow and the conventional tool flow lies in the
technology-mapping step, which we generalize to obtain a
new technology mapper called TMAP, suited for our DDF
tool flow. We show that our new method for parameterizable
run-time reconfiguration can be implemented on current
FPGA devices and without too many changes in the FPGA
implementation tool flow (Section 5). Furthermore, we ap-
ply TMAP on adaptive FIR filters and Ternary Content-
Addressable Memory in Section 6. Experimental results

show that the use of self-reconfiguration with our tool flow
improves the resource demands of the application by 39%
for a 32-tap adaptive filter and 66% for a Ternary Content
Addressable Memory implementation, without introducing
a prohibitively large reconfiguration generation overhead.
Finally, we conclude in Section 7.

2. Adaptive Embedded Systems
Today, modern embedded computing systems are not only

rapidly evolving towards MultiProcessor System-on-Chîps
(MPSoC), they are also increasingly dynamic and adaptive.
The application workload can change dramatically over time.
For this reason, the notion of application scenarios has
gained interest in the past years [1], [2], [3]. An application
scenario describes the evolution of system use cases, i.e.,
the combinations of applications that can be active at the
same time. This has important implications on the scheduling
process that maps tasks to the computing nodes. A careful
trade off has to be made of non-functional requirements such
as performance, power, cost, etc. Design Space exploration
(DSE) is therefore a very important aspect in this mapping
process. DSE is a multi-objective optimization problem that
searches through the space of different mapping alternatives
in order to find Pareto-optimal design instances. A design
instance is said to be Pareto-optimal when it is optimal
for at least one of the optimization objectives (e.g., per-

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 185

formance, power, cost, etc.). The traditional, design-time
DSE is illustrated in Figure 1(A). With the occurrence of
different application scenarios, this traditional DSE has to be
extended. The mapping decisions can no longer be made at
design time. A run-time system configuration manager will
be needed to dynamically map and re-map applications onto
the underlying architectural resources. The current state-of-
the art in this field has only very recently started to address
this situation (Figure 1(B)) [1], [6], [7], [8], [9], [10].

However, even more flexibility and optimization options
are available when also the underlying architecture of em-
bedded systems is adaptive. One way of achieving this
is to include reconfigurable hardware components such as
Field Programmable Gate Arrays (FPGAs), now popular
architectural elements that enable to accelerate specific com-
putational kernels in applications by means of run-time
hardware reconfiguration (e.g. [4], [5]). Making not only the
applications but also the hardware adaptive, poses additional
challenges to DSE. Ideally, a system configuration manager
in such a system continuously optimizes the system for non-
functional requirements (performance, power consumption,
etc.) at run-time, both by means of mapping of application
tasks and by reconfiguraing architectural processor and net-
work components (Figure 1(C)). This type of DSE is still
only in the research planning phase. However, the optimiza-
tion possibilities clearly outnumber the ones in previous DSE
frameworks.

In such a new type of DSE optimizations, this increased
flexibility poses an additional problem. Application scenar-
ios can be considered a given (and can be measured or
modelled). However, the use of FPGAs offers a seemingly
infinite architecture implementation space and the best ar-
chitecture has to be found for each application scenario
instance. The main challenge in this kind of framework is
hence the right choice of FPGA implementations to consider
in DSE. In the next section, we will show that dynamic
data folding applications offer an interesting perspective that
offers the possibility to limit the implementation choices
while retaining the flexibility needed to implement an almost
optimal architecture for each application scenario.

3. Dynamic Data Folding
Dynamic data folding (DDF) applications have two types

of inputs that are treated differently: fast changing inputs
(regular inputs) and slow changing inputs (parameter inputs).
Instead of building generic circuitry where both types of
inputs are normal input signals, we build a dynamic data
folding system where only the regular inputs are inputs to
a reconfigurable module implemented in the FPGA fab-
ric. The parameters are inputs to a second subsystem, the
configuration manager (CM), in our case an instruction set
processor (ISP). Every time the parameters change, the CM
specializes the reconfigurable module for the new parameter
values. Once specialized, the module is ready to process

the fast changing input data. The reason to build a DDF
system is that the reconfigurable module can be implemented
more efficiently in the FPGA fabric than the generic cir-
cuitry. With convential FPGA tools only handcrafted DDF
systems are possible [11], [12]. The TMAP tool flow on
the other hand (see Section 4) automatically maps dynamic
data folding applications to a self-reconfiguring system [13].
The input of the tool chain is a behavioral description of
the functionality in which a distinction is made between
regular inputs and the parameter inputs. The output is a
Tunable LookUp Table (TLUT) circuit that consists of a
fixed LUT-structure and a Boolean circuit we call the Partial
Parameterizable Configuration (PPC). The PPC describes the
Boolean dependency of the truth table bits on the parameters
as a Boolean circuit that consists of AND and inverter gates.
This is also called an AND-Inverter Graph (AIG) [14]. As an
example we chose the selection bits of a 4-input multiplexer
as parameters and mapped it to 3- LUTs.1 The resulting
fixed LUT structure and AIG of the PPC are shown in
Figure 2. We note that making a generic 4-input multiplexer
with 3-LUTs takes 6 LUTs, while this datafolded version
only takes 2 LUTs. The fixed LUT circuit can be placed
and routed on the FPGA fabric using conventional tools.
The PPC is compiled to an evaluation function that has to
be carried out by the CM. More specifically, the evaluation
function consists of C-code that can run on an instruction
set processor (ISP). From the locations of the LUTs on
the FPGA and the evaluation function of the PPC the
specialization procedure is synthesized. The specialization
procedure takes the parameters as arguments, generates new
truth tables for the reconfigurable module and writes them in
the configuration memory. The specialization procedure thus
consists of an evaluation of the PPC and a reconfiguration
of the truth tables of the fixed LUT circuit.

4. Staged Mapping Tool Flow
In DDF, the specification of the specialized configuration

becomes available in two stages. At compile time, the
generic functionality is available, but the parameter inputs
are not yet bound. Only at run time, the parameters get
bound and the full specification is available. A conventional
tool flow needs a full specification from the start. Therefore,
the complete mapping process needs to be executed at
run time in order to generate the specialized configuration.
Generating the specialized configuration from scratch every
time the parameters change results in a large specialization
overhead. However, since a large part of the specification
(the generic functionality) is available at compile time, one
would expect that it should be possible to complete a large
part of the mapping process at compile time, which can then
be refined at run time when the parameter values become
available. In this case, one would expect a large reduction

1K-LUTs are LUTs with K inputs.

186 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

L0
0

L0
3

L0
1

L0
4

L0
6

L0
2

L0
5

L0
7

L1
0

L1
3

L1
1

L1
4

L1
6

L1
2

L1
5

L1
7

1

1

1

1

1

1

0

O

S0

S1

Fig. 2: The fixed LUT structure and AIG of the PPC for the
4-input multiplexer example.

in specialization overhead since only the refinement step
needs to be executed at run time. Our tool flow uses this
technique, which we call Staged Mapping. A similar concept
has been used in software compilation, where it is called
staged compilation. It has also been used in FPGA mapping,
e.g. in [15] where part of the synthesis process was moved
from run time to compile time.

Figure 3 gives an overview of our tool flow. The final
result, a Specialized Configuration for the FPGA, is gen-
erated in two steps or stages: the Generic Stage and the
Specialization Stage. The generic functionality is presented
to the generic stage in the form of a Parameterizable
HDL Design, while the parameter values are only known
at the beginning of the specialization stage. The generic
stage produces a Parameterizable Configuration (PC). The
specialization stage combines this with the parameter val-
ues to produce the specialized configuration each time the
parameters change.

A Parameterizable HDL Description is an HDL descrip-
tion in which we make a distinction between regular input
ports and parameter input ports.2 The parameter inputs will
not be inputs of the final specialized configurations. They
will be bound to a constant value during the specialization
stage.

A PC is a function that takes parameter values as ar-
guments and produces a specialized configuration. Since
both parameters and FPGA configurations are bit vectors,
the parameterizable configuration is a multi-output Boolean
function. Since many of the output bits of the PC are
independent of the parameter inputs, we can reduce the
number of configuration bits that need to be reconfigured
by splitting up the PC in a Template Configuration (TC)

2One should be careful not to confuse a parameter input with a generic
as defined in VHDL or a parameter as defined in Verilog. A parameter
input is a special kind of input port.

and a Partial Parameterizable Configuration (PPC). The TC
contains all static bits and is used to configure the FPGA
once when the system is started. Just like the PC, the PPC
is a multi-output Boolean function. The PPC will be used
by the reconfiguration procedure to generate a new partial
configuration for the FPGA. In previous work [16], [5]
we have represented the PPC as a vector of closed-form
single-output Boolean expressions of the parameter inputs
(called Tuning functions). In this paper, we represent the
PPC as a Boolean network (Figure 2). This enables the use
of combined logic optimization and thus leads to a more
compact representation and faster evaluation.

In the parameterizable configurations generated by the tool
flow presented in this work, only the truth tables of the
LUTs are expressed as a function of the parameter inputs.
All other configuration bits are static and will thus be part
of the TC. In other work [17], we have built a tool flow
where the routing bits can also be expressed as a function
of the parameter inputs. This tool flow can in some cases
further reduce the number of FPGA resources. However, in
this paper we focus on the reconfiguration of LUTs.

The steps needed in the generic stage of our two-stage
approach are similar to those used in conventional FPGA
mapping: synthesis, technology mapping, place and route.
It is important to note here that these algorithms are
computationally hard and thus have a long run time. The
specialization stage on the other hand generates a special-
ized FPGA configuration by evaluating the PPC, which is
represented as a Boolean network. It can be shown [18] that
the number of Boolean gates in this network scales linearly
with the number of gates in the generic implementation. The
specialization stage is thus not computationally hard and will
run a lot faster than the generic stage. Therefore, the staged
mapping tool flow is much more efficient in generating
specialized configurations than a conventional tool flow. This
is because our staged flow can reuse the parameterizable
configuration for each parameter value. The effort spent in
the generic stage thus is divided over all invocations of
the specialization stage. For large sets of parameter values,
the average mapping effort asymptotically reaches the effort
spent in the specialization stage.

5. Practical Tool Flow Instance
In the previous section, we presented the general tool

flow to map an application to a self-reconfiguring platform.
However, to enable a commercial introduction of this tool
flow without too many hurdles, we have searched for a
practical tool flow that uses current commercial tools as
much as possible and only needs a very limited amount
of additional tools. The tool flow presented in this section
targets Xilinx components and reuses many Xilinx tools.

The self-reconfiguring platform (Fig. 4) targeted by our
tool flow is implemented on a Xilinx Virtex-II Pro FPGA.
The configuration manager is implemented on an embedded

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 187

Parameter.
HDL design Synthesis Tech. mapping

(TMAP)
Place

&
Route

Parameter.
Configuration

Parameter
Values

PPC
Evaluation

Specialized
Configuration

Parameter.
Configuration(a)

(b)

Fig. 3: Overview of our staged mapping tool flow. (a) The generic stage. (b) The specialization stage.

PLB bus

PowerPC BRAM

HWICAP

PLB bus

OPB bus

Bridge

Reconfigurable

IP

Fig. 4: Self-reconfiguring platform on a Xilinx Virtex-II Pro
FPGA.

PowerPC of the Xilinx Virtex-II Pro FPGA, which ensures
a tight connection to the FPGA fabric [19]. The connection
between the configuration manager and the configuration
memory is realized through the Xilinx HWICAP module,
which provides the interface between the OPB bus and
the FPGA’s ICAP (Internal Configuration Access Port). To
configure parts of the FPGA fabric (LUTs) after a param-
eter value has changed, the PowerPC evaluates the tuning
functions (which are individual PPC instances for every
TLUT), generates the new configuration, and sends this new
configuration to the FPGA configuration memory through
the ICAP port of the FPGA via the HWICAP module. The
entire reconfiguration flow is thus executed within the system
and no external source is needed to reconfigure the FPGA,
nor to take the decision to reconfigure. Therefore, this system
is a true self-reconfiguring system.

The self-reconfiguring platform shown in Fig. 4 is im-
plemented using Xilinx XPS [20]. The XPS tool flow is
implemented in a makefile and it is therefore easy to insert
our tools in the flow. The adapted tool flow is shown in
Fig. 5.

5.1 Generating a Master Configuration
We assume that the parameterizable HDL design contains

a number of parameterizable modules and a number of non-
parameterizable modules. A parameterizable VHDL module

TMAP

Parameterizable

HDL Design

Synthesis

Extract Static

LUT Circuit

Extract Tuning

Functions

Parameterizable

Module?

Partially Mapped

HDL Design

Y

N

Reconfiguration

Procedure

Master

Configuration

Xilinx XPS

Tool Flow

Generate

Reconfiguration

Procedure

Fig. 5: Practical tool flow for mapping a parameterizable
HDL design to a self-reconfiguring platform.

is nothing more than a regular VHDL description with
annotations indicating which of the inputs are the parameter
inputs. The parameterizable module of the 6:1 multiplexer
example we will use in this section is shown in Fig. 6.
The annotation -PARAM indicates that the select inputs are
parameters. As the annotations are in a comment line, any
conventional synthesis tool can be used to synthesize the
circuit. We used Altera Quartus II because it can dump a
.blif file that can then be used as input for our mapper TMAP
[21], which maps the circuit to a TLUT circuit.

We make a distinction between parameterizable modules
and non-parameterizable modules. Indeed, the Virtex-II Pro
architecture is a very heterogeneous architecture compared
to the homogeneous LUT architecture that TMAP targets.
Therefore, using TMAP to map the full design would result
in a very inefficient use of the Virtex-II Pro architecture. We
thus limit the use of TMAP to the parameterizable modules,

188 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

entity mux6 is

port(

s : in std_logic_vector(2 downto 0); --PARAM

i : in std_logic_vector(5 downto 0);

o : out std_logic);

end mux6;

architecture behavior of mux6 is

begin

o <= i(conv_integer(s));

end behavior;

Fig. 6: Parameterizable VHDL module of the 6:1 multiplexer
example.

as is shown in Fig. 5. The static LUT circuit of these modules
is expressed in VHDL by directly instantiating LUTs in the
VHDL module. Combining these modules with the non-
parameterizable VHDL modules of the original design forms
the partially mapped HDL design. This VHDL design can
now be efficiently mapped to the Virtex-II Pro architecture
by the Xilinx tools without corrupting the mapping done
by TMAP. The result of this last mapping is the master
configuration. This workaround could of course be avoided
if the ability to map to TLUTs would be incorporated in the
Xilinx mapper.

It is important to note that every LUT instantiated in
VHDL is given a unique name. This enables our tools to
find the LUT’s location after place and route, see Section 5.2.
Although it is not strictly necessary, we also lock the pins of
the LUTs with the lock_pins attribute so that the router
does not interchange the pins during routing. This greatly
simplifies generating the reconfiguration procedure.

5.2 Generating the Reconfiguration Procedure
The reconfiguration procedure reconfigures all the TLUTs

instantiated in a parameterizable module according to the pa-
rameter values that are passed as arguments to the procedure.

We need both the tuning functions of each TLUT and the
location of each TLUT in order to do the reconfiguration
upon a parameter change. The tuning functions for each
TLUT are provided by TMAP, this is explained in detail
in [21]. The LUT locations are harder to come by. On the
Virtex-II Pro a LUT location is specified by a slice row, a
slice column and whether it’s the F or the G LUT of the
slice [22]. Finding these locations for each instantiated LUT
is done in the following way. The Xilinx tool flow generates
a .NCD file that contains all the information on the mapped
circuit including the location of the LUTs. This .NCD file is
first converted to a .XDL file, a clear-text representation of
the .NCD file, using the Xilinx XDL program [23]. We find
the LUT locations in this .XDL file by searching the unique
names given to the LUTs when they were instantiated in
VHDL, as explained in Section 5.1.

A reconfiguration procedure is then generated as follows.
For each of the TLUTs in a parameterizable module we

void L1(XHwIcap *hwIcap,
Xuint8 S0, Xuint8 S1, Xuint8 S2) {

Xuint8 truthTable[LUT_SIZE];
truthTable [0] = !(0);
truthTable [1] = !(S0 && S1);
truthTable [2] = !(!S0 && S1);
truthTable [3] = !(S1);
truthTable [4] = !(S0 && !S1);
truthTable [5] = !(S0);
truthTable [6] = !((!S0 && S1) || (S0 && !S1));
truthTable [7] = !(S0 || S1);
truthTable [8] = !(!S0 && !S1);
truthTable [9] = !((S0 && S1) || (!S0 && !S1));
truthTable [10]= !(!S0);
truthTable [11]= !(!S0 || S1);
truthTable [12]= !(!S1);
truthTable [13]= !(S0 || !S1);
truthTable [14]= !(!S0 || !S1);
truthTable [15]= !(1);

XHwIcap_SetClbBits(hwIcap, 31, 45, G_LUT,
truthTable, LUT_SIZE);

}

Fig. 7: The TLUT reconfiguration procedure for LUT L1

of our 6:1 multiplexer example. We assume that LUT L1 is
located in the G LUT of the slice at row 31 and column 45.

generate a TLUT reconfiguration procedure that takes the
module parameter values as inputs, evaluates the tuning
functions generated by TMAP and reconfigures the LUT.
The TLUT reconfiguration procedure for LUT L1 of our
6:1 multiplexer example is shown in Fig. 7. The code
that evaluates the tuning functions of a TLUT is generated
by simply translating the expressions produced by TMAP
into C-style expressions.3 When executed, these expressions
result in a new truth table for the LUT. The reconfigu-
ration of the LUT is then done by calling the procedure
XHwIcap_SetClbBits, which is provided by Xilinx in
the HWICAP module driver. This procedure takes the LUT
location and the new truth table to reconfigure the LUT.
In our example we assume that LUT L1 is located in
the G LUT of the slice at row 31 and column 45. The
reconfiguration procedure for a module simply calls the
TLUT reconfiguration procedure for each of the TLUTs
of a module. The reconfiguration procedure for our 6:1
multiplexer example is shown in Fig. 8.

On a last practical note, we should warn the reader that,
in the Virtex-II Pro family, reconfiguring a LUT will cause
corrupted data in the SRL16s and LUT RAMs that are
located in the same column. Therefore, placing TLUTs in the
same columns as SRL16s or LUT RAMs must be avoided.
This can be done using AREA_GROUP constraints. This is
no longer an issue in the Virtex-5 family.

3It must be noted that, since the Virtex-II Pro family LUT configurations
are stored in an inverted way, the configuration data must be inverted before
configuring the LUTs [24].

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 189

void mux2w1 (XHwIcap *hwIcap,

Xuint8 S0, Xuint8 S1, Xuint8 S2) {

L0(hwIcap, S0, S1, S2);

L1(hwIcap, S0, S1, S2);

}

Fig. 8: The reconfiguration procedure for our 6:1 multiplexer
example.

c cc c ...

input

c14 c15c0 c1 ...
output

Fig. 9: 32-tap fully pipelined adaptive FIR filter.

6. Experiments and results
In this section, we apply tunable LUT mapping on more

complex circuits. In Section 6.1 we create adaptive FIR
filters that are adapted by means of reconfiguration and in
Section 6.2 we create TCAMs of which the content is written
by means of reconfiguration. Both designs are implemented
on a Virtex-II Pro XC2VP30 using Xilinx ISE 9.2.

6.1 Adaptive FIR filter
Adaptive FIR filters that are adapted by means of reconfig-

uration can be created with TMAP by simply choosing the
filter coefficients as the parameters of the design. In what
follows we create this sort of adaptive filter for different
numbers of taps and input widths and we compare them
with conventional adaptive filters. The filters used are fully
pipelined FIR filters as shown in Figure 9 for a 32-tap filter.

On the one hand, the filters are implemented using the
conventional ISE 9.2 tool flow stating from RTL descriptions
of the filters. Synthesis is done using Xilinx XST 9.2 with
the default settings except for the multiplier style which we
set to LUT. This way the multipliers are implemented using
LUTs rather than the hardwired multipliers available in the
Virtex-II Pro. This is necessary to allow a fair comparison
between the conventional implementation and the TMAP
implementation. Technology mapping (Xilinx MAP 9.2) and
Place and Route (Xilinx PAR 9.2) are done using default
settings. The number of LUTs and the maximum clock
frequency for the filters implemented using ISE can be found
in columns 3 and 4 of Table 1.

On the other hand, the filters are implemented using
TMAP, again starting from RTL descriptions of the filters.
This RTL description is first synthesized using Quartus II
7.2. Quartus is set to dump a .blif file after synthesis. This is
possible due to the Quartus II University Interface Program
(QUIP). Next, the .blif file is converted to an .aig file using
ABC [14]. Together with a list of parameter inputs (the filter
coeficients in this case) this .aig file is used as input for

Table 1: Hardware properties for a set of differend-sized
adaptive FIR filters implemented without using dynamic
reconfiguration (Conventional) and with using dynamic re-
configuration (TMAP). The numbers between brackets are
relative compared to the conventional implementation.

Size Conventional TMAP
Width Taps LUTs f [MHz] LUTs f [MHz]

8 bit 32 2641 80.84 1520 (0.58) 123.82 (1.53)
8 bit 64 5298 72.41 3056 (0.58) 89.06 (1.23)
8 bit 96 7954 65.41 4592 (0.58) 87.96 (1.34)
8 bit 128 10611 53.81 6128 (0.61) 74.23 (1.38)

a Java implementation of TMAP which produces both a
PPC represented as a .aig file and a LUT structure. In this
experiment, the LUT structure is represented as VHDL file
that directly instantiates Virtex-II Pro LUTs and FFs [25].
Finally the LUT structure is implemented on the Virtex-II
Pro using the Xilinx ISE 9.2 tool flow (XST 9.2, MAP 9.2
and PAR 9.2) with default settings. For more information on
how to integrate TMAP with the ISE tool flow we refer to
[13].

The number of LUTs and the maximum clock frequency
for the dynamically reconfigurable filters can be found in
columns 5 and 6 of Table 1. If we compare the number
of LUTs in both implementations we see that the TMAP
implementations need at least 39% fewer LUTs than the
conventional implementation. We also see that the TMAP
implementation can be clocked at least 23% and up to 53%
faster than the conventional implementation.

Of course, the gain in area and speed of the FPGA
hardware of our dynamically reconfigurable adaptive filters
comes at the cost of a larger adaptation time. While the
filter coefficients of the conventional adaptive filter can
be changed by simply rewriting the registers that store
the coefficients, the TMAP implementation requires us to
both generate a specialized configuration for the FPGA
by evaluating the PPC and write this configuration in the
configuration memory of the FPGA. The total time needed to
change the coefficients of the filter is called the specialization
overhead, tspecial. It contains both the time needed to
evaluate the PPC, teval, and the time to reconfigure the
FPGA, treconf . In what follows we discuss the specialization
overhead in detail.

As shown in Figure 2, the evaluation of the PPC is done on
an Instruction Set Processor (ISP). In our case, we use the
PowerPC which is hardwired on the Virtex-II Pro FPGA.
Efficiently evaluating a Boolean network on an ISP is an
area of research by itself, and is beyond the scope of this
paper. However, in order to give an estimate of the evaluation
time we have implemented a simple compiled evaluation
technique. In compiled evaluation, a dedicated function is
created that takes the input values of the network as its
arguments and returns the output values of the network. In

190 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

our case, the network is the PPC created by TMAP, the input
values are the parameter values (the coefficients of the filter)
and the output values are the truth tables for the TLUTs.

Starting from the PPC, an evaluation function is created
by first generating a C function and then compiling it for the
PowerPC. We generate the C code of the evaluation function
by traversing the PPC in topological order from the inputs
towards the outputs. For every node a statement is added to
the C code. The statement calculates the output value of the
node from the output value of its predecessors and stores the
output in an local array (node). The size of the local array is
minimized by freeing its elements when they are no longer
needed and by always storing a node output value at the
smallest available index. E.g. if left predecessor is inverted,
the smallest available index is 3 and and the output values
of the left and right predecessors are respectively stored
at indices 9 and 6, the expression would be node[3] =
!node[9] && node[6];.

Unfortunately, when we generate an evaluation function
as described above for the complete flattened FIR filter, this
leads to very large evaluation function and poor evaluation
time. However, many designs, including our FIR filters,
contain hierarchy and have a repetitive nature that can be
used to build a more compact evaluation function. In our
filters, one multiplier is instantiated for every tap. Instead of
generating one flat evaluation function for the complete FIR
filter, we generate an evaluation function for one multiplier,
as described above, and build the FIR evaluation function by
calling this function for each instantiation of the multiplier.
We could even further optimize this by calculating up to
32 of the multiplier evaluation functions at a time by using
bitwise logic operations and packing 32 Boolean values in
each 32-bit word. Although we have built the FIR evaluation
function manually for our experiments, it could easily be
synthesized automatically from the hierarchy found in the
HDL design.

In our experiment we created the evaluation function as
described above for each of the FIR filters and executed it
on the PowerPC. The PowerPC was clocked at 300 MHz
and both the instruction and data caches were enabled.
The evaluation time, teval, and the size of the compiled
evaluation function Seval are shown in Table 2. We see
that the evaluation time for our adaptive filters takes in the
order several hundreds of µs depending on the size of the
filter. The ratio of the evaluation time and the number of
AND nodes in the PPC shows that the evaluation time of
the filters is very linear in the size of the PPC. The size of
the evaluation functions is about 15 kB and slowly grows
as the number of taps increases. The program size is almost
independent of the size of the PPC because one multiplier
evaluation function is created, that is reused to generate the
truth tables for each of the multipliers in the design.

After evaluating the PPC, the PowerPC needs to write the
calculated truth tables in the configuration memory of the

Table 2: Evaluation of the PPC of different-sized adaptive
FIR filters on the hardwired PowerPC of the Virtex-II Pro.

Size Evaluation Time Program Size
Width Taps |PPC| teval [µs] teval

|PPC| [ns
AND

] Seval [B]
8 bit 32 28672 317 11.06 14150
8 bit 64 57344 634 11.06 14918
8 bit 96 86016 951 11.06 15686
8 bit 128 114688 1268 11.06 16454

Table 3: Reconfiguration of different-sized adaptive FIR
filters through the ICAP of the Virtex-II Pro.

size Reconfiguration Time
Width Taps TLUTs frames Sbit [B] treconf [µs]

8 bit 32 768 52 66573 1009
8 bit 64 1536 88 111357 1687
8 bit 96 2304 92 115493 1750
8 bit 128 3072 91 114669 1737

FPGA. The PowerPC can access the configuration memory
of the Virtex-II Pro from within the FPGA fabric through
the ICAP (Internal Configuration Access Port) which we
connected to the bus of the PowerPC. To reconfigure the
FPGA, the PowerPC needs to send a partial bitstream to the
ICAP which can be done at a maximum rate of 66 MB/s.
The size of the bitstreams, Sbit, and the reconfiguration
time, treconf , are shown in column 5 and 6 of Table 3.
The reconfiguration time ranges from 1 ms to a maximum
of 1.75 ms depending on the size of the filter. As can be
seen, the reconfiguration time is not linear in the number
of TLUTs as one could expect, but linear in the number
of frames that need to be reconfigured. This is because the
atom of reconfiguration of the Virtex-II Pro is not a LUT
truth table but a frame [26]. All the truth tables of a column
of CLBs (Configurable Logic Blocks) are stored in only two
frames. If only one LUT in a CLB column changes half of
the LUTs in that column need to be reconfigured. Because
it’s frames are smaller, the importance of this overhead is
reduced for the Virtex-5 [27].

Finally, the total specialization overhead which is the sum
of the evaluation time and the reconfiguration time, is shown
in Table 4. As can be seen, the specialization time is of the
order of a few ms, depending on the size of the filter. We
can thus exploit the area and clock frequency benefits of
our adaptive filters (Table 1) as long as the time in between
coefficient changes is a few orders of magnitude higher that
the specialization overhead.

6.2 Ternary Content Addressable Memory
In conventional memories, the read operation returns the

data associated with a given address. The read operation of
a Content Addressable Memory (CAM) does the opposite:
it finds the address associated to a given data value. In
both cases, the write operation stores a given data value at

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 191

Table 4: Specialization overhead of different-sized adaptive
FIR filters implemented on the Virtex-II Pro.

size Specialization Overhead
Width Taps teval [µs] treconf [µs] tspecial [µs]

8 bit 32 317 1009 1326
8 bit 64 634 1687 2321
8 bit 96 951 1750 2701
8 bit 128 1268 1737 3005

a given address. CAMs have many applications [28]. The
most important commercial application is packet forwarding
in network routers [29].

A TCAM (Ternary CAM) is a special kind of CAM that
stores ternary patterns instead of pure data. Each digit in a
ternary pattern can either be zero, one or don’t care. The
digits are represented by two bits: the data bit and the mask
bit. A full pattern entry in the TCAM is represented by
two bit vectors (the data and the mask) and one bit which
indicates whether the entry contains a pattern or not. When
new input data is provided to the TCAM, it simultaneously
compares this data to all stored patterns. The incoming data
matches a pattern if all bits of the incoming data for which
the corresponding mask bit of the pattern is zero are equal
to the corresponding value bit of the pattern.

In a conventional TCAM implementation, the pattern
entries will be provided by flip-flops (FFs) arranged as a
memory. Each memory element uses a FF in the FPGA
because all data needs to be accessed in every clock cycle.
In our reconfigurable implementation, these inputs are the
parameters of the design and will thus be provided by means
of reconfiguration. In important applications such as Internet
core routers, this approach is feasible, since the update rate
is usually rather limited (at the very most a few hundred
updates per second [30]), while the read rate is orders of
magnitude higher (up to several millions of packets per
second).

The problem with TCAMs is that their implementation re-
quires many FPGA resources, even for small TCAMs. When
we synthesize a description of a full TCAM (256 entries of
32-bit) using ISE for a Virtex II Pro, the implementation
requires 16,874 FFs and 10,441 4-input LUTs and can be
maximally clocked at 69 MHz. This is true for different sizes
of the TCAM (see Table 5).

These resource requirements can be drastically reduced
with the use of TMAP. In the TMAP design, we chose
the entry array of the TCAM as the parameter input of
the design, by adding the -PARAM annotation. This means
that the patterns stored in the TCAM will be changed by
means of reconfiguration. When we map this design using
TMAP it only requires 3,497 LUTs (a reduction by 67%), the
maximum clock frequency rises from 69 MHz to 90 MHz (a
gain of 30%) and the number of FFs is reduced dramatically
from 16,874 to only 226 (see Table 5). This reduction in
FFs is possible because the pattern information is no longer

stored in FFs that are part of the FPGA fabric, but in the
memory elements of the configuration memory that stores
the truth tables of the LUTs. Only a few FFs are left for
some output registers.

Because of the importance of TCAMs and the high
resource usage of architecture independent HDL implemen-
tations, FPGA vendors offer TCAM constructor software
which constructs TCAM structures that are highly optimized
for a specific architecture [28], [31]. The designer can gen-
erate such a structure using the software and then instantiate
it in his design. A good example of such a generator is the
SRL16 TCAM generator [11] embedded in Xilinx Coregen,
which generates TCAM structures that are very similar to the
TCAMs that TMAP synthesizes. The results for the SRL16
TCAM are shown in Table 5. As can be seen the SRL16
TCAM (256 entries of 32-bit) is 45% larger and clocks 34%
slower than the TMAP design. This is mainly due to the
infrastructure needed to write new entries in the TCAM.

Again, the gain in area and speed of the FPGA hardware
of our dynamically reconfigurable TCAM comes at the
cost of a larger time to write an entry. While in the ISE
implementation an entry can be rewritten in one clock cycle
and in the SRL16 implementation in 16 clock cycles, the
TMAP implementation requires us to both generate a spe-
cialized configuration for the FPGA by evaluating the PPC
and write this configuration in the configuration memory
of the FPGA. In the next experiment, we measured the
specialization overhead for the TMAP implementation. As is
explained in Section 6.1, the evaluation of the PPC is done
on the embedded PowerPC and the reconfiguration is done
using the ICAP of the Virtex-II Pro. We did the measurement
both in the case only one entry needs to be rewritten and
in the case all entries are rewritten. The results are shown
in Table 6. If only one entry is written, the reconfiguration
time depends on the way the TLUTs of the entry are placed
on the FPGA, because the placement determines the number
of frames that need to be reconfigured. Table 6 shows the
reconfiguration time for the worst case entry. For the largest
TCAM (256 entries of 32 bit), reconfiguring one entry takes
245 µs in worst case and reconfiguring the full TCAM takes
1716 µs. More details can be found in the table.

The disadvantage of using generator software is that
it results in architecture dependent designs, because the
TCAM structures internally instantiate architecture specific
resources. Our TMAP design does not have that problem
as its VHDL code is architecture independent. The same
design can be mapped to several FPGA architectures by
simply changing the mapper. Of course these mappers must
have TLUT capability in order to benefit form the resource
reduction. To strengthen this point we have also mapped our
code to architectures with different LUT sizes. The LUT
usage for K = 3, K = 4 and K = 5 can be found in
Table 7. In the table one can clearly see that for the TCAMs
the relative area gain improves when the LUT size increases.

192 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

Table 5: Comparison of different implementations of a TCAM on a Virtex-II Pro. (ISE) Synthesis from behavioral VHDL
using ISE 9.2. (SRL16) Generated with Xilinx Coregen. (TMAP) Synthesis from behavioral VHDL using TMAP.

Design ISE SRL16 TMAP

Width Entries LUT FF fmax LUT FF fmax LUT FF fmax

[MHz] [MHz] [MHz]
16 128 2516 4302 86.72 1504 127 79.26 1095 56 88.72
16 256 5100 8577 74.36 2886 130 68.24 2217 85 83.51
32 128 4569 8419 79.97 2664 223 68.13 1735 237 95.57
32 256 10441 16874 69.01 5070 226 59.69 3497 259 90.00

Table 6: Specialization overhead of different-sized TCAMs implemented on the Virtex-II Pro. (One Entry) Only one of the
TCAM entries is written. (All Entries) All the entries of TCAM are written.

Design One Entry (Worst Case) All Entries

Width Entries Seval teval frames treconf tspecial Seval teval frames treconf tspecial

[B] [µs] [µs] [µs] [B] [µs] [µs] [µs]
16 128 7362 1.50 4 104 106 7446 190 41 795 985
16 256 7362 1.50 4 104 106 7446 380 52 1034 1414
32 128 9750 2.84 9 205 208 9834 360 49 946 1306
32 256 9750 2.84 9 242 245 9834 720 52 996 1716

Table 7: Several TCAMs mapped to different-sized LUTs: K = 3, K = 4 and K = 5.
Design K = 3 K = 4 K = 5

Width Entries Conv. TMAP Conv. TMAP Conv. TMAP
16 128 3637 1604 (0.44) 2516 1095 (0.44) 2471 867 (0.35)
16 256 7278 3197 (0.44) 5100 2217 (0.44) 4863 1724 (0.36)
32 128 6958 3022 (0.43) 4569 1735 (0.38) 4780 1527 (0.32)
32 256 13919 6013 (0.43) 10441 3497 (0.34) 9337 3018 (0.32)

7. Conclusions

Run-time hardware reconfiguration provides ample op-
portunities for optimizations of an implementation in time
intervals in between two parameter changes. In this paper
we introduced a tool flow that automatically generates a dy-
namic data folding implementation starting from an RT-level
HDL design. Its main contribution is a novel technology
mapper called TMAP. The mapper maps Boolean circuits
to Tunable LUTs (TLUTs), these are LUTs of which the
truth table is expressed as function of the parameter inputs.
We have effectively integrated our tool flow in the Xilinx
XPS tool flow that targets Virtex-II Pro FPGA devices. We
used the embedded PowerPC of the Virtex-II Pro device
as reconfiguration manager. On top of this, in our DDF
architecture, specialized configurations are also generated on
the fly by evaluating Boolean functions. We expressed these
functions as a single Boolean network, which opened up the
possibility of using well-known combined Boolean optimiza-
tion techniques. Our approach is validated by implement-
ing adaptive FIR filters and Ternary Content-Addressable

Memories (TCAMs) on a Virtex-II Pro.4 We show large
reductions in the number of LUTs (39% for the FIR filter and
66% for the TCAMs) and significant improvements of the
maximum clock frequency (38% for the FIR filter and 30%
for the TCAM). The specialization of both designs was done
using the embedded PowerPC and the ICAP of the Virtex-
II Pro. The total time needed to change the coefficients of
the filter is 1.74 ms and the content of the TCAM can be
rewritten in 1.72 ms. FIR filters and TCAMs are only two
of a large class of applications that can benefit from DDF.
Because of its general applicability and the RT-level design,
our technique makes designing DDF systems feasible for
many applications. Other applications that may benefit from
our DDF technique are: encryption algorithms like AES and
DES, template matching [32], regular expression matching
[33], DNA aligning [34], [35], serial fault emulation [36]
and many others.

4The FIR filter has 128 taps with 8-bit wide coefficients. The TCAM has
256 entries that are 32 bit wide.

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 193

References
[1] S.V. Gheorghita et al., System-scenario-based design of dynamic em-

bedded systems., ACM Transactions on Design Automation of Elec-
tronic Systems, 14(1):1–45, 2009.

[2] G. Palermo, C. Silvano, and V. Zaccaria. Robust optimization of
SoC architectures: A multi-scenario approach. In Proc. of the IEEE
Workshop on Embedded Systems for Real-Time Multimedia, 2008.

[3] J. Paul, D. Thomas, and A. Bobrek. Scenario-oriented design for single-
chip heterogeneous multiprocessors. In IEEE Trans. on Very Large
Scale Integration Systems, 14(8), PP. 868–880, 2006.

[4] K. Compton and S. Hauck. Reconfigurable computing: a survey of
systems and software. ACM Computing Survey, 34(2): pp. 171–210,
2002.

[5] K. Bruneel and D. Stroobandt. Reconfigurability-aware structural
mapping for LUT-based FPGAs. In 2008 International Conference on
Reconfigurable Computing and FPGAs (ReConFig). IEEE, Piscataway,
NJ, USA, 223–8.

[6] L. Benini, D. Bertozzi, and M. Milano. Resource management policy
handling mulitple use-cases in MPSoC platforms using constraint
programming. In Logic Programming, vol. 5366, pp. 470 – 484, 2008.

[7] E.W. Brião, D. Barcelos, and F.R. Wagner. Dynamic task allocation
strategies in MPSoC for soft real-time applications. In Proc. of the
conference on Design, Automation and Test in Europe (DATE), pp.
1386–1389, 2008.

[8] P. Hölzenspies, J. Hurink, J. Kuper, and G. Smit. Run-time spatial
mapping of streaming applications to a heterogeneous multi-processor
system-on-chip (MPSoC). In Proc. of the Conf. on Design, Automation
and Test in Europe (DATE), 2008.

[9] V. Nollet. Run-time Management for Future MPSoC platforms. Ph.D.
thesis, TU Eindhoven, 2008.

[10] P. Yang and F. Catthoor; Pareto-optimization-based run-time task
scheduling for embedded systems. In Proc. of the Int. Conference on
Hardware/Software Codesign and System Synthesis, 2003.

[11] J.-L. Brelet and B. New, B. XAPP203: Designing Flexible, Fast CAMs
with Virtex Family FPGAs. Xilinx. 1999

[12] M.J. Wirthlin, Constant coefficient multiplication using look-up tables.
Journal of VLSI Signal Processing, vol. 36, no. 1, PP. 7–15, 2004.

[13] K. Bruneel, F. Abouelella, and D. Stroobandt. Automatically mapping
applications to a self-reconfiguring platform. In Proceedings of Design,
Automation and Test in Europe, K. Preas, Ed. Nice, 964–969. 2009

[14] ABC: A System for Sequential Synthesis and Verification. Berkeley
Logic Synthesis and Verification Group.

[15] A. Derbyshire, T. Becker, and W. Luk. Incremental elaboration for
run-time reconfigurable hardware designs. In CASES ’06: Proceedings
of the 2006 International Conference on Compilers, Architecture and
Synthesis for Embedded Systems. ACM, New York, NY, USA, 93–102.
2006

[16] K. Bruneel and D. Stroobandt. Automatic generation of run-time
parameterizable configurations. In Proceedings of the 2008 Interna-
tional Conference on Field Programmable Logic and Applications,
U. Kebschull, M. Platzner, and T. J., Eds. Kirchhoff Institute for
Physics, Heidelberg, 361–366. 2008

[17] K. Bruneel and D. Stroobandt. TROUTE: a reconfigurability-aware
FPGA router. In Lecture Notes in Computer Science. Vol. 5992.
Springer Verlag Berlin, Berlin, Germany, 207–218. 2010

[18] K. Bruneel, W. Heirman and D. Stroobandt. Dynamic Data Folding
with Parameterizable FPGA COnfigurations. To be published in ACM
Trans. on Design Automation of Embedded Systems, 2011.

[19] B. Blodget, P. James-Roxby, E. Kelle, S. McMillan, and P. Sundarara-
jan, A selfreconfiguring platform, International Conference on Field-
Programmable Logic and Applications, pp. 565– 574, 2003.

[20] Embedded System Tools Reference Manual, Xilinx.
[21] K. Bruneel and D. Stroobandt, Automatic generation of run-time

parameterizable configurations, in Proceedings of the International
Conference on Field Programmable Logic and Applications, 2008, pp.
361–366.

[22] Virtex-II Pro and Virtex-II Pro X FPGA User Guide, Xilinx.
[23] J.-B. Note and Éric Rannaud, From the bitstream to the netlist,

in FPGA ’08: Proceedings of the 16th international ACM/SIGDA
symposium on Field programmable gate arrays. New York, NY, USA:
ACM, 2008, pp. 264–264.

[24] A. Upegui and E. Sanchez, Evolving hardware by dynamically re-
configuring Xilinx FPGAs, in Evolvable Systems: From Biology to
Hardware, ser. LNCS, J. M. et al., Ed., vol. 3637. Berlin Heidelberg:
Springer-Verlag, 2005, pp. 56–65.

[25] Virtex-II Pro Libraries Guide for HDL Designs. Xilinx. 2008.
[26] Virtex-II Pro and Virtex-II Pro X FPGA User Guide. Xilinx. 2007
[27] Virtex-5 FPGA Configuration User Guide. Xilinx. 2010
[28] Application Note 119: Implementing High-Speed Search Applications

with Altera CAM. Altera. 2001
[29] K. Pagiamtzis and A. Sheikholeslami. Content-addressable memory

(CAM) circuits and architectures: A tutorial and survey. IEEE Journal
of Solid-State Circuits 41, 3, 712–727. 2006

[30] C. Labovitz, G. Malan, and F. Jahanian. Internet routing instability.
IEEE/ACM Transactions on Networking 6, 5 (Oct.), 515 –528. 1998

[31] DS253: Content-Addressable Memory v6.1. Xilinx. 2008
[32] M. J. Wirthlin and B. L. Hutchings. Improving functional density

through run-time constant propagation. In FPGA ’97: Proceedings of
the 1997 ACM Fifth International Symposium on Field-Programmable
Gate Arrays. ACM, New York, NY, USA, 86–92. 1997

[33] B. Hutchings, R. Franklin, and D. Carver. Assisting network intrusion
detection with reconfigurable hardware. In Proceedings of the 10th
annual IEEE symposium on field-programmable custom computing
machines. 111–120. 2002

[34] K. Puttegowda, W. Worek, N. Pappas, A. Dandapani, P. Athanas, and
A. Dickerman. A run-time reconfigurable system for gene-sequence
searching. VLSI Design, International Conference on 0, 561. 2003.

[35] Y. Yamaguchi, Y. Miyajima, T. Maruyama, and A. Konagaya. High
speed homology search using run-time reconfiguration. In FPL ’02:
Proceedings of the Reconfigurable Computing Is Going Mainstream,
12th International Conference on Field-Programmable Logic and Ap-
plications. Springer-Verlag, London, UK, 281–291. 2002.

[36] L. Burgun, F. Reblewski, G. Fenelon, J. Berbier, and O. Lepape. Serial
fault emulation. In DAC ’96: Proceedings of the 33rd annual Design
Automation Conference. ACM, New York, NY, USA, 801–806. 1996.

194 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

SESSION

REGULAR PAPERS

Chair(s)

PROF. ROMAN LYSECKY

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 195

196 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

A Transparent and Adaptable Multiple-ISA Embedded
System

Jair Fajardo Junior, Mateus B. Rutzig, Luigi Carro, Antonio C. S. Beck

{jffajardoj, mbrutizg, carro, caco}@inf.ufrgs.br
Instituto de Informática, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil

Abstract - In these days, every new added hardware feature
must not change the underlying instruction set architecture
(ISA), in order to avoid adaptation or recompilation of
existing code. Therefore, Binary Translation (BT) opens new
possibilities for designers, previously tied to a specific ISA
and all its legacy hardware issues, since it allows the
execution of already compiled applications on different
architectures. To overcome the BT inherent performance
penalty, we propose a new mechanism based on a dynamic
two-level binary translation system. While the first level is
responsible for the BT de facto to an intermediate language,
the second level optimizes the already translated instructions
to be executed on the target architecture. The system is totally
flexible, supporting the porting of radically different ISAs and
the employment of different target architectures. This paper
presents the first effort towards this direction: it translates
code implemented in the x86 ISA to MIPS assembly (the
intermediate language), which will be optimized by the target
architecture: a dynamically reconfigurable architecture. We
show that is possible to maintain binary compatibility with
performance improvements when compared to native
execution.

Keywords: Binary Translation, Reconfigurable Systems

1 Introduction
 With the constant growth of the embedded systems
market, more complex applications have been developed to
fulfill consumer needs. At the same time, technological
development has already started to stagnate as a result of the
decline in Moore’s law [1], and one can observe that the
processing capabilities of traditional architectures are not
growing in the same pace as before [2]. In this scenario, new
alternatives are necessary to minimize this problem.
However, the support for binary compatibility, so that the
large quantity of tools and applications already deployed can
be reused, is an important requirement to introduce new
processors into the market. With this in mind, companies
develop their products focusing on the improvement of a
given architecture that will execute the same Instruction Set
Architecture (ISA) as before. Nevertheless, this need for
compatibility imposes a great number of restrictions to the
design team.

 Binary translation systems can give back to designers
the freedom previously lost, since they do not need to be tied
to a specific ISA anymore. Therefore, the ideal scenario
would be as shown in Figure 1: the execution of instructions
compatible to any given ISA on the very same underlying
architecture. However, the maintenance of binary
compatibility only is not enough to handle market needs. It is
also necessary to translate code execution in a competitive
fashion, when compared to native execution [3]. This way,
the concept of binary translation must also be tightly
connected to code optimization and acceleration [4].

Fig. 1. Ideal scenario for current embedded systems.

 With the aforementioned issues in mind, this work
proposes a new approach based on a dynamic two-level
binary translation system that, besides maintaining binary
compatibility, amortizes its costs. An overview of the
proposed system is presented in Figure 2. The first BT level
is responsible for translating the source code to an
intermediate (common) code, as any conventional BT
machine would do. The second BT level is responsible for
transforming the already translated code (intermediate code)
to be executed on the target architecture. With the two-level
BT mechanism, and having a clear interface between the
translation and the optimization levels, another advantage
emerges: during design time, by only changing the first BT
level it is possible to execute different ISAs in a completely
transparent fashion to the second BT level, thus greatly
facilitating the porting of radically different ISAs without the
need for changing the underlying architecture, as long as
different first BT level layers are available. In the same way,
it is possible to switch to another target architecture,
according to the application needs or to the available
architecture at the moment.

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 197

Fig. 2. Proposed Approach.

 In the case study presented in this paper, which presents
the first step towards this objective, x86 code is translated at
the first BT level, MIPS assembly is used as the intermediate
language, and a dynamically reconfigurable system [5] is
used as the optimization machine, as shown in Figure 3a.
This way, performance improvements are reached because
both BT mechanisms are completely implemented in
hardware for fast translation and minimum performance
overhead; and once a sequence of code has passed through
the two levels, the next time it is found both BT levels will be
skipped (both translations will not be necessary, as illustrated
in Figure 3b), and the reconfigurable array will be directly
used, as long as there memory available. This is another
advantage of the proposed technique and will be explained in
more details later.

 (a) (b)
Fig. 3. Execution layers of the case study of the proposed approach.

 The rest of this paper is organized as follows. In section
2, we show some related binary translation architectures, with
a brief explanation about their operation. In the next section,
an overview about the proposed architecture is given. In
section 4 we present the experimental results and a discussion

on these tests. In Section 5 we conclude this article and
discuss future works.

2 Related Work

2.1 BT Systems

 Binary translation systems have been used mainly
because companies need to reduce the time-to-market and
maintain backward software compatibility. They can work at
different layers in a computing architecture: as if it was
another regular application, visible to the user; or yet
implemented in hardware, working below the operating
system [7]. One example is Rosetta [8]: used into Apple
systems to maintain compatibility between the PowerPC and
x86. It works in the application layer with the sole purpose of
maintaining binary compatibility, causing a great overhead.
Another case is the FX!32 [9] [10] that allows 32-bit
programs to be installed and executed like an x86 architecture
running Windows NT 4.0 on Alpha systems. The FX!32 is
composed of an emulator and a binary translator system. The
emulator performs code conversion, and also provides
profiling information at run-time. The binary translator uses
the profiling information to generate optimized images
through identified hotspots into the code, saving them for
future reuse and avoiding excessive run time overhead. As
other examples, the HP Dynamo [25] analyzes the application
at runtime in order to find the best parts of the software for
the BT process, while the Daisy architecture uses BT at
runtime to better exploit the ILP of a PowerPC application,
transforming parts of code to be executed on a VLIW micro
architecture [26].

 The Transmeta Crusoe processor [11] had the main
purpose of translating x86 code to execute onto a VLIW
processor, reducing power consumption and saving energy.
In this case, the BT is implemented in software, but the
Crusoe hardware (a VLIW processor) was designed to speed
up the BT process with minimum energy, which decreases the
translation overhead. The Godson3 processor [12] has the
same goal as the Transmeta Crusoe: using a software layer
for binary translation (QEMU), it converts the x86 to MIPS
instructions. However, it uses a different strategy to optimize
the running program. Godson3 is a scalable multicore
architecture, which uses a mix between a NOC (network on-
chip) and a crossbar system for its communication
infrastructure. This way, up to 64 cores are supported. Each
core is a modified superscalar MIPS to assist the dynamic
translation. Therefore, Godson3 can achieve satisfactory
execution time for applications already implemented and
deployed in the field. However, the cost of having several
superscalar processors is not small.

 In this case study, instead of using Superscalar or VLIW
processors, we use reconfigurable logic as the main
optimization mechanism. Reconfigurable systems have
already proven to accelerate software and reduce energy

198 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

consumption, showing gains over both systems [14][15].
Moreover, it is common sense that as the more the technology
shrinks, the more an important characteristic of
reconfigurable systems is highlighted: regularity – since this
will impact the reliability of printing the geometries
employed today in 65 nanometers and below [16]. Besides
being more predictable, regular circuits are also low cost,
since the more customizable the circuit is, the more expensive
it becomes. This way, regular fabric could solve the mask
cost and many other issues such as printability, power
integrity and other aspects of the near future technologies.

2.2 Implementation

 The binary translation process in software is more
flexible due to the possibility to execute the BT system on
other processors by recompiling the translator. However, it
causes a huge overhead in execution time [13]. On the other
hand, the implementation of the BT in hardware amortizes the
translation overhead. In this case, the flexibility is strongly
reduced: the hardware translation is hence tied to a specific
ISA. Consequently, there is no opportunity to migrate to a
new ISA or target architecture (or a new version of them)
because the hardware was specifically tailored to that system.
As a meet in the middle approach considering the two
aforementioned methods, some BT systems present some
kind of hardware modification to give better support for the
software execution of the BT system. That is the case of
Godson and Crusoe. Nevertheless, these works still rely on
software for the main binary translation mechanism.

 Our proposed approach is different because, besides
being totally implemented in hardware, with the fastest
translation speed, it uses a two-level BT mechanism: the first
level is responsible for translating binary code from the
source to the target processor, while the second is responsible
for the code optimization. Since there is a well-defined
interface between both, there is the possibility of easily ISA
or target architecture migration at design time by only
changing the correspondent level of the BT system. In this
way, hardware modifications can be fine-tuned to several
markets with different requirements. Therefore, comparing
the proposed technique with other BT implementations, our
main contributions are:
 Amortized performance overhead in the translation from
the source to the target machine, because it is implemented
in hardware, so it is faster than if it were implemented in
software;
 Performance gains when compared to the execution of the
original code in the source machine, since an optimization
mechanism is used (in this case, a dynamically
reconfigurable system);
 Flexibility through the employment of the two-level BT
system, making it easier to migrate to another ISA or target
architecture (or update them to a new version of the family),
so the system has almost the same flexibility as if it were
implemented in software. The next section details some
implementation aspects of our system.

3 System Overview and Operation
 Figure 4 gives a general overview of the system. The
first BT level represents the hardware to make x86 to MIPS
translations. It interfaces the memory and the rest of system,
which is composed of the second-level BT mechanism, a
special cache, a MIPS processor and a dynamically
reconfigurable array. The BT in the second level analyzes the
MIPS code at run-time and uses the reconfigurable logic to
optimize and execute the hotspots found in the code. The
system works like a native x86 processor, but with an
additional possibility to run MIPS code too.

Fig. 4. Case Study Implementation.

3.1 Architecture Operation

 Let us consider an application compiled using the x86
ISA that will be executed for the first time. Initially, the first
level starts to fetch instructions from memory. As the first
level is translating the code, the MIPS processor actually
executes the instructions. In this level there are no
translations savings for future reuse: all the data is processed
at run-time by the first BT level in order to maintain small
storage overhead. It also must be said that the same code, but
in the optimized form, will be saved by the second-level for
future reuse, as we shall see next. The second BT level
analyzes the interpreted code (already in MIPS ISA) during
execution. When a hotspot is identified, this level generates
and saves a configuration of the reconfigurable array for that
hotspot in a special cache (TCache), indexed by the x86
Program Counter (PC). The next time a chuck of x86 code
that has already been transformed to MIPS and been
optimized to the reconfigurable array is found, the equivalent
configuration if fetched from the TCache. Then, the first BT
level, MIPS processor and the second level mechanism are
stalled, and the reconfigurable array starts its reconfiguration
and execution.

 Therefore, once a sequence of x86 instructions that were
translated from the x86 to MIPS ISA was found and, after
that, also became a configuration for the array, none of the
BT mechanisms neither the processor need to work. As
sequences of instructions are executed and translated, and the
TCache is being filled, the impact of the two levels of BT are
amortized and the performance gains provided by the array
starts to appear. In the next subsections the whole system is
explained in more details.

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 199

3.2 First BT Level

 In the current implementation, it is possible to translate
50 different instructions in a total of 150 considering the
IA32 ISA, with all addressing modes supported. The
implemented subset is enough to compile and execute all the
benchmarks tested. Segmentation is emulated, but there is no
support for paging. Interruptions, and other multimedia
instructions, such as the MMX and SSE, are still not
implemented. The First BT level is composed of four
different hardware units, with two pipeline stages:
Translation, Mounting, Program Counter and Control Units.

 The main component of the system is the Translation
Unit. It is responsible for fetching x86 instructions from the
memory, analyzing their format in order to classify them
according to the type, operators, and addressing mode and
generating the equivalent MIPS instructions. It takes one or
more cycles to perform such operations. This unit is
constituted mainly of a ROM memory that holds all possible
equivalent MIPS instructions translations. For this reason, it
concentrates the major part of the BT system area. Besides
that, this unit provides some information to the other
auxiliary units, such as: number of generated MIPS
instructions, quantity of bytes to calculate the next PC and the
type of instructions (e.g. logical operation, conditional or
unconditional jumps, etc).

 The role of the Mounting Unit is to provide an interface
between the processor and the BT mechanism, by fetching all
the equivalent MIPS instructions in a parallel fashion from
the Translation unit and sending them serially to the MIPS
processor, making BT mechanism behave as if it were a
regular memory. The Mounting Unit is composed of a queue
of registers in which each MIPS instruction is allocated. As
instructions are processed, this unit constantly sends to the
other ones the number of occupied slots in its queue, in order
to guarantee that it will not empty and the MIPS processor
will not stall. The Program Counter Unit was developed to
calculate the address of the next x86 instruction that must be
fetched from memory. In opposite to the MIPS instructions,
x86 instructions have different sizes, so the x86 and MIPS
addresses translation cannot be considered on a one-to-one
basis. Finally, the function of the Control Unit is to keep the
timing and consistency of information between the other units
by using the information flags found in each unit. Through
this information, the control unit decides the behavior for all
the system, such as the fetch of a new instruction from
memory at the instant there are free slots in the queue in the
Mounting Unit; or the need for the calculus of a new x86 PC
when the instruction (branch or regular) is fetched from
memory.

3.3 Extended MIPS

The great advantage of using the MIPS ISA is the regularity
of code with well-known behavior, making it easy to translate
another ISA to this one. However, the translation of a

complex ISA such as the x86 to MIPS is inefficient, because
in several times one x86 instruction is converted to many
MIPS instructions. For example, in X86 instructions it is
possible to use the memory contents as operators in
arithmetic instructions. Furthermore, there are flag registers,
which are automatically updated in most of the
arithmetic/logical operations, so these can be used in branch
instructions. Such flags are not supported in the MIPS
architecture. In this case, more than 20 instructions would be
necessary per x86 instructions to correctly emulate these flags
on the MIPS processor. The same can be considered for
segment addressing modes and so on for several other
constructs. Therefore, to lower this overhead, the MIPS
processor was extended to give hardware support to these
issues, but still maintaining compatibility with the standard
code, as follows:
 Byte Manipulation – Several operations that occur in x86
code are based on manipulation of variables with 8, 16 and
32-bit in a register. As the MIPS processor only executes
32-bit operations, a special hardware was added to
manipulate small variables the same way as x86 processors
do, avoiding the need of using mask operations to insert or
extract information to/from 32-bit registers.
 Address Mode – The MIPS is a load-store architecture. In
contrast to the X86 ISA, which supports several addressing
modes, the MIPS supports only the Base (register) + Index
(immediate) addressing mode. To reduce this gap, the MIPS
was extended, so Base (register) + Index (Register) and
Base + Index + Immediate (byte) operations are possible.
 EFlags– Additional hardware that generates the flag
values and stores the results into a mapped register in the
MIPS processor was implemented.

3.4 Reconfigurable Array

 The reconfigurable unit [5] is a dynamic coarse-grain
array tightly coupled to the processor [27]. It works as an
additional functional unit in the execution stage of the
pipeline, using similar approach as Chimaera [28]. This way,
no external accesses (in respect to the processor) to the array
are necessary. An overview of its general organization is
shown in Figure 5. The array is two dimensional, and each
instruction is allocated in an intersection between one row
and one column. If two instructions do not have data
dependences, they can be executed in parallel, in the same
row. Each column is homogeneous, containing a determined
number of ordinary functional units of a particular type, e.g.
ALUs, shifters, multipliers etc. Depending on the delay of
each functional unit, more than one operation can be executed
within one processor equivalent cycle. It is the case of the
simple arithmetic ones. On the other hand, more complex
operations, such as multiplications, usually take longer to be
finished. The delay is dependent of the technology and the
way the functional unit was implemented. Load/store
(LD/ST) units remain in a different group of the array. The
number of parallel units in this group depends on the amount
of ports available in the memory. The current version of the
reconfigurable array does not support floating point
operations. For the input operands, there is a set of buses

200 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

that receive the values from the registers. These buses will be
connected to each functional unit, and a multiplexer is
responsible for choosing the correct value (Figure 5a). As can
be observed, there are two multiplexers that will make the
selection of which operand will be issued to the functional
unit. We call them input multiplexers. After the operation is
completed, there is a multiplexer for each bus line that will
choose which result will continue through that bus line. These
are the output multiplexers (Figure 5b). As some of the values
of the input context or old results generated by previous
operations can be reused by other functional units, the first
input of each output multiplexer always holds the previous
result of the same bus line. Furthermore, note that in the
example used in Figure 5, the first group supports up to two
loads to be executed in parallel, while in the second group
four simple logic/arithmetic operations are allowed.

3.5 Second BT Level

The second level of the binary translation hardware was
extended from [5]. It starts working on the first instruction
found after a branch execution, and stops the translation when
it detects an unsupported instruction or another branch (when
the limit for speculative execution is reached). If more than
three instructions were found, a new entry in the cache (based
on FIFO) is created and the data of a special buffer, used to
keep the temporary translation, is saved. This translation
relies on a set of tables, used to keep the information about
the sequence of instructions that is being processed, e.g. the
routing of the operands as well as the configuration of the
functional units. Other intermediate tables are also needed;
however, they are used only in the detection phase. This
information is not saved in the TCache since it is not needed
during the reconfiguration phase.

Fig. 5. The Reconfigurable Array

 The BT algorithm takes advantage of the hierarchal
structure of the reconfigurable array: for each incoming
instruction, the first task is the verification of RAW (read
after write) dependences. The source operands are compared
to a bitmap of target registers of each row (which compose
the dependence table). If the current line and all above do not
have that target register equal to one of the source operands
of the current instruction, it can be allocated in that line, in a
column at the first available position from the left, depending

on the group (using the resource table). When this instruction
is allocated, the dependence table is updated in the
correspondent line. Finally, the source/target operands
from/to the context bus (input/output tables) are configured
for that instruction. For each row there is also the information
about what registers can be written back or saved to the
memory (context table). Hence, it is possible to write results
back in parallel to the execution of other operations. Figures
5c and 5d show an example of how a sequence of instructions
would be allocated in array after detection and translation.

 The algorithm supports functional units with different
delays and functionalities. Moreover, it handles false data
dependencies, and it also performs speculative execution. In
this case, each operand that will be written back has an
additional flag indicating its depth concerning speculation.
When the branch relative to that basic block is taken, it
triggers the writes of these correspondent operands. The
speculative policy is based on bimodal branch predictor [6].
For each level of the tree of basic blocks, the counter must
achieve the maximum or minimum value (indicating the way
of the branch). When the counter reaches this value, the
instructions corresponding to this basic block are added to
that configuration of the array. The configuration is always
indexed by the first PC address of the whole tree. If a miss
speculation occurs a predefined number of times for a given
sequence, achieving the opposite value of the respective
counter, that entire configuration is flushed out and the
process is repeated.

4 Results

4.1 Simulation Enviroment

 To perform all of the tests we used a MIPS R3000
Processor with a unified instruction/data cache memory with
32 Kbytes. The reconfigurable array has 48 columns and 16
rows; each column has 8 ALUs, 6 LD/ST units and 2
multipliers. The Translation cache is capable of holding 512
configurations. In previous works [5], this setup has already
shown to be the best tradeoff considering area overhead and
performance boosts. The Mibench benchmark set [17] was
executed on a Linux based OS. In all cases the applications
were compiled and statically linked using GCC with -O3
optimization. X86 execution traces were generated by using
the Simics instruction set simulator [18]. After that, cycle
accurate simulators were used for the BT mechanisms,
reconfigurable architecture and the MIPS processor. For the
area evaluation, we used the Mentor Leonardo Spectrum [19]
(TSMC 0.09u library) with VHDL versions of the MIPS [20],
the reconfigurable architecture and the first BT level [5].
None of them increased the critical path of the MIPS
processor, which runs at 600Mhz.

4.2 Binary Translation Data

In Figure 6, we analyze the memory occupation of the
generated binary code. On average, considering the whole set

1

3

2 5

8

7 6

4

(a)

(b)

(c)

(d)

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 201

of benchmarks, the MIPS compiler generated a binary code
26.69% bigger than the same code for the x86 processor.
Furthermore, as can be observed in Table 1, the MIPS
processor executes, on average, 36,63% more instructions
than the x86, considering the execution of the same
algorithm.

Fig. 6. Memory usage for different benchmarks, in Kbytes

Table 1. Number of executed instructions considering the two
different ISAs

Benchmark MIPS x86
String Search 279,725 199,362
Sha 15,976,677 12,274,689
Bitcount 59,810,191 41,334,546
Qsort 51,695,224 27,386,935
Gsme 30,578,227 16,975,259
Gsmd 13,896,515 11,038,642

 As explained before, the MIPS processor was modified
to give additional support to the binary translation process.
The Figure 7 shows the mean number of MIPS instructions
generated from an x86 instruction when there is no support
for the translation (Original Hardware), when there is support
to EFlags computation only (EFlags Support) and when other
hardware modifications, as explained in section III.C, are also
included (Extended ISA). Figures 6 and 7, and Table I, show
a clear difference in number of executed instructions between
both architectures and how expensive the translation is. Both
facts reflect in a performance overhead that the BT system
must overcome.

Fig. 7. The impact of using hardware support for the BT process.

4.3 Performance Evaluation

 Figure 8 demonstrates the performance for four different
setups:
 Native MIPS code execution on the standalone MIPS
processor (MIPS Code Execution);

 Native MIPS code execution with reconfigurable
acceleration. In this case, the first BT level is bypassed: only
the second BT level plus the Reconfigurable Architecture
(RA) are used (MIPS Code Execution +RA);
 x86 code execution without reconfigurable optimization,
so only the first BT level is used (X86 Code Execution
without RA);
 x86 execution using the two BT mechanisms and the
reconfigurable array (X86 Code Execution – Two Levels
BT).

 The native code execution on the standalone MIPS
processor was normalized to 100%. The MIPS Code
Execution + RA presents a speedup of more than two times
on average. For example, Sha presents a speedup of 3.43
times, Bitcount has gains of 2.42 times, whereas the GSM
Encoder presents a speedup of 1.53 times, which is the worst
case considering the benchmark set. Similar speedups are
found when using other reconfigurable architectures [21][22].
Now, let us consider the x86 code being translated to MIPS
code but not optimized by the reconfigurable system. As it
should be expected, there are performance losses because of
the translation mechanism. In the GSMD, a slowdown of
more than 2 times is presented when compared to the native
execution of the same algorithm in MIPS code. However,
X86 code execution on the proposed system is faster than the
native MIPS code execution on the standalone MIPS
processor, hence amortizing the original BT costs. The
speedup over the standalone MIPS execution varies between
1.11 and 1.96 times. On average, the performance gains are
of 45%.

Fig. 8. Performance evaluation

 These results can be considered very satisfactory: only
the virtualization process (with no binary translation
involved) of the Qemu virtual machine (VM) is 4 times
slower than native execution of x86 instructions [22].
Because of such overhead, the Godson3, when translating
code from X86 to MIPS using Qemu and without hardware
support for the BT, is on average 6 times slower than native
MIPS execution of the same software [12]. With hardware
support for the BT mechanism, Godson3 performs on average
1.42 times slower than MIPS native execution. Although it is
not our intent to directly compare our architecture to
Godson3, since the Godson3 supports the whole X86 ISA,
including interrupts and virtual memory, it gives one an idea
that the translation is not an easy task to do, and that it
presents significant overhead even if heavy hardware support
is given.

202 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

4.4 Area Overhead

 Table 2 demonstrates the number of gates that each
hardware component takes. As can be observed, the fist BT
level represents only 2% of the total system area. If we
consider that each gate is composed of 4 transistors, the
whole system would nearly take 4,87 million of transistors to
be built. It is important to note that, if one compares the
proposed system, which executes X86 instructions, to the
standalone MIPS processor, there is a significant reduction in
the instruction memory footprint, which amortizes the area
overhead. According to our experiments, the MIPS compiler
generated a binary code 26.69% bigger than the same code
for the x86 processor, considering the whole set of
benchmarks. Moreover, as already stated, the Godson-3
processor uses 4-superscalar MIPS R10000 cores. According
to [24], each one of them takes nearly 2.4 million gates.
Therefore, around 9.6 millions of transistors would be
necessary to implement Godson, which is 2 times the size of
our system.

Table 2. Area overhead of each component into the system.

Unit Area (Gates)
First-Level BT 22,406
MIPS R3000 26,866
Second-Level BT 15,264
Rec. Array 1,017,620
Total 1,219,535

5 Conclusions
 In this paper, we demonstrated the first step towards a
totally flexible binary system, where both source and target
architectures can be easily changed. In this case study, we
proved the effectiveness of our technique by showing the
possibility of executing the large amount of available x86
applications in a non x86 architecture in a totally transparent
fashion, where no kind of user intervention is necessary and
no performance losses are presented. We intend to improve
our system, by increasing the number of supported X86
instructions and by adding support for different ISAs (e.g.
ARM); and for different target architectures (VLIW, DSP and
Superscalar processors). Moreover, we will also measure the
power and energy consumption of the mechanism.

6 References
[1] Kim, N. S., Austin, T., Blaauw, D., Mudge, T., Flautner, K., Hu, J. S.,

Irwin, M. J., Kandemir, M., Narayanan, V.: Leakage current: Moore’s
law meets static power. Computer 36(12), 68–75 (2003)

[2] Mak, J., Mycroft, A.: Limits of parallelism using dynamic data
dependence graphs. WODA, Chicago, Illinois, USA (2009)

[3] Sites, R. L., Chernoff, A., Kirk, M. B., Marks, M. P., and Robinson, S.
G. 1993. Binary translation. Commun. ACM 36, 2, 69-81 (1993)

[4] Altman, E. R.; Kaeli, D.; Sheffer, Y.: "Welcome to the opportunities of
binary translation," Computer , vol.33, no.3, pp.40-45, (2000)

[5] Beck, A. C., Rutzig, M. B., Gaydjiev, G., Carro, L. Transparent
reconfigurable acceleration for heterogeneous embedded applications.

In Proceedings of DATE . ACM, New York, NY, USA, 1208-1213
(2008)

[6] Smith, J. E. “A study of branch prediction strategies”. In Proceedings of
the 8th annual symposium on Computer Architecture, p.135-148, May
12-14, 1981

[7] Altman, E. R., Ebcioglu, K., Gschwind, M., Sathaye, S.: Advances and
Future Challenges in Binary Translation and Optimization, In:
Proceedings of the IEEE Special Issue on Microprocessor Architecture
and Compiler Technology (2001)

[8] Rosetta, Apple Inc., http://www.apple.com/rosetta/

[9] Chernoff, A., Herdeg, M., Hookway, R., Reeve, C., Rubin, N., Tye, T.,
Yadavalli, S. B., and Yates, J.: FX!32: A Profile-Directed Binary
Translator. In: IEEE Micro, 56-64, (1998)

[10] Hookway, R. J., Herdeg, M. A.: DIGITAL FX!32: combining emulation
and binary translation. In: Digital Tech. J. 9, 1, 3-12 (1997)

[11] Dehnert, J. C. et al. The Transmeta Code Morphing™ Software: using
speculation, recovery, and adaptive retranslation to address real-life
challenges. In: International Symposium on Code Generation and
Optimization: Feedback-Directed and Runtime Optimization, vol. 37.
IEEE Computer Society, Washington, DC, 15-24 (2003)

[12] Hu, W., Wang, J., Gao, X., Chen, Y., Liu, Q., and Li, G.: Godson-3: A
Scalable Multicore RISC Processor with x86 Emulation. In: IEEE Micro
29, 2, 17-29 (2009)

[13] Gschwind, M., Altman, E., Sathaye, P., Ledak, Appenzeller, D.:
Dynamic and Transparent Binary Translation. In: IEEE Computer, vol.
3 n. 33, 54-59 (2000)

[14] Beck Filho, A. C. S.; Carro, L.: Dynamic Reconfiguration with Binary
Translation: Breaking the ILP barrier with Software Compatibility. In:
Design Automation Conference, DAC, 42, Anaheim. Proceedings…
New York: ACM Press, p. 732-737 (2005)

[15] Lysecky, R., Stitt, G., Vahid, F., "Warp Processors". In ACM
Transactions on Design Automation of Electronic Systems (TODAES),
pp. 659-681, July 2006

[16] Or-Bach, Z. “Panel: (when) will FPGAs kill ASICs?”. In 38th DAC,
(2001)

[17] Guthaus, M. R., Ringenberg, J. S., Ernst, D., Austin, T. M., Mudge, T.,
and Brown, R. B. 2001. “MiBench: A free, commercially representative
embedded benchmark suite.” in Proceedings of the Workload
Characterization. IEEE international Workshop. WWC. IEEE Computer
Society, Washington, DC, 3-14 (2001)

[18] Magnusson, P. S., Christensson, M., Eskilson, et al: Simics: A Full
System Simulation Platform, Computer, vol. 35, no. 2, pp. 50-58, (2002)

[19] Leonardo Spectrum, http://www.mentor.com

[20] Minimips VHDL, http://www.opencores.org

[21] Goldstein, S. C., Schmit, H., Budiu, M., Cadambi, S., Moe, M., Taylor,
R. R.: Piperench: A reconfigurable architecture and compiler, Computer
vol. 33, n.4, pp. 70–77, (2000)

[22] Clark, N., Kudlur, M., Park, H., Mahlke, S., Flautner, K.: Application-
Specific Processing on a General-Purpose Core via Transparent
Instruction Set Customization, In: MICRO-37, pp. 30-40, (2004)

[23] Bellard, F. “QEMU, a Fast and Portable Dynamic Translator”, USENIX
2005 Annual Technical Conference, FREENIX Track (2005)

[24] Yeager, K.C.: The Mips R10000 superscalar microprocessor, In: Micro,
IEEE , vol.16, no.2, pp.28-41, (1996)

[25] Bala, V., Duesterwald, E. , Banerjia, S. “Dynamo: A Transparent
Dynamic Optimization System”. In PLDI’00, pp. 1–12, ACM Press,
2000.

[26] Daisy K. Ebcioglu, E. A.. “DAISY: Dynamic compilation for 100%
architectural compatibility”. IBM T. J. Watson Research Center -
Technical Report, Yorktown Heights, NY, 1996.

[27] Compton K., Hauck, S., “Reconfigurable computing: A survey of
systems and software”. In ACM Computing Surveys, vol. 34, no. 2, pp.
171-210, June 2002.

[28] Hauck, S., Fry, T., Hosler, M., Kao, J., “The Chimaera reconfigurable
functional unit”. In Proc. IEEE Symp. FPGAs for Custom Computing
Machines, Napa Valley, CA, pp. 87–96, 1997.

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 203

204 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

SESSION

INVITED SESSION - HOW TO EFFECTIVELY
PROGRAM RECONFIGURABLE MULTI-CORE

EMBEDDED SYSTEMS?

INVITED TALKS

Chair(s)

DR. PEDRO C. DINIZ

INVITED TALKS

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 205

206 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

How to Effectively Program Reconfigurable
Multi-Core Embedded Systems?

Extended Abstract

for Special Session on EU-funded Research Projects

Pedro C. Diniz

Instituto de Engenharia de Sistemas e Computadores Investigação e Desenvolvimento em Lisboa (INESC-ID)
Rua Alves Redol, 9

1000-029 Lisboa, Portugal
pedro.diniz@inesc-id.pt

The continued increase of the number of available transistors
on a die has lead to the emergence of the many-core and
multi-core computing architectures. These architectures
promise the potential for orders of magnitude performance
improvements over single core solutions through sheer
concurrency. The abundance of transistors also enable the
development of heterogeneous and (dynamically)
reconfigurable architectures targeting selected markets such
as real-time and/or embedded high-performance computing
through a mix of traditional and customized cores.

These sophisticated computing architectures offer a wide
variety of resources and for efficiency expose distinct
execution models (e.g., threading and streaming) in addition
to a wide range of hardware resources such as internal
memories, custom configurable caches or dedicated
functional units. This diversity has exacerbated the already
complex application developing process as programmers
must be aware, and explicitly manage, all the details of the
target systems. The lack of powerful programming
abstractions at various levels forces a plethora of tools to
coexist leaving the programmer to bridge the gap between
them at huge development costs. Developers cannot easily
express high-level applications non-functional requirements
(such as data rates or throughput requirements) in the de facto
standard programming languages. They have to rely on
resource management layers with application-specific
management policies to best leverage the available resources
in an extremely cumbersome and error-prone development
process. As a result applications typically do not exploit the
true potential of the target architectures.

This session presents a small sample of focused research
projects funded by the European Commission involving both
academic and industrial partners. We selected these projects
as together they cover a wide spectrum of the approaches to
various programming issues raised by these multi-core
heterogeneous and possible reconfigurable architectures.

We begin by first presenting an heterogeneous reconfigurable
System-On-Chip architecture: MORPHEUS [7]. This is a

very dynamic reconfigurable architecture that exposes the
raw programming issues at the hardware level such as the
allocation and configuration of heterogeneous reconfigurable
engines (HRE) at various levels of granularity, which are
interconnected via multilayer AMBA buses. The execution
model imposed in MORPHEUS is that of the Molen machine
[8] where a traditional main processor (in this case an ARM
core) manages and orchestrates the execution of an
application code with its HREs.

While the MORPHEUS architecture offers a wide set of
reconfigurable resources, the hArtes project (www.hartes.org)
focused on the development of a compilation and synthesis
tool chain targeting the Molen reconfigurable architecture
with a single processor core and a configurable computing
unit (CCU), typically implemented as an FPGA, acting as an
accelerator. The hArtes tool chain [3] uses profiling
information to identify the “hot” spots of an application code
which then isolates and maps to the CCU for acceleration. It
uses its own high-level compiler hardware back-end – the
DWARV tool [9] – with which it generates the computation
specification for the CCU in VHDL communicating with the
host processor via a special set of registers.

Further up in the abstraction chain, the 2PARMA project
(http://www.2parma.eu) tackles the programmability
complexity by offering a set of flexible abstractions at the
run-time level that offer adaptive task and data allocation as
well as scheduling of the different tasks and the accesses to
the data [2]. Their approach provides a layer to the compiler
that can effectively leverage application knowledge to best
exploit the heterogeneity of the target architecture. The
2PARMA project does address the need to capture those
abstractions in the form of services and application meta-data
with which an adaptive system can reason and provide
different classes of applications (divided between critical and
best-effort applications) with suitable Quality-of-Service
(QoS) levels. The interface and the meta-data will ultimately
allow developers to specify adaptive policies for the co-
location and scheduling of computational tasks scheduling as
well as dynamic memory management.

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 207

At a higher level of abstraction, the REFLECT project
(www.reflect-project.eu) attacks the programmer productivity
issues by combining aspect-oriented programming (AOP)
techniques [5] to express non-functional applications
requirement beyond the capabilities of current high-level
programming languages. REFLECT Aspects [4] allow
programmers to specify requirements such as data rates and
data throughput, with which it steers compilation and
synthesis tools to explore alternative software/hardware
designs possibly with the use of pre-defined hardware design
templates. In addition the REFLECT aspects also allow for
the specification of compilation and synthesis strategies,
including sequences of high-level program transformations,
which are integrated with the CoSy [1] and Harmonic [6]
high-level source-to-source compilers and the DWARV [9]
VHDL synthesis tool.

While the mechanisms developed by the REFLECT do
directly interact with the compilation and synthesis tool
chains in the development of specific hardware designs,
ultimately the execution of the application on the target
architecture would benefit from the wealth of run-time
services and reconfiguration infrastructure such as the one
being developed in the context of the 2PARMA project.

Undoubtedly the problems raised by the emerging multi-core
heterogeneous computing platforms are inherently very hard.
Combined, these four projects propose specific solutions that
address the key aspect of programmability of these
configurable multi-core heterogeneous systems at the key
levels of abstraction of the programmability challenge,
namely, at the level of hardware, operating and run-time
system and at the high-level programming language. We
believe that only holistic approaches such as the ones targeted
by the research projects presented in this session will have
some chance of success. The continued funding in these areas
of research and the growing interest from industry in tackling
them does show how critical and widespread these issues
have become. This session should therefore be of interest to
any engineer and developer of current embedded solutions, as
reconfigurable multi-core systems will undoubtedly take
center stage in the upcoming decade as the de facto standard
computing platform.
Keywords: Multi-Core Programming, Programming Languages and
Execution Models, Aspect-Oriented Specifications, Reconfigurable
Computing.

ACKNOWLEDGEMENT

This work was partially supported by the European
Community’s Framework Programme 7 (FP7) under contract
No. 248976. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the
European Community. The authors are grateful to all team
members of the REFLECT project for their help and support.

REFERENCES
[1] ACE CoSy Compiler Development System,

http://www.ace.nl/compiler/cosy.html.
[2] A. Bartzas, P. Bellasi, I. Anagnostopoulos, C. Silvano, W. Fornaciari,

D. Sourdris, D. Melpignano and C. Ykman-Couvreur, ”Run-Time
Resource Management Techniques for Many-Core Architectures: The
2PARMA Approach”, in Proc. of the Intl. Conf. on Engineering of
Reconfigurable Systems and Algorithms (ERSA’11), Invited Paper,
July, 2011.

[3] K. Bertels, G. Kuzmanov and V.-M. Sima, “Heterogeneous Multicore
Computing: Challenges and Opportunities – Experience from the
hArtes Project”, in Proc. of the Intl. Conf. on Engineering of
Reconfigurable Systems and Algorithms (ERSA’11), Invited Paper,
July, 2011.

[4] J. M. P. Cardoso, R. Nane, P. C. Diniz, Z. Petrov, K. Krátký, K.
Bertels, M. Hübner, F. Gonçalves, J. Coutinho, G. Constantinides, B.
Olivier, W. Luk, J. Becker, G. Kuzmanov, “A New Approach to
Control and Guide the Mapping of Computations to FPGAs”, in Proc.
of the Intl. Conf. on Engineering of Reconfigurable Systems and
Algorithms (ERSA’11), Invited Paper, July, 2011.

[5] G. Kiczales, “Aspect-Oriented Programming,” in ACM Computing
Surveys (CSUR), special issue: position statements on strategic
directions in computing research, 1996. 28(4es).

[6] W. Luk, J. Coutinho, T. Todman, Y. Lam, W. Osborne, K. Susanto, Q.
Liu, and W. Wong, “A High-Level Compilation Toolchain for
Heterogeneous Systems,” in Proc. IEEE Int’l SOC Conf. (SOCC‘09),
pp. 9-18, Spet. 2009.

[7] F. Thoma, M. Kühnle, A. Grasset, P. Brelet, P. Millet, P. Bonnot. F.
Campi, N. Voros, W. Putzke-Roeming, A. Schneider, M. Hübner, K.
Müller-Glaser and J. Becker,”A Heterogenesou Reconfigurable
System-on-Chip: MORPHEUS”, in Proc. of the Intl. Conf. on
Engineering of Reconfigurable Systems and Algorithms (ERSA’11),
Invited Paper, July, 2011.

[8] S. Vassiliadis, S. Wong. G. Gaydadjiev. K. Bertels. G. Kuzmanov and
E. Panainte, “ The MOLEN Polymorphic Processor”. IEEE Trans. on
Computers, Vol. 53, n. 11, pp 1363-1375, 2004.

[9] Y. Yankova, G. Kuzmanov, K. Bertels, G. Gaydadjiev, J. Lu and S.
Vassiliadis, "DWARV: Delft Workbench Automated Reconfigurable
VHDL Generator", in Proc. of the 17th Intl. Conf. on Field
Programmable Logic and Applications (FPL07): 697-701, Aug. 2007

208 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

Heterogeneous Multicore Computing: Challenges And
Opportunities

Experiences From The hArtes Project

Koen Bertels, Vlad-Mihai Sima and Georgi Kuzmanov
Delft University of Technology

Mekelweg 4, 2628 CD Delft, The Netherlands
http://ce.et.tudelft.nl

Abstract— This paper discusses the different challenges that
were encountered during the hArtes project and how those
challenges where met. A key objective of hArtes was to
find the best mapping of an application on a particular
heterogeneous hardware platform. The mapping process
involves determining what parts of the application should
be executed by what hardware component. When viewed in
isolation, kernel based acceleration can produce significant
speedups. However, when mapping the entire application,
this potential never seems to live up to its full potential,
due to other concerns than mere Amdahl’s law. Many
problems have to do with communication bottlenecks. As
hArtes always used sequential C-code as the starting point,
finding enough parallelism in those applications was also
one of the other limitations limiting overall performance
improvement. Nevertheless, the hArtes project succesfully
adressed many of these problems resulting in a toolchain
that assists the developer in mapping code on heterogenous
multicore computing platofrms. The speedups obtained, mea-
sured for the whole applications, are between 1.94 and 31,
compared to pure software execution.

Keywords: heterogeneous, multicore, reconfigurable hardware,
toolchain, embedded

1. Introduction
The hArtes project addresses the development of em-

bedded systems. It investigates hardware/software integra-
tion and its main objective was to develop an integrated
toolchain that provides (semi-)automatic support for the en-
tire HW/SW co-design process. The applications used as in-
put were written in various high-level algorithm descriptions,
and, using the toolchain, a semi automatic âĂİbest fitâ̆Aİ
mapping to the platform was generated. The toolchain was
intended to provide a fast development trajectory from ap-
plication coding to the design of a reconfigurable embedded
computing system. Having a (semi-)automatic process meant
that a constant idea was to allow developers experimennt
with different solutions.

How hArtes addresses the problems can be summarized
as follows:

• Improved mapping and allocation algorithms were de-
veloped to be able to deal with non-uniform memory
accesses and specific communications bottlenecks.

• OpenMP compliance allows to express and exploit
parallelism while respecting the sequential consistency
paradigm.

• Specific code optimizations such as loop unrolling or
load balancing were developed to provide improved
performance.

The flow is described, and the information flow is detailed.
The hardware platform is presented next, by describing the
high-level organization of the platform and the components
used. The applications, used to validate the whole approach,
are presented in Section 4.

The remainder of this paper is organized as follows.
Section 2 presents the Molen programming paradigm and the
Molen abstraction layer, which represents the foundations on
which the hArtes toolchains are build. Section 3 presents all
the tools involved in the hArtes tool-chain. Section 4 presents
the application analysis.

In Section 5 a detailed description of the problems is pre-
sented. In the same section, we describe, for each problem,
the solutions that were applied in the context of the project.
We summarize the conclusions in Section 6.

2. Molen Programming Paradigm
The hArtes design approach assumes the Molen architec-

ture and programming paradigm. The Molen programming
paradigm targets machines that adhere to the Molen machine
organization [11]. The Molen machine organization is based
on the processor-coprocessor model and allows the processor
to control the execution of the coprocessor by a set of
fixed primitives. By using these primitives, any number of
operations can be implemented as accelerated components.
Started as an extension for reconfigurable architectures, this
machine organization can be used for any heterogeneous
architecture like the hArtes hardware platform. For each
targeted architecture, different mechanism can be used to
implement the Molen primitives; nonetheless, this will not
reduce the generality of the approach. This is achieved by
developing and implementing a hardware abstraction layer.

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 209

The Molen programming paradigm is based on the se-
quential consistency model that allows multiple process-
ing elements to act as coprocessors to a General Purpose
Processor (GPP) [12]. The paradigm defines five program-
ming primitives that have to be implemented by a platform,
together with their semantics. The five primitives are SET,
EXECUTE, MOVET, MOVEF and BREAK.

The SET Primitive

The SET primitive function is to start the configuration
of the processing element with the operation that has to be
executed. This will represent different actions for different
processing elements. For a Field Programmable Gate Array
(FPGA), it invokes the partial reconfiguration. For a Digital
Signal Processor (DSP) processor, it represents the loading
of an executable file into memory. This operation can take a
different amount of time depending of the characteristics of
the processing elements and the specific operation. Having
a separate primitive to manage the configuration allows
the compiler to perform scheduling of reconfigurations or
loading. An appropriate scheduling would be able to hide the
configuration time, by making the configuration in parallel
with other useful computations.

The MOVET, MOVEF Primitives

The role of the MOVET and MOVEF primitives’ is to
send (MOVET) and receive (MOVEF) parameters to/from
the processing element.

The EXECUTE Primitive

From the programmer’s perspective, the EXECUTE prim-
itive will start the execution of a Custom Computing Unit
(CCU). This operation can be done asynchronously. The
semantic is that the operation will start on a processing
element, while the execution continues on the GPP. It is
the responsibility of the programmer to check for the status
of the execution, using the BREAK primitive.

The BREAK Primitive

The role of the BREAK primitive is to synchronize the
execution of the GPP with the execution of the FPGA. This
primitive semantic is that the GPP will be stalled until the
execution of the FPGA finishes.

In Section 5 we will discuss how these primitives were
modified and extended in the context of the hArtes project.

Source Annotations

Molen programming paradigm can be used with any com-
pilation flow that can partition an application. The partition is
done between GPP and the other processing elements. The C
language was chosen as it is one of the most used languages
in the embedded system world. The structure of the C
language was analyzed, and it was decided that functions

#pragma map call_hw VIRTEX4 1
int funcA(char *p, int len) {

...
return v;

}

int funcB(char *p, int len) {
...
return v;

}

void main() {
...
#pragma map call_hw VIRTEX4 2
result = funcA(variable, 100);
...
result = funcB(variable, 100);

}

Fig. 1: Examples of Molen pragma on function definition
and on function call.

offer the necessary abstraction level to model computations
that run on processing elements. To specify which functions
will be mapped to other processing elements, the standard
language extension mechanism of C was used, namely,
pragmas. Two types of pragmas were introduced as it can
be seen in Figure 1:

• On a function declaration. The semantic is that all calls
to that function will be translated to Molen primitives.
The Molen backend compiler will provide one imple-
mentation for the corresponding processing element.

• On a function call. The semantic is that the call will be
replaced by the corresponding Molen primitives. The
Molen backend compiler will provide an implemen-
tation for the corresponding processing element. This
allows more optimization opportunities, as different
implementations can be generated for that function,
for example, taking into account constant function
parameters.

The information in the pragma includes:

• the name of the processing element to which the
computation will be mapped.

• the implementation identifier. This makes a connec-
tion between implementations and theÂătoken (func-
tion declaration or function call) to which the pragma
applies.

3. hArtes Toolchain And Hardware Plat-
form

The hArtes toolchainmain objective is to support the
entire process of mapping an existing application onto a spe-
cific reconfigurable heterogeneous system. The application
has to be described at a high algorithmic level or in a high
level programming language. For the algorithm description,
the developer has the choice of using GUI based tools or

210 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

specific signal processing oriented languages as long as the
final output is ANSI C.

The toolchain is composed of several toolboxes, which
provide different functionalities and together realize the main
objective. A schematic representation of the toolchain is
depicted in Figure 2.

The high level design alternatives (a graphic entry, a
signal processing or computation oriented language, or just
general purpose C language) are offered by the hArtes
AET (Algorithm Exploration and Translation) toolbox. For
the graphical part, NU-Tech was adopted as Graphical
Algorithm Exploration (GAE) solution and Scilab as a
computation-oriented language. NU-Tech [7] is a platform
that supports the development of algorithms for real-time
scenarios, emphasizing strict timing control. Scilab is a
free and open source software for numerical computations,
similar to Matlab [5].

The output from the Algorithm Exploration Toolbox will
be processed by hArmonic which will partition the applica-
tion and decide one one specific mapping. At each step, the
application developer has full control over the process.

The tools available in the hArtes Framework are perform-
ing the following tasks:

• Automated partitioning of the high-level algorithm de-
scriptions. Using a set of predetermined design criteria
and information about available resources, the high-
level algorithms are divided into tasks.

• Transformation of the high-level algorithm tasks. This
includes, for example, transformation to make tasks
compatible with specific processing elements, like the
FPGA.

• Design space exploration. Exploring the potential map-
ping possibilities between the tasks available and the
processing elements of the reconfigurable heteroge-
neous systems. This is done by using estimated or
measured costs for each task.

• Code manipulations. This includes, for example,
scheduling of lengthy operations like the reconfigura-
tion.

• Mapping and generation of the code for the targeted
GPPs and DSPs.

The final step invokes the backend tools that will produce
the different branches for the different hardware components.
Those tools are:

• VHSIC Hardware Description Danguage (VHDL) code
generation, for the target FPGA.

• Synthesis of the VHDL code obtained, using vendor-
specific tools.

• Compilation of C code for the GPP processors present
in the system.

• Integration of all binary code generated and running on
the platform.

The hArtes Hardware Platform (hHP)was designed in
such a way so that it represents a reference target for the

Fig. 2: hArtes toolchain overall architecture

hArtes toolchain, while also providing computing resources
for several high-performance applications in the audio do-
main. We present, briefly, the main characteristics of this
platform.

Following the Molen Architectural template, the hHP
consists of a GPP, several co-processing units. As many of
the hArtes applications were audio oriented, special care was
given to audio input and outputs from the platform.

The basic independent block of the system includes an
ARM processor, a DSP processor (ATMEL Magic) and
an application-specific reconfigurable block (Xilinx Virtex4
FPGA). This hardware block is called in hArtes terminology
a Basic Configurable Element (BCE). In case these resources
are insufficient for an application, an extension mechanism
was designed, which would allow multiple BCEs to be
connected.

For the actual hardware implementation, two BCEs were
put on the hArtes board. The general organization of the hHP
is shown in Figure 3. The current board contain two BCEs
each, but multiple BCE could be chained if needed. The BCE
are independent of one another, and can run any selected
thread or application mapped by the hArtes toolchain.

For massive data streaming, dedicated hardware is config-
ured on the board, represented by the "Audio I/O subsystem"
block in Figure 4. Eight input and eight output Alesis Digital
Audio Tape (ADAT) Lightpipe interfaces are available on
the board. The ADAT Lightpipe is a standard for transfer
of digital audio that uses fiber optic cables and has Toslink
connectors at either end.

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 211

RISC + DSP

RISC +
RECONFIGURABLE

BCE
#0

Audio I/O
subsystem

I/O I/O

ADAT links

RISC + DSP

RISC +
RECONFIGURABLE

BCE
#1

Fig. 3: Top level architectural structure of the hArtes Hard-
ware Platform. The system has two independent heteroge-
neous and configurable processors that communicate among
each other and with an audio I/O subsystems.

Secondary
data link

USB 2.0
Full-

Speed
(1xHost+1xDev.)

High-speed
inter-BCE link

2xUART ARM/
mAgic
JTAG

JTAG

Atmel
D940HF

Xilinx
XC4VFX100

Ethernet
10/100

PHY

Ethernet
10/100/1000

PHY

Mem3
128MB SDRAM

UART

Mem2
256MB SDRAM

Mem1
128MB SDRAM

Control

MemF1
16MB FLASH

BCE’s
logic
boundary

FPGA
config
FLASH

USB 2.0
HS Host

USBSD
card BCE

position
code

CLKRESET

MemF2
16MB FLASH

FPGA

module
DCM

board

I/O FPGA link
(ADAT channels)

ADAT I/O config

USB 2.0
HS Dev.

USB

SRAM interface

Fig. 4: Detailed block digram of the Basic Configurable
Element(BCE) of the hArtes Hardware Platform. The BCE
is the basic building block of the platform, supporting several
processing architectures. One or more BCEs work in parallel
to support an hArtes application.

Figure 4 provides a detailed overview of a single
BCE. The two main blocks are a Reduced Instruction
Set Computing (RISC)/DSP processor block (the D940HF
produced by Atmel) and the reconfigurable processor (Xilinx
Virtex4-FX100) [2]. The RISC processor is an ARM926EJ-
S ARM processor, running at the 160MHz. It has a 16 kb
instruction cache and a 16kb data cache. The DSP processor
is a MagicV VLIW DSP running at 80Mhz. [1].

The memory is organized into private memory blocks and
shared memory blocks. "Mem1" and "Mem3" in the figure
are private to the D940HF to XC4VFX100, respectively.
"Mem2" is a shareable memory bank.

4. hArtes Applications Analysis
The challenge with heterogenous/homogenous computing

platforms is to efficiently map the application to the avail-
able resources. The hArtes project developed the following
strategy on which the hArtes toolchain is based:

• Profile the selected applications on both the desktop
computers and the real platform, if possible.

• Identify from the profile information, hot-spots, which
take a significant portion of the application execution
time.

• Select a function or only a fraction of a code, for
mapping to another processing element.

• Profile the function on the processing element.
The function profiling on a different processing element is

affected by the way in which memory is allocated. If the data
does not reside in the processing’s element local memory,
then a transfer will be neeeded between main memory and
the local memory. This transfer can represent a significant
overhead that might negate the speedup obtained.

We focus in this paper on FPGA based mapping, but the
framework also supports function mapping on the DSP.

In this section we describe the process for mapping the
real world application provided by the individual partners of
the project.

To give an idea of the complexity of the applications, the
number of files and total lines of code are given in Table 1.

Table 1: Application metrics
Application Number of files Total number of

(headers) lines (in headers)
x264 104(53) 38167(4565)
wfs 30(16) 2860(510)
incar 38(21) 3167(814)
tcf 76(18) 7216(583)

4.1 Video applications - H.264 codec
H.264 is the standard for video compression and decom-

pression, developed jointly by ITU-T and ISO/IEC (with the
name MPEG-4 AVC) [6]. To use this standard, the industrial
partners in the project decided to use the free software library
implementation, namely x264 [13].

4.1.1 Profiling

For this application, optimizations are written directly in
assembly for various architectures. As we will see, this
affects also the application structure and, because of that,
an automated toolchain has to do more work to uncover the
real structure.

We chose to run the encoder with the following default
parameters: no B frames, subpixel motion estimation and
partition decision quality of 5 on a scale from 1 (fast) to 7
(best), one reference frame, integer pixel motion estimation
method hex. The profile information might differ when
using other parameters. This analysis represents the basis
for optimizing theÂ̆a application.

In order to profile any application and obtain useful infor-
mation for the hArtes toolchain at least one thing is needed,
disable inline-ing of functions. This is necessary as the
toolchain uses information about functions, so keeping the
inlining optimization active will skew the result. Specifically
for the x264 application another source transformation was
needed, namely, transforming macro definitions to function
calls. As this is a very specific optimization, we performed

212 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

Each sample counts as 0.01 seconds.
% cumulative self self total
time seconds seconds calls ms/call ms/call name
30.38 110.16 110.16 619761780 0.00 0.00 pixel_satd_wxh
26.65 206.78 96.62 693548340 0.00 0.00 pixel_sad_wxh
10.69 245.55 38.77 360123870 0.00 0.00 get_ref
7.19 271.63 26.08 290354340 0.00 0.00 motion_compensation_chroma
4.55 288.11 16.48 406080 0.04 0.04 x264_frame_filter
1.66 294.13 6.02 119345190 0.00 0.00 quant_4x4
1.64 300.07 5.94 37245600 0.00 0.00 refine_subpel
1.32 304.85 4.78 29886060 0.00 0.01 x264_me_search_ref
1.23 309.32 4.47 121346040 0.00 0.00 sub4x4_dct
0.95 312.75 3.43 34650000 0.00 0.00 ssim_4x4x2_core

Fig. 5: Profile on hHP board

it manually and didn’t integrate it in the toolchain. The
final profile information obtained after these modifications
is show in Figure 5. We used input data videos from a
repository for freely-redistributable test sequences [14].

4.1.2 Mapping

Using the profiling information, it was decided to map the
two most CPU intensive functions to the FPGA. The first
step was to evaluate the speedup obtained for eachÂăkernel.
Not all kernels give a speedup when moved to another
processing elements. So, even if, they are high in the profile
list, that does not mean they should be mapped to the FPGA.

The steps performed to obtain the speedup obtained by
mapping a kernel on a computation element, are:

• Create, using the processing compiler, in our case
Delft Workbench Automated Reconfigurable VHDL
Generator (DWARV), an FPGA implementation for
both pixel_sad_wxh(referred from now, simply as
SAD) andpixel_satd_wxh(referred from now, simply
as SATD).

• Instrument the application to obtain all the possible data
sets used by the kernels.

• Run the kernels using the data collected, using either
local or shared memory.

The last step is necessary in order to determine the
communication overhead.

After we perfomed the instrumentation, we observed that
the kernel was called with some parameter combinations
more often. This affected the execution time and the size of
the data inputs. As an example, we show the results obtained
for SATD kernel in Table 2. For example the cases1=16,
s2= 8 lx= 4, ly= 4 executes on average 21 times per video,
which represent 22% of the total kernel invocations. The
other column represents the sum of other six cases,

Running the SATD kernel for the cases identified in
the application gives the results in Table 3. We performed
two tests: one with the data available in the local memory
of the FPGA and one with the data transfered first from
the main memory. We can see that the FPGA is faster -
up to 7.58 faster for one case - but there are 2 cases in
which it is slower. This is directly related to the number
of iterations performed: the worst performance is obtained
for the smallest number of iterations (lx and ly represent

Table 2: Number of calls for each combination of parame-
ters, and percentages from total number of invocations for
SATD when running on more videos

Video s1
=

16
,

s2
=

8
lx

=
4,

ly
=

4

s1
=

16
,

s2
=

16
lx

=
8,

ly
=

8

s1
=

32
,

s2
=

16
lx

=
4,

ly
=

4

s1
=

16
,

s2
=

8
lx

=
8,

ly
=

8

s1
=

16
,

s2
=

16
lx

=
16

,
ly

=
16

s1
=

32
,

s2
=

16
lx

=
8,

ly
=

8

s1
=

16
,

s2
=

8
lx

=
8,

ly
=

4

s1
=

16
,

s2
=

8
lx

=
4,

ly
=

8

s1
=

16
,

s2
=

24
0

lx
=

8,
ly

=
8

ot
he

r

akiyo 18 13 3 19 12 5 4 4 4 12
carphone 22 12 17 8 4 4 6 6 4 11
claire 21 11 8 18 9 4 5 5 3 8
coastguard 16 13 26 5 4 4 4 4 4 11
container 18 14 23 10 8 6 2 2 4 6
foreman 22 13 14 7 4 4 7 7 4 13
hall 22 15 15 12 9 6 2 2 4 6
miss-amer 25 10 13 16 6 4 5 5 3 7
mobile 23 17 2 5 4 6 7 6 6 16
news 20 13 13 10 7 5 5 5 4 11
salesman 24 18 3 10 9 7 4 4 5 8
silent 24 14 12 8 5 5 6 6 4 9
suzie 21 10 20 9 4 4 6 6 3 10
Total 276 173 169 137 85 64 63 62 52 128
Average

22 14 13 11 7 5 5 5 4 10from total
(%)

Table 3: Processing times and speedups in various scenarios
for SATD unrolled

Case Timesµs Speedup
FPGA FPGA ARM FPGA FPGA

with vs w/t vs
transfer ARM ARM

s1=16, s2= 8 lx= 4, ly= 4 9 134 7 0.79 0.05
s1=16, s2=16 lx= 8, ly= 8 9 141 28 2.92 0.20
s1=32, s2=16 lx= 4, ly= 4 8 137 7 0.90 0.05
s1=16, s2= 8 lx= 8, ly= 8 11 140 28 2.43 0.20
s1=16, s2=16 lx=16, ly=16 19 156 108 5.56 0.69
s1=32, s2=16 lx= 8, ly= 8 9 144 28 2.94 0.19
s1=16, s2= 8 lx= 8, ly= 4 8 135 14 1.68 0.10
s1=16, s2= 8 lx= 4, ly= 8 8 139 14 1.73 0.10
s1=16, s2=240 lx= 8, ly= 8 9 196 31 3.22 0.16
s1=32, s2=16 lx=16, ly=16 17 165 109 6.32 0.66
s1=16, s2=16 lx= 8, ly=16 14 152 55 3.94 0.36
s1=16, s2=16 lx=16, ly= 8 12 143 54 4.64 0.38
s1=16, s2=240 lx=16, ly= 8 12 197 60 5.12 0.31
s1=16, s2=240 lx=16, ly=16 17 272 130 7.58 0.48
s1=16, s2=240 lx= 8, ly=16 12 270 66 5.53 0.24

iterations count) while the best is obtained for a large number
of iterations (when lx and ly are 16).

When taking into account the transfer of memory per-
formed between the ARM and the FPGA, the overall execu-
tion time is greater on the FPGA as can be seen from column
3. This is due to a extremely inefficient transfer speed
between the main memory and the local FPGA memory.

4.1.3 Conclusion

From analyzing this application we can see that just taking
the profilling information is not sufficient as code transfor-
mation might give a skewed view over which functions take
most of the application execution time. More than that, bulk
profiling information is not sufficient in all the cases. Rather,
a way of detecting the correlation between parameters should
be available in an instrumentation tool to help the designer

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 213

making the best decision when optimizing. We refer such a
methodin Section 5.

For this application, because of the memory transfer
overhead, the FPGA is slower than the GPP. Optimizations
that reduce this overhead are needed in order to be able to
use the FPGA for a faster application execution. We present
one such optimization in 5.1

4.2 Immersive audio - Beamforming and Wave-
field Synthesis

In this section, we will discuss the implementation
of a multi-beam, broadband beamforming and wave-field
synthesis (WFS) [4]. These audio algorithms can be used
in audio-visual transmission scenario like a telepresence
application. A camera will tracks the recording directions
(for example, by tracking human faces in the recorded scene)
and using the beamformer algorithm the sound waves will be
filtered based on its direction and sent through a transmission
medium to the rendering side. There, the spatio-temporal
properties of the recording space will be reproduced using
a wave-field synthesis algorithm. Compared to other stereo-
phonic approaches, the properties that are reproduced are not
limited to a sweet spot, but to a much wider area, depending
on the number of speakers array.

4.2.1 Profiling

This application is simpler than the x264 application and
does not contain any assembly optimization. Most of the
computations performed are floating point, which is a sig-
nificant drawback for the simple ARM processor embedded
in the hArtes platform, which does not have a FPU unit.

The application will be executed with the default pa-
rameters: the sampling frequency (48 khz), the number
of sources (2), the room size (15m). By profilling the
application, we observe that 80% of the time is spent in
one function,fFD_RealFIR_Pair_fpga(referred from now
simply as FFD).

4.2.2 Mapping

After using DWARV to generate the VHDL, synthesizing
and implementing, we see that the area occupied by FFD
kernel is 25% of the available area on the FPGA. This is
due partly to the extensive use of floating point units (8
units, including addition, multiplication and division).

The FFD kernel will be called with a constant processsing
window size of 1024. We tested more window sizes. The
results are presented in Table 4. We can see that when the
data is located in the local FPGA memory the speedup is
between 5.99 and 6.43 and, if a data transfer is needed, the
speedup is between 3.38 and 4.27.

4.2.3 Conclusion

Floating point operations are one of the most compu-
tational intensive operations of an application. Still, the

Table 4: Execution of units tests for FFD kernel on Virtex4-
ML410

Size Timesµs Speedup
FPGA FPGA ARM FPGA FPGA w/t

with transfer vs ARM vs ARM
256 2047 3898 13169 6.43 3.38
512 4410 6965 26435 5.99 3.80
1024 9370 13671 58407 6.23 4.27

Table 5: Execution of units tests for FRACSHIFT kernel on
Virtex4-ML410

Size Timesµs Speedup
FPGA FPGA ARM FPGA FPGA w/t

with transfer vs ARM vs ARM
original 11017 11263 19013 1.73 1.69
optimized 2389 2646 19176 8.03 7.25

floating point hardware units take a lot of area on the
reconfigurableunit, so a careful trade-off has to be made
in case of parallelism between area occupancy and multiple
floating point units. The application speedup obtained is
1.94x compared to a pure software execution.

4.3 In Car Audio - Enhanced Listening Expe-
rience

The focus of this application is enhancing the listening
experience for travellers in a car. This is challanging due to
the inherent dynamic nature of the environment with a lot
of outside noise. The noises, spatial and spectral properties
of the reproduced field, change the rendering of the sound
from the loudspeakers. The system used as an example here
is a real-time application with two objectives:

• to develop a complete set of audio algorithms for
improving the audio quality, taking into account some
features of the cabin.

• to have a modular system that can be adapted to other
environments or that can use other algorithms

4.3.1 Profiling

Rather than profiling, the developer of the application
suggested the kernel to be accelerated, namely FRACSHIFT.

4.3.2 Mapping

The kernel FRACSHIFT is represented by a delay line,
followed by a floating point addition and accumulation.

As given in Table 5, we distinguish again betweeen the
speedups obtained with and without taking memory transfers
into account. When viewed in isolation, the FPGA is up to
1.73 times fastern then the ARM, This reduces to maximum
1.69 when including the memory transfers.

We also constructed an experiment to assess to what extent
loop unroll and scalar replacement could provide additional
speedups. To this purpose we manually implemented a
design that fully unrolled two of the loops, partially unrolled
the main computation loops and used a local array to store
one of the parameters during the function execution. From

214 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

Table 5 we can see that the optimized version performs
4.25 times better than the unoptimized version, including
the transfer time needed to transfer the data to and from
the FPGA. The price for the gain in performance is an area
increase of 7.3 times in slices.

When using the full capabilities of the platform (including
the DSP processor and the two BCEs) the total speedup
obtained is 31x compared to executing just on the GPPs of
each BCE.

4.3.3 Conclusion

A similar conclusion as in the previous cases can be
drawn. Taking the memory transfers into account limits the
overall speedups. The use of specific optimizations such as
loop unrolling can substantially improve the performance.

5. Identified Problems and Proposed So-
lutions

On the basis of the applications mapping experience we
now discuss in a more generic way the different issues that
were encountered and for which solutions had to be found.
We distinguish below platform related issues, toolchain
related issues and application related issue.

5.1 Platform related issues
Problem: The hardware platform developed for the hArtes

project was designed for audio processing. The initial design
decisions were taken considering that the FPGA will be used
for the audio processing. For this reason, communications
resources were allocated to the path between audio I/O and
the FPGA, as the FPGA is the natural choice for processing a
large number of audio streams. The connection between the
FPGA and the ARM or the main memory was not considered
to be important. The implication is that there is no Direct
Memory Access (DMA) available when transferring between
main memory and the FPGA local memory. Even if the
absence of DMA is acceptable for reading or the writing
of audio data, this limits the efficiency of the FPGA when
dealing with generic applications or applications that have
their input data stored somewhere else than in dedicated
buffers.

This is not a core architecture problem, but rather a design
decision, determined by the objective of the hardware board
and its imagined uses. In order to evaluate the memory
speed, we performed a series of experiments.

Since the DMA was not available to access the FPGA
memory, all the transfers between the main memory and the
FPGA local memory had to be performed by the GPP. Table
6 illustrates the results obtained when transferring a block of
32 kb between various memories. As we can see, the transfer
between SDRAM and FPGA Scrach Pad Memory (SPM) is
2.85 times slower than transferring between Synchronous
dynamic random access memory (SDRAM) and SDRAM.

Table 6: Transfer speed between SPM and SDRAM
Memory size (kb) 32
SDRAM to SPM (us) 1287
SPM to SDRAM (us) 1349
SDRAM to SDRAM (us) 451
Transfer speed SDRAM to SPM (Mb/s) 24.08
Transfer speed SDRAM to SDRAM (Mb/s) 69.23

Table 7: Mismatches between initial assumptions and current
statusof platform and applications.

original current
A kernels are kernels do not

sharing code share code
B memory is fully only GPP sees

shared memory as shared
C break is multiple applications

synchronous have to execute

Experiments have shown that the bandwidth has the same
value for both larger and smaller memory block sizes.

Solution: There are two solutions to solve this problem:
• adapt the mapping algorithm to map computations to

the FPGA only if a speedup would be obtained. In order
to be able to predict the speedup, the mapping algorithm
needs as input the memory needed for each function.
If possible the decision is taken at compile time, but,
for the other cases a runtime solution was developed.
The runtime solutions relies on runtime profiling infor-
mation to assess which is the best mapping, and it is
described in [9].

• reduce the transfer between SDRAM and the SPM. This
can be accomplished by determining the type of the
memory (write only, read only, read write), but also by
improving the allocation algorithm, as some data might
be accessed only from the FPGA. If this is the case,
the data could reside directly in the SPM.

Problem: In order to support floating point operations,
a floating point library of cores has to be available to the
DWARV hardware compiler.

Solution: Xilinx provides floating point cores, but they
can not be used directly by DWARV. The reason is that
there are several differences between the Xilinx FP cores
and the standard ones supported by C. One example of such
difference is the rounding mode - truncation is used by C
standard, rounding is used by Xilinx tools. VHDL wrappers
were developed for each floating point operation, that made
the Xilinx cores comply to the C standard.

5.2 Toolchain related issues
By studying the applications presented in Section 4, we

identified mismatches between the assumptions made when
Molen was designed and the existing applications. These
mismatches are summarized in Table 7.

We give below more extensive description of the problems
and solutions.

hArtes implementation of the Molen programming
paradigm: While the Molen machine can be seen as an
ideal machine organization, when building a real platform,

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 215

choices have to be made resulting in a less than optimal
physical implementation. Besides the functionality described
in Section 2, other features are needed for a full fledged
implementation, like profiling, automatic memory transfer,
debug functionalities.

Solution: We extended the existing primitives and created
the Molen Abstraction Layer (MAL). Its role is to abstract
even further the details of the platform. Given the organiza-
tion of the FPGA in the hHP the SET primitive will perform
a full reconfiguration of the reconfigurable part.

As the processor is not tightly coupled with the FPGA (in
fact, it is physically on another board) the EXECUTE and
BREAK primitives are implemented using memory mapped
control registers of the Molen controller mapped on the
FPGA.

The debug and profiling facilities are offered at the level of
the primitives. MOVET, MOVEF, EXECUTE and BREAK
primitives have included facilities to profile the time spent
in each of them. At the end of the program execution, all
the information is dumped in a special profile result file.

For debugging purposes, MOVET and MOVEF dump the
memory contents used by the kernel, before and after its
invocation. This allows the developer to check the correct
functioning of the processing element, by comparing exe-
cution resutls on the GPP with the results obtained from
executing on the FPGA.

Memory transfer and allocation problem: One of the
objectives of hArtes was to facilitate an automated mapping
to different processing elements using the shared memory
paradigm. In the hArtes implementation, the GPP has access
to all the memory of each processing element, but the
processing elements only have access to their local memory.
In case the local memory of each processing element is not
enough for all the data it needs to process, transfers have to
be performed to and from the local memory.

Solution: As the hardware configuration was given, we
will discuss only the software solutions developed to address
this problem:

• the memory is allocated to the local memory processing
element memory. This solution is described in [9].

• the runtime library will manage the transfer automat-
ically, when certain data are needed by a specific
processing element.

We will describe the extensions implemented for the
second solution. Even if it is a more straightforward, un-
optimized approach, that does not perform any significant
analysis or optimization, it is a good starting point that
enables an application to be executed on our platform. Also,
based on this implementation various optimizations can be
performed in later stages.

Two new primitives are introduced, to differentiate the
MOVET or MOVEF primitives for the special case of a
pointer:

• molen_MOVETXaddr - used for each pointer parameter
sent to a processing element, instead of the normal
molen_MOVETX

• molen_MOVEFXaddr - used for each pointer parameter
sent to a processing element, after the kernel finished
the execution

These two primitives work together with the support of
the runtime system. All the dynamic memory allocation
will be made by special ’wrapper’ functions that keep track
of allocations. The replacement of the ’malloc’ functions
by the wrapper function ’hmalloc’ (and similar functions,
i.e. ’realloc’ and ’calloc’) is made by the source to source
transformation tool. Then, at a later point in the execution
of the program, for each address that is sent as a parameter
to the CCU, the runtime system can determine the size of
the block to which that address belongs.

Naturally this approach has several limits:

• except in parameters, addresses should not be present
in the memory blocks used by the kernels. This means,
for example, structures like linked list will not be
supported. Although this is a limitation, none of the
kernels analysed used such complex data structures.

• without further analysis or information from the devel-
oper the transfer can be inefficient. For example, some
memory blocks are only written by the kernel while
others are only read. The C language provides some
information about this (example: const keyword), but it
is incomplete (ex: there is no way to specify write only
locations).

Molen parallelism problem: When targeting a multicore
heterogenous system, one crucial aspect that has to be taken
into account is expressing and using parallelism. For a shared
memory system, one solution is to use OpenMP. The Molen
programming paradigm is complementary to OpenMP in the
sense that OpenMP annotations can be used by the compiler
to generate the appropriate Molen primitives.

Solution: There are two solutions related to the use of
parallelism:

• use Molen parallelism instead of the thread parallelism
present in OpenMP, where possible. The advantage of
this approach is that the overhead of thread management
is eliminated (Molen overhead is much less than thread
creation/switching overhead)

• use Molen primitives inside each thread. As Molen was
developed for a single threaded environment, modifica-
tion of the Molen primitive implementations are needed,
in order for them to support the thread concept.

Generating Molen from OpenMP

This transformation can be done in almost all cases in
which the code that has to be executed in parallel, also
has to run on another processing element as in Figure 6.
For this case, the compiler will understand the parallelism

216 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

structure, and instead creating and synchronizing threads it
will generate and schedule Molen primitives. The results are
presented in Figure 7. Similar examples can be constructed
for other OpenMP constructs.

#pragma omp sections nowait
{
#pragma omp section
{

#pragma map call_hw VIRTEX4 1
fft(p, n);

}
#pragma omp section
{

#pragma map call_hw VIRTEX4 4
value = sad(d, l);

}
}

Fig. 6: Molen pragma in the context of OpenMP sections

SET(1);
SET(4)
MOVTX_ADDR(1, p, n);
MOVTX(1, n);
EXECUTE(1);
MOVTX_ADDR(4, p, n);
MOVTX(4, n);
EXECUTE(4);
BREAK();

Fig. 7: Molen primitives generated for the OpenMP sections
example

Using Molen Primitives in OpenMP Threads

When dealing with parallelism, for some cases, the
scheduling of Molen primitives described earlier is not
possible. One such case is shown in 8. Another option
is to use the Molen primitives in the OpenMP generated
code without the compiler understanding the semantic of
the OpenMP pragmas. Then another problem arises: multiple
Molen primitives will be invoked with the same identifier.
To solve this, we proposed the following extension of the
Molen primitives:

• use as identifier not only the identifier provided in the
code, but the tuple (thread-identifier, identifier).

• provide an internal mechanism that the same CCU
can be instantiated multiple times (for example, using
different positions on the FPGA.

With these two additions, no other modification to the
compiler or OpenMP runtime are needed, and Molen can be
used like in Figure 8.

Development and toolchain debug problem: Building a
hardware system involves changing a lot of parameters,
sometimes it can happen that two components are used,
one adapted for one specific value of a parameter of the
platform and the other component for another value. This
can result in an incompatibility and more specifically in a
system failure at runtime. This means a function will produce

#pragma omp for schedule(dynamic,chunk)
for (i=0; i<N; i++)
{
prepare(p[i]);
#pragma map call_hw VIRTEX4 1
fft(p[i],1024);

}

Fig. 8: Molen pragma in the context of OpenMP threads

incorrect results without any warning or error present during
the compilation process.

Examples of such parameters are the CCU-frequency
which affects the number of cycles needed for various
operations, the endianess and the number of cycles to read
from memory.

Solution: As the development went ahead, it was obvious a
mechanism had to be provided to make sure the CCUs were
generated for the system in which they were integrated. The
identified parameters are:

• endianess
• the number of cycles needed to read/write the memory

and eXchange Registers (XREG) memory area.
• the number of pipeline stages of each FP element.
• the frequency at which a specific CCU could run.
The solution depends on the moment at which the check

can be performed. For the first three parameters, the check
is performed at compile-time. The obvious choice was to
add dummy signals to the VHDL code of the CCU. The
names of these signals, encode the parameters for which the
kernel was generated. In case the CCU was generated with a
different configuration, the VHDL compiler would not have
been able to match the signals and would report an error.

For example, a dummy signal could be named
"check_fp_sp_mult_top_6". This means the CCU uses a
floating point (fp) single precision (sp) multiplication unit
(mult) that has a pipeline of 6 cycles. For each parameter
that needs to be tested a corresponding signal is added.

In order to ensure the same frequency is used, a dynamic
solution was chosen. As an FPGA has a complex Digital
Clock Module (DCM) that can generate different frequen-
cies, the compiler will set a special configuration register
with the correct value, before running the CCU.

Synthesis times and maximum frequencies problem: For
FPGA development, the time needed for synthesis can be-
come a bottleneck in the development process. This happens
because the synthesis time for a single VHDL kernel varies
between 10 minutes to almost 2 hours, as we can see from
Table 8. As the compilation flow involves a source to source
transformation tool, each synthesis will regenerate all the
files that are mapped to different processing elements. Tra-
ditional build system will detect a change in the timestamps
of the VHDLs and restart the synthesis process.

Solution: The build system was adapted to check not
only the timestamp but also the contents of the files before
restarting the synthesis process.

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 217

Table 8: Compilation times using FPGA flow, at different
frequency constraints

Kernel DWARV Xilinx Frequency
time (s) time(s)

sad 678 200
SATD 876 166
SATD unrolled 1529 166
FFD 10 7038 125
FRACSHIFT 10 900 125

Toolchain retargetability problem: Developing a toolchain
for a heterogeneous architecture is very time and resource
consuming task. To provide the highest degree of retar-
getability, the design of the framework must be done with
care, to allow easy integration with 3rd party toolchains and
changes in the architecture supported.

Solution: There are several aspects that have to be taken
into account:

• use an open, generic standard for communication be-
tween tools. In the context of the hArtes project, these
standards are Ansi C and XML annotations.

• keep the annotations (either in C and XML) indepen-
dent from the platform. A good example for such design
is the OpenMP standard, which abstracts away most of
the details (like number of threads) from the users.

• keep platform dependent logic in libraries as oposed to
hardcoding it in tools.

• provide an open build system. As specific compilers
have to be used to build the final system, each with its
own specificities, developing an open build system, will
make it easier for the developer to control the whole
process.

5.3 Applications related issues
Problem I: One problem is that the speedup was not

always achieved for the application, given different input
sets. This is illustrated in Table 3.

Solution: adapt the mapping, at runtime, based on the
value of the parameters and on the speedup. A description
of this solution is given in [8].

Problem II: Determine the optimal balance between sev-
eral parallel kernels on a reconfigurable device. For the
wavefield synthesis application, finding a balance between
the number of kernel instances that compute the output
waves and the number of kernels that compute the coef-
ficients when needed, does not have an obvious solution.

Solution: at compile time Integer Linear Programming
(ILP) can be used to determine the best balance. An efficient
solution is given in [10].

Problem III Determine the best parameters for specific
optimizations, to take advantage of the reconfigurable device.
The two cases for this are the loop unroll number and the
number of variables that are made local. Although a known
optimization, in the context of the reconfigurable device, this
has different implications, like reducing the frequency by
making routing harder.

SolutionWork has been done to identify the optimal unroll
factor, taking into account profiling information, memory
transfers and area utilization [3].

6. Conclusion
In this paper, we presented the work done in the context

of hArtes project. We analysed the applications, and we
highlighted the main challenges that had to be addressed
before obtaining an efficient implementation on a Molen
system. Several comments about the development flow were
made, which, provide insights into what a complex toolchain
for heterogeneous platforms has to provide. The hArtes
tool chain is now being completely redesigned for later
commercial release by a spin off that was created at the
end of the project.

Acknowledgment
The authors would like to thank all the partners from the

hArtes consortium. This research has been funded by the
hArtes project (EU-IST-035143).

References
[1] ATMEL. At572d940hf preliminary summary.
[2] I. Colacicco, G. Marchiori, and R. Tripiccione. The hardware

application platform of the hartes project. InField Programmable
Logic and Applications, 2008. FPL 2008. International Conference
on, pages 439 –442, 2008.

[3] O.S. Dragomir, T. P. Stefanov, and K.L.M. Bertels. Optimal loop
unrolling and shifting for reconfigurable architectures.ACM Trans-
actions on Reconfigurable Technology and Systems, pages 1–24,
September 2009.

[4] Christoph; Hahn Volker; Leitner Michael Heinrich, Gregor; Jung. A
platform for audiovisual telepresence using model- and data-based
wave-field synthesis. InAudio Engineering Society Convention 125,
10 2008.

[5] INRIA. http://www.scilab.org/. 2010.
[6] ITU. http://www.itu.int/rec/t-rec-h.264. 2010.
[7] Leaff. http://www.nu-tech-dsp.com. 2010.
[8] V.M. Sima and K.L.M. Bertels. Runtime decision of hardware or

software execution on a heterogeneous reconfigurable platform. In
Proceedings of International conference on 16th IEEE Reconfigurable
Architectures Workshop, page 6, May 2009.

[9] V.M. Sima and K.L.M. Bertels. Runtime memory allocation in
a heterogeneous reconfigurable platform. InIEEE International
Conference on ReConFigurable Computing and FPGA, December
2009.

[10] V.M. Sima, E. Moscu Panainte, and K.L.M. Bertels. Resource
allocation algorithm and openmp extensions for parallel execution
on a heterogeneous reconfigurable platform. InProceedings of
2008 International Conference on Field Programmable Logic and
Applications (FPL), September 2008.

[11] Stamatis Vassiliadis, Stephan Wong, and Sorin Cotofana. The molen
rm-coded processor. InIn Proc. 11th Intl. Conference FPL-2001,
pages 275–285. Springer-Verlag LNCS, 2001.

[12] Stamatis Vassiliadis, Stephan Wong, Georgi Gaydadjiev, Koen Bertels,
Georgi Kuzmanov, and Elena Moscu Panainte. The molen polymor-
phic processor.IEEE Trans. Comput., 53(11):1363–1375, 2004.

[13] VideoLAN. http://www.videolan.org/developers/x264.html. 2011.
[14] xiph.org. http://media.xiph.org/video/derf/.

218 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

Runtime Resource Management Techniques for Many-core
Architectures: The 2PARMA Approach

Alexandros Bartzas1, Patrick Bellasi2, Iraklis Anagnostopoulos1, Cristina Silvano2, William Fornaciari2
Dimitrios Soudris1, Diego Melpignano3, Chantal Ykman-Couvreur4

1Institute of Communications and Computer Systems, Athens, Greece
2Politecnico di Milano, Italy
3STMicroelectronics, France

4IMEC, Interuniversity Micro-electronics Center, Leuven, Belgium

Abstract— Real-time applications, hard or soft, are rais-
ing the challenge of unpredictability. This is an extremely
difficult problem in the context of modern, dynamic, multi-
processor platforms which, while providing potentially high
performance, make the task of timing prediction extremely
difficult. Also, with the growing software content in em-
bedded systems and the diffusion of highly programmable
and re-configurable platforms, software is given an unprece-
dented degree of control on resource utilization. Existing
approaches that are looking into Runtime Resource Man-
agement (RTRM) still require big design-time efforts, where
profiling information is gathered and analyzed in order
to construct a runtime scheduler that can be lightweight.
There is a trade-off to be made between design-time and
runtime efforts. In this paper we present a framework for
RTRM on many-core architectures. This RTRM will offer
an optimal resource partitioning, an adaptive dynamic data
management and an adaptive runtime scheduling of the
different application tasks and of the accesses to the data.
Furthermore, the 2PARMA RTRM takes into account: i)
the requirements/specifications of many-core architectures,
applications and design techniques; ii) OS support for
resource management and iii) a design space exploration
phase.

Keywords: Runtime resource management, task, memory and
power management

1. Introduction
The current trend in computing architectures is to replace

complex superscalar architectures with many processing
units connected by an on-chip network. This trend is mostly
dictated by inherent silicon technology frontiers, which are
getting as closer as the process densities levels increase.
The number of cores to be integrated in a single chip
is expected to continue to rapidly increase in the coming

This work is partially supported by the E.C. funded FP7-248716
2PARMA Project, www.2parma.eu

years, moving from multi-core to many-core architectures.
This trend will require a global rethinking of software and
hardware approaches.

Multi-core architectures are nowadays prevalent in general
purpose computing and in high performance computing. In
addition to dual- and quad-core general purpose processors,
more scalable multi-core architectures are widely adopted
for high-end graphics and media processing. Such platforms
are becoming widespread as silicon technology develops in
the sub-50nm nodes. The transition to multi-core is almost
a forced choice to escape the silicon efficiency crisis caused
by the looming power wall, the application complexity
increase and the design complexity gap under tightening
time-to-market constraints. While multi-core architectures
are common in general-purpose and domain-specific com-
puting, there is no one-size-fits-all solution. General-purpose
multi-cores are still designed to deliver outstanding single-
thread performance under very general conditions in terms
of workload mix, memory footprint, runtime environment
and legacy code compatibility. These requirements lead to
architectures featuring a few complex, high-clock speed
“mega-cores” with complex instruction sets, deep pipelines,
non-blocking multi-level caches with hardware-supported
coherency and advanced virtualization support. Today, we
see a trend towards many-core fabrics, with a throughput-
oriented memory hierarchy featuring software-controlled lo-
cal memories, FIFOs and specialized DMA engines. As a
result, an SoC platform today is a highly heterogeneous
system. It integrates a general-purpose multi-core CPU,
and a number of domain-specific many-core subsystems.
Examples of such emerging multi-core platforms are the
Intel’s SCC [1] and ST’s Platform 2012 [2].

System-level design and optimization of computing sys-
tems is a highly challenging task. Especially since such
systems are becoming more and more complex, from both
hardware as well as software perspectives [3]. Over the last
few years, the main focus in the design of computing systems
has been to provide good performance and at the same
time achieve low-power consumption. To achieve optimal

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 219

results, a good coordination between hardware and software
design is required. Therefore, memory-intensive applications
running on embedded platforms (e.g., multimedia) must be
closely linked to the underlying Operating System (OS) and
efficiently utilize the available hardware resources. Putting
all this together, it is clear that developing a complete,
working system is an integration nightmare [3].

In this paper we present a framework for Runtime Re-
source Management (RTRM) on many-core architectures.
This RTRM will offer i) an optimal resource partitioning
among the different resource requirements of the applica-
tions running on the hardware platform; ii) adaptive dynamic
data management (dynamic allocation and de-allocation of
heap data); iii) adaptive runtime scheduling of the dif-
ferent application tasks and the of accesses to the data.
Furthermore, the adequate power management techniques
as well as the integration to the Linux Operating System
(OS) are currently developed. The 2PARMA RTRM takes
into account: i) the requirements/specifications of many-
core architectures, applications and design techniques; ii)
OS support for resource management and iii) a design space
exploration phase.

The rest of the paper is organized as follows. Background
information regarding RTRM is provided in Section 2,
whereas an overview of the proposed RTRM framework in
Section 3. The runtime resource management component is
presented in Section 4, the adaptive task management com-
ponent is presented in Section 5 and the adaptive dynamic
memory management component is presented in Section 6.
Finally, conclusions are drawn and future work outlined in
Section 7.

2. Background
Schaumont et al. [4] demonstrate the use of hierarchical

configuration on an image processing example application.
The authors’ methodology starts by profiling a set of appli-
cations from a target application domain to determine the
right point in the configuration design space. In this way, a
set of commonly used and computationally intensive kernels
can be identified. Parameterizable implementations of these
kernels form the building blocks of the reconfigurable plat-
form. These blocks are then pre-instantiated into the FPGA
fabric and can be programmed at runtime with a minimal
amount of configuration input. The authors suggest to use
compiler techniques to map an application onto a given set
of parameterizable IP blocks.

Keller et al. [5] describe the use of so-called software
decelerators. By using freely available soft IP cores, the
designer can take advantage of an easier software application
design process. In addition, certain algorithms, like e.g., a
sequential state machine use less hardware resources when
implemented on a soft IP core, while still meeting the
necessary performance requirements. The authors describe
a configuration hierarchy case study.

Faruque et al. [6] present a runtime application map-
ping in a distributed manner using agents targeting for
adaptive NoC-based heterogeneous multi-processor systems.
Authors claim that a centralized RTRM may bear a se-
ries of problems such as single point of failure and large
volume of monitoring-traffic. However, Nollet et al. [7]
present a centralized runtime resource management scheme
that is able to efficiently manage a NoC containing fine
grain reconfigurable hardware tiles and two task migration
algorithms. The resource management heuristic consists of
a basic algorithm completed with reconfigurable add-ons.
The basic heuristic contains ideas from multiple resource
management approaches.

Shirazi et al. [8] present a method for managing reconfig-
urable designs, which supports runtime configuration trans-
formation. This method involves structuring the reconfigu-
ration manager into three components: a monitor, a loader,
and a configuration store. To improve reconfiguration speed,
authors have developed a scheme to implement the loader
in hardware. The main motivation for implementing part of
the runtime manager in hardware or a separate accelerator
is to avoid the overhead caused by the runtime management
functionality [9] [10], and to increase determinism. As
presented in [11] when moving RTRM functionality to a
platform hardware service, the runtime overhead is kept
to a minimum as decision making is done in parallel by
specialized hardware. In addition, hardware can operate at a
finer granularity without incurring an performance penalty.

3. Runtime resource management: An
overview

The development of new computing systems requires tun-
ing of the software applications to specific hardware blocks
and platforms as well as to the relevant input data instances.
The behaviour of these applications heavily relies on the
nature of the input data samples, thus making them strongly
data-dependent. For this reason, it is necessary to extensively
profile them with representative samples of the actual input
data. An important aspect of this profiling is done not
only at the dynamic data type level, which actually steers
the designersâĂŹ choice of implementation of these data
types, but also at the functional level. We characterize the
software metadata that these optimizations require, and we
present a methodology, as well as appropriate techniques, to
obtain this information from the original application. Equally
important is for the designer to have a good knowledge of the
platform characteristics. With both this information at hand
(software metadata and platform characteristics) the designer
can characterize the runtime behaviour of the application
and determine its working modes and the reconfiguration
overheads.

This paper is focused on the design of a RTRM frame-
work, targeting the optimization of both computing fabric

220 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

resources usage and applications’ Quality-of-Service (QoS)
requirements. Specifically regarding Power Management, we
investigate on the OS, services supporting runtime man-
agement. The main available OS frameworks related to
power, hot-spots and process variation management have
been analyzed and their characteristics have been compared
to define the base for the future design of a new framework
for supporting the QoS-based runtime management of a
generic many-core computing platform. To support the new
power manager, both application behaviour and computing
platform characteristics should be identified, described and
properly reported to the runtime manager framework. This
involved a deeper investigation on two main aspects: the
platform description and the interfaces with applications.

On one side, the platform description requires the identi-
fication and definition of a proper set of hardware metadata
to represent a generic computation fabric. We identified a
suitable formalism to support both portability and efficiency
of the runtime controlling solution. On the other side, the
need to interface and interact with applications is motivated
by collecting application requirements, in terms of resources
and expected behavior, and notifing control decisions accord-
ing to a running optimization strategy.

All together, these aspects define the basic building blocks
for a portable runtime resource manager, being both inde-
pendent from any specific computation fabric and to control
different applications. Based on these results we started the
design of a runtime resource management framework at
the OS level to support many-core computing platforms. In
the meanwhile, we also investigated a runtime optimization
policy, which could be used to efficiently allocate resources
to applications according to multiple objectives.

3.1 The role of the Runtime Resource Manager
(RTRM)

The RTRM framework is composed of a set of mod-
ules providing services to different “classes of users” (de-
picted in Figure 1). Two of these users are represented
by applications and target-platforms. Applications usually
have different Working Modes (WM), each one defining
expected Quality-of-Service (QoS) and corresponding needs
in terms of computational resources (e.g. processing ele-
ments, memory, bandwidth, etc). Target-platforms define a
set of available resources, each one with specific: features,
operating modes, monitoring and control points. Moreover,
the platform architecture could define a specific functional
relationship between available resources (e.g. clusters of
processing elements and a certain memory hierarchy).

The RTRM is a component placed in between applications
and the target-platform, which is in charge of managing
applications access to platform available resources. This
management is a quite complex activity generally aimed at
meeting contrasting goals: maximizing applications’ perfor-
mance while reducing energy consumption. How this double

Cri$cal	
applica$ons	

Best-‐effort	
applica$ons	

WMa	

RTRM	

WMb	

Dynamic	
mem.	 mgmt.	

Task	
scheduling	

Power	
mgmt.	

PlaBorm	
characteris$cs	

Many-‐core	
plaBorm	

Software meta-data/
app. working modes

Hardware
meta-data

Application-specific/
fine-grain

System-wide/
coarse-grain

Fig. 1: Overview of the 2PARMA RunTime Resource Man-
agement Framework.

goal could be obtained is behind the scope of this paper.
Here it is important to understand that the RTRM tool should
be supported on its role by the applications and the target-
platform. Indeed, it is required for both these “users” to
provide the framework with some information that could be
effectively exploited to accomplish its task.

The overall structure of the required information, coming
from applications and target-platforms (meta-data) should
satisfy three main design goals:

1) Completeness: all the information required to properly
support the RTRM management activities should be
considered and represented.

2) Portability: the meta-data should describe both appli-
cations and target platform properties independently
from each other. Indeed, for the success of the final
solution it is considered interesting to support a “write
once and run everywhere” approach. Thus, it should be
possible to define application meta-data independently
of the target platform they will run on.

3) Simplicity: the information required by the RTRM
represents an “overhead” for developers of both appli-
cations and platforms, thus it is important to identify
a solution that is as much as possible effortless to be
used. Even better if the solution could be defined as
an extension of the classical design and development
flow of each system abstraction layer.

Overall, these requirements must be considered to prop-
erly define the collection of meta-data and the interfaces to
acquire them from the applications and the target platform.

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 221

4. The RTRM Component
The RTRM component is composed of a set of modules

running at different levels of abstraction and providing
services to different “client” modules. The client modules
represent the users of the services provided by this tool.
Three main classes of users could be easily identified:

1) User applications which can be either critical or
best-effort. The former are applications, generally
known at design time and provided by the device pro-
ducer/integrator, which implement fundamental tasks
for the target device. The latter instead are applications
unknown at design time but that each user could add
and use once the system is already in production.
Critical applications are usually fine tuned off-line to
be highly efficient, e.g., by Design Space Exploration
(DSE) techniques, and their resource requirement are
considered mandatory for a proper functioning of the
device. To the contrary, best-effort applications are
expected to negotiate resource usage with the RTRM
before actually accessing them.

2) Resource tuning tools for the optimization of specific
resources. Within this class, three main users could
be classified: code-optimizers (which are not further
discussed in this paper), the runtime task manager
(Section 5) and the runtime dynamic data manager
(Section 6). The RTRM will provide support to these
tools to better achieve their optimization goals while
still granting to meet the system-wide optimization
policy.

3) Platform-specific controller representing the lower-
level interface to the many-core computing fabric
services. This is usually the computing fabric device-
driver, being it properly extended to provide the re-
quired runtime management specific services.

To provide a flexible and efficient implementation, a
hierarchical design for the RTRM should be considered,
where the monitoring, management, control and optimization
strategies are operated at different granularity and abstraction
levels. At least, three different granularities could be consid-
ered: user-space, kernel-space and fabric/device-space. The
first two of them correspond to the host-side while the latter
is the computation fabric side. An overall view of the tool
architecture and main components is reported in Fig. 1.

The hierarchical architecture of the optimization policy
allows to reduce the control complexity by distributing it at
different levels, each one considering different details. Each
granularity level collects requirements from higher level,
runs a specific optimization policy, and finally identifies a
set of constraints delivered to lower levels. This approach
ensures control over sensible overheads at each level of
the hierarchy. Moreover, it allows to keep time-critical and
fine-tuning decisions running on lower levels, close to each
controlled resource, while a global optimization strategy runs

on higher levels. This approach will grant a prompt and
low-latency handling of critical events while it still ensure a
system-wide optimization.

An overall view of the requirements for the development
of an effective RTRM tool is represented in Fig. 2 where it is
proposed a target-based view. Indeed, we could identify de-
sign requirements, user interaction requirements, functional
requirements and finally system-integration requirements.
Some of these requirements are imposed by the RTRM tool
to other system components while others are related to the
tool itself.

4.1 Imposed requirements
The set of imposed requirements must be satisfied by the

users of the tool, in order to be properly integrated with the
RTRM. Each of these requirements is addressed either by
the resources (controllers), i.e., platform devices and relative
drivers, or by the applications1.

a) Definition of resources working-modes [resources]:
The RTRM tool needs a complete view on the working
modes (WMs) of controlled resources. Each working mode
is defined by a set of properties such as: the amount of avail-
able resources, the power consumption and the constraints
to switch from one mode to another. These information on
resources working modes will be collected by the RTRM
tool by using a lower abstraction level module, presumably
as an extension of the computing fabric driver. However, any
component in a use-case, which represents a resource (i.e.
platform subsystems), must completely define its working
modes and notify them to the RTRM.

b) Definition of resources control points [resources]:
In order for the RTRM tool to perform optimizations on
resources usage, this tool requires the ability to tune some
parameters of the corresponding platform subsystems. Thus,
these subsystems are required to expose their control points
to the RTRM and to define how the modification of these
control points impact on the subsystem behaviors in terms
of both power consumptions and performances. Usually, the
optimization actions performed by the RTRM, using these
control points, correspond on switching a subsystem from
one of its working-mode to another.

c) Resources observability [resources]: To properly run
its optimization policy, the RTRM will relay on an updated
and complete view of the resources state, both in terms of
power consumption and performance. Thus, every subsystem
representing a resource to be controlled by this tool is
expected to expose some observability points. These points
will be represented by some metrics that can be mapped on

1For improved readability, the target of each requirement is indicated
right after the requirement name

222 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

Fig. 2: The main requirements for the RTRM tool

resource power consumptions and performances, and thus
they will generally correspond to the properties defining a
working mode.

d) Priority based access to resources [applications]:
Access to resources is priority based: critical applications
could preempt resources used by best-effort applications. In
general, every application will be associated to a resource
access and usage priority by means of a system configu-
ration. In addition to a coarse grained classification based
on critical and best-effort applications, it will be possible
to define also a fine grained priority level. Each application
will have a default priority, however a proper mechanisms
(similar to the ones already available on operating systems
to defined the priority of a process) will allow privileged
users to change this level. Critical applications are required
to use this mechanism to properly configure their priority.

e) User-space representing application [applications]:
The RTRM tool allows kernel-space resident clients, how-
ever it will expect that every client has a corresponding
controlling user-space application. To the purposes of the
optimization policy, the user-space application will define
resource access rights and priority.

f) Query resource availability [applications]: The system
resources are shared among different applications which run
concurrently and compete for their usage. The resource avail-
ability could change at runtime according to the working
conditions, e.g., workload, hot-spot and failures. Thus, an
application is required to query the RTRM tool to know
about resources availability. According to the resource avail-
ability, an application will have the chance to know exactly
what QoS level can be obtained from the system. This

requirement is mandatory only for best-effort applications.
On the contrary, critical applications could always suppose
that their required resources are available and it is in charge
of the RTRM to ensure that. Proper interfaces will be
designed to allow clients to request information on resources
by specifying:

• Resource class, e.g., processing elements, clusters,
memory, communication channels

• Usage constraints, e.g., usage time, access policy, func-
tional requirements (e.g., max latency between to PEs,
minimum granted bandwidth, etc.)

g) Get and release resources [applications]: To provide
a system-wide optimization, the RTRM must always have
an updated and complete view on the resources state,
and specifically on resources usage and availability. This
information is required to properly support the resource
accounting feature provided by the RTRM, and thus each
user is required to notify when a resource is used and
released. The “get” method allows to obtain a reference
to a “virtual resource”, which will be properly mapped
to a “physical resource” by the RTRM according to its
optimization strategy and the runtime working conditions.
The “release” method notifies the RTRM that the resource
is not more needed by the asserting client and thus it is
available for other usage or optimizations.

h) Handle RTRM notifications [applications]: Resource
availability could change at runtime due to changing working
conditions. Applications that have access to some resources
could be requested to adapt to this changing conditions. In
this case, a notification will be sent by the RTRM to the
involved applications to give them the chance to reconfigure
themselves.

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 223

4.2 Covered requirements
A different set of requirements could be identified which

must be satisfied by the RTRM in order to provide an
effective implementation of the runtime manager.

a) Monitor resource performance: To properly perform
resource and performance optimization, the RTRM will relay
on an updated view of the usage and behaviors of each
subsystem, and their resources, with different levels of detail.
This information could be exposed on request to use-case
clients as well, according to their rights. For example, the
RTRM will probably collect statistics on processing elements
and memory usage, information on communication channels
congestion (bandwidth) or behavior (latency).

b) Dynamic resource partitioning: Each application may
have a different impact on the overall user experience, which
defines its “priority level”. Thus, the RTRM will provide
some support to handle both critical workloads, that have
hard requirements in terms of resource usage and execution
behaviors, and best-effort workloads, for which a penalty
either does not impact on perceived behaviors or produce
a tolerated QoS degradation. Both classes of applications
will access the available resources through a single runtime
resource manager. Thus, the role of this tool is to account
for available resources, and grant access to these resources
to demanding applications according to their priority level.
In general, critical applications are off-line profiled and
optimized, for example using the DSE techniques, while
the best-effort will not be optimized. In the former case,
the applications will have specific resource requirements
that should be granted by the RTRM in order to meet the
desired and designed behaviors. In the latter case, however,
a best-effort policy can be used, which could not guarantee
the runtime behaviors. In any case, we want to be fair
on granting access to resources usage once when they are
available. To efficiently manage this scenario, the resources
could be dynamically partitioned, taking into consideration
current QoS requirements and resources availability. This
dynamic partitioning will allow to grant resources to critical
workloads while dynamically yield these resources to best-
effort workloads when (and only while) they are not required
by critical ones, thus optimizing resource usage and fairness.

c) Resource abstraction: An effective RTRM targeting
mobile multimedia platforms, cannot disregard the context of
systems which admit the presence of multiple applications,
running concurrently on the same many-core computing
fabric, each one having its own application-specific require-
ments. In such a context, the efficiency of managing the
available resources is a challenging goal. The mapping of
applications onto the available resources may change during
the device life-time, and the current effective mapping should

be based on specific quantitative metrics, e.g., throughput,
memory bandwidth and execution latency. In parallel to the
application-specific requirements, we also experience other
non-functional aspects such as power consumption, energy
efficiency and thermal profiles. The last one is especially
relevant in scaling technologies like the one targeted by the
upcoming many-core computing platforms. The presence of
these two types of requirements makes the mapping decision
more complex. To address this problem, the RTRM tool will
handle a decoupled perspective of the resources between the
users and the underlying hardware. The user applications
should see virtual resources, e.g., the number of processing
elements available, but they will not be aware of which of
the physical resources are effectively available. At runtime
the RTRM will perform the virtual-to-physical mapping
according to the current objective function (low power, high
performance, etc.) and runtime phenomena (process varia-
tion, temporal and spatial temperature gradients, hardware
failures and, above all, workload variation).

d) Multi-objective optimization policy: The optimization
policy should be system-wide and able to consider multiple
metrics, e.g., power consumption, performance indexes and
thermal gradients.

e) Dynamic optimization policy: The optimization policies
of every abstraction levels will be runtime tunable to some
extend, for instance to associate different levels of impor-
tance to the different optimization goals. Moreover, in the
case of high-level and system-wide optimization policies,
there will be the possibility to completely change the policy
at runtime. This will enable to design multiple light-weight
policies which fit well specific optimization scenarios.

f) Low runtime overheads: The overall RTRM overhead
should not impact noticeably on the performance of the
controlled system, both at the host-side and especially at the
computation fabric side. This requirement will be satisfied
by adopting an hierarchical design for the framework with
control policies distributed at different levels performing a
refined optimization.

5. The Task Scheduling Component
To address the challenges introduced by future embedded

computing, the task scheduling component needs to fulfill
the following features:

• First, a variety of applications should be supported:
mobile communications, networking, automotive and
avionic applications, multimedia in the automobile and
Internet interfaced with many embedded control sys-
tems. These applications may run concurrently, start and
stop at any time. Each application may have multiple
configurations, with different constraints imposed by

224 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

the external world or the user (deadlines and quality
requirements, such as audio and video quality, output
accuracy), different usages of various types of platform
resources (processing elements, memories and commu-
nication bandwidth) and different costs (performance,
power consumption).

• Second, a holistic view of platform resources should
be supported. This is needed for global resource al-
location decisions optimizing a utility function (also
called Quality of user Experience - QoE), given the
available platform resources. This QoE will allow trade-
off, negotiated with the user, between diverse QoS
requirements and costs.

• Third, the platform resource usage and the applica-
tion mapping on the platform should be transparently
optimized. This is needed to facilitate the application
development and manage the QoS requirements without
rewriting the application.

• Next, the task scheduling component should dynam-
ically adapt to changing context. This is needed to
achieve a high efficiency under changing environment.
QoS requirements and platform resources must be
scaled dynamically (e.g., by adjusting the clock fre-
quencies and voltages, or by switching off some func-
tions) in order to control the energy/power consumption
and the heat dissipation of the platform.

• Different heuristics should be allowed, since a single
heuristic cannot be expected to fit all application do-
mains and optimization goals.

• Finally, since the task scheduling component is intended
for embedded platforms, a lightweight implementation
only is acceptable. To address this challenge, this com-
ponent should interface with design-time exploration to
alleviate its runtime decision making.

The task scheduling component manages and optimizes
the application mapping taking into account the possible
application configurations, the available platform resources,
the QoS requirements, the application constraints, and the
optimization goal. In the following we overview the issues
the task scheduling component focuses on in the 2PARMA
approach.

a) Interface with design-time exploration: Whereas the
functional specification of an application is fixed, there may
be several specific algorithms or implementations for a given
application. Also an application implementation can take
several forms (fixed logic, configurable logic, software) and
offer different characteristics. These application configura-
tions with associated meta-data (e.g., QoS, platform resource
usage, costs) are provided at design time to enable fast
exploration during runtime decisions. The interface will be
extended from [12].

b) Reconfiguration: Ideally, for any application, all func-
tionalities should be accessible at any time. However, based
on the user requirements, the available platform resources,
the limited energy/power budget of the platform, and the
target platform autonomy, it may not be possible to integrate
all these functionalities on the platform at the same time.
Hence the application developer has to organize the applica-
tion into application modes, each one specifying a different
subset of functionalities. Moving from one application mode
to another may be needed at run time due to user interactions
or changes in the platform resource availability when new
applications are activated. Adapting the mapping of an active
application is called dynamic reconfiguration or task migra-
tion. The key challenge is of course to maintain the real-time
behavior and the data integrity of the overall set of active
applications. On the one hand, dynamic reconfiguration is
a powerful mechanism to improve the platform utilization,
avoiding some idle computing resources, while others are
overloaded. On the other hand, important issues are not only
task state representation and message consistency during
reconfiguration, but also reconfiguration time that limits the
performance of the overall system. A high-level modeling
and simulation framework of this reconfiguration issue will
be developed.

c) Switching: Environment changes may give rise to res-
election of application modes and configurations. This re-
sulting switching must be seamless. To that end, switching
points are introduced in the applications where it is checked
whether a switching is requested. A smooth transition from
the current configuration to the new one is provided as fol-
lows. On the one hand, the RTRM can signal the concerned
application at any time when a switching is requested. On
the other hand, whenever the application reaches a switching
point inside its code, the application checks whether a
switching is requested. If yes, the application enters an
interrupted state and transfers all relevant state information
to the RTRM. The RTRM communicates the newly selected
application configuration and the related received state in-
formation to the concerned cores of the platform.

d) Optimal selection of application configurations: The
QoS requirements and the optimization goal are defined
through the QoE manager. This goal is translated into an
abstract and mathematical function, called utility function
(e.g., performance, power consumption, battery life, QoS,
weighted combination of them). A fast and lightweight
priority-based heuristic extended from [13] selects near-
optimal configurations for the active applications. It works
as follows:

• It selects exactly one configuration for each active ap-
plication from the multi-dimension set of configurations
derived by the design-time exploration. The selection is

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 225

done according to the available platform resources, in
order to optimize the utility function, while satisfying
the application constraints.

• The heuristic cannot always guarantee to find a feasible
solution, i.e. to select a set of configurations, one
per active application, within the available platform
resources. In that case, the constraints of the application
with the lowest priority is relaxed and the heuristic is
executed once again.

e) Monitoring of application parameters: For many ap-
plications, the processing requirements to obtain results at
real time can be impractical. This is due to the increas-
ing complexity of the applications developed for advanced
platforms. Nevertheless, a lower result quality might be
acceptable if the results are obtained within the time re-
quired. The proposed technique will work as follows. In
order to trade the result quality for the time required to
obtain them, a set of well-chosen application parameters are
tuned/monitored at run time once the time requirement is set
by the user. The runtime monitoring technique is part of the
application. It is intended to monitor the application behavior
and act on the application parameters in order to meet
the performance requirement while maximizing the result
quality. This technique is called iteratively in the application
to monitor the application execution time, check whether the
deadline is met, and take decisions concerning the tuning
of the application parameters. It modifies the application
parameters either to improve the result quality if the deadline
is met, or to lower the result quality if the deadline is
not met. To enable an efficient runtime decision-making,
the technique makes use of Pareto-optimal combinations of
parameters also derived by the design-time exploration.

6. The Dynamic Memory Management
Component

In [14], the design decisions that form the DMM de-
sign space have been presented and implemented inside a
C++ library that enables the modular construction of every
valid DMM configuration. Through automated exploration,
combining together differing design decisions generates cus-
tomized DMM configurations. Each design decision can be
viewed as a building block, the DM manager is constructed
by binding together DMM building blocks (Fig. 3). How-
ever, these solutions are fully static in the sense that the
DMM mechanisms i.e. the fitting mechanisms, the coalesc-
ing/splitting thresholds etc. selected to customize the DMM
can not be altered during runtime to adapt to workloads
different than the simulated ones.

6.1 DMM Design Space
First we provide the basic DMM terminology that will be

used throughout this Section.

 Fig. 3: Static versus adaptive DMM.

• Heap: Heap refers to the memory pool responsible for
allocation or de-allocation of dynamic data (arbitrarily-
sized data blocks allocated in arbitrary order that will
live an arbitrary amount of time). In C/C++ program-
ming language dynamic memory management is per-
formed through the malloc/new functions for allo-
cation and free/delete functions for de-allocation,
respectively.

• Heap Fragmentation: Fragmentation is defined as
the maximum amount of memory allocated from the
operating system divided by the maximum amount of
memory required by the application. In multi-threaded
memory allocators there are three types of fragmenta-
tion, namely internal fragmentation, external fragmen-
tation and heap blow-up. Internal fragmentation [15]
is generated when the DM manager returns a memory
block that is larger than the initial size request. External
fragmentation [15] refers to the situation that a memory
request cannot be served even if there are available
memory blocks in the heap that can serve the request
if they merged. Finally, heap blow-up [16] is a special
kind of fragmentation found in multi-threaded memory
allocators.

• Heap Memory Footprint: The heap memory footprint
refers to the maximum heap memory (allocated and
freed) that the DM manager reserves. Actually, it refers
to the maximum memory that is occupied, taking into
consideration the memory consumed for the block’s
payload, the block’s header and the unused space re-
sulted from padding and alignment.

Fig. 4 shows the design/decision space concerning dy-
namic memory management. More specifically, we recog-
nize the following taxonomy:

• Inter-Heap Categories:
– Architectural Scheme Category: It determines the

way the dynamic memory allocator organizes and
architects its heaps in order to exploit the available
thread-level parallelism into memory management.

– Data Coherency Decisions Category: It deals with
the existence or not and the structure of the syn-
chronization mechanisms in order to ensure the

226 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

data coherency in each heap.
– Inter-Heap Allocation Decisions Category: It man-

ages the way in which threads allocate memory
in the inter-heap level. Allocation in this level is
strongly connected with decisions which consider
both the thread grouping in order to share a heap
and the thread to heap mapping. Allocation deci-
sions of finer granularity i.e. fit policies etc. are
included into the intra-heap design space.

– Inter-Heap De-allocation Decisions Category: It
includes the decisions concerning ownership [16]
aware de-allocation of each memory block and
placement decisions for the de-allocated blocks.

– Inter-Heap Emptiness Decisions Category: It man-
ages the potential memory blowup of the multi-
threaded application and consider decisions in or-
der to reduce or bound the worst memory blowup.

• Intra-Heap Categories:

– Intra-Heap Block Structure Category: It handles
the data structures, which organize the memory
blocks inside each heap of the DMM.

– Intra-Heap Pool Organization Category: It defines
per heap pools’ organization i.e. single pool, one
pool per size, traversing order etc.

– Intra-Heap Block Allocation/De-allocation Cate-
gories: They deal with the operations that satisfy
the DM allocation and de-allocation requests.

– Intra-Heap Splitting/Coalescing Categories: They
formalize the decisions to handle the current co-
alescing and splitting blocks techniques [15], i.e.
the threshold logic for coalescing and splitting the
blocks.

The selection of certain decisions heavily affects the
coherency of other decisions within a DM manager. Thus,
DMM decisions exhibit various inter-dependencies depicted
as arrows in Fig. 4. We recognize two types of inter-
dependencies. Excluding inter-dependencies (solid arrows)
are generated when a DMM decision disables either seman-
tically or structurally the incorporation of other categories or
DMM decisions. Linked inter-dependencies (dashed arrows)
are generated in cases which a DMM decision affect other
decisions, but not disable their use. For example, if the
coalescing frequency is set to zero, automatically the whole
category K is excluded (excluding inter-dependency). How-
ever, coalescing frequency in category K, affects splitting
frequency in category J, but it does not eliminate its usage,
since a DM manager which only splits memory blocks but
never coalesce is semantically and structurally viable DMM
solution.

Each possible DMM configuration can be generated by
properly combining the available design decisions, with
respect to the parameter inter-dependencies. In [14], the
parameter space has been used within a design-time explo-

Fig. 4: The multi-threaded dynamic memory management
(MTh-DMM) design space.

ration procedure, for generating application-specific MTh-
DMM configurations. While in this paper we target the
design of runtime adaptive DM managers, we briefly discuss
the overall design space, since it forms the basis of our
analysis regarding the selection of design decisions that can
be configured during runtime. The DMM parameter space
can be conceptually partitioned into two smaller sub-spaces,
namely the inter-heap and the intra-heap sub-spaces. Inter-
heap sub-space captures decisions that are shared between
the threads such as overall heap organization, thread to
heap mapping policies etc. Intra-heap subspace includes
decisions which manage each instantiated heap’s internal
structure i.e. number of free-lists, allocation mechanisms etc.
Each parameter sub-space is further partitioned into several
decision categories (white boxes in Fig. 4), each including
the DMM design decisions (colored boxes in Fig. 4).

6.2 Runtime Adaptive DMM
To enable runtime adaptivity of the DMM, we need to

move towards the DMM solution proposed in the right side
of Fig. 3. Comparing the static and the runtime-tunable
DMM schemas, we recognize three major extensions that
need to be considered in order to move towards more
adaptive configurations:

• Identification of the subset of the available design
decisions that will enhanced towards runtime reconfig-
uration (the identification of the runtime tuning knobs
of the DM manager).

• Extension of the DM manager to provide runtime-
monitoring data.

• Extraction of the decision making process that the
runtime controller will implement in order to generate
the new DMM configuration.

In order to extract the runtime-tunable DMM parameters,
we have to evaluate the switching overheads imposed during

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 227

parameter reconfiguration. DMM parameter reconfiguration
occurs among the parameters of the same design decision
(colored boxes in Fig. 4). For example, the parameters
found in the design decision regarding the allocation fitting
algorithms (category H) include the first fit algorithm, the
best-fit algorithm with searching thresholds and the next
fit algorithm. Since a DM manager has to incorporate a fit
algorithm in order to be able to reuse the already allocated
memory, we have to evaluate the trade-offs associated with
switching during runtime from one fit algorithm to another.
The same evaluation has to be performed for each DMM
design decision.

The designer that wants to extract the runtime-tunable
parameters, has to traverse through the DMM design de-
cisions and analyzed the expected overheads in case that
runtime switching is considered. The analysis indicated two
classes of DMM decisions, namely the (i) the numerical
DMM tunable parameters and (ii) the algorithmic DMM
tunable parameters. Fig. 5 depicts the runtime-tunable DMM
parameters along with the valid transitions that can be
performed between them [17]. The rectangular boxes refer to
the numerical DMM tunable parameters while the ellipsoid
boxes refer to the algorithmic DMM tunable parameters. The
DMM parameters that are numerical values are characterized
as runtime-tunable since they can be tuned through a simple
write at a memory address, which does not impose any
severe switching overhead. The numerical DMM parameters
that recognized as tunable are the following ones: (i) the
threshold values regarding the maximum allowable inter-
heap emptiness (category E), (ii) the decisions regarding
the number of the free blocks moved to a global shared
memory space whenever inter-heap emptiness crosses the
allowable threshold (category E), (iii) the numerical values
that set the maximum percentage in Best Fit algorithm of
the available free space that has to be searched (category
H), (iv) the parameters that control the triggering of splitting
mechanism–minimum block size above which splitting has
to be performed (category J), (v) the parameters that control
the triggering of coalescing mechanism–maximum block
size, resulted by the merging of two adjacent free blocks,
above which no coalescing is triggered (category K).

The class of algorithmic DMM tunable parameters in-
cludes parameters that are algorithms but their tuning does
not affect the architecture of the instantiated DM man-
ager. In this case, multiple DMM management policies and
mechanisms are switched during runtime and applied to the
same data-structures in a mutual exclusive manner. More
specifically, the analysis indicated the following algorithmic
DMM tunable parameters (i) the thread-to-heap mapping al-
gorithms in category C, (ii) the allocation search algorithms
i.e. FIFO, LIFO etc., (category H) and (iii) the allocation fit
algorithms, i.e. First Fit, Best Fit, Next Fit etc., (category
H). In order to enable such runtime algorithmic switching,
a large portion of the C DMM library has been rewritten to

THR_1

THR_2

THR_N

Heap1

Heap2

HeapK

FIFO

LIFO

FirstFit

BestFit

NextFit

10%

90%

100%

10%

90%

100%

10%

90%

100%

64

512

1024

Thread-to-Heap
Mapping

Allocation Search
Algorithms

Allocation Fit
Algorithms

BestFit Searching
Percentage

Inter-Heap
Emptiness Threshold

Inter-Heap Percentage
of Moved Blocks

Splitting Threshold
MinSize

Coalescing Thresh.
MaxSize

64

512

1024

 Fig. 5: DMM runtime-tunable parameters.

completely decouple the DMM’s data structures from their
manipulation services. In addition, we have to mention that
in this class of DMM tunable parameters no recompilation is
needed, since the differing DMM mechanisms are compiled
once to structure a specific DMM instance and they can
be switched with each other during runtime by writing a
specific global variable that guides the internal paths of the
malloc/free functions.

To keep track on the state of the DM manager during
runtime, proper software monitoring mechanisms have been
integrated. Through software monitors, runtime statistics are
collected to provide to the controller useful information at
each moment for different variables. Through these runtime
statistics, the controller makes the decision regarding the
next DMM configuration (value assignment to the runtime-
tunable DMM parameters). Through the DMM runtime
statistics, the controller is keeping track of the actual frag-
mentation and when a certain threshold is exceeded, it
reconfigures the DM manager towards a fragmentation aware
configuration.

The monitor’s structure can be configured at design-time.
In particular, the following runtime statistics have been
considered: (i) Total memory footprint, (ii) Requested
memory per time-slot, (iii) Actual memory per time-slot

228 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

0

0,5

1

1,5

2

2,5 StaticDMM1
StaticDMM2
AdaptiveDMM

Worst Fragm.
StaticDMM2

Worst Fragm.
StaticDMM1

Worst Fragm.
AdaptiveDMM

Comparative Study Between Static and Adaptive DMM
Around their Worst Fragmentation Time Windows

Fr
ag

m
en

ta
tio

n

DMM Events !
Fig. 6: Comparative fragmentation study around worst-case
execution windows.

and (iv) Per heap memory.
The source code of the DMM library has been annotated

in specific points with operations that updates the DMMStats
by writing the new values of the dmmStats fields.

6.3 Adaptive DMM Evaluation
We evaluate the effectiveness of our approach based on

the Larson benchmark [18], which simulates the workload
for a multi-threaded server. The adaptive DMM technique is
used by this application through the invocation of standard
C APIs (malloc() and free()). Three different dynamic
memory managers were used [17]: (1) A static performance-
optimized DMM (StaticDMM1) employing a first-fit pol-
icy without splitting/coalescing mechanisms. (2) A static
footprint-fragmentation optimized DMM (StaticDMM2) em-
ploying a best-fit policy with 100% search percentage and
splitting/coalescing mechanisms with minimum split size.
(3) A runtime tunable footprint-fragmentation optimized
DMM (AdaptiveDMM).

Fig. 6 compares the three examined DMMs during a time
window around their worst fragmentation cases. The pro-
posed runtime-tunable DMM solution represents an efficient
intermediate solution between the two static ones, since
the proposed AdaptiveDMM is much more efficient than
the StaticDMM1 and very close to StaticDMM2. Further-
more, Adaptive DMM is more efficient with respect to the
StaticDMM1, with 25.1% and 69.9% gains on the average
footprint and fragmentation, respectively. More details can
be found in [17].

7. Conclusion
In this paper we presented the design of a new runtime

resource management framework at the OS level to support
many-core computing platforms. The RTRM framework
is composed of a set of modules providing services to
different “classes of users”. We characterized the software
metadata that QoS optimizations require, and we presented

a methodology, as well as appropriate techniques, to ob-
tain this information from the original application. In the
2PARMA approach, the RTRM is a component sitting in
between applications and the target-platform, which is in
charge of managing applications access to platform available
resources. Early experimental results showed that the pre-
sented adaptive DMM used by the 2PARMA RTRM, is more
efficient in comparison with the StaticDMM1, with 25.1%
and 69.9% gains on the average footprint and fragmentation,
respectively.

References
[1] T. G. Mattson, M. Riepen, T. Lehnig, P. Brett, W. Haas, P. Kennedy,

J. Howard, S. Vangal, N. Borkar, G. Ruhl, and S. Dighe, “The 48-
core scc processor: the programmer’s view,” in Proc. of SC. IEEE
Computer Society, 2010, pp. 1–11.

[2] STMicroelectronics and CEA, “Platform 2012: A Many-
core programmable accelerator for UltraEfficient Embedded
Computing in Nanometer Technology,” 2010. [Online].
Available: http://www.cmc.ca/en/NewsAndEvents/~/media/English/
Files/Events/20101105_Whitepaper_Final.pdf

[3] A. Sangiovanni-Vincentelli, “Quo vadis, sld? reasoning about the
trends and challenges of system level design,” Proc. of IEEE, vol. 95,
no. 3, pp. 467 –506, 2007.

[4] P. Schaumont, I. Verbauwhede, K. Keutzer, and M. Sarrafzadeh, “A
quick safari through the reconfiguration jungle,” in Proc. of DAC.
ACM, 2001, pp. 172–177.

[5] E. Keller, G. Brebner, and P. James-Roxby, “Software decelerators,”
in Field-Programmable Logic and Applications, ser. Lecture Notes in
Computer Science. Springer Berlin / Heidelberg, 2003, vol. 2778,
pp. 385–395.

[6] M. A. Al Faruque, R. Krist, and J. Henkel, “Adam: run-time agent-
based distributed application mapping for on-chip communication,” in
Proc. of DAC. ACM, 2008, pp. 760–765.

[7] V. Nollet, T. Marescaux, P. Avasare, D. Verkest, and J.-Y. Mignolet,
“Centralized run-time resource management in a network-on-chip
containing reconfigurable hardware tiles,” in Proc. of DATE. IEEE
Computer Society, 2005, pp. 234–239.

[8] N. Shirazi, W. Luk, and P. Y. K. Cheung, “Run-time management
of dynamically reconfigurable designs,” in Proc. of FPL. Springer-
Verlag, 1998, pp. 59–68.

[9] P. Kohout, B. Ganesh, and B. Jacob, “Hardware support for real-time
operating systems,” in Proc. of CODES+ISSS. ACM, 2003, pp. 45–
51.

[10] P. G. Paulin, C. Pilkington, M. Langevin, E. Bensoudane, and
G. Nicolescu, “Parallel programming models for a multi-processor
soc platform applied to high-speed traffic management,” in Proc. of
CODES+ISSS. ACM, 2004, pp. 48–53.

[11] V. Nollet, D. Verkest, and H. Corporaal, “A safari through the mpsoc
run-time management jungle,” Journal of Signal Processing Systems,
vol. 60, pp. 251–268, 2010.

[12] C. Ykman-Couvreur, P. Avasare, G. Mariani, C. Silvano, and V. Za-
ccaria, “Linking run-time resource management of embedded multi-
core platforms with automated design-time exploration,” IET Comput.
Digit. Tech., vol. 5, no. 2, pp. 123–135, 2011.

[13] C. Ykman-Couvreur, V. Nollet, F. Catthoor, and H. Corporaal, “Fast
multi-dimension multi-choice knapsack heuristic for MP-SoC run-
time management,” ACM TECS, 2011.

[14] S. Xydis, A. Bartzas, I. Anagnostopoulos, D. Soudris, and
K. Pekmestzi, “Custom multi-threaded dynamic memory management
for multiprocessor system-on-chip platforms,” in Proc. of IC-SAMOS,
2010, pp. 102 –109.

[15] P. R. Wilson, M. S. Johnstone, M. Neely, and D. Boles, “Dynamic
storage allocation: A survey and critical review,” in Proc. of IWMM.
Springer-Verlag, 1995, pp. 1–116.

[16] E. D. Berger, K. S. McKinley, R. D. Blumofe, and P. R. Wilson,
“Hoard: a scalable memory allocator for multithreaded applications,”
SIGPLAN Not., vol. 35, pp. 117–128, November 2000.

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 229

[17] S. Xydis, I. Stamelakos, A. Bartzas, and D. Soudris, “Runtime
tuning of dynamic memory management for mitigating footprint-
fragmentation variations,” in Proc. of PARMA Workshop. VDE
Verlang, 2011, pp. 27–36.

[18] P.-A. Larson and M. Krishnan, “Memory allocation for long-running
server applications,” in Proc. of ISMM. ACM, 1998, pp. 176–185.

230 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

A New Approach to Control and Guide the

Mapping of Computations to FPGAs

João M. P. Cardoso
3*

, Razvan Nane
4
, Pedro C. Diniz

2
, Zlatko Petrov

1
, Kamil Krátký

1
, Koen Bertels

4
,

Michael Hübner
5
, Fernando Gonçalves

8
, José Gabriel de F. Coutinho

6
, George Constantinides

6
, Bryan

Olivier
7
, Wayne Luk

6
, Juergen Becker

5
, Georgi Kuzmanov

4

1
Honeywell International s.r.o., HON, Czech Republic (coordinator)

2
Instituto de Engenharia de Sistemas e Computadores Investigação e

Desenvolvimento em Lisboa, INESC-ID, Portugal
3
Universidade do Porto, Faculdade de Engenharia (FEUP), Portugal

4
Technische Universiteit Delft, TUD, The Netherlands

5
Karlsruhe Institute of Technology, KIT, Germany

6
Imperial College London, Imperial, UK

7
ACE Associated Compiler Experts b.v., ACE, The Netherlands

8
Coreworks – Projectos de Circuitos e Sistemas Electrónicos S.A., CW, Portugal

Abstract - Field-Programmable Gate-Arrays (FPGAs) are

becoming increasingly popular as computing platforms for

high-performance embedded systems. Their flexibility and

customization capabilities allow them to achieve orders of

magnitude better performance than conventional embedded

computing systems. Programming FPGAs is, however,

cumbersome and error-prone and as a result their true

potential is often only achieved at unreasonably high design

efforts. The REFLECT (Rendering FPGAs to Multi-Core

Embedded Computing) project‟s design flow consists of a

novel compilation and synthesis system approach for FPGA-

based platforms. Its design flow relies on Aspect-Oriented

Specifications to convey critical domain knowledge to

optimizers and mapping engines. An aspect-oriented

programming language, LARA (LAnguage for Reconfigurable

Architectures), allows the exploration of alternative

architectures and design patterns enabling the generation of

flexible hardware cores that can be incorporated into larger

multi-core designs. We are evaluating the effectiveness of the

proposed approach for applications from the domain of audio

processing and real-time avionics. In this paper we describe

the REFLECT approach and present a number of examples

and results using REFLECT‟s compilation and synthesis tools.

Keywords: FPGAs, Compilers, Aspect-Oriented

Specifications, Reconfigurable Computing

1 Introduction

Contemporary Field-Programmable Gate-Arrays

(FPGAs) are powerful and sophisticated devices able to

implement complex high-performance embedded computing

systems [1][2]. Customization allows FPGAs to achieve

orders of magnitude better performance than conventional

processor systems as they can implement directly in hardware

specific high-level operations crystallized as custom

computing units. As a result, FPGAs are becoming

commonplace in embedded systems and even in some cases in

high-performance systems.

However, the benefits of FPGA-based systems over

traditional systems come at a cost. The large numbers of

potential custom functional units, coupled with the many

choices of interconnecting these units, make the mapping of

computations to these hardware/software architectures a

highly non-trivial process. As a result, the mapping of

complex applications to these architectures is accomplished by

a labor intensive and error-prone manual process.

Programmers must assume the role of hardware designers to

synthesize or program the various custom hardware units in

low level detail, and also to understand how these units

interact with the software portions of the application code.

Programmers must partition the computation between the code

that is executed on traditional processor cores and the code

that is to be synthesized in hardware with the consequent

partitioning and mapping of data. The complexity of this

mapping process is exacerbated by the fact that the custom

computing units may internally exhibit different computation

models (e.g., data flow, concurrent synchronous processes)

and architectural characteristics (e.g., parallelism,

customization), or that the various cores might support

functional- or data-parallel concurrent execution paradigms.

* Contact author: João M. P. Cardoso

Universidade do Porto, Faculdade de Engenharia (FEUP)

Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal

Email: jmpc@acm.org

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 231

It is the aim of the REFLECT project [3][4] to develop

an approach to help designers achieve efficient FPGA-based

heterogeneous multi-core computing systems. Our approach

involves combining different areas of research: aspect-

oriented specifications, hardware compilation, design patterns

and hardware templates. The goal of this project is to develop,

implement and evaluate a novel compilation and synthesis

approach for FPGA-based platforms. We rely on Aspect-

Oriented System Development (AOSD), with foundations on

aspect-oriented programming (AOP) [5][6], to convey critical

domain knowledge to mapping engines while preserving the

advantages of a high-level imperative programming paradigm

in early software development as well as programmer and

application portability. We leverage aspect-oriented

specifications using LARA (LAnguage for Reconfigurable

Architectures), a new domain-specific aspect-oriented

programming language, to specify complementary

information, optimizations, and mapping strategies. The

REFLECT design flow has unique characteristics that allow it

to both adapt to and meet different non-functional

requirements (e.g., safety requirements [7]).

We are evaluating the effectiveness of the proposed

approach using real-life applications provided by REFLECT’s

industrial partners. This evaluation includes the development

of two demonstrators: an avionics mission-critical embedded

system and an audio encoder. Both these codes raise realistic

and demanding challenges that highlight the power and impact

of the base techniques and methodologies in the proposed

REFLECT approach over traditional design and mapping

methodologies.

In this paper we describe the REFLECT design flow [4]

and how aspects and strategies are used to map computations

to FPGA based systems. In particular, we show experimental

results obtained by mapping kernels from two avionics

applications, which illustrate strategies suited to meet high-

performance requirements.

This paper is organized as follows. Section 2 presents the

architecture being currently targeted in REFLECT. Section 3

illustrates the REFLECT design flow and the main tools being

developed, used and extended. Sections 4 and 5 describe,

respectively, two application case studies and the use of

aspects and design patterns in REFLECT. Section 6 presents

the results currently achieved when mapping these codes to a

REFLECT target architecture. Section 7 presents related work.

Finally, Section 8 concludes this paper.

2 REFLECT Target Architecture

Although the REFLECT design flow can target a

multitude of reconfigurable architectures, it currently targets

an architecture consisting of a general-purpose processor

(GPP) connected to Custom Computing Units (CCUs) based

on application-specific architectures. Both these components

use a shared memory approach possibly connected via data

communication channels. The application-specific

architectures are implemented with reconfigurable logic (as in

reconfigurable fabrics such as FPGAs) and are generated from

the C code of the application being compiled.

An example of the target architecture is depicted in Fig.

1 and consists of a GPP, such as a Xilinx MicroBlaze or IBM

PowerPC, tightly coupled with a reconfigurable hardware

fabric where Custom Computing Units (CCUs) is defined

according to application needs. Collectively, the CCUs define

a reconfigurable computing system implementing various

execution models in space and in time and can consist of

specialized hardware templates. The coupling and interface

between the processor and the CCUs are inspired on the

Molen machine and programming paradigm [8]. We also

envision high-end computing systems (akin to HPC systems)

that are composed of several of these base reconfigurable

systems interconnected using traditional multiprocessor

organization arrangements (e.g., bus, hypercube or trees) and

logically organized as distributed memory or shared memory

heterogeneous multiprocessor systems. From a software-stack

perspective, the heterogeneous system is viewed as a co-

processor device of a host system. Reconfigurable resources

are not exposed to the operating system of the host system.

Instead, there is a simple resident “monitor” system

responsible for the communication of data and

synchronization with the host and/or I/O channels. The

development of an operating system is beyond the scope of the

REFLECT project.

Main Memory

Instruction

Fetch

Data Load/

Store

ARBITER

DATA

MEMORY

MUX/DEMUX

Reconfigurable Processor

Core

Processor
reconfigurable

microcode

unit

CCU

1

Register File

Exchange

Registers

CCU

N

Fig. 1. Block diagram of the target architecture used by

REFLECT.

The CCUs and Core processors use a shared memory

system and a register file (XREG) to communicate data [8].

For a particular implementation there is a maximum number of

CCUs supported by the Molen machine organization and

specific FPGA area constraints for CCUs. Dynamic

reconfiguration techniques are foreseen for virtualizing the

hardware resources. This will allow applications to use during

execution more CCUs than the physically available ones.

For prototyping, REFLECT’s consortium is using the

ML510 Embedded Development Platform which includes a

Xilinx Virtex-5 XC5VFX130T FPGA (XC5VFX130T-

2FFG1738CES). This FPGA includes two PowerPC 440

processors (PPC440) as hard cores, clocked at the maximum

frequency of 400 MHz. The ML510 board consists of several

232 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

peripheral interfaces, DRAM memory, and it was selected

based on its suitability for prototyping and evaluation of high-

performance embedded computing systems.

3 REFLECT’s Design Flow

A goal of Aspect-oriented programming (AOP) [5][6] is

to improve code modularity by allowing aspects to convey

crosscutting concerns. Examples of these include the

instrumentation of application code to monitor, debug, and

visualize data. When mapping computations to reconfigurable

hardware architectures, we are interested in the specification

and use of different implementations for the same code. Each

of those implementations may take advantage of the specific

characteristics of a particular target system, such as memory

organization or functional unit capabilities. Aspect modules

can thus be used to describe features that a compiler, and other

tools in the mapping flow, can use to derive customized

solutions, i.e., solutions more suitable to the target architecture

and meeting requirements. In this context, we distinguish three

main abstractions in the REFLECT compilation/synthesis

flow, described in detail in the following sub-sections.

Application Aspects

Application Aspects allow developers to specify

application characteristics such as precision representation

(e.g., error less than 1E-03), input data rates (e.g., 30 frames

per second) or other non-functional requirements such as

safety and reliability requirements for the execution of specific

code sections/functions. These features act as “requirements”

for acceptable design solutions and cannot be easily expressed

using common programming languages (such as C). These

aspects might be internally decomposed into a number of low-

level aspects that guide the REFLECT design flow to generate

an implementation which meets the requirements. Some low-

level aspects and the ordering of their application can be

specified by the user using strategies
1
 or can be defined by a

Design Space Exploration (DSE) approach. Strategies can

thus be seen as rules that force the design flow to apply a

specific design pattern.

Design Patterns

Design patterns act as a collection of transformations or

“actions” to be used to transform the application code in

search for a design implementation with specific features or

performance characteristics. For example, an execution time

requirement for a specific code section might require the

concurrent execution of a specific function. This in turn will

require a design pattern or transformation (via the application

of strategies) that performs loop unrolling and data

partitioning so that data are available to all the concurrently

executing units.

1 The term is used herein in a more generic way than in [9].

Hardware/Software Templates

These templates, which can include a mix of hardware

and software implementations, define the “lower” layers of the

mapping hierarchy. These templates are characterized in terms

of resource usage and number of clock cycles in a specific

custom design (e.g., as in FPGAs) as they expose the

characteristics of the target resources to the design flow. As an

example, the hardware versions of a FIFO or streaming buffer

and the software implementation of the same components can

be considered hardware/software templates.

Overall, the developer defines, as a first step, the

application aspects related to the code at hand, relying on a

wealth of existing design patterns and hardware/software

templates together with DSE support to find a suitable set of

transformations or design patterns that can lead to a specific

feasible implementation. The REFLECT compilation flow will

benefit from aspects to produce efficient FPGA

implementations. This approach is also applicable to other

contemporary reconfigurable and non-reconfigurable

computing architectures.

In REFLECT we focus on the use of aspects, strategies,

and design pattern modules for four types of features:

- SPECIALIZING: Specialization of a design for the

particular target system (e.g., specializing data types,

numeric precision, and input/output data rates);

- MAPPING AND GUIDING: Specification of design

patterns, which embody mapping actions to guide the tools

in some decisions (e.g., mapping array variables to

memories, specifying FIFOs to communicate data between

cores, use specific dynamic reconfiguration techniques, use

specific fault-tolerance schemes).

- MONITORING: Specification of which implementation

features, such as current value of a variable or the number

of items written to a specific data structure, provide insight

for the refinement of other aspects.

- RETARGETING: Specification of certain characteristics

of the target system in order to make the tools adaptable

and aware of those characteristics (i.e., retargetable).

An important component of the aspect-oriented

programming model is the notion of a weaver. A weaver is a

compilation framework component that receives as input the

code of the application augmented with the aspect modules,

and produces a new version of the code for the application as

result of applying the descriptions (rules) in the aspect

modules. The aspect modules usually define a pointcut and an

advice [10]. An example of a pointcut and an advice are

respectively “find invocations of functions” and “test if array

arguments have size greater than 0”. In this case, a weaver will

insert additional code at each function invocation site to test if

array arguments have size greater than zero.

We now describe the overall REFLECT compilation and

synthesis design flow. In REFLECT, an input application in C

is implemented as a system consisting of one GPP connected

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 233

to one or more hardware cores (CCUs), as presented in Fig. 1.

Such an application is partitioned for software and hardware

components according to developer-provided requirements.

Fig. 2 depicts the main stages of the REFLECT design

flow for the generation of hardware and software components.

The design flow includes the Harmonic tool [11], which is

used as a source-to-source transformation tool. Harmonic is

responsible for analyzing and giving hints about code

compliance
2
, for partitioning the input applications in

software/hardware components, for including the

communication primitives, and for providing support for code

insertion. Aspects related to these transformations are

identified by the Aspect Front-End tool and input to Harmonic

as Aspect-IR. Harmonic also performs cost estimates for a

given platform to assist in the software/hardware partitioning

of the input application code. When performing

hardware/software partition, the software components are

augmented with primitives to communicate data and to

synchronize their execution with the hardware components.

Application (C code)

Source-to-source

Transformer

(Harmonic)

C source code (split in

hardware and software

components)

Aspects and

Strategies (LARA)

Aspect Front-End

W
e

a
v
e

r

Target-independent

Optimizations

Hardware Specific

Optimizations (e.g.,

word-length analysis)

Software Specific

Optimizations

W
e

a
v
e

r

W
e

a
v
e

r

VHDL-RTL Generator

(Dwarv)
GPP code generator

W
e

a
v
e

r

VHDLAssembly

LARA-IR

(aspect

view):

Aspect-IR

LARA-IR (CDFG view): CDFG-

IR

Hardware

Templates

Design

Patterns

CoSy

Fig. 2. REFLECT’s design flow and its main stages.

The C code output from Harmonic is then input to a

CoSy [12] compiler. This CoSy compiler directly invokes the

subsequent design flow components, including the weavers to

implement some aspects, further target-required optimizations

and transformations, and word-length optimizations. Then, the

CoSy compiler is responsible for the generation of hardware

2
 For instance, the VHDL generator used in the back-end of CoSy may not

support all C programming constructs.

(hardware components) and RISC code (software component).

These components communicate through a common

intermediate representation based on a CDFG (Control/Data

Flow Graph) represented using CoSy CCMIR (Common CoSy

Medium-level Intermediate Representation) and including

data-dependences and annotations. This representation is

common among the design flow components integrated in

CoSy as depicted in Fig. 2.

Strategies, defined as sequences of aspects to be applied,

are described in LARA using constructs based on aspect-

oriented programming and scripting languages. These

strategies enhance DSE via try-and-feedback schemes,

implementation of the design patterns and their strategies, and

alternative flows for host simulation and target compilation.

The LARA-IR carries all information between the

components: the transformed and gradually specialized and

mapped representation of the application, and all kinds of

attributes, not only simple attributes (such as memory spaces

of variables) and structured (such as loop-nest information and

dependences), but also those that support aspects. At some

point in the design flow, the intended partitioning is reflected

in the LARA-IR by creating one partition per target

architecture and having separate further design flows for each

one.

For hardware synthesis, the REFLECT flow uses a tool

based on DWARV [13] and integrated in CoSy. As a result,

our design flow generates VHDL for the hardware kernels

using the same LARA-IR and the same options for arranging

the order of transformations as described above. In particular,

it applies transformations required to translate a computation

from a Von Neumann model of computation to a structural

model more suitable for FPGAs. Also, in this phase, the flow

implements word-length optimization identified in earlier

phases of the mapping. DWARV also implements the weaving

phases of the flow what are related to hardware mapping and

carries out the DSE for generating high-quality VHDL. To

accomplish this, our tool flow is based on a CDFG

representation LARA-IR view. This LARA-IR (CDFG view)

is then input to DWARV to generate the VHDL descriptions

of the hardware modules to be included in the final system as

CCUs.

The software components are mapped to a RISC

processor core and compiled using CoSy. A further design

flow for the software components may include the generation

by CoSy of a low-level C representation of the part of the

application that should run in the processor, which is fed

through a specialized compiler and linker (such as mb-gcc, or

ppc-gcc).

Aspect modules, strategies, and design patterns bring to

REFLECT’s design flow the flexibility and modularity needed

to obtain better results and implementations aware of certain

concerns. The engines responsible for the application of the

concerns described in the aspect modules can take advantage

of code refactoring, code transformations (e.g., loop

transformations), term-rewriting, etc.

Our approach to maintain aspect modules as primary

entities which are not embedded in the application code is

234 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

important to preserve the code’s readability and maintenance.

This also promotes the reusability of aspect modules and

strategies. Multiple aspects and strategies can be applied to

the same input application specialized according to the target

system organization (e.g., including hardware cores, interface

between the GPP and the hardware cores, memories connected

to the FPGA, possible precisions). This approach leads to

better adaptability of the tools to the specific target and/or

non-functional requirements.

In the REFLECT design flow, an aspect includes two

main sections: the select and the apply sections. A select

section indicates the join points to which the user associates

one or more actions specified in the apply sections
3
. Our join

point model extends traditional join point models of AOP

languages such as AspectJ and AspectC++. In our case, join

points include system components, code artifacts (loops,

functions, variables, assignments, etc.), and code sections

(identified by specific pragmas). Each join point artifact has a

number of attributes. Those attributes can be used by the

actions (specified in the apply sections of the aspect). For

instance, a function join point includes as attributes, its name,

the number of lines, the number of statements, the hardware

cost, and the latency. A custom computing unit (CCU) join

point may have as attributes the clock frequency, the

maximum hardware area, etc. Actions can depend on the

attributes for a particular join point, and they can define values

for those attributes. Most attributes are defined by the stages

of the REFLECT design flow.

Fig. 3 depicts an aspect that can be used to map a

function with name “fir” to hardware (in our example to a

CCU [8]). This aspect invokes an aspect named “strategy1”

which includes optimization rules, user’s knowledge, mapping

strategies, target architecture properties, and other information

specific to the function. The aspect also specifies two

constraints related to input data ranges and noise power.

aspectdef maxmizePerformance
 sel1 select: *.function,name=“fir”- // specification of pointcut
 apply to Sel1: map to hardware // map action
 apply to Sel1: call strategy1 // call action
 constraints: // constraints
 define function,“fir”-.arg,output-.noise_power <= 1e-3;
 define function,“fir”-.arg{input}.range = -40..120;
 end
end

Fig. 3. Example of an aspect specifying non-functional

requirements.

Each type of action is associated to a specific stage in the

REFLECT design flow. For instance, the optimize action is

associated to the CoSy compiler instance and includes

compiler optimizations such as loop unrolling, scalar

3
 The select and apply are conceptually equivalent to the pointcut (set of join

points) and advice in AspectJ [10] and have been previously used in the

context of an aspect language for MATLAB [14].

replacement, loop fusion, loop fission, code hoisting, word

length analysis, and data-type conversion.

Aspect actions (apply section) can be of different types.

Table 1 presents the current type of actions being considered.

These actions include mapping and optimization directives as

well as directives to specify the insertion of code in specific

join points (used for monitoring and instrumenting) to define

properties and to instruct tools to report information (e.g.,

values of attributes).

Table 1. Current keywords associated to actions.

Action

(keyword)

Description

insert insertion of code

report instructs the tools in the REFLECT design

flow to report information

optimize instructs the tools for specific optimizations,

including code transformations

map Instructs the tools to map computations and

data structures to specific hardware

components

define defines properties that can be used by the tools

call invoke other aspects

4 Case Studies

We now describe opportunities for the application of

various Aspects described above to the hot-spots of two

applications from the avionics domain: 3D Path Planning and

Stereo Navigation. In this section we briefly describe their

computations, and the following section presents experimental

results of the application of a set of high-level code

transformations guided by the use of Aspects.

4.1 3D Path Planning

The 3D Path Planning core computation defines a 3D

path r(t) between the current vehicle position and required

goal position, using Laplace’s equation (see, e.g., [15][16]). It

solves Laplace’s equation in the interior of a 3D region,

guaranteeing no local minima in the interior of the domain,

leaving a global minimum of v(r) = -1 for r on the goal region,

and global maxima of v(r) = 0 for r on any boundaries or

obstacle. A path from any initial point r(0), to the goal, is

constructed by following the negative gradient of the potential,

v.

Fig. 4 illustrates the computational contribution of the

main 3D Path Planning functions to the global execution time

on a PPC440 core (at 400 MHz) embedded in a Xilinx

Virtex5 FPGA. The iteration steps represent over 90% of the

global execution and are performed by the gridIterate

function.

A possible code implementation for the gridIterate

function is depicted in Fig. 5 where, for simplicity, details

such as global variables definition, initialization and functions,

are omitted. This function uses a 3D matrix representing an

obstacle map (array obstacle) and outputs a 3D matrix

representing the potential matrix (array pot).

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 235

gridsInit
0.23%

iteration_ph -
step 1
3.94%

iteration_ph -
step 2
0.25%

iteration_ph -
step 3
4.12%

interpolation_p
h - step 4

0.66%

iteration_ph -
step 4

45.09%

update_ph -
step 4
0.16%

interpolation_p
h - step 5

0.28%

iteration_ph -
step 5

45.12%

update_ph -
step 5
0.16%

Fig. 4. Contribution of the main 3D Path Planning functions

to the global execution time (obtained by using hardware

timers).

#define ITER_STEPS_NUM ...
void gridIterate(int* obstacles, float* pot) , …
 for (it = 0; it < ITER_STEPS_NUM; it++) {
 for (i = 1; i < (X_DIM - 1); i++) {
 for (j = 1; j < (Y_DIM - 1); j++) {
 for (k = 1; k < (Z_DIM - 1); k++) {
 val = obstacles[i][j][k];

 if (val == 1) pot[i][j][k] = POTENTIAL_ZERO;
 else if (val == -1) pot[i][j][k] = POTENTIAL_ONE;
 else {
 acc = (accType)pot[i-1][j][k]+
 (accType)pot[i+1][j][k] +
 (accType)pot[i][j-1][k]+
 (accType)pot[i][j+1][k] +
 (accType)pot[i][j][k-1]+
 (accType)pot[i][j][k+1];
 pot[i][j][k] = FIX_CORRECT(acc * SCALE);
 }}}}}}

Fig. 5. Function gridIterate C code from the 3D Path

Planning application.

4.2 Stereo Navigation

The Stereo Navigation (StereoNav) application is

intended for airplane localization when the GNSS (Global

Navigation Satellite System) used in airplanes is temporarily

unavailable. The idea of the application is that from two

independent images derived from cameras, looking in

approximately the same direction, features can be extracted

(dominant entities in the image are invariant to rotation and

translation). Using two cameras taking simultaneous images

allows for localization of the features in 3D-space. The main

components of the algorithm include: Debayering (optional),

Rectification, Feature extraction, Feature matching, 3D

reprojection, and Robust pose estimation and refinement.

Fig. 6 illustrates the contribution of the main StereoNav

functions to the global execution time when executing the

application in the PPC440 core (at 400 MHz) in the Xilinx

Virtex5 FPGA. We used hardware timers to measure the

execution time of each function. The core computation of the

StereoNav application is presented in function

harrisTile_model_step (identified in Fig. 6 as “do_tile”) and

consists of a sequence of 8 convolutions using two kinds of

conv function (ConvVBConst and ConvVBRepl). A section of

the C code of the ConvVBConst function is depicted in Fig. 7.

do_rectif
0.170%

do_tile
66.173%

do_sort
0.037%

do_match_lr
5.702%

do_match_t1t
2

1.024%

do_circular_ch
eck

0.003%

do_reproj
0.004%

do_ransac_loo
p

26.886%

do_refin
0.001%

do_finit_state
0.001%

Fig. 6. Contribution of the main StereoNav functions to the

global execution time (obtained by using hardware timers).

void ConvVBConst (..) { ...
for (IDXB_1U=SSTART_1U; IDXB_1U<=SEND_1U; IDXB_1U++){
 …
 for (IDXB_0U=SSTART_0U;IDXB_0U<=SEND_0U;IDXB_0U++) {
 … acc = 0.0F; …
 for (HIDXA_1U=0;HIDXA_1U<=HEND_0_1U;HIDXA_1U++) {
 for (HIDXA_0U=0;HIDXA_0U<=HEND_0_0U;HIDXA_0U++) {
 acc = u*IDXALIN_0U+ * h*buf1Idx+ + acc; …
 } IDXALIN_0U = (uDims[0U] - hDims[0U]) + IDXALIN_0U;
 } y[IDXBLIN_0U] = acc;
 }
 }
 ... // second part of the convolution
 //(with 5 FORs nested and a function call in the innermost loop
}

Fig. 7. Part of the C code of the ConvVBConst function.

5 REFLECT Approach

This section illustrates the use of aspects, design patterns

and hardware/software templates for the two case studies

described in the previous section.

236 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

5.1 3D Path Planning: gridIterate

For the gridIterate function we consider the

optimizations and strategies presented in Table 2 and Table 3,

respectively. For this case study we focus on data conversions

from floating-point to fixed-point, partial loop unrolling of the

innermost loop, and multi-dimensional arrays transformed to

uni-dimensional arrays. As the data elements defining

obstacles have values in the set {-1, 0, 1} and that the pot data

represent real values in the range [0, 1], scaling analysis can

result in an optimized fixed-point representation.

Table 2. Optimizations considered for gridIterate

Transf. Description

T 1.1 Float to fixed-point representation

T 1.2 Unroll innermost loop by 2

T 1.3 Shift by powers of two promoted to wires

T 1.4 Linearization of multi-dimensional arrays.

T 1.5 Array indexing transformed as wire concatenation

and wiring component

T 1.6 Code motion (loads moved from if-else conditions)

Table 3. Strategies considered for gridIterate

Strategy

Name

Transformations

T1.1 T1.2 T1.3 T1.4 T1.5 T1.6

gridIt-baseline

gridIt-fixed1

gridit-fp1

gridit-fixed2

To convert from multi-dimensional to uni-dimensional

arrays, an index such as [i][j][k] is translated to (i*Y_DIM +

j)*Z_DIM + k allowing the subsequent application of operator

strength reduction on the calculations for the indexing of the

array variables as well as concatenation of addressing bits

when the various array dimensions are aligned at specific

power-of-two address boundaries.

A transformation to the gridIterate function considers

multi- to uni-dimension transformation, code motion, and the

use of a macro that can be implemented as a concatenation of

wires to calculate the index of the arrays pot and obstacles.

The code motion is applied based on the following

explanation. In order to decrease the number of references to

the pot array variable, the writes to pot[i][j][k] existent in all

branches of the if-else construct in the code can be moved to

after the if. This transformation also allows the parallel loads

of obstacles and pot data when the two arrays are bound to

different memories or to a multi-port memory. The code

motion of the accesses to pot allows earlier scheduling of pot

data loads. If the innermost loop is unrolled twice, we increase

the impact of pipelining memory accesses, and we reuse a load

to pot thus reducing the number of loads per two k-loop

iterations.

The mapping of functions to hardware can be guided by

the user through aspects. Fig. 8 illustrates a generic aspect to

map a given function to a CCU identified by an input id. For

instance, by associating a specific instance of this aspect as

 map2hardware(“gridIterate”, 1)

the gridIterate function will be mapped to a CCU of the

target architecture identified by “1”. Further, the user may use

conditions to make an action dependent on the value of certain

attributes. For instance, the use of

 condition: $function.no_lines < 500

in the aspect in Fig. 8 instructs the weaving process to

map a function to hardware only if the function is less than

500 lines of code long (attributes as hardware cost can also be

used).

aspectdef map2hardware(string $name, int $id=1)
 select A: function{name=$name}
 apply to A: map to hardware(ccu.id=$id)
end

Fig. 8. An aspect with an action to map a function to

hardware.

5.2 Stereo Navigation: Convolutions

For the convolution functions we consider the

optimizations and the strategies presented in Table 4 and

Table 5, respectively. The convolution functions ConvVBConst

and ConvVBRepl include invocations to the functions

PadBConst and PadBRepl, respectively. For this second case

study we consider scalar replacement, function inlining, and

the specialization of the convolution functions according to

the calls. This specialization is mainly dedicated to the

elimination of loop headers for loops with only one iteration,

as well as to the unrolling of innermost loops when their

number of iterations is less than or equal to three.

Table 4. Optimizations considered for the convolution

functions.

Transf. Description

T2.1 Scalar replacement

T2.2 Function inlining

T2.3 Specialization of each call to conv

T2.4 Loop header elimination

T2.5
Loop unrolling of innermost loops with number of

iterations <= 3

Table 5. Strategies considered for the convolution functions.

Function Strategy
Transformation

T2.1 T2.2 T2.3 T2.4 T2.5

ConvVBConst

stg01

stg02

stg03

ConvVBRepl

stg04

stg05

stg06

stg07

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 237

Fig. 9 illustrates the LARA specification of a strategy

that considers function inlining, loop unrolling, and function

specialization. The use of section (e.g., section{“l1”}) in the

select sections of the aspects refers to specific code sections

identified by pragmas included by the user in the code as

#pragma joinpoint section=”l1”. Note, however, that this is

indicative and the final syntax and constructs of LARA may be

slightly different.

import inline1;
import unroll1;

aspectdef Const_Config1
 select A: function,“harrisTile_model_step”-.section,“l1”-.
 call,“ConvVBConst”-.body;
 apply to A:
 define{$ sEnd[1U]=94, $ sEnd[0U] =94, $hEnd_0[1U]=3;
 $hEnd_0[0U] =3, $numBSec =8, $ sEnd_0[1U] =94,
 $ sEnd_0[0U]=94, $hEnd_1[1U] =3,$ hEnd_1[0U] =3}
 optimize specialize();
 end
end
aspectdef Repl_Config1
 select A: function,“harrisTile_model_step”-.section,“l2”-.
 call,“ConvVBConst”-.body;
 apply to A:
 define{...}
 optimize specialize();
 end
end
aspectdef Repl_Config2
 select A: function,“harrisTile_model_step”-.section,“l3”-.
 call,“ConvVBConst”-.body;
 apply to A:
 define{...}
 optimize specialize();
 end
end

call unroll1(“ConvVBConst”);
call unroll1(“ConvVBRepl”);

call inline1(“PadBConst”);
call inline1(“PadBRepl”);

// two imported aspects:
aspectdef inline1(String $name) // inline functions identified bt
$name
 select: function{$name};
 apply: optimize inline();
end

aspectdef unroll1(String $name) // unroll loops if the number of
iterations is <=3
 select A: function{ $name}.loop{*};
 apply to A,B: optimize loop_unrolling($loop);
 condition: $loop.no_iterations <= 3
end

Fig. 9. Examples of aspects and possible strategy for the

harrisTile_model_step function.

6 Experimental Results

We apply the strategies outlined in Section V to the

functions described in Section IV. As our design flow is not

yet fully automated, the results presented here correspond to

the manual application of the described aspects and strategies.

We consider software versions of the functions and compare

the results of running them on the PPC440 at 400 MHz against

hardware versions obtained by the DWARV compilation and

synthesis flow. Unless otherwise stated, the software versions

are generated with the gcc compiler using the -O3 compilation

option. The hardware versions are clocked at 200 MHz.

3D Path Planning: gridIterate

The use of floating-point data types for the gridIterate

(gridIt-baseline and grid-fp1), single precision in this case,

favors the use of dedicated hardware implementations. With

respect to floating-point solutions, the hardware

implementations achieve speedups of 2.15 and 2.83 over

the software related versions for gridIt-baseline and gridIt-

fp1, respectively. In the case of the fixed-point solutions

(gridIt-fixed1 and grid-fixed2), the hardware implementations

achieve speedups of 1.05 and 5.56 over the software

solutions.

Considering the FPGA resources used for different

hardware implementations of the same function (gridIterate)

the strategies used for gridIt-fixed1 and gridIt-fixed2 imply

more hardware resources due to the presence of a 64×64 bit

multiplication in the fixed-point multiplication vs. the

presence of a 23×23 bit multiplication for the single precision

floating-point version (gridIt-baseline and gridIt-fp1). This is

reflected in the use of 2.2× the number of DSP48 and 1.23×

the number of slices. The last two strategies (correspondent to

gridIt-fp1 and gridIt-fixed2) achieve implementations with

more slices than the one using the strategy considered by

gridIt-baseline and gridIt-fixed1. This is due to the fact that

gridIt-fp1 and gridIt-fixed2 consider loop unrolling of the

innermost loops by a factor of 2.

Stereo Navigation: Convolutions

For the function ConvVBRepl of the Stereo Navigation

application, the use of strategy stg07 allows a speedup of

1.30 by the FPGA design over the software version with the

same strategy. For ConvVBConst the FPGA design achieves

speedups of 2.31 and 2.54 over the best non-specialized

software implementation considered (PPC –O3) and non-

specialized FPGA implementation, respectively.

The use of strategies stg05 and stg06 in the ConvVBRepl

functions leads to a decrease in slices of 32.39% and 44.33%,

respectively. For ConvVBConst the number of slices decreases

by 7.62% when using stg03 vs. stg01 for similar clock

frequencies.

238 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

7 Related Work

Compiling high-level programming languages to FPGAs

is a topic that has been extensively addressed by academia and

industry (see, e.g., [17] for a survey of representative

approaches). However, it is understood that, due to the large

gap between software and hardware, compilers for FPGAs still

have a long way to go before being able to generate efficient

customized architectures for complex applications. In

addition, the hardware to be generated depends on non-

functional requirements, which are not embedded in the code

of the application and result in extensive work by the designer

to explore options and to modify the code of the application.

To the best of our knowledge this is the first time an

aspect-oriented approach is being used to holistically control

and guide the stages of a design flow, in order to compile C

applications to embedded systems implemented using FPGAs.

By extending the possible join points to system artifacts,

beyond possible artifacts in programs, and by applying to both

those types of artifacts actions specified in a programming

language, we are exposing users to powerful mechanisms to

control and guide the design flow and to program strategies

(mostly defining design patterns) that best suit user

requirements.

Recent efforts to map computations to FPGA-based

systems include the hArtes tool chain [17]. hArtes also

includes as a source-to-source transformation stage the

Harmonic [11] tool, and as a hardware compiler a previous

version of DWARV [13]. However, the hArtes approach

supports neither an aspect-oriented approach nor strategies

and design patterns.

8 Conclusions

This paper presented part of the REFLECT project’s

approach to a design flow targeting FPGA systems. At the

core of our approach is a new programming language, named

LARA, allowing users to specify aspects and strategies

(reflecting design patterns) that guide the design flow to meet

desired non-functional requirements.

Specifically, in this paper we focused on the description

of aspects and strategies to two critical functions from two

avionics applications: Stereo Navigation, and 3D Path

Planning. We presented experimental results of the application

of selected aspects and the corresponding strategies. The

results highlight the modularity and reusability of aspects and

design patterns in the proposed approach, thus providing early

evidence that this approach can lead to a substantial cost

decrease of code maintenance while promoting design space

traceability.

9 Acknowledgment

This work is partially supported by the European

Community’s Framework Programme 7 (FP7) under contract

No. 248976. Any opinions, findings, and conclusions or

recommendations expressed in this material are those of the

authors and do not necessarily reflect the views of the

European Community. The authors are grateful to all team

members of the REFLECT project for their help and support.

10 References

[1] S. Hauck, and A. DeHon, Reconfigurable Computing:

The Theory and Practice of FPGA-Based Computation

(Systems on Silicon), Morgan Kaufmann, November 16, 2007.

[2] M. Gokhale, and P. Graham, Reconfigurable

Computing: Accelerating Computation with Field-

Programmable Gate Arrays, Springer, 1st Edition, Dec.,

2005.

[3] REFLECT website: http://www.reflect-project.eu.

[4] J. M. P. Cardoso, et al., “REFLECT: Rendering FPGAs

to Multi-Core Embedded Computing,” Book Chapter in

Reconfigurable Computing: From FPGAs to

Hardware/Software Codesign, Springer (to appear).

[5] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.

Lopes, J.-M. Loingtier, and J. Irwin, “Aspect Oriented

Programming,” in Proceedings of the European Conference

on Object-Oriented Programming (ECOOP‟97), Finland.

Springer-Verlag LNCS, vol. 1241, June 1997.

[6] G. Kiczales, “Aspect-Oriented Programming,” in ACM

Computing Surveys (CSUR), special issue: position statements

on strategic directions in computing research, 1996. 28(4es).

[7] Z. Petrov, K. Krátký, J. M. P. Cardoso, and P. C. Diniz,

“Programming Safety Requirements in the REFLECT Design

Flow,” in IEEE 9th Int‟l Conference on Industrial Informatics

(INDIN‟2011), Caparica, Lisbon, Portugal, July 26-29, 2011

(to appear).

[8] S. Vassiliadis, S. Wong, G. Gaydadjiev, K. Bertels, G.

Kuzmanov, and E. Panainte, “The Molen Polymorphic

Processor,” in IEEE Transactions on Computers, Nov. 2004,

Vol. 53, Issue 11, pp. 1363-1375.

[9] R. Lämmel, E. Visser, and J. Visser, “Strategic

programming meets adaptive programming,” In Proc. of the

2nd Int‟l Conference on Aspect-Oriented Software

Development (AOSD '03), Boston, Mass., March 17-21, 2003.

ACM, New York, NY, USA, pp. 168-177.

[10] J. Gradecki, and N. Lesiecki, Mastering AspectJ:

Aspect-Oriented Programming in Java, Wiley, 2003.

[11] W. Luk, J. Coutinho, T. Todman, Y. Lam, W. Osborne,

K. Susanto, Q. Liu, and W. Wong, “A High-Level

Compilation Toolchain for Heterogeneous Systems,” in Proc.

IEEE International SOC Conference (SOCC„09), Sept. 2009,

pp. 9-18.

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 239

[12] ACE CoSy compiler development system,

http://www.ace.nl/compiler/cosy.html

[13] Y. D. Yankova, G. Kuzmanov, K. Bertels, G. N.

Gaydadjiev, Y. Lu, and S. Vassiliadis, “DWARV:

DelftWorkbench Automated Reconfigurable VHDL

Generator,” in Proc. of the 17th Int‟l Conference on Field

Programmable Logic and Applications (FPL‟07), Aug. 2007,

pp. 697–701.

[14] J. M. P. Cardoso, P. Diniz, M. Monteiro, J. Fernandes,

and J. Saraiva, “A Domain-Specific Aspect Language for

Transforming MATLAB Programs,” in Domain-Specific

Aspect Language Workshop (DSAL‟2010), part of the 9th

Int’l Conference on Aspect-Oriented Software Development

(AOSD’2010), March 15-19, 2010.

[15] C. I. Connolly, J. B. Burns, R. Weiss, “Path planning

using Laplace’s equation,” in Proc of IEEE Int‟l Conference

on Robotics and Automation, Cincinnati, OH, USA, May

1990, vol. 3, pp. 2102-2106.

[16] K. P. Valavinis, T. Herbert, R. Kollura, and N.

Tsourveloudis, “Mobile Robot Navigation in 2-D Dynamic

Environments Using an Electrostatic Potential Field,” in IEEE

Transactions on Systems, Man, and Cybernetics, vol. 30,

issue 2, March. 2000, pp. 187-196.

[17] J. M. P. Cardoso, P. Diniz, and M. Weinhardt,

“Compiling for reconfigurable computing: A Survey,” in

ACM Computing Surveys (CSUR), Vol. 42, Issue 4, Article 13

(June 2010), 65 pages.

[18] K. Bertels, V. Sima, Y. Yankova, G. Kuzmanov, W.

Luk, J. Coutinho, F. Ferrandi, C. Pilato, M. Lattuada, D.

Sciuto, and A. Michelotti, “HArtes: Hardware-Software

Codesign for Heterogeneous Multicore Platforms,” in IEEE

Micro, 30(5): 2010, pp. 88-97.

240 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

SESSION

REGULAR PAPERS

Chair(s)

DR. PEDRO C. DINIZ

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 241

242 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

A heterogeneous reconfigurable System-on-Chip: MORPHEUS

Florian Thoma1, Matthias Kühnle1, Arnaud Grasset2, Paul Brelet2, Philippe Millet2,
Philippe Bonnot2, Fabio Campi3, Nikolaos S. Voros4, Wolfram Putzke-Roeming5,

Axel Schneider6, Michael Hübner1, Klaus D. Müller-Glaser1, Jürgen Becker1
1Karlsruhe Institute of Technology, Germany

2Thales Research & Technology, France
3STMicroelectronics SRL, Italy

4Technological Educational Institute of Mesolonghi (consultant to Intracom Telecom SA), Greece
5Deutsche Thomson OHG, Germany

6Alcatel-Lucent Deutschland AG, Germany

Abstract— The exponential increase of CMOS circuit com-
plexity along the last decades has lead to two growing prob-
lems. The increasing Non-recurring Engineering (NRE) costs
of ASICs or System-on-Chips are becoming only affordable
to the highest volume applications. Additionally the design
methodologies have not kept pace with the rising complex-
ity leading to a rising design productivity gap. Research
into reconfigurable architectures and NoC (Network-on-Chip)
communication systems have shown paths for mitigating these
problems for lower volume applications. In this paper, we
present the European Integrated Project MORPHEUS (IST
027342). It advocates an innovative approach of heteroge-
neous, dynamically reconfigurable SoCs consisting of accel-
erators of various reconfiguration granularity connected by a
NoC and supported by an integrated toolset for spatial and
sequential design. The power of this approach is demonstrated
with four applications from the industrial environment.

Keywords: Dynamic reconfiguration, Reconfigurable architecture,
Reconfigurable computing, heterogeneous computation, MPSoC,
NoC

1. Introduction
MORPHEUS [1] copes with the challenges of rising com-

plexity and the enlarging design productivity gap by devel-
oping a global solution based on a modular heterogeneous
System-on-Chip platform providing the disruptive technology
of dynamically reconfigurable computing including completed
by a software oriented design flow and a consistent toolset.
This three-and-half year project provided a modular silicon
demonstrator in 90nm technology composed of complemen-
tary run-time reconfigurable building blocks which has been
demonstrated with four complementary test cases.

The paper is organized as follows. In section 2, we define
the main objectives of the MORPHEUS project. Section 3
presents related works of other teams in this field. Next, we
present the developed architecture for these objectives, with
emphasis on the reconfigurable components and in section
5 the prototype representing one possible implementation of
this architecture. In section 6, we discuss the toolchain for
compilation and design space exploration. The characteristics

of the target applications are introduced in section 7, and
finally, we present the conclusions of this paper in section 8.

2. Project objectives and challenges
The MORPHEUS project main objective is to make em-

bedded system applications efficiently exploit the benefits
of reconfigurable computing. The MORPHEUS platform is
thus a complex System-on-Chip that exploits run-time pro-
grammability at different levels to provide a competitive
computing solution. Applications are often characterised by
various kinds of processing (with control dominant parts
or stream processing parts, etc.). Therefore the architecture
chosen for their implementation might be heterogeneous,
made of several types of processing units having different
structural granularity (fine grain for logic, coarser grain for
arithmetic, etc).

The challenge of MORPHEUS is to master this hetero-
geneity and complexity thanks to an homogeneous system
architecture and the appropriate toolchain. MORPHEUS’
most significant innovation is thus the exploitation of the
heterogeneous computational engines in the context of an
integrated homogeneous system. This implies the capability
of ensuring efficient communication means where communi-
cations delays at system level can be masked by computation
delays in the computing units. Also the control system of such
architecture through efficient hardware mechanisms is crucial
and the corresponding application development tools are the
key of their usability. The challenge is thus also to provide
a high level language for the global platform control and its
associated compiler ensuring that reconfiguration delays can
be optimally be masked by computation delays.

3. Related Work
Most competing state-of-the-art SoC are based on a single

CPU, or on a combined CPU and DSP enhanced with some
dedicated hardware accelerators. In this systems the host
CPU (central-processing unit) mainly acts as an application
controlling engine (Nomadik [2], OMAP [3], and PXA [4]).
MPSoC implementations differ from MORPHEUS because
the processing nodes of MPSoCs provide a uniform means of

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 243

computation of a single granularity, similar I/O bandwidths
and access patterns. [5] and [6] describe the Pleiades ap-
proach, a reconfigurable architecture template, which was
targeted at low power consumption rather than processing
efficiency. It uses its NoC to connect different elements
of one given reconfigurable-architecture array rather than
intrinsically different, coarser reconfigurable architectures.
In [7] another homogeneous multi-core runtime reconfig-
urable SoC is presented, where two cores are connected
through a lightweight communication infrastructure. Other
reconfigurable architectures are optimized for specific ap-
plications [8] or are only configurable at design time [9].
There are several languages and tools available for use with
reconfigurable platforms. SystemC and SystemVerilog are
mainly used for high-level descriptions of complete systems.
Application specific instruction processors and accompany-
ing tools can be developed with languages and tools like
Mescal, ArchC, LisaTek, Chess/Checkers and XPRES Com-
piler. Design space exploration and development for coarse-
grained reconfigurable hardware can be done with FELIX
[10]. C-based languages like CatapultC, GARP, Mitrion-C,
SA-C and Impulse C are available for parallelized appli-
cations but are limited to specific target architectures. A
more stream-oriented approach is available with tools like
Matlab/Simulink, Scilab, AccelDSP and languages like Array-
OL, Stream-C, ASC and SNET. APIs available for different
traditional languages are DRI, VSIPL++, MPI, OpenMP,
OpenUH and Stream Virtual Machine. UML, sysML and
SpecEdit can be used for formal specification of applications.
For a more system-level approach to application mapping
tools like PTOLEMY II, R-Stream and Gaspard beside the
already mentioned Matlab/Simulink can be used. The projects
EPICURE and RECONF offer tools targeted especially for
reconfigurable platforms.

4. Architecture
4.1 Overview

One problem of most available or proposed reconfigurable
processing architectures is the balancing of generality, flexibil-
ity and efficiency. MORPHEUS draws the logical conclusion
to integrate three Heterogeneous, dynamically Reconfigurable
processing Engines (HREs) which support different but com-
plementary styles of reconfigurable computing, in one highly
scalable platform.

Two fundamental design decisions regarding the MOR-
PHEUS platform architecture were made at an early stage
of the project and verified with a SystemC model. The first
decision was to use a central controller to manage the whole
platform. The second decision was the usage of the Molen
paradigm [11] to control the HREs from the central processor,
since it allows parallel execution of the functions on the HREs
and provides a mechanism to pass parameters to the functions.

Since the data flow organization between the HREs is not
fixed by the architecture, very flexible and efficient software
controlled usage of the HREs is possible. In typical data

Fig. 1: MORPHEUS architecture

stream processing applications consecutive processing steps
can be mapped onto different HREs and connected in a
pipeline style. Thereby, the difficult task is to find a well
balanced split of the application to the pipeline stages. Alter-
natively the same HRE also can be used in a time-multiplex
style for consecutive processing steps. A combination of both
approaches allows to find a well adjusted load balance for all
available HREs.

Furthermore, the analysis of the targeted applications
clearly showed that special emphasis has to be put to a fast
dynamic reconfiguration mechanism.

4.2 Structure
The MORPHEUS hardware architecture, which is depicted

in fig. 1, comprises three heterogeneous, reconfigurable pro-
cessing engines which target different types of computation:

• XPP from PACT XPP Technologies is a coarse-grain
reconfigurable array targeting algorithms with huge com-
putational requirements but mostly deterministic control-
and dataflow.

• DREAM is based on the PiCoGA core from STMicro-
electronics. It is a medium-grained reconfigurable array
consisting of 4-bit ALUs and LUTs where up to four
configurations may be kept concurrently and mainly
targets computation intensive algorithms that can run
iteratively using only limited local memory resources.

• FlexEOS from Abound Logic is an embedded Field
Programmable Gate Array (eFPGA). Thus, it is a fine-
grain reconfigurable device based on LUTs.

All system control is handled by an ARM926EJ-S processor.
Other processing tasks can be mapped onto the ARM pro-
cessor only if they do not compete for processing power or
bandwidth with the primary tasks.

As the HREs in general will operate on different clock
domains, they are de-coupled from the system clock domain
by data exchange buffers (DEB) consisting of dual ported
(dual clock) memories either configured as FIFOs or double
buffers. The ARM processor, which is controlling all data
transfers, has to ensure the in-time delivery of new data to
the DEBs to avoid stalling of the HREs.

According to the Molen paradigm each HRE contains a set
of exchange registers (XR). Through the XRs the ARM and
HREs can exchange synchronization triggers (e.g. new data
available or computation has finished) as well as a limited
number of parameters for computation (e.g. start address of

244 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

Fig. 2: MORPHEUS NoC topology

new data in the DEBs). Buffering of local data can be done
in the on-chip data memory. As a third level of memory the
platform uses external SRAM memory.

As dynamic reconfiguration of the HREs imposes a signif-
icant performance load on the ARM processor, a dedicated
reconfiguration control manager (PCM) has been designed to
serve as a respective offload-engine. The PCM analyzes which
configuration is needed for the next processing steps.

All system modules are connected via multilayer AMBA
busses. Separate busses are provided for reconfiguration
and/or control and data access. Additionally a NoC based
on ST’s spidergon technology [12] with the characteristic
topology has been integrated to increase bandwidth. To reduce
the burden on the ARM system controller, DMA and DNA
(direct network access) controllers available for loading data
and configurations. Fig. 2 shows the topology of the integrated
NoC where each node is connected to the neighbours and
to one diagonally across the net. The main idea for opti-
mizing the topology is to place NoC nodes with high inter-
communication demand directly adjacent to one another, since
a direct interconnection link exists between such nodes.

5. Chip prototype
5.1 Technology Options

The MORPHEUS chip (fig. 3) was designed and fabricated
using a CMOS 90nm process of ST Microelectronics [13].
The reference voltage is 1V, although the chip was designed
to operate in standard temperature conditions in the range
[0.9V-1.2V].

The controlling ARM processor, the XPP, and all structures
related to data and configuration transfers are implemented
by Standard Cells. The design utilizes standard cell libraries
supporting two different threshold voltages: specific low
threshold, high speed cells are utilized only on critical paths,
accounting to 11.4% of the standard cells area, while high
threshold, low leakage cells were utilized in the rest to reduce
power consumption. The MORPHEUS chip features a total
area of 110 mm2, 97 M transistors including L1 and L2
memory and IOs (table 1). In all, memory occupies 16%
of chip area, IO 6% and Std cells 55%. It features a static

Fig. 3: Photograph of the MORPHEUS prototype

Table 1: Area Distribution in the MORPHEUS Prototype Chip

Total Chip Area [mm2] 10.48 x 10.48
Custom Layout macros area [mm2] 16.1 (15%)
Embedded memory (SP/DP) [Kbit] 5970 / 1961
Embedded memory area [mm2] 17.5 (16%)
IO ring area [mm2] 6 (5.4%)
Standard cell count [Kgates] 8507 (33%)
Overall Transistor count [Millions] 97
Standard cell density 52%
High Speed vs. Low Leakage Std. cells (area ratio) 11.4%

power consumption of 230mW. Dynamic consumption of the
devices strongly depends on the current computation and all
clock domains are dynamically scalable leading to an average
dynamic consumption around 700mW with local peaks above
the 3W mark. Local and global IR-Drop phenomena, very
common in similar high-performance architectures, are signif-
icantly limited by the multiple, asynchronous clock domains.

Timing closure in worst case conditions (wc, 0.9V, 125◦C)
was at 250 MHZ for the top level interconnect, 200MHZ for
DREAM, 150MHz for XPP and 100MHz for the FlexEOS
module. In typical conditions the respective performance
figures raise to 320, 260, 180 MHz respectively. Referring
to worst case conditions, these figure lead to a 12.5Gbit/sec
throughput on the NoC. Choosing 16-bit operations as ref-
erence, the test chip is capable to deliver 60 GOPS at 0.6
GOPS/mm2 and 20 GOPS/W.

5.2 Performance Assessment
The mapping of several arithmetical operations of different

bit widths to the different HREs allows an evaluation of
peak performance of the system. The algorithms are running
local on the HREs and do not cover data transfer and
synchronisation across the hole system. Fig. 4 shows how
each of the computation engines offers performance that
significantly depends on the operations bit-width: at low bit
widths, predictably, the FlexEOS yields larger efficiency. In
the 8- to 16-bit range, the efficiency of the DREAM engine is
evident. After the 16-bit mark, XPP can exploit is significant
computation parallelism.

The graphs clearly demonstrate the advantages enabled by
the MORPHEUS approach: for every computational kernel

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 245

(a) (b) (c)

Fig. 4: Theoretical Performance of the MORPHEUS HREs

Table 2: Comparison of MORPHEUS performance metrics
against alternative computation platforms

Device Technology GOPS GOPS/mm2 GOPS/W
MORPHEUS CMOS090 60 0.6 20

Microprocessor CMOS090 0.35 0.15 1
ASIC CMOS090 n.a. 10 800

TU iVisual [14] CMOS180 77 1.16 205
KAIST Vect Proc [15] CMOS130 125 3.4 214
Philips Xetal II [16] CMOS090 107 1.44 170

Cell CMOS090 205 0.85 2.5
Xilinx Virtex-II 8000 FPGA 450 ? 3.5

Virtex-4-SX55 FPGA 50 ? 3.5

there is a component that is most suited to its needs. Applica-
tions that consist of several significantly different computation
kernels will benefit most from this property as it is possible
to partition and pipeline the application across all HREs. The
reported performance figures classify MORPHEUS roughly
in the range of vector processors in the same technology
node (see table 2). On the other hand, MORPHEUS allows
significant advantages against FPGAs and general purpose
embedded processors using the same technology node.

6. Toolset
MORPHEUS application development is based on a num-

ber of successful tools from industry. These tools are inte-
grated to a seamless design flow from a high level description
toward target executable code. The normal drawback of
heterogeneous architectures is that each component requires
its own special knowledge and experience to conquer its
complexity and implement a high performance solution to the
requirements, which additionally hampers the partitioning of
the applications. An ambition of the MORPHEUS toolset is
to abstract the heterogeneity and the complexity of the archi-
tecture in such a way that software designers may program it
without a deep knowledge and experience on HREs (hardware
architecture, languages, programmability and so on).

The developer uses C-code for application entry. Based on
this code and additional information, the toolset generates the
bitstreams for the three HREs. This way the MORPHEUS
toolset enables a significant productivity improvement of de-
velopment on reconfigurable computing platforms. The toolset
is organized in two levels.

At the top level, the user has a global view and under-
standing of the whole application and focuses on partitioning
and mapping each function on a HRE as well as the global

Fig. 5: Accelerated function low-level design

Fig. 6: Programming steps

scheduling of the HREs, the ARM, the memory transfers and
the synchronizations. Internally the programming model is
based on the MOLEN paradigm [11]. It provides a solution
to most of the issues that arise such as: an opcode explosion,
a limitation of number of parameters, a lack of parallel
execution and a modular approach. At runtime, this level
is managed by the OS by scheduling the loading of proper
HREs’ binary code against the whole execution and the data
communication.

At the lower level the user focuses on local optimization
of the code of each accelerated function. They are designed
by graphically assembling sub-functions which are described
in C-code and then mapped on a set of HREs. Fig. 5 shows
such an assembly of sub-functions, and the description of the
MORPHEUS architecture used to map each sub-function.

Thanks to the toolset, the development of an application
on MORPHEUS is nearly as easy as writing a sequential C-
code for a General Purpose Processor. When implementing
an application on the architecture, the designer splits it into
control parts (executed on the ARM processor) and compu-
tation intensive parts (mapped on the HREs) by the steps in
fig. 6:

1) The application is written in standard C-language.
2) The programmer identifies the functions that must be

accelerated with a pragma in the application C-code.
3) These accelerated functions are captured inside a graph-

ical environment, called SPEAR [17], by connecting
and assembling elementary sub-functions written in C.

4) The toolset generates the bitstream for every HRE.
The SW compilation flow manages the creation of a soft-

ware executable running on the main processor, directly from

246 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

eCos Hardware Abstraction Layer

Application

Intelligent Services for

Reconfigurable Computing

NoCARM XPP IIIFlexEOS DREAMPCM

R
T

O
S

eCos Real-time Operating System Core

Fig. 7: Structure of the RTOS

the application code of the step 2. The COSY compiler [18]
replaces the calls of accelerated functions in the application
code with the MOLEN system calls. The RTOS has a layered
structure which is shown in Fig. 7. The bottom layer is the
hardware abstraction layer which provides a more uniformed
access to the reconfigurable hardware and the system infras-
tructure with virtualized XRs. It provides also the basics for
a pipeline services between the HREs.

The Spatial Design framework is the part of the toolchain
dedicated to development of specific code for each HREs and
consist of several tools (fig. 8). It includes programming the
HREs, generating configuration bitstreams but also managing
the communications to feed these accelerators with data.
A Control Data Flow Graph (CDFG) format is used as
an intermediate and technology independent format inside
the framework. High-level synthesis techniques are used in
MADEO, which acts as a back-end for the framework [19].

A second objective is to provide domain-specific models
and languages to application programmers. Operations are
modelled as a directed acyclic graph (fig. 9 part “a”), in a
formalism called Array-OL which is well suited to represent
deterministic, data intensive data-flow applications such as the
kind of operations accelerated on HREs. SPEAR automati-
cally generates a CDFG model of the accelerated function and
communication parameters to feed the HRE. SPEAR enables
to manage, in a coherent framework, both the HW interface
of the HRE (i.e. addressing of local buffers) and the data
transfers and synchronisations. The Cascade tool [20] is used
to generate the CDFGs for the elementary functions. Despite
the large number of tools, the toolset remains user’s friendly
as it is closely integrated and automated.

To execute multi-threaded applications, their dynamic na-
ture requires a central management. In MORPHEUS, this
is provided by the Intelligent Services for Reconfigurable
Computing (ISRC) [21] layer on top of an RTOS which
handles the interwoven topics of scheduling and allocation.
If there are multiple implementations of the requested op-
eration available it makes a choice at run-time depending
on the current status. Because of the dynamic allocations,
the communication between the application and the recon-
figurable units is also only indirect and handled by ISRC
by programming the DMA/DNA controllers to transfer data
between memory and the DEBs of the HREs. The linking

Fig. 8: Simplified internal view of the tool chain

Fig. 9: Overview of an operation mapping on a HRE

of a transfer to an operation with SPEAR allows to migrate
the transfer to the new HRE. The interface of ISRC extends
the MOLEN directives with BREAK for synchronization with
parallel operations and RELEASE for discarding no longer
needed bitstreams.

In the current development status, the main limitations
are located in the Spatial Design part that supports the C-
language structures and data types with restrictions, and does
not yet target the XPP. The configuration bitstreams generated
with the PACT proprietary tools [22] can however be easily
integrated into the compilation flow of the toolset.

7. Applications
Four different case studies borrowed from complementary

domains with different reconfigurations needs have been
used to evaluate and validate the MORPHEUS platform and
toolset.

7.1 Wireless telecommunications
The emerging IEEE 802.16j standard for Mobile Broad-

band Wireless Access systems is the base for this application.
The standard provides for a baseline PHY chain, with a large
number of optional modes. A device that can reconfigure ef-
ficiently between different such modes is the main motivation
for using the MORPHEUS technology. The demonstrator is

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 247

part of a PHY layer implementation incorporating a word-
level processing block (128-point FFT), followed by a QAM
symbol demapper, capable of supporting modulation schemes
ranging from QPSK to QAM64. Due to constraints of the
prototype chip, it is not possible to fit both the FFT and the
QAM Demapper into the DREAM. However, the capability of
the MORPHEUS system for loading bitstreams for different
HW accelerators at runtime offers a convenient solution.

The SPEAR tool was used for capturing the target appli-
cation: one CDFG was generated for the FFT block and one
for the QAM demapper. They were used by MADEO for
the generation of the bitstreams for DREAM, as well as the
control code running on the ARM processor, responsible for
reconfiguration and for managing the data transfers to and
from the DEBs. The implementation of the QAM demod-
ulation functions on the HREs took less than a day effort
for each of them and did not require any HREs knowledge.
The design on the SPEAR graphical interface can easily be
built and requires a few minutes. Globally a few days were
necessary for the implementation of the application including
C code for ARM and SPEAR capture. The application shows
an improvement from 925487 cycles on pure ARM to only
19751 cycles using ARM together with DREAM.

7.2 Network routing systems
The rapid evolution of the telecommunication market forces

manufacturers of high-end telecommunication equipment to
develop their new products using draft versions of standards,
because the standardization processes take a very long time.
The risk of costly design re-spins can be lowered by providing
reconfigurable SoCs which allow late hardware changes in the
design process or even design changes after deployment.

Today’s telecommunication networks require data rates up
to 40 Gbit/s per single line, which cannot be provided by
FPGAs or microcontrollers. The solution is the usage of
an eFPGA macro on an ASIC. The design parts, which
are considered to be uncertain, are mapped to the eFPGA,
whereas the stable design parts are implemented in ASIC
technology. Another problem is the distribution of the updates.
Currently they are installed on-site by personnel or they could
be installed remotely over dedicated channels. These solutions
are not desirable because of the high cost of extra personnel or
hardware required by these solutions. A third solution is the
in-band download within the communication signal, which
allows transmission via existing data paths. This way the
reconfiguration packets can be created at a central location
and broadcasted to the whole network.

A demonstrator which shows the feasibility of this approach
has been developed. Ethernet was a chosen for the proof-
of-concept demonstrator as it enables the usage of standard
devices and is scalable down to a reasonable size. Once an
Ethernet packet is received at the input of the SoC, it is
first processed by a packet filter. It detects the reconfiguration
packets addressed to this node and extracts it from the regular
data stream. It is sent to the reconfiguration memory as well
as forwarded to the regular signal processing part of the SoC

Fig. 10: DREAM performance at different clock speeds

to enable broadcasts. As soon as the reconfiguration data is
complete the reconfiguration controller initiates and controls
the update of the eFPGA.

7.3 Film noise grain removal application
After scanning analog films in order to digitize them,

the generated digital data contains a certain kind of noise
which is caused by the grain of the analog film material.
The algorithm which was developed for removal of this film
grain combines typical picture processing algorithms with
very different processing and data transport requirements.

The main blocks of the application are motion estimation,
motion compensation, and a three dimensional hierarchical
wavelet transformation (DWT). Analysis of these blocks
showed that motion estimation and motion compensation can
be processed very efficiently on the XPP while the DWT is
well suited for the DREAM. Dynamic reconfiguration of the
HREs is necessary since the number and the complexity of
the blocks is too high to be mapped at the same time.

The 2D-DWT is a major functional block of the DWT. Fig.
10 shows execution time over clock speed for the DREAM
and shows that at ≈70 MHz DREAM reaches the speed of
a 200 MHz ARM. The processing time of the film grain
removal application running is approximately 600ms per
frame, of which about 80ms are required for configuration.
An analysis of this result shows that the main bottlenecks of
the current implementation are the internal and external data
transfers.

The remarkable flexibility of the MORPHEUS processing
platform allows several options to improve the performance
of the application. Currently, several features of the NoC are
only partly used or not used at all. Additionally, [23] shows
that impressive improvements in external memory bandwidth
can be achieved if an advanced DDR-SDRAM controller
[24] is integrated into the MORPHEUS platform architecture.
Regarding the development effort, the implementation time
of the film grain removal algorithm on the MORPHEUS
platform with the then still experimental toolset was approx-
imately the same as the implementation time of a current
FPGA platform.

7.4 Homeland security
The goal of this test case is to demonstrate the capability

of the MORPHEUS approach to address in a cost effective
way applications based on intelligent cameras, i.e. systems

248 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

Fig. 11: Execution time of the intelligent camera application

able to automatically extract relevant information from a flow
of images. A significant part of hardware requirements comes
from the number crunching functions such as image enhance-
ment, contour extraction, segmentation, objects recognition
and motion detection.

The application is implemented as a sequence of operators
described in C-code to enable reuse. The SPEAR tool is
used to build automatically the interfaces of each operator.
Writing operators and synthesis of an application is a very
automated task. The toolset provides high productivity and
high reuse capabilities without in-depth knowledge of the
hardware. Fig. 11 indicates a speed-up of 3.4 between ARM
only and ARM coupled with DREAM. It also shows that
DMA communications take about the same time as the HRE
execution. In a case where the DMA and the HRE work are
pipelined we would gain about half of the total time.

8. Conclusion
In this paper, we gave a detailed account of aspects and

outcomes of the MORPHEUS project. A modular heteroge-
neous, dynamically reconfigurable SoC architecture has been
studied and developed. A design flow is associated to this
architecture, with aims to improve the programming produc-
tivity of the platform and to shorten the development times of
applications. This whole hw/sw approach for a dynamically
reconfigurable platform constitutes an innovative solution for
embedded computing. The feasibility and the relevance of
this approach have been demonstrated through case studies.
Their deployment on the chip prototype has shown good
results in term of power consumption and performances of
the platform. The modularity is a key advantage to easily
change the architecture reconfigurable engines and adapt the
toolset accordingly.

Acknowledgements
The authors would like to thank all the partners of the

project consortium. This research was partially funded by the
European Community’s Sixth Framework Program.

References
[1] N. Voros, A. Rosti, and M. Huebner, Eds., Dynamic System Reconfig-

uration in Heterogeneous Platforms: The MORPHEUS Approach, ser.
Lecture Notes in Electrical Engineering. Springer, jun 2009, vol. 40.

[2] M. Paganini, A. Div, and G. STMicroelectronics, “Nomadik R©: A Mo-
bile Multimedia Application Processor Platform,” in Design Automation
Conference, 2007. ASP-DAC’07. Asia and South Pacific, 2007, pp. 749–
750.

[3] H. Mair et al., “A 65-nm mobile multimedia applications processor with
an adaptive power management scheme to compensate for variations,”
in VLSI Circuits, 2007 IEEE Symposium on, Jun. 2007, pp. 224 –225.

[4] L. Clark et al., “An embedded 32-b microprocessor core for low-power
and high-performance applications,” Solid-State Circuits, IEEE Journal
of, vol. 36, no. 11, pp. 1599 –1608, Nov. 2001.

[5] M. Wan et al., “Design methodology of a low-energy reconfigurable
single-chip dsp system,” The Journal of VLSI Signal Processing,
vol. 28, pp. 47–61, 2001, 10.1023/A:1008159121620. [Online].
Available: http://dx.doi.org/10.1023/A:1008159121620

[6] T. Bartic et al., “Topology adaptive network-on-chip design and imple-
mentation,” Computers and Digital Techniques, IEE Proceedings -, vol.
152, no. 4, pp. 467 – 472, Jul. 2005.

[7] G. Smit et al., “Overview of the 4s project,” in System-on-Chip, 2005.
Proceedings. 2005 International Symposium on, Nov. 2005, pp. 70 –73.

[8] J. Xie et al., “A reconfigurable architecture specific for the butterfly
computing,” in ASIC, 2009. ASICON ’09. IEEE 8th International
Conference on, Oct. 2009, pp. 83 –86.

[9] R. Gonzalez, “Xtensa: a configurable and extensible processor,” Micro,
IEEE, vol. 20, no. 2, pp. 60 –70, Mar./Apr. 2000.

[10] C. Morra et al., “Felix: using rewriting-logic for generating function-
ally equivalent implementations,” in Field Programmable Logic and
Applications, 2005. International Conference on, Aug. 2005, pp. 25 –
30.

[11] S. Vassiliadis et al., “The MOLEN polymorphic processor,” Computers,
IEEE Transactions on, vol. 53, no. 11, pp. 1363–1375, 2004.

[12] M. Coppola et al., “Spidergon: a novel on-chip communication net-
work,” System-on-Chip, 2004. Proceedings. 2004 International Sympo-
sium on, p. 15, 2004.

[13] D. Rossi et al., “A heterogeneous digital signal processor for dynami-
cally reconfigurable computing,” Solid-State Circuits, IEEE Journal of,
vol. 45, no. 8, pp. 1615 –1626, Aug. 2010.

[14] C.-C. Cheng et al., “ivisual: An intelligent visual sensor soc with 2790
fps cmos image sensor and 205 gops/w vision processor,” Solid-State
Circuits, IEEE Journal of, vol. 44, no. 1, pp. 127 –135, Jan. 2009.

[15] K. Kim et al., “A 125 gops 583 mw network-on-chip based parallel pro-
cessor with bio-inspired visual attention engine,” Solid-State Circuits,
IEEE Journal of, vol. 44, no. 1, pp. 136 –147, Jan. 2009.

[16] A. Abbo et al., “Xetal-ii: A 107 gops, 600 mw massively parallel
processor for video scene analysis,” Solid-State Circuits, IEEE Journal
of, vol. 43, no. 1, pp. 192 –201, Jan. 2008.

[17] E. Lenormand and G. Edelin, “An industrial perspective: A prag-
matic high end signal processing design environment at Thales,” in
Proceedings of the 3rd International Samos Workshop on Synthesis,
Architectures, modelling, and Simulation, 2003.

[18] E. M. Panainte, K. Bertels, and S. Vassiliadis, “The molen
compiler for reconfigurable processors,” ACM Trans. Embed.
Comput. Syst., vol. 6, February 2007. [Online]. Available:
http://doi.acm.org/10.1145/1210268.1210274

[19] J. Cambonie et al., “Compiler and System Techniques for s o c
Distributed Reconfigurable Accelerators,” Computer Systems: Architec-
tures, Modeling, and Simulation, pp. 505–523, 2004.

[20] “Boosting software processing performance with co-processor synthe-
sis,” white paper, CriticalBlue, 2005.

[21] F. Thoma and J. Becker, “Isrc: a runtime system for heterogeneous
reconfigurable architectures,” in Proceedings of the 5th International
Workshop on Reconfigurable Communication-centric Systems on Chip
2010 – ReCoSoC’10. KIT Scientific Publishing, May 2010, pp. 59–65.

[22] PACT Software Design System XPP-IIb (PSDS XPP-IIb) - Programming
Tutorial, Version 3.2, PACT XPP Technologies, Nov. 2005.

[23] S. Whitty et al., “Application-specific memory performance of a
heterogeneous reconfigurable architecture,” in Proceedings of the
Conference on Design, Automation and Test in Europe, ser. DATE
’10. 3001 Leuven, Belgium, Belgium: European Design and
Automation Association, 2010, pp. 387–392. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1870926.1871020

[24] S. Whitty and R. Ernst, “A bandwidth optimized sdram controller for
the morpheus reconfigurable architecture,” in Parallel and Distributed
Processing, 2008. IPDPS 2008. IEEE International Symposium on, Apr.
2008, pp. 1 –8.

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 249

250 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

SESSION

REGULAR SESSION - ADAPTIVE AND
RECONFIGURABLE HARDWARE

Chair(s)

PROF. DAVID ANDREWS

INVITED TALKS

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 251

252 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

Design Flows and Run Time Systems For
Heterogeneous Multiprocessor Systems on

Programmable Chips (MPSoPCs)
David Andrews

CSCE Department
University of Arkansas

Fayetteville, Arkansas, USA
dandrews@uark.edu

Abstract—FPGA’s have rapidly progressed through
four generations and have now reached a level of matu-
rity that allows them to be viewed as a complete multi-
processor system on programmable chip. In this invited
talk, we present our approach to enable developers to
guide the construction and program a heterogeneous
MPSoC using standard POSIX-compatible programming
abstractions. The ability to use a standard program-
ming model is achieved by using a hardware-based
microkernel to provide OS services to all heterogeneous
components.

Integration densities of FPGA’s continue to follow
Moore’s law with emerging platform FPGAs soon to
contain over 1 million LUTs. This level of transistor
density will be sufficient to enable the integration
of hundreds of soft programmable cores, intercon-
nection networks, distributed memories and soft IP
support components within a single FPGA. Prior to the
introduction of platform FPGA’s, limited integration
densities prohibited the construction of a complete
multiprocessor system on programmable chip. During
these earlier generations, FPGA’s were predominately
used as accelerator co-processors for computationally
intensive sections of code extracted from a single
execution thread. Platform FPGA’s represent an inter-
esting enabling technology that can allow designers
to switch focus from providing performance increases
through tedious and platform specific accelerator point
designs to constructing multiprocessor systems on pro-
grammable chip architectures that achieve performance
increases through portable scalable parallel processing.
As the sizes of each generation of FPGA’s follows
Moore’s law, designers can start considering the pro-
cessor instead of the transistor as least separable design
unit [1]. Targeting processors instead of transistors
as the lowest level design quantum promises many
advantages for widening the use of FPGA technolo-
gies, lowering design costs and time to market, and
increasing designer productivity. While this approach
sacrifices peak performance for productivity, switching
focus from low-level hardware circuit design to writing

high-level parallel programs makes FPGAs accessible
to the broad base of software developers who do
not possess hardware design skills. Both software and
hardware designers can benefit from adopting familiar
software development tools and run time systems to
reduce design times, and enable code portability and
reuse. These should be welcome advantages within
the FPGA design community that largely worked
with tools and design flows that result in relatively
inefficient designer productivity. This viewpoint also
represents an interesting convergence with the general
purpose communities movement towards multicore
architectures.

Three barriers must be overcome to make this
vision a reality. First, the selection of available soft
IP processor components must continue to expand,
and with appropriate compiler support. Efforts such as
eMIPS and Vespa [2], [3] are increasing the selection
of customizable, and vector and array programmable
processors that can be integrated into a MPSoPC
platform FPGA. These efforts cannot be fully exploited
until associated advancements in compiler technology
for heterogeneous systems are also achieved.

The second barrier is the inability to simply adopt
our existing commodity operating systems, which
themselves are undergoing a major paradigm shift to
meet the needs of next generation homogeneous and
heterogeneous multicores. The structure of our mono-
lithic kernels were never created with scalability in
mind, and integrating processors with different Instruc-
tion Set Architectures (ISA’s) breaks current operating
systems’ abilities to provide a single uniform set of
abstract services that efficiently execute across mixes
of processor ISAs. Resolving this issue is pivotal for
platform MPSoPCs as the operating system forms the
foundation upon which higher level run time services
and user code bases are built.

The third barrier is the lack of a standard high level
programming model. Within the commercial sector
several new programming frameworks are emerging

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 253

specifically for heterogeneous manycores. OpenMP [4]
has enjoyed some success for Symmetric Multipro-
cessor (SMP) global memory systems. More recently
OpenCL [5] has gained popularity and is now a
standard for distributed memory heterogeneous archi-
tectures. For reconfigurable systems, we are interested
in extending the capabilities of the high level program-
ming model to additionally drive the generation of a
semi-custom heterogeneous MPSoPC. Third genera-
tion system level synthesis approaches made strides
in generating hardware accelerators from computation-
ally intensive portions of a high level language, such
as C. However, translating a series of ALU operations
into a more efficient custom circuit is orthogonal to
creating an overarching multiprocessor system on chip
architecture. We believe this new challenge represents
a next, or forth generation of system level synthesis.

In this talk we first present the challenges that must
be addressed to creating appropriate design flows and
run-time systems for heterogeneous MPSoPC’s. To
achieve true software-like levels of productivity, the
design flow and development environment for hetero-
geneous MPSoCs must resemble that of standard ho-
mogeneous multiprocessor systems. In our prior work
called hthreads [6], [7], we have targeted the pthreads
asynchronous multithreaded programming model due
to it’s wide acceptance and popularity. In addition
to supporting standard pthreads programs, targeting
pthreads allows us to support emerging models such
as OpenCL that rely on an underlying pthreads imple-
mentation.

We then present our approach to enable developers
to guide the construction and program a heteroge-
neous MPSoC using OpenCL and standard POSIX-
compatible programming abstractions. We have cre-
ated a new capability that allows a complete multipro-
cessor system on chip to be automatically created from
the high level program. This relieves the designer from
having to create and integrate by hand a complete set
of IP components such as bus structures, I/O devices,
and memory hierarchies to form the multiprocessor
architecture. The architecture generated is in the form
of a generic template that can be used as is, or later
tuned within vendor specific tools.

Taken together, we believe a combined approach of
enabling the use of high level programming models
and supporting the automatic and transparent assembly
of a multiprocessor system on programmable chip
architecture is fundamental for the future use of dense
and power FPGA’s.

REFERENCES

[1] S. Trimberger, “FPL 2007 Xilinx Keynote Talk - Redefining the
FPGA,” http://ce.et.tudelft.nl/FPL/trimbergerFPL2007.pdf, last
accessed May 10, 2011.

[2] R. N. Pittman, N. L. Lynch, and A. Forin, “eMIPS, A Dynam-
ically Extensible Processor,” Microsoft Research, Tech. Rep.
MSR-TR-2006-143, Oct. 2006.

[3] P. Yiannacouras, J. G. Steffan, and J. Rose, “VESPA: Portable,
Scalable, and Flexible FPGA-Based Vector Processors,” in
CASES ’08: Proceedings of the 2008 International Conference
on Compilers, Architectures and Synthesis for Embedded Sys-
tems. New York, NY, USA: ACM, 2008, pp. 61–70.

[4] L. Dagum and R. Menon, “OpenMP: An Industry-Standard API
for Shared-Memory Programming,” Computing in Science and
Engineering, vol. 5, no. 1, pp. 46–55, 1998.

[5] “OpenCL - The open standard for parallel programming of
heterogeneous systems,” http://www.khronos.org/opencl/, last
accessed May 10, 2011.

[6] D. Andrews, D. Niehaus, and P. J. Ashenden, “Programming
Models for Hybrid CPU/FPGA Chips,” IEEE Computer, vol.
37(1), pp. 118–120, 2004.

[7] D. Andrews, R. Sass, E. Anderson, J. Agron, W. Peck,
J. Stevens, F. Baijot, and E. Komp, “Achieving Programming
Model Abstractions For Reconfigurable Computing,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 16, no. 1, pp. 34–44, January 2008.

254 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

Can Run-time Reconfigurable Hardware be more Accessible?

Jim Torresen and Dirk Koch
Department of Informatics, University of Oslo, Oslo, Norway

E-mail: {jimtoer,koch}@ifi.uio.no
Web: http://www.mn.uio.no/ifi/english/research/projects/cosrecos

Abstract— In this paper, a new project named Context
Switching Reconfigurable Hardware for Communication Sys-
tems (COSRECOS) is introduced. The project started autumn
2009 and consists of applying reconfigurable hardware
technology (Field Programmable Gate Arrays - FPGAs) for
designing high performance run-time reconfigurable com-
puting architectures for communication systems. The overall
goal of the project is to contribute in making run-time re-
configurable systems more feasible in general. This includes
introducing architectures for reducing reconfiguration time
as well as undertaking tool development. Case studies by
applications in network and communication systems will be
a part of the project. The paper describes how we plan to
address the challenge of changing hardware configurations
while a system is in operation. An overview of promising
initial approaches is also included.

Keywords: Reconfigurable hardware, FPGA, Run-time reconfig-
uration

1. Introduction
Until the introduction of multitasking operating systems

around 1985, processors would run one program at a time.
The program would be uploaded at startup and be running
until finished. There would be no swapping to other pro-
grams during execution of a given program. With today’s
multitasking operating systems, it would often be the ex-
ception not performing multitasking for software. This is in
contrast to hardware which normally is static at run-time
even though reconfigurable hardware is programmable at
run-time. However, in this project – called Context Switch-
ing Reconfigurable Hardware for Communication Systems
(COSRECOS), architectures where the hardware configura-
tion is dynamically changed (i.e. context switching) will be
investigated [1].
The main contributions of the project are expected to be:

• Develop new architectures and tools to make run-time
reconfiguration easier to use.

• Develop platforms for fast and reliable reconfiguration.
• Undertake case studies with focus on communication

applications.
We regard that both architectures and tools would be

needed to make run-time reconfigurable hardware more
applicable. The project is funded by the Research Council

of Norway and a number of researchers are adressing the
challenges in the project. The next section gives some
background information, followed by an overview of benefits
and possible approaches in section III. Initial approaches are
included in Section IV with Section V concluding the paper.

2. Background
Reconfigurable computing has grown to become an impor-

tant and large field of research. Reconfigurable systems are
designed either by using commercial Field Programmable
Gate Arrays (FPGAs) or by having new FPGA-like devices
developed. A survey of can be found in [2]. The most
common target technology is FPGAs. In addition to fine-
grained FPGA devices, several coarse-grained architectures
(e.g. the PACT XPP processor array [3]) have been devel-
oped to implement reconfigurable systems. However, the
COSRECOS project is targeting FPGA technology. It is
substituting the configuration bitstream of the FPGA at
run-time we think of by context switching reconfigurable
hardware.

2.1 Applications
The approach of applying reconfigurable logic for data

processing has been demonstrated for a number of years
ago in areas such as video transmission, image recognition
and various pattern-matching operations (handwriting recog-
nition, face identification) [4]. Another area of interest is
wireless systems where tremendous computational capabili-
ties are needed to allow for high data rates in the future [5].
Automotive electronic systems are expected to gain large
benefit from adaptive reconfigurable hardware [6].

A platform for network applications – called The Field-
programmable Port Extender (FPX), has been implemented,
see [7]. It is a generic platform with network interfaces that
has been used in a wide variety of applications: route Inter-
net packets; compress, encrypt, and buffer data; transcode
motion JPEG images; and process multiple flows of video.
By using FPGA hardware, rather than a microprocessor,
the packet processor can perform full processing of packet
payloads at Gigabit rates. The development of the FPX
platform demonstrates a valuable use of FPGA technology
in routers and other network equipment. The hardware of the
system will evolve over time as packet processing algorithms
and protocols progress, as stated in [8].

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 255

We have been conducting research on several different
application areas of reconfigurable logic. An architecture for
providing a fast (in the Gigabit range) network security sys-
tem (called Network Intrusion Detection Systems (NIDS))
has been proposed. The detection engine (rule matching) in
the open source network intrusion detection system Snort
has been implemented in [9]. Further, stateful inspection
is applied in NIDS in [10]. By checking the handshakes
in a communication session, it provides a more advanced
network checking than firewalls.

We have demonstrated the benefits of undertaking data
processing in reconfigurable logic for applications like string
matching [11] and image filtering [12]. An FPGA imple-
mented processor architecture with adaptive resolution has
been introduced in [13]. This allows for a variable resolution
in data variables at run-time.

2.2 Architectures

For integrating several modules into an FPGA-based-
system at run-time, an on-FPGA communication architecture
is used to provide communication between the static part of a
system and the reconfigurable modules. For simpler systems,
where only one module can be exclusively placed inside a
reconfigurable region (what we call island style), connection
primitives called busmacros have been proposed by Xilinx
that provide simple point-to-point connections between a
static system and a reconfigurable region [14]. The vendor
Xilinx is currently using dummy connection logic (called
proxy logic) for interfacing reconfigurable modules [15] in
their recent partial design flow. This approach is actually
not a real communication architecture as it does not result
in a special structure for the routing between a static system
and reconfigurable modules. As a consequence, modules
are bound to particular placement positions and cannot be
relocated in systems that provide multiple reconfigurable
regions.

A more advanced architecture has been proposed in [16].
There, a bus architecture allows to connect multiple modules
in a combined shared region in a one-dimensional manner
(what we call slot style). An on-FPGA communication ar-
chitecture that considers streaming data connections between
modules that can be placed in two dimensions (grid style)
has been proposed in [17] for signal processing applications.

The ReCoBus project [18] addresses high performance,
resource efficiency and flexibility for on-FPGA communica-
tion at the same time. It provides a backplane bus (called
ReCoBus) for slave and master communication as well as
channels for data streaming among modules that are called
I/O bars. The original project was limited to Xilinx Virtex-II
and Spartan-3 FPGAs but the tool has recently been extended
to support the latest FPGA devices as well (see section 4).

Configuration
Data Memory

A

B

C

Fig. 1
ILLUSTRATION OF A RUN-TIME RECONFIGURATION OF FPGA.

3. FPGA Based Architectures
This section includes a brief overview of how FPGAs

can be applied in adaptive systems [19]. We can distinguish
between three different degrees of FPGA reconfiguration
providing configurable computing:

• Static: The configuration within the FPGA is the same
throughout the lifetime of the system. This means no
adaptivity at run-time.

• Upgrade: The configuration is changed from time to
time for bug fixes or functional upgrades. This repre-
sents rare reconfiguration.

• Run-time: A set of configurations are available which
the FPGA switch between at run-time. This could
provide several benefits as described below.

Most applications are implemented by applying the static
approach – i.e. no reconfiguration. However, upgrading of
systems have recently become more common. This allows
the configuration to be upgraded when bugs are found or
when the functionality of the system is to be changed. In
the future, automatic dynamic products will probably arrive.
These could autonomously upgrade the hardware as the
environment (or data) changes or when bugs are detected
in the system. One promising approach based on this idea
is evolvable hardware [20].

The objectives for implementing run-time reconfigurable
systems are:

• Space/cost/power reduction
• Speeding up computation
• Substituting data/patterns in hardware realized search

filters
If not all functions in a system are needed at the same time

(i.e. functions are mutually exclusive), we can substitute a
part of the configuration at run-time as seen in Figure 1.
Function A contains the parts of the system that always
need to be present – i.e. the static part of the system.

256 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

However, part B and C are not needed concurrently and can
be assigned to the same resources (location) in the FPGA.
An example of such an application can be a multi-functional
handheld device with e.g. mobile phone, MP3 player, radio
and camera. For most purposes, a user would normally not
apply more than one of these functions at a time. Thus,
instead of having custom hardware for each function, it
could be efficient having a reconfigurable system where only
the active function is configured. This would allow for a
smaller hardware device which leads to reduced cost and for
some systems reduced power consumption. Such benefits are
important in a competitive market.

Static

Context
switching

Task A

Task A.1 CSW Task A.2 Task A.3CSW

Time

Fig. 2
ILLUSTRATION OF A RUN-TIME RECONFIGURABLE FPGA COMPARED

TO A STATIC FPGA.

The application area for run-time reconfiguration for com-
putational speedup is depicted in Figure 2. Swapping be-
tween successive configurations can give a hardware system
a considerable throughput compared to having a general
static FPGA configuration. If a task A can be partitioned
into a set of separate sub-tasks (A.1, A.2 and A.3 in the
example in the figure) to be executed one after the other,
an FPGA configuration can be designed for each of them.
Thus, each configuration is optimized for one part of the
computation. During run-time, context switching (CSW) is
undertaken and the total execution time for the task in the
given example is reduced.

For instance, when considering a secured SSL connection,
the asymmetric key exchange can be a first sub-task. The
result of this first step is a session key that can then be
used by the second sub-task that encodes the entire data
using a symmetric cipher. By spending more resources on
each particular sub- task, a higher level of parallelism is
obtained, and hence, a speed-up might be achieved. The
context switching time would have to be short compared to
the computation time, to reduce the overhead of switching
between the different configurations.

Since commercially available FPGAs do not yet pro-
vide configuration switching in one or a few clock cycles,
download time is often the main obstacle against effective
run-time reconfiguration. There has been undertaken some
work based on run-time reconfiguration of FPGAs. The main

experience seems to be that FPGAs are requiring a (too) long
reconfiguration time, and we regard this as the key challenge
when designing context switching systems. The granularity
of the sub-tasks is critical and the amount of computation to
be undertaken in each sub-task should be sufficient large to
pay of the configuration overhead [21], [22]. That is, the size
of the sub-tasks should be chosen so that the total processing
time including context switching is minimized.

Many devices require the complete configuration bitstream
to be downloaded in one operation. The download time then
increases with the size of the device. The challenge with
long download time is further addressed in the next section.

3.1 Approaches to Reducing Reconfiguration
Time

The project will focus on research for developing new
architectures that can reduce the problems of applying
commercial FPGA technology to run-time reconfigurable
computing. Rather than focusing on FPGA only as an ASIC
(Application-specific integrated circuit) like accelerator for
speeding up computation – as in many research projects, we
will also emphasize on switching configurations at run-time.
That is, replacing parts of the user logic inside the FPGA
while other parts operate uninterrupted. This could also
comprise storing and recovering internal states of hardware
modules. By this approach, we would like to have a focus
on both reduced cost and power consumption as well as
additional computational speedup. However, some systems
would have to be limited to one of these priorities. By
developing new architectures and algorithms, we will try
to come up with systems making run-time reconfigurable
hardware more usable.

Challenges of run-time reconfiguration in FPGA to be
addressed in the project are as follows:

• Reducing the long time required for reconfiguration
• Avoiding the system from being inactive during recon-

figuration (safe and robust reconfiguration)
• Interfacing between modules belonging to different

configurations
• Predictability (reliability and testability) of system op-

eration

As introduced earlier, the main problem with switching
configurations is the long reconfiguration time. Overcoming
this would be one of the main objectives in the project. There
is a number of different approaches available (several of
them will be explored in our project):

3.1.1 Smaller Devices

Since the full reconfiguration time is less for smaller
devices, reconfiguration time can be reduced by applying
smaller devices. Moreover, by applying context switching,
we may be able to implement a full system in a smaller

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 257

device with the benefit of reduced cost and power consump-
tion. The drawback would be that the system would have to
be inactive during reconfiguration.

3.1.2 Bitstream Prefetching

An approach consisiting of hiding of the reconfiguration
time by prefetching the bitstream [23].

3.1.3 Bitstream Compression

Bitstream compression would be useful for reducing mem-
ory bottlenecks.

3.1.4 Hyperreconfiguration

Faster reconfiguration can be achieved by applying a two
step reconfiguration [22], [24]. The first step is used to find
the reconfiguration potential of the architecture (hyperrecon-
figuration) followed by a second step where reconfiguration
actually takes place.

3.1.5 Tuneable LUTs

Tuneable LUTs consists of having two (or more) netlists
(the configurations) merged into one combined netlist. The
basic idea of the tunable LUTs is that you multiplex be-
tween the two functions, but instead of having a physical
multiplexer, the LUT-content is changed.

3.1.6 Overclocking

Clocking the bitstream interface at a higher speed than the
maximum clock frequency specified by the FPGA vendor
[25].

Fig. 3
VIRTUAL FPGA.

3.1.7 Virtual FPGA
Virtual FPGA is based on designing a multi-context “vir-

tual” FPGA inside an ordinary FPGA [26] – see Figure 3. We
have earlier introduced an architecture for context switching
based on this idea that has been published in [27], [28]. In
these papers, we report about our design of an architecture
for switching between 16 different configurations in a single
clock cycle. Such a system would never achieve as high
clock frequency as a leading edge processor. However, by
applying massive parallel processing, the execution time can
still be less [13].

We have published a number of papers where virtual
FPGA is combined with evolvable hardware [19], [29],
[30], [31], [32]. The developed architectures also include a
soft (MicroBlaze) or hard (PowerPC) processor core. Even
though a fast processing can be achieved, the context switch-
ing architecture requires much reconfigurable resources (in
that way, this architecture is prioritizing speed before cost
and power consumption). Due to the fine grain structure of
FPGAs, we had to focus on reconfiguring only a limited
number of parameters in the designed architectures to reduce
the hardware overhead. There is still a large potential for
improving these systems which could be addressed in this
project.

3.1.8 Partial Reconfiguration
As FPGA devices are getting bigger, the configuration

bitstream becomes longer and programming time increases.
Thus, run-time reconfigurable designs would benefit from
having only a limited part of the FPGA being context
switched by partial reconfiguration. This feature is available
in some FPGAs where a selected number of neighboring
columns are programmed. This requires detailed considera-
tions for having no interruption at context switching [33].

Another challenge is to limit the inter spatial partition
data transfer. That is, efficient communication between con-
text switched tasks. While the first FPGAs offering partial
reconfiguration required complete columns of the device
being programmed, the more recent ones – including Xilinx
Virtex-4/5, require only a part of each column being pro-
grammed. This makes interfacing between tasks and having
uninterrupted operation easier since some rows can be used
for permanent configurations. The smallest Virtex-5 device
(LX30) consists of 4 rows while the largest (LX330) consists
of 12 rows. Further, there have been introduced tools like
PlanAhead that make partial reconfiguration easier.

It is possible to reconfigure the Virtex devices internally
using the Internal Configuration Access Port (ICAP). This
will be applied in this project where also research will
be undertaken on efficient data routing and data storing
between context switching tasks [34]. We have already un-
dertaken various successful work with partial reconfiguration
including change of look-up table content [35] and internal
reconfiguration with ICAP by use of PlanAhead [36].

258 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

3.2 Platforms and Tools

The main barrier for applying partial run-time reconfigu-
ration in industrial applications seems to be the lack in tools
and methodologies. With the introduction of PlanAhead, the
vendor Xilinx has enormously simplified the design flow for
implementing reconfigurable systems but there are several
open issues that have not yet been solved. For example, the
island style reconfiguration scheme comprises a large waste
of logic as different modules could have different resource
requirements, and because modules cannot share the same
region, even if their resource requirements would allow
this. Furthermore, as the routing between the static system
and the dynamic modules is not constrained to physical
wire resources, the routing will in general differ on each
implementation of the static system. Consequently, in the
wake of changes in the static part, rerouting is required for
all permutations of placement position and module instance
(i.e., a partial module bitstream cannot be written to different
positions of the FPGA). Moreover, there exist no possibility
to simulate the reconfiguration of a system.

The work at the moment on reconfigurable systems are
usually based on problem specific coding. Thus, a goal of
this project is to come up with a tool and some general
platforms that could make context switching systems more
accessible for a larger number of users.

If the context switching is not deterministic, an operating
system may be needed to schedule hardware tasks [37].
However, for many of the applications, it would be possible
with a deterministic context switching. This will be our
first approach since online scheduling of tasks including
control of reconfigurable logic fragmentation would be much
more difficult. However, to have more general computing
platforms, this would become more necessary. We believe
a general computing platform will make reconfigurable
technology more accessible than it is today, and make it into
a viable complement to processor technology. The success
of multitasking in software is probably much because of the
introduction of widely used operating systems like Windows
and Linux. If an equivalent could be found across FPGA
vendor technologies by e.g. virtual FPGA, it would probably
be an important step towards more widely use of run-time
reconfigurable hardware.

A part of the research will be on analyzing HW/SW parti-
tioning and how this can be undertaken in the most efficient
way. Much research related to communication technology
is either related to implementing software or hardware.
However, few projects are concerned about the integration
of application software, low level software and hardware.
In the industry on the other hand, much focus is given
to this integration. Thus, we would in this project like to
address how hardware should be designed to most effectively
execute the software to be implemented. More details about
the project can be found in [38].

4. Initial Approaches
The initial work which will be described below has

focused on various aspects like reducing both the reconfig-
uration time as well as the hardware overhead for run-time
reconfiguration. Further, efficient routing architectures have
been introduced.

Many have been regarding the slow reconfiguration speed
as the main obstacle against runtime reconfigurable hard-
ware. Thus, we have started the project with addressing how
to reduce the reconfiguration time. This is partly achieved
by applying the latest FPGA technology providing higher
density and speed.

However, the trend for the latest devices tend towards
more logic and less routing resources that are also more
irregularly arranged compared to in previous architectures.
Thus, implementing an on-FPGA communication architec-
ture has become a challenge. Thus, in [39], an on-FPGA
communication architecture that is especially tailored to
Xilinx Virtex-5 FPGAs is introduced. The architecture –
as seen in Figure 4, contains a two-dimensional circuit
switching network using dedicated I/O bars. Multiplexers
in the static part perform the vertical routing while I/O bars
carry out the routing in horizontal direction. This allowes
for modules being integrated in a two-dimensional grid
proving a data throughput of up to several GB/s between
reconfigurable modules.

Fig. 4
TWO-DIMENSIONAL CIRCUIT SWITCHING NETWORK [39].

It will be important that reconfiguration of an FPGA does
not damage the device by introducing short-circuits. Thus,
we have undertaken experiments to test how vulnerable
FPGAs are to short-circuits [40]. Despite the absence of

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 259

tristate buffers, short-circuits in the routing fabric of re-
cent Xilinx FPGAs may still occur. In these devices, the
multiplexer based implementation of switch matrices allows
for connecting more than one driver to a wire at the same
time. Although not damaging the device, it was shown by
a test setup that increased current consumption occured
as a result of the problem. To cope with the problem, a
bitstream scanner algorithm has been introduced to detect
possible long term short-circuits. Furthermore, it was proven
that blanking a reconfigurable region before writing a new
configuration removes the occurrence of short-circuits during
the reconfiguration process.

Fig. 5
PR LINK APPROACH [41].

One possible benefit of including reconfiguration is to
save logic resources. However, an overhead of additional
resources is often introduced for integrating reconfigurable
parts with the static system. By constraining the communi-
cation resources between the static system and the partial
regions, we have proposed an architecture with no logic
overhead [41]. The concept has been demonstrated for a
reconfigurable instruction set for a processor. It is based on
having all communication with modules located in partial
regions bound to dedicated links – partial reconfiguration
(PR) links. However, there do not exist any constraints on
routing resources in the Xilinx vendor tools but it is possible
to implement macros to restrict the routing.

The project has a focus on applying the latest technology
in the experiments and in [43] we demonstrate a system for
partial run-time reconfiguration on Spartan-6 series FPGAs.
Further, in [42] a two-dimensional obstacle free online-
routing for run-time reconfigurable FPGA-based systems is
introduced. In that work, we partitioned the FPGA rout-
ing resources into distinct sets for implementing the static
system, the reconfigurable modules, and the communication
between them. By carefully selecting the resources for the
latter set, a circuit switching network has been directly
implemented within the routing fabric (i.e., no further logic
resources are used to switch the routing), such that modules
can be placed freely in a two-dimensional tiled reconfig-
urable area.

As the size of the FPGAs has become bigger, the time
needed to compile a design also increases. Having a tool to

allow for physical implementation of a part of the device
at a time would reduce the development time. Thus, a
component-based based design flow is introduced in [44].
This allows for modules being directly plugged together on
an FPGA without the need to run the logic synthesis or place
& route for the complete system. This would also make
it easier for users adding their own design to an existing
design without deep knowlewdge in the working of the other
parts of the system. However, such a design flow would
require that the components (IP cores) are encapsulated in
bounding boxes with only limited routing to other parts
of the design, see Figure 6. This has been addressed by
relaxing the constraint that the routing of a module has to
be strictly bound into its assigned bounding box. In [44], we
demonstrated that wire resources outside of such a bounding
box can be used without interfering other parts of the system
and while still being able to relocate modules to different
positions on the FPGA.

5. Conclusion
This paper has described a new project focusing on

context switching reconfigurable hardware. It will target
to make such technology more applicable by introducing
software tools as well as hardware architectures. Challenges
include addressing reconfiguration time and making the
context switching robust. The paper also introduced some
of the promising results of the project so far.

Acknowledgment
This work is supported by the Norwegian Research

Council funded project Context Switching Reconfigurable
Hardware for Communication Systems (COSRECOS), under
grant 191156V30.

References
[1] Jim Torresen and Dirk Koch. A new project to address run-time

reconfigurable hardware systems. In Peter M. Athanas, Jürgen
Becker, Jürgen Teich, and Ingrid Verbauwhede, editors, Dynamically
Reconfigurable Architectures, number 10281 in Dagstuhl Seminar
Proceedings, Dagstuhl, Germany, 2010. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, Germany.

[2] R. Hartenstein. A decade of reconfigurable computing: A visionary
retrospective. In Proc. of Int. Conference on Design Automation and
Testing in Europe - and Exhibit (DATE), 2000.

[3] Volker Baumgarte, F. May, Armin Nückel, Martin Vorbach, and
Markus Weinhardt. PACT XPP - A Self-Reconfigurable Data Pro-
cessing Architecture. In Proceedings of the International Conference
on Engineering of Reconfigurable Systems and Algorithms (ERSA),
pages 64–70, Las Vegas, June 2001.

[4] J. Villasenor and W.H. Mangione-Smith. Configurable computing.
Scientific American, (6), 1997.

[5] J.M. Rabaey. Silicon platforms for the next generation wireless
systems - What role does reconfigurable hardware play?. In R.W.
Hartenstein et al., editors, 10th International Conference on Field
Programmable Logic and Applications (FPL-2000), Lecture Notes in
Computer Science, vol. 1896, pages 277–285. Springer-Verlag, 2000.

[6] J. Becker, M. Hubner, G. Hettich, R. Constapel, J. Eisenmann, and
J. Luka. Dynamic and partial FPGA exploitation. Proceedings of the
IEEE, 95(2):438–452, Feb 2007.

260 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

Fig. 6
SIMPLIFIED FPGA ARCHITECTURE HOSTING TWO ENCAPSULATED MODULES. BECAUSE OF THE STRICT ENCAPSULATION OF MODULES INTO

BOUNDING BOXES, WIRES LEAVING EITHER THE STATIC PART OR A PARTICULAR MODULE REMAIN UNUSABLE. ONLY THE RESERVED TOP-LEVEL

PATH IS ALLOWED TO CROSS MODULE BOUNDING BOX BORDERS [42].

[7] J. Lockwood. The Field-programmable Port Extender (FPX),
http://www.arl.wustl.edu/projects/fpx, 2010.

[8] J.W. Lockwood. Evolvable internet hardware platforms. In Proc. of
the Third NASA/DoD Workshop on Evolvable Hardware, pages 271–
279, 2001.

[9] S. Li, J. Torresen, and O. Soraasen. Exploiting reconfigurable
hardware for network security. In 11th Annual IEEE Symp. on
Field Programmable Custom Computing Machines (FCCM’03). IEEE,
2003.

[10] S. Li, J. Torresen, and O. Soraasen. Exploiting stateful inspection of
network security in reconfigurable hardware. In Field-Programmable
Logic and Applications: 13th International Conference on Field
Programmable Logic and Applications (FPL-2003), Lecture Notes in
Computer Science. Springer-Verlag, 2003.

[11] G. Nilsen, J. Torresen, and O. Soraasen. A variable word-width
content addressable memory for fast string matching. In Proc. of
22nd Norchip Conference, pages 214–217. IEEE, 2004.

[12] J. Torresen, J. W. Bakke, and L. Sekanina. Efficient image filtering
and information reduction in reconfigurable logic. In Proc. of 22nd
Norchip Conference, pages 63–66. IEEE, 2004.

[13] J. Torresen and J. Jakobsen. An FPGA implemented processor
architecture with adaptive resolution. In Proc. of 1st NASA/ESA
Conference on Adaptive Hardware and Systems (AHS-2006). IEEE,
2006.

[14] Patrick Lysaght, Brandon Blodget, Jeff Mason, Jay Young, and
Brendan Bridgford. Invited Paper: Enhanced Architecture, Design
Methodologies and CAD Tools for Dynamic Reconfiguration of Xilinx
FPGAs. In Proceedings of the 16th International Conference on Field
Programmable Logic and Application (FPL), pages 1–6, Aug 2006.

[15] Xilinx Inc. Partial Reconfiguration User Guide, December 2009. Rel
11.4.

[16] Jens Hagemeyer, Boris Kettelhoit, Markus Koester, and Mario Por-
rmann. Design of Homogeneous Communication Infrastructures for
Partially Reconfigurable FPGAs. In Proceedings of the International
Conference on Engineering of Reconfigurable Systems and Algorithms
(ERSA), Las Vegas, USA, Jun 2007.

[17] P. Sedcole et al. Modular dynamic reconfiguration in Virtex FPGAs.
IEE Proceedings - Computers and Digital Techniques, 153(3):157–
164, May 2006.

[18] D. Koch, C. Beckhoff, and J. Teich. ReCoBus-builder - a novel tool
and technique to build statically and dynamically reconfigurable sys-
tems for FPGAs. In Proceedings of Int. Conf. on Field-Programmable
Logic and Applications, Heidelberg, Germany, Sep. 2008, pages 119
– 124.

[19] J. Torresen and K. Glette. Improving flexibility in on-line evolvable
systems by reconfigurable computing. In Evolvable Systems: From
Biology to Hardware. Seventh International Conference, ICES’07,
volume 4684 of Lecture Notes in Computer Science, pages 391–402.
Springer-Verlag, 2007.

[20] J. Torresen. An evolvable hardware tutorial. In Proc. of the
14th International Conference on Field Programmable Logic and
Applications (FPL 2004), pages 821–830. Springer Verlag, LNCS
3203, 2004.

[21] Y. Agarwal et al. Solving fracture mechanics problems using reconfig-
urable computing. In Proc. of Int. Conf. on Reconfigurable Computing
and FPGAs, ReConFig’04, 2004.

[22] S. Lange and M. Middendorf. Hyperreconfigurable architectures and
the partition into hypercontexts problem. Journal of Parallel and
Distributed Computing, 65(6):743–754, 2005.

[23] J. Torresen. Reconfigurable logic applied for designing adaptive
hardware systems. In Proc. of the International Conference on
Advances in Infrastructure for e-Business, e-Education, e-Science,
and e-Medicine on the Internet (SSGRR’2002W). Scuola Superiore
G. Reiss Romoli, 2002.

[24] S. Lange and M. Middendorf. Hyperreconfigurable architectures for
fast runtime reconfiguration. In Proc. of 2004 IEEE Symposium on
Field-Programmable Custom Computing Machines (FCCM04), Napa
Valley, USA, 2004.

[25] C. Claus, R. Ahmed, F. Altenried, and W. Stechele. Towards rapid dy-
namic partial reconfiguration in video-based driver assistance systems.
In Reconfigurable Computing: Architectures,Tools and Applications,
volume 5992 of Lecture Notes in Computer Science, pages 55–67.
Springer Berlin / Heidelberg, 2010.

[26] L. Sekanina and R. Ruzicka. Design of the special fast reconfigurable
chip using common FPGA. In Proc. of Design and Diagnostics of
Electronic Circuits and Systems - IEEE DDECS’2000, pages 161–168,
2000.

[27] J. Torresen and K.A. Vinger. High performance computing by
context switching reconfigurable logic. In Proc. of the 16th European
Simulation Multiconference, pages 207–210. SCS Europe, June 2002.

[28] K. A. Vinger and J. Torresen. Implementing evolution of FIR-filters
efficiently in an FPGA. In Proc. of the 2003 NASA/DoD Workshop
on Evolvable Hardware, 2003.

[29] K. Glette, J. Torresen, M. Yasunaga, and Y. Yamaguchi. A flexible on-
chip evolution system implemented on a Xilinx Virtex-II Pro device.
In Proc. of Evolvable Systems: From Biology to Hardware. Sixth
International Conference, ICES 2005. Volume 3637 of Lecture Notes
in Computer Science, pages 66–75. Springer-Verlag, 2005.

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 261

[30] K. Glette, J. Torresen, M. Yasunaga, and Y. Yamaguchi. On-chip
evolution using a soft processor core applied to image recognition. In
Proc. of the First NASA /ESA Conference on Adaptive Hardware and
Systems (AHS 2006), pages 373–380. IEEE Computer Society, 2006.

[31] K. Glette, J. Torresen, and M. Yasunaga. An online EHW pattern
recognition system applied to face image recognition. In M. Giacobini
et al., editor, Applications of Evolutionary Computing, EvoWork-
shops2007: EvoCOMNET, EvoFIN, EvoIASP, EvoInteraction, Evo-
MUSART, EvoSTOC, EvoTransLog, volume 4448 of Lecture Notes
in Computer Science, pages 271–280. Springer-Verlag, 2007.

[32] K. Glette, J. Torresen, and M. Yasunaga. Online evolution for a
high-speed image recognition system implemented on a Virtex-II Pro
FPGA. In The Second NASA/ESA Conference on Adaptive Hardware
and Systems (AHS 2007). IEEE, 2007.

[33] D. Lim and M. Peattie. Two flows for partial reconfiguration: module
based or small bit manipulation, Application Note 290. Xilinx, 2003.

[34] N.P. Sedcole, P.Y.K. Cheung, G.A. Constantinides, and W. Luk. On-
chip communication in run-time assembled reconfigurable systems.
In Proc. of IC-SAMOS. IEEE, 2006.

[35] H. Kawai, M. Yasunaga, K. Glette, and J. Torresen. An adaptive
pattern recognition hardware with dynamic partial reconfiguration.
2008. In preparation.

[36] G.A. Senland. Design of an Architecture for Evolvable Hardware
based on Internal Reconfiguration of an FPGA (in Norwegian).
University of Oslo, 2008. Master thesis.

[37] C. Steiger, H. Walder, and M. Platzner. Operating systems for
reconfigurable embedded platforms: Online scheduling of real-time
tasks. IEEE Trans. on Computers, 53(11):1393–1407, Nov 2004.

[38] D. Koch and J. Torrresen. Advances in component-based system
design and partial run-time reconfiguration. In Proc. of Dagstuhl
Seminar 10281, 2010.

[39] Dirk Koch, Christian Beckhoff, and Torresen Jim. Fine-grained Partial
Runtime Reconfiguration on Virtex-5 FPGAs. In 18th Annual IEEE
Symposium on Field-Programmable Custom Computing Machines
(FCCM 2010), pages 69–72. IEEE Computer Society, May 2010.

[40] Christian Beckhoff, Dirk Koch, and Jim Torresen. Short-Circuits on
FPGAs caused by Partial Runtime Reconfiguration. In Proceedings
of the International Conference on Field Programmable Logic and
Applications (FPL), pages 596–601, Milan, Italy, August 2010.

[41] Dirk Koch, Christian Beckhoff, and Jim Torresen. Zero Logic
Overhead Integration of Partially Reconfigurable Modules. In 23rd
Symposium on Integrated Circuits and Systems Design (SBCCI), pages
103–108. ACM, September 2010.

[42] Dirk Koch, Christian Beckhoff, and Jim Torresen. Obstacle-free Two-
dimensional Online-Routing for Run-time Reconfigurable FPGA-
based Systems. In Proceedings of International Conference on Field-
Programmable Technology (ICFPT’10), Beijing, China, 2010. IEEE.
to appear.

[43] Dirk Koch, Christian Beckhoff, and Jim Torresen. Demo Paper:
Advanced Partial Run-time Reconfiguration on Spartan-6 FPGAs.
In Proceedings of International Conference on Field-Programmable
Technology (ICFPT’10), Beijing, China, 2010. IEEE. to appear.

[44] Dirk Koch and Jim Torresen. Routing Optimizations for Component-
based System Design and Partial Run-time Reconfiguration on
FPGAs. In Proceedings of International Conference on Field-
Programmable Technology (ICFPT’10), Beijing, China, 2010. IEEE.
to appear.

262 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

SAHA: A Self-Adaptive Hardware-Software System Architecture
for Ubiquitous Computing Applications

Pao-Ann Hsiung and Chun-Hsian Huang
Department of Computer Science and Information Engineering,
National Chung Cheng University, Chiayi, Taiwan−621, ROC

Email: {pahsiung,huang}@cs.ccu.edu.tw

Abstract— Ubiquitous computing enables services and de-
vices to be dynamically adapted to changing conditions.
System adaptivity becomes a key requirement in providing
possibly better system performance. Most existing ubiquitous
computing systems either only support software adaptation
or limit the usage of reconfigurable hardware designs as
conventional hardware devices. As a result, system adap-
tation and performance are quite restricted. To provide a
more robust system adaptation, we propose a self-adaptive
hardware-software system architecture (SAHA) that consists
of service suppliers, hardware adapter, system manager,
observer, and reconfigurable hardware architecture. SAHA
supports both hardware preemption and hardware virtu-
alization within a complete self-aware system adaptation
mechanism such that the utilization of system resources is
enhanced and better performance is provided for ubiquitous
computing applications. Experiments with a ubiquitous com-
puting service for information encryption demonstrate that
SAHA can reduce the turnaround time by at least 22.04%
of that required by using the conventional method.

Keywords: Dynamic Partial Reconfiguration, Hardware Virtual-
ization, Hardware Preemption, Ubiquitous Computing

1. Introduction
Ubiquitous computing provides human being with a more

perfect life. Under natural interaction, ubiquitous computing
enables information processing to be thoroughly integrated
into everyday living, without being aware that it is doing
so. In such a ubiquitous computing environment, not only
services and devices can be dynamically adapted to changing
environments, but contexts and preferences of users can be
also switched seamlessly.

To support dynamically changing and unpredictable ubiq-
uitous computing applications, system adaptivity becomes
a key requirement in providing better system performance.
Most existing dynamic adaptive approaches to ubiquitous
computing [1]–[3] focus on adapting software services and
applications, while hardware devices only passively support
the changing software applications. In such a hardware
architecture, hardware functions can be only configured once
at design-time so that new hardware functions cannot be
reconfigured at run-time, which leads to the inefficient use

of hardware resources. Further, this restricts the adaptivity
of ubiquitous computing system to changing environment
conditions, and system performance is thus restricted by
the underlying hardware. Though several research works
[4], [5] have adopted the dynamic reconfiguration capability
of FPGA [6] to support hardware adaptation, the hardware
functions in these approaches [4], [5] are still managed as
conventional hardware devices. This means that once the
device node of a hardware function has been opened by
a software application, the hardware function cannot be
accessed by other software applications at the same time,
though it is not always accessed by the software application
that opens its device node. As a result, the utilization of
reconfigurable hardware resources and the enhancement of
system performance are still limited. To be able to not
only adapt on-demand hardware/software functionalities but
also provide better Quality-of-Service (QoS), ubiquitous
computing applications require a more robust and effective
infrastructure that can autonomously adapt its software and
hardware functions to meet the dynamic requirements of
various environmental situations.

In this work, we try to solve the above adaptivity and
performance problems in the current existing ubiquitous
computing systems [1]–[5] by proposing a Self-Adaptive
Hardware-software system Architecture (SAHA). Figure 1
gives an example for illustrating the practicability of the
proposed SAHA. In this ubiquitous computing environment,
each family member can use his/her own electronic devices
to monitor the house, watch the live television programs, and
listen to the voice messages recorded in the home telephone
via SAHA. To ensure the QoS and the information security,
all data will be compressed, encrypted, or both in SAHA and
then transferred to family members. Computing-intensive
functions, such as Discrete Cosine Transform (DCT), cryp-
tographic, and hash functions are implemented as hardware
devices to provide better performance. Further, SAHA can
adapt on-demand its hardware and software functionalities to
different service requirements, based on the network services
and electronic products used by family members.

Figure 1 shows an ideal blueprint to apply SAHA to
ubiquitous computing environments. However, it must solve
several issues related to ubiquitous computing, including 1)
how to make hardware functionalities adaptable? 2) how to

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 263

DCT

HW2

DCT

HW

Cryptographic

HW1

Hash

HW1

Operating System

Peripheral Controllers

SAHA

Microprocessor
Crypt

HW2Hash

HW2

Crypt

HW3

Internet

Fig. 1: Ubiquitous Computing Environment

make hardware adaptation more efficient? 3) how can the
utilization of hardware devices be maximized to serve more
users? 4) when must hardware functionalities be adapted to
different user requirements?

To make hardware functionalities adaptable, the dynamic
partial reconfiguration technology [6], [7] of FPGA devices
is adopted in SAHA to perform computing-intensive func-
tions. Hardware functions can be dynamically configured on-
demand into the FPGA device, thus making the utilization
of hardware logics in a FPGA device more efficient. To
make hardware adaptation efficient, SAHA integrates our
previously proposed hardware preemption technology [8],
as a result of which high-priority hardware functions can
interrupt low-priority hardware functions that have been
configured in the FPGA. Thus, the utilization of hardware
logic resources can be significantly enhanced. To maximize
the utilization of hardware devices to serve more users,
SAHA also integrates our previously proposed hardware
virtualization technology [9], and thus a hardware device is
virtualized such that it can be accessed by more than one user
at the same time. To determine when the hardware function-
alities must be adapted, SAHA provides a robust ubiquitous
computing infrastructure. It includes service suppliers to
interact with users, a hardware adapter to manage hardware
functionalities on an FPGA device, an observer to be aware
of the characteristics of user applications, and a system
manager to manage all system adaptations. With the changes
in environment conditions and user requirements, SAHA can
effectively and autonomously adapt its hardware/software
functions to support better performance.

Our previous works [8], [9] have introduced the detailed
designs of hardware preemption and virtualization mecha-
nisms, respectively, and this work will focus on the design of

SAHA for ubiquitous computing applications. The rest of the
article is organized as follows. Section 2 discusses the related
research works. Section 3 introduces the design of SAHA,
while Section 4 introduces how the hardware virtualization
and preemption techniques can be realized in SAHA to
support system adaptation. The experimental evaluation and
analyses are given in Section 5. Finally, Section 6 concludes
this work.

2. Related Work
Within a ubiquitous computing environment, computing

devices are aware of changes in their environment, and thus
they need to automatically adapt to environmental changes
for satisfying user requirements. Odyssey [10] was a typical
ubiquitous computing approach that supported application-
aware adaptation to adjust the quality of accessed data to
match available resources. However, due to the lack of
support for coordination between the adaptation policies,
its notification approach may lead to inefficient solutions.
To more efficiently support the capability of adaptation,
Efstratious et al. [1] proposed an architecture that could sup-
port adaptive context-aware applications. However, a main
constraint in the approach was that the infrastructure only
notified applications about the environmental changes, and
then application themselves needed to trigger the adaptive
mechanism. Instead of the passive application adaptation,
Ghim et al. [2] proposed a reflective approach to dynamic
adaptation that could perform adaptation operation triggered
by changes in the policy and context, while users and ap-
plications could trigger adaptation using policy documents.
However, hardware functions in the existing research works
[1], [2], [10] cannot be adapted to different requirements,
which thus restricts system adaptation and performance

264 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

P i l
Memory
Partial

Bitstreams

FPGAFPGA

Memory

Microprocessor
Service

Supplier

Service

Supplier
…

Unix-like OS

em
 B

u
s

Memory

Controller

ICAP
PRR0

Supplier Supplier

user space

kernel space

Unix like OS

S
y

st
PRR2

ICAP

Network

Controller

PRR1
System

Manager
Observer

PRR2Controller

Hardware

Adapter

Network

Device

Fig. 2: Self-Adaptive Hardware-Software System Architecture

enhancement.

To support hardware adaptation, Danek et al. [4] proposed
self-adaptive networked entities (SANE) to build perva-
sive computing architectures. The SANE design included
an observer to monitor computation process. Furthermore,
a computing engine could be on-demand reconfigured as
different hardware functions at runtime to adapt to different
system requirements, by using the partial dynamic recon-
figuration technology [6]. Lagger et al. [5] also proposed
a self-reconfigurable pervasive platform for cryptographic
applications. They compared a full-software design with a
coprocessor design that had an FPGA device which could
be partially configured with different cryptographic hardware
cores. Compared to the former, the performance of the latter
was significantly enhanced due to dynamic reconfiguration
techniques. However, these existing approaches to hardware
adaptation [4], [5] still managed reconfigurable hardware
functions as conventional hardware devices. As a result, the
enhancement of system performance using partial reconfigu-
ration technology is still limited, which makes the utilization
of reconfigurable hardware functions inefficient.

In this work, SAHA provides a robust ubiquitous comput-
ing infrastructure that includes service suppliers, a hardware
adapter, an observer, a system manager, a reconfigurable
hardware architecture. Instead of focusing on only software
adaptation [1], [2], [10], SAHA further supports hardware
adaptation by adopting the partial reconfiguration technol-
ogy. Different from the existing approaches to hardware
adaptation [4], [5] that manage reconfigurable hardware
functions as conventional hardware devices, SAHA inte-
grates hardware preemption [8] and hardware virtualization
[9] for providing more efficient system adaptation to chang-
ing ubiquitous computing applications. At the same time,
system performance can be further enhanced through system
adaptation.

3. Self-Adaptive Hardware-Software
System Architecture

To realize hardware adaptation, we implement the hard-
ware architecture of SAHA in an FPGA device, instead of an
ASIC device. In general, not all hardware functions are al-
ways accessed by the software applications. Using the FPGA
devices, hardware functions can be configured on-demand at
runtime, without integrating them into the system at design
time. As a result, though the total amount of logic resources
required by all hardware functions exceeds that available
in the FPGA, SAHA can still support a larger number
of hardware functions by using the capability of hardware
adaptation. Furthermore, because a large part of computing-
intensive functions in the current SAHA implementation
are cryptographic and hash functions, the parameter-specific
architecture of the FPGA device also enables SAHA to
provide better performance [11].

The SAHA design consists of a microprocessor, an FPGA
device, a network device, and an off-chip memory, as shown
in Figure 2. The hardware architecture of SAHA is imple-
mented by using the Early Access Partial Reconfiguration
(EA PR) design flow [6], in which several Partial Reconfig-
urable Regions (PRRs), such as PRR0, PRR1, and PRR2 as
shown in Figure 2, are implemented in the FPGA. They can
be dynamically reconfigured as different hardware functions
to meet the requirements for different service suppliers.
All reconfigurable hardware functions are encapsulated as
partial bitstreams and stored in an off-chip memory. Further,
the hardware architecture of SAHA contains an Internal
Configuration Access Port (ICAP) controller to configure the
partial bitstreams into the FPGA.

The microprocessor runs a unix-like Operating System
(OS) that includes service suppliers, a hardware adapter, a
system manager, and an observer. Their detailed introduc-
tions are given in the following sections.

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 265

PRR1 PRR2

HW1 HW2

Service Supplier 1

Kernel Space

User Space

Service

Supplier2

(a)Logic Virtualization

PRR1 PRR2
HW1 HW2

Service Supplier 1

Kernel Space

User Space

(b)Hardware Device Virtualization

Fig. 3: Hardware Virtualization Mechanism

3.1 Service Supplier
The service supplier is a software application that interacts

with a user, while it interacts with hardware functions for
data capture and processing. Each service supplier has a pri-
ority, and thus the system manager can decide when it starts
to serve its user, based on the current ubiquitous computing
environmental conditions. Further, similar to the interactions
between software applications and hardware devices in a
conventional embedded OS, service suppliers in SAHA also
interact with reconfigurable hardware functions through the
device nodes. As a result, though SAHA supports system
adaptation, the generality in accessing the hardware device
design is still not sacrificed. Further, because all software and
hardware adaptations in SAHA are performed underlying
the kernel level, service suppliers can serve their users in a
natural interaction method, without any adjustment in them.

3.2 Hardware Adapter
The hardware adapter is used to manage the reconfigurable

hardware architecture. When a service supplier requests
a hardware function that is not configured in the FPGA,
the hardware adapter thus loads the corresponding partial
bitstream to the ICAP controller for configuring the required
hardware function into the FPGA. The hardware adapter
also records which hardware functions are now configured
in the PRRs and which service suppliers are accessing
them. As a result, the system manager can inquire about
the information to estimate which system adaptation, such
as hardware reconfiguration, hardware virtualization, and
hardware preemption, is better for all ubiquitous computing
applications. Further, the hardware adapter needs to support
the system manager for performing the hardware preemption
mechanism. The details of the hardware preemption mech-
anism in SAHA will be introduced in the next section.

3.3 System Manager
The system manager is the core of SAHA that coordinates

all system adaptations. It not only manages all data transfers
within the SAHA design, but also supports the hardware
virtualization and preemption techniques.

Two types of hardware virtualizations, namely logic virtu-
alization and hardware device virtualization, are supported
by the system manager, as described in the following. 1)
In the many-to-one logic virtualization as shown in Figure
3(a), a required hardware function (HW2) is virtualized such
that it can be accessed by two service suppliers, Service
Supplier 1 and Service Supplier 2, through the
device nodes comm2 and comm3, respectively. Here, the
data synchronization is controlled by the system manager.
This many-to-one mapping between more than one service
supplier and a configured hardware function increases the
utilization of a hardware function. 2) In the hardware device
virtualization as illustrated in Figure 3(b), the kernel module
that is linked to and drives a specific hardware function
(HW1) can be dynamically re-linked to another hardware
function HW2. Without unnecessarily copying data between
the user space and kernel space, the processing results of
HW1 can be directly transferred to HW2 through the kernel
module. This one-to-many mapping is a seamless reconfigu-
ration of the underlying hardware, without any change to the
software. Thus, using the hardware virtualization technique,
multiple service suppliers can serve their users under the
illusion of full access to the same reconfigurable hardware
function through their own device nodes, while a service sup-
plier can also access two or more reconfigurable hardware
functions. Therefore, for changing ubiquitous computing
environments, SAHA can adapt to more user requirements,
while it can provide better performance.

Though the partial reconfiguration technique enables parts
of an FPGA device to be reconfigured as different hardware
functions at runtime, the occupied logic resources of a
configured hardware function can be released only after it
finishes its execution. This would incur significant time over-
head, and thus degrade system performance. However, for
ubiquitous computing applications, the support for seamless
services is very important. As a result, SAHA integrates
the hardware preemption technique to further enhance the
utilization of hardware logic resources per unit time. When
the hardware preemption mechanism is triggered, the system
manager requests the hardware adapter to send a swap-out

266 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

Request a HW function

Does a PRR with the

required HW function

NO Is the request from a

service supplier with

NO

equ ed W u c o

exist?

pp

higher priority?

Request the hardware

YES YES

Is the request from

the same service

supplier

adapter to deliver the

swap-out signal
Select another unused

device node

NO

supplier

Wait until the swap-

out process finishes
YES

p
Link the unused

device node to the

required HW function

Link its previously used

kernel module to the

required HW function
Reconfigure the

i d HW f tirequired HW function required HW function

Logic Virtualization HW Device Virtualization HW Preemption

required HW function

Fig. 4: Self-Aware System Adaptation

signal to a hardware function that is being accessed by a
service supplier with lower priority. After all the context
data of the swap-out hardware function are saved in an off-
chip memory, the hardware adapter reconfigures the required
hardware function into the corresponding PRR. Then, it
notifies the system manager that the hardware function can
be accessed. Here, the context data are the collections of
the state registers and data registers. When the swap-out
hardware function is reconfigured into the FPGA and all
its context data are restored, it can continue execution from
the state in which it was swapped out.

As for the determination of when hardware virtualization
and preemption mechanisms are used due to system adap-
tation, the system manager needs to collaborate with the
observer. The detailed introduction will be given in the next
section.

3.4 Observer
Both the system manager and the hardware adapter pro-

vide the capability of system adaptivity for SAHA. As
to when system adaptation is triggered, it mainly depends
on the observer. Thus, the observer plays a key role to
make SAHA self-aware to adapt to ubiquitous computing
environments. The observer is aware of the characteristics
of currently running applications. As shown in Figure 4, it
collaborates with the system manager to decide which of
the three proposed techniques, namely logic virtualization,
hardware device virtualization, and hardware preemption.

When a service supplier requests for a hardware function,
the observer first asks the system manager whether the
required hardware function has been configured in a PRR.
If not, the observer determines what the priority level of the

service supplier is, and then it queries the system manager
whether the priority of this service supplier is higher than
any service supplier that is accessing reconfigurable hard-
ware functions. In our current implementation of SAHA,
the priority levels of all service suppliers need to be preset
during system initialization by users. Otherwise, SAHA
is based on a first-come-first-served basis. If the service
supplier does not have higher priority, it will wait until the
required hardware function is configured into the FPGA.
Otherwise, the hardware preemption mechanism is invoked,
such that the system manager requests the hardware adapter
to start the swap-out process. After the swap-out process
finishes, the required hardware can be configured into the
FPGA. Then, the observer continues to collaborate with
the system manager to decide which hardware virtualization
technique will be used.

When the required hardware function is already config-
ured, the observer checks whether the request is received
from the same service supplier. If not, the system manager
invokes the logic virtualization to dynamically link another
unused device node to the required hardware function.
Otherwise, the system manager invokes the hardware device
virtualization to dynamically link the previously used kernel
module to the PRR with the required hardware function,
and thus the processing results of the previous hardware
function can be directly transferred to the requested hardware
function. Note that, using the hardware device virtualization,
when a pair of device node and kernel module is linked to
only one hardware function, the final processing results are
thus transferred back to the service supplier.

Through the cooperation between the service suppliers,

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 267

ioctl(devfp, 0, data);ioctl(devfp, 0, data);

ioctl(devfp, 1, exp);

ioctl(devfp, 2, mod);

i tl(d f 8 0 00000001)

CB

m
m

HW

ioctl(devfp, 8, 0x00000001);

ioctl(devfp, 8, 0x00000000);

while(ioctl(devfp, 9, 0x00000000) != 1){};

D
T

C

C
o

m

result = ioctl(devfp, 10, 0x00000000);

SC

Comm: Communication Interface Component; DTC: Data Transformation Component;

CB: Context Buffer; SC: Swap Controller

Fig. 5: Unified Communication Mechanism

the hardware adapter, the system manager, and the observer,
SAHA can provide a robust infrastructure that is capable of
self-aware adaptation to ubiquitous computing applications.
As to what types of ubiquitous computing applications are
suited to SAHA, the related analysis will be given in Section
5.1.

4. Implementation of Hardware-
Software Adaptation

Besides the support of reconfigurable hardware architec-
ture as introduced in Section 3, this section will introduce
how the hardware virtualization and preemption techniques
can be realized in SAHA to support system adaptation.

To support the hardware virtualization mechanism, both
the interfaces of device drivers and reconfigurable hardware
functions in SAHA must be unified, such that service suppli-
ers and reconfigurable hardware functions can be many-to-
one and one-to-many mapped. Therefore, we further propose
a unified communication mechanism in SAHA to standardize
the hardware/software communication interface, as shown in
Figure 5. To minimize user design efforts, in our design
environment, a user-designed hardware function can be
integrated with a 3-tier interface, including (a) a partially
reconfigurable (PR) template [12], (b) a reusable wrapper
design, and (c) a communication interface component.

The PR template consists of eight 32-bit input data signals,
one 32-bit input control signal, four 32-bit output data
signals, and one 32-bit output control signal. It also contains
an optional Data Transformation Component (DTC) for
unpacking incoming data and packing outgoing data based
on the I/O registers sizes in the hardware functions, and
a reusable wrapper design to support hardware preemption
technique. The wrapper architecture in Figure 5 mainly
consists of a context buffer (CB) to store context data and a
swap controller (SC) to manage the swap-out and swap-in

activities.

Two types of reusable wrapper designs, namely Last Inter-
ruptible State Swap (LISS) wrapper and Next Interruptible
State Swap (NISS) wrapper, are supported by SAHA, as
described in the following. 1) The LISS wrapper stores the
hardware context at each interruptible state, thus the hard-
ware function can be swapped out from the last interruptible
state whenever there is a swap request. It can be used for
hardware functions whose context data size is less than that
of the context buffer, as a result of which all context data can
be stored in the context buffer using a single data transfer. 2)
The NISS wrapper requires the hardware function to execute
until the next interruptible state, store the context, and then
swap out. It can be used when the context data size is
larger than that of the context buffer, where the process of
storing the context data into buffer and reading into memory
is repeated and controlled by the hardware adapter. The
communication interface component is used to connect the
PR template to the system bus. Further, the processing results
can be buffered in the communication interface component
until the service supplier reads them.

Within the software part, different from the traditional
device driver designed for a specific hardware function,
a unified kernel module is designed to only interact with
the fourteen 32-bit signals of the PR template. All the
interactions between service suppliers and reconfigurable
hardware functions are through the ioctl system calls of
the unified kernel module and implemented in a hardware
control library. Thus, a new user-designed hardware function
needs to be only integrated with a PR template and included
its control methods into the hardware control library. As a
result, SAHA can be easily extended to support more types
of ubiquitous computing applications, without being only
restricted to our current implemented applications.

268 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

PRR1 PRR2

MicroBlaze

I
C

A
P

Fig. 6: FPGA Implementation

5. Experimental Evaluation
The current SAHA design was implemented on the Xilinx

ML310 platform [13] with a Virtex II Pro FPGA device, in
which the PetaLinux embedded OS [14] ran on a Xilinx Mi-
croBlaze soft-core processor [15] as shown in Figure 6. Due
to the resource limitations of our current implementation,
only a large PRR1 and a small PRR2 are implemented in
the FPGA. In this section, we will first analyze the hardware
virtualization and preemption techniques in SAHA, and then
give a case study that SAHA itself adapts to ubiquitous
computing applications using both hardware preemption and
hardware virtualization.

5.1 Performance Analysis
In the following sections, we will discuss the impact on

system performance, respectively, using hardware virtualiza-
tion and hardware preemption.

5.1.1 Hardware Virtualization
To analyze the impact on system performance using

hardware virtualization in SAHA, we first measure the time
required for each of the following basic operations. The
average amounts of time to insert a kernel module, to
open a device node and to close it are 830, 0.253, and
0.048 milliseconds, respectively. The average amounts of
time to write a 32-bit data to and to read a 32-bit data
from the kernel space are 0.022 and 0.022 milliseconds,
respectively. The average computing time for processing a
128 × 64 pixel image using the RSA32, RSA64, RSA128,
RC6, CRC32, CRC64, and CRC128 hardware functions is
0.026 milliseconds, while the average time to read a 32-
bit data from a hardware function and then write it to
another hardware function through the unified kernel module
is 0.0028 milliseconds.

0
500

1000 0
5

10

x 10
5

0

1

2

3

4

x 10
8

of shared HW functions

of iterations for the previous application

F
in

is
h

 T
im

e
(m

s)

Conventional Logic Virtualization

Fig. 7: Logic Virtualization and Conventional Method

As introduced in Section 3.3, through logic virtualization,
a service supplier can access a hardware function that has
been accessed by another previous service supplier, as long
as the previous service supplier is not using it, irrespective
of whether it is released or not. Without logic virtualization,
the hardware function cannot be accessed until the previous
service supplier releases it. Thus, using the conventional
method in the best case, the waiting time would be equal to
the total processing time of the shared hardware functions in
the previous service supplier. Based on our measurement of
the time required by each basic operation, Figure 7 compares
logic virtualization and the conventional access method by
looking at the finish time of a service supplier that has some
hardware functions previously accessed by another service
supplier. Here, the numbers of shared hardware functions
and iterations to access the shared hardware functions in the
previous service supplier are set ranging from 0 to 1, 000
and from 0 to 1, 000, 000, respectively. We can observe
that the time required by using the logic virtualization
becomes lesser and lesser compared to the time required by
using the conventional access method, when the numbers
of shared hardware functions and iterations to access the
shared hardware functions in the previous service supplier
gradually increases. This is because logic virtualization re-
duces significantly the waiting time for the shared hardware
functions. Thus, performance improvement using the logic
virtualization becomes more and more prominent with an
increase in the total processing time of shared hardware
functions in the previous service supplier.

Using hardware device virtualization, the processing re-
sults (data) of a hardware function can be directly transferred
to another hardware function through the unified kernel
module. Thus, hardware device virtualization is used to save
time by avoiding repeated data transfers between the OS

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 269

0
5

10
x 10

4 0
5

10

x 10
4

0

2

4

6

8

x 10
8

of iterations# of HW functions

T
h

e
to

ta
l

p
ro

ce
ss

in
g

 t
im

e
(m

s)
Conventional HW Device Virtualization

Fig. 8: HW Device Virtualization and Conventional Method

kernel and the user level. Based on our measurement of the
time required by each basic operation, Figure 8 shows the
total processing time of a service supplier using the hardware
device virtualization technique and the conventional method.
Here, the number of hardware functions to be sequentially
accessed by the service supplier and the number of iterations
to access the hardware functions are both set ranging from
0 to 100, 000. We can observe that the time required by
using the hardware device virtualization technique becomes
lesser and lesser compared to the time required by using
the conventional method, when the numbers of hardware
functions and iterations to access the hardware functions
gradually increase.

From the above results, we can clearly observe that
the hardware virtualization technique allows greater perfor-
mance improvement, compared to the conventional method,
when a service supplier requires more and more iterations
to access hardware functions. This also shows that the
hardware virtualization technique will play a key role to help
system adaptation and provide better performance, especially
for ubiquitous computing applications, such as multimedia
applications and the cryptographic applications, that usually
must process a larger amount of information and data.

5.1.2 Hardware Preemption

In our current implementation, the software process-
ing time is much more than the hardware processing
time. To clearly show the contribution to hardware pre-
emption in SAHA, we directly compared it with another
reconfiguration-based method (RBM) [16]. Here, RBM re-
quires readback support from the reconfigurable logic such
as state extraction from the readback stream and manipula-
tion of the bitstreams for context restoring.

Figure 9 shows the time overheads in swapping out and

40.9%

40.4%

Fig. 9: Experiments on Hardware Preemption

swapping in for the LED controller, the Greatest Common
Divisor (GCD), the Data Encryption Standard (DES), and
DCT hardware functions. We can observe that the hardware
preemption mechanism in SAHA performs better than RBM.
For the more complex DES and DCT hardware functions,
our method can reduce the swap time by 40.4% and 40.9%,
respectively, of that required by RBM. We are thus saving
much time, which is very important for supporting seam-
less ubiquitous computing services. Even though additional
reconfiguration time is required, the hardware preemption
mechanism in SAHA would enable more service suppliers
to adapt to changing environmental conditions and achieve
higher system performance.

5.2 Case Study using both HW Preemption and
Virtualization

The impacts on performance using the hardware preemp-
tion technique and the hardware virtualization technique
have been discussed in Section 5.1. In this case study,
SAHA will serve two ubiquitous computing applications,
including a monitoring service and a live television service.
Note that this experiment does not use the stream buffering
technology and mainly shows performance improvement in
SAHA, and thus the amounts of time to capture data from
the peripherals and transfer data to users on the network are
omitted. As shown in Figure 10, the live television service
requests for processing fifty images using the RC6 and
CRC32 hardware functions. However, the DCT and CRC32
hardware functions are now configured in PRR1 and PRR2,
respectively, where the DCT function required by the low-
priority monitoring service has already executed for 55,000
ms and PRR1 is selected to configure the required RC6
function.

Without the hardware preemption technique, the RC6
hardware function will be configured in PRR1 only after
the DCT function finishes. According to our experimental
results, it needs 13,122.8 ms exclusive of the previous
execution time of 55,000 ms to finish the current DCT
execution and 177 ms to configure the RC6 function. Note

270 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

LV HDV

PRR2

CRC32

PRR1

DCT

RC6 HP

CRC32DCT

Priority: Live TV ServiceLive TV Service > Monitoring ServiceMonitoring ServicePriority: Live TV ServiceLive TV Service > Monitoring ServiceMonitoring Service

HP: Hardware Preemption; LV: Logic Virtualization;

HDV H d D i Vi li iHDV: Hardware Device Virtualization;

Fig. 10: Case Study using both Hardware Preemption and
Virtualization

Table 1: Comparison on Processing Time
System AdaptationCase Preemption Virtualization Time (sec) Improvement

A No No 109.696
B Yes No 96.575 11.96%
C No Yes 98.635 10.08%
D Yes Yes 85.514 22.04%

that here we assume that the current monitoring service
(with requirement for the DCT hardware function) can
also be preempted after one DCT execution. If this is not
the case, a much greater delay will be incurred without
the hardware and software preemption. However, using the
hardware preemption technique, it needs only 1.2687 ms
for the NISS wrapper or 1.2552 ms for the LISS wrapper
to swap out the DCT function, and 177 ms to configure the
RC6 function.

After hardware and software preemption, the required
RC6 hardware function is configured into PRR1. Using the
conventional method, the live television service must now
wait until the currently executing monitoring service closes
the device node comm1 that is linked to PRR1, and then the
live television service opens the same device node comm1
to access PRR1 with the RC6 hardware function. However,
using the logic virtualization, another pair comm2 of device
node and kernel module can be simultaneously used to con-
nect to PRR1 and the live television service starts accessing
PRR1 with the RC6 hardware function more quickly. The
time saved by not waiting for another monitoring service
to close and open the device node comm1, namely logic
virtualization, is around 0.301 seconds according to our
experimental results.

Finally, using the hardware device virtualization, the pro-
cessing results (output data) of the RC6 hardware function
in PRR1 can be directly transferred to the CRC32 hardware
function in PRR2 through the kernel module in the pair
comm2 of device node and kernel module without going
back and forth between the OS kernel and the user levels, as

introduced in Section 3.3. Table 1 gives the total processing
time required for finishing the live television service, where
Cases A, B, C, and D represent the four scenarios that either
use or do not use hardware preemption, and/or hardware
virtualization. Case A is the conventional method in a Unix-
like embedded system, thus it is taken as the baseline
method. The fifth column of Table 1 shows the percentage of
performance improvement compared to the baseline method
Case A. We can observe that system performance can be
significantly enhanced, when hardware preemption (Case B)
or hardware virtualization (Case C) is used. Here, the per-
formance improvement using hardware preemption results
from the configuration of RC6 without waiting until the
monitoring service completes the compression of an image.
Thus, more improvements can be achieved with hardware
preemption, when SAHA receives the request for preempt-
ing the DCT hardware function earlier. Employing both
hardware preemption and hardware virtualization (Case D),
SAHA can reduce the processing time by around 22.04% of
that required by using the conventional method. As a result,
system adaptation in SAHA can provide not only seamless
service but also more efficient infrastructure support for the
services in embedded and ubiquitous applications.

6. Conclusion
To provide a more robust ubiquitous computing infrastruc-

ture, we propose a self-adaptive hardware-software system
architecture (SAHA) that solves the issues related to system
adaptation, as described in Section 1. SAHA also integrates
the hardware preemption and virtualization techniques and
has a complete self-aware system adaptation mechanism
to provide better performance for ubiquitous computing
applications. Our experimental results also demonstrate that
not only system resources can be effectively utilized, but sys-
tem performance can be also improved significantly, when
ubiquitous computing applications are served by SAHA.

References
[1] C. Efstratiou, K. Cheverst, N. Davices, and A. Friday, “An Architec-

ture for the Effective Support of Adaptive Context-Aware Applica-
tions,” in Proc. of the 2nd International Conference on Mobile Data
Management (MDM 2001). Springer, January 2001, pp. 15–26.

[2] S.-J. Ghim, Y.-I. Yoon, and J.-W. Choe, “A Reflective Approach
to Dynamic Adaptation in Ubiquitous Computing Environment,” in
Proc. of the International Conference on Networking Technologies for
Broadband and Mobile Networks (ICOIN 2004). Springer, February
2004, pp. 75–82.

[3] J.-Z. Sun, “Adaptive Determination of Data Granularity for QoS-
Constraint Data Gathering in Wireless Sensor Networks,” in Proc.
of the 2009 Symposia and Workshops on Ubiquitous, Autonomic and
Trusted Computing (UIC-ATC 2009). IEEE Computer Society, June
2009, pp. 401–405.

[4] M. Danek, J.-M. Philippe, P. Honzik, C. Gamrat, and R. Bartosinski,
“Self-Adaptive Networked Entities for Building Pervasive Computing
Architectures,” in Proc. of the 8th International Conference on Evolv-
able Systems: From Biology to Hardware (ICES 2008). Springer,
September 2008, pp. 21–24.

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 271

[5] A. Lagger, A. Upegui, E. Sanchez, and I. Gonzalez, “Self-
Reconfigurable Pervasive Platform for Cryptographic Application,”
in Proc. of the 16th IEEE International Conference on Field Pro-
grammable Logic and Applications (FPL06). IEEE CS Press, August
2006, pp. 777–780.

[6] Xilinx, “Early Access Partial Reconfiguration User Guide, UG208,”
2006.

[7] P.-A. Hsiung, M. D. Santambrogio, and C.-H. Huang, Reconfigurable
System Design and Verification. CRC Press, USA, ISBN: 978-
1420062663, 2009.

[8] C.-H. Huang and P.-A. Hsiung, “Software-Controlled Dynamically
Swappable Hardware Design in Partially Reconfigurable Systems,”
EURASIP Journal on Embedded System, vol. 2008, article ID 231940,
11 pages, doi:10.1155/2008/231940.

[9] ——, “Hardware Resource Virtualization for Dynamically Partially
Reconfigurable Systems,” IEEE Embedded Systems Letters, vol. 1,
no. 1, pp. 19–23, May 2009.

[10] B. Noble, “System Support for Mobile, Adaptive Applications,” IEEE

Personal Communications, vol. 7, no. 1, pp. 44–49, February 2000.
[11] T. Wollinger and C. Paar, “How Secure are FPGAs in Cryptographic

Applications,” in Proc. of the 13th IEEE International Conference
on Field Programmable Logic and Applications (FPL’03). Springer
Verlag, September 2003, pp. 1–3.

[12] C.-H. Huang, P.-A. Hsiung, and J.-S. Shen, “UML-based hard-
ware/software co-design platform for dynamically partially recon-
figurable network security systems,” Journal of Systems Architec-
ture (JSA), vol. 56, no. 2-3, pp. 88–102, February 2010, (doi:
10.1016/j.sysarc.2009.11.007).

[13] Xilinx, “ML310 User Guide,” 2007.
[14] PetaLogix, “PetaLinux,” http://www.petalogix.com/.
[15] Xilinx, “MicroBlaze Processor Reference Guide, Embedded Develop-

ment Kit, EDK 8.2i - UG081 (v6.3),” August 2006.
[16] H. Kalte and M. Porrmann, “Context Saving and Restoring for

Multitasking in Reconfigurable Systems,” in Proc. of the 15th IEEE
International Conference on Field Programmable Logic and Applica-
tions (FPL’05). IEEE CS Press, August 2005, pp. 223–228.

272 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

SESSION

REGULAR PAPERS

Chair(s)

PROF. DAVID ANDREWS

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 273

274 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

Evaluating Expression Trees in Hardware

Lars Middendorf1 and Christophe Bobda2
1Institute of Computer Science, University of Potsdam, Potsdam, Germany

2College of Engineering, University of Arkansas, Fayetteville, Arkansas, USA

Abstract— We propose expression trees as an universal
format for communication and as an executable specifi-
cation for work-items. The presented application-specific
instruction-set processor (ASIP) interprets a stream of ex-
pressions received from the main processor to speed-up
expensive floating-point operations. Due to our term rewrit-
ing approach, long pipelines, as they are required for
floating-point operations, can be realized without explicit
scheduling. In contrast to RISC processors, a register file is
not necessary because the arguments can be taken directly
from the stream. Similar to DSP filters, only a short shift-
register is necessary to remember a set of previous values.
Complex examples from the field of computer graphics show
the usefulness of our approach.

Keywords: Expression Trees, ASIP, Streaming, FPGA

1. Introduction
Due to decreased time-to-market and rising requirements

on functionality and performance, a co-design of hardware
and software components is essential. Since both parts
depend on each other, the design of a stable interface
at the beginning of the development process guarantees
interoperability and verifiability. In addition, implementation
details like the topology of the network and the partitioning
of the system may be influenced by these design decision.

Usually, an abstraction based on tasks is used to describe
the interaction between modules on both sides [1]. While a
uniform set of similar modules is easier to program, often
specialized processing units like digital signal processors
(DSP) or custom hardware blocks are utilized to meet per-
formance goals. Especially in the case of manycore systems,
the communication between these modules still remains
an open problem. A shared bus or network-on-chip (NoC)
only provides the infrastructure for data exchange, but it
usually does not define a protocol to distribute tasks across
processing units [2]. An intermediate layer, supporting the
creation of threads in hardware and software, hides this
complexity and creates a consistent view of the system. In
this case, it is possible to build operating system services like
the scheduler in hardware to reduce latency [3] [4]. Hence,
even late in the development cycle, tasks can be transferred
into hardware without adapting the clients.

While smaller systems can use shared memory for syn-
chronization, larger systems rely on message-passing as a
scalable communication method [5]. Instead of flat packets,

Program

Sender Receiver

ASIP

encoded as stream

Extraction of

expression tree

Target

specific

execution

Expression Tree

*

1

.

0

2

.

0

3

.

0

4

.

0

*
+ DSP Block

Expensive

Function

Fig. 1: Expressions tree used for communication.

we propose to use expression trees for distributing work-
items in a manycore system with the following considerable
advantages:

Expression trees offer an advantageous approach for de-
coding tasks, since they cannot only encapsulate function
calls but also arbitrary program fragments. Similar to the
decorated abstract syntax tree built during compilation, our
expressions contain all information necessary for code gen-
eration or interpretation, so that they provide a self-contained
and portable encapsulation of both data and instructions.
Furthermore, they are mostly independent of both the source
language and the target architecture (Fig. 1).

There are node types for primitive operations and func-
tions, so that micro-threads and course grained tasks can be
described using the same technique. As a result, commu-
nication costs can be reduced if possible while being still
able to compose tasks dynamically. Due to this flexibility,
parts of an application can be moved gradually into hardware
and accelerated as necessary. Unlike C programs which
are expensive to move between processors due to side
effects and external references, expression trees can carry the
current execution environment by capturing free variables in
a closure and are therefore much better suited to transfer
tasks between processing units.

The rest of the paper is organized as follows: In section 2,
we will look at related work in the area of stream processing
and expression trees. In the following section, the concept of
our processor is described in detail and a formal specification
is given. After that, we transfer this approach into a hardware
design which is then tested in an example system-on-chip
(SoC) to accelerate graphic applications. Finally, the last
section is used for discussion and further ideas.

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 275

2. Related Work
Expression trees already have been used successfully as an

intermediate format for the exchange of program fragments
between different environments. The Language Integrated
Query (LINQ) employs expression trees to embed queries,
which are similar to SQL, in C# or Visual Basic programs.
If the compiler encounters an assignment to a variable of
a special type, it does not generate code, but instead stores
the tree of the expression directly. At runtime, the tree is
then transformed it into real query and sent to the database
server. It is also possible to modify and compile expressions
dynamically [6].

In fact, programs for stack-based languages are post-
order serialized expression trees. They are often used as an
intermediate representation for stack-oriented environments
like the Java VM or the .Net IL, which is not surprising
since a stack machine provides both a compact though
powerful and portable abstraction. Also certain programming
languages like Forth, Joy, Factor and PostScript consist
almost completely of operations modifying a stack [7].

However, there is the second possibility to execute a stack-
based program by term rewriting [8]. Nodes containing only
literal values as inputs are replaced successively by the
result of the arithmetic operation. In contrast to the stack-
based evaluation, the tree is visited using breadth-first search
instead of depth-first order. Hence, all nodes at the same level
are processed in the same pass. Since there cannot be any
interdependencies between them, the temporary results from
one step are not needed until the next iteration. As a result,
it is feasible for a hardware implementation to use pipelining
if the tree is wide enough to hide the latency.

The Queue Processor has been designed as an acceler-
ator to speed-up the execution of a basic block, which is
usually the body of an expensive loop [9]. As a pure queue
machine, it also has some restrictions: An instruction can
only read from the end of the queue, so that it cannot refer
to arbitrary arguments. Therefore, the data flow graph of
the program fragment should be planar without crossing
edges, which means that variables should be optimally
accessed continuously. The queue processor supports special
commands to duplicate and swap the items at the end of
the queue, so that it can execute all code, but often half
of the instructions in a program are used to reorganize the
queue. However, all calculations can be optimally pipelined,
so that this approach is also usable for expensive and high-
performance computations. ur work is similar to the queue
processor, since we will also focus on a pipelined execution.
However, the queue processor supports only basic arithmetic
operations and is limited to data flow graphs. Contrary, our
system deals with trees that can also contain function calls
and definitions. Further, the use of positional parameters
avoids the expensive reordering on the stream as it is the
case for the queue processor.

3. Expression Trees
In this section, we will define the format of the expression

trees and specify a set of rules which are later used for
hardware-based evaluation.

3.1 Expressions
Our system consists of a tree grammar G and a set of

rules R that provide a mapping of one tree to another.
The grammar determines the set of possible node types,
which are described later in this section. A tree is executed
by applying all possible rules iteratively until there is no
more match. A rule normally reduces nodes of the tree and
replaces them by their result, but there are also rules that
expand definitions and create new branches. It is assumed
that the rules are well-defined, so that there is only at most
one matching rule for a given tree and that no rule is the
identity function. A program is a set of rules extending the
predefined grammar. Let T be the language generated by G,
so that t ∈ T is a tree. Further, let fR be a function that
applies all matching rules of R and returns a modified tree.

fR : T → T

For example, R may contain a rule that replaces A + B
by the result of the addition if A and B are constants. Then
fR(1 + 2) is evaluated to fR(3), while fR(1 + x) cannot
be reduced. In general, the function fR(t)n is the temporary
result of t after n iterations. If we choose a discrete metric
to compute the difference between two trees, the final result
can be described as the limiting value:

F (t) = lim
n→∞

fR(t)
n

Our goal is to implement the function fR in hardware.
Since expression trees are immutable and contain all nec-
essary information, global memory writes can be avoided
and the execution can be parallelized beyond simple data
parallelism.

3.2 Encoding
We choose to serialize the trees into sequences because

a data stream can be processed efficiently in hardware and
does not require random memory accesses. A node of the
tree is described by a token (type, value) which contains a
type and an optional argument. For instance, the equation
(A ·B)+(C ·D) is described by the sequence AB ·CD ·+.
Figure 2 shows the evaluation of this tree by repeated
application of fR. The individual rules are explained later. A
post- or pre-order representation is advantageous, because it
does not require parentheses to encode operator precedence,
so that the overall storage can be reduced. Further, we
preferred a depth-first traversal over a breadth-first, to allow
for efficient substitution of sub-trees. In a depth-first scheme,
a sub-tree always corresponds to a single range of tokens that

276 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

*

1.0 2.0 3.0 4.0

*

+

1.0 2.0 * 3.0 4.0 * +

2.0 12.0 +

14.0

fR(t0)

fR(t1)

t0

t1

t2

Fig. 2: Evaluation of an expression tree using term rewriting.

Table 1: Token types.

Token Description

CONST(value) Literal value
SYMBOL Dereference a symbol
UNARY(operator) Unary operation like −,
BINARY(operator) Binary operation like +,∗
DEF(name) ENDDEF Definition of symbol < name >

IF, ELSE, ENDIF Begin/End of a conditional block
FUNC(args) , ENDFUNC Duplicate value
ARG(index) Argument placeholder

can be replaced on-the fly while the tokens pass through a
hardware component. The rules for arithmetic evaluation are
applied on trees whose children are either constants or have
been reduced to constants. In depth-first order, these trees
consist of two or three consecutive elements, so that the
internal storage of the hardware component is minimized.
Table I lists the possible token types which are explained in
the next sub-sections.

3.3 Arithmetic
Since our processor should accelerate floating-points cal-

culations, our system needs to represent arithmetic expres-
sions. We first allow all meaningful functions like addition,
subtraction or multiplication. Later, we will adapt this set to
an actual hardware implementation. For instance, it could
be possible to realize expensive calculations like square-
roots directly in hardware and represent them as unary
expressions.

Constant tokens belong to the terminal symbols of our
grammar and represent scalar literal expressions like 1.0
or 2.0. A sequence is evaluated iteratively by applying a
set of replacement rules. Since unary and binary operators
only work on numbers, they expect constant tokens directly
before the operator. Otherwise, the function cannot execute
and leaves the stream unmodified. Figure 2 shows a more
complex example that is evaluated in two separate steps. In

the first pass, only the inner multiplications are ready. The
addition depends on intermediate results and has to wait for
the second pass. Although all non-trivial expressions require
multiple passes for complete evaluation, there are no data
dependencies within a pass, making it possible execute these
operations in a pipeline.

3.4 Definitions
To compose more complex functions efficiently, parts

of an expression must be saved for later reuse. Further,
we also want to limit the amount of data sent to reduce
communication costs. For example, a matrix that is used to
transform an array of vectors should not be retransmitted for
every element in the array. Therefore, we need a mechanism
to look-up expressions by a symbolic name. The following
example shows the definition of a symbol using a pair of
DEF/ENDDEF tokens.

DEF(Inc) + ENDDEF 1

Later, the SYMBOL token can be used to insert the stored
sequence:

3 SYMBOL(Inc) 3 1 + 4

3.5 Conditionals
Similar to definitions, conditional expressions are also im-

plemented by a pair of begin and end markers (IF/ENDIF).
Depending on the value of the token directly before this
block, the content is either discarded or passed though. The
ELSE token can appear inside the block and reverses this
logic. In the diagram, the condition is evaluated to 0, so that
the if -branch is omitted while the else-branch is kept.

1 2 > IF 1 ELSE 2 ENDIF

0 IF 1 ELSE 2 ENDIF

2

3.6 Functions
For term rewriting, the operands of an arithmetic expres-

sion must be placed immediately before the corresponding
token, so that arguments and operators are interleaved.
Contrary, code and data become separated when employing
symbols to store functions for re-usability. Hence, a mech-
anism that re-combines different parts of a sequence is re-
quired. A function block (FUNC(n)/ENDFUNC) works like
a template. It provides a mapping from a list of arguments
to a sequence of tokens. Inside the block, an ARG(i) token
marks the positions where the argument i should be inserted.

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 277

For example, the following function calculates the sum of
three parameters:

FUNC(3) + Arg(0) + Arg(2) Arg(1) ENDFUNC

To evaluate this function, the formal parameters are bound
to actual values. The binding rule replaces the first argument
of the function by the first constant before the FUNC token.
The result is again a function containing one argument less,
so that also partial evaluation (currying) is supported. After
the last argument has been applied, header and end marker
are removed, leaving a constant function on the stream.
The incremental evaluation is illustrated by the following
example that passes the arguments (1, 2, 3) to the function
defined above:

FUNC(3) + Arg(0) + Arg(2) Arg(1)
END

FUNC 3 2 1

FUNC(2) + + Arg(1) Arg(0)
END

FUNC 3 2

FUNC(1) + + Arg(0)
END

FUNC 3

3 +

1

1 2

3

6

4. Expression Tree Processor
We will present an application-specific hardware acceler-

ator that implements the rules specified in section 3.

4.1 Overview
Figure 3 shows the internal structure of our stream proces-

sor which resembles the function fR defined in the previous
section. The instruction set of this processor corresponds to
the set of term rewriting rules. Each rule is implemented as
a separate hardware module that analyzes and modifies the
stream if necessary. The modules are connected in a pipeline,
so that different parts of the stream can be replaced in
parallel. A single iteration through this pipeline corresponds
to one invocation of fR.

An expression is received as a list of tokens from the host
processor via a FIFO interface. Each token is represented as
a packet with a size of 33 bit (Fig. 4). If bit 32 is zero then
the rest of the word is a 32-bit constant value. Otherwise, the
bits 31 to 24 describe the opcode and the lowest 24 bit store
additional arguments. For example, the DEF token needs the
address of the new symbol. After being passed through all
modules, the resulting stream of expressions is written back
to the output FIFO.

Definition

MULT

ADD

MULT

DIV

SQRT

Conditional

Function

from host processor

Symbol definition and dereference

DEF, ENDDEF

Binding of function arguments

FUNC, ENDFUNC

Multiplication (floating-point)

MULT

Addition (floating-point)

ADD (2x)

Square root (floating-point)

SQRT

Division (floating-point)

DIV

Comparisons and conditionals

IF, END_IF, ==, !=, <,>, <=, >=

33 bit

Multiplication (floating-point)

MULT

Resulting tree

Fig. 3: Structure of the Stream Processor.

4.2 Pipeline
In the ALU of a conventional processor, mostly all opera-

tions are executed each clock cycle and a multiplexer selects
the desired result. Our design arranges the functions in a
chain, so that intermediate results can be passed directly to
the next stage without being written into a register file. As a
consequence, all modules could operate in one cycle leading
to a potentially much higher utilization of the arithmetic
units.

To match as many rules as possible in one step, the order
of operations in the expression should correspond to the
order of modules. As a result, the optimal configuration may
depend on the target application. For computer graphics, we
usually deal with geometric calculations which involve a
larger amount of linear functions. As a consequence, we
choose to place the multiplication in front of the addition,
so that a dot product can be calculated in one pass. Square-
root and division are located at the end, since they are scalar
functions that often take the result of linear functions. For
communication, a simple bus, containing the token (33 bit)
and a valid bit (1 bit), is employed, so that the same concept
can be also adapted to other applications by reordering or
replacing stages.

4.3 Symbols
The definition and insertion of symbols is handled by

the symbol-table which is located in the Definition stage.
It has a small RAM that is used to store the sequence of
tokens associated with a symbol. On this level, the name of

278 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

a symbol corresponds to the start address in the RAM. The
ENDDEF is also written into the RAM to mark the end of
a symbol sequence.

4.4 Conditionals
The conditional stage is used to implement the

IF/ELSE/ENDIF and comparisons rules. It either discards
or copies the token, depending on current condition. While
the comparisons are pipelined, the IF itself only needs to
test against zero. As a result, multiple nested IF-blocks can
be processed in a single iteration by storing the previous
condition on a small stack. It takes only two bits per nested
IF to store the enable flag for the if -branch and the else-
branch, so that a distributed RAM is sufficient to buffer a
reasonable amount of conditions.

5. Results
To test the concept of streaming expression trees, we

implemented the processing unit as part of a SoC on a
Virtex4-FX20 from Xilinx (Fig. 5). The expression processor
is connected to a PowerPC 405 via the Fabric Co-processor
Bus (FCB). The PowerPC does not contain a floating-point
unit, so that all floating-point operations are evaluated in
software. Although the PowerPC runs at 300MHz and our
ASIP is limited to 100MHz, we should expect an adequate
speed-up. Our processing unit took 3432 Slices, 12 DSP48s
and 1 BRAM (symbol-table). We used the Xilinx CoreGen-
erator to build the floating-point modules.

5.1 Empirical Tests
To evaluate the performance of our design, we measured

some generic functions on an array of 4D vectors. For all
functions, both a pure software solution and a hardware-
accelerated version have been implemented. Table 2 shows
the results of these tests with an array size of 512 vectors.
In the first test, both vectors are added. The second test
calculates the dot product of four-component vectors and
a second constant vector. This is in particular interesting
for graphic processing, since most external parameters like
light directions or matrices remain the same for millions of
invocations. At third, we evaluate the speed of vector normal-
ization which requires two iterations. In the first iteration, the
length of the vector is calculated and in the second step, the

0 32-Bit Constant Value

1 8-Bit Opcode 24- Bit Arguments

Constant-Packet

Control-Packet

32

32

Fig. 4: The packet format of the hardware component.

 PowerPC

Processing Unit

DDR-RAM

VGA

Controller

RS232

Controller

PLB

FCB Expression

 Trees

Result

 Expression

Trees

Fig. 5: System-on-Chip used as a test environment.

0

50

100

150

200

250

0 5 10 15 20

SW

HW

µs
of 4D vectors

y = 9.2295x + 23.381

y = 0.9763x + 4.0522

Fig. 6: Performance of Vector-Normalization.

components are scaled by this value. Currently, the hardware
does not support looping, so that we have to use the PowerPC
to feed-back the values manually. The fourth test calculates
the product of a constant matrix and a vector. Every vertex
of a scene must be transformed into the camera-space of
the viewer by a matrix-vector-multiplication, so that this
operation should be fast. In all vector tests, we attained an
increase in performance. The large number of vectors makes
sure that there are enough overlapping operations. Since the
pipeline is quite deep, we might have to wait for the result of
the hardware, so that we expect a non-proportional scaling
between software and hardware performance. Figure 6 shows
the performance of the vector normalization test for the first
20 vector counts. A linear regression reveals a constant offset
of 4µs for the hardware version. Surprisingly, the software
variant has also some fixed costs, which might be caused
by a cache-miss at the first time the floating-point library
routines are executed.

5.2 Triangle Rendering
We implemented a triangle-rendering application in C++

that supports the rasterization of flat-shaded triangles. It
consists mainly of two parts. First, the coordinates are trans-
formed from the global word-space into the local camera-
space and projected onto the screen. After that, the triangles
are rasterized with a constant color, which requires only
integer math. Therefore, we choose to accelerate the trans-
formation of coordinates and normal vectors. As a result,

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 279

Fig. 7: Screenshots of Rendering Scenes.

we can use more and smaller triangles so that the low-
quality flat-shading becomes less relevant. We tested three
versions of the Stanford Bunny 1 consisting of 1K, 5K and
10K triangles. Figure 7 shows screenshots of these models
at a resolution of 320x240. The factor between hardware and
software, listed in Table 2, is much lower than the speed-up
of the generic tests. This is causes by the fact, that we used
the ASIP only for some parts of the program. Our solution
focuses on interoperability and allows for a gradual move
from software to hardware. It can be seen, that the test with
10K triangles achieves a higher performance increase than
the scene with 1K triangles. The fixed costs of the pipeline
are irrelevant in this case, because we send the vertices in
blocks of 512 elements. Therefore, the work of the CPU
must depend mainly on the number of visible pixels, which
remains nearly the same.

5.3 Raytracing
Raytracing takes the opposite approach to rasterization.

Instead of drawing the pixels of the triangles directly, we
create a line from the camera through every pixel and
calculate the nearest intersection of the scene with this line.
Special effects like mirrors or shadows can be implemented
by tracing additional rays. Further, we are not limited to
triangles, but can use every primitive that supports an inter-
section test. On the other hand, ray-tracing is expensive on
a system without an FPU, because most calculations involve
floating-point operations. We measured the rendering time
of a test scene consisting of a plane with a checkerboard
pattern and up to three spheres with and without lighting
(Fig. 8). In the last test, the spheres are reflective. Some
parts of the intersection equations, vector normalizations and
matrix-vector-multiplication have been moved to the ASIP.

1http://www-i8.informatik.rwth-aachen.de/old-
site/teaching/ss05/praktikum_sfx

Table 2: Time per frame (software and hardware rendering).

Test SW HW SW/HW

Vector Tests(512)
Vector Addition 2936 ţs 445 ţs 6.60
Dot-Product 1862 ţs 164 ţs 11.36
Normalization 4860 ţs 570 ţs 8.53
Vector-Matrix-Multiplication 8373 ţs 520 ţs 16.10
Triangle-Rendering
Bunny 1K 59 ms 44 ms 1.34
Bunny 5K 173 ms 100 ms 1.73
Bunny 10K 315 ms 170 ms 1.85
Raytracing
Plane without lighting 4200 ms 1890 ms 2.22
Plane, 1 Light 5752 ms 3433 ms 1.68
Plane, 1 Sphere, 1 Light 7827 ms 5483 ms 1.44
Plane, 1 Sphere, 1 Light 8892 ms 6868 ms 1.29
Plane, 2 Spheres, Shadows 10661 ms 8954 ms 1.19
Plane, 3 Spheres, Shadows 13279 ms 11773 ms 1.13
Plane,3 Spheres, Shadows,
Reflection

15641 ms 13879 ms 1.13

Let g be a ray and E be a plane defined by the following
equations:

g(t) = S + t ·R

E = {(x, y, z} ∈ R3 : Ax+By + Cz +D = 0}

Then, the intersection of g and E is given by:

t = −A · Sx +B · Sy + C · Sz +D

A ·Rx +B ·Ry + C ·Rz

The result t marks the position on the line g at which
ray and plane intersect. Although the expression is rather
complex, it can be evaluated almost completely in a single
pass. In our case, the final minus is calculated on the CPU,
since inverting a floating-point number is cheap. First, the
numerator of the fraction is encoded as:

 A Sx * B Sy * + C Sz * D + +

The denominator corresponds to the sequence:

A Rx * B Ry * + C Rz * +

Both are divided by appending the division token:

A Sx * B Sy * + C Sz * D + +

A Rx * B Ry * + C Rz * + /

To demonstrate the individual steps of the calculation,
we insert real values. The structure of the flattened tree is
illustrated by arrows. The plane should be aligned to the Z-
axis and go through the origin. Hence, we set (A,B,C,D)
to (0, 0, 1, 0). The ray starts at the point (2, 2, 4) and has the

280 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

direction (1, 2,−1). The following sequence is sent to the
device:

0 2 * 0 2 * + 1 4 * 0 + +

0 1 * 0 2 * + 1 -1 * + /

In the first stage of the ALU, the multiplication rule is
applied, which leads to the following intermediate result:

0 0 + 4 0 + +

0 0 + -1 + /

After that, the sequence passes the first adder stage, so
that the addition can be evaluated:

0 4 +

0 -1 + /

The second adder stage reduces the remaining additions:

4

-1 /

The final result is left on the stream:

-4

We verify the result by inserting 4 into the equation of
the ray: g(4) = (2, 2, 4) + 4 · (1, 2,−1) = (6, 10, 0).

Obviously, the intersection g(4) is also on the plane.
Performance results can be also found in Table 2: Contrary
to the triangle rendering, the speed-up is lower for the more
complex scenes. The intersection tests for primary rays,
which start directly at the camera, can be easily overlapped
by processing a set of pixels in parallel. The secondary
rays for shadows and reflections have not been pipelined
completely, so that we can see a performance degradation.
As a result, our solution can be used to improve the speed of
existing programs, but for optimal performance, the program
should be adapted.

6. Conclusion
We have shown that expression trees can be used to com-

municate work-items between hardware and software mod-
ules. In addition, serialized expressions trees are evaluated
in a hardware pipeline by applying local replacement rules.

 Fig. 8: Screenshots of Raytracing Scenes.

Thus, our stream processor could successfully accelerate the
performance of two compute-intensive rendering programs.
In contrast to a fixed accelerator built for a special purpose,
the expression tree processor can be adapted to different
applications. The format of the expression trees allows us
to describe program fragments in a platform-independent
way, making this technique most useful for heterogeneous
environments. However, to employ the full capabilities of
our system, we need a compiler that extracts the trees
automatically from a high-level language.

References
[1] A. A. Jerraya and W. Wolf, “Hardware/software interface codesign for

embedded systems,” Computer, vol. 38, pp. 63–69, 2005.
[2] L. Benini and G. De Micheli, “Networks on chips: A new soc

paradigm,” Computer, vol. 35, pp. 70–78, January 2002.
[3] E. Anderson, J. Agron, W. Peck, J. Stevens, F. Baijot, E. Komp,

R. Sass, and D. Andrews, “Enabling a uniform programming model
across the software/hardware boundary,” in Proceedings of the 14th
Annual IEEE Symposium on Field-Programmable Custom Computing
Machines. Washington, DC, USA: IEEE Computer Society, 2006, pp.
89–98.

[4] D. Andrews, D. Niehaus, R. Jidin, M. Finley, W. Peck, M. Frisbie,
J. Ortiz, E. Komp, and P. Ashenden, “Programming models for hybrid
fpga-cpu computational components: A missing link,” IEEE Micro,
vol. 24, pp. 42–53, July 2004.

[5] P. Mahr, C. Lorchner, H. Ishebabi, and C. Bobda, “Soc-mpi: A
flexible message passing library for multiprocessor systems-on-chips,”
Reconfigurable Computing and FPGAs, International Conference on,
vol. 0, pp. 187–192, 2008.

[6] G. M. Bierman, E. Meijer, and M. Torgersen, “Lost in translation:
formalizing proposed extensions to c#,” SIGPLAN Not., vol. 42, pp.
479–498, October 2007.

[7] S. Pestov, D. Ehrenberg, and J. Groff, “Factor: a dynamic stack-
based programming language,” in Proceedings of the 6th symposium
on Dynamic languages, ser. DLS ’10. New York, NY, USA: ACM,
2010, pp. 43–58.

[8] M. von Thun, “A rewriting system for joy,” 1996, available from the
author.

[9] H. Schmit, B. Levine, and B. Ylvisaker, “Queue machines: Hardware
compilation in hardware,” in Proceedings of the 10th Annual IEEE
Symposium on Field-Programmable Custom Computing Machines.
Washington, DC, USA: IEEE Computer Society, 2002, pp. 152–.

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 281

Data-Transfer-Aware Memory Allocation for Dynamically
Reconfigurable Accelerators in Heterogeneous Multicore Processors

Y. Ohbayashi, H. M. Waidyasooriya, M. Hariyama and M. Kameyama
Graduate School of Information Sciences, Tohoku University

Aoba 6-6-05, Aramaki, Aoba, Sendai, Miyagi,980-8579, Japan
Email: {y-ohba@kameyama., hasitha@kameyama., hariyama@, kameyama@}ecei.tohoku.ac.jp

Abstract— Accelerator cores in low-power heterogeneous
multicore processors have multiple memory modules to
enable parallel data access. Recent low-power processors
contain address generation units (AGUs) for fast address
generation. To reduce the core-area, small functional units
such as adders and counters are used in AGUs. Such
small functional units make it difficult to implement complex
addressing patterns without duplicating the data among
multiple memory modules. The data-duplication wastes the
memory capacity and increases the data transfer time signifi-
cantly. This paper proposes a method to remove the memory
duplication and to increase the degree of parallelism. To
verify the effectiveness of this method, we use window-based
media processing which is widely used in many applications.
According to the evaluation, the proposed method reduces
the total processing time by 14% to more than 85% com-
pared to the previous works.

Keywords: Heterogeneous multicore, memory allocation, dy-
namic reconfiguration, multi-context FPGA

1. Introduction
Recently, there is a huge demand for the media processing

on mobile devices such as mobile phones, cameras and
vehicles. The media processing applications are getting very
complicated due to the addition of many different tasks
such as filtering, matching, object detection, etc. This has
increased the demand for a large computational capability
and also a low power consumption. Using heterogeneous
multicore processors is a very promising way to meet
these demands. They contain different cores such as CPUs
and accelerators in the same chip. To reduce the power
consumption and to integrate many cores in a single chip,
the area of each core is reduced. Therefore, each core
has a very small memory capacity and a small number of
processing elements (PEs). Moreover, many accelerators are
dynamically reconfigurable so that the same resources are
shared in different time slots. If the tasks of an application
are correctly mapped to the most suitable core, all the cores
work together to increase the overall performance. Examples
of heterogeneous multicore processors are [1] and [2].

One major problem in the heterogeneous multicore pro-
cessors is the data-transfer bottlenecks. Many heterogeneous

Fig. 1: Hierarchical memory structure

multicore processors contain a hierarchical memory structure
as shown in Fig.1. It contains a large memory module (global
memory module) placed outside the accelerator core and sev-
eral small memory modules (local memory modules) placed
inside the accelerator core. Since the memory capacities of
the local memory modules are small, data are copied from
the global memory module to the local memory modules
many times. To access the local memory modules, the
accelerator core employs address generation units (AGUs)
as shown in Fig.1. To decrease the area of the accelerator,
the AGUs contain simple hardware units such as adders and
counters. Therefore the AGUs implement only the most com-
mon memory access patterns such as linear access and stride
access. The relationship between the memory address and
the control step (or time) is called the “addressing function”.
Many media processing applications contain very complex
memory access patterns. To implement such access patterns
using simple AGUs, the same data should be transferred
many times into different addresses of the local memory
modules. Transferring the same data multiple times is called
“data-duplication problem”. Due to this, the amount of data
transferred to the local memory modules is increased and the
data-transfer time becomes much larger than the computation
time for many applications.

To solve this problem, address-function-constrained mem-

282 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

ory allocationsare proposed recently [3], [4], [5]. A memory
allocation for FIR filters and their implementation on a
dynamically reconfigurable accelerator is proposed in [5].
However, the applications are limited to FIR filters and it
does not consider a processing time minimization. A mem-
ory allocation for window-based media processing under
addressing function constraint is proposed in [3] and [4]. The
method in [3] and [4] allocates the data in the local memory
modules in such a way that they can be accessed using
simple addressing functions. Although this method reduces
the data-transfer time significantly, it cannot completely
solve the data-duplication problem. Therefore, the data-
transfer time is more than half of the total processing time
for many applications.

This paper proposes a temporal memory allocation for
window-based media processing. This work is distinguished
from the earlier works by considering both the spatial and the
sequential relationships between the data and the memory
addresses, while the conventional memory allocation [4]
considers only the spatial relationship. In the proposed
memory allocation, only the required data are transferred
to the local memory modules. The data are allocated to the
local memory addresses that contain obsolete data which are
already processed and are not required in later calculations.
Therefore, the transferred data amount is minimized and the
data-transfer time is reduced. It uses both pixel-parallelism
and window-parallelism simultaneously, so that the compu-
tational time is also reduced. To verify the effectiveness
of this method, we use window-based media processing
which is widely used in many applications such as stereo
matching [6], filter computations, etc. It involves with a large
amount of data and also requires complex memory access
patterns. According to the evaluation, the proposed method
reduces the total processing time by 14% to more than 85%
compared to the method in [4].

2. Heterogeneous multicore processor
architecture

In this paper, we use the heterogeneous multicore proces-
sor called “RP1” proposed in [2]. It has 4 CPU cores and 2
FE-GA (Flexible Engine/Generic ALU Arrays) accelerator
cores. All the cores are connected by a bus called “Super-
Hyway”. An off-chip SDRAM is connected to the processor
through the SuperHyway. Figure 2 shows the architecture of
the FE-GA accelerator. It has an array of 32 PEs called
“ALU” cells and “MLT” cells. The FE-GA has 10 local
memory modules of 4KByte each. Each memory module
has AGUs as shown in Fig.2.

The AGUs are very useful since they significantly de-
crease the addresses generation time. Since AGUs do the
address generation, the PEs are used only for the data
processing and that decreases the processing time. To reduce
the area of the accelerator core, AGUs contain only simple

Fig. 2: Block diagram of FE-GA

Number of iterations
c

m

Time (t)

Address

Fig. 3: Addressing function

hardware such as adders and counters. Therefore, the number
of addressing patterns generated in AGUs is limited to the
most common addressing patterns. The relationship between
the time and the control step (clock cycle) is called the
“addressing function”. In FE-GA, the addressing functions
are limited to a repetition of linear functions as shown by
Eq.(1).

AM = m× t−m×NI ×
⌊

t

NI

⌋
+ c (1)

The parametersm, t, c andAM are theaddress increment,
the control step(or clock cycle), thebase addressand the
address of memory moduleM respectively. The parameter
NI is called thenumber of iterationsand it determines how
many clock cycles this addressing function works. After the
addressing function executes forNI clock cycles, the address
returns to thebase addressas shown in Fig.3. In each context
of the FE-GA, we need to set these 3 parameters:m, c and
AM . Therefore, it is possible to change these parameters
dynamically to access different parts of the memory. Note

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 283

that, althoughEq.(1) contains division and multiplication,
we do not require any multipliers or dividers to implement
this addressing function. The multiplications and divisions
are done by repeated additions. We have not included the
details of implementing the addressing function, since it is
not in the scope of this paper.

The FE-GA contains 256 contexts which are dynami-
cally reconfigurable. The sequence manager shown in Fig.2
controls the dynamic reconfiguration. In each context, we
can change the operations in PEs, AGUs and also the
interconnection network. The dynamic reconfiguration can
be used to dynamically change the addressing function to
generate more complex addressing patterns. In this paper,
we change the parameterc dynamically to access different
address ranges from the memory. This modified addressing
function is given by Eq.(2).

AM = m× t−m×NI ×
⌊

t

NI

⌋
+ c (t) (2)

3. Memory allocation
3.1 Targeted application : Window-based me-
dia processing

This paper proposes a memory allocation for window-
based media processing to reduce the data-transfer time. The
window-based media processing is used in many applica-
tions such as stereo matching [6], optical flow extraction [7],
scale-invariant feature transformation (SIFT) [8], histogram
of oriented gradients (HOG) [9], matrix processing, filtering,
etc. It processes the data in blocks and those blocks are called
windows. Windows are overlapped each other so that there
is a huge shared area between two windows. Therefore, it is
very important to maximize the data sharing to minimize the
amount of data-transfers. At the same time, it is important
to allow parallel data access while satisfying the address
function constraint. We consider both pixel-parallelism and
window-parallelism for the data access.

3.2 Window-parallel pixel-parallel scheduling
This section explains how the image data are arranged and

how those are accessed in window-based media processing.
Since the local memory modules in the accelerator have a
limited capacity, we partition the image into many small
partial images as shown in Fig.4(a). The windows belong
to multiple partial images are accessed in parallel. This
parallelism is called window-parallelism. The pixels in a
window are accessed in pixel-parallel column-serial manner
as shown in Fig.4(b). The data in a column are accessed
in parallel and this parallelism is called pixel-parallelism.
Figure 5 shows how the windows inside the partial imagei
are accessed. Each partial image contains multiple scan areas
as shown in Fig.5(a). After the first scan area is accessed the
next scan area, which is one pixel bellow, is accessed. The

(a) Window-parallel access (b) Pixel-parallel access

Fig. 4: Window-parallel and pixel-parallel access

(a) Scanarea access sequence (b) Window access of scan area 1

Fig. 5: Window access inside the partial imagei

data in scan areas are accessed by sliding a window from
left-to-right as shown in Fig.5(b).

3.3 Temporal memory allocation
Temporal memory allocation considers both the spatial

and the sequential relationships between the image data and
the memory address. In the proposed memory allocation,
the spatial relationship is the relationship between the image
data coordinates and the addressAM in the local memory
moduleM . The sequential relationship is the relationship
between the image data coordinates and the time sequence
that the data are allocated. This section defines the temporal
memory allocation of a partial image. The size of the partial
image and the degree of parallelism is given.

The objective of the memory allocation is to find a feasible
solution for the partial imagei that satisfies the following 3
conditions.

Condition 1 : Given degree of parallelism
(window-parallelismWP and pixel-parallelism
PP are explained in section 3.2)
PP andWP must satisfy the relationship given
by Eqs.(3) and (4) where,CM is a natural
number andWH is the window height. The
maximum degree of parallelism available in
the accelerator isPmax

Condition 2 : No data-duplication for a partial image
(Data-duplication is explained in section 1)

Condition 3 : Addressing function
(Equation (2) is explained in section 2)

PP × CM = WH (3)

284 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

PP ×WP ≤ Pmax (4)

To explain the temporal memory allocation, we first dis-
cuss the spatial relationship. The spatial relationship between
the data and memory address is defined by Eqs.(5) and (6).
Equation (5) gives the memory module numberM that the
pixel (xi, yi) is allocated.

M = yi MOD PP + (i MOD WP)× PP (5)

Note that, we give a number starting from 0 to all the
local memory modules. The degree of pixel-parallelism, the
degree of window-parallelism, the horizontal and the vertical
coordinates of the partial imagei are denoted byPP , WP ,
xi andyi respectively. Equation (6) gives the addressAM of
the memory moduleM that the pixel with the coordinates
(xi, yi) is allocated.

AM = xi × CM +

⌊
yi MOD WH

PP

⌋
(6)

The sequentialrelationship between the pixel data coordi-
nates and the time sequence is discussed in this paragraph.
The data transfer based on the proposed memory allocation
is done sequentially. When the processing of one scan area
is finished, the data of another scan area is transferred.
To maximize the data sharing, only the difference between
two scan areas is transferred. Moreover, the new data are
overwritten to the memory addresses with obsolete data
which are not required for further processing. This method
minimizes the data-transfer time since there is no data-
duplication. It also optimizes the memory capacity of the
CRAMs since new data are overwritten to the memory
addresses that have obsolete data.

Figure 6 shows the sequential data transfer. In each
sequence, the data belong to a scan area is transferred to
the local memory modules. In the first sequence, all the
pixel data belongs to the first scan area are transferred. The
coordinates of the data are given by Eq.(7).

0 ≤ xi < SW

0 ≤ yi < SH

(7)

In the second sequence, only the difference of the first and
second scan areas is transferred. The coordinates of the
transferred data are given by Eq.(8).

0 ≤ xi < SW

SH ≤ yi < SH + 1
(8)

Similarly, the difference between two scan areas is trans-
ferred in each sequence. This process continues for all the
scan areas in a partial image.

The following example explains the proposed memory
allocation. Figure 7(a) shows a partial image with the size
5× 6 that have 3 scan areas. The data in the scan areas are
accessed by a window of size4× 4. Figure 7(b) shows the
data transfers based on the temporal memory allocation. In

Fig. 6: Temporal memory allocation

(a) Partial image and scan areas

(b) Sequentialdata transfer

Fig. 7: Example of the memory allocation

the first sequence, all the data belong to the scan area 1 is
transferred to the two memory modules. In the sequence 2,
the difference between the scan areas 1 and 2, that is the
row 5 in the partial image shown in Fig.7(a), is transferred.
Since the scan area 2 does not contain the data in the row 1
of the partial image, those data are overwritten by the data of
row 5. Similarly, in the sequence 3, the difference between
the scan areas 2 and 3 is transferred. The data of row 2 are
overwritten by the data of row 6.

The following equations show the pixel-parallel schedul-
ing (discussed in section 3.2) of the allocated data that
belongs to a scan area.

xi =

⌊
tS
CM

⌋
−
⌊

tS
WW × CM

⌋
(WW − 1) (9)

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 285

yi MOD WH = (tS MOD CM)× PP + b

such that b ∈ {0, 1, · · · , PP − 1}
(10)

Equations (9) and (10) give the relationships between the
time (or the control step) andxi, yi coordinates respectively.
Note that, since multiple pixel data of a single column
are accessed in parallel, Eqs.(9) and (10) shows multiple
yi coordinates for a singlexi coordinate for the sametS .
Also note that, the timetS is the time of accessing the scan
areaS. The valuetS is different for each scan area. When
the window-parallelismWP is given, we accessWP partial
images in parallel. In each partial image, pixel-parallel data
access is done according to Eqs.(9) and (10).

3.4 Satisfaction of the memory allocation con-
ditions

This section shows that the proposed memory allocation
satisfies the 3 conditions explained in section 3.3. According
to Eq.(5), the data in rows are allocated toPP number of
memory modules. Therefore, the pixel-parallelism can be
achieved. The data in partial images are allocated toWP sets
of PP memory modules. Therefore, the window-parallelism
is achieved. This satisfies the condition 1 explained in section
3.3.

Since only the difference between two scan areas are
transferred, there is no data-duplication. This satisfies the
condition 2. Note that, the condition 2 (no data-duplication)
is satisfied only for a partial image. Depend on the manner
that the image is partitioned, the partial images can be
overlapped. Therefore, a small amount of data has to be
duplicated among multiple partial images.

To obtain the addressing function required for the memory
access, we substitute Eqs.(9) and (10) to Eq.(6). After that,
we get Eq.(11).

AM = CM ×
⌊

t

CM

⌋
−

CM × (WW − 1)×
⌊

t

WW × CM

⌋
+⌊

((t MOD CM)× PP + b) MOD WH

PP

⌋ (11)

Equation (11)can be rewritten as Eq.(14) using Eqs.(12) and
(13).

CM ×
⌊

tS
CM

⌋
+ (tS MOD CM) = tS (12)

b

PP
< 0 since b < PP (13)

AM = tS −WW × CM

⌊
tS

WW × CM

⌋
+

CM ×
⌊

tS
WW × CM

⌋ (14)

Equation (14)is the addressing function of this memory
allocation which gives the relationship between the control

(a) Computationof scan area 1 and 3

(b) Computionif scan area 2

Fig. 8: Example of the data access and computation

step tS and the memory addressAM . We substitutem
for 1, NI for CM × WW and c(t) for CM ×

⌊
tS

WW×CM

⌋
in Eq.(14). Then, Eq.(14) equals Eq.(2) and it shows this
memory allocation satisfies the condition 3.

Figure 8 shows an example of implementing the address-
ing function using different contexts in the dynamically
reconfigurable accelerator. This example uses the memory
allocation result given in Fig.7. According to Fig.7, each
scan area contains two windows. The computations of the
first and second windows of the scan area 1 is assigned to the
contexts 1 and 2 respectively as shown in Fig.8(a). Note that,
the base address of the addressing function is different in the
contexts 1 and 2. Similarly, the computation of the scan area
2 is done by contexts 3 and 4. The interconnection network
between the memory modules and PEs in scan area 2 is
different from that in scan area 1. The addressing functions
and the interconnection network of the scan area 3 are the
same as those in scan area 1. Therefore, we reduce the
number of contexts by assigning the computations of scan
area 3 to the contexts 1 and 2.

4. Evaluation
We use Hitachi RP1 heterogeneous multicore processor

[2] for the evaluation. The details of the processor archi-
tecture is explained in section 2. This evaluation is done
by using one SH-4A CPU core and one FE-GA accelerator
core. The total processing time consists of three major
components: the data-transfer time, the computation time
and the control time as shown in Fig.9. Note that the
control-time refers to the initialize of accelerator and initial
configuration load as shown in Fig.9.

Figure 10 shows the components of the total processing
time in the proposed method and the method in [4]. The
image size is640 × 480. In the proposed method, the
optimal values ofPW , PH , PP and WP that minimize
the total processing time are used. In Fig.10, the horizontal
axis shows the window sizes. For each window size, the

286 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

Fig. 9: Components of the total processing time

Fig. 10: Comparison of the processing time components

processing time of the conventional method [4] and the
proposed method are shown by the bars to the left and to the
right respectively. According to the results, the data-transfer
time is reduced by 13% to more than 84%. This is due to
the proposed memory allocation with no data-duplication.
The computation time is also reduced by 15% to more than
87%. We explain this using Fig.11. As shown in Fig.11(a),
the method in [4] uses only the pixel-parallelism so that
the degree of parallelism is 3. As shown in Fig.11(b), the
proposed method uses both pixel and window parallelisms
simultaneously. Therefore,PP is 2, WP is 2 and the total
degree of parallelism is increased to 4. Higher degree of
parallelism reduces the computation time.

The data-transfer time is reduced significantly when the
window-sizes contain prime numbers such as17 × 17. In
such window sizes, the degree of pixel-parallelismPP is 1.
For such small values ofPP , the conventional method [4]
has a high degree of data-duplication. However, the proposed

Table 1: Total processing time comparison

Example
Total processing time

method proposed reduction
in [4] method
(ms) (ms) (%)

WW = WH = 10 37.04 20.50 44.66
WW = WH = 12 34.06 20.86 38.77
WW = WH = 15 38.07 20.49 46.19
WW = WH = 17 133.54 19.64 85.29
WW = WH = 21 23.37 16.92 27.58
WW = WH = 23 61.29 15.43 74.82
WW = WH = 24 17.30 14.77 14.58

(a) Methodin [4] (b) Proposedmethod

Fig. 11: Degree of parallelism

method does not have any data-duplication. Therefore, the
data-transfer time and the total processing time are decreased
significantly. In real world media processing, we find ap-
plications such as gauss filters that have the window sizes
with prime numbers. Therefore, the proposed method is very
useful in such applications.

Table 1 shows the measured total processing time in the
proposed method and the method in [4]. Although the control
time is increased as shown in Figure 10, the total processing
time is decreased by 14% to more than 85% in the proposed
method. The reasons for this are the smaller computation
time due to the higher degree of parallelism and the smaller
data-transfer time due to not duplicating the data.

5. Conclusion
This paper proposed a temporal memory allocation for

window-based media processing. In the proposed memory
allocation, only the required data are transferred to the local
memory modules. Therefore the data are not duplicated
unlike the conventional approaches. Therefore, the data-
transfer time is reduced significantly. The proposed memory
allocation allows us to use both the pixel-parallelism and
the window-parallelism. Therefore, the computation time is
reduced. The proposed method has a larger control overhead
compared to that of the conventional method [4], so that
the control time is increased. However, the reduction of the
data-transfer time and the computation time is much larger
than the increase in the control time. As a result, the total
processing time is reduced by 14% to more than 85%.

References
[1] H. Kondo, M. Nakajima, N. Masui, S. Otani, N. Okumura, Y. Takata,

T. Nasu, H. Takata, T. Higuchi, M. Sakugawa, H. Fujiwara, K. Ishida,
K. Ishimi, S. Kaneko, T. Itoh, M. Sato, O. Yamamoto and K. Arimoto,
“Design and Implementation of a Configurable Heterogeneous Multi-
core SoC With Nine CPUs and Two Matrix Processors”, IEEE Journal
of Solid-State Circuits, Vol.43, No.4, pp.892-901, 2008.

[2] H. Shikano, M. Ito, M. Onouchi, T. Todaka, T. Tsunoda, T. Kodama,
K. Uchiyama, T. Odaka, T. Kamei, E. Nagahama, M. Kusaoke, Y.
Nitta, Y. Wada, K. Kimura, H. Kasahara", “Heterogeneous Multi-
Core Architecture That Enables 54x AAC-LC Stereo Encoding”, IEEE
Journal of Solid-State Circuits, Vol.43, No.4, pp.902-910, 2008

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 287

[3] H. M. Waidyasooriya, M. Hariyama and M. Kameyama, “Acceleration
of Optical-Flow Extraction Using Dynamically Reconfigurable ALU
Arrays”, International Conference on Engineering of Reconfigurable
Systems and Algorithms, pp.291-294, 2009

[4] H. M. Waidyasooriya, M. Hariyama and M. Kameyama, “Memory
Allocation for Window-Based Image Processing on Multiple Memory
Modules with Simple Addressing Functions”, IEICE Trans. Fundamen-
tals, Vol.E94-A, NO.1, pp.342-351, 2011

[5] R. Tamura, M. Honma, N. Togawa, M. Yanagisawa, T. Ohtsuki and M.
Satoh, “FIR Filter Design on Flexible Engine Generic ALU Array and
Its Dedicated Synthesis Algorithm”, IEEE Asia Pacific Conference on
Circuits and Systems, pp.701-704, 2008.

[6] M. Hariyama, H. Sasaki, and M. Kameyama, “Architecture of a Stereo
Matching VLSI Processor Based on Hierarchically Parallel Memory
Access”, IEICE Trans. Inf. and Syst., Vol.E88-D, No.7, pp.1486-1491,
2005

[7] S. Lee, M. Hariyama and M. Kameyama, “An FPGA-Oriented Motion-
Stereo Processor with a Simple Interconnection Network for Parallel
Memory Access”, IEICE Trans. Inf. Syst., Vol.E83-D, No.12, pp.2122-
2130 2000.

[8] D.G. Lowe, “Object recognition from local scale-invariant features”,
IEEE International Conference on Computer Vision, pp.1150 - 1157,
Vol.2, 1999.

[9] N. Dalal and B. Triggs “Histograms of oriented gradients for human
detection”, IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, pp.886 - 893, Vol.1, 2005.

288 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

Placementand Routing Algorithm for Pipeline Architecture

M.Koezuka, A.Kuroda, K.Funaoka, H.Matsuzaki, T.Yoshikawa, and S.Asano
Corporate R&D Center Toshiba Corporation, Kawasaki, Kanagawa, JAPAN

E-mail: {mayuko.koezuka, akira3.kuroda, kenji.funaoka, hidenori.matsuzaki,
takashi.yoshikawa, shigehiro.asano}@toshiba.co.jp

Abstract— We present an algorithm that places and routes
processing expressed in the form of a data flow graph in
pipeline architecture. Pipeline architecture, which reduces
wiring compared with array architecture, is a focus of
attention as architecture that achieves small area and low
power consumption. However, pipeline architecture has low
degree of freedom of placement and routing (P&R) because
it has far fewer data paths. Therefore, it is difficult to
apply P&R algorithm for array architectures to pipeline
architectures, because array architecture has high degree of
freedom of P&R. The P&R algorithm for typical array ar-
chitecture includes Simulated Annealing (SA). We propose a
high-speed and high-solution-discovery-rate P&R algorithm
for pipeline architecture that has low degree of freedom
of wiring. In the evaluation, comparison of the proposed
P&R algorithm (P_P&R) and SA revealed the superiority of
P_P&R. Moreover, we verified the performance of P_P&R
in the pipeline architecture, and showed the validity of the
proposed functions.

Keywords: pipeline, placement, routing, pruning

1. Introduction
Recently, high-definition and multifunctional mobile com-

puters have been developed. These battery-powered mobile
computers require large processing power with low power
consumption and small area. Dynamically Reconfigurable
Architecture (DRA) has been proposed to meet these needs
in recent years [1]. A typical structure of DRA includes
array architecture and pipeline architecture. Arithmetic Logic
Units (ALUs) of array architecture are arranged in an ar-
ray as shown in Fig.1, and connect interactively with the
neighboring ALUs. Array architecture has many data paths
compared with pipeline architecture and high degree of
freedom of P&R because data can be transmitted to an
arbitrary ALU, but the area grows and power consumption
increases. On the other hand, ALUs of pipeline architecture
connect ALUs as shown in Fig.2, and data may flow to
the pipeline. Pipeline architecture has small area though
it has low degree of freedom of P&R because wiring is
less than array architecture wiring, and so destination ALUs
are limited. In this paper, we solve the P&R problem for
a pipeline architecture that has few data paths, small area
and low power consumption. Architectures that use pipeline
architecture include PipeRench [3], Sanyo’s Reconfigurable

Fig. 1: Array Architecture Fig. 2: PipelineArchitecture

Architecture [7] and FlexSword(TM) [8] [9]. The P&R
algorithm changes depending on whether it is applied to array
architecture or pipeline architecture, because the algorithm’s
purpose differs depending on the type of architecture. The
purpose of P&R in array architecture is to find the P&R
solution that has the shortest data path. However, if any
P&R solution is found, the search can be finished in pipeline
architecture because the path length of pipeline architecture,
which has few data paths, is dependent on the number of
pipeline stages in any P&R. Therefore, P&R algorithms of
array architecture usually employ metaheuristic algorithms,
of which SA is a typical example [2] [4]. Metaheuristic
algorithms can only use architecture that has high degree
of freedom of P&R, such as array architecture [6]. On the
other hand, full search algorithms have been used for pipeline
architecture that has very low degree of freedom of P&R.
However, pipeline architecture that has high degree of free-
dom of P&R, has been considered in recent years [3]. Search
time of this pipeline architecture becomes huge when using a
full search algorithm, because it has many P&R patterns and
search space may increase. [5]. Moreover, the P&R discovery
rate decreases when a metaheuristic algorithmis applied,
because degree of freedom of the operation placement is
low. For pipeline architecture that has not only low degree
of freedom, but also high degree of freedom, we propose
P&R algorithm, which has high speed and high discovery
rate of P&R compared with existing algorithms.

In section 2, we model the pipeline architecture. Section
3 explains the proposed P&R algorithm. In Section 4, we
compare the proposed algorithm and metaheuristic algorithm,
and evaluate the effectiveness of the proposed functions.
Moreover, we evaluate general versatility in the general
pipeline architecture with the proposed algorithm. Finally,
section 5 concludes our paper and refers to future work.

2. Architecture
In this section, the target pipeline architecture is modeled.

In the pipeline architecture, the P&R degree of freedom is

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 289

PE Connection (PEC0)
PE0

PE1

PE2

PEN-1

ALUM-1

PE Connection (PEC1)

PE Connection (PECN-2)

ALU0ALU1

ALUM-1 ALU0ALU1

ALUM-1 ALU0ALU1

ALUM-1 ALU0ALU1

Example of PE Connection

Fig. 3: Architecture Model

Connection Pattern 0
PE Connection

Connection Pattern 1

Connection Pattern 2

Connection Pattern 3

Fig. 4: PE Connection

one of the items that influences the search time. So we
propose a pipeline architecture that transfers data only one
way along the pipeline and has a number of different types of
one-way data path patterns. Because data transfer is limited
to one way along the pipeline, the area of this pipeline
architecture is smaller than that of the pipeline architecture
that has high P&R degree of freedom. And, since different
types of one-way data path patterns can be selected, operation
groups can be placed and routed more flexibly than in the
case of the pipeline architecture that has low P&R degree of
freedom. Fig.3 shows the structure of the modeled pipeline
architecture. The modeled pipeline architecture consists ofN
Processing Elements (PEs) andN−1 PE Connections (PECs)
that transfer data between PEs. It inputs data toPE0, and
outputs the operation result fromPEN−1 at the end. Each
PE hasM Arithmetic Logic Units (ALUs). Each ALU of
PEi inputs the two data through PEC ofPEi−1, and outputs
the two operation results. ALUs, which constitute PEs, and
PECs are discussed in more detail below.

2.1 ALU
In addition, ALUs can execute different operations simul-

taneously. The condition of two inputs is applied because
most of the arithmetic and logical operations require two
inputs. Therefore, all the operation results can be inputs of
ALUs in the following pipeline stages by setting the output
results to be two. Each ALU can input two data and output
the operation result.

2.2 PE Connection (PEC)
PEC is used for data transfer between adjacent PEs. It can

change the order of output data from ALUs. PEC hasS data
transfer pattern. Fig.4 shows a sample of PEC pattern that is
data transfer pattern of PEC.

PEC pattern consists of data paths that transfer data from
ALU of PEi to ALU of PEi+1 as shown in Fig.4. Note
that each ALU must connect to the ALU of neighboring PE.
Each PEC can select either ofS patterns.

3. Algorithm
The proposed algorithm is intended to place and route

data flow graph for the pipeline architecture modeled in the

previous section. We define the data flow graph used by the
proposed algorithm.

In the data flow graph, nodes express operations, and edges
express data dependences. We use the directed graph, which
is a kind of data flow graph, to express input and output
data. Moreover, we use the acyclic graph, which is a kind of
data flow graph, because the target architecture is pipeline
and it is not possible for a output data that has already been
calculated to become an input of the operation. In short,
the data flow graph is expressed by Directed Acyclic Graph
(DAG). The graph is a binary tree because ALU has two
inputs and two outputs. The binary tree nodes of the same
path length are less thanM , which is the ALU number of
each PE, and critical path length of the binary tree is less
thanN , that is the number of pipeline stages. DAG that meets
these requirements is hereinafter referred to as Binary DAG
(BDAG). BDAG is the input of the proposed algorithm. Fig.5
shows an example of BDAG in the case that the number of
PE isN = 5 and the number of ALU isM = 8.

We consider the possible application to the P&R problem
of existing algorithms, based on the features of defined
BDAG and the features of the pipeline architecture model. If
we decide P&R by using full search algorithm the search area
depends on the target architecture though we can search all
P&R solutions. Since the pipeline architecture targeted in this
paper has very large search area, the calculation amount is
huge and finding the P&R solution in realistic time becomes
difficult. Eq.(1) is the equation ofPattern_num, which is
the number of routing patterns.

Pattern_num =M∗(N+1) PVnum ∗ SN (1)

M expresses the number of ALUs in each PE,N expresses
the number of PECs,Vnum expresses the number of nodes
in BDAG, andS expresses the number of PEC patterns in
each PEC. The execution time of searching P&R solution
becomes more than several years, because the number of
solutions that can place and route is very small compared
with the number of P&R patterns calculated by Eq.(1). This
is understood from the exponential growth in P&R search
time with increasingM , N , andS.

On the other hand, metaheuristic algorithms, of which
SA is a typical example, are applicable to a wide search
area by repeatedly searching the random P&R patterns and
their neighboring solutions. In short, metaheuristic algorithm
is suited to the array architecture whose P&R solution,
such as that shown in Fig.1, has various paths. However,
the pipeline architecture has a small chance of finding a
correct solution from the random P&R solution because this
architecture has many constraints, which is evident from
Fig.1 and Fig.2. In Fig.1 there are many paths between two
arbitrary arithmetic units, but in Fig.2 there are very few
paths or no paths between two arbitrary arithmetic units. In
short, the pipeline architecture has very few P&R solutions,
whereas P&R solutions are easily found in the case of array

290 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

architecture.Therefore,using constrained conditions of the
pipeline architecture model, we propose an algorithm that
searches only P&R patterns close to the P&R solution.

As a result, the proposed algorithm can search P&R so-
lution faster than metaheuristic algorithm. And, we certainly
find the correct solution if P&R solution exists, because we
search all P&R patterns close to P&R solution.

The proposed P&R algorithm in the pipeline architecture
model is executed in the order of PreProcess, Pruning,
P&R Search and PostProcess. The outline of each phase is
described as follows:

1) PreProcess
In this phase, the path length of all paths of BDAG
between input and output is normalized to the number
of PE (N).

2) Pruning
In this phase, the execution time is cut by selecting a
node that needs search and reducing P&R solutions.

3) Placement and Routing Search (P&R Search)
In this phase, we search only the selected nodes of
BDAG at Pruning. ALU placement in each node and
PEC pattern in each PEC are decided by using the
graph dependency.

4) PostProcess
In this phase, placement of nodes other than the
selected nodes is decided and final P&R result of the
pipeline architecture model is generated.

In the following, we explain P&R Search, which is the main
phase of the proposed P&R algorithm. Then, we explain
Pruning, which is an important phase for reducing search
time and improving P&R possibility in the proposed P&R
algorithm.

3.1 P&R Search
At the P&R Search phase, placing of each node and PEC

pattern of each PE are decided based on the data dependency
relationship of BDAG. Placing of node and PEC pattern are
decided per PE, and they are decided alternately. Hereinafter,
Placement and Routing Search is described step by step,
assuming that input BDAG is already normalized as shown
in Fig.5. In normalized BDAG, each node has its own PE
(row) and it is only necessary to decide the place of ALU
(column).PE is arranged along the pipeline, asPE0, PE1

andPE2.
If there is no place of node or PEC pattern that satisfies

the data dependences of Normalized BDAG, the previously
decided place of node must be relocated or the previously
decided PEC pattern has to be exchanged. This method is
called backtrack search. The decision method for choosing
PEC pattern and Node Placement is described below. This
method can start search from eitherPE0 or PEM−1, but
our description of the algorithm is based on the assumption
that it starts fromPEM−1 in this case.

PEC pattern ofPECi can be decided by the place of

２８２６ ２７

２４２３２２

１８１７ １９ ２０

１１ １３ １４

４ ６ ７

２５

２１

１５ １６

８ ９ １０ １２

１ ２ ３ ５

Fig. 5: BDAG

28 26 27 25

24 23 22 21

18 17 19 20 15 16

11 13 14 8 9 10 12

4 6 7 1 2 3 5

Fig. 6: PEC

28 26 27 25

24 23 22 21

18 17 19 20 15 16

11 13 14 8 9 10 12

4 6 7 1 2 3 5

Fig. 7: PE

28 26 27 25

24 23 22 21

18 17 19 20 15 16

11 13 14 8 9 10 12

4 6 7 1 2 3 5

Fig. 8: P&R

node in PECi+1, which has already been allocated in the
previous step. If the operation ofALUIN or ALUOUT does
not correspond to the parent node or the child node of BDAG,
prune this search area that is regarded as impossible for
P&R. Fig.6 shows a sample of P&R search using the pipeline
architecture. Fig.5 shows the input BDAG. The number of
PEs of this pipeline architecture isN = 5 and the number
of ALUs in each PE isM = 8. In Fig.6, PEC3 is decided
by PE4 and its nodes are decided randomly. When no
PEC pattern can be applied,PECi must be searched using
backtrack search after replacing the nodes ofPEi+1.

Node Placement is done so that the PEC pattern chosen
in the previous step satisfies the dependence of Normalized
BDAG. Place of node inPEi is decided by place of in-place
node inPEi+1 andPECi. The node ofPEi is placed along
routing of PECi, which is already decided. Fig.7 shows
a result of the ALU place of the nodes inPE3. For this
pruning, placement patterns can be significantly reduced.

Fig.8 shows a result of PEC pattern and Node Placement
decided fromPE4 to PE0. P&R in the pipeline architecture
is realized by deciding Node Placement and PEC pattern
alternately from one side to the other. Here, search time has
been reduced by pruning PEC pattern and Node Placement
pattern using sibling relationship and parent-child relation-
ship of BDAG. Eq.(2) showsPlace_Pattern, which is the
rate of reduction of P&R patterns.

Place_Pattern = 2m/MPm (2)

m expresses the number of operation nodes requiring place-
ment of each PE.2m expresses the number of P&R patterns
of each PE after pruning of PEC pattern.MPm expresses
the number of P&R patterns of each PE for which P&R
patterns were not pruned. Fig.6 shows the case of reducing
the number of P&R patterns from4 to 1. As a result, the
search time is greatly reduced.

3.2 Pruning

P&R Search subsection explains reduction of the search
P&R pattern that meets conditions in the case of the pipeline
architecture. In the Pruning subsection, we explain the pro-
posed higher-speed algorithm. Therefore, two optimizations
for speeding up the algorithm, named Search Node Selection
and Search Direction Decision, are performed in the Pruning
phase.

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 291

Search Nodes

Non-Search Nodes

Fig. 9: Non-Search Nodes, Search Nodes

3.2.1 Search Nodes Selection

Search Nodes Selection aims to reduce the search patterns
by restricting the nodes mapped in the P&R Search phase.
It is unnecessary to search the nodes of BDAG that can
be allocated by any Shuffle Pattern. Search patterns can be
reduced by dividing all nodes into Search Nodes that require
search and Non-Search Nodes that do not require search.
Non-search nodes are allocated in Post-processing at tiny
calculation cost. This division can be performed by looking
at the number of input-output edges of each node. When
the number of input edges is 1 and the number of output
edges of all nodes inPEi is 1, all nodes ofPEi become
Non-Search Nodes. The other nodes become Search Nodes.
Fig.9 shows an example of Non-Search Nodes and Search
Nodes of BDAG. In this case, the problem of the pipeline
architecture has been reduced from5-column to3-column.

3.2.2 Search Direction Decision

Search Direction Decision aims to reduce the search time
by discoveringPEi that has less initial searching space.

In regard to Placement and Routing Search, we explained
the method for advancing the search fromPEi to PEi−1.
However, this algorithm can also search fromPEi to PEi+1.
In addition, the number of total search patterns varies with
starting PE since the number of search patterns can be greatly
decreased by pruning search patterns initially. Therefore, we
reduce the number of search patterns by starting the search
from the PE that has the fewest search patterns. The selection
method is described as follows.

PEi with the smallesti in PEs is assumed to bePEa and
PEi with the biggesti is assumed to bePEb. The index
number of search is calculated by Eq.(1) for bothx = a
and x = b. PEx that has smaller value ofPattern(PEx)
is selected as initial PE for searching.

Pattern(PEx) = NodeNumx/EdgeNumx (3)

Here, theNodeNumx expresses the number of nodes in
PEx, and EdgeNumx expresses the number of output
edges. The smaller the number of nodes, the smaller the
search pattern of Node Placement is. Conversely, the smaller
the number of output edges, the more the search patterns of
PEC pattern increase.

However, the search beginning with PE calculated from
this expression is not always correct. It can be seen that some
BDAG cases finish the P&R search faster than search from
the direction calculated by the expression Eq.(1). Then, when
fixed time passes, it is necessary to introduce a method of

restarting the search from the direction opposite to the search
beginning with PE calculated by the expression Eq.(1). As
a result, this method has the potential to speed up P&R
searching.

4. Evaluation
In this section, we compare P&R searching algorithm

using SA with the proposed algorithm in terms of the
execution time and the P&R discovery rate solution. Next,
we perform efficacy evaluation of the proposed pruning
functions. Lastly, we evaluate the execution time of our P&R
algorithm with various pipeline architectures. This compar-
ison experiment is designed to verify whether the proposed
P&R algorithm can be applied to pipeline architecture even
if its architectural constitution scales. Random BDAGs used
for these verifications are generated by the indicator called
Complexity calculated based on the number of edges and
the number of nodes. To ensure reliable verification, we
use a test set composed of randomly generated BDAGs that
differ in terms of Complexity. Eq.4 shows the expression for
calculating Complexity. Eq.5 shows the composition of the
test set.

Complexity(G) = (Vnum ∗ Enum)/(M ∗N) (4)

test_set =set(0.00 < complexity ≤ 0.25)
∪ set(0.25 < complexity ≤ 0.50)
∪ set(0.50 < complexity ≤ 0.75)
∪ set(0.75 < complexity ≤ 1.00)

(5)

Complexity(G) shows Complexity of BDAG (G).Vnum

expresses the number of nodes ofG andEnum expresses the
number of edges ofG. Thus, Complexity is the utilization
rate of nodes and edges of the BDAG in the number of
ALUs M and the number of pipeline stagesN . set(a <
complexity ≤ b) expresses the set of 25 BDAGs that is
a < complexity ≤ b．Therefore, atest_set is the set
of 100 BDAGs. It has already been shown that BDAGs of
the test_set are able to place and route. When we evaluate
pipeline architecture of a different scale, the validity of the
evaluation using Complexity is assured.

In the evaluation, we determine the switch time parameter
of the search directionTswitch = 600seconds. SA P&R
algorithm that is compared with the proposed P&R algorithm
is described below. Afterwards, we report comparative eval-
uation of the execution time between SA P&R algorithm and
the proposed P&R algorithm and perform efficacy evaluation
of the pruning functions. And lastly, we report the general
versatility evaluation in the general pipeline architecture with
the proposed P&R algorithm.

4.1 SA_ P&R Algorithm
SA is an algorithm that searches a much better P&R

solution by generating a random solution and searching for
the local neighborhood solution of the previous solution. If

292 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

Table1: Comparison parameter : ALU
M=2 M=4 M=8

P_P&R 99% 99% 99%
SA_P&R 98% 56% 5%

the local neighborhood solution is better than the previous
solution, the local neighborhood solution is replaced as the
basic solution. The basic solution is the basis of the next
local neighborhood solution. Even if the local neighborhood
solution is not improved from the previous solution, it is
replaced as the current solution with a certain probability.
This probability gradually falls as the search advances. As
a result, we can prevent convergence to the local optimum
solution in the early search stage.

In the searching P&R, if we search for placement of
the BDAG nodes, the BDAG edges, and PEC pattern si-
multaneously, the solutions will be discrete. Consequently,
SA algorithm that searches the local neighborhood solution
is unsuited to P&R search. Therefore, we devise the SA
algorithm that searches only placement of the BDAG. In
this case, PEC pattern of all PEC in the target pipeline
architecture is already decided. All combinations of PEC
pattern in the pipeline architecture are executed in linear
sequence.

We can compare the result to performance evaluation of
the proposed P&R search algorithm by constructing the SA
P&R search algorithm.

4.2 Comparative Evaluation
In this subsection, we compare the discovery rates of P&R

solutions between SA P&R search algorithm (SA_P&R)
and the proposed P&R search algorithm (P_P&R). In the
evaluation, we use atest_set that consists of 100 BDAGs.
The P&R discovery rate solution shows the rate of resolved
BDAGs that can find the P&R solution out of 100 BDAGs
(test_set) in 1, 200seconds. To compare various pipeline
architectures, we use three parameters, namely, the number
of ALUs in each PE (M) and the number of PEs (N), and
the number of PEC patterns (S). The evaluation result of
each parameter is shown below.

Table1 shows the P&R discovery rate in which the number
of ALUs (M) is changed. In this evaluation, the number of
PEs isN = 4 and the number of PEC patterns isS = 2. As
a result, in the case ofM = 2, both P_P&R and SA_P&R
could solve most BDAGs. In the case ofM = 4 and
M = 8, the P&R discovery rate does not decrease in P_P&R.
However, the P&R discovery rate decreases remarkably as
the number of ALUs increases in SA_ P&R.

Next, Table2 shows the P&R discovery rate in which the
number of PEs (N) is changed. In this evaluation, the number
of ALUs is M = 8 and the number of PEC patterns is
S = 4. As a result, even if the number of pipeline stages is
increased toN = 10, more than59% of BDAGs are resolved
in the case of P_P&R. However, in the case of SA_P&R,
the P&R discovery rate, which is less than50% for N = 2,

Table 2: Comparison parameter : PE
N=2 N=4 N=6 N=8 N=10

P_P&R 99% 74% 59% 62% 59%
SA_P&R 45% 15% 4% 3% 0%

Table3: Comparison parameter : PEC pattern
S=2 S=4 S=8

P_P&R 95% 75% 55%
SA_P&R 5% 15% 6%

decreasesasN increasesand no P&R solution forN = 10
is found. P_P&R is more applicable to the increase ofN
than SA_P&R.

Finally, Table3 shows the P&R discovery rate in the case
that the number of PEC patterns (S) is changed. In this
evaluation, the number of ALUs isM = 8 and the number
of pipeline stages isN = 4. As a result, the P&R discovery
rate is low for SA_P&R regardless of the value ofS. In
contrast, the P&R discovery rate is over50% regardless of
the value ofS, which is as good as other evaluation results
for P_P&R. Moreover, the P&R discovery rate ofS = 4
for P_P&R is higher thanS = 2, 8 for SA_P&R. This is
because the degree of freedom of node placement improved
as PEC patterns increased, and it became easy to discover
the P&R solution for SA_P&R. However, the P&R discovery
rate decreases because the search time is insufficient though
the degree of freedom of the node placement is high for
S = 8.

From the results of Table1, Table2, and Table3, the P&R
discovery rate is more than50% for all parameters for
P_ P&R. But, the P&R discovery rate of SA_P&R is the
same as the P&R discovery rate of P_P&R only in very
limited pipeline architecture. When the scale of the pipeline
architecture is expanded, a decrease of the discovery rate
in the case of using SA_P&R is more remarkable than
in the case of using P_P&R. Thus, our P_P&R algorithm
is applicable for various types of pipeline architectures,
and it is difficult to employ SA_P&R algorithm for those
architectures.

4.3 Efficacy Evaluation
In this subsection, we perform efficacy evaluation of the

proposed pruning functions. Our P&R algorithm introduced
two pruning functions (Search Nodes Selection and Search
Direction Decision). So, we compare the discovery rates
of P&R solutions between enable and disable the target
function. In this evaluation, we use atest_set that consists
of 100 BDAGs, and count the number of resolved BDAGs.

4.3.1 Efficacy Evaluation of Search Nodes Selection

First, we perform efficacy evaluation of the Search Nodes
Selection. This function decide the number of pipeline
columns. So we evaluate the P&R discovery rate. In this
evaluation, the number of PEs isN = 6, the number
of ALUs is M = 8 and the number of PEC patterns is
S = 4. Fig.10 shows the result of efficacy evaluation of

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 293

0

200

400

600

800

1000

1200

Time
(sec)

BDAG

N = 8 (Func OFF)
N = 8 (Func ON)

0.0<complexity<=0.25
0.25<complexity<=0.5

0.5<complexity<=0.75

0.75<complexity<=1.0

Fig. 10: Efficacy Evaluation : Search Nodes Selection
Table 4: Efficacy Evaluation : Search Direction Decision
Decisiontype / N= 2 4 6 8 10
Optimal Decision 99% 70% 49% 46% 47%
FuncON 99% 69% 49% 46% 42%
FuncOFF(fromTop) 99% 56% 35% 30% 33%
FuncOFF(fromBottom) 99% 56% 39% 30% 34%

SearchNodesSelection. In the graph, a horizontal axis is
a BDAG and a vertical axis is a time scale. BDAGs are
sorted in ascending order of complexity. And, the BDAG of
1, 200seconds shows that the solution cannot be discovered
and the search was broken off. Moreover, N = 6 (Func ON)
is a result for validating Search Nodes Selection, and N =
6 (Func OFF) is a result for invalidating the function. This
result shows that the search time of BDAGs is equal or less.
The search time of37% BDAGs is improved, and that of
6% gets worse. The case of the search time deteriorates,
the order of generating the search pattern is changed by
the Search Nodes Selection, and the search time became
long. The search time of low-complexity BDAGs is short,
regardless of the proposed function. And, a few BDAGs
of high complexity improve the search time. Moreover,
the proposal function is effective in many of the middle-
complexity BDAGs, and reduces the search time. As a result,
if we validate Search Nodes Selection, some BDAGs can
discover P&R solution earlier.

4.3.2 Efficacy Evaluation of Search Direction Decision

Next, we perform efficacy evaluation of the Search Direc-
tion Decision. This function selects effective search direction
and obtains the P&R result faster. And, we compare the
discovery rates of P&R solutions of four cases. The first case
is selection of the best search direction discovered manually
(Optimal Decision). In the next case, the search direction is
decided by using the proposal function (Func ON). And in
the third case, all Binary DAGs are searched from top to
bottom (Func OFF from Top). In the last case, the search
is from bottom to top (Func OFF from Bottom). Then, the
maximum search time is600seconds.

There are few differences between the result of Func OFF
(from Top) and that of Func OFF (from Bottom). When
Func OFF and Func ON were compared, the discovery rate

0
10
20
30
40
50
60
70
80
90

100

0 200 400 600 800 1000 1200

No. of
DAGs

Time (sec)

M = 2
M = 4
M = 8
M = 16
M = 32

Fig. 11: Parameter : ALU

0
10
20
30
40
50
60
70
80
90

100

0 200 400 600 800 1000 1200

No. of
DAGs

Time(sec)

N = 2
N = 4
N = 6
N = 8
N = 10

Fig. 12: Parameter : PE

0
10
20
30
40
50
60
70
80
90

100

0 200 400 600 800 1000 1200

No. of
DAGs

Time(sec)

S = 2
S = 4
S = 8
S =16

Fig. 13: Parameter : PEC pat-
tern

0

5

10

15

20

25

0 200 400 600 800 1000 1200

No. of
DAGs

Time(sec)

COMP0.00_0.25
COMP0.25_0.50
COMP0.50_0.75
COMP0.75_1.00

Fig. 14: Complexity of PE=10

improved with all N . Moreover, the result of Func ON
approaches that of Optimal Decision, and whenN increases,
some BDAGs that cannot select a correct search direction
are generated. Table4 shows that more than40% of BDAGs
discovered the P&R solution at Func ON. Moreover, the
discovery rate of the search result of the proposal function is
higher than the Function OFF cases. In addition, it became
almost the same result as the Optimal Decision case. As a re-
sult, Search Nodes Selection is effective for the faster search.
From the observations above, the two pruning functions are
effective for increasing P&R discovery rate and search time
reduction.

4.4 Versatile Evaluation

In this subsection, we evaluate scalability of our P_P&R
algorithm with architectures whose architectural parameters
are changed. In this evaluation, we count the number of
BDAGs resolved in less than1, 200seconds. To evaluate the
execution time of various pipeline architectures, we use three
parameters, namely, the number of ALUs in each PE (M)
and the number of PEs (N), and the number of PEC patterns
(S). The result when each parameter is changed is shown as
follows. In the graph, a horizontal axis is a time scale and a
vertical axis is the number of BDAGs that can discover P&R
solution. In short, the value on the graph shows the number
of BDAGs that can discover P&R solution in a certain time.

Fig.11 shows the result in the case that the number of
ALUs (M) is changed. In this evaluation, the number of
PEs isN = 4 and the number of PEC patterns isS = 2.

Fig.12 shows the result in the case that the number of PEs
(N) is changed. In this evaluation, the number of ALUs is
M = 8 and the number of PEC patterns isS = 2. Fig.13
shows the result in the case that the number of PEC patterns
(S) is changed. In this evaluation, the number of ALUs is
M = 8 and the number of PEs isN = 4. At first, we
comment on Fig.12, Fig.13, and Fig.11.

According to Fig.12 and Fig.13, many BDAGs are re-
solved in the first few seconds for any parameter. On the

294 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

Table5: reduced PEs with Search Node Selection
Complexity 0-0.25 0.25-0.5 0.5-0.75 0.75-1
ReducedPEs 3.52 0.24 0.04 0

otherhand,according to Fig.11, very few BDAGs inM = 16
andM = 32 are resolved. From those results, it is clear that
the number of ALUs greatly affects the search area and leads
to far fewer P&R solutions if it is increased. In all results,
the smaller the value of the changed parameter, the more
BDAGs are resolved.

In the following, we describe the impact of three P_P&R
functions on P&R of BDAGs. The three P_P&R functions
are Search Direction Decision, Search Node Selection, and
the pattern reduction with P&R Search, which are important
functions of our P_P&R. First, Search Direction Decision is
considered. Some BDAGs are resolved in about600seconds,
which is an effect of Search Direction Decision explained
in Section.3.2. Search Direction Decision is effective for
deciding the search direction because many BDAGs are
resolved in the first few seconds. However, the direction
decision failed for some BDAGs. Therefore, we switch the
direction at600seconds, and the increase of the search time
can be suppressed by finding P&R solution after the direction
switch.

Next, Search Node Selection is considered. In Fig.12,
even if the value ofN increases, the decrease in the P&R
discovery rate in BDAGs is slight. For considering this result,
shown in Fig.14 are the evaluation results of 4 different
DAG groups, each of which has different Complexity. This
graph shows the P&R discovery rate forN = 10, which
seems to be the most difficult to place and route. The total
of the vertical axis is 25, because each Complexity group
has 25 BDAGs. As a result, the P&R discovery rate is high
when Complexity is low. In particular, when Complexity is
0.00 < Complexity ≤ 0.25, most BDAGs are resolved
in 1, 200seconds. On the other hand, when Complexity is
0.75 < Complexity ≤ 1.00, most BDAGs could not be
resolved. So, the BDAG that has low Complexity maintains
the constant discovery rate. This is because the BDAG that
has low Complexity is easy to resolve regardless of the value
of PE. In addition, the BDAG that has low Complexity
can find many BDAGs in the first few seconds even though
the number of pipeline stages is large. This result is an
effect of Search Node Selection explained in Section3.2.
Table5 shows average of PEs that is reduced by Search
Node Selection in the set of BDAGs of each Complexity.
Complexity 0 − 0.25 expresses the set of 25 BDAGs that
is 0.00 < complexity ≤ 0.25. Everything else is similar.
Reduced PEs show the average number of reduced PEs. As a
result, the set of BDAGs that has low Complexity can reduce
many PEs from all PEs in the search area. In short, the search
time can be significantly reduced because the BDAG that has
low Complexity has many nodes that should not be searched
and the search area is reduced by Search Node Selection.

Finally, we consider the pattern reduction by the P&R

Search phase. In Fig.13, the P&R discovery rate decreases
as the value ofS increases because the search area expands
owing to the increase of PEC patterns. But, on the other
hand, the search area is reduced by selecting PEC pattern
by constraint of P&R in the P&R Search phase. As a result,
a rapid decrease of the discovery rate by the search area
expansion is suppressed.

From the observations above, it is obvious that our P_
P&R algorithm can obtain solutions exceeding constancy. In
addition, most of those solutions are discovered in the first
few seconds. By the evaluation of Complexity, P&R solution
is easily found for BDAG that has low Complexity even if
the scale and the flexibility of the pipeline architecture are
improved.

5. Conclusion
For the architecture that has severe P&R constraint, it was

shown that it is hard to apply a metaheuristic algorithm
such as SA algorithm. On the other hand, the proposed
P&R algorithm that prunes the search area by using those
constraints is a valid algorithm. In future work, we intend to
consider an extended algorithm that places and routes high-
Complexity BDAG in the pipeline architecture that has large
scale or high flexibility. If the BDAG has high Complexity,
we take the approach that decreases the search time through
further pruning of the search area by starting to search from
the place that has many P&R constraints. Moreover, we can
take another approach in which the search time is decreased
through simplification of the search problem by dividing
pipeline architecture and BDAG.

References
[1] H. Amano, A. Jouraku, and K. Anjo. A dynamically adaptive hardware

on dynamically reconfigurable processor.ACM, E86-B(12), 2003.
[2] V. Cerny. Thermodynamical approach to the traveling salesman prob-

lem: An efficient simulation algorithm.Journal of Optimization Theory
and Application, January 1985.

[3] S. C. Goldstein, H. Schmit, M. Moe, M. Budiu, S. Cadambi, R. R. Tay-
lor, and R. Laufer. Piperench: a co/processor for streaming multimedia
acceleration.IEEE Computer Society, 1999.

[4] S. Kirkpatric, J. Gelatt, and M. Vecchi. Optimization by simulated
annealing.Sience, May 1983.

[5] A. Kuroda, M. Koezuka, H. Matsuzaki, T. Yoshikawa, and S. Asano.
Mapping method for dynamically reconfigurable architecture.ASP-
DAC, January 2009.

[6] B. Mei, V. Serge, V. Diederik, D. M. Hugo, and L. Rudy. Dresc:
A retargetable compiler for coarse-grained reconfigurable architec-
tures.IEEE international conference on field-programmable technology
(FPT), December 2002.

[7] M. Okada, T. Hiramatsu, H. Nakajima, M. Ozone, K. Hirase, and
S. Kimura. A reconfigurable processor based on alu array architecture
with limitation on the interconnection.In Proceedings of the 19th IEEE
International Parallel and Distributed Processing Symposium (IPDPS’
05), 04, April 2005.

[8] T. Yoshikawa, Y. Yamada, and S. Asano. An implementation of
hardware accelerator using dynamically reconfigurable architecture.
IEEE HotChips, August 2006.

[9] T. Yoshikawa, Y. Yamada, and S. Asano. Implementation and evaluation
of the processor for stream multimedia applications using dynamic
reconfiguration.IEEE COOLChips X, April. 2007.

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 295

Accelerating Real-time processing of the ATST Adaptive Optics
System using Coarse-grained Parallel Hardware Architectures

V. Venugopal, K. Richards, S. Barden, T. Rimmele, S. Gregory, L. Johnson
National Solar Observatory, P.O. Box 62, Sunspot, New Mexico USA
Email: {vivekv, richards, sbarden, rimmele, bscott, ljohnson}@nso.edu

Abstract— The real-time processing of the four meter Ad-
vanced Technology Solar Telescope (ATST) adaptive op-
tics (AO) system with approximately 1750 sub-apertures
and 1900 actuators requires massive parallel processing
to complete the task. The parallel processing is harnessed
with the addition of hardware accelerators such as Field
Programmable Gate Array (FPGA) and Graphics Process-
ing Unit (GPU). We investigate the hybrid data processing
architecture of the Shack-Hartmann correlation and wave-
front reconstruction using FPGAs and GPUs. The ATST
AO algorithm is implemented, benchmarked on the FPGA-
GPU system and compared with the existing legacy Digital
Signal Processing (DSP) based hardware system. The cost-
effective FPGA platform provides better throughput for the
AO processing as compared to the GPU architecture.

Keywords: Adaptive optics systems; wavefront correction; field
programmable gate arrays; parallel processing; graphics processing
units; real-time systems

1. Introduction
Atmospheric turbulence distorts the wavefront by gen-

erating phase variations in the incoming light and limits
the resolution of large solar telescopes such as the four
meter solar telescope, Advanced Technology Solar Telescope
(ATST) now beginning construction at Maui’s Haleakala [1],
[2]. The adaptive optics (AO) system senses the wavefront
aberrations and applies the corresponding correction to the
adjustable deformable mirror to improve the resolution of
the telescope. The key components of the ATST AO system
as shown in Figure 1 are:

1) tip-tilt mirror (TTM), which moves fast to remove the
image shift,

2) deformable mirror (DM) to flatten the incoming wave-
front by changing shape,

3) Shack-Hartmann lenslet array, that focuses sub-
aperture images of the sun’s surface on the sensor of
the high-speed camera,

4) high-speed camera, which captures the images of the
sun,

5) processing system, that computes the shift in the
images using cross-correlation as part of the wavefront
sensing and calculates the actuator commands for the
DM and TTM.

Processors

Uncorrected
light

Corrected
light

Tip/Tilt
Mirror

Deformable
Mirror (DM)

Beamsplitter

Shack-Hartmann
Lenslet Array

CCD
Camera

DM drive signal

Tilt drive signal

Fig. 1: Adaptive Optics system

This paper focuses on the implementation of the AO
system using Field Programmable Gate Array (FPGA) and
Graphics Processing Unit (GPU) as the major processing
elements. The usage of FPGAs and GPUs as hardware
accelerators effectively reduces the computation time of the
wavefront correction and reconstruction algorithm in AO
systems. Section 2 describes the real-time processing of the
ATST AO system; Section 3 explains the camera data un-
packing, the dark and flat correction routine implementation
on the FPGA; Section 4 describes the implementation of the
different correlation procedures and the remaining steps of
the AO algorithm on the GPUs; Section 5 is work in progress
on the FPGA implementation of the correlation routine;
Section 6 describes the GPU routine for the reconstruction
matrix; the results and conclusion are presented in Sections
7 and 8.

2. Real-time processing of the AO system
The real-time processing of the ATST AO system is shown

in Figure 2. The high speed camera sends the 1750 20×20
pixel raw sub-aperture images to the processing system. The
sub-apertures undergo a dark field correction followed by a
flat field correction, which is the equivalent to correcting the
images for zero level and gain equalization. The resulting flat
field corrected image is 2D correlated with a reference image
captured approximately every 10 seconds. The 2D cross-
correlation step determines the shift in the x and y direction
of each sub-aperture, as compared to the reference image.

296 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

WFS
Camera

Cross-
correlation

slope
computation

Average
slope

Offscale
slope

detection
Matrix

multiply
Actuator
servos

Data
collection

Zernike
offload
process

Tip/Tilt
servos

X X

Dark
field Flat field Reference

image
Slope
offsets

Recon-
struction
matrix

Actuator
offsets

Actuator
gains

Servo
parameters

Offscale
slope

tolerance

Tip/Tilt
mirror

Deformable
mirror

FPGA FPGA or GPU

Fig. 2: Real-time processing for the ATST Adaptive Optics system

The wavefront reconstruction step consists of a precomputed
3500×1900 reconstruction matrix, which is multiplied with
the x and y shifts. The matrix multiplication products are
summed after all the sub-aperture images in that particular
frame have been processed and is then transmitted to the DM
and TTM actuators after applying a servo loop algorithm.

The above steps encapsulate the AO system which is also
currently used at the Dunn Solar Telescope (DST) operated
by the National Solar Observatory (NSO) [3], [4]. The real-
time processing requirements are determined by the frame
rate of the camera and the number of actuators used for
the DM and TTM. The real-time processing requirements of
1232 sub-aperture images and 1313 actuators for the ATST
AO system in [5] have been revised to 1750 sub-aperture
images and 1900 actuators for the DM. The frame rate of
the camera is equal to or greater than 2000 Hz, so that it can
output 1750 sub-apertures of 20 × 20 pixels each. Figure 2
also shows the AO processes targeted on FPGA and GPU
architectures. The complete AO operation for 1750 sub-
aperture images has to be completed within 500 µs, which
is a hard deadline. The current DSP-based AO system at the
DST processes all the 76 sub-aperture images within 240
µs, but the DSP system would be more expensive if it was
to be scaled for processing 1750 sub-apertures.

3. FPGA Implementation of the Dark
and Flat correction process

The existing AO system at the Dunn telescope [3] uses a
custom camera and interface to route the incoming data to
the Analog Devices Hammerhead SHARC DSPs for the real-
time processing. With the increase in gate density and the
different IP cores that map complex functions to FPGAs, it
is important to leverage the processing power of the FPGA.
Also, the timing constraints tied to the processing budget is
satisfied if some of the processing can be done by the FPGA.

Allocating the front-end processing on the FPGA reduces
the data starvation and communication overhead for the

Receiver Data
unpack FIFO Dark-flat correction/

accumulator
16 160

160

288

128

1/
2

ca
m

er
a

12
 c

ha
nn

el
s

Synchronizer/
counters

dark and flat
value RAM

Receiver Data
unpack FIFO Dark-flat correction/

accumulator
16 160

160

288

Receiver Data
unpack FIFO Dark-flat correction/

accumulator
16 160

160

288

256

128

128

channel 1

channel 2

channel 12

PC
Ie

 s
ys

te
m

 b
us

reference image
RAM

Fig. 3: FPGA implementation of the dark and flat correction
routines

following stages. The selection of FPGA device is influ-
enced by the following constraints: (1) maximum number
of transceivers for receiving the data from the camera, (2)
maximum logic density for the design to fit on a single
FPGA. To satisfy these criteria, we selected the Xilinx
Virtex-6 XC6VLX550T FPGA, which has 549,888 logic
cells and 36 high-speed Rocket I/O transceivers. The front-
end processing modules are implemented on the FPGA as
shown in Figure 3.

Each FPGA receives data from the high-speed camera
through 12 fiber-channels at 2.125 Gbps. The Rocket I/O
transceivers are configured to receive the camera data and the
data unpacking is implemented using a Finite State Machine
(FSM) module. The data unpacking module outputs 16
pixels (10 bits/pixel) to the dark and flat correction module.
The unpacked pixels undergo dark and flat correction, which
is a multiply-subtract routine and has a latency of 3 clock
cycles. The reference image is acquired by the camera and
sent to the FPGA every 10 seconds. The dark and flat
correction module also generates a calibrated image, which
is used to update the reference image. Both the reference

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 297

image and the flat corrected image are made available for
the following cross-correlation routine through the PCIe bus.

4. GPU implementation of the cross-
correlation routine

The Nvidia Tesla C2050 Fermi-series GPU architecture
consists of 14 streaming multi-processors with 32 cores
clocked at 1.15 GHz each [6]. All the 32 streaming pro-
cessors have common access to 64 KB of shared memory
within a multi-processor. Each multiprocessor has one set of
32-bit registers per processor, constant memory and texture
caches. Each streaming core can execute the same instruction
on different data making it similar to a Single Instruction
Multiple Data (SIMD) processor. The multi-processors com-
municate with the CPU through the GPU memory using
the PCI Express interface. The GPU is referred to as a
co-processor or device and the CPU is referred to as the
host. Therefore, the application is partially executed on the
host and the device. The host program copies the data
to the device memory and the device program launches
computational kernels which run on the multiple streaming
cores. The GPU is programmed using Nvidia’s C-based
Compute Unified Device Architecture (CUDA) environment.
The CUDA compiler assumes that the host and the device
have separate accesses to their memory, also referred to as
host memory and device memory. The AO algorithm consists
of correlation routines which can be executed in parallel on
the GPU and is described in the following sections.

4.1 FFT-based correlation

FFT

FFT

Complex conjugate
Multiplication IFFT

reference
image

flat
corrected

image

Fig. 4: FFT-based correlation routine

The Fast Fourier Transform (FFT) correlation routine
shown in Figure 4 is prototyped on the GPU. The FFT
correlation routine consists of taking the FFT of the flat
corrected image and the reference image. The FFT values
undergo complex conjugate multiplication followed by an
inverse FFT procedure. The FFT and the inverse routines are
implemented on the GPU using the existing cufft library.

4.2 7×7 correlation
Although the FFT-based correlation is preferred, the com-

putational complexity is reduced by performing a 7×7
correlation. The Dunn AO system [3] operation assumes
that the difference in the shift between the sub-aperture
image and the reference image is rarely greater than plus
or minus 3 pixels. Hence, an output cross-correlation array

original reference
image 26x26 pixels

precomputed
reference

(20x20 pixels)

Precomputed Reference pixels 20x20 (49 regions)

precomputed
reference

(20x20 pixels)

Region 1

Region 2

precomputed
reference

(20x20 pixels)
Region 49

Fig. 5: Precomputation step for the 7×7 correlation

of 7×7 values is enough for computing a partial 2D cross
correlation.

Since the reference image consists of 26×26 pixels, the
correlation step would incur an overhead due to uneven
accesses by the GPU threads. This overhead is eliminated
by precomputing the reference image as 20×20 pixels and
the precomputation step yields 49 regions of 400 pixels
each as shown in Figure 5. The 7×7 correlation involves
multiply accumulate operation of the 400 pixels yielding 1
accumulated pixel per region. The resulting 49 pixels per
image are then passed on to the next kernels for further
processing.

4.3 find_max and interpolation routines
The find_max routine is based on the data reduction oper-

ation where the maximum value and it’s index is calculated
from the 49 cross-correlation values per sub-aperture. The
maximum value is then used to calculate the x and y shifts
using the interpolation equations shown in Equations 1-2.

num_x = max_value−
out(shifted_y_index, (shifted_x_index− 1)

den_x = 2 ∗max_value−
out(shifted_y_index, (shifted_x_index− 1))−
out(shifted_y_index, (shifted_x_index+ 1))

x = (shifted_x_index− 0.5) +
num_x
den_x

(1)

num_y = max_value−
out((shifted_y_index− 1), shifted_x_index)

den_y = 2 ∗max_value−
out((shifted_y_index− 1), shifted_x_index)−
out((shifted_y_index+ 1), shifted_x_index))

298 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

xcorr_sm

xcorr state
machine

channel_cycle_count

subap_row_count

addr_decoder_ce

xcorr_pixel_ce

subap_acc_ce

subap_acc_12ch_ce

flat_fifo_rd

refim_fetch_addr_d
ecoder

address decoder

RAM bank (RAM0-
RAM19)

FCFPGA

data unpack

dark_flat_acc_top Flatcorr
_FIFO

160 288

xcorr_pixel_channel

288

refim_in
(392 bits)

x16

xcorr_pixel
(1274 bits) x16

subap_acc_out
(1715 bits) x24

channel1_top

FCFPGA

data unpack

dark_flat_acc_top Flatcorr
_FIFO

160 288

xcorr_pixel_channel

288

refim_in
(392 bits)

x16

xcorr_pixel
(1274 bits) x16

ch561112_subap_accumulator

subap_acc_out
(1715 bits) x24

channel12_top

24subap_12ch_
accumulator

subap_acc_out
(1715 bits) x24

ch1278_subap_accumulator

Fig. 6: Hardware design of the cross-correlation module

y = (shifted_y_index− 0.5) +
num_y
den_y

(2)

5. FPGA implementation of the correla-
tion routine

The FPGA implementation is a preliminary analysis to
determine if the complete AO algorithm can be mapped on
to a single FPGA. The questions we seek to answer by the
FPGA implementation are:

• How many FPGAs do we require to implement the
complete AO algorithm?

• What is the latency and throughput that can be achieved
by using FPGAs?

The hardware implementation of the correlation routine
on the FPGA is shown in Figure 6. The correlation rou-
tine is controlled by the 20-state FSM module, xcorr_sm.
Each FPGA only does half of the image processing and
therefore it receives 875 sub-aperture images in 960 rows
× 480 columns of pixels. Each channel requires 5 cycles to
completely reconstruct the row of sub-aperture image. The
xcorr_sm FSM keeps track of the rows processed and the
cycles taken by the correlation module xcorr_pixel_channel.
The row and the cycle information is also used by an
address decoder to fetch the correct reference value for the
correlation module.

The memory bank RAM0-RAM19 stores the pre-
computed reference image values, where each value is
a 7×7×8-bits corresponding to the pixel acquired by
xcorr_pixel_channel. The xcorr_pixel_channel module im-
plements a multiplier to multiply the reference pixel with the
flat-corrected pixel. Each sub-aperture is 20×20 pixels and
a total of 24 sub-apertures are processed in the first 20 rows
× 480 columns. The sub-aperture values are accumulated

and each channel only has certain pixels of the 24 sub-
apertures. These values belonging to the different unique
sub-apertures are accumulated by the ch_subap_accumulator
module. Each channel performs the same operation and the
final 24 sub-aperture values across all the 12 channels are
accumulated by the 24subap_12ch_accumulator module.

6. GPU-based implementation of the re-
construction procedure

x y

1750 1750

1900

3500

accumulated values for
1900 actuators

reconstruction matrix
1900x3500

x and y shifts for 1750 sub-aperture
images

Fig. 7: Reconstruction matrix multiplication for 1900 actu-
ators × 1750 sub-aperture images

Once the AO algorithm determines the x and y shifts
for the 1750 sub-aperture images, these values are used to
compute the 1900 actuator values for driving the mirrors
as shown in Figure 7. The reconstruction routine involves

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 299

the multiplication of the 1750 sub-aperture images with a
3500×1900 reconstruction matrix and the resulting products
are then accumulated to give a single array of 1900 actuator
values. The reconstruction procedure is executed on the DSP
at the Dunn telescope and we implement the reconstruction
procedure on the GPU to determine if a reasonable speedup
can be achieved.

7. Results
Our host system consisted of 2 quad-core AMD Phenom

processors clocked at 2.6 GHz with Ubuntu Linux OS.
We used Nvidia’s Tesla C1060 and Tesla C2050 GPUs to
implement the AO algorithm and the reconstruction routine.
The host system supports 3 GPUs and hence we partition
the 1750 images into 584 images per GPU to emulate a
pipe-lined system with better throughput. We used Nvidia’s
CUDA 3.2 release for implementing on the GPU. We
prototyped the FPGA implementation on the Xilinx Virtex-
6 XC6VLX550T FPGA, which has 549,888 logic cells
and 36 high-speed Rocket I/O transceivers. For the GPU
implementation of the AO algorithm, we emulated the flat
and dark correction process on the FPGA by executing those
kernels on the host. Also, the FFT of the reference image is
computed only when the reference image is updated. Hence
the FFT of the reference image was computed on the host
to save time.

7.1 FFT correlation results
The FFT correlation based AO algorithm was imple-

mented on both the Tesla GPUs, however the limiting
constraint was the time taken for the complete algorithm
execution. The results for 1 image and 50 images for all
the routines including the FFT kernels, find_max and the
interpolation routines are shown in Table 1.

GPU Execution time in µs
1 image 50 images

Tesla C1060 1188 1619
Tesla C2050 1510 1889

Table 1: Comparison of FFT correlation based AO algorithm

7.2 7x7 correlation results
The 7×7 correlation based AO algorithm was imple-

mented for 3 cases: 1 image, 50 images and 584 images.
The results for all the routines including the 7×7 correlation,
find_max and the interpolation routines are shown in Table
2

It is evident from Tables 1 and 2 that the 7×7 correlation
method is faster than the FFT correlation method. The FFT
correlation method’s latency is more than 500 µs for both
test cases, whereas the 7×7 correlation method exhibits a
latency of less than 400 µs for all the 3 test cases. The
lowest timing numbers indicate best performance in both

GPU Execution time in µs
1 image 50 images 584 images

Tesla C1060 278.36 279.35 281.39
Tesla C2050 312.9 307.49 300.93

Table 2: Comparison of 7×7 correlation based AO algorithm

tables and it is interesting to note that the Tesla C1060 with
240 cores has a better speedup over the Tesla C2050 with
448 cores. The Tesla C2050 has more cores and is the more
recent GPU. In spite of using more threads and optimized
shared memory utilization for the Tesla C2050, we did not
see any improvement in speedup over the Tesla C1060.

7.3 Latency and throughput comparison

Rxdata from transceiver

unpacked data
written to FIFO

unpacked data read
from FIFO

dark-flat output

input to xcorr_pixel
module

output from xcorr_pixel

output from sub-aperture
accumulator per channel

123.73 ns

40 ns

15 ns

40 ns

20 ns

16 ns

91 ns

95 ns

Fig. 8: Timing diagram of correlation routine for FPGA

The latency of each block and the overall throughput can
be determined from Figure 8. Each data packet is available
from the FIFO after 95ns. The latency for accumulating all
the 24 sub-apertures per channel is 91ns. It takes 95ns × 5
packets × 10 rows = 4.75 µs to have the data read from the
FIFO. Since 2 rows are processed at a time, we need to only
multiply by 10 rows to calculate the latency. The 4.75µs
also represents the time taken for determining the cross-
correlation for 24 sub-apertures present in the first 20 rows
x 480 columns. Therefore, the total latency for completing
the cross-correlation of 960 rows × 480 columns is given
by,

4.75µs× 960

20
= 228µs (3)

The complete datapath for the 12 channels up to the
correlation routine is targeted on the Xilinx Virtex-6
XC6VLX550T FPGA and simulated using Xilinx ISE 12.4
ISIM simulator. The mapping, place and route process was
used to determine the size of the design. Table 3 shows that
the design takes more than 100% of the available resources
and does not fit on the selected FPGA. Two approaches can
be considered: (1) partition the design over 2 FPGAs, (2)
target the design for Xilinx Virtex-7 FPGA. The partitioning
of the design introduces synchronization constraints which

300 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

needs to be investigated. The Virtex-7 XC7V2000T FPGA
has 1,954,560 logic slices with 36 GTX transcivers making it
a suitable prototyping platform. However, the availability of
the Virtex-7 XC7V2000T FPGA within a suitable timeframe
is another criteria that influences this decision.

FPGA resources Utilization %age of FPGA used
Slice Registers 992448 out of 687360 144%

Slice LUTs 1126081 out of 343680 327%

Table 3: FPGA utilization summary

The throughput of the GPU vs FPGA based implementa-
tion is shown in Figure 9. Each Tesla C2050 GPU computes
the x and y shifts for 584 images in 300.93 µs and therefore
the GPU gives a throughput of 525.93 µs for 1750 images.
Each GPU starts computing when the data for 584 images
is transferred over the PCIe bus. The GPU implementation
suffers due to the latency involved in the host to GPU
transfer and the GPU to host transfer. There is additional
latency for the reconstruction routine as the data needs to be
moved from the GPUs to the host and then back to a single
GPU. This latency can be eliminated if the global memory of
the GPUs can be accessed or shared between all the GPUs.
The FPGA starts computing on the data, as the camera
streams the images through the 12 fiber channels. The FPGA
performs the dark, flat correction and the correlation. The
FPGA implementation exhibits the least latency for data
movement. The DSP solution [3] is scaled to compute the
1750 images and requires 96 DSPs to complete the task in
495 µs. The FPGA solution provides the best throughput
and is cost-effective as compared to the DSP solution.

Camera
readout

Data transfer through
PCIe x16

Camera
readout

100 us 225 us 300.93 us

C2050 GPU 1

C2050 GPU throughput = 525.93 us

Data transfer through
PCIe x16

C2050 GPU 2

C2050 GPU 3

C2050 GPU 1

FPGA

DSP

FPGA throughput = 250 us

96 DSPs throughput = 495 us

Fig. 9: Latency and throughput comparison for the GPU vs
FPGA vs DSP implementations

7.4 GPU reconstruction results

Execution time in ms
CPU Tesla C1060 GPU Tesla C2050 GPU DSP

46.769 0.964 0.956 0.229

Table 4: Comparison of reconstruction algorithm

Table 4 shows the comparison of the execution time
for the 1750 sub-apertures × 1900 actuators reconstruction
algorithm. The Tesla C1060 and C2050 GPUs provide a
speedup of 47× over the CPU implementation. The DSP
solution uses 96 DSPs to compute the reconstruction routine
and each DSP has a latency of 0.229 ms for 20 sub-apertures.
However, the GPU provides a cost-effective solution over the
DSPs for the implementation of the reconstruction routine.

8. Conclusion
The FPGA implementation of the AO algorithm provides

the best throughput as compared to the GPU and the DSP
implementations. The GPU provides excellent speedup over
the CPU implementation of the reconstruction algorithm.
However the GPU’s performance is relevant only when there
are no throughput constraints imposed on it. FPGAs provide
a cost-effective solution over the DSPs with flexibility for
combining the computation with custom I/O to meet the
latency and throughput constraints.

Acknowledgements
The National Science Foundation (NSF) through the Na-

tional Solar Observatory (NSO) funds the ATST Project. The
NSO is operated under a cooperative agreement between the
Association of Universities for Research in Astronomy, Inc.
(AURA) and NSF.

References
[1] S. Keil, J. Jacobus M. Oschmann, T. R. Rimmele, R. Hubbard,

M. Warner, R. Price, N. Dalrymple, B. Goodrich, S. Hegwer, F. Hill,
and J. Wagner, “Advanced Technology Solar Telescope: conceptual
design and status,” Proc. SPIE, vol. 5489, no. 1, pp. 625–637, 2004.

[2] S. L. Keil, T. R. Rimmele, J. Wagner, and ATST team, “Advanced Tech-
nology Solar Telescope: A status report,” Astronomische Nachrichten,
vol. 331, pp. 609–+, 2010.

[3] K. Richards and T. Rimmele, “Real-time processing for the ATST AO
system,” in Advanced Maui Optical and Space Surveillance Technolo-
gies Conference, 2008.

[4] K. Richards, T. Rimmele, S. L. Hegwer, R. S. Upton, F. Woeger,
J. Marino, S. Gregory, and B. Goodrich, “The adaptive optics and
wavefront correction systems for the Advanced Technology Solar
Telescope,” B. L. Ellerbroek, M. Hart, N. Hubin, and P. L. Wizinowich,
Eds., vol. 7736, no. 1. SPIE, 2010, p. 773608. [Online]. Available:
http://link.aip.org/link/?PSI/7736/773608/1

[5] T. Rimmele, K. Richards, J. Roche, S. Hegwer, and
A. Tritschler, “Progress with solar multi-conjugate adaptive
optics at NSO,” B. L. Ellerbroek and D. B. Calia, Eds.,
vol. 6272, no. 1. SPIE, 2006, p. 627206. [Online]. Available:
http://link.aip.org/link/?PSI/6272/627206/1

[6] Nvidia Inc. (Last Accessed: March 2010) Nvidia Tesla
C2050/C2070 GPU Computing Processor. [Online]. Available:
http://www.nvidia.com/object/productteslaC2050C2070us.html

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 301

A New Hardware/Software Partitioning Methodology Combining Search Space
Smoothing and Discrete Particle Swarm Optimization

Yu Chen1,3, Pranav Vaidya1,
Jaehwan John Lee1

1Department of Electrical and
Computer Engineering

Indiana University-Purdue
University

Indianapolis, U.S.
yc28@iupui.edu

Chandima Hewa Nadungodage2,
Yuni Xia2

2Department of Computer and
Information Science

Indiana University-Purdue
University

Indianapolis, U.S.
chewanad@umail.iu.edu

Renfa Li3, Qiang Wu3
3School of Computer and

Communication
Hunan University
Hunan, P.R. China

lirenfa@vip.sina.com

Abstract - Hardware/Software partitioning is one of the most
important problems in the embedded system co-design. Based
on a model using the task flow graph, this paper presents a
new method that combines the search space smoothing and
discrete particle swarm optimization to tackle the problem.
Experimental results demonstrate that this new method can
reach the best quality of solutions at a relatively low time cost.

Keywords - Hardware/Software partitioning, Discrete particle
swarm optimization, Search space smoothing

I. INTRODUCTION

More and more embedded systems are taking benefits
from the emerging new architectures containing processors
of various components such as Field Programmable Gate
Arrays (FPGA) and Application Specific Integrated Circuits
(ASIC). One of the widely used approaches for designing
these systems is the hardware/software co-design, which
consists of a succession of steps ranging from the functional
specification of the system parts to their synthesis. The most
important step is the hardware/software partitioning that has
a strong impact on cost/performance of the final products.
Many optimization algorithms, such as Genetic Algorithm
(GA) [1] [2], Tabu Search (TS) [3] [4], Simulated Annealing
(SA) [5], Ant Colony Optimization (ACO) [6], and Particle
Swarm Optimization (PSO) [7], have been proposed to deal
with this issue. Eberhart and Kennedy proposed a Discrete
version of PSO (DPSO) [8] by redefining the trajectories of
a population of particles as changes in the probability that a
coordinate takes on a 0 or 1 value. DPSO has been found to
be a highly efficient parallel optimization method in
scientific and engineering fields, and also used for the
hardware/software partitioning [9] [10].

Although the local search algorithms used in the
aforementioned optimization approaches are very effective
ways to solve combinatorial optimization problems, they
often stuck at a locally optimum configuration due to the
rugged terrain surface of the search space. In the meantime
to deal with the Traveling Salesman Problem (TSP), Gu et al.
originally proposed the Search Space Smoothing (SSS)

method [11], which turns out to help overcome local
optimum trenches and thus obtain better results for local
search algorithms at a cost of linearly increased run-time.
Since then, many other efforts have been made to apply this
method to combinatorial optimization problems such as
VLSI design [12]. Wu et al. in 2004 first applied this method
to solve the hardware/software partitioning problem [13],
and the results revealed the high potential of the method on
this issue.

This paper presents our design of a new
hardware/software partitioning method using a search space
smoothing technique to guide discrete particle swarm
optimization in finding the best solution. To prove its
effectiveness, we compare this new method with the original
DPSO as well as Improved Simulated Annealing algorithm
(ISA) in some randomly generated instances. Experimental
results indicate that our method can reach the best quality of
solutions at a relatively low time cost.

The rest of the paper is organized as follows. Section II
describes the model of hardware/software partitioning
problem that we incorporate. Section III and Section IV
discuss the basic ideas and characteristics of the DPSO and
SSS, respectively. Section V gives the workflow and
operations of the new method, Search Space Smoothing
combined with Discrete Particle Swarm Optimization
(SSS+DPSO). Section VI shows the experimental results
with comparisons. Finally, Section VII concludes this paper.

II. HARDWARE/SOFTWARE PARTITIONING MODEL

The main function of the system under consideration is
usually specified by a high-level programming language like
C or Java first, and then the function will be mapped into a
task graph that can be processed by optimization algorithms
for different purposes. The hardware/software partitioning
can be modeled by the task flow graph, as shown in Fig. 1.
In the task flow graph, nodes represent tasks to be
partitioned, and directed edges between them denote their
relationship.

302 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

Then, given a process task flow graph G = (N, E), the set
of nodes is partitioned into two subsets:

G = ({HW, SW}, E), where HW SW = N, HW SW
=.

N1

N2 N3

N4
N5 N6

N7

E12 E13

E24 E25 E36

E47

E57 E67

Figure 1. A 7-node task graph.

After the task flow graph has been generated, the
partitioning information, such as the hardware cost, software
cost, and communication cost, which are captured as weights
associated with the nodes and edges, have to be merged into
an objective function. Then, the objective function should be
optimized under some constrains by the partitioning method.
In this paper, the objective function and cost estimation
methods are borrowed from [3]. However, the
hardware/software partitioning method proposed here is not
limited to such an objective function. Other functions are
also applicable. The objective function of [3] is the
following:

S

SWi

i
N

H

HWi

i
N

H

HWi i
N

ij

ij
E

cutji

ij
E

N

W

N

W
Q

N
W

W

Q

WQSWHWC

22

1

2

1) ,(

3

)(

2

),(
1

where HW and SW represent the sets of hardware and
software parts, respectively; NH and NS are the number of
nodes in these two sets; cut is the set of edges cut by the

partitioning; i
NW1 and i

NW 2 represent the Computation
Load (CL) and Relative Computation Load (RCL) [14] of
node i, respectively; W 1E

ij and W 2E
ij represent the total

amount of communication data and the degree of
synchronization of edge<i, j>, respectively. The first term
captures the amount of communication cost between

hardware and software parts. The second term stimulates
placement into hardware, which reduces amount of
interaction with the rest of the system relative to their
computation load. It can improve parallelism between tasks
executed by hardware. The third term pushes tasks with high
node weight into the hardware partition and those with low
node weight into the software partition, by increasing the
difference in the average weight of nodes between

hardware/software parts. 1Q , 2Q , 3Q are used to trade off

among these terms, hence guide the partitioning procedure
to designer’s intention. In this paper, the goal is to minimize
the function value of (1). In addition, the total hardware and
software costs have to be limited by the following
constraints:

H

HWi

MaxH

icost_

S

SWi

MaxS

icost_

where icost_H and icost_S represent the hardware

cost and software cost of node i, respectively; HMax and
SMax represent specified limits of hardware and software

constraints, respectively.

III. DISCRETE PARTICLE SWARM OPTIMIZATION

In our hardware/software partitioning model, the
problem is similar to finding the largest connected sub-graph
that meets certain conditions. Because it is an intractable
problem in graph theory, many optimization techniques have
been proposed to find the best solution.

Eberhart and Kennedy in 1995 proposed the Particle
Swarm Optimization (PSO) [15] as an optimization
technique for use in a real-number space. A potential
solution to a problem is represented as a particle having
coordinates xid and rate of change vid in a D-dimensional
space. Each particle i maintains a record of the position of its
previous best solution in a vector called pbestid . An
iteration comprises the evaluation of each particle and
stochastic adjustment of vid in the direction of particle i’s
best previous position along with the best previous positions
of the particles in the neighborhood, which can be defined in
innumerable ways: for example, a typical implementation
evaluates particle i in a neighborhood consisting of itself,
particle i – 1, and particle i + 1. The vector gbestd is
assigned with the index value of the particle having the best
performance so far in the search space. Thus, in the original
version, particles move by the following equations:

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 303

)(

)(

22

11

1

k
idd

k
idid

k
id

k
id

xgbestrc

xpbestrc

Wvv

11 k
id

k
id

k
id vxx

where xid
k is the current position of individual i at iteration k

with velocity vid
k . Besides, W is the inertia weight factor, cl

and c2 are acceleration constants, and rl and r2 are uniform
random numbers between 0 and 1.

The PSO has been found to be robust in solving
problems featuring nonlinearity, non-differentiability, multi-
peak, and some more complex optimization. However, many
optimization problems exist in a space featuring discrete,
qualitative distinctions between variables, such as in
hardware/software partitioning problems. To solve this kind
of problems, Eberhart and Kennedy in 1997 proposed the
Discrete Particle Swarm Optimization (DPSO) [8] in which
original PSO is redefined such that a particle moves in a
state space restricted to either 0 or 1 on each dimension, and
each vid represents the probability of bit xid taking value 1.

Thus, the pbestid and xid are integers in {0, 1} and vid is
constrained to the interval [0.0, 1.0]. A logistic
transformation is used to accomplish this last modification.
DPSO can be obtained by replacing (5) with (6).

0

;1

))(()(

1

1

1

k
id

k
id

k
id

xelse

xthen

vSrandif

where S(v) = 1/(1+ e-v), which is a sigmoid limiting
transformation function, and rand() is a quasi-random
number selected from a uniform distribution in [0.0, 1.0].

0 1 1 1 0

SW HW HW HW SW

0

SW

0

SW

xi

Figure 2. An example of a particle used in hardware/software partitioning

(HW and SW stand for hardware and software, respectively).

DPSO can be easily implemented to deal with the
hardware/software partitioning problem for the partitioning
model shown in Section II. The number of dimensions D
equals to the number of tasks to be partitioned. As shown in
Fig. 2, each particle is a string of 0/1-bits, which represents a
solution of hardware/software partitioning. For example, if
xi3 = 1, the third task will be executed by hardware. Fig. 3
shows a hardware/software partitioning result of the tasks
shown in Fig. 1.

Figure 3. A partitioning result in a task graph.

The procedure of the DPSO algorithm can be described
as follows:

Step 1: generate the initial particle swarm randomly; k is
used as iteration time,

Step 2: calculate the objective function for each particle
according to (1); update pbestid and gbestd ,

Step 3: update the particle swarm according to (4) and
(6),

Step 4: go back to Step 2 until the algorithm finds the
final solution (when any termination condition is met, which
is usually maximum generation limit, run-time limit, or a
predefined threshold for convergence of the algorithm).

IV. SEARCH SPACE SMOOTHING

Local search, such as DPSO, is an effective technique to
cope with the overwhelming computational intractability of
NP-hard combinatorial optimization problems. Given a
minimization problem with objective function f and feasible
region F, in a typical local search algorithm, for each
solution point xi R, there is an associated predefined
neighborhood N(xi) R. Given a current solution point xi

 R, set N(xi) is searched for a point xi+1 evaluated for f(xi+1)
while satisfying f(xi+1) < f(xi). If such a point exists, it
becomes a new current solution point, and the process is
repeated. Otherwise xi is retained as a local optimum with
respect to N(xi). Then a set of solution points is generated,
and each of them is locally improved within its
neighborhood. To apply local search to a particular problem,
one needs to specify only the neighborhood structure and the
randomized procedure for obtaining a feasible starting
solution point. However, the major weakness of local search
is that it has a tendency to get stuck at a locally optimum
point, unable to find the global minimum.

304 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

Figure 4. Illustration of smoothing a search space.

In order to improve the performance of a local search
algorithm, Gu et al. [11] has developed the Search Space
Smoothing technique in 1994 which temporarily limits the
number of local minimum points in the search space and
then gradually releases limitation as it approaches to the best
solution. The basic idea of the method can be explained as
follows. Assume there is a search space with many local
minimum points (see Fig. 4), where a solution point could be
easily trapped. A smoothed search space, in which some
local minimum points are temporarily filled (i.e., flattened)
and thus they no longer cause trapping, will be used to
approximate the original search space. In the smoothed
space, the number of local minimum points is reduced, and
optimistically the smoothing process only changes the
metric characteristics of the search space and leaves its
topological structure unchanged.

Figure 5. A gradually approximated smoothing proces.

If the global minimum point found in the smoothed
search space is used as an initial starting point in the original
search space, as illustrated in Fig. 5, not only would the
probability of finding the global minimum point in the
original search space be increased considerably but also
search time would be dramatically reduced. To increase the
chance of finding the global minimum point in the smoothed
space, a strong smoothing operation that can produce a
flatter search space may be attractive. Unfortunately,
however, it may lead to losing some heuristic guidance
information. On the contrary, if a weak smoothing operation
is applied, the topological structure of the smoothed search
space is similar to the original one, and thus, it may result in
less reduction in the number of local minimum points of the

original search space. This dilemma can be resolved by
using a gradually approximated smoothing scheme [8],
which executes a series of search space smoothing
operations as follows.

A smoothing factor, α, is introduced to characterize the
degree of a smoothing operation. If α = 1, no smoothing
operation is applied, and thus the search space is the same as
the original search space. If α > 1, a smoothing operation is
applied, and thus the smoothed search space is flatter than
that of the original search space. If α >> 1, the smoothing
operation has a stronger effect, resulting in a nearly flat
search space.

The following procedure is a typical gradually
approximated smoothing scheme. Initially the search space
is most smoothed, and then each later search space is made
to be a less smoothing of the earlier search space. Therefore,
the solutions of a more smoothed, flatter search space are
used to guide the search of those in the more rugged search
space.

Step 1: initialize a smoothing factor, α >> 1, and
randomly generate an initial solution, Xin , then run a local
search algorithm to get its new solution, Xout ,

Step 2: let α = α – 1 and Xin = Xout , then run the local
search algorithm in the new search space to get its solution,

Step 3: repeat Step 2 until α = 0.

V. SEARCH SPACE SMOOTHING COMBINED WITH

DISCRETE PARTICLE SWARM OPTIMIZATION FOR

HARDWARE/SOFTWARE PARTITIONING

A. SSS+DPSO Algorithm for Hardware/Software
Partitioning

The key idea of SSS+DPSO is that DPSO can make use

of a series of smoothed problem instances gradually
generated by the Search Space Smoothing (SSS) to optimize
the hardware/software partitioning. It starts from an
approximate trivial problem instance, i.e., the instance with a
fairly flat search space, and then finds the solution to this
simplified problem using DPSO. The solution of the
problem instance is then taken as the initial point to the next
problem instance that has a slightly more complex (less
smoothed) search space, and then this new problem is again
solved by DPSO. The above procedure is repeated until the
final problem instance generated with the original search
space is solved. The idea described here is processed in a
workflow as illustrated in Fig. 6.

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 305

Figure 6. The workflow of the SSS+DPSO algorithm.

According to the workflow, we combine the SSS and
DPSO as follows:

Step 1, select an initial smoothing factor, α >> 1, and
randomly generate an initial solution, Xout , and let Xin =
Xout ,

Step 2, begin the iterative search space smoothing
according to the smoothing factor, run the DPSO algorithm
(according to the procedure described in Section III) in the
new search space (use Xin as an initial solution), and obtain
a new solution, Xout ,

Step 3, let Xin = Xout , α = α – 1 (the smoothed search
space will gradually approximate to the original search
space),

Step 4, go back to Step 2 if α > 0, otherwise finish the
algorithm and output Xout as the final solution.

B. Smoothing Operation of SSS+DPSO

Search
Space

Objective
Function

x2x1

the original
search space

the smoothed
search space

∆f1,2 ∆f1,2’

Figure 7. Smoothing Operation

We here first discuss how to control the effect of
smoothing of the search space in our partitioning problem.

As shown in Fig. 7, the solid line represents the original
search space of the problem, whereas the dotted line
represents the smoothed search space. x1 and x2 are two

solutions that are randomly chosen.)(1xf and)(2xf
represent the evaluated values of the objective function for

x1 and x2 in the original search space, respectively.)'(1xf

and)'(2xf represent the evaluated values of the objective
function for x1 and x2 in the smoothed search space,

respectively.))()((212 ,1 xfxff and

))'()'((' 212 ,1 xfxff are the difference between the

values of the objective function, respectively. Obviously, for
the same set of solutions, x1 and x2, the difference between
the values of the objective function in the original search
space is larger than that of the smoothed search space (as
shown in Fig. 7, 2 ,1f > '2 ,1f). Thus, reducing or

enlarging the difference between the values of objective
function will produce an effect of smoothing. Note that in an
extreme case of smoothing, if all the nodes and edges in our
hardware/software partitioning model have the same weights,
the search place is absolutely flat (as a straight line). Any
partitioning result will lead to the same value of the
objective function, since there is no local minimum point in
the search space any more.

According to the analysis, the search space of the
hardware/software partitioning problem can be smoothed by
reducing the difference between the evaluated values of
objective function of the solutions in the search space. As
described in (1), the value of objective function is
determined by the weights of nodes and edges in our
hardware/software partitioning model. Thus, we can use the
equations in (7) for the weights of nodes to lead the effect of
search space smoothing, which are normalized between 0
and 1 beforehand. Since the gradually approximated
smoothing is used in SSS+DPSO, the weights of nodes are
determined by the smoothing factor for a hardware/software
partitioning problem instance.

Ni
i

wwifwww

wwifwwwi

w
N

w

w ii

ii

1
 =

 =)()(

)(

where iw represents the weight of node i; w is the average

weight among all the nodes; N represents the number of
nodes in the task flow graph; has been defined in Section

IV as the smoothing factor. When , wwi)(,

thus producing a graph with equal weights. When = 1,

)(iw returns to its original value, so the graph returns to

its original shape. The weights of edges are adjusted in the
same method as the nodes, and thus the description is
omitted for succinctness.

306 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

VI. EXPERIMENTAL RESULTS AND PERFORMANNCE

COMPARISONS

We generate six sets of graphs by the TGFF [16] tool for
each node number of 10, 20, 50, 100, 200, 400, and there are
50 graphs in each set (thus 300 graphs in total). In many
earlier papers [3][5][14], the advantages of the PSO and SA
in dealing with the HW/SW partitioning problem over other
local search algorithms, such as GA, TS (Tabu Search) and
KL(Kernighan-Lin), have been confirmed already. Thus, we
chose to combine the best algorithms in previous work with
the Search Space Smoothing (SSS) technique and then
analyzed both the solution quality and computation time. We
compared our implementation with Discrete Swarm
Optimization (DSPO) and the Improved Simulated
Annealing (ISA) algorithm given by [13], which also takes
advantage of the search space smoothing technique. All the
algorithms were executed on a computer with 3.0GHz Intel
dual-core processor and 1GB memory. Parameters of each
algorithm are as follows:

SSS+DPSO: for 100 particles, the inertia weight factor
W=2, the acceleration constants c₁=c₂=0.2, the smoothing
factor α₀=10, and the maximum number of iteration is 800.

DPSO: for 100 particles, the inertia weight factor W=2,
the acceleration constants c₁=c₂=0.2, the algorithm ends
when the changes of objective function are less than 0.08.

ISA: the initial temperature is 10¹⁶, the end temperature
is 1/10⁶, the cooling ratio is 0.9 and the smoothing factor
α₀=10.

A. Solution Quality

Each algorithm runs 150 times on one instance, and the
solutions that lead to smaller values of the objective function
are considered as better solutions. We found that the quality
of the best solution (the best one in all solutions) of each
algorithm is in little difference, and thus, we compare the
number of times that each algorithm correctly finds the best
solution instead. Table 1 (see at the tail of the paper) shows
the results where Tn represents the graph containing n nodes.
Fig. 8 is the illustration of the data shown in Table 1. In the
illustration, the horizontal axis represents the number of
nodes of each instance while the vertical axis represents the
number of times the algorithms find the best solution. Each
curve in the illustration represents the group of data of the
corresponding algorithm as labeled.

Figure 8. The number of times that each algorithm finds the best solution.

The figure shows that all three algorithms perform very
well when the number of nodes is below 20 but when the
number exceeds 20, the number of times that DPSO finds
the best solution is largely decreased. In cases of
SSS+DPSO and ISA, they perform in the same level except
when the number of nodes is in the range of 50 to 200,
SSS+DPSO performs better. The fact that both SSS+DPSO
and ISA use search space smoothing to guide their local
search algorithms proves that search space smoothing can
effectively improve the solution of DPSO. In the next sub-
section, the run-times of the algorithms for obtaining such
solutions are compared.

B. Run-Time

Table 2 (see at the tail of the paper) gives the average
run-time (in sec.) of each algorithm. Fig. 9 is the illustration
of the data shown in Table 2. In the illustration, the
horizontal axis represents the number of nodes of each
instance while the vertical axis represents the run-time of the
algorithms. Each curve in the illustration represents the
group of data obtained by executing the corresponding
algorithm as labeled.

Figure 9. The average run-time of each algorithm.

The figure shows that all three algorithms perform very
fast when the number of nodes is below 100, but when the
number exceeds 100, the curves of DPSO and ISA show a
trend to climb much faster than the curve of SSS+DPSO.
Especially when the number reaches 400, the advantage of
SSS+DPSO becomes more obvious. It is a notable
characteristic that SSS+DPSO is almost three to ten times
faster than the others in dealing with large size partitioning
problems, which are very common in the real world.

VII. CONCLUSION

In this paper, we have discussed a discrete version of
particle swarm optimization that operates on discrete binary
variables and a search space smoothing technique that relies
on the effectiveness of using intermediate solutions of
smoothed search space to guide the search of increasingly
complex problem instances. Taking advantages of these
methods, a new method combining search space smoothing
and discrete particle swarm optimization has been proposed
to deal with the hardware/software partitioning.

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 307

Experimental results indicate that this new method can
stably increase the quality of solutions as the probability of
finding the best solution is more than 56% (85 in 150 times)
even in a 400-node graph. In the meanwhile, it is worth
mentioning that the method has the lowest time cost in
graphs with large number of nodes (more than 100 nodes) as
compared to DPSO and ISA. Our further exploration will
focus on implementing this method on a practical
application [17] for run-time hardware/software partitioning.

ACKNOWLEDGMENT

This research was funded in part by the U.S. National
Science Foundation Grant 0834682 and in part by the
National Natural Science Foundation of China Grant
60973030.

REFERENCES

[1] D. Saha, A. Basu and R. S. Mitra, “Hardware Software
Partitioning Using Genetic Algorithm,” Proc. of the 10th
International Conference on VLSI Design: VLSI in Multimedia
Applications, pp. 155, 1997.

[2] S. Zheng, Y. Zhang and T. He, “The Application of Genetic
Algorithm in Embedded System Hardware-Software
Partitioning,” Proc. of the 2009 International Conference on
Electronic Computer Technology, pp. 219-222, 2009.

[3] L. Li, and M. Shi, “Software-Hardware Partitioning Strategy
Using Hybrid Genetic and Tabu Search,” Proc. of
2008International Conference on Computer Science and
Software Engineering, pp. 83-86, 2008.

[4] P. Elis, Z. Peng, K. Kuchcinski, and A Doboli,
“Hardware/software partitioning with iterative omprovment
heuristics,” Proc. of 9th International Symposium on System
Synthesis, pp. 71-76, 1996.

[5] P. Elis, Z. Peng, K. Kuchcinski, and A Doboli, “System Level
Hardware/Software Partitioning Based on Simulated Annealing
and Tabu Search,” Design Automation for Embedded Systems,
vol. 2, No. 1, pp. 5-32, Jan. 1997.

[6] M. Koudil, K. Benatchba, S. Gharout, and N. Hamani, “Solving
Partitioning Problem in Codesign with Ant Colonies,” Artificial
Intelligence and Knowledge Engineering Applications: A
Bioinspired Approach, vol. 3562/2005, pp. 324-337, 2005.

[7] A. Bhattacharya, A. Konar, S. Das, C. Grosan, and A. Abraham,
"Hardware Software Partitioning Problem in Embedded System
Design Using Particle Swarm Optimization Algorithm," Porc.
of the 2008 International Conference on Complex, Intelligent
and Software Intensive Systems, pp. 171-176, 2008.

[8] J. Kennedy and R. C. Eberhart, "A Discrete Binary Version of
the Particle Swarm Algorithm," IEEE International Conference
on Systems, Man, and Cybernetics, vol. 5, pp. 4104-4108, Oct.
1997.

[9] A. Farmahini-Farahani, M. Kamal, and S. M. Fakhraie,
"HW/SW Partitioning Using Discrete Particle Swarm," Proc. of
the 17th ACM Great Lakes Symposium on VLSI, pp. 359-364,
2007.

[10] T. Eimuri and S. Salehi, “Using DPSO and B&B Algorithm for
Hardware/Software Partitioning in Co-desing,” Proc. of
International Conference on Computer and Development, pp.
416-420, 2010.

[11] J. Gu and X. Huang, "Efficient local search with search space
smoothing: a case study of the traveling salesman problem
(TSP)," IEEE Transactions on Systems, Man and Cybernetics,
vol. 24, pp. 728-735, May. 1994.

[12] S. Dong, X. Hong, S. Zhou, and J. Gu, "Efficient VLSI Module
Placement with Solution Space Smoothing," Proc. of
International Conference on Communication Circuits And
Systems (ICCCAS02), vol.2, pp. 1396-1400, 2002.

[13] Q. Wu, J. Bian, H, Xue, Y. Fan, W. Wu, X. Hong, and J. Gu,
“Applying search space smoothing technique to
hardware:software partitioning: Experiments and Analysis,”
Proc. of 5th International Conference on ASIC, vol.1, pp. 85-88,
Oct. 2003.

[14] P. Eles, Z. Peng, K. Kuchcinski, and A. Doboli, “Performance
Guided System Level Hardware/Software Partitioning with
Iterative Improvement Heuristics,” Res. Rep. LiTH-IDA-R-95-
26, Dep. of Comp. and Inf. Science, Linkoping University,
1995.

[15] J. Kennedy and R. C. Eberhart, "Particle Swarm Optimization,"
Proc. IEEE International Conference on Neural Networks, vol.
4, pp. 1942-1948, 1995.

[16] R. P. Dick, D. L. Rhodes, and W. Wolf, “TGFF: Task Graphs
for Free,” Proc. of the 6th International Workshop on
Hardware/Software Codesign, pp. 97-101, 1998.

[17] P. S. Vaidya, J. J. Lee, F. Bowen, Y. Du, C. H. Nadungodage,
and Y. Xia, "Symbiote: A Reconfigurable Logic Assisted Data
Stream Management System (RLADSMS)," Proc. of the 2010
International Conference on Management of Data, pp. 1147-
1150, 2010.

TABLE I. THE NUMBER OF TIMES THAT EACH ALGORITHM FINDS THE BEST SOLUTION

 T10 T20 T50 T100 T200 T400
SSS+DPSO 150 150 150 125 109 85
DPSO 140 141 80 69 37 12
ISA 148 150 130 118 106 89

TABLE II. THE AVERAGE RUN TIME OF EACH ALGORITHM (IN SEC.)

 T10 T20 T50 T100 T200 T400
SSS+DPSO 1.43 2.79 5.43 8.53 13.77 26.63
DPSO 0.82 1.95 4.01 9.28 74.83 185.71
ISA 0.13 0.49 1.50 18.84 38.17 69.52

308 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

������� �	�
�������
�
� � ����������� �	�
�������	 ����
������ ������	���	

���������� �	
������ �
� �
��	 ����
���

��������� �
� �������
� �
�
���
�

���	��� �
������

���� !����	" #�������	" ���	��� $�%�&�' " !�(�

����) ��*���
+(�,���	���,��,�(

�����������������	
 ��������� ��
� ���������� ��������
��
� �� �������� �� ��� ��
� ���������� ����� �� ��� ���
� ���
�� ���
���� ���
��������� ��������
�� ������� � ���
���
���
��������
��� �����������
����������� ����
 �����
���� ����
���
�� �
����
������� �����
� ����������� �
� ���� ��������
�� ���� ��
� ����� ����
 ���
���
��� ��������
��� �������
����
����������� �
� ��
���� ��������� ��
� ����������
��

��������� �����
�� �
����� ����
������ �������	 �� ���
��
����������	 �����
� ��
� �� ��������
� ����� ��	

��

��
� ��
� !�"��#$�% �� ���&������ ���������� �� ��������
��� ����� ��� ��������
���� �����������
�� ��
� ���������
�����������
�� ��
��� ����� �������	
� ������� �������
�� ��
� ��� �
�'����� �����
����� ���� �������� ��� ���
���
��������
���� ���
��� ��� ��
� &�
����� (��� �
��� ���������
��������
 ��������
���� �
��� ��
 ����������
����������)�
���
���
��� ��������
��� �����������
����������� �� ��
���� ��
�
��� ��������
���� �� ��
� &�
���� �� ������

�� ������������

�������	
 � ��������� ���� ��������� ������� ���

������� ���� ��������� ����� �� ���� �� � ����� �	�

� �������� ��� ���������� ������� ��� ������ ���� ��

������ ���� ��� ��������	 ��������
 ��������������� ��������

�	����� ��� �	�����	 ���������� ������� ��� ��������

�	����� ������ �� ��� �� ��� ���� �������
 � ���������

��� �����	� !������
 ��� ����������� �� ������� ��������

�	����� � ����"���� �� �#����� �������� ���� ����������

$� ����
 �� ������ ��� ����������� �� ���� ���������

���������
 ��������	�� ���� ���� ���� ��������� ����

�������� %&' ��������� �(��)�� $�� ��������	�� ���� ����

��� �#����� ������ "���� ��������� �� �������� "����� ���

*������� �� +������ "����� ����� ��� �������� �� �����

,��� �� ��� ����� ����� ���� -�����������
 ��������	�� ����

���� ��� ������ �� �#����� ���� ��������� �������� ���

����� �� ��� ���. �� �����	� '� ��� ����� ����
 ����� ����

���� ��� � ����� ��������� ������� ���� / �&01 �	��

��������� ���� ���� ��������� �2��3�� $��	 ��� ������ �����

��� ��� �#����� ���	 ����� ���������� !������
 ���� ���

��������� ����� �� ��� ����� �&0 ���������� � ��� ���

�������� ��� ���� �� ������� ��������������� ���������� �4�

��� ������� ��� ������ �� �����	 ���� ��� ���� � ���

�����
 ��� ��������� ��� ���� ����� �� ����� ���������
 ,���

�.� ������ "���� ���������� 5� � ������
 ��� ����� ���� ����

��� ��� ������� ��� ���� ��������� ��������

$� ������6� ���	 ����� �� � �����
 ���	 ��������

����� ���� �� ������ � �����	 ��� ���� �� ���� 7��.�	

���� ��� �����	 �� ��� ���������� 8�� �#�����
 �������

���� ��� �	���� ������� �� �#������ ���� ��� � �����

�#��� �� ����	 � �� ��� ������� ���� ��� �	���� ����

�#����� �������� ������� ��������� �� � ����� ��������

����� ��� ��� ���� ����� �#��� ���� � ��
 ��� ��������

����� ���� ��� �����	 �� ��� ��������� ��� ��� ���������9�

�������� ������� �������� ������� � :����#��;�� $��������

� ���� ��������� �	�����
 ��� ���� ���������� ��������

� ��� ���������������� ��������� <��� � ��� ������ =* �

���������	 � ������ �� ��� �������� ������� ��������
 ���

����6���� ��������� ����� ��� ��� ����6���� �������� ���� ���

����"�����

$��������
 �� ����6� ��������� �������� ������� �����

����
 � �	�������	 �����"������� �������� �����������

��� � ���������� �����	 ��� � �������������� ������ ����

������ ��� ���� �������� ��������� $�� ����������� � �����

�� �������	 �����"������� ���� ����	� /'�+5�1 ����>��)��

�� ��� �����������
 ���� �� ��� ���	 ���������� ��� ������

�����"�������� ��� �� ���� ��� �������� �#������ ������ ��

������
 � ��� �������� �����������
 � ���������	 ����

����	 ��� �#����� ����	 �������� ������� ��������� � �

��������	 �������� ������� $��������
 ��� �	�������	 ������

"������� �������� ����������� ��� ������� ��� �����������

�� �??
??? ���������������� ��������� ��� ���������� $���

����������� ������ �#������	 ��� ������������

!������
 � ��� �����������
 ���� �� ���� � ��������

�� ����	 � ��
 � ���� ����	 �� �� '�+5�=* � � ���7�����	

�����"����� �� ���������������� �� ������6� �� ��� ���

�����"������� ���������� ��� ���� �������� ����������

��� ������ ����� �� ���� �����
 �� �������� ���� � ���� ���

���.������ ��������� ���� �������� �	 �	���� �����"��

������� �������� ��� ���� 7����	� $��������
 ��� �����

�������� � ������������ ����� �� � �������"������� �����#�

�	�������	 �����"������� �������� ����������� � �����

�� �����	 ���� ���	 ���	 ����� ����������� � ���� 7����	

�������

��� 0	�
���
��	 ���������
�� ������ ����

���������

8���� � �������� �� ������� �� � �	�������	 �����"��

������ �������� ����������� ����� $�� �	�������	 ������

"������� �������� ����������� �������� � ����� ����	
 �

���������� �����	
 � ���� �������
 � ���� ����	
 �� �����

����
 ��� � "������� �������	 �����"������� ���� ����	 =* �

/'�+5�=* �1 ������(���)�� $�� �	�������	 �����"�������

�������� ����������� ������� �� ���� ���� ��� ��� '�+5�

=* � � ������ �� ��������� ������ �����"��������

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 309

���� ��
���������� � �!����"� �" � #$"�%���&&$!���"'�(!�)&� �����" �*�

�!�*�����(!��

�� ����� �	
��

5� '�+5�=* � ��� ���	 ���������� ��� ������ ������

"�������� $��������
 ���� ���������� ��� �� ���� ���� ���

������ �� ����� �� ��� �����������
 �� ���� � ����

������� �� ����� ����� $���
 ���� �#�� �� ��� ���� �

������� ���� � ��������� �� ��� '�+5�=* � �	 � ���� ����	

������� � ���� �������� $�� ���� ����	 ���� ���	� � ���� �

�������� ��� ���� ���� ���� �� �������� 5���	�
 ����������

� �� ���� ������ ��� ������� �� �� �� ����� �� �������

�� ������� ��� ������ �������	� !������
 ��� ����������

� '�+5�=* �� ��� ������� �� �� �� ����� �� ������� ��

������� ��� ���� �����	� $��������
 ��� ��������� �������	

�� '�+5�=* �� �� �� ���� ������ � ��� ���� !������
 ���

���������9� ���. �������	 ��� �� ������� �� ���� �� ������

���������� �� ���� ������� ���� ��� ���� ����	� $��������

� ��� �����������
 ��� ���� ���� ���� ������� � ��	���

����������� ��� ���� ������� $�� ����������� ��� �� ������

�� �#������ ���� �� ����	 � ���

� �����
�������	� �
������	�

$�� �������������� ��������� ���� ��� ��������� �� �

�	�������	 �����"������� �������� ����������� ��� �#��

����� ����� �� �� '�+5�=* � ������(���)�� $�� '�+5�

=* � ��.�� � "��������� ���� ����	 ������� ���.��� ������

�� ���� �� "��� ������������ ���� ����	� /8:+5�1 �@���?��

�� �� '�+5
 ���	 �	���� �����"������� �����#�� ���

������� ���� � ���������� �����	� $��	 ��� ���������

�	 � ����� ����	� =����� ����� ���������
 ���� �� ���������

������� ��������� ��� "������ ��������� ��� �� �#������

���� ��������� �	���� �����"�������� %����� ��������

��� ���� �������� ��� ���������� �	�������	 ��� ���

���� ����	 �� � ����. �	���� $�� ����������� ��� �������

���������������� �	���� �����"��������

�� ����������� �
������	

�� ��� �����������
 ���� � �������� ������� �������� �

�#������
 � ����� �� ������6� ��� �������� ���� � �����

���� +� ,�% &�� �-)�"�!$ ��% &��� �%����. ��!!�� �"#�"� *�&��!� *��
%�%�!$ ����!"�. �"# � �!����" ��!�(����

������ ���� � ���� ����	� 5 ����� �#����� �� ������� ����	

�������� ������� ��������� � ��������� � 8�� �� <��� �#��

�� ��� ����� ��� � ����	 ������ $�� ����� ��� "�����

���� "�� ������ �������� ������ �� ��� ����
 ���������

������� ��������� ��� ��� ������ ����� ��� �#������ ����

��������� ������ ���������� ���� ���.��� ������ �� � ����

����	
 �� ����� �� ��� ����� ��� �� ��� "������ �� ��� ����

�� ��� -�� �
 ��� ����� ������� � (����� 5-0 ������

�� ��� ���� �� ��� -�� �
 ��� ����� ������� �� � (�����

5-0 ����� ��� �� �������� �� �������
 ���� ������ ���

��������� �� ������������ ���������� �����	 �������� ���

��� ������ �� � ���������� �����	� A��� ��� �������� �

�#������
 ���� �������� ������� �������� ������
 -�� �

-�� �
 -�� �
 ��
 -��) ��� �	�������	 ���� ��� ���� ���

���������� �����	 ��� ��� ���������� ���� � ���� ����	 �

����� <��� ��� � ���"������� � ���������
 � ����� ��������

������� �������� � �#������ �� ��� ���� ����	� 5� � ������

����� "�� ���"�������� ��� �������� ������� �#�������

��� �������� ��� "�� �� ��� �����

�� �	� ��	���	

�� ��� �����������
 ���� �������� � ������� �� �� �#�

������ ����	 � ��� %����7�����	
 ��� �������� ����� ���

��� ���� ������� ?>� ��� $��������
 ���� �������� �

�#������ ��������� �� ��������
 � ��� �����������
 ������

�����"�������� ��� �#������ �	�������	 �� �����������

������ !���
 � ������� � ����
 �� ���� ���
 ��� ���.������

��������� ���� �� �	���� �����"�������� ��� ������� ���

7����	 �� � �������� ����� �����"������� ����������

��� ���� �������� ���������� ��� ������ ����� ��������

���� ��.�� ���� 7����	 ����������� ���������� �������

�� ������� �� ������ �����"�������� $��������
 ��� �����

�������� � ������������ ����� �� � �������"������� �����#�

�	�������	 �����"������� �������� ����������� � �����

�� �����	 ���� ���	 ���	 ����� ����������� � ���� 7����	

�������

310 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

���� /� �&��0 #���!�% �- �*� �, �!�%�"��& �$���%�

���� <1������
� 	���

�� ��	���� ��	������	

!���
 ��� ���������� ������ �� � ���������� �����	

� ��������� 5 �������� ��� �� '�+5 � ������� �� �

��� ���������� ������ 5 ����� �������� �����
 � �����

������ �����
 ��� �� '�+5�=* � ����� ��� ��������6��� $��

����� ���� � ���������� $�� ���������� ����� ��������

����������� �#��� �� ��� ���������� ������ $�� �#��� ���

������� �� ������ ������� '� ��� ����� ����
 ��� ���� ��,���

�������� ����������� �#��� �� ��� ��,��� ������ ��� �#��� ���

�� ��������� �� �� ����� �� �� ���� $�� ������	 ���������

�� � ���������� ����� � ���������� ���� ��� ��������

�7������

�������� �

�
�

��

�
�

��

���������������������

� �
�
��
�
����� ��������� ���� /�1

�� ���� �7�����
�������� � � ����	 ����� �� � �����"�������
�����#�
 � � ��� ���� ������
 ��� �� ���"�� ��� �������

������� ��� ���������� ����� ��� ��� ��,��� ������ $�� �����

�������� � ������6�� �� ?>� ��� ����� ������	 ���� ���

��#��� ������	 ���� �� ��� ���������

� �������� �
�������������

���������

� /�1

8����	
 ��� ������6�� ���� � � � ���� ��� ���������� ���

���������� �����	� '���� ����� �� ��� ���������� ����� ���

���7�� �� ��� ����������

� ��
�����	��� ������ ����

�� ��� �#�������
 �� �#������ ���� ���� ��� ��������

���� ��� ���"������� �����#�� A��� ��� �������� ����

� �������� ����������	
 ������� ���"������� �����#� �

���7�����	 ���������� ���� � ���� ����	� 5� ���� ���
 ���

Laser1

Laser2

Lens
50mm

Lens
50mm

Polarizing
beamsplitter

Polarizer

Mirror

ORGA-VLSI

LC-SLM

���� 2� �*����!� * �- �*� �, �!�%�"��& �$���%�

���� 7����	 ����������� ��� ��������� 5 ����. ������

��� ���������� �� ��� �#��������� �	���� ��� ���������

� 8��� � ��� (� $�� �#��������� �	���� ��� �����������

���� � �7�� ��	���� ������ ���� ��������� /*%> *&1 ��

� ���������� �����	
 ��� ������������ ������ /0*�4�(��

?�)B ��	� <������ %��
 *���1 �� ���� �������
 ��� �� '�+5�

=* �� $�� ��������� ����� ��� ���������� �� ��� �������

������ ������ ��� ����� �)? �A ��� 4?4 ��� <��� ����� ����

�� ��� ������������ ����� ��� ��������� �	 � ���� ��)?

�� ����� ������� $�� ��������� ����� ���� ������� � �����

(��) ��� $�� ��� ������ ���� ���������� �	 �� 8:+5 ������

$�� *%> *& � � ���,����� $= ����� /*�0?3C�4�+??B

 �.� <���� %����1� �� � � @?Æ ������ ������ ����� ���

� ��� "�� ���������� $�� ����� ������� �� �
@�? � �
?4?

�#���
 ���� ����� � �6� �� 4�) � 4�) ���� $�� *%> *& �

��������� �� �� ��������� ����� /*�D?3�<2?5B �.� <����

%����1� $�� �����9� ���� ���� � ��������� �� ��� �#������

�����	 ������� �� � �������� ��������� :��������� ��� ���

*%> *& � �#������ �	 �����	�� � ���������� �����	

������� ��� �)2 �������� ������ �� ��� �������� ��������

�����	� $�� '�+5�=* � ��� ������ �?? �� ���	 ���� ���

*%> *&� �� ��� �#�������
 � ?��) �� ����������� %&'

����������������� '�+5�=* � ��� ��� ���� ������(���)��

$�� ���������� ���� ����������� ������� ��� -����� ��	��

��� ��� :����������� $�� ��������� �6� ��� ������� �������

���������� ���� ������� ����������	 �� �)�) ��� �)�) ��

��� �� @? �� �� �������� ��� ������ ��������� $�� ���� ����	

��������� � ������������	 ������� �� ���� �� � �	���� 8:+5�

$�� '�+5�=* � ��� ������� (���� ����.�
) �������

�������
 ��� �� �;' ���� �� ���
 �(? ���������� ��� ���� ��

������� ��� ���� ����	�

�=� <1������
� ������

C��� ��� ��������	 �#������ �#��������� �	���� �����

��� ���������� � ���� 7����	 ��� ���� ��������� 8��

��� ��������
 � ���������� �����	 ������� ������� ��

�������� ���� ��� � -'� ����� ��� ���������� ����

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 311

���� 3� ��&��!� *�� %�%�!$ ����!" �"�&(#�"� �" �,��!"�& �%��� �"# � ���
��!�(���

���� 4� �� �"� �- �*� *�&��!� *�� %�%�!$ ����!" �"�&(#�"� �" �,��!"�&
�%��� �"# � ��� ��!�(���

<7�� � ��� �� $�� ���������� ���������� �����	 ������� ���

������ ��������� ��� ��������� ����������	 � 8���) ���

2� $�� ���������� �����	 ������� ��� ���������� ���� ���

*%> *&� $�� ���������� �����	 ������� ��������� � ����

�������� ���� ��� � ������������ ���"������� �����#� �� �

-'� ������ $�� %%0��������� �#������ ���� ��� %%0�

�������� ���"������� �����#� �� � -'� ����� ��� ����� �

8��� 3 ��� 4� C��� ��� �������� ���� ��� ��� -'� �����

��� �������� ��� ��� ��������� �� ��� '�+5�=* �
 ���

,������ ����������� �� ������ ���������� ��� ����	 �������

������ ������ �� ���� ��� � ���"������� �����#�� 5����

���
 �� ���� ��;��� � ���"������� �����#� � ������ ����

� ���������� �����	 ���� �� '�+5�=* �� �� ��� ������

���� 5� %(&���# �,��!"�& �%����

���� 6� ��"'�(!����" ��"��,� �- � ��� ��!�(���

���� 7� ��&����")��8��" �*� "(%)�! �- !���"'�(!����" �$�&�� �"# !���"���"
��%��

�����
 ��� ������ �� ��������� ������� ������ � �����������

�� ��� ���� ������	� 8����	
 � ����	 ����� ����	�� �������

��� ������� ������ � ��� ,������ ���������� � ������� ��

��� � ������ �� ��� '�+5�=* �� $�� �������� ��� � ����

����� ��� ���� ��� ,������ ���������� �� ��������� ���

����� �� ������� ������� $�� �7����� � ����� �� �������E

���	��	�
� �
��

 ��!� �
� /�1

����� ��� �� �
 ��� ! ����������	 ��������� � ����"����

���.������ ���� ����� �� ��� �#��������� �	����
 ��� ���.�

������ ���� ����� �� ���"������� �����#�
 ��� ��� ������

�� �����"������� �	����� �� ��� �����������
 ��� �����������

�� ����� ��� ������� �� ��? ��� A��� �� �����"������� �

�#������
 ��� �������� ��� �� ���� �������� ��� ��������

312 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

��)��� �� $�� ������� � �7��� �� ���� �� ��������	 ��������

%&' ���� ������� ������ ��	 ������ �����"��������

!������
 �� ��� ������ �� �����"������� �	���� �� � -'�

����� � ��������
 ��� �������� ��� � ���������� 5� ���

����� ����
 ��� �������� ��� ������� (��� ��

$�� ������ ������������ ���� ���� �� �#������ ���� �

�������� �	 � ���������
 ��� ���	 ����� �� ��� ���� �� ���

��������� %�������	
 ���� (� �����"������� �	���� ���� �#��

����� �� ��� �	�������	 �����"������� �������� ��������

����
 ����� ��� ��#��� �) F �������� ����� �����������

� ��������� ���� ��� �������� ���� �� � ���������� �����	�

$�� �������� ���� �� ��� �7�� ��	���� ���������� �����	 �

��� ����� 5���	�
 ��� ���� � ����� �?E�� $��������
 � ���

������
 �	 ��������� � ��������	�� ���������� �����	
 ���

�������� ���� ��� �� ������� �� ������� ���� �???E�� 5� ����

���
 � ������� ���� �
??? ���"������� �	��� ��� �� ��������

�� ���� � ����
 �
??? ���������������� ��������� ��� ��

�#�������

=� %���������

8�� ��� � ���������� ������� ��� ������
 ���������

���� ��������� �������� ���� ��� ������� �� ��� ��

��� ��������� ����� �� � ����� �	� ��� ��������� 5

�	�������	 �����"������� �������� ����������� ���� ���

����6� ��������� ���� ��������� �� � ��������� ��������

������� �������� ��� ���� ��������� �� �����	 ���� �������

!������
 � ��� �����������
 � ������ ������� � ���� ����

�� ���� � ��������
 � ���� ����	 �� �� '�+5�=* � ����

�� �����"����� ���7�����	 �� ������6� �� 0���� ���
 ���

���� ����� ���� ��� ���.������ ��������� ���� �� �	����

�����"�������� �������� ��� ���� 7����	� !������
 ���

�����9� �#�������� ���� ������������ ���� ��� ������ � ����

���� �) F ���� (� �����"������� �	���� ��� �#������ ��

��� �	�������	 �����"������� ���� ��� ������������ �� ���

������
 ��� ������ �� �����"������� �	���� ��� �� �������

�� �??? �	 ���������� �� � ��������	�� ���������� �����	�

�� ���� � ����
 �
??? ���������������� ��������� ��� ��

�#�������

=�� 5�9��:�������

$�� �������� � ��������� �	 ��� &����	 �� �������� 5�����

��� %����������� �� G���� ����� ��� ������� ����������

��� %����������� �H0 :������� :�������� / %':<1�

$�� =* � ��� � ��� ����	 ��� ��������� � ��� ���

��������� ������� �� =* � 0���� ��� <������� %�����

/=0<%1
 ��� C������	 �� $�.	� � ������������ ��� ����

%�� *��� ��� $����� :����� %�� *���

������

;�<
� ��=��)�&�. �� �� ����. >����
"�&$��� �- ���*� �!� ������" �" �*�
�(%�" �*���!��� ��! ��&&�.> � ��
��
������ �� �
���?
���. ��&� 22. "�� 4. � �2/@ ? �2//. +@@6�

;+< A�"�?�& 	��". 9$�("�?98�"
*". >���� �!��0�"� �$���% (��"� %)�#?
#�# ��% (��! -�! ��)�� �$���%.> �"��!"����"�& A��"� ��"-�!�"�� ���?
��
�. � 337/?3375. +@@4�

;/< ��
� �(��B. �� :� �!�#�!��". >
 !��&��%� �%��� !������"� �*� ���.>
� �"��!"����"�& ��&�#?����� ��!�(��� ��"-�!�"��. � �26?�27. �764�

;2< �� 9�%�#�. �� 	��� >
" �"�&�� ��&���" !���"� 8��* %(&��?�*� ��"'�(!�?
���".> �"��!"����"�& A��"� ��"-�!�"�� �" ��(!�& ���8�!0�. � /65? /7+.
+@@/�

;3< A� �*��.
� ��*�!�. �� ��0(#�. �� �("��*���. >�(&��?��#(&���# �����"
�*� � 8��* ��!����&�?�"��!��""����# ��,�&�.> ����� :�!0�*� � +@@@C
�@4/?�@5�

;4< �� 9�%(!�. �� 9���%�. �"# �� ��*�0�8�. >
 �$"�%���&&$ ����"'�(!�)&�
���� �!������! -�! � �����" �*� .> � A����
� �� �����?��
�
��������. ��&� /7. "�� �. � +43?+46. +@@2�

;5< A� �()���. �� ��"*��. �� ���"#����"�. �� ��$!%�". >
 �@ @@@ - � ����
��"��! :��* �������&$ ��!�&&�& �%��� �!������"�.> � A����
� ��
�����?��
� ��������. ���� 2/. ��� /. � 5@4?5�5. +@@6�

;6< �"��& ��! �!����". >�!������!�.> *�� CDD888��"��&���%D !�#(���D
;7<
&��!� ��! �!����". >
&��!� �������.> *�� CDD888� �&��!����%�
;�@< 1�&�", �"��. >1�&�", �!�#(�� ���� �*����.> *�� CDD888� ,�&�",���%�
;��< �� 	��(#�. �� :���"�)�. >�$"�%���&&$!���"'�(!�)&� �����" �*�

�!�*�����(!�.> �"��!"����"�& ��"-�!�"�� �" ���&#?�!��!�%%�)&� ����� �"#
���
 &������"�. � 3@6 ? 3�+. +@�@�

;�+< �� ��0�#�. �� :���"�)�. >��% &��� %���*�"� � �!����"� �" � #$"�%?
���&&$!���"'�(!�)&� �����"?�*� �!�*�����(!�.> �"��!"����"�& �$% ���(%
�" ��%%("������"� �"# �"-�!%����" ���*"�&�����. � �@7�?�@74. +@�@�

;�/< �� 9()���. �� :���"�)�. >�!��!�%%�)&� � ����&&$ ����"'�(!�)&� ����

!!�$
!�*�����(!� �"# ��� 8!���!.>
 &��# � ����. ��&� 26. ���� +. �
/@+?/@6. +@@7�

;�2< �� 	�%��(�*�. �� :���"�)�. >��E(�# �!$���& *�&��!� *�� ��"'�(!����"�
-�! ���
�.>
 &��# � ����. ��&� 25. ��� +6. � 247+?25@@. ����. +@@6�

;�3< �� ����. �� :���"�)�. >
 #$"�%�� � ����&&$!���"'�(!�)&� ���� �!!�$?
 �!-��� �%(&����".> � A�(!"�& �- F(�"�(% &���!�"���. ��&� 22. ���(�
3. � 27/?3@@. ��$. +@@6�

;�4< :�� ����. F�"�$(��". :�"�*�"� G*�"�. �"# ��"?A��" :(. >

�!��!�%%�)&� ���� �����" �*� -�! ���&?��%� �����"
 &������"�.>
� A����
� �� �����?��
� ��������. � �25@?�257. ��&�
2/. "�� 4. +@@6�

;�5< A� �(%)!(. �� G*�(. 1�
". :� ��(. �� ��"��� �(&��. �� ��0. �"#
�� ���&���. >� ����& %�%�!$ -�! ��% (��"� �"# �"-�!%����" !������"�.>
��� �"
&��!��*%�. �������. �"# �$���%� -�! � ����& �"-�!%����"
�!������"� ���. ��&� /6@2. � �2H+2. �777�

;�6< A� �(%)!(. �� ��"��� �(&��. �� ���&���. 1�
". �� ��0. ��
$. �� ��!"�.
� ����(%. >� ����&&$ �!��!�%%�)&� ����
!!�$.> ��� �- � ���� �"
��% (��"� +@@@. ��&� 2@67. � 54/H55�. +@@@�

;�7< A� �(%)!(. �� G*�(. ��
$. 1�
". �� ��"��� �(&��. �� ��0. �"#
�� ���&���. >� ����&&$ ����"'�(!�)&� �!������!�.> ��� �!�����& �����8
�777 (!�?
%�!���" :�!0�*� �" � ���&���!�"�� �"-�!%����" �!�����?
�"�. ��&� 52. � +43?+66. �777�

;+@< �� :���"�)�. �� 9�)�$��*�. >
" � ����&&$ ��--�!�"���& ����"'�(!�)&�
����
!!�$ (��"� � @��6 (% ���� !�����.> � �"��!"����"�& ���
��"-�!�"��. � +6�H+62. +@@2�

;+�< �� :���"�)�. �� 9�)�$��*�. >
 ��?#�"���$ � ����&&$!���"'�(!�)&�
���� �!!�$ (��"� #$"�%�� %��*�#.> �"��!"����"�& ��"-�!�"�� �" ���&#?
�!��!�%%�)&� ����� �"# ���
 &������"�. � +4�H+47. +@@2�

;++< �� :���"�)�. �� 9�)�$��*�. >
 3�.+5+?����?��("� �$"�%�� � ����&&$
����"'�(!�)&� ����
!!�$ �" � ���"#�!# @�/3(% ���� ���*"�&��$.>
�"��!"����"�& ��"-�!�"�� �" ��&�# ����� ������� �"# ����!��&�. � //4?
//5. +@@3�

;+/< �� ����. �� :���"�)�. >����"'�(!����" �!-�!%�"�� �"�&$��� �- � #$?
"�%�� � ����&&$!���"'�(!�)&� ���� �!!�$ �!�*�����(!�.> � �"��!"����"�&
��"-�!�"�� �" ���&# �!��!�%%�)&� ���*"�&��$. � +43?+46. +@@5�

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 313

Abstract— In this paper, we propose an FPGA-based vehicle

monitoring and classification architecture. The proposed
architecture is scalable and allows multi-lane concurrent
processing. Furthermore, the system presented utilizes much less
FPGA area while achieving real-time and high recognition
accuracy. By utilizing an adaptive background subtraction
method, we have produced accurate segmentation for varying
conditions where other methods may fall short. Our
experimental results show that an accuracy of 93% is feasible for
most applications while each lane processing unit occupies only
13% of a Virtex-4 FPGA’s slices. Furthermore, a simple post
processing architecture is proposed for further improving the
accuracy of the segmentation unit. Because of its small footprint,
the system is suitable for portable applications such as a
distributed traffic monitoring system.

Index Terms—Field Programmable Gate Array, Image
Segmentation, Vehicle Tracking and Classification

I. INTRODUCTION AND BACKGROUND

There exist several popular image processing techniques for
monitoring traffic. The first step is to segment the object from
the background. The background subtraction technique is most
popular, which involves a background subtraction from every
frame followed by comparing the result with some threshold
to determine if the pixel represents a background or
foreground object [1]-[3]. The accuracy of the background
estimation would be very important for the entire system
performance. In [3], it is proposed to average a finite number
of frames to produce a background estimate which is later
combined with the previous background according to the
following equation. The α-factor is defined as the background
combination rate and can be adjusted to improve accuracy
while x and y represent the pixel location, and z signifies one
of three color dimensions in the RGB color space.

The combination of the current background with the most
recently calculated background is required to offset any
problems due to changes in illumination. One such scenario
exists with moving clouds that can change the illumination of
the detected vehicles.

Another common approach used in [4],[5] utilizes the
difference between two or more consecutive frames to detect
and classify moving vehicles. This method becomes erroneous
when traffic has stopped moving altogether, such as with
congested traffic or the delay caused by an accident.

Statistical models provide another interesting solution to
background estimation. Stauffer suggests modeling every

pixel with a mixture of K Gaussian distributions [6]. For a
finite number of pixels over time, the pixel process can be
expressed as

, .

The corresponding posterior probability that a pixel belongs

to the i-th Gaussian mixture () is given by [7] as

∈ ,
|
|

where represents the relative weight of the component
and | is the PDF for , which is defined as

√
.

The vector is comprised of the PDF parameters of ,

which are the standard deviation (and mean (. Lastly,
| is defined as the mixture of all K Gaussians, i.e.,

∑ | .

As new frames are processed, each new pixel of the frame

is compared with the set of K Gaussian distributions for that
particular pixel location and ultimately determined to be either
a foreground or background pixel. The pixel is determined to
be a background component if it is within 2.5σ of the mean of

 and 	 , where B is the set of computed background
distributions.
 In [8], Tan states that Gaussian Mixture Models (GMM)
with a fixed number of components have shown to be
inaccurate for large scale segmentation. To mitigate this
drawback, Tan proposes using an adaptive GMM algorithm
where the number of Gaussians can vary from 1 to L, with L
representing the upper limit defined by assigned weights of the
GMM. If a new pixel does not belong to a known model, a
new set of Gaussian components is calculated for that
particular pixel location. The most obvious constraint of this
algorithm is the unknown amount of memory required to track
the varying number of models.
 In either situation of fixed or adaptive GMMs, prior
knowledge of initial background components is necessary.
The Expectation Maximization (EM) algorithm is a common

A Scalable FPGA Vehicle Monitoring and Classification
Architecture

Francis Bowen, Jaehwan John Lee, and Eliza Yingzi Du
ECE Department, Purdue School of Engineering and Technology
Indiana University-Purdue University Indianapolis, Indiana, USA

314 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

method to learn these parameters [6]-[8], but is too complex to
execute in real-time. Furthermore, once the initial parameters
are calculated, the initial distributions need to be analyzed to
determine which models represent a background distribution.
This is also completed offline and adds to the complexity of
the GMM solution. Due to the initialization process and
overall complexity of GMMs, such a system would not be
appropriate for traffic monitoring when the processing nodes
are local to the sensors.
 A modified GMM FPGA architecture is proposed by
Appiah in [12], where a standard GMM approach is combined
with a temporal low pass filter for background generation.
This architecture requires four banks of off-chip memory
which may be a limiting factor unless a custom hardware
platform is developed. Furthermore, even with the added
complexity of their algorithm, the reported accuracy for
correctly segmented objects is less than 85%.
 In [14], Jiang describes another GMM FPGA architecture
that utilizes a compression technique for processing and
storing the Gaussian parameters. Although Jiang reduces the
memory bandwidth constraint, the overall complexity of the
algorithm and resulting architecture occupy a large amount of
the FPGA’s resources.
 The focus of the FPGA architecture outlined in [13], by
Gorgon, lies solely on efficient background generation and
motion detection. Gorgon proposes a simple sum of absolute
differences (SAD) algorithm to determine if the difference
between consecutive frames represents a vehicle in motion. In
conjunction with SAD, a weighted average technique is
identified for background calculation. The SAD motion
detection requires	 log ∗ ∗ 255 	 ⁄ , where
M*N is the resolution of each frame. This memory
requirement is in addition to the space needed for background
calculation and greatly limits the design.
 Similarly, in [15], Juvonen describes a background
estimation algorithm that involves creating a histogram for
each pixel in a frame. Aside from the hefty memory requisite,
the computed background does not change efficiently when
the actual background changes such as with a moving camera
or new background objects.
 There have been several FPGA-based classifiers proposed
in literature. Papadonikolakis defines a scalable Support
Vector Machine (SVM) architecture for FPGAs. Although
accurate, SVM’s generally suffer from large dimensionality
constraints, require supervised training and involve
computationally expensive arithmetic [16]. In [17], Shi
proposes a classifier based on GMM, however, the approach
relies on time-consuming exponential calculations and large
memory requirements.
 Considering the complexity of GMMs, the inaccuracies of
the difference-of-frames method, and the favorable results
reported in [3], we developed a simple, yet effective,
background estimation and subtraction architecture for vehicle
counting and classification that uses less memory than other
similar FPGA architectures. Additionally, none of the

aforementioned FPGA implementations address noise
identification and removal. The simple linear classifier
described in [3] was implemented to minimize logic and
maximize speed. The algorithm which is the basis for the
hardware implementation will be briefly introduced in the
following section.

II. ALGORITHM OVERVIEW

Our algorithm presented in this section contains two distinct
phases. The process of image segmentation is presented first
and followed by a discussion on the type of classifier
implemented.

A. Segmentation

The initial step prior to segmentation is the color space
conversion from the luminance and chrominance (4:2:2 YUV)
to the RGB color space. By producing three correlated color
dimensions per pixel, greater flexibility is given to the
segmentation algorithm. Conversion is completed by applying
the following transformation matrix:

1 0 1.402
1 0.344 0.714
1 1.772 0

128
128

.

Segmentation, the process of identifying a pixel as either a

background or a foreground component, is achieved by a per
pixel subtraction of a background estimate from the current
frame’s pixel. The result is a binary image where ones indicate
foreground pixels and zeros represent background pixels. If
we define the binary image for the i-th color component as

, the value stored in the binary image buffer (BI) for the
pixel located at (x,y) is the logical-OR of all , buffers.
This relationship is summarized as follows, where , is
the pixel and , is background information for that
particular location:

,
1, | , , |
0,

where , , and

, , 	 , 	 , .

For m consecutive frames, a particular background is used
by the segmentation module; however, this background must
be updated regularly to include luminosity changes in the field
of view. If the background is updated too frequently, errors
will be introduced into the background estimation when traffic
is slowly moving or completely stopped. However, if the
estimation is not updated within a reasonable timeframe,
sudden changes in illumination will cause segmentation errors.

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 315

Ou
bac
par
als
lat
at
(st
32
562
up
bet

T
req
tha
dep
cor
exa

F

P

a s
in
by

ur initial param
ckground is up
rameter does n
so dictate the s
est background
least log 7

andard VGA),
frames, the to

2.5 KB. For th
date frequenc
tween accuracy
The binary im
quires post pro
at were not co
picts a video
rresponding se
ample with bot

Figure 1. Video

Figure 2. Ex
from the impr
foreground reg

Pixels are strea
stream of binar
Figure 3 that w

monitoring

meter for m i
pdated approxim
not only affect
size of the acc
d. The size for
65 ∗ bits.
, and a backgr

otal space requi
his specific app
cy to 32 fram
y and resource

mage resulted f
ocessing to rem
orrectly identif
o frame, the
egmented imag
th disjoint regi

o frame, estima
vehicle seg

ample segmen
ecisions of seg
gions that shou

amed in raster o
ry values which
we use. On a p

the pattern

s set to 32, w
mately once ev
the segmentati
cumulators ne
r each memory

For a resolu
round calculat
ired for the acc

plication, settin
mes provides

utilization.
from the segm
move noise an
fied by segme
e estimated b
ge while Figu
ons and noise.

ated backgroun
gmentation.

tation result ill
gmentation as w
uld belong to th

order and subs
h drive the stat
per line basis, n
of detected

which means
very second. T
ion operation, b
eded to store

y location must
ution of 640x4
tion frequency
cumulator will

ng the backgrou
a good trade

mentation mod
nd merge regio
ntation. Figure
background a

ure 2 provides

nd and resultin

lustrating noise
well as disjoint
he same object

sequently produ
te machine sho
noise is identif
background a

the
This
but
the

t be
480

y of
l be
und
eoff

dule
ons
e 1
and
an

g

e
t
.

uce
own
fied
and

foregrou
machine
a foreg
howeve
scan lin
does no

I

0

 Figur

 Disjo
segmen
rather s
accomp
in whic
lines, tw
neighbo

The
merging
lines bu
register
module

B. Cl

After
size. A
found in
class.

The
endpoin
the fron

und pixels. At
e is initialized

ground compo
er six consecuti
ne, the group
ot reflect any no

DLE NOISE

1

0

1

re 3. Binary im

oint regions
ntation. Often
sections are ide
plish this task,
ch, for exampl
wo regions are
oring region.
only requirem

g is the need to
uffered in local
rs which are w
.

Classification

r segmentation
complete desc
n [3] and Tabl

Table

Class

1 A
se

2 L
in

3 R

4 D

proposed cl
nts of a vehicl
nt or back of

t the beginnin
in the idle sta

onent, pixel i
ive pixels are f
is assumed to
oise.

NOISE NO

0

ELIM

0

1 1

mage noise dete

are another
an entire obj

entified and mu
a simple prox
le, by inspecti
merged if they

ment to effici
o have the thre
l registers. Thi

within close vi

n, vehicles are
cription of each
le 1 summarize

e 1: Four classe

Type o

All passenger c
edans, trucks,

Large trucks (m
ndustrial vehic

Regular semi-tr

Double semi-tru

assifier requi
le, and therefo
f the vehicle m

ng of a scan li
ate. If the incom
s tagged as
found grouped
 be foregroun

ISE NOISE

MIN

0 0

1 1

ection state ma

source of
ect is not seg
ust be merged

ximity algorithm
ing the previo
y are within tw

iently execute
e most recent b
is will require t
cinity of the s

e classified ba
h of the four cl
es the types of

es of vehicles

of Vehicle

ars (motorcycl
SUVs)

moving vans,
cles)
ruck

uck

ires knowledg
ore, the trajecto
must be tracke

ine, the state
ming pixel is
noise. Once

d on the same
d pixels and

VALID

1

achine.

error from
gmented but
together. To

m is adopted
ous two scan
wo pixels of a

e the region
binary image
three 640-bit
segmentation

ased on their
lasses can be
f vehicles per

les,

ge of both
ory of either
ed. Figure 4

316 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

illustrates this process which requires flags to be set from the
noise detection and region merging modules. Once a scan line
has been found to be occupied with foreground pixels, the
noise detection unit signals the object tracking unit which uses
the information to count the vehicle or calculate the size of the
vehicle in terms of pixels.

Figure 4. Vehicle tracking and counting algorithm.

 The pixel length of detected objects is passed to a linear
classifier that sets flags based on predetermined classification
values that are determined experimentally. A classifier’s
success is dependent on the quality of the segmentation
output; therefore, the focus of this research has been the
segmentation unit and supporting modules.

III. HARDWARE ARCHITECTURE

The aim for the hardware architecture was to minimize the
logic and to exploit parallelism in the original software
algorithm with the goal of processing video in real-time (30
fps). Scalability is realized by implementing independent
modules for each lane of a given highway. Figure 5 provides
an overview of a single lane processing unit.

Figure 5. Lane processing unit.

 The Xilinx YCrCb-to-RGB Color-Space Converter v1.0
[26] was employed for the conversion from luminance and
chrominance to RGB values. This module consists of a seven
stage pipeline for applying the transformation matrix. After
an initial delay of seven pixel clock cycles, a new set of RGB
values is ready on every rising edge of the pixel clock.

A. Clock Distribution

For a color VGA stream with a resolution of 640x480, a
pixel clock of 27MHz is required	 640 480	 ∗
3	 ⁄ ∗ 30	 ⁄ 	27	 ⁄ . The
pixel clock drives the video decoder and the color space
conversion unit; however, a faster clock is required for the
external memory, segmentation unit, and classifier. Xilinx
provides Digital Clock Managers (DCM) for buffering,
multiplying, or dividing clock sources [13]. This resource was
exploited to generate each two sets of 54 MHz, 108 MHz, and
216 MHz internal clocks from the original pixel clock.

One 108 MHz clock is used to drive the segmentation
module and background generator while the other controls the
sequential logic of the post processor, object tracker, and
finally the classifier. The choice to generate multiple clocks
was motivated by the desire to avoid clock skew.

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 317

The external memory presented a challenge in the form of
read and write latencies; consequently two 216 MHz clocks
were generated for each memory bank utilized. This
accelerated clock rate allowed for three reads and one write
operations between incoming pixels, which are required by the
background generator.

B. Memory Hierarchy

To adequately handle the large amount of data required for
pixel information, accumulators for each pixel, binary image,
registers required by KNN, lane boundary information, and a
separate background frame buffer for the current background
used in segmentation, all available memory resources were
exploited. Figure 6 outlines the type of resource and its
assignment within the architecture.

Figure 6. Memory hierarchy

The accumulators required for the background estimation

accesses memory for every processed pixel, and this imposes
the strictest constraint upon the architecture. For the given
resolution and a background update frequency rate of 32
frames per cycle, each pixel location requires 45 bits (three
15-bit accumulators for each color space components) of
memory, which amounts to a total of 562.5KB. The obvious
choice is to store and fetch the accumulators from the external
ZBT memory; however, the width of the data bus is 16 bits
and would require three read and another three write
operations to update all accumulators for a particular pixel
location. This is not feasible, even with a 216 MHz memory
clock; therefore, the accumulators are stored on-chip within
the Block RAM of the FPGA.

The current background pixels used in the segmentation
module can be stored in an interleaved fashion to minimize
memory accesses. With interleaved storage, four pixels can be
read with three read operations.

C. Background Generator

Figure 7 describes the background estimation datapath. It
performs summing of the incoming RGB pixel with its
corresponding BRAM accumulator value. Since a lane is
defined by two distinct boundaries, if the current sample lies
outside of the defined boundaries, a zero is propagated
through the datapath. A counter is used to determine if the
current background should be updated. As previously
mentioned, an update frequency of 32 was chosen according

to the discussion in Section III. However, another criteria was
considered. If the update frequency is chosen such that it is a
power of two, the averaging operation is reduced to a logical
shift of a register. By updating the background every 32
frames and choosing the combination factor α as 0.25, the new
background is computed using three shift registers and two
adders. For similar reasons, α is chosen such that the
combination of the old background and the accumulator is
accomplished with simple shift registers and adders.

Figure 7. Background estimation datapath.

D. Segmentation

Figure 8 provides a partial illustration of the segmentation
datapath. The logic shown is replicated three times and
combined with a logical-OR to calculate the segmentation
result that is stored in a local register for analysis by the noise
detection module. At the end of a scan line, the temporary
register is transferred to a new register that represents the
previous scan line. Preceding the transfer, the temporary
register holding the line prior to the previous line is stored in
the local BRAM buffer, and the previous line is transferred
into the third register. The Thresh register contains the defined
threshold limit for a particular color dimension.

318 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

R
(Fr

R
(Fr

R
(Fr

p

E

T
usi
suc
dur

T
a f
par
in
del
the
ov
esp

F

T
for
pro
lan
how
use
num
bac
rem
the
inc
tha

T
Su
Vir
SA
cap
PC
sim

R

R_Back
rom ZBT)

‐

R_Back
rom ZBT)

‐

>

R

R

R_Back
rom ZBT)

Figure 8. Part
ixel’s red comp

generator; an

E. Classifier

The aforement
ing minimal co
ch as the cla
ring system ini
The structure c
flag is set if
rticular class.
that the output
lay after the ou
e propagation
erall delay fro
pecially if this

F. Scalability

The segmentat
r processing a
ovided bounda
nes, a segmen
wever, additio
ed by segmen
mber of lane
ckground accu
mains constant
e processing u
coming pixel, o
at particular un

IV

The entire sys
undance SMT3
rtex-4 FPGA

AA7109AE/108
pable of comm

CI interface fo
mple user inte

>

R_Thresh

tial segmentati
ponent; R_Bac
nd R_Thresh c

tioned linear c
ombinational l
ass and lane
itialization.
consists of four

a vehicle is
This design is
t of one stage c
utput of the pre
delay of each

om the first t
type of design

tion and classi
single lane wh
ary locations.
tation and cla

onal memory i
ntation and cla
es to process,
umulators and
t. As new fram
units for each
or ignore the d
nit’s lane bound

V. RESULTS A

stem was imp
339 [14], whi

A, dual ZBT
8AE encoder/d

munication wit
r validation pu

erface was cre

R_result

G_result

B_result

on datapath. R
ck is data from
contains the thr

classifier has b
ogic. The nece
boundaries ar

r stages (for fo
determined to

 similar to a r
cannot be cons
evious stage is
h stage is rela
o last stage m
is used in a pi

fier units are u
hich is defined

For processin
assifier pair m
is not required
assification. R
, the backgro
d amount of

mes are streame
h lane will e

data if its locati
daries.

AND DISCUSSIO

lemented and
ich is compri
 memory ba
decoder IC, an
h a host PC th
urposes. For d

eated using Su

Noise Detectio

Block RAM
Binary Image

Temp reg0
(line n)

Temp reg1
(line n‐1)

Temp reg2
(line n‐2)

R is the current
m the backgroun
reshold limit.

een implemen
essary paramet
re communica

our classes) wh
o belong to t
ripple carry ad
idered until so

s stable. Althou
atively small,
may be an iss
peline.

used concurren
d by a set of us
ng of additio

must be allocat
d beyond what
Regardless of
ound number

internal BRA
ed in raster ord
either accept
ion lies outside

ON

tested using
ised of a Xil
anks, a Phil
nd a DSP that
hrough the hos
data collection
undance-provid

n

nd

nted
ters
ated

here
that
der

ome
ugh
the

sue,

ntly
ser-
onal
ted,
t is
the
of

AM
der,
the

e of

the
inx
lips
t is
st’s

n, a
ded

APIs to
module

Since
architec
availabl
time pro
process

The
availabl
BRAM,
Regardl
operatio
generato
location
Approx
for segm

It is w
relative
lane mo
current
occupy
resoluti
requirem
down-sa
external
a factor
aliasing
once do
source
frame b
ignoring
does no
other ef

Figur
remova
are sup
simple m
to remo
identify

Fig
pa

o read the bina
.

e the data i
cture is design
le, the overall
ocessing. Ther
ing will delay
entire design

le slices on a V
, and less th
less of the o
ons are contin
or; consequen
ns will rem
ximately 13% o
mentation and
worth noting th
 to the numbe
odules, the bac

background
the same amo

ion of the in
ments, it is su
ampled. For
l and internal m
r of four times.
g; however, it
oes not drastica
is analog, on

by only process
g every other
ot require any
ffect on the res
re 9 shows th
al and region m
perimposed to
method for seg
ove noise and
ying moving ve

 a.

gure 9a-b. Noi
assenger car an

ary image prod

s provided i
ned to process

system is sho
re does not ex
the system res

n utilizes app
Virtex4 FX60 F
an 10% of th
off-chip ZBT
nually being i
ntly, the othe

main unavaila
of the FPGA’s
classification.

hat the memory
er of lanes. Re
ckground accu
stored in ex

ount of space w
ncoming frame
uggested that
each iteration
memory requir
. Down-sampli
is understood

ally affect the o
ne can crudely
sing even or o
pixel from th
additional buf

st of the propos
he results of
merging algori
o provide per
gmentation, co
detect regions

ehicles.

se removal and
nd regular sem

duced by the s

in raster ord
the pixels as t

own to be cap
xist any scenar
ult.
proximately 4
FPGA, 93% of
he off-chip Z
 SRAM usag
issued by the
er 90% of t
able to oth
slices are requ

y requirements
egardless of th
umulator in BR
xternal memor
which is determ
es. To ease t

the incoming
n of down-sa
rements can be
ing too severel
that down-sam

overall results.
y down-sampl
dd interlaced f

he decoder. Th
ffers and will n
sed architecture

segmentation
ithm. The lane
rspective. As
oupled with pos
s to merge, is

 b.

d region mergin
mi-truck, respec

segmentation

der and the
they become
able of real-
io where the

40% of the
f the on-chip

ZBT SRAM.
ge, memory

background
the memory
er designs.

uired per lane

s do not scale
he number of
RAM and the
ry will still
mined by the
the memory

g frames are
ampling, the
e reduced by
ly will cause
mpling done
. If the video
le the video
frames while
his approach
not have any
e.

n with noise
e boundaries
shown, the

st processing
effective for

ng for a
ctively.

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 319

 The method presented does not always correctly segment a
moving vehicle, and the most common error were two regions
that belong to the same object but are counted as individual
vehicles. Such false positive errors have been detected to
occur in approximately 3% of a total of 247 vehicles tested.
To overcome this issue, it is suggested that the threshold
values for each color component be updated adaptively from
the results of the noise detection circuit. A simple approach to
this problem may use the total amount of noise detected in a
frame to increase or decrease the threshold limit. Another
algorithm to minimize the detected error may involve varying
the frequency in which the background is updated. Such a
solution may require updating the background more
aggressively if no vehicles are detected and less frequently
when traffic is determined to be heavy. The total number of
undetected vehicles is less than 1% of the tested data; thus,
further efforts should concentrate on the double counting
issue.

Lastly, the success rate of vehicle counts was found to be
97% for class 1, 86% for class 2, 93% for class 3, and 50% for
class 4. The high error rate of class 2 and 4 is due to two
factors. First, both classes are considered rare, and thus, the
population size of all the samples is quite low, and small
amounts of error quickly increase the overall error for that
class. Second factor is especially true for class 4 vehicles; if
the vehicle is large, there is more of a chance to double count
the vehicle as previously mentioned. This occurred in one
scenario where only two class 4 vehicles were observed; one
was not segmented into a single object, was double counted,
and subsequently we detected a 50% error rate for that
particular class.

V. CONCLUSION

In this paper, we have proposed a simple yet effective

scalable image processing architecture for the task of vehicle
counting and classification. The architecture has been outlined
and underlying algorithm explained with results which
demonstrate the effectiveness of the system. Being energy
efficient and small, such a system is best suited for local
processing in a distributed camera network.

Continued work on this project could focus on developing
an adaptive threshold limit algorithm and an adaptive
background generator such that errors due to poor
segmentation can be minimized. The proposed architecture
can be altered for general object tracking and classification
applications.

VI. ACKNOWLEDGMENT

This research is partly supported by NSF grant 0834682.
Both software tools and FPGAs (Virtex-4 FX60) were
graciously donated by Xilinx.

REFERENCES
[1] C. Chung-Cheng, K. Min-Yu, and L. Li-Wey, "A Robust Object

Segmentation System Using a Probability-Based Background Extraction

Algorithm," Circuits and Systems for Video Technology, IEEE
Transactions on , vol.20, no.4, pp.518-528, April 2010.

[2] D. Culibrk, O. Marques, D. Socek, H. Kalva, and B. Furht, "Neural
Network Approach to Background Modeling for Video Object
Segmentation," Neural Networks, IEEE Transactions on , vol.18, no.6,
pp.1614-1627, Nov. 2007.

[3] F. Bowen, Y. Du, S. Li, Y. Jiang, T. Nantung, S. Noureldin, M. Knieser,
and M. Rizkalla, “Dynamic Content Based Vehicle Tracking and Traffic
Monitoring System,” SPIE Electronic Imaging, Vol. 6497, 64970I-1~11,
2007.

[4] C. Jiang-Zhong and D. Qing-Yun, "A novel online fingerprint
segmentation method based on frame-difference," Image Analysis and
Signal Processing, 2009. IASP 2009. International Conference on, vol.,
no., pp.57-60, 11-12 April 2009.

[5] W. Shigang, W. Xuejun, and C. Hexin, "Video object segmentation
based on frame differences and its implementation on DSP," Visual
Information Engineering, 2008. VIE 2008. 5th International Conference
on , vol., no., pp.618-621, July 29 2008-Aug. 1 2008.

[6] C. Stauffer and W.E.L. Grimson, “Adaptive background mixture models
for real-time tracking,” IEEE Conference on Computer Vision & Pattern
Recognition. Colorado, USA. June 1999. IEEE. Pages 246 – 252.

[7] T. Bouwmans, F. El Baf, and B. Vachon, “Background Modeling using
Mixture of Gaussians for Foreground Detection - A Survey”, Recent
Patents on Computer Science, Volume 1, No 3, pages 219-237,
November 2008.

[8] R. Tan, H. Huo, J. Qian, and T. Fang, “Traffic Video Segmentation
Using Adaptive-K Gaussian Mixture Model.” IWICPAS 2006: 125-134.

[9] Xilinx, “YCrCb to RGB Color-Space Converter v1.0,” DS659, March
24, 2008.

[10] Xilinx, “Virtex-4 FPGA User Guide,” UG070 (v2.6), December 1, 2008.
[11] Sundance Multiprocessor Technology Ltd., “SMT339 User Manual

V1.3,” August 11, 2000.
[12] K. Appiah and A. Hunter, "A single-chip FPGA implementation of real-

time adaptive background model," Field-Programmable Technology,
2005. Proceedings. 2005 IEEE International Conference on , vol., no.,
pp.95-102, 11-14 Dec. 2005.

[13] M. Gorgon, P. Pawlik, M. Jabtonski, and J. Przybyto, "FPGA-based
Road Traffic Videodetector," Digital System Design Architectures,
Methods and Tools, 2007. DSD 2007. 10th Euromicro Conference on,
vol., no., pp.412-419, 29-31 Aug. 2007.

[14] H. Jiang, H. Ardo, and V. Owall, "Hardware accelerator design for video
segmentation with multi-modal background modelling," Circuits and
Systems, 2005. ISCAS 2005. IEEE International Symposium on , vol.,
no., pp. 1142- 1145 Vol. 2, 23-26 May 2005.

[15] M. Juvonen, J. Coutinho, and W. Luk, "Hardware Architectures for
Adaptive Background Modelling," Programmable Logic, 2007. SPL '07.
2007 3rd Southern Conference on , vol., no., pp.149-154, 28-26 Feb.
2007.

[16] M. Papadonikolakis and C. Bouganis, "A novel FPGA-based SVM
classifier," Field-Programmable Technology (FPT), 2010 International
Conference on , vol., no., pp.283-286, 8-10 Dec. 2010.

[17] M. Shi, A. Bermak, S. Chandrasekaran, and A. Amira, "An Efficient
FPGA Implementation of Gaussian Mixture Models-Based Classifier
Using Distributed Arithmetic," Electronics, Circuits and Systems, 2006.
ICECS '06. 13th IEEE International Conference on , vol., no., pp.1276-
1279, 10-13 Dec. 2006.

320 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

SESSION

SHORT PAPERS

Chair(s)

TBA

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 321

322 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

The Tools Have Arrived: Two-Command Compilation and
Execution of Scalable, Multi-FPGA Applications

Brian Holland
SRC Computers, LLC
4240 N. Nevada Ave

Colorado Springs, CO 80907
www.srccomputers.com

bholland@srccomputers.com

Abstract—Continual increases in the computational resources of Field-
Programmable Gate Arrays (FPGAs) provide greater capabilities for
algorithm migration to hardware to capitalize on higher performance
at lower power. However, wider adoption of FPGA technologies is often
assumed to be limited by development costs associated with lengthy
toolflows dissimilar to traditional development of software applications.
Despite this perception, an efficient toolflow for FPGA development is
currently available and has demonstrated success in cost-effective migration
of applications to hardware. The toolflow allows straightforward compi-
lation and execution of applications through GNU make and a standard
UNIX runtime environment. This paper describes general requirements
and challenges of productive toolflows for FPGA systems. It also presents
the SRC1 MAP processor, Carte development environment, and associated
runtime environment for efficient application execution. Lastly, the paper
demonstrates the efficiency of the SRC toolflow with a string-matching
application.

I. INTRODUCTION

FPGAs are continually evolving beyond the traditional role of
replacing application-specific integrated circuits (ASICs). For example,
systems from SRC Computers [6] have expanded the usage of FPGAs
from glue-logic replacement to peer processors based on the customer’s
needs for faster and more customized data processing. FPGAs provide
increasing capabilities for scientific computation including more fixed
resources (e.g., multiply accumulators) and soft macros (e.g., IEEE
floating-point operations). They also have grown both in I/O capacity
and ability to rapidly integrate new interconnect standards.

FPGAs typically use more discrete tools than other parallel-
computing technologies, which has been traditionally considered a key
challenge for greater deployment of FPGA-based computing systems.
In contrast, multi-core processing uses applications code based on
threads (e.g., pthreads), shared memory models (e.g., SHMEM), or
message passaging libraries (e.g., MPI). Sequential codes are modified
using first or third-party libraries plus an associated runtime environ-
ment for relatively straightforward application migration. Similarly,
graphics and other vector-processing technologies involve adaptation
of sequential codes with technology-specific instructions (e.g., CUDA
or OpenCL). However, FPGA systems traditionally require conversion
of legacy microprocessor applications to parallelized (e.g., pipelined)
circuits using a hardware description language (HDL), integration
with a third-party system-level or board-level interfaces, synthesis,
and finally place and route using FPGA vendor tools. This manual
application development process implies three distinct steps and at least
two toolsets from different sources plus further complexity depending
on the runtime environment for the FPGA system.

Despite these widespread perceptions, efficient application develop-
ment and migration for FPGA-based systems exists through effective
integration of tools and encapsulation of tedious elements outside the
scope of a typical application developer. High-level compilers can
greatly assist in conversion of traditional software code into hardware-
oriented circuits. These compilers and other third-party tools can also
assist in the connection of the application kernel(s) to the requisite
system interface. Assuming correct functionality of the kernels and
system interfacing, the synthesis and place-and-route (PAR) toolflow
can be scripted and therefore largely invisible to the user except for
their nontrivial duration. SRC Computers provides the only standard
language toolflow, the Carte development environment, that tightly

1SRC, MAP, Carte, and CDA are trademarks or registered trademarks of SRC
Computers, LLC. All rights reserved. All other trademarks are the property of
their respective owners.

integrates all three levels of tools and includes an efficient runtime
management system.

The desire for efficient application development and system us-
age is a key research emphasis for FPGA computing. Some efforts
have focused on identifying strategic challenges [5] and classifying
traditional limitations [4] of these systems. Panels such as one at the
international conference on Engineering of Reconfigurable Systems and
Algorithms (ERSA)[3] described productivity as a major requirement
for application migration. However, researchers and panel participants
often lack exposure to the capabilities of the available toolflows.
Insufficient attention is given to summarizing application developer
needs, identifying toolflows such as the Carte toolflow that efficiently
and effectively meet these needs, and quantitatively exploring their
capabilities.

The rest of this paper is structured as follows. Section II further
details key features and challenges for efficient application kernel
migration, system integration, FPGA synthesis and PAR encapsulation,
and runtime management. Section III describes the SRC integrated and
unique approach to compilation, system integration, encapsulation of
synthesis and PAR, and runtime management. Section IV presents a
walkthrough of efficient application migration using SRC hardware and
the Carte toolflow with a string-matching application. Conclusions are
given in Section V.

II. APPLICATION TOOLFLOWS:
FEATURES AND CHALLENGES

The complexity of migrating application kernels to hardware circuits,
integrating these kernels with FPGA-based systems, encapsulating the
low-level synthesis, place and route details, and using the associated
runtime environment are key challenges for efficient usage of such
systems. This section describes the requisite features of these four
aspects of application development and how increasing their integration
can overcome the perceived limitations of FPGA-based computing.

A. Application Kernel Migration
Developing or migrating applications to FPGAs is often related

to the classical challenges of algorithm parallelization. Although ap-
plications may benefit exclusively from lower power consumption
on FPGA systems as compared to microprocessor-based platforms,
the performance of many applications increases from the spatial and
temporal parallelism inherent in the FPGA’s architecture. Approaches
to FPGA parallelization can benefit from microprocessor strategies
such as loop unrolling and pipelining, but can also suffer from similar
challenges of lengthy iterations of implementation, evaluation, and
revision. Particularly for FPGA systems, complex structures need
to be implemented and subsequently modified simply and quickly.
However, these parallel structures must be granular enough to allow
for widespread reuse, capitalizing on a library-type approach.

Reusable structures maintain their simple and quick characteristics
if they minimize deviation from the original application source code,
description, or programming model. For example, textual application
specification with C syntax provides a paradigm familiar to program-
mers. While nontrivial to construct, a specialized compiler can convert
this textual code into efficient FPGA designs if the underlying specifi-
cation includes intuitive representations of parallelism and timing. The
compiler would construct full application designs from pre-optimized
components. However, even with efficient application specification,
revision, and compilation, FPGA designs cannot be developed in
isolation of system-level details.

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 323

Fig. 1. Cluster System

Fig. 2. Direct Connect

B. System Integration
Efficient application migration requires scoping the parallelization to

the constraints of the system. The number and capacity of the FPGAs
represents a key constraint, often requiring a different and potentially
more complex parallelization strategy than a microprocessor-based
system. Tradeoffs include application decomposition among multiple
FPGAs and within the resources of a single FPGA (e.g., lower area,
lower performance kernels or fewer higher area, higher performance
kernels). A lack of integration between kernel-level and system-level
tools can require manual selection of parallelization strategies, imple-
mentation, and ultimately costly reimplementation if initial choices
prove infeasible.

Additionally, management of the system interconnect bandwidth
can be a neglected aspect of application migration with disconnected
toolsets. Beyond the classical problem of ensuring sufficient overall
bandwidth for sustained computation, dividing the available bandwidth
to maximize performance and prevent deadlock can become the burden
of the application developer. The memory hierarchy further complicates
the effective usage of the communication infrastructure. Without sys-
tem infrastructure, applications must manually connect data transfers
between possible combinations of microprocessor memory, FPGA on-
chip memory, and the one or more levels of off-chip memory (e.g.,
SRAM or SDRAM) associated with an FPGA board or module.

C. Runtime Libraries
The runtime environment for an FPGA system also affects the

efficiency of the aforementioned FPGA, interconnect, and memory
resources. Ideally, an application should only occupy the FPGAs and
memories necessary for the computation and this allocation should
not prevent the usage of the remaining system resources by other
applications. An application cannot determine a priori the resources
currently assigned to other applications. Therefore, the application must
either wait for its statically assumed resources to become available
or be sufficiently adaptive to function with any available resources
assigned to it by the runtime environment. The capabilities of the
runtime system are related to the organization of the resources in the
system architecture.

Systems defined by FPGA cards connected to the microprocessor
peripheral bus have traditionally lacked a single unified manager of
the global resources. Figure 1 illustrates a common architecture for
an FPGA system that organizes a number of FPGAs and memories
around a microprocessor and manages this resource node as an atomic
unit. Node allocations are controlled by traditional cluster management
software while low level drivers manage individual resources and
interconnects. The microprocessor-oriented system is relatively easy
to manage but wasteful due to coarse-grain resource allocation and
has lower performance due to a communication bottleneck through the
microprocessor. Additional bottlenecks are also present when coordi-
nating multiple resources through a common peripheral interconnect
such as PCI Express. An alternative organization, Figure 2, allows
individually addressable FPGA and shared memory resources albeit
with increased system and runtime complexity.

D. Encapsulation of Build Environments
Even with a sufficiently integrated methodology for application

kernel migration and integration to an FPGA system, overreliance on

developer input during synthesis and PAR can reduce the applicability
of FPGA systems for broader use in scientific computing. Assuming the
preceding toolflow generated a correct and optimized application code,
direct usage of these tools is unnecessary and potentially confusing
to traditional application developers. Interaction with synthesis and
PAR can provide an experienced developer with fine-grain control
over low-level application details, but explicit interaction with these
FPGA-specific tools should be optional when streamlined application
development is desired.

Additionally, disconnects in toolflows for application development
are not limited strictly to the generation of final hardware implemen-
tations. Regardless of manual or tool-assisted migration, application
functionality is first verified (typically as a software emulation), then
implemented or translated to HDL, evaluated in a simulator, and finally
built into a full hardware design. Without the ability to progress from
software emulation to hardware simulation and final implementation
using a single application representation, FPGA systems can become
prohibitively expensive in terms of real world code development and
maintenance.

III. SRC COMPUTERS’ CARTE TOOLFLOW

The SRC Carte toolflow and unified SRC-7 system architecture [7]
are specifically designed to address the aforementioned limitations of
disconnected methodologies for application migration to SRC FPGA-
based MAP processors. The Carte application development toolflow
includes a Code Development Assistant (CDA1) and an architecture-
aware compiler for rapid implementation using new or legacy C and
Fortran. The compiler and subsequent synthesis and PAR tools are
tightly integrated with software emulation and hardware simulation for
an encapsulated, two-command environment (i.e., “make” and “run”)
for application design. The Carte runtime environment manages both
the access control to system resources and interconnection bandwidth
to help maximize the average communication bandwidth of multiple
applications simultaneously.

A. Application Kernel Migration
The Carte toolflow provides several mechanisms for constructing

applications with extremely minimal exposure to the underlying hard-
ware specifics. This toolflow was designed to minimize developer
effort by focusing on application migration through developer-familiar
standard ANSI C and Fortran languages for the MAP processor.
(Microprocessor code can remain in other languages.) The CDA tool
can automatically replace minimally annotated software segments with
highly optimized MAP processor functions. Alternatively, legacy codes
can incorporate special functions and semantic mechanisms, such
as pipelining, loop fusion, and loop unrolling, to exploit inherent
parallelism in the application kernel while maintaining C or Fortran
syntax. These optimizations include simple yet powerful functions for
effective data movement to and from system resources. The Carte
methodology defines MAP processor resources as the primary initiators
of data movement through efficient direct memory access (DMA) or
streaming between global memory and local resources.

B. System Integration
The macro-based library approach of the Carte toolflow allows

effective usage of key architecture features of the system while hiding
low-level implementation details. Memory resources exist in a flat
global-address space, regardless of locality, with the system intercon-
nect handling appropriate communication routing. MAP processors
operate independently, synchronizing only as necessary based on
barrier messages handled by the system interconnect. Consequently,
application codes can achieve comparable performance whether using
different resources in a system or different system configurations.

An SRC-7 system (Figure 3) corresponds to the second system
architecture described in Section II-C. The system interconnect is
comprised of a tiered switching fabric that provides full connectivity
between FPGA and memory resources (i.e., a nonblocking crossbar
switch). The current MAP processor, the Series J, contains an Altera
EP4SE530 FPGA for user applications. The memory resources, re-
ferred to as global common memories (GCMs), physically reside in
pairs of banks on either a MAP processor or as an independent unit.
However, each GCM bank is independently addressable and accessible
by all MAP processors and microprocessors in the system. The Series J
MAP processor physically combines the logically separate FPGA and

324 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

Fig. 3. SRC System Architecture

memory resources to allow a mix of resources within a small footprint.
The size and configuration of the overall system can be customized
depending on application requirements.

C. Runtime Libraries
Application codes are organized into microprocessor functions (pri-

marily for application coordination and other ancillary operations such
as file I/O) and MAP functions for FPGA-based scientific computing.
The runtime environment allows the main microprocessor function to
request memory and system resources, and initiate the MAP processor-
based computation with those resources. The environment is multi-user
and prevents illegal actions such as memory accesses outside a valid
address range by both the microprocessor and the MAP processors
associated with an application. The switch-based interconnect further
promotes multi-user behavior by packetizing and interleaving data
transfers to minimize the average communication delay through the
system. Under normal operation, system loading from multiple users
cannot prevent the eventual successful completion of an application.

D. Encapsulation of Build Environments
A key feature of the Carte toolflow is the seamless transition of

application development through functional emulation in software,
simulation of hardware, and full implementation. This flow allows for
extremely rapid (i.e., seconds to compile and run) functional testing
during code development with standard debugging methods such as
gdb and printf(). Once a prospective code is complete, simulation
is available for cycle-accurate performance evaluation (i.e., typically
minutes to compile and run). Normally, simulation is unnecessary for
application development but is available for more detailed algorithm
analysis without lengthy synthesis and PAR, or occupying real system
resources. Only codes with suitable functionality and performance need
hardware compilation and physical system testing.

Progressing through these tools only requires “make debug”, “make
simulate”, or “make hw” commands from the user followed by “exec
myfile.[dbg/sim/hw]” for running the unified executable. A unified
executable is created that contains all necessary emulation binaries,
hardware simulation components, or FPGA configuration files for
debug emulation, hardware simulation, or MAP processor execution,
respectively. The underlying tools are completely encapsulated by the
Carte toolflow with any specific tool-related options defined in a singu-
lar makefile. This allows not only simplistic application management
through the toolflow but also high portability as the underlying tools
and/or resources evolve.

IV. APPLICATION DEVELOPMENT

This section presents an example walkthrough of application migra-
tion and optimization for the SRC-7 system using the Carte toolflow.
The target algorithm is a string-matching kernel used in areas such
as packet inspection, data mining, and computational biology [2].
String matching involves locating instances of one or more key strings
(also referred to herein as keywords) within a larger sequence of
text. Section IV-A outlines the specific implementation of the string-
matching algorithm. Section IV-B illustrates how the algorithm can
benefit from streaming data for sustained pipelined execution. Section
IV-C discusses an additional algorithm optimization which can further
increase performance by attempting to match multiple strings in
parallel. Quantitative results are presented in Section IV-D.

A. String-Matching Algorithm
This implementation of the string-matching algorithm provides an

exhaustive search of the larger text for the keyword. Although pre-
computation of a substring index [1] for the keyword can increase
the performance of microprocessor implementations, the advantages

Fig. 4. String Matching in Software

1: uint64_t data, result, keyword, mask;
2: char *mem = (char *)malloc(numchars);
3: char *res = (char *)malloc(numchars)
4: uint64_t data, result, keyword, mask;
5: keyword = 0x48454C4C4f //ascii HELLO
6: mask = 0x000000FFFFFFFFFF; //5 char window
7:
8: for(i=0;i<numchars;i++)
9: {

10: data = (data<<8) | mem[i];
11: res[i] = (data & mask) == keyword;
12: }

Fig. 5. String Matching in Carte

1: Stream_64 S64_in, S64_out;
2: Stream_8 S8_in, S8_out;
3:
4: #pragma src parallel sections
5: {
6: #pragma src section
7: {
8: //GLOBAL MEMORY TO FPGA INPUT STREAM
9: streamed_dma_gcm(&S64_in, ...);

10: }
11:
12: //INPUT STEAM FORMATTING
13: //QWORDS (64 bit) TO CHARS (8 bit)
14: ...
15:
16: #pragma src section
17: {
18: for (i=0;i<numchars;i++)
19: {
20: get_stream(&S8_in, &mem);
21: data = (data<<8) | mem;
22: res = (data&mask) == keyword
23: put_stream(&S8_out, res, 1);
24: }
25: }
26:
27: //OUTPUT STREAM FORMATTING
28: //CHARS (8 bit) TO QWORDS (64 bit)
29: ...
30:
31: #pragma src section
32: {
33: //FPGA OUTPUT STREAM TO GLOBAL MEMORY
34: streamed_dma_gcm(&S64_out, ...);
35: }
36: }

of indexing can be degraded on FPGA systems depending on memory
latency. The software implementation presented in Figure 4 provides
straightforward execution on microprocessors and FPGAs. The key-
word for this example is “HELLO” (Line 5) and a mask (Line 6)
isolates a five-character (i.e., the length of “HELLO” excluding the null
terminator) window for comparison. For each character in the larger
sequence of text, that character is shifted into the window of data (Line
10) and subsequently compared against the “HELLO” keyword (Line
11). The mask ensures that only the relevant characters are compared
as the 64-bit datatypes can store upto eight characters. The core
algorithm on Lines 10 and 11 involves only simple binary operations,
which are highly amenable to FPGAs. The major algorithmic change
involves migrating the input and resulting arrays (i.e., mem[] and res[],
respectively) to the memory structure and dataflow of the SRC system.

B. Application Migration
As described in Section III-A, streaming provides a mechanism

for the resources on a MAP processor to access the system’s global
memory. Streaming provides a low overhead mechanism for sequential
data input and output consistent with the requirements of the string-
matching algorithm. The Carte implementation, Figure 5, streams the
larger sequence of text to a pipelined implementation of the data
windowing and comparison algorithm. The specification of the core
algorithm, Lines 21 and 22, remains nearly unchanged from the
original software code. The Carte compiler can pipeline this algorithm,
automatically stalling or proceeding based on the availability of data on
the input stream and capacity of the output stream. The additional Carte
code connects the algorithm streams to the global common memory
with additional formatting between the native width (and endianness)

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 325

of the memory, 64 bits, and the character datatype, 8 bits. The “src
section” pragmas define the concurrent behavior of the streaming I/O
and the algorithm execution. The CDA tool can assist in constructing
the formatted character streams based on simple annotations of the
relevant arrays in the original software code, thereby making common
hardware optimizations even more accessible to application developers.

C. Additional Optimization

Fig. 6. Optimization - Multiple String Matches
1: #pragma src parallel sections
2: {
3: //GLOBAL MEMORY TO INPUT STREAM + FORMATTING
4: ...
5:
6: //STREAM FANOUT: S8_in to S8_in1 and S8_in2
7: ...
8:
9: //KEYWORD1: S8_in1
10: #pragma src section
11: {
12: ...
13: get_stream(&S8_in1, &mem);
14: ...
15: }
16: //KEYWORD2: S8_in1 ...
17: //KEYWORD3: S8_in1 ...
18: //KEYWORD4: S8_in1 ...
19:
20: //KEYWORD5: S8_in2
21: #pragma src section
22: {
23: ...
24: get_stream(&S8_in2, &mem);
25: ...
26: }
27: //KEYWORD6: S8_in2 ...
28: //KEYWORD6: S8_in2 ...
29: //KEYWORD6: S8_in2 ...
30:
31: //MERGE RESULTS
32: ...
33:
34: //FORMATTING + OUTPUT STREAM TO GLOBAL MEMORY
35: ...
36: }

The initial hardware migration focused primarily on temporal paral-
lelism where the input stream loads the next character while the string-
matching kernel operates on the current character. The algorithm can
also benefit from spatial parallelism with multiple distinct keywords
compared against the larger sequence of text. Streams allows for
efficient duplication of the datalow to support a number of parallel
kernels with minimal overhead. Figure 6 describes simultaneous string
matching with eight keywords. To help minimize overhead delays such
as fanout, the original input stream, S8 in, is replicated into streams
S8 in1 and S8 in2. Because the actual output of each kernel is a
singular bit representing a match or no match for each position in
the larger sequence of text, the individual bit from each of the eight
kernels can be merged into one character stream for more compact
output. Again, the core algorithm is mostly unchanged and with proper
annotation, the CDA tool can also assist in stream duplication and
merging.

Further optimization to this implementation could involve the source
and destination of the data streams. The current streaming I/O targets
global common memory either on or external to the MAP processor,
with currently available bank sizes ranging from 1GB to 16GB de-
pending on location and configuration. This implementation assumes
the larger sequence of text in the global common memory is first
populated from some other source in the system. If the text originates
from a file, the MAP processor implementation could stream directly
from microprocessor memory instead with no change to the streaming
dataflow of the algorithm. Additionally, the text could originate from
a network interface connected to the MAP processor via the general
purpose input/output (GPIO) interface, which can support an infinite
stream of text and results without intervention or input from the
microprocessor.

D. Quantitative Results
Table I summarizes the computation and executions times for

software emulation and the physical hardware implementation of the
string-matching algorithm on a 1MB sequence of text streaming

TABLE I
TOOLFLOW PERFORMANCE - 1MB TEXT

Compilation Execution
Time (s) Time (s)

Software Emulation 2.6E+0 1.0E+2
Physical Hardware 4.2E+3 3.2E–1

TABLE II
STREAMING AND PIPELINING EFFICIENCY

Size (B) Clock Cycles Efficiency (%)
1K 1396 73.3
10K 10617 96.4

100K 102772 99.6
1M 1048953 99.9+

through global common memory. At 2.6 seconds, the compilation time
for software emulation is analogous to compilation of conventional
microprocessor codes and therefore rapid enough for frequent evalu-
ation of revisions to an algorithm design. An execution time of 100
seconds is not trivial but still sufficiently short to allow for iterative
functional testing. In contrast to emulation, the actual implementation
requires over 4000 seconds for compilation, but, as expected, requires
considerably less execution time.

Table II describes the efficiency of the streaming and pipelining
in the string-matching algorithm. This implementation processes one
character of the larger sequence of text per clock cycle, excluding
system latency. Longer streams of characters better amortize this
latency leading to higher efficiency. Consequently, 1KB of text (i.e.,
1024 characters) is likely an insufficient volume of text for maximizing
performance as only 73.3% of clock cycles perform actual computation.
In contrast, sequences of text of 100KB and above have over 99%
efficiency and therefore minimize execution time. This predictability
of performance for sufficiently large data streams can allow for
more accurate analysis and evaluation of algorithm designs prior to
implementation.

V. CONCLUSIONS

Perceived limitations of FPGA systems have been associated with
lengthy and disconnected toolflows for application development. Effi-
cient migration to FPGA systems historically requires straightforward
algorithm specification, compilation, and execution. The SRC Carte
toolflow and unified SRC-7 system architecture provide C and Fortran
syntax for kernel specification, abstract yet efficient integration with
system resources, robust runtime support, and complete encapsulation
of low-level FPGA tools. Resulting applications require only two
simple, Unix-style commands for compilation and execution. The
string-matching case study demonstrated that a high-performance ap-
plications can maintain specifications analogous to legacy software
while capitalizing on a streaming dataflow for FPGA systems. The
compilation and execution times allow for iterative development cycles
of functional refinement through software emulation followed by
hardware simulation and generation of the final design implementation.
Sufficiently large streams of 100KB or more demonstrated that over
99% of their clock cycles perform actual computation.

REFERENCES

[1] R. S. Boyer and J. S. Moore. A fast string searching algorithm. Comm.
ACM, 20(10):762–772, 1977.

[2] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithmsm, Second Edition. MIT Press and McGraw-Hill, 2001.

[3] H. Lam, G. Stitt, et. al. Reconfigurable supercomputing: Performance,
productivity, and sustainability (panel session). In Proc. Engineering of
Reconfigurable Systems and Algorithms (ERSA), July 13 2010.

[4] I. Gonzalez and E. El-Araby and P. Saha and T. El-Ghazawi and H.
Simmler and S. Merchant and B. Holland and C. Reardon and A. George
and H. Lam and G. Stitt and N. Alam and M. Smith. Classification
of application development for fpga-based systems. In Proc. National
Aerospace Electronics Conference (NAECON), July 16–18 2008.

[5] S. Merchant and B. Holland and C. Reardon and A. George and H. Lam
and G. Stitt and M. Smith and N. Alam and I. Gonzalez and E. El-Araby
and P. Saha and T. El-Ghazawi and H. Simmler. Strategic challenges for
application development productivity in reconfigurable computing. In Proc.
National Aerospace Electronics Conference (NAECON), July 16–18 2008.

[6] SRC Computers, LLC. www.srccomputers.com.
[7] SRC Computers, LLC. Introduction to the SRC-7 MAPstation system,

2009.

326 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

Statistical Data Generation System
for Scientific Applications

A. Abba, F. Caponio, P. Baruzzi, A. Geraci, G. Ripamonti
Politecnico di Milano, Dipartimento di Elettronica, via C. Golgi 40, Milan MI 20133, Italy

 Abstract - An innovative algorithm aimed to sequence of
numbers generation according to a programmable statistical
distribution is presented. Main features of the technique are high
efficiency, low requirements in terms of implementation
resources and high generation rate. Possible applications range
from scientific simulations to system testing setups. In particular
as reference case study, we adopted simulation of events
generated by radioactive decay processes that are at the forefront
in many application and research areas in medicine as in physics.
The algorithm has been implemented in a low cost multi-FPGA
system. A generation rate one order of magnitude higher with
respect to modern PC-based solution has been achieved.

Keywords – Pseudorandom number generation, Deterministic
random bit generation, Simulation, Testing.

I. INTRODUCTION

any methods and techniques for pseudorandom number
generation (PRNG), also known as deterministic random

bit generation (DRBG), are well known and consolidated [1-
2]. These are algorithms for generating sequences of numbers
that approximate the properties of random numbers. Although
sequences that are close to truly random can be generated,
pseudorandom numbers are fundamental in practice for
simulations (e.g., of physical systems with the Monte Carlo
method [3]), and are central in the practice of cryptography
and procedural generation.

However, an increasing number of applications shows the
necessity to simulate sequences of numbers that approximate
at best properties of specific statistical distributions. This is
the case, for example, of simulation of events generated by
non-random physical processes and initialization of system
testing setups. Since this is now at the forefront in many
research areas in medicine as in physics, we adopted this
application as reference case study to describe the proposed
technique.

The radioactive decay is the process by which an atomic
nucleus of an atom loses energy by emitting particles. The
distribution of energy values of emitted particles depends on
the source and is referred as its energy spectrum. Of course,
radioactive decay is a stochastic (i.e. random) process on the
level of single atoms, in that according to quantum theory it is
impossible to predict when a given atom will decay. However,
given a large number of identical atoms the decay rate for the

collection is predictable, and for the most cases the emission
instants follow a Poisson distribution. Consequently, in order
to emulate a radioactive source, the primary task is to generate
the emitted particle energy values, according to the source
energy spectrum, and the occurrence times following Poisson
distribution.

The generation of random data which follows a statistical
distribution should be treated so that generated values are as
representative as possible of the physical phenomenon that
produces them. For example, the generation of energy of
events emitted by a 60Co isotope should correspond to about
80% probability of 1.33 MeV with respect to 1.17 MeV
emission. This means that the emulated spectrum should grow
approaching progressively from the beginning the final shape
of the spectrum.

Of course, the requirement of properly emulated
randomness must be combined with the need to find a method
to generate data at high efficiency.

It is well know that a trivial way of generating random
numbers that follow a given distribution consists in addressing
the corresponding histogram by means of a white distribution.
Each time the random number addresses a bin of the
histogram, the corresponding count is decreased by a unit and
the bin value is outputted. If the addressed bin count is null, no
output is produced. The method is inherently not efficient
since the probability of finding a non-zero bin count decreases
with increasing generated numbers. Other algorithms require
huge amounts of memory and are therefore not suited for
embedded or low-cost systems.

We propose a novel technique for generating random
numbers according to an arbitrary probability distribution with
high efficiency, low requirements in terms of implementation
resources and high generation rate.

M

Fig.1 The plot shows a hypothetical emission energy spectrum
of a radioactive decay process and its correspondent discrete
representation by means of a histogram.

E0 E15

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 327

The algorithm has been implemented in a multi-FPGA
setup that generates up to 75 Mevents per second, with a word
size of 16 bits and quantized at 65,536 levels. The system can
be interfaced by means of PCI-Express bus and used as co-
processor providing test vectors to embedded hardware
simulators or PC-based simulation software environments.

II. METHODOLOGY

As reference distribution, we consider the generic histogram

depicted in Fig.1 that, for instance, represents the discretized
energy emission spectrum H(E) of a radioactive decay
process. Aim of the technique is to generate numbers whose
distribution grows approaching progressively from the
beginning the shape in Fig.1. At basis of the process is a
random number generator. In fact, any statistic variable x that
is described by a density probability distribution P(x), can be
modeled by the cascade of a generator of uniformly distributed
random numbers and the transform function P(x) [4]. In this
way, the quality of the generated statistic values depends only
on the uniform number generator, which can be used for every
emulated source that is characterized only by P(x). Therefore,
the problem is to transform a white spectrum into whatever
kind of distribution. In order to simply explain how the
algorithm works, let us consider that the reference histogram
is composed by 16 bins, from E0 up to E15, with a maximum
dynamic range equal to 16. The bin width is the spectrum
resolution, while the dynamic range is the maximum height of
each histogram column. The higher is the number of bins and
the dynamic range, the better is the represented spectrum.
However, increasing the accuracy of the spectrum is simply a
matter of number of bits and this is not a problem using
modern digital devices. Each column Ex of the histogram can
be thought as composed by a number of small squares and
represents the density probability that the event has energy
between Ex-1 and Ex+1; if bin x is twice higher than bin y, this
means that there is twice the probability for an event to have
energy Ex rather than energy Ey. The product of the column
value by the bin width returns the probability. The ratio of the
probabilities that an event has energy in a certain interval
rather than in another one is simply the ratio between the
corresponding areas below the density probability curve.
As in Fig.1, squares constituting columns are sequentially
numbered. Consider the simplified case in which the total
number of squares under the curve is a power of 2, e.g. 25=32.
Using 5 bit in the random number generator, all the 32
numbers can be obtained with the same probability, i.e. the
random numbers map completely the area under the spectrum
curve. Every time a random number is generated, the
algorithm searches the number in the spectrum area and
delivers the corresponding bin number x thus indicating the
corresponding energy value Ex. If we consider again a generic
x bin two times higher than a y bin, since random numbers
map all the squares with equal probability, there is twice the
probability that the random number picks up a square in x
rather than in y column, which means that generated pulses
with Ex energy are twice those with Ey energy.

Operatively, the histogram is converted into the equivalent
cumulative histogram (Fig.2), i.e. the cumulative energy
spectrum Hc(Ex) is computed as integral function of the energy
spectrum H(E). An array is loaded with the cumulative
spectrum and only one memory cell per bin is required. Using
the cumulative spectrum, it is still possible to identify the bin
that contains the generated random number by means of an
extension of the described algorithm. For instance, (see Figs. 2
and 3), if the random number is 18, it is easy to see that it
belongs to the memory cell E10, which contains a number that
is higher than 18 (20), while the preceding cell contains a
number that is lower (16); this means that bin E10 contains the
squares that go from 16 to 19, exactly the range in which 18
belongs. So the output energy value correspondent to the
random number 18 is 10.

The fundamental advantage of this approach is the lack of
required memory. In fact, alternative solutions could be faster
but heavier for memory resources. For instance, using a
memory composed by a number of cells equal to the number
of bins multiplied by the dynamic range, that is the maximum
number of squares available to draw the spectrum, each cell
would contain the corresponding bin number, while the
random number would be used to address the memory. In this
way, no search algorithm is necessary since the data bus
directly returns the bin number when the random number
addresses the memory and the procedure is significantly faster.
Nevertheless, this solution has the serious drawback of the
memory occupancy. In fact, considering a histogram
represented by 65,536 bins (i.e. 16 bit) with dynamic range
equal to 65,536 (i.e. 16 bit), 8 GB of memory are necessary.

Fig.2 Conversion of the histogram of the reference probability
density into the corresponding cumulative histogram.

Hd

328 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

Fig.3 The marked rectangle represents the range of values of the
bin E10, which is the largest and consequently most likely to
contain the randomly generated number. This non-uniform
probability is the key of conversion from white to shaped
distribution.

That has to be compared with the proposed approach, which in
same operative conditions requires only 256 kB of memory.
In order to increase memory saving, we compress data storing
in the array only bins with counts greater than a fixed
threshold. In this case, it is important to remap each bin
number of the cumulative spectrum with the correct energy
value. A look-up table (LUT) is therefore necessary of size
equal to the number of non-zero bins of the spectrum. Only if
less than half of bins are non-zero elements, the compression
is useful and performed.

III. IMPLEMENTATION

The system implementation is partitioned between the
generation of the vector Hd, which is calculated storing only
the top value of each bin of the histogram Hc (Fig. 3), and the
generation of random number. The first task is performed only
once and consequently has no impact on generation efficiency.
On the contrary, the generation of random numbers is a critical
issue in terms of operation frequency and therefore it has to be
performed by means of dedicated hardware resources.
Considerations on operating frequency, power dissipation and
memory access bandwidth led us to choose a FPGA instead of
temporal computing devices such as DSP or GPU based
solutions. As above stated, conversion from white to any
distribution is performed by searching the position p of the
generated random number x into the vector Hd and returning p
as output. Therefore, two are the main tasks of the FPGA
device: the generation of random numbers x and the search of
their position p into the vector Hd through a modified version
of the binary search algorithm.

Efficient and accurate algorithms for random number
generation are fundamental in many fields of application [5],
from process simulation to cryptography. In the present
application, the linear feedback shift register (LFSR)
algorithm has been implemented that is a machine
independent algorithm characterized by arbitrary long
repetition periods, excellent statistic properties, high
generation speed and limited resource expense [5]. It only
needs an m-bit shift register and 1 to 3 XOR gates, and thus
the resulting circuit is very small and its operation is

extremely simple and fast. Furthermore, since the period
grows exponentially with the size of the register, we can easily
generate a large non-repetitive sequence (e.g. with a 64 bit
generator running at 1 GHz, the period is more than 500
years).

Task of spectrum modulation is to look in which interval
between two numbers of the vector Hd a random number is
included. A very high performance algorithm to perform that
in a sorted vector is the binary search [5]. Comparing the
target to the middle item in the list, if the target does not
match but is greater, the comparison is repeated in the upper
half of the list. Otherwise, the lower half of the list is
considered. The method halves the number of items to check
each time, reaching convergence in logarithmic time with
respect to the number of iterations.

IV. HARDWARE IMPLEMENTATION

Before developing a customized hardware implementation,
the generation algorithm has been validated on Xilinx FPGA
devices Virtex-5 FX110T and Spartan 6 LX-25. Let’s consider
the storage of distributions with dynamic range of 24 bit and
resolution of 16 bit, i.e. 65536 bins. Each distribution needs a
memory allocation of 1.57 Mbit to be stored. With 8 Mbit
internal dual-port memory, the Virtex-5 device allows the
storage of 5 distributions, namely the simultaneous operation
of 5 independent generators. Considering that memories are
dual-port and operating frequency can be 300 MHz, the
minimum rate is 83 Mnumbers generated per second that
corresponds to the maximum value of 17 clock cycles for
every binary search.

Drawbacks of this solution are the cost of the device (above
1000 USD) and also the limit of 5 generators that can run
simultaneously. The use of cheaper but smaller devices
organized as an array has been investigated. The implemented
algorithm within the FPGA consists only of a state machine
and two comparators for each generator. The Xilinx FPGA
Spartan-6 LX-25 is a low-cost device that has enough
resources to implement the algorithm of random number
generation and research but not enough memory (1 Mbit) to
store even only one distribution. Consequently external
asynchronous SRAM resources were attached to the FPGA
device with the limit of pins available for connection. In
practice, the adopted BGA FG484 package of the FPGA
device leaves less than 260 pins available and each module of
2 Mbit selected low-cost RAM needs 24 data, 16 address and
2 control lines, which means 6 SRAM at most connected. At
the operating frequency of 100 MHz, the single FPGA device
should access memory 34 times at worst, which means a
minimum rate of 17 Mnumbers generated per second.

The cost of a single computing cell, i.e. FPGA device –
SRAM modules – configuration memory, is below 100 USD
that is more than one order of magnitude less than Virtex-5
solution. Of course, the generation rate is sensibly slower, but
6 generators can run simultaneously. Doing a cost/benefit
analysis, we decided to adopt this second approach.

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 329

The number of linked computing cells is limited by the
adopted PCI-Express communication bus. In a Xilinx Spartan
6-45T FPGA device with built-in PCI-Express blocks, we
implemented a master DMA controller, whose transfer rate to
host PC is just below 200 MB/s per lane. Since we decided to
use just 1 lane in order to make the system compliant with
common 1x PCI-Express slots, the maximum transfer rate of
16 bit random numbers is 100 Mnumbers/s that corresponds to
a maximum number of 5 connected computing cells.
Overall, at a cost equal to ¼ with respect to the use of a single
Virtex-5 FPGA device, the available system is much more
versatile as it can simulate from 30 independent distributions
at a rate of 3 Mnumbers generated per second to 1 distribution
at a rate of 88 Mnumbers generated per second.

Figure 4 shows a block diagram of the realized prototype.
There are 4 Xilinx FPGA Spartan-6 LX-25 devices, which
implement the function of generation. Besides PCI-Express
communication task to host PC, the Xilinx FPGA Spartan-6
LX-45 device also implements 5 generators. The connection
architecture among computing cell LX25 and LX45T devices
is a star configuration through serial bus lines operating at 300
MHz. Initialization of computing cells is performed by means
of a SPI bus. Each computing cell contains 6 asynchronous
SRAM modules, so as not to suffer from pipeline delay and
realize a true random access. The SRAM access time is 10 ns.

In order to verify the convenience to use the system in place
of available PC-based solutions, the developed algorithm was
implemented in C language and run on a Core i7 945 PC over-
clocked at 4.5 GHz. Using 1 core, the generation rate is about
5 Mnumbers/s. Parallelizing the algorithm, however, the rate
does not increase significantly and settles down to 7.5
Mnumbers generated per second, probably because of the

bottleneck due to memory access. Consequently, the proposed
system shows a speedup of 12 times at a cost only half the
CPU alone and with power dissipation of 15 W compared to
100 W of the PC based solution. In addition, there are no
substantial benefits in the use of GPGPU since the local
memory of each multiprocessor (both texture and constant) is
too small to hold the cumulative vector Hd.

V. CONCLUSIONS

An algorithm for getting statistic properties from a

histogram of events has been conceived and implemented. The
algorithm has efficiency equal to 100% and has been validated
through simulation also with reference to the specific
application of emulation of radiation detection setups.

The system has been prototyped and is being fully tested
on a processing digital platform based on a FPGA device.

The proposed solution based on FPGA has been shown to
achieve a level of quality/price ratio even better than PC-based
counterparts at the state of the art.

REFERENCES

[1] M. Luby, "Pseudo-randomness and Cryptographic Applications",

Princeton Univ. Press, 1996.
[2] L. Devroye, "Non-Uniform Random Variate Generation",

Springer Verlag, New York, 1986.
[3] K. Binder, D.W. Heermann, "Monte Carlo Simulation in

Statistical Physics", Springer, 2010.
[4] A. Papoulis, S.U.Pillai, "Probability, random variables and

stochastic processes”, McGraw-Hill, 4th Ed., 2002.
[5] D.E.Knuth, "Art of Computer Programming, Volume 2: Semi-

numerical Algorithms”, Addison-Wesley, 3rd Ed., 1997.

Fig.4 Block diagram of the proposed multi-FPGA architecture. The computing cell plays the role of emulators and the LX-45T
device is also devoted to manage the communication to the host PC and to system clocking. The link between communication device
and computing cell is performed by high-speed serial bus. The SPI bus is used to initialize the reference distribution and access to
local register file in each computing cell.

330 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

An FPGA Based on Synchronous/Asynchronous Hybrid
Architecture with Area-Efficient FIFO Interfaces

Masanori Hariyama, Yoshiya Komatsu, Shota Ishihara, Ryoto Tsuchiya, and Michitaka Kameyama
Graduate School of Information Sciences, Tohoku University

Aoba 6-6-05, Aramaki, Aoba, Sendai, Miyagi, 980-8579, Japan

Abstract— This paper presents an FPGA architecture that
combines synchronous and asynchronous architectures. Dat-
apath components such as logic blocks and switch blocks
are designed so as to run in asynchronous and synchronous
modes. Moreover, a logic block is presented that implements
area-efficient First-in-first-out(FIOF) interfaces, which are
usually used for communication between synchronous and
asynchronous logic cores. The FPGA based on the area-
hybrid architecture is fabricated in a 65nm process.

Keywords: FPGA, Reconfigurable VLSI, Self-timed architecture,
Delay-insensitive architecture.

1. Introduction
Field-programmable gate arrays (FPGAs) are widely used

to implement special-purpose processors. FPGAs are cost-
effective for small-lot production because functions and
interconnections of logic resources can be directly pro-
grammed by end users. Despite their design cost advan-
tage, FPGAs impose large power consumption overhead
compared to custom silicon alternatives [1]. The overhead
increases packaging costs and limits integrations of FPGAs
into portable devices. In FPGAs, the power consumption of
clock distribution is a serious problem because it has an
enormously large number of registers than custom VLSIs.
To cut the clock distribution power, some asynchronous
FPGAs has been proposed [2], [3], [4], [5], [6]. From
references [4]-[6], the asynchronous architecture is more
power-efficient than the synchronous one under the low-
workload condition. Under the high-workload condition, the
asynchronous architecture is less advantageous in power than
the synchronous one because of its overhead of complex
control circuitry. In actual situations, evan a single appli-
cation consists of many tasks with various workloads. The
best way to minimize the power consumption is to use
both of asynchronous and synchronous architectures for a
single application. For this purpose, we have reported the
FPGA architecture based on the hybrid of a synchronous and
asynchronous architectures[7]. However, it suffers from the
lack of the area-efficient communication interface between
synchronous and asynchronous cores.

This paper proposes an FPGA architecture based on the
hybrid of asynchronous and synchronous architectures that

can implement area-efficient communication interface. Data-
path components such as logic blocks and switch blocks are
used for both of asynchronous and synchronous modes; Each
of the blocks is programmed to be an asynchronous block or
a synchronous block in advance. When designing the hybrid
datapath components, the major issue is to sharing the data-
path resources efficiently. For this purpose, we propose dual-
bit operation where a one-bit logic block and interconnection
resource in asynchronous mode is exploited as two-bit used
for a two-bit logic block and interconnection resources in
synchronous mode. As a result, the datapath resources are
fully exploited in both modes. In order to use common
Look-up tables(LUTs) of the logic block in both modes,
4-phase dual-rail encoding is adopted. Another design issue
is to implement area-efficient communication interface. In
general, the processing speeds of the synchronous and asyn-
chronous cores are different from each other. Therefore, the
First-in-first-out(FIFO) interface is usually used to absorb
the difference of the processing speeds. However, FIFO
interface imposes a large hardware overhead. To solve this
problem, this paper presents the logic block structure that
can implements area-efficient FIFOs. The FPGA based on
the hybrid architecture is implemented in a 65nm process.

2. Architecture
2.1 Asynchronous protocols

Asynchronous encoding schemes are mainly classified
into

• Single-rail encoding (ex. bundled-data encoding)
• Dual-rail encoding

(ex. 4-phase dual-rail encoding, LEDR encoding)

The bundled-data encoding is most common one in the
single-rail encoding. The bundled-data encoding is the most
frequently-used way in ASICs since its hardware overhead
is relatively small. The major disadvantage is that it requires
the constraint of the delay length. If the data path is fixed
in advance, it is relatively easy to meet the constraint by
optimizing layouts of wires. On the other hand, in reconfig-
urable VLSIs such as FPGAs, it is not easy to always meet
the constraint since the data path is programmable.

The dual-rail encoding encodes a bit onto two wires. In
dual-rail encoding, value is made implicit in the request and

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 331

Table 1: Code table of 4-phase dual-rail encoding

(0,0)Spacer

Code word
(T, F)

(1,0)

(0,1)

Data 1

Data 0

(0,0)Spacer

Code word
(T, F)

(1,0)

(0,1)

Data 1

Data 0

A

B

out

A

B

out

Figure 1: XOR gate of synchronous architecture

no delay insertion is therefore required[8]. Hence, the dual-
rail encoding is the ideal one for reconfigurable VLSIs. 4-
phase dual-rail encoding is the most common one in dual-rail
encodings. Table 1 shows the code table of 4-phase dual-
rail encoding. The data value 0 is encoded as (0, 1) and 1 is
encoded as (1, 0). Moreover, the spacer is encoded as (0, 0).
Figure ?? shows the example where data values 0, 0 and
1 are transferred. The main feature is that the sender sends
spacer after a data value. The receiver knows the arrival of a
data value by detecting the change of either bit: 0 to 1. The
insertion of spacers makes the encoding law simple. This
results in a simple hardware of the function unit. Figures
1 and 2 show the XOR gates of synchronous (synchronous
XOR) and 4-phase dual-rail (4-phase dual-rail XOR) archi-
tecture respectively. The circuit for generate out.t of the
4-phase dual-rail XOR gate is similar to the pMOS network
of the synchronous XOR gate. On the other hand, the circuit
for generate out.f of the 4-phase dual-rail XOR gate is
similar to the nMOS network of the synchronous XOR gate.
This similarity causes the function unit of 4-phase dual-
rail architecture to implement easily. The number of the
transistors of the synchronous XOR gate is 12, while the 4-
phase dual-rail XOR gate is 16. Accordingly, the hardware
overhead of 4-phase dual-rail architecture is smaller than that
of other dual-rail architecture.

2.2 Overall architecture
Figure 3 shows the overall architecture of the proposed

FPGA. The FPGA consists of a mesh-connected cellu-
lar array likes conventional FPGAs. As mentioned in the

A.T

Out.T

A.F

B.T
B.F

B.T

Out.F

B.F

A.F

A.T

A A.F

A A.T

B B.F

B B.T

A A.T

A A.F

B B.T

B B.F

Sync. 4-phase

Sync. 4-phase

Req(Pre-charge)

Req(Pre-charge)

Figure 2: XOR gate of 4-phase dual-rail architecture

LB: Logic Block

CB: Connection Block

SB: Switch Block

SB

SB

SB

SB

SB

SB

SB

SB

CB CB CB

CB CB CBLB

CB

CB

CB

LB

SB

LB

CB

CB

CB

LB

A

B

C

D

Out

Carry_out

Carry_in

Data

Ack

Cell

Figure 3: Overall architecture.

previous section, 4-phase dual-rail encoding is employed
as the asynchronous protocol because of its similarity to
synchronous circuits. The logic blocks, connection blocks
and switch blocks are used for asynchronous architecture
and synchronous architecture. The clock-tree network is
designed based on H-tree topology; For simplicity, the clock
tree is not illustrated in this figure. The clock signal is
distributed to all the registers in the logic blocks. Since the
chip presented in this paper is a prototype, the simplest 2-
input LUT is used in the logic block.

2.3 Logic block structure
As shown in Fig. 4, the LUT is constructed by two same

smaller LUTs. In asynchronous mode shown in Fig. 4(a),
the upper and lower LUTs are used for out.t and out.f,
respectively. In synchronous mode shown in Fig. 4(b), the
upper and lower LUTs are used for different bits respectively,

332 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

LUT_

element

!For t"!

LUT_

element

!For f"!

Reg

Out_t

Out_f

LUT_

element

!For t"!

LUT_

element

!For f"!

Reg

Out_0

Out_1

LUT LUT

8

(In1_t,In1_f) ~

 (In3_t,in3_f)

8

In0#

In7

(a) Asynchronous mode! (b) Synchronous mode!

Figure 4: Resource sharing for the logic block of the hybrid
architecture.

Input3

Input2

Input1

Input0

memory

Out

PreCharge

t f

t

t

t

f

f

f

Figure 5: Block diagram of the LUT of the hybrid architec-
ture.

and the all LUTs are fully exploited.
Figure 5 shows the circuit of the LUT. As explained

in the previous section, the logic circuit of 4-phase dual-
rail encoding is quite similar to dynamic circuit of the
synchronous circuit. Based on this observation, the LUT for
hybrid architecture is designed using the dynamic circuit.
Hence, completely common LUTs can be used for both of
asynchronous and synchronous modes.

Another design issue on the hybrid architecture is to
implement area-efficient communication interface between
synchronous and asynchronous cores. In general, the pro-
cessing speeds of a synchronous core and an asynchronous
core are different. FIFO interface is commonly used to
absorb the difference as shown in Fig. 6. If the processing
speed of the sender core is higher than that of receiver core,
the FIFO stores the data from the sender core until the
unbalance of the processing speed is resolved. Moreover,
the protocol converter is required to convert data from the
synchronous format to the asynchronous one or vice versa.
Figures 7 and 8 shows the functions of the protocol converter
and the FIFO interface. The number of cells in the FIFO
depends on the design and is not determined in advance.
Therefore, it is desirable to implement the FIFO cell using
a logic block.

Figure 9 shows the structure of the logic block with the
FIFO function; Figure 10 shows the FIFO-cell mode of the
logic block. Regards can see that the area overhead for the

Asynchronous

core!
Data

Handshake

Synchronous core!

Logic!

S
y
n
c
/A
s
y
n
c

C
o
n
v
e
rte
r!

Data

Clock

Data!

FIFO!

Figure 6: Interface between a synchronous and asynchronous
cores.

In!!!!!!!
Out_t

Out_f

Clock

Data in

asynchronous

style

(Data in

synchronous style)!

Figure 7: Function of the converter from synchronous style
to asynchronous style.

FIFO interface is relatively small in the logic block.

3. Evaluation
The FPGA based on the hybrid architecture is imple-

mented in a 65nm CMOS process. The supply voltage is
1.2V. The processing performance of the asynchronous mode
corresponds to that of the 720MHz of the synchronous
FPGA. Table 2 summarizes the comparison result of the
cells of synchronous architecture and the hybrid architecture
in synchronous mode. Thanks to the resource sharing, the
energy and area overheads are just 29% and 22%. Table
3 summarizes the comparison result of the cells of asyn-
chronous architecture[4], and the proposed hybrid architec-
ture in asynchronous mode. The transistor-count overhead is
as small as 18%.

4. Conclusion
This paper proposes an FPGA based on the hybrid of

asynchronous and synchronous architecture, where the FIFO
interface between synchronous and asynchronous cores is
implemented using logic blocks with the small overhead.

Ack_in Ack_out

phase

REG
In_t Out_t

Out_f In_f

C

Core 1 Core 2

Figure 8: Function of the FIFO interface.

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 333

Handshake

controller

Reg

Function

Unit

(LUT,

Carry,

etc.)

M
U
X

6

(In1_t,In1_f) ~

(In3_t,In3_f)

(In0_t,In0_f)

2

2

2
2

(Carryout_t,Carryout_f)

Out_t

Out_f

2

FIFO_

enable

Ack_in Ack_out

Clock

PC

MUX

sync

MUX
phase

(Carryin_t,Carryin_f)

M
U
X

2

2
2

(In0_t,In0_f) ~

(In3_t,In3_f)!
8

Figure 9: Structure of the logic block with the FIFO function.

Handshake

controller

Reg M
U
X

6

(In1_t,In1_f) ~

(In3_t,In3_f)

(In0_t,In0_f)

2

2

2
2

(Carryout_t,Carryout_f)

Out_t

Out_f

2

FIFO_

enable

Ack_in Ack_out

Clock

sync

MUX
phase

(Carryin_t,Carryin_f)

M
U
X

2

2

(In0_t,In0_f)
2

Figure 10: FIFO cell implemented using the logic block.

The FIFO interface will be also efficient for power reduction.
If the number of the stored data becomes large, it means that
the processing speed of the sender is much higher than that
of the receiver. Then, the power consumption can be reduced
by lowering the supply voltage of the sender. Moreover, the
proposed architecture with FIFO has higher flexibility than
the conventional GALS(Globally Asynchronous and Locally
Synchronous) architecture. As a future work, we are evalu-
ating the hybrid architecture on some practical benchmarks.
Developing the CAD environment is also important topic.

Acknowledgment
This work is supported by VLSI Design and Education

Center (VDEC), the University of Tokyo in collaboration
with STARC, Fujitsu Limited, Matsushita Electric Industrial
Company Limited, NEC Electronics Corporation, Renesas
Technology Corporation, Toshiba Corporation, Cadence De-
sign Systems Inc. and Synopsys Inc.

Table 2: Comparison of cells of synchronous and the hybrid
architecture.

Sync.! Our hybrid

(Sync. mode)

Energy per

data set [fJ]

355 459

(129%)

Delay[ps] 263 367

(151%)

Transistor

count

1703 2069

(122%)

Table 3: Comparison of cells of asynchronous and the hybrid
architecture.

Async

[4]!

Our Hybrid

(LB mode)

Our Hybrid

(FIFO mode)

Energy per

data set[fJ]

755 925

(122%)

664

Delay[ps] 482 713

(148%)

422

Transistor

count!

1757 2069

(118%)

References
[1] H. Z. V. George and J. Rabaey, “The design of a low energy FPGA,”

in Proceedings of 1999 International Symposium on Low Power Elec-
tronics and Design, Californai, USA, Aug 1999, pp. 188–193.

[2] J. Teifel and R. Manohar, “An asynchronous dataflow FPGA architec-
ture,” IEEE Transactions on Computers, vol. 53, no. 11, pp. 1376–1392,
2004.

[3] R. Manohar, “Reconfigurable Asynchronous Logic,” in Proceedings of
IEEE Custom Integrated Circuits Conference, Sept. 2006, pp. 13–20.

[4] M. Hariyama, S. Ishihara, and M. Kameyama, “Evaluation of a Field-
Programmable VLSI Based on an Asynchronous Bit- Serial Architec-
ture,” IEICE Trans. Electron, vol. E91-C, no. 9, pp. 1419–1426, 2008.

[5] M. Hariyama, S. Ishihara, , and M. Kameyama, “A Low-Power Field-
Programmable VLSI Based on a Fine-Grained Power-Gating Scheme,”
in Proceedings of IEEE International Midwest Symposium on Circuits
and Systems (MWSCAS), Knoxville(USA), Aug 2008, pp. 430–433.

[6] S. Ishihara, Y. Komatsu, and M. K. Masanori Hariyama, “An Asyn-
chronous Field-Programmable VLSI Using LEDR/4-Phase-Dual-Rail
Protocol Converters,” in Proceedings of The International Conference
on Engineering of Reconfigurable Systems and Algorithms (ERSA), Las
Vegas(USA), Jul 2009, pp. 145–150.

[7] M. Hariyama, R. Tsuchiya, S. Ishihara, and M. Kameyama, “A Field-
Programmable VLSI Based on Synchronous/Asynchronous Hybrid
Architecture,” in Proceedings of The International Conference on
Engineering of Reconfigurable Systems and Algorithms (ERSA), Las
Vegas(USA), Jul 2010, pp. 217–274.

[8] J. Sparsø and S. Furber, Principles of Asynchronous Circuit Design: A
Systems Perspective. Kluwer Academic Publishers, 2001.

334 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

SESSION

POSTERS

Chair(s)

TBA

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 335

336 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

Synthesis of Simulink based Models for Parallel
Architectures including FPGAs and Multi-core

Processors for an Infrared Scene Generator System

Rhonda Gaede, Chris Smeal, Jeff Kulick

The Department of Electrical and Computer Engineering
The University of Alabama in Huntsville, Huntsville, AL, USA

Abstract - Field Programmable Gate Arrays (FPGAs) can
substantially improve the performance of scientific and
engineering applications through their massively parallel
architecture. The newest FPGA components have thousands
of arithmetic units and hundreds of individually and
simultaneously addressable banks of memory. However, to
utilize this parallelism designers have to create detailed
designs in hardware description languages such as VHDL
[3]. This has been a significant impediment to the more
widespread use of FPGAs in engineering systems. Many
engineers do their engineering analysis and system design in
modeling languages such as Simulink. This paper explores
the issues of implementing parallel computing systems
utilizing the full extent of FPGA hardware starting with serial
single thread computational models developed in Simulink
and the problems in this process.

Keywords: FPGAs, Simulink, parallelism

1 Introduction
 Performance acceleration of scientific and engineering

computations is one of the core interests of the Computer
Engineering group at the University of Alabama in
Huntsville. Recently, we were asked to examine the problem
of building a real-time scene generator for producing infrared
(IR) images for verification and validation of IR seekers.
Since current IR scene generation techniques [1, 2, 4] operate
far slower than real-time, pre-production of IR scene data is
required. As part of this effort, we decided to examine the
feasibility of using Model Based Design to produce
operational implementations of an IR scene generator.

Model Based Design (MBD) is becoming one of the key
methodologies used to create scientific and engineering
systems as organizations try to minimize system defects.
Many opportunities for errors occur when different
representations of a system exist. MBD provides Simulink
blocks and implementations that subject matter experts can
use to model the System. This model can then be realized
automatically using synthesis techniques and the
implementations. For IR scene generation, we felt that the
needed performance gains could only be achieved by
exploiting inherent parallelism. We examined several
Simulink approaches to accelerating model execution
including: replicating individual computation kernels using

the VHDL construct for generate, using the for iterator
construct, and replicating individual computation kernels
using MATLAB scripts

The fundamental problem is that Simulink is optimized
for single-threaded execution. The SME needs to describe a
parallel architecture in Simulink in a way that guarantees that
the structure is preserved even as the model is synthesized
into an implementation. The options for parallel architectures
include multi-core processors running multi-threaded
applications and field programmable gate arrays (FPGAs).

2 Infrared Scene Generation

IR scene generation has been used for many years in
diverse applications. The area studied is typically divided into
many identical spatial elements or “pixels”. Each pixel model
includes heat exchange with adjacent elements as well as
thermal interaction with the environment.

In this paper, a pixel element was created that would
observe the temperature of each of its neighbors, provide its
temperature to its neighbors in the same clock cycle and
update its temperature based on its current temperature and
the relative temperatures of each of its neighbors. If neighbors
are missing, the pixels own value is used. We started with the
following equations that represent the behavior of the pixel.

Tt+1 = Tt + [K * (Tnavg) / 2 – Tt (1)
Tt = Current pixel temperature

Tnavg =Average temperature of surrounding pixels
K = Thermal conductivity constant

The average temperature of the surrounding pixels is
calculated and multiplied by the thermal conductivity to
represent the rate at which heat spreads, and then the previous
temperature is subtracted from that average. The formula has
the advantage of using only basic math but does not include
frictional heating or ablative cooling effects.

The next step was to produce a Simulink model of a
pixel. In order to be exported to VHDL, fixed point variables
were used. Fixed-point arithmetic will only work if the
dynamic range of the data values is computed and each pixel
temperature can take on the entire temperature range. The
range of the temperatures dictates how many bits we allocate
left of the binary point. The precision needed dictates how
many bits are allocated right of the binary point.

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 337

3 Model Duplication
Simulink has two replicator constructs; for each and for

iterate. We first investigated for each as a mechanism for
arraying the pixels and interconnecting them. We found out
that the for each could create multiple simulatable copies of
the pixel but only using manual interconnection. Further,
when we generated C++ code for the for each model, we got
three calls to a single routine rather than three routines. The
for each is also not supported by HDL Coder so we were
unable to generate HDL. Our next approach was to generate
the VHDL for a single pixel using HDL coder and to replicate
the cell using the VHDL for generate construct.
Approximately 230 IR pixels were able to fit into a Virtex6
VLX 760 part.

To evaluate the efficacy of the parallel hardware
approach, we compared its performance to a serial C#
implementation of the algorithm. One of the issues
encountered comparing FPGAs to microprocessor
implementations is that in the end it is easy to get data into
and out of a processor while it is difficult to get data into and
out of an FPGA. In order to do a comparison between
implementations we augmented the FPGA design with a serial
IO interface. In order for the comparison to be valid, clock
cycles for serial I/O had to be added to the FPGA results.

When the number of iterations between readouts of the
230 processing elements is small, i.e., 128, the FPGA is about
10x faster than the microprocessor. However when the
number of iterations between readouts is larger, say 100M,
then the FPGA is almost 300 times faster.
 Having seen significant performance improvement from
the hardware implementation, we attempted to bring the
arrayed hardware back into the Simulink environment using
EDA Simulator Link. Though we could bring the arrayed
hardware in as a black box, and simulate it within the
Simulink environment, there is no way to backannotate the
timing information found in the VHDL model into Simulink.
Thus, there is no way to optimize the Simulink model for the
individual pixels for performance tuning. At this point, we
turned to another candidate Simulink construct, for iterator, to
see whether we can produce an architecturally accurate model
of the parallel implementation of the IR scene generator.
 We decided to experiment with a very simple basic block
rather than the full IR scene generator pixel so that it was easy
to understand the results. We hoped that the effect of the for
iterator was to create N copies in the same manner that the for
generate VHDL construct did. Whereas the Simulink
simulation performed as expected, we did not see the hoped
for structural replication. The Real Time workshop generated
C++ had a loop executed N times, rather than N pieces of
code. Further, we tried using HDL Coder to generate VHDL
and saw a warning in Simulink. Examination of the VHDL
showed that the for generate construct was used, however it
was used incorrectly, allowing no simulation or synthesis.

MATLAB scripting, our final strategy, did create an
architecturally accurate, scalable Simulink model.
Unfortunately, Simulink does not guarantee that it will

maintain this structure when it generates C++ code. The two
for iterate constructs in the model are collapsed into a single
for loop in the C++ code.
 In subsequent experiments, we were able to maintain the
structure by using model referencing and thought that we
should combine the arraying capability of the MATLAB
script and model referencing. We ran the script with model
reference blocks and then generated both C++ code and
VHDL from the arrayed model with mixed results. The C++
code conformed to our expectations but the VHDL did not.
The VHDL did represent the arrayed nature of the model but
did not push down into the subsystem to create a lower level
representation.

4 Conclusions and Future Work
 In an earlier work [5], we presented a first effort to use
MBD to build FPGA-based computational systems. We have
now realized parallel implementations that more fully utilize
the capabilities of FPGA fabrics. A primary goal has been to
construct an architecturally accurate representation of the
parallel system in a Simulink model so that optimization of
the design can be carried out at the model level. Several issues
have arisen that have required different approaches to
building multithreaded implementations for microprocessors
and fully parallel implementations for FPGAs.

We plan to continue this work focusing on generating
partitioned models that can be deployed on multiple platform
architectures simultaneously. In radar, for example, the input
and signal processing might be done on an FPGA fabric while
the target identification and tracking might be done on a
multi-core microprocessor. Our future work will examine
this path as well as developing safety critical designs that
require strict traceability between all levels of the system from
high level requirements to net list implementations.

5 References
[1] An Approximate Ablative Thermal Protection System
Sizing Tool for Entry System Design, John A. Dec and
Robert D. Braun, 44th AIAA Aerospace Sciences Meeting and
Exhibit 9 - 12 January 2006, Reno, Nevada.

[2] Towards A Multi-FPGA Infrared Simulator, Vinay
Sriram and David Kearney.

[3] VHDL.org

[4] Infrared Scene Generation (IRSG) Developer’s Guide, M.
Eric Rouleau, Defence R&D Canada, September 2008.

[5] A Model-Based Design Approach For Realizing Signal
Processing Systems in FPGAs Rhonda Gaede, David Moody,
Michael Adderley, Charles Fulks, Laurie Joiner, Jeffrey
Kulick, University of Alabama, Huntsville, Alabama, USA,
Presented at ERSA 2010, Las Vegas, July 13, 2010

338 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

SESSION

LATE PAPERS

Chair(s)

TBA

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 339

340 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

Cybersecurity: From Engineering to Science
Extended Abstract

Carl E. Landwehr
Institute for Systems Research

University of Maryland

College Park, USA

Landwehr@isr.umd.edu

Abstract— Engineers design and build artifacts - bridges,

sewers, cars, airplanes, circuits, software -- for human

purposes. In their quest for function and elegance, they

draw on the knowledge of materials, forces, and

relationships developed through scientific study, but

frequently their pursuit drives them to use materials and

methods that go beyond the available scientific basis.

Before the underlying science is developed, engineers

often invent rules of thumb and best practices that have

proven useful, but may not always work. Drawing on

historical examples from architecture and navigation, we

consider the progress of engineering and science in the

domain of cybersecurity.

Keywords - cybersecurity research; science;

engineering; foundations

Over the past several years, public interest has

increased in developing a "science of

cybersecurity," often shortened to "science of

security" [1,2]. In modern culture, and certainly

in the world of research, "science" is seen as

having positive value. Things scientific are

preferred to things unscientific. A "scientific

foundation" for developing artifacts is seen as a

strength. If one invests in research and

technology, one would like those investments to

be scientifically based or at least to produce

scientifically sound (typically meaning

reproducible) results.

This yearning for a sound basis that we might

use to secure computer and communication

systems against a wide range of threats is hardly

new. Lampson characterized access control

mechanisms in operating systems in 1971, forty

years ago. Five years later Harrison, Ruzzo, and

Ullman analyzed the power of those controls

formally. It was 1975 when Bell and LaPadula

and Walter, et. al., published their state-machine

based models to specify precisely what was

intended by "secure system" [5,6]. These efforts,

preceded by the earlier Ware and Anderson

reports [7,8], and succeeded by numerous

attempts to build security kernel-based systems on

these foundations, aimed to put an end to a

perpetual cycle of "penetrate and patch" exercises.

Beginning in the late 1960's, Djikstra and

others developed the view of programs as

mathematical objects that could and should be

proven correct, that is, their outputs should be

proven to bear specified relations to their inputs.

Proving the correctness of algorithms was

difficult enough; proving that programs written in

languages with informally defined semantics

implemented the algorithms correctly was clearly

infeasible without automated help. In the late

1970's and early 1980's several research groups

developed systems aimed at verifying properties

of programs. Proving security properties seemed

less difficult and therefore more feasible than

proving general correctness, and significant

research funding flowed into these verification

systems in hopes that they would enable sound

systems to be built.

This turned out not to be so easy, for several

reasons. One reason is that capturing the meaning

of "security" precisely is difficult in itself. In

1985, John McLean's "System Z" showed how a

system might conform to the Bell-LaPadula

model yet still lack the security properties its

designers intended [9]. In the fall of 1986, Don

Good, a developer of verification systems, wrote

in an e-mail circulated widely at the time: "I think

the time has come for a full-scale redevelopment

of the logical foundations of computer security…"

Subsequent discussions led to a workshop

devoted to "Computer Security Foundations,"

inaugurated in 1988 that has met annually since

then and to the founding of The Journal of

Computer Security a few years later.

All of this is not to say that the foundations

for a science of cybersecurity are in place. They

are not. But the idea of searching for them is also

not new, and it's clear that establishing them is a

long term effort, not something that a sudden

infusion of funding is likely to achieve in a short

time.

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 341

mailto:Landwehr@isr.umd.edu

But lack of scientific foundations does not

necessarily mean that practical improvements in

the state of the art cannot be made. Consider two

examples from centuries past.

The Duomo, the Cathedral of Santa Maria Del

Fiore, is one of the glories of Florence. At the

time the first stone of its foundations was laid in

1294, the birth of Galileo was almost 300 years in

the future, and of Newton, 350 years. The science

of mechanics did not really exist. Scale models

were built and used to guide the cathedral's

construction, but at the time the construction

began, no one new how to build a dome of the

planned size. Ross King tells the fascinating story

of the competition to build the dome, which still

stands atop the cathedral more than 500 years

after its completion, and of the many innovations

embodied both in its design and in the methods

used to build it [10]. It is a story of human

innovation and what we might today call

engineering design, but not one of establishing

scientific understanding of architectural

principles.

About two hundred years later, with the

advent of global shipping routes, the problem of

determining the east-west position (longitude) of

ships had become such an urgent problem that the

British Parliament authorized a prize of £20,000

for its solution. It was expected that the solution

would come from developments in mathematics

and astronomy, and so the Board of Longitude,

set up to administer the prize competition, drew

heavily on mathematicians and astronomers. In

fact, as Dava Sobel engagingly relates, the

problem was solved by the development,

principally by a single self-taught clockmaker

named John Harrison, of mechanical clocks that

could keep consistent time even in the challenging

shipboard environments of the day [11].

I draw two observations from of these

vignettes in relation to the establishment of a

science of cybersecurity. The first is that

scientific foundations frequently follow, rather

than precede, the development of practical,

deployable solutions to particular problems. I

claim that most of the large scale software

systems on which society today depends have

been developed in a fashion that is closer to the

construction of the Florence cathedral or

Harrison's clocks than to the model of

specification and proof espoused by Dijkstra and

others. The IETF motto asserting a belief in

"rough consensus and running code" [12] reflects

this fundamentally utilitarian approach. This

observation is not intended as a criticism either of

Dijkstra's approach or that of the IETF. We

simply must realize that while we are searching

for the right foundations, construction will

continue.

Second, I would observe that the

establishment of proper scientific foundations

takes time. As we have seen, Newton's law of

gravitation followed Brunelleschi by centuries

and could just as well be traced all the way back

to the Greek philosophers. One should not expect

that there will be sudden breakthroughs in

developing a scientific foundation for

cybersecurity, and one shouldn't expect that the

quest for scientific foundations will have major

near term effects on the security of systems

currently under construction.

What would a scientific foundation for

cybersecurity look like? Science can come in

several forms, and these may lead to different

approaches to a science of cybersecurity[13].

Aristotelian science was one of definition and

classification. Perhaps it represents the earliest

stage of an observational science, and we see it

both in attempts to provide a precise

characterization of what security means [14] but

also in the taxonomies of vulnerabilities and

attacks that presently plague us. A Newtonian

science might speak in terms of forces, statics and

dynamics. Models of computational

cybersecurity based in automata theory and

modeling access control and information flow

might fall in this category, as well as more

general theories of security properties and their

composability, as in Clarkson and Schneider's

recent work on hyperproperties [15]. A

Darwinian science might reflect the pressures of

competition, diversity, and selection. Such an

orientation might draw on game theory and could

model behaviors of populations of machines

infected by viruses or participating in botnets, for

example. A science drawing on the ideas of

prospect theory and behavioral economics

developed by Kahneman, Tversky, and others

might be used to model risk perception and

decision making by organizations and individuals

[16].

342 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

In conclusion, I would like to recall Herbert

Simon's distinction of science from engineering in

his landmark book, Sciences of the Artificial [17]:

Historically and traditionally, it has been the

task of the science disciplines to teach about

natural things: how they are and how they

work. It has been the task of the engineering

schools to teach about artificial things: how to

make artifacts that have desired properties and

how to design.

From this perspective, Simon develops the

idea that engineering schools should develop and

teach a "science of design." Despite the

complexity of the artifacts humans have created,

it is important to keep in mind that they are

indeed artifacts. We have the ability, if we have

the will, to reshape them to better meet our needs.

A science of cybersecurity should help us

understand how to create artifacts that provide the

computational functions we desire without being

vulnerable to relatively trivial attacks and without

imposing unacceptable constraints on users or on

system performance.

REFERENCES

[1] Workshop Report, NSF/IARPA/NSA Workshop on the

Science of Security, November, 2008. Available at:

http://sos.cs.virginia.edu/

[2] Science of Cyber-Security. JSR-10-102. November,

2010. Available at:

http://www.fas.org/irp/agency/dod/jason/cyber.pdf

[3] Lampson, B.W. Protection, Proc. Fifth Princeton Symp.

on Information Sciences and Systems, Princeton

University, March1971, pp. 437-443. Reprinted in ACM

SIGOPS Operating Systems Rev. 8, 1 pp.18-24, Jan.

1974.

[4] Harrison, M.A, W. L. Ruzzo and J. D. Ullman.

"Protection in Operating Systems". Communications of

ACM. 19(8):461--471, August 1976.

[5] Walter, K. G., Ogden, W. F., Gilligan, J. M., Schaeffer,

D. D., Schaen, S. L., and Shumway, D. G., Initial

Structured Specifications for an Uncompromisable

Computer Security System, ESD-TR-75-82,

ESD/AFSC, Hanscom AFB, Bedford, MA (July 1975)

[NTIS AD-A022 490].

[6] Bell, D. E., and La Padula, L., Secure Computer

System: Unified Exposition and Multics Interpretation,

ESD-TR-75-306, ESD/AFSC, Hanscom AFB, Bedford,

MA (1975) [DTIC AD-A023588] Available at:

http://nob.cs.ucdavis.edu/history/papers/bell76.pdf .

[7] Ware, W., Security Controls for Computer Systems:

Report of Defense Science Board Task Force on

Computer Security, Rand Report R609-1 (Feb. 1970)

Available:

http://nob.cs.ucdavis.edu/history/papers/ware70.pdf

[8] Anderson, J. P., Computer Security Technology

Planning Study, ESD-TR-73-51, ESD/AFSC, Hanscom

AFB, Bedford, MA (Oct. 1972) [NTIS AD-758 206]

Available:

http://nob.cs.ucdavis.edu/history/papers/ande72a.pdf.

[9] McLean, J. "A Comment on the 'Basic Security

Theorem' of Bell and LaPadula," Information

Processing Letters 20 (2), pp. 6770 (Feb. 1985).

[10] King, Ross. Brunelleschi's Dome. Penguin Books, New

York, 2000.

[11] Sobel, Dava. Longitude. Penguin Books, New York,

1995.

[12] The Tao of IETF: A Novice's Guide to the Internet

Engineering Task Force. Network Working Group RFC

4677, 2006. Available at: http://www.rfc-

editor.org/rfc/rfc4677.txt

[13] Cybenko, George. I am indebted to George Cybenko for

this observation and the subsequent four categories.

Personal communication, spring, 2010.

[14] Avizienis, A., J.-C. Laprie, B. Randell, and C.

Landwehr, "Basic Concepts and Taxonomy of

Dependable and Secure Computing," IEEE

Transactions on Dependable and Secure Computing

1(1), pp. 11-33, Jan. 2004.

[15] Clarkson, M.R. and F.B. Schneider. "Hyperproperties".

Journal of Computer Security, 18, (6), pp. 1157-1210,

Dec. 2010.

[16] Kahneman, Daniel, and Amos Tversky (1979) "Prospect

Theory: An Analysis of Decision under Risk",

Econometrica, XLVII, pp. 263-291,1979.

[17] Simon, H.A. Sciences of the Artificial. MIT Press,

Cambridge MA. 3rd Edition, 1996.

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 343

Rapid Implementation of Floating-point Computations
Using Phase-Coherent Dynamically Configurable

Pipelines

D. Rutishauser and R. Shuler
Avionic Systems Division, NASA Johnson Space Center

Houston, Texas, U.S.A.

Abstract - The Phase-Coherent Dynamically Configurable
Pipeline is a concept for the rapid implementation of pipelined
computational algorithms in configurable hardware. The
approach allows a high level of sharing of floating-point
resources among multiple computations. The concept features
a simple tag-based control scheme and a sparse-pipeline
allocation approach that enables all the stages of an
arithmetic pipeline to be processing simultaneously, with
multiple computations allocated to the same pipeline. Thus
the approach increases hardware resource utilization and
reduces power consumption. A framework is presented that
implements the concept. The current framework targets a
Field-Programmable Gate Array (FPGA), and simplifies the
coding phase of the algorithm and troubleshooting. The
framework is demonstrated on a technology currently under
development by NASA to provide automatic hazard detection
and avoidance for spacecraft landing systems.

Keywords: reconfigurable computing, floating-point,
automatic landing, pipeline

1 Introduction
 The implementation of computational algorithms is
governed by the requirements of the application. In meeting
these requirements the designer is also concerned with
development time and maintainability of the implementation
in the face of changes to the algorithm. Frequent algorithm
design changes may occur due to parallel development of the
algorithm and its realization.

For 3-dimensional, real-time, dynamic computational
applications such as found in space systems, requirements for
fast but low power processing often direct the search for
implementation options to custom configurable solutions.
Field-Programmable Gate Array (FPGA) implementations
have been shown to have up to a factor of ten less power
consumption compared to microprocessors [1].

This work investigates applying reconfigurable technologies
in support of the Automated Landing and Hazard Avoidance
Technology (ALHAT) project [2]. ALHAT is developing a

system for the automatic detection and avoidance of landing
hazards to spacecraft. The system is required to process large
amounts of terrain data from a Light Detection and Ranging
(LIDAR) sensor, within strict power constraints. Current
design environments for configurable hardware development
require substantial knowledge and expertise in hardware
design, and these are not traditional skills of algorithm
designers. Development times for custom hardware solutions
are also significantly higher than for a software
implementation. These two characteristics can cause projects
to prefer software and microprocessor-based solutions despite
the performance potential of configurable hardware [3].

The wide dynamic range associated with 3-dimensional
transformations in applications such as ALHAT is best suited
to floating-point arithmetic, a primary driver of the
complexity of configurable hardware design. Operators in
High Level Design Languages (HDLs) do not support
floating-point arithmetic, as found in most software
languages. Many efforts in the field of configurable
computing research focus on developing compilers and
frameworks to allow the design entry phase to have a similar
complexity level as traditional software design [4]. If a
framework with the capabilities required is not available,
design alternatives include systolic array implementation or
the development of a custom processor. In a systolic array,
the operations and data path are designed specifically for the
desired operation [5], [6]. This approach typically produces
the highest performance when compared to other options, but
the design is not flexible and changes to the high level
algorithm require new iterations of a potentially time-
consuming design effort. Often particular computations occur
only a small fraction of the time, but the systolic array
computational resources are wired for a specific computation.
HDL tools will take advantage of if-then-else topology to
recognize when in-line fixed point resources can be re-used,
but not module based floating-point resources. In addition,
real-time dynamic applications that interface with numerous
sensor systems are characterized by sparse data arrivals from
those systems. In this sparse data environment fully-pipelined
designs are not used to their full capability.

344 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

Custom soft processors provide more flexibility to algorithm
changes, and better accommodate re-use of resources, but
have a more substantial initial design effort. These processors
may use instructions tailored to the application in order to
perform competitively with general purpose Application
Specific Integrated Circuit (ASIC) processors [7], [8].

This work addresses the issues of development time for
floating-point arithmetic algorithms in configurable hardware
and ease of design modification with a framework that is
simple in comparison to a software-to-hardware compilation
system. The framework enables the definition of
dynamically-configured floating-point pipelines in HDL that
follow the flow of a software implementation more closely
than a systolic array, and is suitable for straightforward
translation from an executable software implementation that
can be used for verification of the design. The pipelines use a
data tag control scheme that avoids the complexity of
centralized pipeline control logic. The tag approach allows
dynamic configuration of pipeline components on a cycle by
cycle basis, and supports traditional fully pipelined data path
configurations, and several schemes for re-use of unallocated
cycles in sparsely filled pipeline configurations. Re-use of
unallocated cycles requires definite knowledge of where those
cycles are. In one method of particular interest, resource
constraints are addressed with a phase-coherent allocation
approach that overloads pipeline stages with multiple
operations, without the need for a scheduling algorithm or
complicated control logic.

This paper is organized as follows. Section 2 describes
research related to the approach described in this work,
Section 3 provides details of the dynamically configurable
phase-coherent pipeline design, the prototype test application
and experimental platform are discussed in Section 4, test
results are discussed in Section 5, and a description of plans
for future work is provided in Section 6.

2 Related Work
 Several examples exist in the literature of research
frameworks for the implementation of floating-point
computations on configurable hardware. In [9], the Trident
compiler for floating-point algorithms written in C is
described. The framework represents a substantial
development effort with all the functionality of a traditional
compiler: parsing, scheduling, and resource allocation. A
custom synthesizer that produces Very High Level Design
Language (VHDL) code and custom floating-point libraries
are also included. The phase-coherent pipeline approach does
not require the complex components found in the Trident
system, and is suitable for straightforward translation from C
code to VHDL defining the pipeline design.

The authors in [10] present a VHDL auto-coder to reduce the
development time of floating-point pipelines. A computation
is defined in a custom HDL-like pipeline description file, and

the code for a single pipeline implementing the computation is
produced. The approach requires a user to learn the author’s
custom HDL, and does not attempt to share resources. A C++
to VHDL generation framework is presented in [11], using an
object-oriented approach to VHDL auto-coding of arithmetic
operations. All computations are subclasses of a class
“operator”, and a method of the class “operator” produces
VHDL to implement a pipeline for the computation. Again a
user must learn the author’s syntax to define computations and
resource constraints are not addressed.

The resource sharing approach for phase-coherent pipelines
has some similarities to those developed for ASIC synthesis
algorithms. Hwang et al. [12] define the Data Introduction
Interval (DII) as the period in clock cycles between new data
arrivals at the input of a pipeline. A DII equal to one
represents fully pipelined operations. As discussed in Section
3, a DII greater than one is required for phase-coherent
resource sharing. Resource sharing approaches are described
in [13] and more recently for FPGAs in [14], where analysis
of a data flow graph of the computation and heuristics must be
used. The phase-coherent allocation approach is governed by
simple algebraic relationships and does not require complex
analysis or heuristics. Phase-coherent allocation does not
perform dynamic scheduling, and does not require any
scoreboarding method [15] or hardware to check for structural
or data hazards.

The association of tag values with data for control discussed
in Section 3 is similar to the tagged-token dataflow
computational model used in the Manchester Dataflow
Machine [16]. The local pipeline control in our method is
simpler, and does not require a matching unit, token queue, or
overflow unit. Tagged-token dataflow concepts have also
been used more recently in a configurable hardware
implementation for parallel execution of multiple loop
iterations [17].

A hand-coded systolic array and MATLAB®-based FPGA
implementation of the coordinate conversion stage of
processing LIDAR scan data for an automatic landing hazard
detection system is compared in [18]. Fixed-point arithmetic
is used. As previously discussed, a hand-coded systolic array
is not easily adaptable to algorithm design changes. The
MATLAB® solution is more easily developed and adapted,
but is most suitable to the processing of streaming data and
would not be an effective approach for other computations,
such as the hazard detection stage of the ALHAT algorithm.

3 Implementation Framework

In this section, the key elements of the phase-coherent,
dynamically configurable pipeline framework are described.
An example design is used to illustrate how the concepts work
together to provide the benefits of the approach.

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 345

3.1 Dynamically Configurable Pipeline

In the context of this work, a dynamically configurable
pipeline is a pipelined operation with an interconnect
configuration that is selectable during circuit operation. This
selectable input/output configuration between floating-point
operations, temporary storage, and input/output devices is
achieved with multiplexers on each port of the pipeline. As
stated in [19] the resource overhead of using multiplexers to
share computing resources is balanced by the reduction of
resources achieved. An additional concern, particularly for
reconfigurable computing, is development time [20].
Dynamically configurable pipelines provide a flexible data
path that is easier to modify than the fixed data path of a
systolic array, reducing overall development and maintenance
time.

3.2 Phase Tag Control

A dynamically configurable data path allows the inputs of an
operation to be consuming operands and results to be
produced for different computations potentially every clock
cycle. Further, operations such as floating-point arithmetic
typically require latencies greater than one to function at high
enough clock frequencies to meet the performance
requirements of applications. A control scheme is required to
route operands and results between pipelines and other
resources with the correct timing. In contrast to using a
scheduling algorithm and global control approach, a
distributed phase tag control method is used.

In the phase tag control method, a tag word is associated with
a set of inputs. The tag is assigned to a buffer that has the
same latency as the operation consuming the inputs. The
buffer is called a phase keeper. The output of the phase
keeper is tested to determine when the outputs of the operation
are valid for the inputs associated with the tag. One tag can be
used to control the input/output configuration of many
floating-point units, providing all units have the same latency.
For coding convenience, and to handle occasional units with
different latency, phase keepers were built in to all our floating
point units. If they are not used, the HDL tool flow removes
them automatically. The functional units output two phase tag
words. The ready tag (.r), usually with a latency of one clock
cycle, is used to signal that a pipeline is ready to accept data.
The completion tag (.p) indicates that an operation is finished.
The tags are used to control the inputs and outputs of a
pipeline. The content of the tag is used by an algorithm
developer to indicate which step of the computation is
associated with the operands or results. The phase tag control
approach supports both dense and sparsely allocated pipelines.
Examples of several design cases follow.

Figure 1 is a VHDL code sample of the dynamically
configurable pipeline and phase tag control approach. The
design is a fully pipelined implementation of the computation
A+B+C+D=sum. In this and the remaining code examples,

the signal AI(n) is an array of records that bundles data,
phase tag, and function (addition or subtraction) for the input
of adder unit n. AO(n) is an analogous signal for the output of
the unit. The signals PI(n) and PO(n) are arrays of phase tag
signals for the input and output, respectively, of phase keeper
unit n.

In this example, three adders are connected such that the first
unit (0) adds inputs A and B in parallel with the second unit
(1) that adds inputs C and D. The outputs of the first two
adders are wired to the inputs of the third adder (2), typical of
a systolic array. Instead of an explicit state machine to control
the output of the pipeline when the result of the computation is
valid, the phase tag appearing at the output of the third adder,
AO(2).p, is tested to determine when to store the result in
registered signal sum1.

Figure 1. Example of dynamically configurable phase-tag control design of
a fully pipelined implementation of the computation A+B+C+D=sum.

Figure 2. Example of dynamically configurable phase-tag control design of
a sparsely pipelined implementation of the computation A+B+C+D=sum.

…
ad0 : FADDP port map (clk, AI(0), AO(0)); --adder unit instantiations
ad1 : FADDP port map (clk, AI(1), AO(1));
ad2 : FADDP port map (clk, AI(2), AO(2));

process (clk) begin
if rising_edge(clk) then
…
AI(0) <= (ZERO, ZERO, NOPH, ADD);
AI(1) <= (ZERO, ZERO, NOPH, ADD);
AI(2) <= (ZERO, ZERO, NOPH, ADD);

if example1 then -- *** static full rate pipe with 3 adders ***
if data_strobe then -- initiate first two adds on data strobe

AI(0) <= (data_a, data_b, x"10", ADD);
AI(1) <= (data_c, data_d, x"10", ADD);

end if;
AI(2) <= (AO(0).o, AO(1).o, AO(0).p, ADD); -- intermediate sums always wired to final adder
if AO(2).p = x"10" then

sum1 <= AO(2).o; -- consume result when tag appears at output
end if;

end if;

…

end if;
d

…
process (clk) begin
if rising_edge(clk) then
…
AI(0) <= (ZERO, ZERO, NOPH, ADD);
AI(1) <= (ZERO, ZERO, NOPH, ADD);
AI(2) <= (ZERO, ZERO, NOPH, ADD);

if example2 then -- *** sparse pipe with only one adder and max rate ***
if data_strobe then

AI(0) <= (data_a, data_b, x"10", ADD); -- initiate first add on data strobe
end if;
if AO(0).r = x"10" then

AI(0) <= (data_c, data_d, x"11", ADD); -- initiate second add as soon as adder ready for input
end if;
if AO(0).p = x"10" then

sum_ab <= AO(0).o; -- save sum a+b for one clock cycle
end if;
if AO(0).p = x"11" then

AI(0) <= (sum_ab, AO(0).o, x"21", ADD); -- initiate final sum
end if;
if AO(0).p = x"21" then

sum2 <= AO(0).o; -- consume final sum
end if;

end if;
…
end if;
end process;

346 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

clock trigger logic adder pipe stage 1 adder pipe stage 2
1 DATA STROBE A1 & B1 to adder, tag #10
2 ready #10 tag C1 & D1 to adder, tag #11 process A1+B1
3 process C1+D1 process A1+B1
4 done #10 tag save A1+B1 process C1+D1
5 done #11 tag C+D, A+B to adder, tag #21
6 DATA STROBE A2 & B2 to adder, tag #10 process final sum
7 ready #10 tag C2 & D2 to adder, tag #11 process A2+B2 process final sum
8 done #21 tag store or forward result process C2+D2 process A2+B2

Figure 3. Configuration logic events, event triggers, and processes allocated
to adder unit pipeline stages for example of a sparsely pipelined
implementation of the computation A+B+C+D=sum.

Figure 2 shows the same computation implemented with only
a single adder unit, and assuming a DII that results in sparse
data arrival strobes compared to the length of the computation.
In this example, the ready tag is tested to determine when the
adder unit can accept a second input. This approach allows
the single adder to process the first two add operations as
quickly as possible without a conflict. Note that intermediate
results must be saved for the first addition because the result
cannot be consumed immediately. Intermediate results can be
stored up to the register resource limit of a particular part.

Using a two stage floating-point adder module, Figure 3 shows
the processes allocated to each adder stage, the configuration
logic for each clock cycle, and the event which triggers the
logic. Data point 1 is shown in bold. A second data point is
in gray. The minimum DII is 5 clock cycles, at which time the
previous point is finished with the adder input. The pipe is
still processing the previous point, but the correct actions will
be triggered by tags as they emerge from the pipe, as each
carries configuration “knowledge" of what should be done
with its associated data.

The phase tag scheme makes call and return logic, similar to
subroutine calls in software programs, possible in a
configurable hardware design. The re-used adder has
effectively become a call and return module. The tag
associated with data input indicates where the control logic
should resume when the adder is finished.

In addition to tags, an application can use mode variables to
control the configuration of the pipeline units. Mode variables
can allow use of fewer distinct tags. But the pipe has to be
completely empty before changing a mode variable. The
examples do not have mode variables, but they were used in
our prototype application.

Note that the tags are strobes. Initialization code gives them
the default value “NOPH” (no phase) unless they are
specifically assigned. If a group of functional units will be re-
used in a different module, then this initialization should be
contingent upon a mode variable. The functional units are set
up with tri-state input signals so that they can be shared
between modules. All that is required is to pass the input and
output signals for the functional units to the active module,
and enable initialization defaults only in the active module. If
the DII is not regular, then buffers should be used to ensure
that the minimum DII is met.

The example in Figure 2 uses intra-pipeline stage sharing to
process more than one computation stage on a single adder
unit. Effective resource sharing using this method can be a
complicated problem [14]. In the next section, the concept of
phase-coherent resource allocation is presented as a
straightforward means of accomplishing intra-pipeline sharing.
The allocation is constrained by simple relationships based on
the DII and minimum pipeline unit latency. These criteria are
not restrictive in real-time data processing systems that
interface with various sensor subsystems with different
latencies. In such systems, fully pipelined computations are
not generally required.

3.3 Phase-Coherent Resource Allocation

Phase-coherent pipeline allocation is a simple means to allow
pipeline stage sharing that enables different computations to
be allocated to the same functional units. The method requires
that results associated with a particular computational
sequence all emerge at a constant phase, that is, at a constant
multiple of a minimum unit latency L. If a unit does not
naturally have this latency, it must be padded with enough
empty pipeline stages. The multiplex stage is included in the
latency value. The DII should be equal to or greater than L1

.
The pipe can be said to have L independent phases. For
maximum re-use, successive data inputs are allocated to
different phases, until all phases are used, and only then are
conflicts possible. Under these conditions, a simple algebraic
relationship can be used to compute the period of time that
units can be re-used as follows.

Given a dynamically configurable pipelined functional unit
with a latency of L, each pipeline stage, Sp(n), can process a
datum of an independent computation. The reuse interval, IR

,
is defined as the number of clock cycles in which units can be
reused freely. This interval is computed as shown in (1).

LDIIIR ⋅= (1)

For maximum re-use, the interval can be applied separately to
each functional unit. The reuse interval may be applied
manually if hand-coding or incorporated into a translator.
Figure 4 shows a diagram of phase-coherent pipeline
allocation for the computation of the prior code examples. In
Figure 4, the DII=3, L=3, and IR=9. The dn

1 In real systems, the DII is never regular due to crossing clock domains
between the sensor systems and application. First-In First-Out (FIFO)
buffering can be used to force an average DII allowing the use of the phase-
coherent allocation.

variables
represent a set of input operands for the four add operations at
DII=n. As shown, the phase offsets for allocation are
implemented with a one or two cycle store of the incoming
data value at the input of the unit, as shown in clock cycles 3,
6, and 7. This is required because the input stage of the unit is
busy processing prior input data at these cycles. A latency L
phase keeper buffer tracks the allocation of available

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 347

computation phases and is used to control the assignment of
inputs to functional units. Also shown in Figure 4 is that by
cycle 8 when the third input data set is consumed, each
pipeline stage of the unit is processing data. Intermediate
results or temporary state variables, for example the
intermediate addition result A+B, do not benefit from the
phasing scheme and must either be used within the DII or
copied every DII clocks. Alternately they could be retained in
no-op pipe units.

Figure 4. Phase-coherent allocation of a single adder unit performing the
computation A+B+C+D=sum on three input data sets, d. The parameters of
the allocation are DII=3, L=3, and IR

The VHDL that implements the example of Figure 4 is shown
in Figure 5. As shown, the code implementing the phase-
coherent allocation method is straightforward and suitable for
generation by an auto-coder. The phase tags control each
stage of the computation as well as the cycle the adder unit is
free to accept new data. The dynamically configurable inputs
and outputs allow the same unit to process each computation
stage within the reuse interval.

=9, all in design clock cycles.

4 Prototype Application

Details of the algorithms supporting ALHAT for landing
hazard detection and avoidance are provided in [21]. The
general approach is to produce a regular grid of surface
elevation data in the coordinate frame of the landing site from
the LIDAR range samples. This elevation map is then
analyzed for surface slope and roughness and compared to
thresholds for these parameters to identify hazards. The
processing stages for LIDAR scan data are coordinate

conversion, re-gridding, and hazard detection. The first two
stages are currently demonstrated in the prototype design. The
computations implemented are summarized in this section.

Figure 5. Example of dynamically configurable phase-tag control design of
a phase-coherent pipeline implementation of the computation
A+B+C+D=sum.

4.1 Coordinate Conversion and Re-gridding

As described in [21], the coordinate conversion stage converts
each LIDAR range sample from scanner angle and range
coordinates to Cartesian coordinates. The computation is
shown in (2), where prx, pry, pr,z are components of the
converted point, tx, ty, t,z are the components of the sensor
position vector, px, py, p,z are the components of the range
sample, and q1, q2, q3, q4

 (2)

are components of a quaternion
vector for the coordinate rotation.

In the re-gridding stage of the computation, converted range
samples are projected into a grid cell of the elevation map,
and a bilinear interpolation scheme is used to update the
elevation of each vertex of the cell containing the projected
point. The elevation of the projected point weighted by the
distance from the point to the vertex is added to the current
weighted elevation for that vertex. Updates to the weighted
elevations and the weights for each vertex of the grid cell
containing a projected point are made using the computation

d1

cd1

c

c

c

c

c

d2

d1

d1

d2

d1

d2

d3

d1

d2

(d1 leaves pipe)

DII number

Clock cycle

Current operations
Processed Single adder pipeline stage allocation for

operation: A+B+C+D= sum

1

0

2

4

2

5

3

6

3

7

A+B

C+D,A+B

A+B

C+D

C+D,A+B

A+B+C+D,C+D

A+B+C+D,A+B

A+B

1

1

cd1

1

2

d1

2

3

cd2
d1

(d2 buffered one cycle)

(d3 buffered two cycles)

A+B+C+D,C+D,A+B

done,C+D,A+B,A+B

3

8

cd2

d3

d4

4

9

()
()
()

zyx

z

y

x

zyx t
pqqqq
pqqqq

pqqqq
pr ,,

1320

2310

0033

,,

5.0
2 +

+

++
+−+

=

pk0 : PKEEP port map (clk, PI(0), PO(0)); --keeper unit instantiations
pk1 : PKEEP port map (clk, PI(1), PO(1));
…
process (clk) begin
if rising_edge(clk) then
PI(0) <= RDYPH; --constant indicating units ready for data
waiting <= FALSE;
…
AI(0) <= (ZERO, ZERO, NOPH, ADD);
AI(1) <= (ZERO, ZERO, NOPH, ADD);
AI(2) <= (ZERO, ZERO, NOPH, ADD);

if example3 then -- *** phase coherent pipe with DII*L re-use interval ***
PI(0) <= PO(0); -- default to a re-circulating phase tag
if data_strobe or waiting then
if PO(0) = RDYPH then -- wait for an available pipe phase

PI(0) <= x"10"; -- phase tag indicates 1st operation this re-use interval
AI(0) <= (data_a, data_b, x"10", ADD); -- send a and b to adder inputs

else
waiting <= TRUE; -- if pipe not available, come back and try again

end if;
end if;
if PO(0) = x"10" then -- when a+b completes, save and start next
PI(0) <= x"20";
AI(0) <= (data_c, data_d, x"20", ADD);
sum_ab <= AO(0).o; -- this state variable valid for L clocks or DII/L stages

end if;
if PO(0) = x"20" then -- when c+d completes, initiate final sum
PI(0) <= x"30";
AI(0) <= (sum_ab, AO(0).o, x"30", ADD);

end if;
if PO(0) = x"30" then -- when final sum completes ...
PI(0) <= RDYPH; -- vacate this phase
sum3 <= AO(0).o; -- consume result

end if;
end if; -- end example3

…
end if;
end process;

348 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

shown in (3). In (3) r and c are the row and column numbers
of the elevation map grid cell vertices, respectively.

(3)

4.2 Experimental Setup

The prototype design is tested on a Xilinx® Virtex™-5
FX130T FPGA hosted on an Alpha Data ADM-XRC-5TZ
mezzanine card. The Virtex™-5 family has a radiation
tolerant version, providing a path to space flight certification
of the design. The ADM-XRC-5TZ board has 48 megabytes
of SRAM across six banks, used for storing the elevation and
weight data for the elevation map. The prototype design uses
two SRAM interfaces that bundle two SRAM banks each.
The interfaces are designed to use one bank for even addresses
and one for odd. This approach makes it possible to run the
SRAM interface at twice the design rate to reduce memory
latency. Currently all interfaces operate at the same clock
frequency.

A Gigabit Ethernet interface is included for command and
data input and output. The prototype is designed to run at the
Ethernet clock speed of 125 MHz. To avoid buffering of the
input data, the prototype is designed with a DII of 12 clock
cycles. The 12 cycles is derived from each LIDAR sample
consisting of three single-precision floating-point components
of four bytes each.

With this prototype platform, the coordinate conversion and
re-gridding computations were implemented within a few days
using the phase-coherent pipeline approach. A full-rate
elevation map computation is verified (input LIDAR samples
are converted and re-gridded within 12 clock cycles) on this
prototype. These results show that the LIDAR data can be
processed in real time, or faster than real time.

5 Results
A comparison of resources used between various
implementations of the example computation presented in
Section 3 is shown in Table I. The resource values are
reported from the Xilinx® synthesis tools. The static

implementation is a direct wiring of the adders and data path
to realize the computation. The dynamically
configurable/phase tag control implementations are designed
as presented in Figures 1, 2, and 4. The phase-coherent
implementations are designs applying the phase-coherent
method to each case represented by Figures 1, 2, and 4. The
floating-point units are implemented using the Xilinx® CORE
Generator™ tool. DSP slice resources are used in the
multiplier units but not shown in Table I. Comparing the
Lookup Table (LUT) resources between the static and phase-
coherent implementations shows the phase-coherent pipeline
method yields an 85% reduction in resources. This means a
given FPGA can hold the equivalent of about seven times as
many source lines of floating point application equivalent
code using the phase-coherent method, as using traditional
data path methods. If a particular design does not approach
resource limits, phase-coherent reuse reduces design size
resulting in faster place and route.

TABLE I. RESOURCE COMPARISON BETWEEN DIFFERENT
IMPLEMENTATIONS OF COMPUTATION SUM=A+B+C+D.

Resource

Implementation- 3 Instantiations of sum=a+b+c+d

Static
Dynamically

Configurable/Phase
Tag Control

Phase-
Coherent

Slice
Registers

1198 753 342

LUTs 4768 1755 705

Slices 1653 694 309
LUT/FF
Pairs 4706 2010 834

Min.
Period 6.6ns 6.6ns 6.6ns

6 Conclusions
The method described in this work achieves substantial
improvements in the ease of both development and resource
reuse for pipelined computations on configurable hardware.
Using this HDL method, declarations and wiring are
simplified, and operand/result assignments are easily mixed
with other synchronous code. The HDL reads like and
corresponds closely to a software specified algorithm. This
allowed rapid design of the prototype, and should allow fast
response to algorithm changes. The HDL is suitable for
straightforward translation from an executable software
definition that can be used for algorithm verification. This
reduces the gap between the expertise required to design
configurable implementations and that of typical algorithm
designers.

The difficulty of resource reuse is reduced with a data tag
control scheme and phase-coherent allocation method that
replace the need for complex global scheduling, heuristics or
cycle dependent logic. Sparse data arrival in real-time is

() ()()
() ()()
() ()
() ()
() ()
() ()()
()
() () ;1,1

;1,1
;11,

;11,
;1,1

;1,1
;11,

;11,
;
;

z

z

z

z

pruvcrE
uvcrW

prvucrE
vucrW
prvucrE

vucrW
prvucrE

vucrW
ccv
rru

=+++
=+++
−=++
−=++
−=++
−=++
−−=+
−−=+

−=
−=

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 349

efficiently allocated to pipeline stages, reducing design size
and place and route times.

Further examination of the utility of the approach is planned
with the full implementation of the initial hazard detection
algorithms in the ALHAT project [21]. Unlike coordinate
conversion and re-gridding, hazard detection is computation-
bound with high potential parallelism, exercising the
generality of the approach. The algorithm has been updated
several times since this initial version [3] providing a relevant
case to test the difficulty of design modification using the
phase-coherent framework. The approach will also be
considered for application to dynamically configurable ASICs.

7 References
[1] G. Govindu, L. Zhuo, S. Choi, P. Gundala, V. Prasanna, “Area, and

Power Performance Analysis of a Floating-point based Application on
FPGAs”, In Proceedings of the Seventh Annual Workshop on High
Performance Embedded Computing (HPEC 2003),
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.157.9977.

[2] C. Epp, E. Robertson, T. Brady, "Autonomous Landing and Hazard
Avoidance Technology (ALHAT)," Aerospace Conference, 2008
IEEE,pp.1-7,March. 2008,doi: 10.1109/AERO.2008.4526297.

[3] C. Villalpando, A. Johnson, R. Some, J. Oberlin, S. Goldberg,
"Investigation of the Tilera processor for real time hazard detection and
avoidance on the Altair Lunar Lander," Aerospace Conference, 2010
IEEE, pp.1-9, March, 2010, doi: 10.1109/AERO.2010.5447023.

[4] M. Cardoso, P. Diniz, and M. Weinhardt, “Compiling for
reconfigurable computing: A survey,” ACM Comput. Surv. 42, 4,
Article 13, June 2010, pp. 1-65,doi:10.1145/1749603.1749604.

[5] K. Sano, T. Iizuka, S. Yamamoto, "Systolic architecture for
computational fluid dynamics on FPGAs," Field-Programmable Custom
Computing Machines, 2007. FCCM 2007. 15th Annual IEEE
Symposium on, pp.107-116, April 2007,doi: 10.1109/FCCM.2007.20.

[6] S. Qasim, S. Abbasi, B. Almashary, "A proposed FPGA-based parallel
architecture for matrix multiplication," Circuits and Systems, 2008.
APCCAS 2008. IEEE Asia Pacific Conference on, pp.1763-1766, Nov.
2008, doi: 10.1109/APCCAS.2008.4746382.

[7] D. Goodwin and D. Petkov, “Automatic generation of application
specific processors,” Proceedings of the 2003 International Conference
on Compilers, Architecture and Synthesis for Embedded Systems

[8] J. Yu, C. Eagleston, C. Han-Yu Chou, M. Perreault, and G. Lemieux,
“Vector processing as a soft processor accelerator,”

(CASES '03). ACM, New York, NY, USA, pp. 137-147,
doi:10.1145/951710.951730.

ACM Trans.
Reconfigurable Technol. Syst.

[9] J. Tripp, K. Peterson, C. Ahrens, D. Poznanovic, M. Gokhale, "Trident:
an FPGA compiler framework for floating-point algorithms," Field
Programmable Logic and Applications, 2005. International Conference
on, pp. 317-322, Aug. 2005, doi: 10.1109/FPL.2005.1515741.

 2, 2, Article 12, June 2009, pp. 1-34,
doi:10.1145/1534916.1534922.

[10] G. Lienhart, A. Kugel, R. Manner, "Rapid development of high
performance floating-point pipelines for scientific simulation," Parallel
and Distributed Processing Symposium, 2006. IPDPS 2006. 20th
International, pp.8 April, 2006, doi: 10.1109/IPDPS.2006.1639439.

[11] F. de Dinechin, C. Klein, B. Pasca, "Generating high-performance
custom floating-point pipelines," Field Programmable Logic and
Applications, 2009. FPL 2009. International Conference on , pp.59-64,
Sept. 2009, doi: 10.1109/FPL.2009.5272553.

[12] K. S. Hwang, A. E. Casavant, C. Chang, M. d'Abreu, "Scheduling and
hardware sharing in pipelined data paths," Computer-Aided Design,
1989. ICCAD-89. Digest of Technical Papers., 1989 IEEE International
Conference on, pp.24-27, Nov. 1989, doi:
10.1109/ICCAD.1989.76897.

[13] S. Wakabayashi, N. Ohashi, J. Miyao, N. Yoshida, "A synthesis
algorithm for pipelined data paths with conditional module sharing,"
Circuits and Systems, 1992. ISCAS '92. Proceedings., 1992 IEEE
International Symposium on, vol.2, pp.677-680, May 1992, doi:
10.1109/ISCAS.1992.230161.

[14] S. Mondal, S. Memik, "Resource sharing in pipelined CDFG synthesis,"
Design Automation Conference, 2005. Proceedings of the ASP-DAC
2005. Asia and South Pacific, vol.2, pp. 795- 798, Jan. 2005, doi:
10.1109/ASPDAC.2005.1466464.

[15] D. A. Patterson and J. L. Hennessy, Computer Architecture: A
Quantitative Approach, 3rd

[16] J. R Gurd, C. C Kirkham, and I. Watson, “The Manchester Prototype
Dataflow Computer”,

 ed. San Francisco: Morgan Kaufmann
Publishers, 2003.

Commun. ACM

[17] H. Styles, D.B. Thomas, W. Luk, "Pipelining Designs With Loop-
Carried Dependencies," Field-Programmable Technology, 2004.
Proceedings. 2004 IEEE International Conference on, pp. 255- 262, 6-8
Dec.2004doi: 10.1109/FPT.2004.1393276.

 28, 1, January 1985, pp.34-52,
DOI=10.1145/2465.2468.

[18] K. Shih, et al., “Fast real-time LIDAR processing on FPGAs,”
http://www.informatik.uni-trier.de/~ley/db/conf/ersa/ersa2008.html
(accessed 6/3/2011).

[19] W. Sun, M. Wirthlin, S. Neuendorffer, "FPGA pipeline synthesis design
exploration using module selection and resource sharing," Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions
on,vol.26,no.2,pp.254-265,Feb.2007,doi: 10.1109/TCAD.2006.887923.

[20] J. Villarreal, A. Park, W. Najjar, R. Halstead, "Designing modular
hardware accelerators in C with ROCCC 2.0," Field-Programmable
Custom Computing Machines (FCCM), 2010 18th IEEE Annual
International Symposium on, pp.127-134, May, 2010,
doi: 10.1109/FCCM.2010.28.

[21] A. Johnson, A. Klumpp, J. Collier, A. Wolf, “Lidar-based hazard
avoidance for safe landing on Mars,” http://trs-new.jpl.nasa.gov/dspace/
(accessed 6/3/2011).

350 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

http://www.informatik.uni-trier.de/~ley/db/conf/ersa/ersa2008.html�
http://trs-new.jpl.nasa.gov/dspace/�

NAC: A lightweight intermediate representation for ASIP compilers

Nikolaos Kavvadias and Kostas Masselos
Department of Computer Science and Technology, University of Peloponnese, 22100 Tripoli, Greece

Abstract— ASIP processors are tuned for optimized map-
ping of narrow application sets in heterogeneous platforms.
Their successful development relies on compiler-based de-
sign space exploration. The careful design of the compiler
intermediate language is a necessity, due to its dual purpose
as both the program representation and an abstract target
machine. Its design affects the complexity, efficiency and ease
of maintenance of all compilation phases.

In this work, an extensible typed assembly intermediate
language, NAC, is presented. It can be used for processor ex-
ploration, optimizing intermediate representation (IR) trans-
formations and SSA compilation. Minimal SSA construction
algorithms are thoroughly presented for the first time.1

Keywords: compilers, intermediate representation, SSA, ASIP

1. Introduction and related work
Recent compilation frameworks provide linear IRs for

applying analyses, optimizations and as input for backend
code generation. GCC [1] supports the GIMPLE IR. Many
GCC optimizations have been rewritten for GIMPLE, but
it is still undergoing grammar and interface changes. GCC
supports backends for ASIP processors such as baseline
Xtensa [2] but it is not suitable for rapid retargeting to
non-trivial architectures. LLVM [3] uses a register-based
IR named LLVM bitcode, targeted by a C/C++ companion
frontend (clang). It is written in better coding style than
GCC, but similarly the IR infrastructure and semantics are
excessive.

In this paper, the NAC (N-Address Code) IR is introduced.
NAC supports semantic-freen-input/m-output mappings,
user-defined data types, and specifies a virtual machine
architecture. NAC’s strength is its simplicity: it is inherently
easy to develop a CDFG (Control/Data Flow Graph) extrac-
tion API, apply graph-based IR transformations for domain
specialization, investigate SSA (Static Single Assignment)
construction algorithms and perform other compilation tasks
for ASIPs.

Specifically, this paper investigates minimal SSA con-
struction schemes [4], [5] that don’t require the computation
of the iterated dominance frontier [6]. For the first time, de-
tailed implementations are illustrated to ease their adoption
in new projects.

1The presented research work was co-funded by the European
Union in the frame of the ENOSYS project (FP7-ICT-248821) (www.
enosys-project.eu).

2. Representing programs in NAC

In this section, the NAC typed-assembly language is de-
scribed. NAC provides arbitraryn-to-m mappings allowing
the elimination of implicit side-effects, a single construct
for all operations, and bit-accurate data types. It supports
scalar, single-dimensional array and streamed I/O procedure
arguments. NAC statements are labels,n-address instructions
or procedure calls.

An n-address instruction is actually the specification
of a mapping from a set ofn ordered inputs to a set of
m ordered outputs. Also termed as(n,m)-operation, it is
formatted as follows:
outp1, ..., outpm <= op inp1, ..., inpn;

where: op is a mnemonic referring to an IR instruction,
inp1, ..., inpn are itsn inputs, andoutp1, ..., outpm
its m outputs.

All declared objects have an explicit static type spec-
ification: “globalvar” (a global scalar or array variable),
“localvar” (a scalar or array local), “in” (an input argument
to the given procedure), or “out” (an output argument).

NAC supports bit-accurate data types for (signed/un-
signed) integer/fixed-point and floating-point arithmetic.
Data type specifications are essentially strings that can be
easily decoded by a regular expression scanner; typical
examples areu32, s11, q4.4u, q2.14s, f1.8.23, re-
spectively.

The EBNF grammar for NAC is shown in Fig. 1 where it
can be seen that rules “nac” and “pcall” provide the means
for then-to-m generic mapping for operations and procedure
calls, respectively. It is important to note that NAC has
no predefined operator set; operators are defined through a
textual mnemonic.

For instance, an addition of two scalar operands is written
as: a <= add b, c;. Control-transfer operations include
conditional and unconditional jumps explicitly visible in the
IR. An example of an unconditional jump would be:BB5 <=

jmpun; while conditional jumps always declare both targets:
BB1, BB2 <= jmpeq i, 10;. This statement enables a
control transfer to the entry of basic block BB1 wheni
equals to 10, otherwise to BB2.

Procedures are supported as non-atomic operations by
using a similar form to operations. In(y) <= sqrt(x);

the square root of an operandx is computed; procedure
argument lists are indicated as enclosed in parentheses.

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 351

nac_top = {gvar_def} {proc_def}.
gvar_def = "globalvar" anum decl_item_lst ";".
proc_def = "procedure" [anum] "(" [arg_lst] ")"

"{" [{lvar_decl}] [{stmt}] "}".
stmt = nac | pcall | id ":".
nac = [id_lst "<="] anum [id_lst] ";".
pcall = ["(" id_lst ")" "<="] anum ["(" id_lst ")"] ";".
id_lst = id {"," id}.
decl_item_lst = decl_item {"," decl_item}.
decl_item = (anum | uninitarr | initarr).
arg_lst = arg_decl {"," arg_decl}.
arg_decl = ("in" | "out") anum (anum | uninitarr).
lvar_decl = "localvar" anum decl_item_lst ";".
initarr = anum "[" id "]" "=" "{" numer {"," numer} "}".
uninitarr = anum "[" [id] "]".
anum = (letter | "_") {letter | digit}.
id = anum | (["-"] (integer | fxpnum)).

Fig. 1: EBNF grammar for NAC (N-Address Code).

Table1: A set of basic operations for a NAC-based IR.
Mnemonic Description (Ni, No)
ldc Load constant (1,1)
neg, mov Unary arithmetic op. (1,1)
add, sub, abs, min, max, Binary arithmetic op. (2,1)
mul, div, mod, shl, shr
not, and, ior, xor Logical (2,1)
setzz Comparison forzz: (2,1)

(eq,ne,lt,le,gt,ge)
muxzz Conditional selection (3,1)
load, store Load/Store from/to

mem.
(2,1)

sxt, zxt, trunc Type conversion (1,1)
jmpun Unconditional jump (0,1)
jmpzz Conditional jump (2,2)

2.1 Encoding NAC information
A NAC program incorporates the complete information

of a translation unit of the original program comprising of
a “globalvar” definition list and a procedure list. A single
NAC procedure is defined by the following set of lists:
ordered input (output) arguments, “localvar” definitions,
NAC statements and basic block (BB) labels.

Statements are organized in the form of a record. Lists
opnds_inand opnds_outcollect operand items, following
the definition of an “OperandItem” record. This record is
comprised of an identifier name, a data type specification,
an operand type (otype) representation and an absolute
operand item index.otype can take one of the following
values: {INARG, OUTARG, LOCALVAR, GLOBALVAR,
CONSTANT} and {INVAR, OUTVAR} as an additional
def/use specifier for NAC statements.

3. Uses and extensions of NAC
3.1 A basic NAC implementation

A basic operation set for RISC compilation is summarized
in Table 1.Ni (No) denotes the number of input (output)
operands for each operation.

The memory access model defines dedicated address
spaces per array, so that both loads and stores require the
array identifier as an explicit operand. For an indexed load
in C (b = a[i];), a frontend would generate the following

Table 2: CI characteristics for hand-optimized ANSI C
implementations ofcrcspandcrcdp.

GA
operator

Bit-level
oper. Ni/No

Cycles
(seq.)

CI
cycles

CI area
(MAU)

crcsp No/Yes 4/1 76-13 – –
crcsp No/Yes 8/1 41-6 3-1 0.977-0.142
crcsp No/Yes 8/2 5-1 3-1 1.867-0.153
crcdp No/Yes 4/1 111-18 – –
crcdp No/Yes 8/1 58-8 3-1 1.466-0.147
crcdp No/Yes 8/2 5-1 3-1 2.800-0.164

NAC: b <= load a, i;, while for an indexed store (a[i]
= b;) it is a <= store b, i;.

3.2 IR extensions
We have defined three custom IR operators,bitins,

bitext andconcat, for bitfield insertion/extraction from
a word and concatenation of two or more subwords. As
motivational examples, the single- (crcsp) and double-point
(crcdp) crossover operators are examined. C code for the
genetic algorithm operators was passed to Machine-SUIF
[7] for IR generation using a peephole matching-based code
selection pass for the ByoRISC ASIP [8]. ByoRISC supports
CIs with up to 8 inputs and 8 outputs.

crcsp reads four inputs: two parent chromosomes (father,
mother), crossover point (location), and chromosome length
(len) and produces two independent outputs; the (son, daugh-
ter) chromosomes for the next generation.crcdpdefines two
crossover points for bitfield exchange.

In Table 2, with bit-level operators unused, the minimum
number of cycles required forcrcspare 76 for a sequential
schedule and 12 for an ASAP, while for thecrcdp these
limits are 111 and 14, respectively. When the bit-level oper-
ators are used, the sequential schedules without CIs require
13 and 18 cycles forcrcspandcrcdprespectively with ASAP
schedules of 5 cycles for both. When theNi/No = {8/2}
constraint is used, a single-cycle multi-input, multi-output
(MIMO) CI is identified for each crossover operator. The
area requirement is estimated relatively to the area (multi-
plier area unit or MAU) of a 32-bit single-cycle multiplier
characterized for a Virtex-4 FPGA (XC4VLX25).

3.3 CDFG construction
A novel, fast CDFG construction algorithm has been

devised for both SSA and non-SSA NAC forms producing
flat CDFGs (Fig. 2). A CDFG symbol table item is a node
(operation, procedure call, globalvar, or constant) or edge
(localvar) with user-defined attributes: the unique name,
label and data type specification; node and edge type enu-
meration; respective order of incoming or outgoing edges;
input/output argument order of a node and BB index. Further
attributes can be defined, e.g. for scheduling bookkeeping.

3.4 Application profiling with NACVM
NAC programs can be either interpreted or translated to

low-level C for performance evaluation on the corresponding

352 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

NACtoCDFG()
input List NACs, List variables, List labels, Graph cfg;
output SymbolTable st, Graph cdfg;

begin
Insert constant, input/output arguments and global
variable operand nodes to st;
Insert operation nodes;
Insert incoming {global/constant/input, operation} and
outgoing {operation, global/output} edges;
Add control-dependence edges among operation nodes;
Add data-dependence edges among operation nodes,
extract loop-carried dependencies via cfg reachability;
Generate cdfg from st;

end

Fig. 2: CDFG construction algorithm accepting NAC input.

Table3: Application profiling with a NAC framework.
App. LOC LOC P /V /E #φs #Instr.

(NAC) (dot)
atsort 155 484 2/136/336 10 6907
coins 105 509 2/121/376 10 405726
cordic 56 178 1/57/115 7 256335
easter 47 111 1/46/59 2 3082
fixsqrt 32 87 1/29/52 6 833900
perfect 31 65 1/23/36 4 6590739
sieve 82 199 2/64/123 12 515687
xorshift 26 80 1/29/45 0 2000

abstract machine, NACVM. A set of realistic kernels has
been selected:atsort (an all topological sorts algorithm
by Knuth), coins (compute change with minimum amount
of coins), multimodecordic computation,easter (Easter
date calculations),fixsqrt (fixed-point sqrt),perfect (perfect
number detection),sieve(prime sieve of Eratosthenes) and
xorshift (100 calls to G. Marsaglia’s PRNG).

Static and dynamic metrics have been collected in Table 3.
For each application (App.), the lines of NAC and resulting
CDFGs are given in columns 2-3, number of CDFGs (P:
procedures), vertices and edges (for each procedure) in
column 4, amount ofφ statements (column 5) and lastly
the number of dynamic instructions for the non-SSA case.

4. SSA construction algorithms
This paper argues that rapid prototyping compilers, would

benefit from straightforward SSA construction schemes
which don’t require the use of sophisticated concepts and
data structures [4], [5].

Algorithm P presents a “really-crude” approach for vari-
able renaming andφ-function insertion [4]. In the first phase,
every variable is split at BB boundaries, while in the second
phaseφ-functions are placed for each variable in each BB.
Variable versions are actually preassigned in constant time
and reflect a specific BB ordering (e.g. DFS). Thus, variable
versioning starts from a positive integern, equal to the
number of BBs in the given CFG.

Algorithm H does not predetermine variable versions at
control-flow joins but accountsφs the same way as actual
computations visible in the original CFG. Due to this fact,
φ-insertion also presents dissimilarities. Both methods share
commonφ-minimization and dead code elimination phases.

BB1:
 i = 123
 j = i * j

BB2:
 PRINT(j)
 t0 = j > 5

BB3:
 i = i + 1

T

BB4:

F

BB5:
 t1 = i <= 234

BB6:

T

F

Fig. 3: CFG of the example subprogram from [5].

BB1:
 i0 =
 j0 =
 i1 = 123
 j1 = i1 * j0

BB2:
 PRINT(j2)
 t0 = j2 > 5

BB3:
 i7 = i3 + 1

T

BB4:

F

BB5:
 t1 = i5 <= 234

BB6:

T

F

BB1:
 i0 =
 j0 =
 i1 = 123
 j1 = i1 * j0

BB2:
 PRINT(j2)
 t0 = j2 > 5

BB3:
 i4 = i3 + 1

T

BB4:

F

BB5:
 t1 = i6 <= 234

BB6:

T

F

Fig. 4: Incomplete SSA for the example following variable
numberingwith algorithmP (left) andH (right).

BB1:
 i0 =
 j0 =
 i1 = 123
 j1 = i1 * j0

BB2:
 i2 = phi(i5, i1)
 j2 = phi(j1, j5)
 PRINT(j2)
 t0 = j2 > 5

BB3:
 i3 = phi(i2)
 j3 = phi(j2)
 i7 = i3 + 1

T

BB4:
 i4 = phi(i2)
 j4 = phi(j2)

F

BB5:
 i5 = phi(i7)
 j5 = phi(j3)
 t1 = i5 <= 234

BB6:
 i6 = phi(i5, i4)
 j6 = phi(j5, j4)

T

F

BB1:
 i0 =
 j0 =
 i1 = 123
 j1 = i1 * j0

BB2:
 i2 = phi(i7, i1)
 PRINT(j1)
 t0 = j1 > 5

BB3:
 i7 = i2 + 1

T

BB4:

F

BB5:
 t1 = i7 <= 234

BB6:
 i6 = phi(i7, i2)

T

F

Fig. 5: Valid SSA for the example afterφ-insertion(left) and
φ-minimization and dead code elimination (right).

4.1 Motivating example
The motivating example from [5] is shown in Fig. 3, with

incomplete SSA following variable numbering in Fig. 4.
Valid unoptimized and minimal SSA are shown in Fig. 5

involving the maximum and minimum possible number
of φs, respectively, as generated byP . H presents only
lexicographic and not semantic differences to this result.
Both algorithms achieve the generation of minimal SSA
involving the twoφ statements in BB2 and BB6.

4.2 Analysis of algorithmsP and H

Variable numbering in algorithmP is given in Fig. 6. Only
arrays and maps (key-indexed) are used for sequences of
same-type elements. Vectorized assignments to arrays/maps
are allowed, copying a scalar to all elements. A single iter-
ative form is used for iterating over a set or sequence. Lists
can have subset updates, member insertions and deletions

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 353

VariableNumbering(List NACs, List vars):
ssa_vars = empty; var_reads = zeroes;
var_writes = ones; set_writes = 0;
curr_bb = 0; prev_bb = -1;
bbnum = get number of basic blocks from NACs;
for stmt in NACs do

if stmt.bb != curr_bb then
prev_bb = curr_bb; curr_bb = stmt.bbix;
if curr_bb > 1 and set_writes == 0 then

var_writes = bbnum; set_writes = 1;
var_reads = curr_bb;

for input operand (opnd) in stmt do
if opnd is a localvar and is scalar then

ssaopnd = opnd ## var_reads[’opnd’];
update input operands of stmt;

for output operand (opnd) in stmt do
get opnd_ix = index of opnd in vars;
if opnd is a localvar and is scalar then

if stmt.bb > 1 then
var_writes[’opnd’] += 1;

var_reads[’opnd’] = var_writes[’opnd’];
ssaopnd = opnd ## var_writes[’opnd’];
insert ssaopnd to ssa_vars list;

update output operands of stmt;
update stmt in NACs;

delete localvar scalars from vars;
merge ssa_vars with vars;

Fig. 6: Variable numbering in algorithmP .

and can be merged. A key-based retrieval operation named
get is also used. GNU C concatenation## is used.
P alters in-place the NAC statement list and replaces the

non-SSA variable list by a versioned one,ssa_vars.var_-
reads and var_writes define maps for keeping the version
numbers of CFG variables.set_writesis a flag array for
controlling proper initialization ofvar_writes.curr_bb and
prev_bbare BB markers for the current and previous BB
accessible in a single pass over NAC statements.bbnumis
the number of BBs in the CFG. For each NAC,var_writes
is set tobbnumfor all except the entry BB.var_readsis set
to curr_bb. Then, for each NAC input operand, which is a
local scalar, a versioned variable is created using the entry in
var_reads. For output operands,var_writes is incremented
for a non-entry BB and thevar_readsentry for the same
operand is updated for future uses. A new SSA variable is
defined according to the value ofvar_writes entry and is
inserted inssa_vars. After updating each NAC accordingly,
local scalars are deleted from the initial list andssa_varsis
merged withvars.

Variable numbering in algorithmH uses a ‘visited’ map,
var_bb_id. After some preprocessing, input operands are
numbered in the exact same way as inP . Output operands
are associated to defined SSA variables: for unvisited vari-
ables of entry blocks,var_writes is incremented by two,
otherwise by one. Then unvisited variables are marked as
visited. Afterwards,var_readsis updated as inP .

φ-insertion according toP reads both the non-SSA and
SSA variable lists as shown in Fig. 7.φ statements are col-
lected inphi_stmts.bb_predsis the list of all preceding BBs
for a given block andbb_preds_numkeeps their number.
All BBs are scanned to updatebb_predsandbb_preds_num,
then for each non-SSA variable active in the given BB (k),
the φ statement destination operand is created as thek+1

PhiInsertion(List NACs, List vars, List labels,
List nonssa_vars):
phi_stmts = empty; bb_preds = zeroes; bb_preds_num = 0;
(ST, G) = create CFG from (NACs, labels);
for k in BBs(ST) do

insert predecessor BBs of k in bb_preds;
bb_preds_num = get number of predecessor BBs of k;
for sopnd in nonssa_vars do

if sopnd is localvar scalar, has def/use in k then
phi_opnds_in = empty; phi_opnds_out = empty;
if bb_preds_num > 1 then
ssaopnd_out = sopnd ## k+1;
insert ssaopnd_out to phi_opnds_out;
insert ssaopnd_out to vars;

ix = 0;
for n in bb_preds_num do
if bb_preds[n] != -1 then

ix = SSA ver of sopnd at last def in BB #n;
if ix == 0 then

ix = bb_preds[n] + 1;
ssaopnd_in = sopnd ## ix;
insert ssaopnd_in to phi_opnds_in;

if k == 0 and BB #k does not define sopnd then
phi_stmt = LOADCONST(phi_opnds_out);

elsif BB #k has predecessors then
phi_stmt = PHI(phi_opnds_out, phi_opnds_in);

insert phi_stmt to phi_stmts;
merge NACs with phi_stmts;
update absolute addresses (addr) in NACs, labels;

Fig. 7: φ-insertion in algorithmP .

version. Determining input SSA operands for each NAC
requires scanning all predecessors, and if any exist, to assign
the versionbb_preds[n]+1. Then, either a constant load or
a φ statement is created, the latter for non-entry BBs.

φ-insertion inH examines all parsed BBs for determining
subsequent variable versions for eachφ output operand. If a
def of this operand is found, its SSA version is incremented
by two over the current index, otherwise by one. Source
operand version is defined by a similar process, without the
additional version increment.

5. Conclusions
In this paper, a semantic-free IR, named NAC, was

presented, for use in rapid prototyping ASIP compilers.
Its applicability is illustrated through cases of rule-based
transformation for better CI generation, application profiling
and self-contained description of minimal SSA construction
algorithms.

References
[1] GCC. [Online]. Available: http://gcc.gnu.org
[2] Tensilica. [Online]. Available: http://www.tensilica.com
[3] LLVM. [Online]. Available: http://llvm.org
[4] A. W. Appel, “SSA is functional programming,”ACM SIGPLAN

Notices, vol. 33, no. 4, pp. 17–20, Apr 1998.
[5] J. Aycock and N. Horspool, “Simple generation of static single assign-

ment form,” in Proc. 9th Int. Conf. in Compiler Construction, 2000,
pp. 110–125.

[6] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck,
“Efficiently computing static single assignment form and the control
dependence graph,”ACM Trans. Prog. Lang. Syst., vol. 13, no. 4, pp.
451–490, Oct 1991.

[7] Machine-SUIF. [Online]. Available: http://www.eecs.harvard.edu/hube/
software/

[8] N. Kavvadias and S. Nikolaidis, “The ByoRISC configurable processor
family,” in Proc. IFIP/IEEE VLSI-SoC, Oct. 2008, pp. 439–444.

354 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

Automatic Tailoring of Configurable Vector Processors for Scientific
Computations

D. Rutishauser1 and M. Jones2
1Avionic Systems Division, NASA Johnson Space Center, Houston, Texas, U.S.A.

2Bradley Department of Electrical and Computer Engineering
Virginia Polytechnic Institute and State University

Blacksburg, Virginia, U.S.A.

Abstract— Re-hosting legacy codes optimized for a plat-
form such as a vector supercomputer often requires a
complete re-write of the original code. This work provides
a framework and approach to use configurable computing
resources in place of a vector supercomputer towards the
implementation of a legacy code without a long and expen-
sive re-hosting effort. The approach automatically tailors a
parameterized, configurable vector processor design to an
input problem, and produces an instance of the processor.
Experimental data shows the processors perform competi-
tively when compared with a diverse set of contemporary
high performance computing alternatives.

Keywords: reconfigurable, high-performance vector, scientific
computing

1. Introduction
A legacy code application tailored for execution on a vec-

tor computer is the assumed target for acceleration for this
work. A custom vector computer is developed on an Field-
Programmable Gate Array (FPGA) to run the application,
and this computer is customized to the particular application.
Configurable processing resources enable a wider range
of vector processing architectures than found in traditional
vector computers, and allow an architecture to be tailored to
a specific application, instead of the traditional approach of
tailoring the application to the computer.

This paper highlights contributions of the work described
in detail in [1]: (1) a formulation of the problem of deter-
mining a tailoring of an architecture to a computation, (2)
an algorithmic approach to solve the problem that includes a
parameterized architectural framework for vector processing,
(3) a scheduling/mapping algorithm that effectively uses
established performance-enhancing practices in vector com-
puting, and (4) the VectCore processor design that provides a
low-overhead implementation of the approach. The approach
is evaluated using experimental data including data produced
from an end-to-end implementation in hardware.

2. Related Work
The following is an abbreviated survey of related work, a

more complete discussion can be found in [1]. The viability

of supercomputing on FPGA systems has been assessed [2].
The potential for performance gains has resulted in numerous
studies ranging from implementations of basic matrix com-
putations [3], to the porting of a full scientific application to
a production supercomputing system with configurable hard-
ware capabilities [4]. Hybrid general purpose, configurable
High Performance Computer (HPC) systems have also been
developed as commercial and research systems [5],[6].

Vector processing remains a relevant processing paradigm
in the domain of scientific computation. The Convey hybrid
HPC [6] includes a vector processing functionality as an ex-
ample of its application-specific “personalities." The Vector
Instruction Set Architecture (ISA) Processors for Embedded
Reconfigurable Systems (VIPERS) [7] is a “soft" vector
processor approach that provides a configurable feature set
that can be tailored to an application. The Vector-Extended
Soft Processor Architecture (VESPA) [8] features a vector
co-processor also with a configurable architecture that can
be tailored to input problem requirements. These systems do
not include an automatic tailoring of the vector processing
resources to a specific problem.

3. Approach
The system targeted by this approach is a hybrid con-

sisting of an FPGA tightly-coupled with a general-purpose
processor. Computations identified as candidates for FPGA
implementation are input to tools that determine an architec-
ture tailored to each input problem. A mapping of each input
computation to its tailored architecture is also produced.
Custom tools produce the High-Level Design Language
(HDL) representation of the tailored architecture, and a
microcode program to run on the architecture. Vendor tools
produce the FPGA configuration file. All the custom and
vendor tools run on a development workstation. A software
program consisting of the original application augmented
with code that provides an interface between the software
application and the FPGA runs on the general-purpose
processor.

Details of the problem formulation can be found in [1]. An
overview of the algorithmic approach is shown in Figure 1.
The inputs are a representation, G, of a set of computations

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 355

Xi G -> ф

Mapping

Implementation

ф,X*

Minimization of F(X)

Outputs

F(Xi)=min(F(X))?

Architectural

Framework, X

y

n

VectCore

Design

G,C

Inputs

Fig. 1: Algorithmic approach overview.

and an overall resource constraint, C, for the FPGA. An
integer minimization algorithm is executed for an objective
function F . The minimization algorithm includes an archi-
tectural framework that is the target for mapping the input
computation to processors and supporting resources. The
template is parameterized allowing different specifications
for the quantity and type of processing resources. A vector
X specifies the parameters for a given architecture. A
scheduling and allocation algorithm maps operations in G
to a set of starting times, ϕ, and resources in a particular
instance, Xi of the architectural template. The outputs of
the minimization algorithm are the architecture specification,
X∗, that minimizes the scheduled execution time of G with-
out exceeding the resource constraints, and the associated
schedule, ϕ. The VectCore processor design provides an
interface to the general-purpose processor and controls the
execution of the resources specified by X∗. An integrated
implementation consisting of the tailored VectCore instance
and a microcode program to run the input computation
completes the solution.

3.1 Architectural Template
The architectural template was introduced in [9] and is a

design framework for a configurable vector processing core.
The template provides a target for the allocation of input
computations and supports performance enhancing vector
computing techniques. The following notation is used for
the components included in the VectCore implementation
designed for this research.

• L = vector load/store units
• V = vector registers
• A = vector adder units
• M = vector multiplier units
• B = functional unit buses

L2

L1Memory
V1

V2

V3

V5

V4
L4

Memory

Memory

B1 B2 B3

A1

M1

Y1

L3Memory

Fig. 2: Example VectCore architecture template instance.
Specification includes 4L, 5V , 1A, 1M , 3B, 1Y , and 0I .

• Y = vector SAXPY units
• I = vector inner product units
Other floating-point functional units could be defined

in the approach. Figure 2 shows a specific example of
a template instance. In the VectCore topology, U is the
total number of vector functional units and B denotes the
number of independent links between input/output pairs in
the network. The number of inputs, q, to the VectCore
network is q = V + U . Analysis in [1] shows the wiring
complexity for the VectCore is proportional to Bq. There-
fore, the VectCore interconnect network performance and
cost can be approximately matched to topologies ranging
from a bus (B = 1) to a crossbar (B = q) depending on
the selection of the parameter B. The specific instance of
the template is found by solving the minimization problem
for a given target computation constrained by the available
FPGA resources.

3.2 VectCore Design
The VectCore microcode is a representation of the sched-

ule and allocation determined by the minimization algo-
rithm. The format for a microcode word is the VectCore
Schedule-Packet (S-PAK). An S-PAK contains a start time
and resource configuration for a schedule event. The size
of each S-PAK word is fixed for a given maximum number
of resources and number of resource types [1]. The S-PAK
design minimizes overhead with a compact and flexible
format. For example, the size of an S-PAK is low because the
architecture does not require complex routing information or
unique bit fields for each resource.

Figure 3 shows a block diagram of the interface and
S-PAK dispatch architecture. S-PAKs are written by the
general purpose processor to the S-PAK First In First Out
(FIFO) buffer interface of the VectCore. The S-PAK router
forwards S-PAKs to resource FIFO buffers for each comput-
ing resource. When all the S-PAK configurations for a given
schedule event have been forwarded, a control word is writ-
ten to the event FIFO for consumption by the global clock

356 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

S-PAK

Router

GP

Processor

FIFO

FIFO

FIFO FIFO FIFO

Global

Clock

Control

U1 U2
Un

S-PAK FIFO

…

(S-PAKs)

Event FIFO

Resource FIFOs

Fig. 3: VectCore interface and S-PAK dispatch scheme.

control logic. This logic sends a start signal to independent
state machines for each resource. Proper execution timing
is ensured by including a capability for all the resource
pipelines to be stalled until all necessary resources are ready
to support a given global clock cycle. Comparisons of the
schedule length to actual schedule execution time measured
by hardware counters show this approach adds a very low
(3-4%) overhead to the schedule execution time.

4. Experimental Design
The VectCore approach is evaluated with a fully opera-

tional end-to-end implementation using a Xilinx®Virtex II
Pro™vp70 FPGA. The VectCore design is also targeted to
a Virtex™5 part. The VectCore is tested with the matrix
multiplication and back-substitution step of the LU matrix
decomposition problems, and a portion of an application tai-
lored to a Cray architecture. Matrix-by-matrix multiplication
provides a computation-bound test case with high available
parallelism. The back-substitution problem is characterized
by a long dependency chain between the operations. The
Cray benchmark also has a high available parallelism and is
memory-bound. A range of problem sizes, operation order-
ings, and architecture resource sizes are tested to characterize
the scaling and degree of tailoring possible with the VectCore
approach [1].

5. Results
Table 1 shows the Floating-Point Operations Per Second

(FLOPS) performance for each tailored problem implemen-
tation running each problem type. The first three rows
are matrix multiplication problems with different operation
orderings. The next two rows are two different implementa-
tions of the back-substitution problem, and the problem la-
beled “tass" is the Cray application. For the mm1, mm2, and

Table 1: VectCore (Virtex II Pro™)performance of each tai-
lored problem implementation for each benchmark problem.

Problem Architecture Tailoring Target
MFLOPS

mm1 mm2 mm3 ts1 ts2 tass
mm1 1989 0 0 243 0 0
mm2 0 1155 496 0 0 0
mm3 0 267 400 0 0 0
ts1 0 0 0 164 0 0
ts2 0 108 108 0 108 0
tass 0 0 0 149 0 763

tass problems, the maximum FLOPS performance occurs
for the implementations running the problem that matches its
tailoring. As expected, the long dependency chains and low
available parallelism in the back-substitution problems show
that the performance of the architecture is limited in com-
parison to problems such as matrix-by-matrix multiplication.
Nevertheless, VectCore is able to effectively and correctly
execute such problems, an important requirement for many
applications.

The VectCore performance is compared to alternatives in-
cluding hybrid general-purpose/configurable processor HPC
systems, a systolic architecture, a server-grade General
Purpose Processor (GPP) system, and a traditional super-
computer. For additional architecture comparisons see [1].
Table 2 shows the GFLOPS per processor performance and
the system cost per GFLOPS for the particular workload
types and sizes for each alternative. 1

The Virtex™2 Pro VectCore exceeds the performance of
the Cray SV1, and a VectCore substitution for this type
of system is the original motivation for this research. The
VectCore provides this performance at approximately 17
times lower price per GFLOPS than the SV1. The VectCore
targeted to the Virtex™5 yields a better GFLOPS perfor-
mance than previous generation hybrid HPCs, and an AMD
GPP running optimized code.

Systolic implementations and HPCs outperform the Vect-
Core on similar FPGA device families. Systolic implemen-
tations require a dedicated design effort, and a different
computation can easily accrue a similar design effort. An
HPC’s supporting resources for the FPGA cores are fixed.
Optimization to a new FPGA target may require substantial
redesign for either approach. The VectCore approach is
general for a class of computations, and can be re-targeted
easily to newer FPGA families to realize large performance
gains without a specific optimization to the device.

The overhead of the VectCore approach lies in layering
a vector architecture on the existing architecture of an
FPGA. The amount of FPGA resources not used directly
for floating-point computations impacts the FLOPS perfor-
mance. The components that dominate the overhead are the

1The system prices are reported at initial release, in U.S. dollars, because
the literature supporting each non-VectCore option spans several years.

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 357

Table 2: VectCore performance and price per performance comparison to implementation alternatives.

System Workload Size Clock
(MHz)

FPGA Device GFLOPS
per proc.

System
Price

Price per
GFLOPS

FP
GFLOPS
Limit

%
GFLOPS
Limit

Hybrid HPC
Convey HC-1 [6] Matrix Mult. order 16K 150 Virtex™5 LX 330 19.0 $13K $171 14.4 132
Cray XD-1 [10] Matrix Mult. order 16K 110 Virtex™2 Pro vp 50 2.0 $100K [5] $8.3K 8.8 23

Direct Hardware Implementation
Systolic Array [11] 2D Cavity Flow 48 X 48 grid 106 Stratix®2 EP 2S180 18.0 $7.7K [12] $425 20.4 88

Configurable Vector Processor
VectCore Matrix Mult. order 16K 133 Virtex™2 Pro vp70 1.3 $7.5K $5.8K 14.9 9
VectCore Matrix Mult. order 16K 350 Virtex™5 LX 330 6.5 $7.5K $1.2K 86.8 7

GPP
AMD (ACML) [10] Matrix Mult. order 2K 2200 3.9 $500 $128

Legacy Vector Supercomputer
Cray SV1 [13] Matrix Mult. 300 1.0 $375K [14] $100K

vector control for each functional unit and the functional unit
bus interconnect. To characterize the performance impact of
this overhead, the FLOPS performance using the maximum
number of basic floating-point operations (the operation
type is problem-dependent) supported by the resources of
a given FPGA is used as an upper bound. The last two
columns of Table 2 show this maximum theoretical per-
formance and the percent of this maximum achieved for
the configurable options. The VectCore approach achieves
the lowest percentage of the theoretical performance, but
the analysis does not use optimized functional unit designs
for a particular FPGA architecture. Lower per-unit resource
usage and higher operating frequencies are possible with
device-specific optimized designs [15]. Optimized designs
can be incorporated into the existing VectCore framework
to improve performance and reduce the approach overhead.
In addition, the VectCore interconnect is a straightforward,
non-optimized design, and its resource usage estimates are
pessimistic compared to what is possible using optimizations
such as partially-connected subnetworks.

6. Concluding Remarks
The VectCore is compared with a diverse set of contem-

porary high performance computing alternatives. Problem-
specific VectCore implementations are shown to exhibit
higher FLOPS performance than several alternatives when
targeted to recent FPGA technologies. The VectCore ap-
proach is more flexible to design changes than the sys-
tolic or HPC implementations that exhibit higher FLOPS
performance. This flexibility balances the utility of the
VectCore approach with its inherent overhead, which is also
characterized in this work.

References
[1] D. Rutishauser, “Implementing Scientific Simulation Codes Tailored

for Vector Architectures Using Custom Configurable Computing
Machines,” Ph.D. dissertation, Virginia Polytechnic Institute and State
University, Blacksburg, Virginia, U.S.A., 2010. [Online]. Available:
http://scholar.lib.vt.edu/theses/available/etd-04132011-174232/

[2] S. Craven and P. Athanas, “Examining the Viability of FPGA Super-
computing,” EURASIP J. Embedded Syst., vol. 2007, no. 1, pp. 13
–13, 2007.

[3] S. Qasim, S. Abbasi, and B. Almashary, “A Proposed FPGA-Based
Parallel Architecture for Matrix Multiplication,” in Circuits and Sys-
tems, 2008. APCCAS 2008. IEEE Asia Pacific Conference on, 30
2008.

[4] V. Kindratenko and D. Pointer, “A Case Study in Porting a Pro-
duction Scientific Supercomputing Application to a Reconfigurable
Computer,” Apr. 2006, pp. 13 –22.

[5] internetnews.com, “Cray Unleashes XD1 Opteron/Linux
Supercomputer,” http://www.internetnews.com/ent-news/article.php/
3417221/Cray-Unleashes-XD1-OpteronLinux-Supercomputer.htm,
(accessed Feb. 5, 2011).

[6] J. Bakos, “High-Performance Heterogeneous Computing with the
Convey HC-1,” Computing in Science Engineering, vol. 12, no. 6,
pp. 80 –87, 2010.

[7] J. Yu, C. Eagleston, C. H.-Y. Chou, M. Perreault, and G. Lemieux,
“Vector Processing as a Soft Processor Accelerator,” ACM Trans.
Reconfigurable Technol. Syst., vol. 2, pp. 12:1–12:34, June 2009.
[Online]. Available: http://doi.acm.org/10.1145/1534916.1534922

[8] P. Yiannacouras, J. G. Steffan, and J. Rose, “VESPA: Portable,
Scalable, and Flexible FPGA-Based Vector Processors,” in CASES
’08: Proceedings of the 2008 International Conference on Compilers,
Architectures and Synthesis for Embedded Systems. New York, NY,
USA: ACM, 2008, pp. 61 –70.

[9] D. Rutishauser. (2006) Implementing Scientific Simulation
Codes Highly Tailored For Vector Architectures Using
Custom Configurable Computing Machines. MAPLD International
Conference. Washington, DC, U.S.A. (accessed Jun. 16, 2011).
[Online]. Available: http://klabs.org/mapld06/

[10] L. Zhuo and V. Prasanna, “High-Performance Designs for Linear
Algebra Operations on Reconfigurable Hardware,” Computers, IEEE
Transactions on, vol. 57, no. 8, pp. 1057 –1071, Aug. 2008.

[11] K. Sano, L. Wang, Y. Hatsuda, and S. Yamamoto, “Scalable FPGA-
Array for High-Performance and Power-Efficient Computation Based
on Difference Schemes,” in High-Performance Reconfigurable Com-
puting Technology and Applications, 2008. HPRCTA 2008. Second
International Workshop on, 2008, pp. 1 –9.

[12] The Dini Group, “Hardware for ASIC Prototyping & FPGA Systems,”
http://www.dinigroup.com/pages/3/files/2006-03-30_7000K10PCI_
press_release.pdf, (accessed Mar. 13, 2011).

[13] Cray Inc., “The Benchmarkerś Guide for CRAY SV1 Systems,” http:
//parallel.ksu.ru/ftp/computers/cray/sv1_bmguide.pdf, (accessed Mar.
13, 2011).

[14] IDC Inc., “The Cray CX1 Supercomputer: Leveraging the Cray
Brand in the HPC Workgroup Market,” http://www.cray.com/Assets/
PDF/products/cx1/IDC%20whitepaper-CrayCX1.pdf, (accessed Mar.
14, 2011).

[15] K. S. Hemmert and K. D. Underwood, “Fast, Efficient Floating-Point
Adders and Multipliers for FPGAs,” ACM Trans. Reconfigurable
Technol. Syst., vol. 3, pp. 11:1–11:30, September 2010. [Online].
Available: http://doi.acm.org/10.1145/1839480.1839481

358 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

Optimizing the Costs of Communication Infrastructure in
Message-Based Multicore

Lars Middendorf1, Christian Haubelt2, and Christophe Bobda3
1Institute of Computer Science, University of Potsdam, Potsdam, Germany

2Institute of Applied Microelectronics and Computer Engineering, University of Rostock, Rostock, Germany
3College of Engineering, University of Arkansas, Fayetteville, Arkansas, USA

Abstract— A software routing approach is proposed as a
means to reduce the cost of communication infrastructure
in multicore based on message passing. Those costs are
generally incurred by the redundancy of routers, designed to
deal with all kind of configurations. Our approach consists
of eliminating the hardware routers and moving the message
routing tasks to general purpose processing elements. For
computationally intensive applications, the ratio between
computation and routing can be adjusted dynamically. With
the use of complex examples, we show that our solution
reduces the resource consumption of the communication
infrastructure significantly, with only a marginal decrease
of the overall performance.

Keywords: A maximum of 6 keywords

1. Introduction
While the increasing demand on computational power is

being fulfilled with the increasing number of processors in
multicore systems, the problem of communication between
the individual processing units is still an issue. With the
increasing amount of cores per chip, message passing ap-
proaches are likely to become the dominant paradigm due to
the memory bottleneck related with SMP-based approaches.

Network on Chip (NoC) was introduced as an attempt
to provide the communication support in message-based
multicore [1]. A NoC consists of a set of routers attached
to the computing element, with the goal of transporting
a message to destination without the intervention of the
processor. NoCs are crucial for the performance as well
as the cost of the whole system [2]. Most of the systems
designed so far rely on a general structure, usually a mesh,
that will allow all kinds of connections in the network.
This approach is highly inefficient since it does not match
the topology of the executing application and incurres high
resource costs. The routers are usually designed to deal with
all possible cases, thus remaining inefficient for the running
applications. Figure 1 shows a 3x3 mesh implementation
of a NoC with three processing elements (TC, VGA, LV)
as it appears in many system. Clearly the amount of space
consumed by the routers ((1,1) - (3,3)) is more than 90%
of the total area, not being worth the design efforts. It is
therefore not surprising that NoCs have so far not found

their way in commercial devices, despite the broad adoption
of the multicores in the industry.

The dynamic network-on-chip (DyNoc) introduces the
concept of coarse-grained components implemented on top
of a grid of reconfigurable processing elements [3] [4] [5].
The main innovation of the DyNoc is the possibility to adapt
the communication infrastructure to the running application
at run-time. Unused routers can therefore be dynamically as-
signed to processing elements in order to increase their com-
putation power at run-time leading to optimized topologies
for the running applications. The DyNoC however remained
a concept for which only a case study was implemented in
FPGA, but there have been also other approaches to employ
unused router components in a DyNoC.

Fig. 1: A 3x3 network on chip for graphic processing

The traffic of an application usually depends on the input
data, so that it varies during runtime and does not distribute
evenly on the chip. As a result, only a fraction of the total
on-chip bandwidth is used. Therefore, a fixed partitioning
between computational and communication elements always
leads to a waste of resources. The approach provided in this
paper offers a pragmatic way to implement dynamic NoCs.

2. Software-Assisted Routing
Software-assisted routing takes place completely inside

the processing element. Since the hardware routers are
omitted, the processing elements are connected directly
to the surrounding nodes. Each processor does not only

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 359

receive its own packets, but also becomes responsible for
routing packets that are specified for other nodes. Hence,
the processor must be able to suspend the execution of
the main program at any time to handle incoming packets.
Thus, an interrupt line is connected to all input ports, so
that the software router can be started immediately. Upon
receiving a request to route a packet through an interrupt, the
processor begins with an arbitration of the input channels.
In the simplest case, a round-robin scheduling is used to
select the correct input port. The header of the packet is
then analyzed to determine the target location.

In comparison to a hardware router, which is able to
forward a packet of n words in n cycles, the software
router is several times slower. Most of the delay is caused
by the loop that copies a packet between ports. On RISC
architectures like the Xilinx’s MicroBlaze, this loop takes
at least five cycles per word to copy. We therefore propose
to extend the processor with a command to transfer data
between ports or memory. It should be executed in parallel
to the normal control flow to reduce the effective time for
copying a packet. Moreover, the time spent in the interrupt
handler depends less on the packet’s size. However, the
decision of the target channel is still completely done in
software, so that the performance of a hardware solution
and the flexibility of software routing are combined. Since
an interrupt can occur at almost any instruction, the current
state of the processor must be saved and restored in the
interrupt handler. Duplicating the register file is a well-know
technique to reduce this overhead [6]. Both the application
and the interrupt handler can have their own set of registers.
A switch between both banks is performed instantaneously
at the entry and exit of an interrupt.

3. Results
We have implemented two types of mesh-based NoCs

(4x4 and 5x5) with XY routing (hardware-based and
software-assisted) for the sake of performance comparison.
First, the RTL code of the design has been simulated to
measure the overhead of the software-based solution and to
analyze the traffic within the network (Table 1). The first
test case simple outputs an internal buffer into the main
memory to measure the maximum bandwidth. The second
test produces a checkerboard pattern on the screen. The
following applications use ray-tracing to draw two scenes
with increasing complexity. While the copy example is 30%
faster, the more expensive ray-tracing test achieves a speed-
up of only 5%. For more complete and realistic examples,
we can expect the difference to decrease even more.

In addition to the tests using a simulator, the design has
been also evaluated on a Virtex-6-LXT240T. Table 2 com-
pares the implementation properties of the hardware router
and a simple processing core to the extended processing
unit with ISA extensions used for software routing. It can
be seen that the extended PE occupies less resources than

the combination of hardware router and simple PE. Further,
we can conclude for the non-trivial tests that the software
advantage of area outweighs the hardware advantage of
performance from Table 1.

Table 1: Cycles required by hardware and software routing.
Test HW SW HW Advantage

4x4
Copy 25,938 33,614 1.30
Checkerboard 25,482 33,660 1.32
Plane 61,543 66,805 1.09
Plane, 3 Spheres 88,768 92,831 1.05
5x5
Copy 26,800 33,743 1.26
Checkerboard 26,444 33,986 1.29
Plane 50,270 53,830 1.07
Plane, 3 Spheres 66,459 68,464 1.03

Table 2: Required hardware resources on Virtex-6 LX240T.
Property Router & Simple PE

(HW)
Extended
PE (SW)

SW Advantage

Registers 1,380 1,232 1.12
Lookup Tables 3,768 2,747 1.37

4. Conclusion
The experiments within the simulator and on the FPGA

have shown that software routing might be a viable solu-
tion for a certain class of applications. However, omitting
the routers must save enough resources or provide extra
flexibility to justify the overhead of the software solution.
Therefore, this technique might offer its advantages on
large arrays of relatively simple processing elements like
RISC cores. As a result, we expect software-assisted routing
to be most useful for resource constrained and dynamic
reconfigurable platforms like FPGAs.

References
[1] L. Benini and G. De Micheli, “Networks on chips: A new soc

paradigm,” Computer, vol. 35, pp. 70–78, January 2002. [Online].
Available: http://portal.acm.org/citation.cfm?id=619071.621885

[2] U. Y. Ogras, J. Hu, and R. Marculescu, “Key research problems
in noc design: a holistic perspective,” in Proceedings of the
3rd IEEE/ACM/IFIP international conference on Hardware/software
codesign and system synthesis, ser. CODES+ISSS ’05. New
York, NY, USA: ACM, 2005, pp. 69–74. [Online]. Available:
http://doi.acm.org/10.1145/1084834.1084856

[3] C. Bobda, M. Majer, D. Koch, A. Ahmadinia, and J. Teich, “A dynamic
noc approach for communication in reconfigurable devices,” in IN
PROCEEDINGS OF INTERNATIONAL CONFERENCE ON FIELD-
PROGRAMMABLE LOGIC AND APPLICATIONS (FPL. Springer,
2004, pp. 1032–1036.

[4] C. Bobda, Introduction to Reconfigurable Computing: Architectures,
Algorithms, and Applications, 1st ed. Springer Publishing Company,
Incorporated, 2007.

[5] C. Mahr, P. Bobda, “Reconfigurable router for dynamic networks-on-
chip,” in Rapid System Prototyping (RSP), 2010 21st IEEE Interna-
tional Symposium on, 2010.

[6] H.-G. Kim and H.-C. Oh, “A dsp-enhanced 32-
bit embedded microprocessor,” J. Embedded Comput.,
vol. 3, pp. 19–28, January 2009. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1516712.1516715

360 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

A Reconfigurable Computing Multiple Processor
Framework with Hybrid Pipeline Scheduling

D. Cook1, K. Ferens (Contact), and B. Mcleod

1Space Engineering, Bristol Aerospace; Electrical and Computer Engineering, University of Manitoba
1darcy.cook@magellan.aero, ferens@ee.umanitoba.ca, mcleod@ee.umanitoba.ca

Abstract- This paper presents a framework for a
reconfigurable computing system, consisting of cohesive
hardware and software architectures. The framework allows
customization of the hardware and software to fit a class of
applications, while narrowing the design space to a
manageable set of design parameters. The framework
features a novel hybrid static and dynamic pipeline
scheduling technique, which dynamically reconfigures the
hardware to boost performance.

Keywords: Reconfigurable computing, hybrid pipeline
scheduling, task scheduling.

I. INTRODUCTION

ERFORMANCE requirements of embedded systems are
becoming more demanding. For example, biologically

inspired and artificially intelligent computational algorithms
have been applied to topological self-organization, routing,
and data aggregation for mobile ad-hoc wireless sensor
networks. The distributed implementation of these
computational algorithms on the underlying hardware of
each node of such networks requires, at times, near real-time
performance to mitigate the already high rate of disruptions
and long delays [1]. Furthermore, the underlying hardware is
constrained to consume minimal energy, since grid power
may not be available, and power harvesting can only be
performed at scheduled times. As a result, the choice of
hardware platforms for embedded systems is constrained to
implementations which are dynamically reconfigurable and
energy consumption aware.

II. FRAMEWORK OVERVIEW

The proposed reconfigurable computing, multiple-
processor framework consists of both hardware and software
architectures, which may be individually configured to fit a
specific application [2].

A. Hardware Architecture
The hardware architecture consists of multiple-processors

connected together with a uniformly accessible global shared
memory. Each processor in the system can access the global
memory space to share data, and all processors have an
equal average global memory access time. The number of
processors can be changed, statically or dynamically,
according to the needs of the application. The main
components of the system are the soft processors (including

local data and instruction memories), global shared memory,
global memory controller, and task controller.

Soft Processor
A soft processor is implemented in configurable logic

within an FPGA. The framework allows both homogenous
and heterogeneous processors, offering the option of
creating processors with the same or different hardware and
software resources. Each of the processors requires its own
local data and instruction memory, which allows each
processor to run an independent program.

Task Controller
The task controller performs scheduling and can be

customized for each application. The task controller is
implemented entirely in hardware, and is independent of the
soft processors. This allows the task switching overhead to
be much less than it would be if the scheduling was done in
software by a processor. The DFG task dependencies are
entered as parameters in the task controller hardware
description language. Also, the task allocation for each
processor is specified in the hardware description of the task
controller. This allows the task controller to control which
task should be executed on which processor.

Hybrid Pipeline Scheduling
This paper presents a novel pipeline scheduling algorithm

that is a hybrid between traditional static pipeline scheduling
and dynamic pipeline scheduling [1]. Static pipeline
scheduling involves allocating the tasks to the processors at
design time, and also determining the schedule in which the
tasks will be executed. Dynamic pipeline scheduling
involves dynamically assigning tasks to available processors
during run-time.

The novel pipeline scheduling algorithm developed for the
proposed framework reduces the idle times significantly by
changing the number of pipeline stages to ensure that, if
there are any tasks assigned to a processor that can be
executed, they are executed, rather than waiting for other
tasks to finish. There is no longer a global processing period
(Tp); now each processor will have its own processing
period, that is independent of the other processors.
// assign 1st task which has not completed all its iterations
pipe_idx ← min. pipeline index i where Q[NL[i]] < Kds

P

Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 | 361

// while there are still tasks (not finished their iterations)
while Q[N[i]] < Kds for any task i that is in NL {

/* if the predecessors to the current task have more
iterations complete than the current task, then execute this
task, otherwise skip over it to the next task*/
if Q[NL[pipe_idx]] < Q[ML[N[pipe_idx]][j]] for all j then
{

Allow task NL[pipe_idx] to be executed
Wait until task NL[pipe_idx] is finished executing }

/*move to the next task, and if the end of the list is
reached, then start again at the beginning*/
pipe_idx ← pipe_idx + 1
if pipe_idx = βnp then {

pipe_idx ← min. pipeline index i where Q[NL[i]] <
KDS }

}
The hybrid pipeline scheduling algorithm adapts to the

variable length of task E as shown in Fig. 1. This essentially
increases the number of pipeline stages for the system, but
results in a shorter total execution time for the entire system.

Data
Set 3

Data
Set 6

Data
Set 1

Data
Set 2

Processor 1

Processor 2

CA

Processor 3

Data
Set 4

Data
Set 5

A C

E

B B G H

D

F

Fig. 1. Dynamic pipeline scheduling with variable task time.

III. EXPERIMENTAL FRAMEWORK

In order to demonstrate the effectiveness of the proposed
framework, the framework was implemented in a Xilinx
Virtex-II Pro FPGA, on the Xilinx XUPV2P development
platform [3]. Xilinx MicroBlaze soft processors were used
for the experimental implementation, each processor running
with a clock speed of 100 MHz. Each processor had 16 kB
of local memory to be used for instruction and data memory.
The global memory size used for the example application
was 16 kB of RAM internal to the FPGA. The task
controller used the novel task pipelining algorithm as
described above to dynamically change the length of the
pipeline and optimize processor utilization with the goal of
minimizing the program execution time. Experiments were
conducted using 1, 2, 3, and 4 processors (due to FPGA
limitations).

The example application developed to evaluate the
proposed framework simulated a green screen video system.

IV. EXPERIMENTAL RESULTS

Overall, it was observed that adding more processors to
the system slightly increases the speedup because the
program execution is dominated by accesses to global
memory. Fig. 2 shows the execution times of each of the
tasks with a different number of processors in the system.

Fig. 2. Original Application Task Execution Time.

V. CONCLUSIONS

This paper proposed a reconfigurable computing multiple-
processor (RCMP) framework, which specifically targeted
stream-oriented applications. Reconfigurable components:
he task allocation, pipelining algorithm, features and
resources of a soft processor (local memory, clock speed
arithmetic and/or floating point unit), number of soft
processors, task controller interface peripheral; memory
controller type (synchronous or asynchronous); global
memory type and size; and detailed design of the memory
controller interface peripheral.

This framework is best suited to stream-oriented problems
that are computationally intensive but have common data
that is required by most tasks.

ACKNOWLEDGEMENTS

We acknowledge the support of CMC for the initial use of
the Xilinx workstations. We would also like to acknowledge
the support of the Real-time Embedded laboratory for the
use of the Xilinx XUPV2P development platform.

REFERENCES

[1] S. Cui and K. Ferens, “Energy Efficient Clustering
Algorithms for Wireless Sensor Networks” in Proc. of
ICWN’11 - The 2011 International Conference on Wireless
Networks, Las Vegas, NV, 2011, July 18-21.

[2] D. Cook, “Development of a Field Programmable
Multiprocessing System Framework for Stream-Oriented
Applications”, COMP 7850 Course Project Report,
Winnipeg, MB: Dept. of Electrical and Computer
Engineering, University of Manitoba, May 2009.

[3] Xilinx Inc., Xilinx University Program Virtex-II Pro
Development System – Hardware Reference Manual.
UG069 V1.1, Apr 2008.

362 Int'l Conf. Reconfigurable Systems and Algorithms | ERSA'11 |

